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Finite energy foliations on overtwisted contact manifolds

CHRIS WENDL

We develop a method for preserving pseudoholomorphic curves in contact 3–man-
ifolds under surgery along transverse links. This makes use of a geometrically
natural boundary value problem for holomorphic curves in a 3–manifold with stable
Hamiltonian structure, where the boundary conditions are defined by 1–parameter
families of totally real surfaces. The technique is applied here to construct a finite
energy foliation for every closed overtwisted contact 3–manifold.

32Q65; 57R17

1 Introduction

1.1 Definitions and main result

Finite energy foliations of contact 3–manifolds were introduced by Hofer, Wysocki and
Zehnder in [16], where they were shown to exist for generic tight three-spheres, giving
powerful consequences for the Reeb dynamics. The present work is a step toward
generalizing such existence results: we prove that for every closed overtwisted contact
3–manifold, one can choose a contact form (of Morse–Bott type) and compatible
complex multiplication such that a stable finite energy foliation exists.

Fix a closed oriented 3–manifold M with a cooriented, positive contact structure � :
this is by definition the kernel of a smooth 1–form � which satisfies �^d� > 0. The
choice of contact form defines the Reeb vector field X by the conditions

d�.X; �/� 0 and �.X /� 1:

Then the flow of X preserves � , along with the symplectic vector bundle structure on
�!M defined by d�.

Recall that a contact structure � is called overtwisted if there exists an overtwisted disk:
an embedded disk D�M such that for all m2 @D , Tm.@D/� �m but TmD¤ �m . By
Eliashberg’s classification result [4], contactomorphism classes of overtwisted contact
structures on M are in one-to-one correspondence with homotopy classes of cooriented
2–plane distributions.

The following is the main result of this paper.
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532 Chris Wendl

Theorem 1.1 Suppose .M; �/ is a closed oriented 3–manifold with a positive over-
twisted contact structure. Then there exists a contact form � and admissible complex
multiplication J such that .M; �;J / admits a stable finite energy foliation of Morse–
Bott type. The foliation has precisely one nondegenerate asymptotic orbit and one or
more Morse–Bott tori of asymptotic orbits, and every leaf is either an orbit cylinder
or an index 2 finite energy sphere with distinct simply covered asymptotic orbits, all
positive.

We will spend the rest of Section 1.1 explaining the definitions needed to understand
this statement.

Denote the time–t flow of X by 't
X

, and recall that a closed orbit xW R!M of X

with period T > 0 is called nondegenerate if the linearized return map d'T
X
.x.0//j�x.0/

does not have 1 in its spectrum. More generally, a Morse–Bott manifold of T –periodic
orbits is a submanifold N �M tangent to X such that 'T

X
jN is the identity, and for

every m 2N ,
TmN D ker.d'T

X .m/� 1/:

In this paper we shall deal exclusively with situations where N is a circle (ie a
nondegenerate orbit) or a two-dimensional torus. For the latter case, one can show
(see Wendl [28]) that all orbits in N have the same minimal period � > 0, and N

is a Morse–Bott family of k� –periodic orbits for all k 2N . Thus we will call such
submanifolds Morse–Bott tori without reference to the period, and a single closed
orbit will be called simply Morse–Bott if it either is nondegenerate or belongs to a
Morse–Bott torus.

The symplectization of M is the open 4–manifold R�M with symplectic structure
d.ea�/, where a denotes the coordinate on the R–component. We consider a natural
class of R–invariant almost complex structures compatible with this symplectic form,
defined as follows. Note the choice of contact form � defines a splitting

T .R�M /D .R˚RX /˚ �;

where the first factor also comes with a natural trivialization. An admissible complex
multiplication is a choice of complex structure J for the bundle �!M , compatible
with the symplectic structure, ie we require that d�.�;J �/ define a bundle metric. Given
any such choice, we define an almost complex structure zJ on R�M in terms of the
above splitting and trivialization by

zJ D i ˚J;

where i is understood as the natural complex structure acting on C D R2 . We will
call zJ the almost complex structure associated to � and J .
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Given such a structure, we consider zJ –holomorphic curves

zuD .a;u/W . P†; j /! .R�M; zJ /;

where the domain P†D†n� is a Riemann surface .†; j / with a discrete set of points
� �† removed. The energy of such a curve is defined as

(1) E.zu/D sup
'2T

Z
P†

zu�d.'�/;

where T WD f' 2C1.R; Œ0; 1�/ j'0�0g. An easy computation shows that the integrand
is nonnegative whenever zu is zJ –holomorphic, and such a curve is constant if and only if
E.zu/D 0. When † is closed, zJ –holomorphic curves zuW P†!R�M with E.zu/ <1

are called finite energy surfaces. By results in Hofer [10] and Hofer–Wysocki–Zehnder
[11; 14], these have nicely controlled asymptotic behavior near the punctures, which
can be described as follows. Denote by D � C the closed unit disk with its natural
complex structure, and let Dr �C be the closed disk of radius r for any r > 0.

Proposition 1.2 Suppose zu D .a;u/W PD D D n f0g ! R�M is a zJ –holomorphic
map with 0<E.zu/ <1. If zu is bounded, then zu extends to a zJ –holomorphic map
D! R�M . Otherwise, zu is a proper map, and for every sequence sk !1 there
is a subsequence such that the loops t 7! u.e�2�.skCit// converge in C1.S1;M / to
a loop t 7! x.Qt/. Here xW R!M is a periodic orbit of X with period T D jQj,
where

(2) QD� lim
�!0

Z
@D�

u��¤ 0:

Moreover, t 7! a.e�2�.skCit//=sk converges in C1.S1;R/ to the constant map t 7!

Q.

If the orbit x is Morse–Bott, then in fact the maps t 7! u.e�2�.sCit// and t 7!

a.e�2�.sCit//=s converge in C1.S1/ as s!1.

The number Q 2R n f0g appearing above is called the charge of the puncture, and we
call the puncture positive/negative in accordance with the sign of Q. This defines a
partition of the set of punctures:

� D �C[��;

and one can use the maximum principle to show that finite energy surfaces always have
#�C � 1, cf Hofer–Wysocki–Zehnder [12].
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The simplest example of a finite energy surface is the so-called orbit cylinder or trivial
cylinder over a T –periodic orbit xW R!M . Indeed, it’s easy to check that the map

zuW R�S1
!R�M W .s; t/ 7! .T s;x.T t//

is zJ –holomorphic and has finite energy; after reparametrization, it is a sphere with
one positive puncture and one negative. Proposition 1.2 above is a precise way of
saying that any finite energy surface looks approximately like an orbit cylinder near
each puncture.

Definition 1.3 A finite energy foliation for .M; �;J / is a smooth two-dimensional
foliation F of R�M such that the following are true.

(1) Each leaf F 2F can be presented as the image of an embedded zJ –holomorphic
finite energy surface, and there exists a constant that bounds the energy of every
leaf uniformly.

(2) For every leaf F 2F , the set � CF WD f.� Ca;m/ j .a;m/ 2 Fg for � 2R is
also a leaf of the foliation, and thus either disjoint from or identical to F .

We shall often abuse notation and write zu 2 F , meaning that the finite energy surface
zu parametrizes a leaf of F . The R–invariance assumption says that zuD .a;u/ 2 F if
and only if zu� WD .aC �;u/ 2 F for all � 2R. This has several consequences for the
projection of F to the underlying contact manifold.

Proposition 1.4 Let F be a finite energy foliation.

(i) If P �M is a periodic orbit which is an asymptotic limit for some leaf zu 2 F ,
then the orbit cylinder R�P is also a leaf of F .

(ii) For each leaf zuD .a;u/W P†!R�M of F that is not an orbit cylinder, the map
uW P†!M is embedded and does not intersect its asymptotic limits.

(iii) If zuD .a;u/W P†!R�M and zv D .b; v/W P†0!R�M are two leaves of F ,
then u. P†/ and v. P†0/ are either disjoint or identical.

The proofs of these properties are mostly straightforward exercises using positivity
of intersections; we refer to Wendl [29] for details. The only detail not covered there
is the fact that the maps uW P†! M are not just injective but also embedded: for
this one uses intersection theory to show that a critical point of u at z 2 P† implies
intersections between .a;u/ and .aC �;u/ near z for small � ; cf Wendl [28]. Denote
by PF �M the union of all the closed orbits that occur as asymptotic limits for leaves
of F ; equivalently, this is the projection down to M of all the orbit cylinders in F .
Then Proposition 1.4 can be rephrased as follows.
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Corollary 1.5 If F is a finite energy foliation, then the projections of its leaves from
R�M to M form a smooth foliation of M nPF .

To explain the stability condition, we need to introduce some more technical details.
In the following, write periodic orbits of X in the notation P WD .x.R/;T / where
xW R!M is a T –periodic solution of the Reeb flow equation; note that T need not
be the minimal period, and the parameterization x can always be changed by a time
shift. We shall sometimes abuse notation and regard P as a subset of M , keeping in
mind that T is also part of the data. Recall that if P is nondegenerate, we can choose
a unitary trivialization ˆ of � along P and define the Conley–Zehnder index �ˆCZ.P /

as in Hofer–Wysocki–Zehnder [12]. Then a finite energy surface zuW P†!R�M with
only nondegenerate asymptotic orbits fPzgz2� is assigned the Conley–Zehnder index

�CZ.zu/D
X

z2�C

�ˆCZ.Pz/�
X

z2��

�ˆCZ.Pz/;

where the trivializations ˆ are chosen so as to admit an extension to a global complex
trivialization of � along zu; then �CZ.zu/ doesn’t depend on this choice.

This index can be extended to the Morse–Bott case in the following straightforward
manner. Given P , define an admissible parameterization of P to be any map xW S1!

P �M such that �.Px/� T . This defines the so-called asymptotic operator

(3) AxW �.x��/! �.x��/W v 7! �J.rtv�TrvX /;

where r is any symmetric connection on M ; one can check that this expression
gives a well defined section of x�� , not depending on r . As an unbounded operator
on L2.x��/ with domain H 1.x��/, Ax is self-adjoint, with spectrum consisting of
discrete real eigenvalues of finite multiplicity, accumulating only at infinity. The
equation Axv D 0 then defines the linearized Reeb flow restricted to � along P , and
P is nondegenerate if and only if ker Ax D f0g. When this is the case, one can define
the linearized Reeb flow purely in terms of the equation Axv D 0 and sensibly denote
the Conley–Zehnder index by �ˆCZ.P /D �

ˆ
CZ.Ax/. The key observation now is that

for any c 2R, the equation .Ax� c/v D 0 also defines a linear Hamiltonian flow, and
thus yields a well defined Conley–Zehnder index if c is not an eigenvalue of Ax . Then
if P belongs to a Morse–Bott manifold N �M , we can pick any sufficiently small
number � > 0 and define the perturbed Conley–Zehnder indices

(4) �ˆ˙CZ .P /D �
ˆ
CZ.Ax˙ �/:

This doesn’t depend on � if the latter is sufficiently small, but does depend on the sign
choice whenever ker Ax is nontrivial, ie when P is degenerate. For zu with Morse–Bott
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asymptotic orbits, we now define its Conley–Zehnder index by

�CZ.zu/D
X

z2�C

�ˆ�CZ .Pz/�
X

z2��

�ˆCCZ .Pz/

which is equal to the previous definition if all Pz are nondegenerate.

The moduli space of finite energy surfaces M zJ
is the set of equivalence classes

C D Œ.†; j ; �; zu/�, where zuW .† n�; j /! .R�M; zJ / is a finite energy surface, �
is assigned an ordering, and .†; j ; �; zu/ � .†0; j 0; � 0; zu0/ if and only if there is a
biholomorphic map 'W .†; j /! .†0; j 0/ that takes � to � 0 with ordering preserved
and satisfies zuD zu0 ı' . We shall sometimes abuse notation and write zu 2M zJ

when
there is no confusion.

To define a topology on M zJ
, first note that the punctured Riemann surface . P†; j / can

be regarded as a surface with cylindrical ends, which then admits a natural compactifi-
cation. Indeed, for each z 2 �˙ , pick a closed disk-like neighborhood Dz of z in †
and a biholomorphic map PDz WDD n fzg !Z˙ , where

(5) ZC D Œ0;1/�S1; Z� D .�1; 0��S1;

both with the standard complex structure i . This decomposes P† in the form

P†Š†0[

0@ [
z2�˙

Z˙

1A ;
where †0 is a compact surface with boundary. We now define the compactified surface
S† by adding “circles at infinity,” which means replacing each Z˙ with SZ˙ , where

SZC D Œ0;1��S1; SZ� D Œ�1; 0��S1:

Denote the components of @S† by ızŠf˙1g�S1 for each z 2�˙ . We shall not place
a smooth structure on S†. It is naturally a compact topological manifold with boundary,
where the interior P†� S† and the boundary components ız all have natural smooth
structures; in fact the latter have natural identifications with S1 up to translation, and
one can show that none of this structure depends on the choices.

The symplectization W WDR�M also has a natural compactification SW WD Œ�1;1��
M , which we again regard as a topological manifold with boundary, on which the
interior and the boundary separately have natural smooth structures. It is then convenient
to observe that any finite energy surface zuW P†!W extends naturally to a continuous
map xuW S†! SW , whose restriction to each ız gives an admissible parameterization of
the corresponding orbit Pz � f˙1g�M .
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We say that a sequence Ck 2M zJ
converges to C 2M zJ

if for sufficiently large k

there exist representatives .†; jk ; �; zuk/ 2 Ck and .†; j ; �; zu/ 2 C such that

(1) jk ! j in C1.†/,

(2) zuk ! zu in C1loc .
P†;W /,

(3) xuk ! xu in C 0.S†; SW /.

This defines the topology on the moduli space M zJ
.

For any finite energy surface zuW P†!R�M with Morse–Bott asymptotic orbits, define
the index of zu by

(6) ind.zu/D �CZ.zu/��. P†/:

This is the Fredholm index of the linearized normal Cauchy–Riemann operator Lzu ,
which is explained in Hofer–Wysocki–Zehnder [13] for the nondegenerate case and
Wendl [28] in general. We call zu regular if the operator Lzu is surjective; in this case
the implicit function theorem allows us to describe a neighborhood of zu in M zJ

as
a smooth manifold of dimension ind.zu/. In the general Morse–Bott case there is a
stronger notion of regularity: suppose zu has a puncture z 2 � at which the asymptotic
orbit belongs to a Morse–Bott torus N �M , and let Uzu �M zJ

denote a connected
open neighborhood of zu. We can assume without loss of generality that all curves in
Uzu are parameterized on the same domain † with the puncture z 2 � �† in a fixed
position. The Reeb flow along N defines an S1 –action so that N=S1 is a circle, and
there is then a natural evaluation map

evz W Uzu!N=S1;

defined by assigning to any curve in Uzu its asymptotic orbit Pz �N . We say that zu is
strongly regular if it is regular and for every z 2 � where Pz is degenerate, evz has a
surjective linearization at zu.

Definition 1.6 A finite energy foliation F is called stable if PF is a finite union of
nondegenerate Reeb orbits, and every leaf F 2 F is parameterized by a regular finite
energy surface zu0 2M zJ

such that all other curves zu2M zJ
near zu0 also parameterize

leaves of F .

We say that F is a stable foliation of Morse–Bott type if PF is a finite union of
nondegenerate Reeb orbits and Morse–Bott tori, and each leaf is a strongly regular
finite energy surface whose neighbors in M zJ

are also leaves of F .
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Observe that leaves of stable finite energy foliations can only have index 0, 1 or 2.
The index 0 leaves are precisely the orbit cylinders, while index 1 leaves are called
rigid surfaces, because they project to isolated leaves in the foliation of M nPF . Index
2 leaves come in R–invariant 2–parameter families, which project to 1–parameter
families in M nPF . In the Morse–Bott case, orbit cylinders can also have index 1,
projecting to M as 1–parameter families moving along Morse–Bott tori.

a

a B

B

A

A

Figure 1: A cross section of a stable finite energy foliation on S3 DR3[

f1g , with three asymptotic orbits cutting transversely through the page. The
hyperbolic orbit a is the limit of two rigid planes, and is connected to two
elliptic orbits A and B by rigid cylinders. All other leaves are index 2 planes
asymptotic to A or B . Arrows represent the signs of the punctures at a: a
puncture is positive/negative if the arrow points away from/toward the orbit.

1.2 Outline of the proof

The surgery construction involves two main technical ingredients. The first is the
Fredholm and intersection theory for the mixed boundary value problem considered
in Wendl [28], which we review in Section 2. The crucial point is to observe that
embedded index 2 curves with certain properties are always regular, and give rise to non-
intersecting 2–parameter families of embedded curves, which project to 1–parameter
families of embeddings in M .
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The second main ingredient is a compactness argument: this is explained in Section 3
and constitutes the bulk of the technical work in this paper. While we borrow certain
ideas from the compactness theorems of Symplectic Field Theory (Bourgeois et al [3]),
those results cannot be applied and are in fact not true in our setup, because we make
only very weak nondegeneracy assumptions on our data. This is necessary in order to
accommodate nontrivial homotopies of the data, but it allows potentially quite strange
asymptotic behavior for holomorphic curves. Thus in our situation, the moduli space
generally has no natural compactification—yet we’ll find that the particular spaces of
interest encounter topological obstructions to noncompactness, which are peculiar to
the low-dimensional setting. In this way, our arguments are quite different from those
in [3]. This is illustrated by the example in Figure 2. Here we consider the degeneration
of a sequence of finite energy planes zuk in R�S3 , all asymptotic to the same simply
covered orbit P1 � S3 and not intersecting it. Without assuming that the Reeb vector
field is nondegenerate, it is sometimes possible to show that any other closed orbit
P � S3 must be nontrivially linked with P1 . Then if a plane bubbles off as in the
picture, its asymptotic limit P 0 must be linked with P1 , implying that the new plane
intersects P1 . But then P1 must also intersect zuk for sufficiently large k , giving a
contradiction. Some more elaborate variations on this argument will be used repeatedly
in Section 3.

P1

P 0

P1

Figure 2: A finite energy plane bubbles off and produces an illegal intersec-
tion with the asymptotic limit P1 . This gives a topological obstruction to
noncompactness.

The main result is then proved in Section 4. Starting with a stable finite energy foliation
on the tight three-sphere (an open book decomposition with one nondegenerate binding
orbit), we perform a combination of rational Dehn surgery and Lutz twists along a
transverse link K � S3 and show that the resulting contact manifold also admits a
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stable foliation, now of Morse–Bott type. The topological preliminaries on surgery
and Lutz twists are explained in Section 4.1. In Section 4.2, we tackle the easiest
step in the foliation construction, finding families of holomorphic curves to fill the
solid tori that are glued in by surgery. This is done by explicitly solving the nonlinear
Cauchy–Riemann equation on S1�B2�S1�R2 , with rotationally symmetric contact
forms and complex structures.

Figure 3: The stable Morse–Bott finite energy foliation obtained from an
open book decomposition of S3 after surgery along a transverse knot K ,
linked twice with the binding orbit. Each leaf in the region outside the surgery
has three punctures: one at the original binding orbit, and two at Morse–Bott
orbits along the torus around K .

The technical background of Section 2 and Section 3 is then applied in Section 4.3
to change a given open book decomposition of S3 (which can also be constructed
explicitly) into a stable Morse–Bott foliation in the complement of a transverse link
neighborhood. The key is to remove a collection of disks from each page of the open
book, obtaining holomorphic curves with boundary, which satisfy a problem of the
type considered in Section 2, with images avoiding the region inside a set of small
tori. Thus we are now free to perform surgery and Lutz twists inside these tori without
killing the holomorphic curves outside; the region inside can afterwards be filled in by
the explicitly constructed curves from Section 4.2.
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In principle, the curves with boundary filling the region outside the tori can be ho-
motoped as the contact form is twisted, so that in the limit, all boundary components
degenerate to punctures, giving rise to finite energy surfaces without boundary. The
actual argument is not quite so simple, because the curves obtained by cutting out disks
generally satisfy a boundary condition that is totally real but not Lagrangian, thus
lacking a priori energy bounds. This problem does not appear to be solvable for all
curves at once, but we can deal with a single curve in the case where each component
of K is only singly linked with the binding orbit: this makes it possible to construct
the totally real surface in R�M so that it is equivalent via a diffeomorphism to a
Lagrangian surface in the symplectization of M with a stable Hamiltonian structure,
ie the generalization of a contact form described in [3]. We can then homotop this
back to contact data but keep the Lagrangian boundary condition, and use the implicit
function theorem to extend the single curve again to a whole foliation. The only catch
is that this trick requires the restrictive assumption that components of K link only
once with the binding orbit. We fix this in Section 4.4 by viewing the general case as a
branched cover. The foliation can then be lifted to the cover using intersection theory.

1.3 Discussion

The result proved here is one step in a program proposed by Hofer to study Reeb
dynamics on arbitrary closed contact 3–manifolds via finite energy foliations; this is
joint work in progress by the author with Hofer, R Siefring and J Fish. As was shown
in Hofer–Wysocki–Zehnder [16], the existence of finite energy foliations on .S3; �0/

implies that generic Reeb vector fields in that setting admit either two or infinitely many
periodic orbits. The present work does not imply such a result for overtwisted contact
manifolds, because we fix a very specific contact form. The next step would therefore
be a homotopy argument in which one shows that a foliation of .M; �;J / gives rise to
a foliation (or something similar) of .M; f �;J 0/ for generic positive smooth functions
f and complex multiplications J 0 . One can then try to extend this to tight contact
manifolds by the following trick: any .M; �/ can be made overtwisted by taking a
connected sum of .M; �/ with .S3; �ot/ for some �ot overtwisted. One would then
like to understand what happens to a sequence of foliations on the overtwisted object
as one pinches off the overtwisted part. It is known that this program cannot in general
lead to a stable finite energy foliation for generic .M; �;J /, as there are examples
of tight contact manifolds where stable foliations don’t exist (cf [28]). Nonetheless,
the limits obtained in such spaces from sequences of foliations should be interesting
objects, with possible dynamical implications.

A related program is of a more topological nature: the author proposed in [29, Chapter
6] an equivalence relation for stable finite energy foliations, called concordance, which
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is defined by the existence of stable holomorphic foliations on cylindrical symplectic
cobordisms. The goal would then be to classify all foliations for a given .M; �/

up to concordance. Conjecturally, two concordance classes can be distinguished by
an invariant HC�.F/, which is a version of contact homology (or more generally,
symplectic field theory as in Eliashberg–Givental–Hofer [5]) that counts the orbits
and rigid surfaces in the foliation. In this framework, the constructions of the present
paper show that every overtwisted .M; �/ admits a foliation F for which HC�.F/ is
trivial. As suggested however by an example in [29], this is not true for all foliations
on overtwisted contact manifolds.

We should mention the related work of C Abbas [1], which uses the open book decom-
positions of Giroux [9; 8] to produce (in the planar case) open book decompositions
with pseudoholomorphic pages. Due to Etnyre’s result that all overtwisted contact
structures are planar [6], this also produces a finite energy foliation for all overtwisted
contact manifolds. The two constructions are however quite different, eg ours is not
an open book decomposition, and the foliations of Abbas appear to have nontrivial
contact homology in the sense described above, suggesting that they are not equivalent
to ours via concordance.
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2 A mixed boundary value problem

In this section we review the basic facts about the boundary value problem considered
in [28], referring to that paper for all proofs.

Let M be a closed, oriented 3–manifold. A stable Hamiltonian structure on M is a
tuple HD .�;X; !;J / where

� � is a smooth cooriented 2–plane distribution on M ,

� ! is a smooth closed 2–form on M which restricts to a symplectic structure on
the vector bundle �!M ,

� X is a smooth vector field which is transverse to � , satisfies !.X; �/� 0, and
whose flow preserves � ,
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� J is a smooth complex structure on the bundle �!M , compatible with ! in
the sense that !.�;J �/ defines a bundle metric.

It follows from these definitions that the flow of X also preserves the symplectic
structure defined by ! on � , and the special 1–form � associated to � and X by the
conditions

�.X /� 1; ker�� �;

satisfies d�.X; �/� 0.

Example 2.1 Given a contact form � on M with contact structure � D ker�, Reeb
vector field X and admissible complex multiplication J , the data HD .�;X; d�;J /
define a stable Hamiltonian structure.

The stable Hamiltonian structure of Example 2.1 is referred to as the contact case. We
will define and use a non-contact example in Section 4.3.

An R–invariant almost complex structure zJ on R �M is associated to any H D
.�;X; !;J / by defining zJ@aDX and zJvD Jv for v 2 � , where again a denotes the
coordinate on the R–factor and @a is the unit vector in the R–direction. Since d�j�
may now be degenerate, we generalize the definition of energy for pseudoholomorphic
curves zuD .a;u/W .†; j /! .R�M; zJ / by

E.zu/DE!.zu/CE�.zu/;

where
E!.zu/D

Z
†

u�!

is the so-called !–energy and

E�.zu/D sup
'2T

Z
†

zu�.d' ^�/;

with T defined as in (1). In the contact case this definition is equivalent to (1), in the
sense that uniform bounds on one imply uniform bounds on the other. Punctured zJ –
holomorphic curves with finite energy in this generalized sense also have asymptotically
cylindrical behavior near punctures, the same as in Proposition 1.2. The next result,
which follows from arguments in (Hofer–Wysocki–Zehnder [11; 14] Siefring [26]),
gives a more precise and useful statement. Recall from (5) the definition of the positive
and negative half-cylinders Z˙ .

Proposition 2.2 Let HD .�;X; !;J / be a stable Hamiltonian structure on M with
associated almost complex structure zJ , and choose a metric on M . Suppose zu D

Geometry & Topology, Volume 12 (2008)



544 Chris Wendl

.a;u/W Z˙ ! R�M is a finite energy zJ –holomorphic map asymptotic (with sign
corresponding to the choice of ZC or Z� ) to a Morse–Bott orbit P � M with
admissible parameterization xW S1!M . There is then a smooth map hW Z˙! x��
with h.s; t/ 2 �x.t/ such that, up to translation by constants in s and t , u.s; t/ D

expx.t/ h.s; t/ for jsj sufficiently large. Moreover, either h.s; t/� 0 or it satisfies the
formula

(7) h.s; t/D e�s.�.t/C r.s; t//

where �2�.x��/ is an eigenfunction of the asymptotic operator Ax in (3), �¤ 0 is the
corresponding eigenvalue, whose sign is opposite that of the puncture, and r.s; t/! 0

uniformly in t as s!˙1.

Definition 2.3 The section e 2 �.x��/ appearing in (7) is called the asymptotic
eigenfunction of zu at the puncture; it is well defined up to a positive multiple. Note that
e.t/ is never zero, so given a trivialization ˆ of x�� , there is a well defined winding
number windˆ.e/ 2 Z.

For some integer m� 0, let L1; : : : ;Lm �M be a collection of smoothly embedded
surfaces which are everywhere tangent to X . Choosing smooth functions gj W Lj !R,
the graphs

(8) zLj WD f.gj .x/;x/ 2R�M jx 2Lj g

are then totally real submanifolds of .R�M; zJ /, and so are their R–translations

zL�j WD f.gj .x/C �;x/ 2R�M jx 2Lj g

for every � 2R. Denote ƒD . zL1; : : : ; zLm/. Then we define the moduli space

MH;ƒ

to consist of equivalence classes Œ.†; j ; �; zu/� where .†; j / is a compact Riemann
surface with an ordered set of m boundary components

@†D 
1[ � � � [ 
m;

� � int† is a finite ordered set of interior points giving rise to the punctured Rie-
mann surface P†D † n� with boundary @ P†D @†, and zuW . P†; j /! .R�M; zJ / is
a pseudoholomorphic map with E.zu/ <1 and satisfying the following boundary
condition:

For each component 
j � @† there exists a number �j 2R such that zu.
j /� zL
�j
j :
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As before, we will abuse notation and write zu 2MH;ƒ whenever convenient. Equiva-
lence in MH;ƒ is defined by biholomorphic maps that preserve the ordering of both
the punctures and the boundary components, and the definition of convergence used in
Section 1.1 to topologize M zJ

also naturally gives a topology on MH;ƒ . Note that
in the case where H is contact and mD 0 (ie @†D∅), MH;ƒ is simply M zJ

, the
space of zJ –holomorphic finite energy surfaces. Observe also that MH;ƒ admits a
natural R–action

R�MH;ƒ!MH;ƒW .�; .a;u// 7! zu
�
WD .aC �;u/:

The Conley–Zehnder index generalizes to zuD .a;u/ 2MH;ƒ as follows. For each
puncture z 2 � , let Pz be the corresponding orbit of X approached by zu. The bundle
� along Pz has a symplectic structure ! , which is preserved by the linearized flow
of X , thus we can choose a unitary trivialization ˆ and define �ˆ˙CZ .Pz/ as in (4).
Now at each component 
j � @†, u�� has a totally real subbundle `! 
j defined
for z 2 
j by

`z D �u.z/\Tu.z/Lj I

here we exploit the fact that X is tangent to Lj , hence � and Lj are transverse. Then
if mC #� > 0, we can choose trivializations ˆ at each orbit and each boundary
component so that these extend to a global complex trivialization of u�� ! P†, and
define the Maslov index of zu as

�.zu/D
X

z2�C

�ˆ�CZ .Pz/�
X

z2��

�ˆCCZ .Pz/C

mX
jD1

�ˆ.u��j
j ; `/;

where the last term is a sum of Maslov indices for the loops of totally real subspaces `
along 
j with respect to the complex trivialization ˆ. If mD #� D 0, so P† is closed,
we instead define

�.zu/D 2c1.u
��/:

The Fredholm index of zu is then the integer

(9) ind.zu/D �.zu/��. P†/Cm:

As with finite energy surfaces, a neighborhood of zu 2MH;ƒ can be described via
a linearized normal Cauchy–Riemann operator Lzu , and the previous definitions of
regular and strongly regular carry over immediately.

We now collect some useful results about the moduli space MH;ƒ . The first important
observation is that zu D .a;u/ 2 MH;ƒ is never equivalent to its R–translations
zu� D .aC�;u/ for small � unless it is tangent everywhere to R˚RX � T .R�M /,
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which implies E!.zu/ D 0. Thus when E!.zu/ > 0, zu and zu� have only isolated,
positive intersections. The infinitesimal version of this statement deals with the zeros
of the section

�T uW P†! HomC.T P†;u
��/;

which composes the tangent map T u with the projection � W TM ! � along X . Count-
ing these zeros algebraically defines the nonnegative homotopy invariant wind�.zu/,
which is a half-integer in general because zeros at the boundary must be counted with
half weight. The map uW P†!M is immersed if and only if wind�.zu/D 0, and in
this case the Cauchy–Riemann equation implies it is also transverse to X . Due to
Proposition 2.2 and the relations proved in [12] between the spectrum of the asymptotic
operator at an orbit and the orbit’s Conley–Zehnder index, wind�.zu/ is also bounded
from above.

Theorem 2.4 For any zu 2MH;ƒ with E!.zu/ > 0,

0� 2 wind�.zu/� ind.zu/� 2C 2gC #�0;

where g denotes the genus of † and �0 is the set of z 2 �˙ for which �ˆ�CZ .Pz/ is
even (for any trivialization ˆ).

Nondegenerate elliptic orbits always have odd Conley–Zehnder index, thus punctures
at such orbits never belong to �0 . The next lemma gives a useful criterion in the
degenerate Morse–Bott case. It follows, for instance, that z 62 �0 if Pz belongs to a
Morse–Bott torus which never intersects the image of u.

Lemma 2.5 Suppose zu D .a;u/ 2MH;ƒ is asymptotic at z 2 �˙ to an orbit Pz

belonging to a Morse–Bott torus Nz �M . Let ˆ0 be the natural trivialization of �
along Pz determined by the directions tangent to Nz , and suppose that the asymptotic
eigenfunction e of zu at z satisfies windˆ0.e/D 0. Then �ˆ0�

CZ .Pz/D˙1.

Analogously to �T u, sections in ker Lzu have only positive zeros and the count of
these satisfies a similar upper bound. When this bound is zero in particular, we find
dim ker Lzu�2, leading to the conclusion in the embedded index 2 case that zu is regular
without need for any genericity assumption. Moreover, nearby curves in the moduli
space can be identified with sections in ker Lzu which have no zeros, and therefore the
nearby curves have no intersections except possibly near infinity. The latter can be
excluded a priori in the situation of interest to us here, and we obtain the following
special case of a result in [28].

Theorem 2.6 Suppose zuD .a;u/W P†!R�M represents an element of MH;ƒ and
has the following properties:
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(1) zu is embedded,

(2) u is injective or @†D∅,

(3) all asymptotic orbits Pz for z 2 � are Morse–Bott, simply covered and geomet-
rically distinct from one another,

(4) ind.zu/D 2,

(5) † has genus 0 and

(6) for each z 2 �˙ , �ˆ�CZ .Pz/ is odd (for any trivialization ˆ).

Then zu is strongly regular and a neighborhood of zu in MH;ƒ has naturally the structure
of a smooth 2–dimensional manifold. In fact, there exists an embedding

R� .�1; 1/� P†
zF
�!R�M

.�; �; z/ 7�! .a� .z/C �;u� .z//

such that the following hold.

(i) For � 2 R and � 2 .�1; 1/, the embeddings zu.�;�/ D zF .�; �; �/W P†! R�M

parameterize elements of MH;ƒ , and zu.0;0/ D zu.

(ii) The map F.�; z/ D u� .z/ is an embedding .�1; 1/� P† ,!M , and its image
never intersects any of the orbits Pz or Morse–Bott tori Nz . In particular the
maps u� W P†!M are embedded for each � 2 .�1; 1/, with mutually disjoint
images which do not intersect their asymptotic limits.

(iii) If Pz belongs to a Morse–Bott torus Nz , then u� and u� 0 are asymptotic at z to
distinct orbits in Nz whenever � ¤ � 0 .

(iv) Every zu0 sufficiently close to zu in MH;ƒ is parameterized by zu.�;�/ for some
unique � 2R, � 2 .�1; 1/.

From this and the smoothness of the nonlinear normal Cauchy–Riemann operator
defined in [28], we obtain the following deformation result.

Theorem 2.7 Suppose zu 2MH;ƒ is as in Theorem 2.6, and

Hr D .�r ;Xr ; !r ;Jr /; r 2 .�1; 1/

is a smooth 1–parameter family of stable Hamiltonian structures such that H0DH , and
for each r 2 .�1; 1/, all of the orbits Pz and Morse–Bott tori Nz remain Morse–Bott
orbits/tori with respect to Xr , while the surfaces L1; : : : ;Lm remain tangent to Xr .
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Then there exists a number � 2 .0; 1� and a smooth 1–parameter family of maps

zFr W R� .�1; 1/� P†!R�M; r 2 .��; �/

such that zF0.0; 0; �/ D zu and each map zFr has the properties of zF in Theorem 2.6
with respect to the moduli space MHr ;ƒ .

These local perturbation theorems start from the assumption that zuD .a;u/ is embedded,
and usually also that u is injective. To study foliations, we need to know that such
conditions are preserved under convergence to limits. One needs therefore a version of
positivity of intersections for holomorphic curves with boundary: the crucial observation
is that such a result holds whenever one can guarantee that all boundary intersections
are “one-sided” (cf Ye [30]). This is easy to show under the conditions of Theorem 2.6,
where the assumptions guarantee that wind�.zu/D 0, implying u is transverse to X

and thus zu is transverse to the hypersurfaces R�Lj .

Theorem 2.8 Suppose Hk D .�k ;Xk ; !k ;Jk/ is a sequence of stable Hamiltonian
structures converging in C1.M / to HD .�;X; !;J /, such that Xk is tangent to the
surfaces L1; : : : ;Lm for all k , and zuk D .ak ;uk/W P† ! R �M is a sequence of
curves in MHk ;ƒ such that for all k , uk is embedded and intersects each Lj only at
@†. Then if zuk converges in C1loc to a somewhere injective curve zuD .a;u/ 2MH;ƒ
with E!.zu/ > 0 and wind�.zu/D 0, uW P†!M is embedded.

Moreover, suppose zuk D .ak ;uk/, zvk D .bk ; vk/ 2MHk ;ƒ are sequences such that
uk and vk both satisfy the conditions above, and never intersect each other. Then if
zuk ! zuD .a;u/ and zvk ! zv D .b; v/ in C1loc with E!.zu/ and E!.zv/ both positive
and wind�.zu/D wind�.zv/D 0, the images of u and v are either disjoint or identical.

3 Compactness

3.1 The setup

For any pair of oriented knots 
 and 
 0�S3 , denote their linking number by lk.
; 
 0/2
Z. Let P1 � S3 be an oriented knot, and KDK1[� � �[Km � S3 nP1 an oriented
link whose components satisfy lk.P1;Kj / > 0. Each knot Kj is the center of some
solid torus Nj � S3 ; we assume that these solid tori are pairwise disjoint and that
N WDN1[� � �[Nm�S3 is disjoint from P1 . Denote @NjDLj and M DS3n.int N /,
so the oriented boundary of M is @M D�

S
j Lj . Let Hk D .�k ;Xk ; !k ;Jk/ be a

sequence of stable Hamiltonian structures on M which converge in C1.M / to a stable
Hamiltonian structure H1 D .�1;X1; !1;J1/ and have the following properties
for all k �1.
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(1) P1 is a nondegenerate periodic orbit of Xk .

(2) Any other periodic orbit P �M nP1 of Xk satisfies lk.P;P1/¤ 0.

(3) Xk is tangent to each torus Lj .

(4) There are trivializations ˆk of �k jM such that �ˆk

CZ .P1/D 3 and, if 
 �Lj

is a positively oriented meridian, windˆk

 .TLj \ �k/D 1.

The stable Hamiltonian structures Hk define R–invariant almost complex structures
zJk on R�M , for which the surfaces

zLj WD f0g �Lj

are totally real submanifolds. We then consider a sequence of embedded zJk –holo-
morphic curves

zuk D .ak ;uk/W . P†; jk/! .R�M; zJk/;

where

†D S2
n

m[
jD1

Dj

for some set of pairwise disjoint open disks Dj �C , jk is an arbitrary sequence of
smooth complex structures on † and P†D†nf1g. Assume each zuk has finite energy
with respect to Hk , is positively asymptotic at 1 to the orbit P1 , and satisfies the
boundary condition

zuk.
j /� fconstg �Lj

for 
j D @Dj , where the constant in the R–factor is arbitrary and independent for each
component. Thus zuk 2MHk ;ƒ , where ƒD . zL1; : : : ; zLm/. We assume also that the
maps uk W

P†!M are all injective and have the following topological behavior at the
boundary.

For each component 
j � @†, the oriented loop uk.
j / is homotopic along Lj

to a negatively oriented meridian, ie lk.uk.
j /;P1/D 0 and lk.uk.
j /;Kj /D

�1.

Remark 3.1 We’ve implicitly assumed thus far that Li and Lj are disjoint when
i ¤ j , but it’s convenient also to allow the possibility that K has fewer than m

components. As a notational convenience, we will continue to list these components as
K1[ � � � [Km , with the understanding that some of the Kj (and the corresponding
Nj and Lj ) may be identical. In this case different components of @† may satisfy the
same boundary condition.

Lemma 3.2 ind.zuk/D 2.
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Proof Using the global trivialization ˆk , the boundary Maslov index at 
j is twice
the winding number of TLj \ �k along a negatively oriented meridian; this gives �2.
We then have

�.zuk/D �
ˆk

CZ .P1/C

mX
jD1

�
ˆk

uk.
j /
.u��k ;TLj \ �k/D 3� 2m;

hence by (9),

ind.zuk/D �.zuk/��. P†/CmD .3� 2m/� .1�m/CmD 2:

Applying Theorem 2.6 to zuk now yields the following Corollary.

Corollary 3.3 For each zuk D .ak ;uk/, uk W
P†!M is embedded, transverse to Xk

and does not intersect P1 . In particular then, uk is transverse to @M .

Our main goal in the next few subsections will be to prove the following theorem.

Theorem 3.4 (Compactness) There exists a sequence of numbers ck 2R and diffeo-
morphisms 'k W †!† which fix 1 and preserve each component of @†, such that a
subsequence of .akCck ;uk/ı'k converges in C1loc .

P†/ to some zuD .a;u/2MH1;ƒ ,
and the continuous extensions of these maps over S† converge in C 0 . Moreover, zu is
embedded and u is injective.

A closely related result involves the degeneration of such a sequence as Xk is twisted
to the point where the meridians on Lj become periodic orbits. The following will be
crucial in passing from holomorphic foliations with boundary to stable finite energy
foliations of Morse–Bott type.

Theorem 3.5 (Degeneration) Assume zuk and Hk are as described above for all
k <1, but with the following change for k D1.

Any periodic orbit P of X1 in .int M /nP1 satisfies lk.P;P1/¤ 0, and each
Lj � @M is a Morse–Bott torus with respect to X1 , with orbits P satisfying
lk.P;P1/D 0 and lk.P;Kj /D�1.

Then there is a finite set � 0 � C with #� 0 D m, a sequence of numbers ck 2 R
and diffeomorphisms 'k W S

2 n � 0 ! int† that fix 1, such that after passing to
a subsequence, '�

k
jk ! i in C1loc .S

2 n � 0/ and .ak C ck ;uk/ ı 'k converges in
C1loc .C n�

0;R�M / to a zJ1–holomorphic finite energy surface

zu1W S
2
n .f1g[� 0/!R�M:
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The map zu1 D .a1;u1/ is embedded, with u1W C n� 0!M injective and disjoint
from @M , all the punctures are positive, the asymptotic limit at 12 S2 is P1 , and
for each component 
j � @†, there is a corresponding puncture zj 2 �

0 such that the
asymptotic limit at zj is a simply covered orbit on Lj . Moreover for any sequence
�k 2C n� 0 approaching a puncture zj 2 �

0 , we have uk ı'k.�k/!Lj .

3.2 Deligne–Mumford theory with boundary

Before proving the main compactness results, we briefly review the Deligne–Mumford
compactification of the moduli space of Riemann surfaces with boundary and interior
marked points. This space can always be identified with a space of symmetric surfaces
without boundary, “symmetric” meaning there exists an antiholomorphic involution
which is respected by all the data (see Figure 4). A more detailed discussion of this
correspondence may be found in [29], and for proofs of the compactness theorem we
refer to Seppälä–Sorvali [25] and Hummel [18].

Figure 4: Degeneration of a stable Riemann surface .†; j ; �/ with genus
1 , four boundary components and two interior marked points, together with
its symmetric doubled surface. The lightly shaded curves on the left are
the geodesic loops and arcs that shrink to zero length in the limit. The
right side shows the corresponding singular surface b† and its double after
degeneration; b† has one interior double point, two boundary double points
and one unpaired node.

Let .†; j / be a compact connected Riemann surface, possibly with boundary, and let
� � int† be a finite ordered subset. As usual, denote the corresponding punctured
surface by P† D † n � . If the Euler characteristic �. P†/ < 0, then we call the triple
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.†; j ; �/ a stable Riemann surface with boundary and interior marked points. The
stability condition means

2gCmC #� > 2;

where g is the genus of † and m is the number of boundary components. Equivalently,
one can say that .†; j ; �/ is stable if the Riemann surface obtained by doubling . P†; j /
along its boundary has negative Euler characteristic; this definition has the advantage
of also being correct when † has marked points on the boundary.

It is a standard fact that every Riemann surface without boundary and with negative Euler
characteristic admits a unique complete metric that is compatible with the conformal
structure and has constant curvature �1: this is called the Poincaré metric. For a
stable Riemann surface .†; j ; �/ with boundary, we define the Poincaré metric as the
restriction to P† of the Poincaré metric on the symmetric double of . P†; j /. In this way,
each component of @† becomes a geodesic.

Denote by Mg;m;p the moduli space of equivalence classes of compact connected
Riemann surfaces .†; j ; �/ with genus g , m � 0 boundary components and p D #�
interior marked points � � int†. Recall that the points of � come with an ordering.
Equivalence .†; j ; �/ � .†0; j 0; � 0/ means that there exists a biholomorphic map
'W .†; j /! .†0; j 0/ that takes � to � 0 , preserving the ordering. The topology on
Mg;m;p is defined by saying that Œ.†k ; jk ; �k/�! Œ.†; j ; �/� if for sufficiently large
k there exist diffeomorphisms 'k W †!†k mapping �!�k (with the right ordering)
and such that '�

k
jk ! j in C1 .

A nodal Riemann surface with boundary and interior marked points †D .†;j ;�;�;N /

consists of a Riemann surface .†; j / with finitely many connected components †D
†1[� � �[†q , each of which is a compact surface, possibly with boundary. The marked
point set � is a finite ordered set of interior points in †, and � is a set of unordered
pairs of points in †,

�D ffz1; z
0
1g; : : : ; fzd ; z

0
dgg;

called double points. By assumption, the points z1; z
0
1
; : : : ; zd ; z

0
d

are all distinct, and
zj 2 @† if and only if z0j 2 @†. We will sometimes abuse notation and regard � as
a subset of †, rather than a set of pairs. There is also a finite unordered set N of
interior points, which we’ll call unpaired nodes. We assume the sets � , � and N are
all disjoint. Intuitively, one thinks of † as the topological space obtained from † by
identifying each pair of double points:b† D†=fzj � z0j for each pair fzj ; z

0
j g 2�g:

The point in b† determined by a given pair of double points fzj ; z
0
j g 2 � is called

a node. We say that † is connected whenever b† is connected. The connected

Geometry & Topology, Volume 12 (2008)



Foliations on overtwisted contact manifolds 553

components of † may be regarded as Riemann surfaces with boundary and marked
points .†j ; j j†j ; .� [�[N /\†j /, which give rise to punctured surfaces

P†j D†j n ..� [�[N /\†j /;

having potentially both interior and boundary punctures. We then say that † is stable
if its connected components are all stable; this means each P†j has negative Euler
characteristic after doubling.

The punctured components P†j can be compactified naturally as follows: for an interior
puncture z , choose holomorphic coordinates identifying z with 0 in the standard unit
disk, use the map .s; t/ 7! e�2�.sCit/ to identify this biholomorphically with the half-
cylinder Œ0;1/�S1 , and compactify by adding the “circle at infinity” ız Š f1g�S1 .
For punctures z 2 @†, one instead uses the map .s; t/ 7! e��.sCit/ to identify a
punctured upper half-disk with the half strip Œ0;1/� Œ0; 1�, and then adds the “arc at
infinity” ız Š f1g� Œ0; 1�. Doing this for all punctures yields a compact surface with
piecewise smooth boundary. Denote by S†j the compactification of P†j [ .� \†j /

obtained by adding such circles for each interior double point and unpaired node, and
arcs for each boundary double point in †j .

Given a nodal surface .†; j ; �;�;N /, an asymptotic marker at z 2 � \ int† is
a choice of direction � 2 .Tz† n f0g/=RC , where RC is the group of positive
real numbers, acting by scalar multiplication. A choice of asymptotic markers r D

ff�1; �
0
1
g; : : : ; f�d ; �

0
d
gg for every pair of interior double points is called a decoration,

and we then call .†; r/D .†; j ; �;�;N; r/ a decorated nodal Riemann surface. For
each pair fz; z0g 2 � with asymptotic markers f�;�0g, the conformal structure j

determines a natural choice of orientation reversing map

rz W .Tz† n f0g/=RC! .Tz0† n f0g/=RC

such that rz.�/D�
0 , and hence also an orientation reversing diffeomorphism xrz W ız!

ız0 . For boundary pairs fz; z0g, the boundary determines natural asymptotic markers
and thus diffeomorphisms xrz between the arcs ız and ız0 . Then define

S†r D .S†1 t � � � t
S†q/=fw � xrz.w/ for all w 2 ız , z 2�[N g:

This is a compact surface with smooth boundary, and is connected if and only if b† is
connected. In that case, we define the arithmetic signature of † to be the pair .g;m/
where g is the genus of S†r (the arithmetic genus of † ) and m is the number of
connected components of @S†r . We shall denote the union of the special circles and
arcs ız for z 2 �[N by ‚�;N � S†r . The conformal structure j on † defines a
singular conformal structure j† on S†r , which degenerates at ‚�;N . If † is stable,
then there is similarly a “singular Poincaré metric” h† on S†r n� , defined by choosing
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the Poincaré metric on each of the punctured components P†j . This metric degenerates
at ‚�;N as well as at � ; in particular the distance from a marked point z0 2 � or a
circle or arc ız �‚�;N to any other point in S†r is infinite, and the circles and arcs
ız have length 0. Observe that in the stable case, �.S†r n �/ < 0, ie a stable nodal
surface .†; j ; �;�;N / with arithmetic signature .g;m/ satisfies 2gCmC #� > 2.

†1

z

w

ız

ıw

S†1

Figure 5: A component †1 with its compactification S†1 . Here there’s one
interior double point z 2 �\ int†1 and one boundary double point w 2
�\ @†1 .

Assume 2gCmCp>2 and let SMg;m;p denote the moduli space of equivalence classes
of stable nodal Riemann surfaces †D .†; j ; �;�;N / with arithmetic signature .g;m/
and p D #� interior marked points. We say .†; j ; �;�;N /� .†0; j 0; � 0; �0;N 0/ if
there is a biholomorphic map 'W .†; j /! .†0; j 0/ taking � to � 0 with the proper
ordering, and such that '.N /DN 0 and f'.z1/; '.z2/g 2�

0 if and only if fz1; z2g 2�.
There is a natural inclusion Mg;m;p ,! SMg;m;p defined by assigning to Œ.†; j ; �/�
an empty set of double points and unpaired nodes.

The topology of SMg;m;p is determined by the following notion of convergence.

Definition 3.6 A sequence Œ†k � D Œ.†k ; jk ; �k ; �k ;Nk/� 2 SMg;m;p converges to
Œ†� D Œ.†; j ; �;�;N /� 2 SMg;m;p if there are decorations rk for †k and r for † ,
and diffeomorphisms 'k W

S†r ! .S†k/rk
, for sufficiently large k , with the following

properties.

(1) 'k sends � to �k , preserving the ordering.

(2) '�
k

j†k
! j† in C1loc .

S†r n‚�;N /.

(3) '�1
k
.‚�k ;Nk

/ � ‚�;N , and all circles in 'k.‚�;N / n ‚�k ;Nk
are closed

geodesics for the Poincaré metric h†k
on .S†k/rk

; similarly all arcs in
'k.‚�;N / n‚�k ;Nk

are geodesic arcs with endpoints on @..S†k/rk
/.

Theorem 3.7 SMg;m;p is compact. In particular, any sequence of stable Riemann
surfaces .†k ; jk ; �k/ with boundary and interior marked points, having fixed topologi-
cal type and number of marked points, has a subsequence convergent (in the sense of
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Definition 3.6) to a stable nodal Riemann surface .†; j ; �;�;N / with boundary and
interior marked points.

3.3 Preparation and removal of singularities

In this section, fix a closed 3–manifold M with stable Hamiltonian structure H D
.�;X; !;J / and an embedded surface L�M tangent to X . Let H�C denote the
closed upper half-plane, and DC WDD\H . We now collect some lemmas that will be
useful in the compactness arguments to come.

Lemma 3.8 (Hofer–Zehnder [17, Section 6.4, Lemma 5]) Let .X; d/ be a complete
metric space and f W X ! Œ0;1/ a continuous function. Then given any x0 2X and
�0 > 0, there exist x 2 B2�0

.x0/ and � 2 .0; �0� such that

f .x/� � f .x0/�0 and f .y/� 2f .x/ for all y 2 B�.x/:

The next statement follows from the fact that when zuD .a;u/W P†!R�M is a finite
energy surface, the map a is both proper and subharmonic (cf [12]). Note however
that in non-contact cases, there can generally exist nonconstant closed zJ –holomorphic
curves in R�M .

Lemma 3.9 Every finite energy surface with nonremovable punctures and no boundary
has at least one positive puncture.

Lemma 3.10 Suppose .†; j / is a simply connected Riemann surface and zu D
.a;u/W .†; j /! .R�M; zJ / is pseudoholomorphic with E!.zu/D 0. Then zu has the
form

zu.z/D .a.z/;x.f .z///

where xW R!M is an orbit of X (not necessarily periodic) and aC if W †!C is a
holomorphic function.

Proof The integrand of E!.zu/D
R
† u�! is everywhere nonnegative, and vanishes at

z 2† if and only if the image of du.z/ is contained in RX.u.z//. By assumption this
is true everywhere, thus u.†/ is contained in the image of some orbit xW R!M of
X . If x is not periodic, then it’s a diffeomorphism onto its image and can be inverted,
allowing us to find a function f W †!R such that uD x ıf . If x is periodic, then
it can be viewed as a covering map onto its image, and the simple connectedness
of † means that u can be lifted to the cover, producing again the map f . An easy
computation now shows that zuD .a;u/ is zJ –holomorphic if and only if aCif satisfies
the standard Cauchy–Riemann equations.
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Proposition 3.11 Suppose zuW † ! R �M is zJ –holomorphic with finite energy
E.zu/ <1, E!.zu/D 0 and zu.@†/� f0g �L.

(1) If † is S2 , D , C or H , then zu is constant.

(2) If † is R � S1 or .�1; 0� � S1 , there exists a number Q 2 R and an orbit
xW R!M of X such that up to R–translation, zu.s; t/D .Qs;x.Qt//.

Proof Applying Lemma 3.10, the function a is harmonic, and constant on the boundary.
For the compact cases †D S2 and D this is enough: we conclude that a is globally
constant, and so therefore is f , its harmonic conjugate.

For †DC , an argument from Hofer [10, Lemma 28] uses the finiteness of E�.zu/ to
show that ˆ WD aC if is constant. In brief, the energy can be rewritten as

E�.zu/D sup
'2T

Z
C
zu�.d' ^�/D sup

'2T

Z
C
ˆ�d.'.s/ dt/;

and a bubbling off argument shows that ˆ must be constant if the latter is finite. We
use this argument also for the case †DH , after observing that the boundary condition
implies ˆ.R/ � iR, so ˆ extends by the Schwartz reflection principle to an entire
function on C .

The cylinder cases also follow from arguments in [10]: a simple bubbling off argument
using the finite energy shows that jd zuj is globally bounded, and we then lift the domain
to C or H and apply Lemma 3.10. The holomorphic function ˆD aC if need not be
constant in this case but is affine due to the gradient bound, so periodicity in t implies
ˆ.s; t/DQsC cC iQt for some constants Q; c 2R, and x is jQj–periodic unless
QD 0.

We will often use the fact that interior punctures of holomorphic curves with finite
energy are either asymptotic to periodic orbits or are removable; the latter is the case
whenever the image is contained within a compact subset of R�M . This follows from
the standard theorem on removal of singularities (cf McDuff–Salamon [23]), together
with the following observation: if 'W R! .0; �/ is a smooth increasing function and �
is sufficiently small, then

(10) d.'�/C!

is a symplectic form on R�M , and any zJ –holomorphic map zu with E.zu/ <1 also
has finite symplectic area with respect to this form.

We will need a corresponding statement for boundary punctures. Since our usual
boundary condition on curves zuW P†!R�M constrains zu.@†/ to lie in a compact
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submanifold of R�M , one expects boundary punctures to removable. One only needs
to show that such maps cannot become unbounded on the interior in a neighborhood of
a puncture; we will show that this is always the case when the boundary condition has
the form zLD fconstg �L.1

Theorem 3.12 (Removal of boundary singularities) Suppose zu D .a;u/W PDC D
DCnf0g!R�M is a zJ –holomorphic map with E.zu/<1 and zu. PDC\R/�f0g�L.
Then zu extends to a zJ –holomorphic half-disk DC!R�M with zu.DC\R/�f0g�L.

Proof By the remarks above, the result will follow from the standard removal of
singularities theorem after showing that zu. PDC/ is contained in a compact subset
of R �M . To see that this is the case, compose zu with the biholomorphic map
 W Œ0;1/ � Œ0; 1�! PDC W .s; t/ 7! e��.sCit/ and consider the pseudoholomorphic
half-strip

zv D .b; v/D zu ı W Œ0;1/� Œ0; 1�!R�M:

We claim that jdzvj is bounded on Œ0;1/�Œ0; 1�, where the norm is defined with respect
to the Euclidean metric on Œ0;1/� Œ0; 1� � C and any fixed R–invariant metric on
R�M . It will follow from this that zv (and hence zu) is bounded, as zv.Œ0;1/� f0g/
and zv.Œ0;1/� f1g/ are contained in the compact set f0g �L.

If jdzvj is not bounded, there is a sequence zk D sk C i tk 2 Œ0;1/� Œ0; 1��C such
that Rk WD jdzv.zk/j !1. We may assume sk !1. Choose a sequence of positive
numbers �k! 0 such that �kRk!1; by Lemma 3.8 we can assume without loss of
generality that jdzv.z/j � 2jdzv.zk/j whenever jz�zk j � �k . We will define a sequence
of rescaled maps which converge to either a plane or a half-plane, depending on whether
and how fast zk approaches the boundary of Œ0;1/� Œ0; 1�. We consider three cases.

Case 1 Assume tkRk and .1 � tk/Rk are both unbounded then we can pass to a
subsequence so that both approach 1. Let

rk WDminf�kRk ; tkRk ; .1� tk/Rkg;

so rk !1 and there are embeddings

 k W Drk
,! Œ0;1/� Œ0; 1�W z 7! zk C

z

Rk

:

Use these to define rescaled maps

zvk D .b ı k � b.zk/; v ı k/W Drk
!R�M;

1As shown in [29], a somewhat more general statement is true, but it’s not clear whether these
arguments can be generalized to accommodate arbitrary graphs zLD f.g.x/;x/ 2R�Lg .
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which satisfy a uniform C 1 –bound and have a subsequence convergent in C1loc to a
non-constant zJ –holomorphic plane zv1W C ! R�M . This map has finite energy
E.zv1/ � E.zv/ <1, but also E!.zv1/ D 0, giving a contradiction to Proposition
3.11.

Case 2 Assume tkRk is bounded. This means zk is approaching the half-line Œ0;1/�
f0g. Let

 k W D
C

�kRk
,! Œ0;1/� Œ0; 1�W z 7! sk C

z

Rk

;

and define a sequence of rescaled maps zvk W D
C

�kRk
! R �M by zvk D zv ı  k .

These maps satisfy the boundary condition zvk.D�kRk
\R/ � f0g �L. Moreover,

the points zvk.0/ D zv.sk/ are contained in the compact set f0g � L, and there is
a uniform gradient bound jdzvk.z/j � 2 for all z 2 DC

�kRk
. Thus a subsequence

converges in C1loc .H;R �M / to a zJ –holomorphic half-plane zv1W H ! R �M

with E.zv1/ < 1 and E!.zv1/ D 0. We claim however that zv1 is not constant.
Indeed, j �1

k
.zk/j DRk jzk � sk j D tkRk is bounded, thus passing to a subsequence,

 �1
k
.zk/! � 2H , and jdzv1.�/j D limk jdzvk. 

�1
k
.zk//j D 1. Thus the existence of

zv1 again contradicts Proposition 3.11.

Case 3 Assume .1� tk/Rk is bounded. This is very similar to the previous case; this
time zk is approaching the half-line Œ0;1/� f1g, so we rescale using the embeddings

 k W D
C

�kRk
,! Œ0;1/! Œ0; 1�W z 7! .sk C i/�

z

Rk

:

Then by the same arguments used above, zvk D zv ı k has a subsequence convergent
to a non-constant finite energy half-plane zv1W H!R�M with boundary condition
zv1.R/� f0g �L and E!.zv1/D 0, giving another contradiction.

3.4 Taming forms and energy bounds

We now proceed toward the proofs of Theorem 3.4 and Theorem 3.5, so let M , K ,
Lj , Hk and zuk be as defined in Section 3.1. Observe that since Xk is always tangent
to the tori Lj , the 2–forms d�k and !k arising from Hk vanish on Lj .

Lemma 3.13 The taming forms !k for k �1 are exact on M .

Proof Applying a Mayer–Vietoris sequence to S3 DM [N , H2.M / is generated
by the inclusions of the fundamental classes ŒLj � 2H2.Lj / for j D 1; : : : ;m. ThenR

Lj
!k D 0 implies that !k vanishes on H2.M IR/, hence Œ!k �D 0 2H 2.M IR/.
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Denote by Ek.zuk/ the energy of zuk , computed with respect to !k and �k . Surfaces
of the form fconstg �Lj are not only totally real in .R�M; zJ / but also Lagrangian
with respect to natural symplectic forms as in (10). This will permit a uniform energy
bound for the sequence zuk .

Lemma 3.14
R
P†

u�
k
!k is uniformly bounded for all k .

Proof Since !k is exact and vanishes on each torus Lj ,
R
P†

u�
k
!k depends only on

the asymptotic behavior and the homotopy class of uk j@†W @†! @M . Thus we can
pick any smooth map uW P†! M with the proper behavior and write

R
P†

u�
k
!k DR

P†
u�!k !

R
P†

u�!1 .

Lemma 3.15 There exists a constant C > 0 independent of k such that ju�d�k j �

C �u�!k for every zJk –holomorphic curve zuD .a;u/ in R�M .

Proof Let Ck > 0 be the C 0 –norm of the bilinear form

�k � �k !RW .v; w/ 7! d�k.v;Jkw/

on the bundle �k !M with respect to the bundle metric jvj2
k
WD !k.v;Jkv/; this is

finite since M is compact. Since !k and �k each converge in C1 as k!1, the
sequence Ck is also bounded, Ck �C . Denote by �k W TM ! �k the projection along
Xk , and note that both d�k and !k annihilate Xk . Then in any local holomorphic
coordinate system .s; t/ on the domain,

ju�d�k.@s; @t /j D jd�k.�kus; �kut /j D jd�k.�kus;Jk�kus/j

� Ck j�kusj
2
k � C �!k.�kus;Jk�kus/

D C �!k.�kus; �kut /D C �u�k!k.@s; @t /:

This completes the proof.

Proposition 3.16 There exists a constant C > 0 such that Ek.zuk/ < C .

Proof Writing Ek.zuk/DE!k
.zuk/CE�k

.zuk/, the first term is uniformly bounded
due to Lemma 3.14. The second is sup'2T E

'

�k
.zuk/, where

E
'

�k
.zuk/ WD

Z
P†

zu�k.d' ^�k/:
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Writing d.'�k/ D ' d�k C d' ^ �k , then applying Stokes’ theorem, Lemma 3.15
and the fact that ak is locally constant at @†, we haveˇ̌̌

E
'

�k
.zuk/

ˇ̌̌
�

ˇ̌̌̌Z
P†

zu�k.' d�k/

ˇ̌̌̌
C

ˇ̌̌̌Z
P†

zu�kd.'�k/

ˇ̌̌̌
�

Z
P†

j' ı ak j � ju
�
kd�k jC

Z
P1

�k C

ˇ̌̌̌Z
@†

zu�k.'�k/

ˇ̌̌̌
� C

Z
P†

u�k!k CTk C

ˇ̌̌̌Z
@†

u�k�k

ˇ̌̌̌
;

where Tk is the period of P1 as an orbit of Xk . This is clearly bounded as k!1,
and so is the first term, by Lemma 3.14; it remains only to bound

R
@† u�

k
�k . Here we

use the fact that d�k.Xk ; �/ � 0, hence d�k annihilates each Lj , and this integral
therefore only depends on �k and Œuk j@†�D ` 2H1.L1[ � � � [Lm/. In particular, it
approaches

R
` �1 as k!1.

3.5 Bubbling

In this section we establish uniform bounds on the first derivatives of the maps zuk .
In the non-stable (m < 2) case, the arguments of this section suffice to prove C1loc –
convergence. For m � 2, we also need to ensure that the sequence of conformal
structures induced by jk is compact; this issue will be dealt with in Section 3.6.
The fundamental argument is that any gradient blow up causes the bubbling off of a
holomorphic plane or disk, which for topological reasons cannot exist.

We focus first on the stable case, thus assume m � 2, �. P†/ < 0. Then each of the
stable Riemann surfaces .†; jk ; f1g/ determines a Poincaré metric hk , which is the
restriction of a complete metric hD

k
of constant curvature �1 on the Riemann surface

. P†D ; j D
k /;

obtained by doubling . P†; jk/ along the boundary. Denote the injectivity radius of hD
k

at any point z 2 P† by injradk.z/.

Fix any metric on M and extend it to an R–invariant metric on R�M in the natural
way. In the following, we will always use the Euclidean metric on subsets of C or
R�S1 , and one of the Poincaré metrics hk on P†, with dependence on k reflected
in the notation. So for instance, given zuW P†! R�M , jd zu.z/jk is the norm of the
linear map d zu.z/W Tz

P†! Tzu.z/.R�M / with respect to hk and the fixed metric on
R�M . For 'W D! P†, define jd'.z/jk with respect to the Euclidean metric on the
domain and hk on the target.
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The following technical lemma provides good coordinates in a neighborhood of any
point z0 2

P†. They are constructed by lifting P† to the hyperbolic open disk so that 0

covers z0 , then projecting the embedding D ,! int DW z 7! rz for sufficiently small
r > 0 down to P†. It follows from the hyperbolic geometry of the disk that the resulting
embedding has the desired properties; see [29] for details. Denote by D� the standard
closed disk of radius � > 0 in C .

Lemma 3.17 Let . P†; j / be a stable punctured Riemann surface without boundary,
with Poincaré metric h, whose injectivity radius at z 2 P† we denote by injrad.z/.
There are positive constants ci and Ci depending only on the topological type of P† (ie
not on j ), such that the following is true: for any z0 2

P† and any geodesic 
 passing
through z0 , there is a holomorphic embedding 'W D ,! P† such that '.0/ D z0 , '
maps R\D to 
 preserving orientation, and

(11) c1 � injrad.z0/� jd'.z/jh � C1 � injrad.z0/ for all z 2D :

For any � 2 Œ0; 1�, the image '.D�/ is then a closed ball of radius d.�/ in . P†; h/,
where

(12) c2� � injrad.z0/� d.�/� C2� � injrad.z0/;

and the injectivity radius at any point '.w/ for w 2D with jwj D � can be estimated
by

(13) .c3� c4�/ � injrad.z0/� injrad.'.w//� .1CC3�/ � injrad.z0/:

Remark 3.18 Lemma 3.17 extends to surfaces P† with nonempty boundary as follows:
for any z0 2 @†, the component 
 � @† containing z0 is a closed geodesic in the
doubled surface . P†D ; hD/. Thus the lemma gives an embedding 'W DC! P† of the
upper half disk, sending 0 to z0 and R\DC into @†.

The first main objective in this section is the following result, which says in effect that
there is no bubbling off in the sequence zuk .

Proposition 3.19 If �. P†/ < 0, then there is a constant C > 0 such that

(14) jd zuk.z/jk �
C

injradk.z/

for all z 2 P† and all k .
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Proof Assume there exists a sequence zk 2
P† such that injradk.zk/ � jd zu.zk/jk!1.

Using Lemma 3.17, choose a sequence of holomorphic embeddings

'k W D ,! P†D

such that jd'k jk , the radii of the disks 'k.D/ and the injectivity radius satisfy the
bounds specified in the lemma. Let

�k Dmin
˚
j�j
ˇ̌
� 2 '�1

k .@†/
	
;

or �k D1 if 'k.D/\ @†D∅. The sequence �k determines whether or not we can
restrict the embeddings 'k in a uniform way so that their images are in P†.

Case 1 Assume there is a number � 2 .0; 1� and a subsequence for which �k � � .
Then the restrictions of 'k to D� are embeddings into P†, and we can define a sequence
of pseudoholomorphic disks

zvk D .bk ; vk/D zuk ı'k W D�!R�S3;

which satisfy a uniform energy bound

Ek.zvk/�Ek.zuk/� C:

Denoting the Euclidean metric on D by �, the fact that 'k W .D�; �/! . P†; hk/ is
conformal implies that the norms of d'k.z/ and its inverse are reciprocals. Then a
simple computation shows

jdzvk.0/j D jd zuk.zk/jk � jd'k.0/jk � c1jd zuk.zk/jk � injradk.zk/!1:

By Lemma 3.8, we can choose a sequence �k 2 D� and positive numbers �k ! 0

such that Rk WD jdzv.�k/j !1, �kRk !1 and jdzv.�/j � 2Rk for all � 2D� with
j� � �k j � �k . Assume without loss of generality that B�k

.�k/�D� and define

 k W D�kRk
! B�k

.�k/W �! �k C
�

Rk

:

Then we can define a rescaled sequence of zJk –holomorphic maps

zwk D .ˇk ; wk/W D�kRk
!R�S3

by
.ˇk.�/; wk.�//D .bk ı k.�/� bk.�k/; vk ı k.�//:

These satisfy the uniform gradient bound jd zwk.�/j � 2, and they all map 0 into a
compact subset of R�S3 , thus a subsequence converges in C1loc to a zJ1–holomorphic
plane

zw1 D .ˇ1; w1/W C!R�S3:
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The bound on Ek.zvk/ gives also a bound on Ek. zwk/ and thus implies E1. zw1/<1,
so zw1 is a non-constant finite energy plane.

If the puncture at 1 is removable, zw1 extends to a nonconstant zJ1–holomorphic
sphere in R�M . Recall now that �1 admits a global trivialization over M , thus
c1.w

�
1�1/D 0 and we have

ind. zw1/D �. zw1/��.S2/D 2c1.w
�
1�1/� 2D�2:

Since zw1 is nonconstant, it cannot have E!1. zw1/D 0, by Proposition 3.11. Thus
E!1. zw1/ > 0 and Theorem 2.4 gives a contradiction, in the form

0� 2 wind�. zw1/� ind. zw/� 2D�4:

It remains to find a contradiction in the case of a non-removable puncture at 1: then
zw1 is asymptotic to some periodic orbit P of X1 . We now use a topological argument
to show that this is impossible.

If P is geometrically distinct from P1 , then lk.P;P1/¤ 0 by assumption. For some
large radius R, the image w1.@DR/ is uniformly close to P , and we may assume
the same is true of P 0 WDwk.@DR/ for sufficiently large k , thus lk.P 0;P1/¤ 0. But
since wk is a reparametrization of uk W

P†! S3 over some disk, this means there is a
disk D � P† such that P 0 D uk.@D/. The linking condition then implies that uk.D/
intersects P1 , contradicting the result of Corollary 3.3.

Suppose now that P is identical to P1 or some cover thereof. For any component
Kj �K , observe that uk. P†/ never intersects Kj . Then repeating the argument above,
we find a disk D � P† such that for sufficiently large k , uk.@D/ is a knot uniformly
close to P1 . This implies lk.P1;Kj /D 0, another contradiction, thus proving that
the plane zw1 cannot exist.

Case 2 Assume �k ! 0. Here we will find that either a plane or a disk bubbles
off, depending on how fast �k approaches 0. Choose a sequence �0

k
2 D such that

�k WD 'k.�
0
k
/ 2 @† and j�0

k
j D �k . By Remark 3.18, we can find a sequence of

holomorphic embeddings
'C

k
W DC ,! P†

that map 0 to �k and DC\R into @†, and satisfy the bounds specified in Lemma 3.17.
We claim there is a sequence of radii rk ! 0 such that zk 2 '

C

k
.DCrk

/. Indeed, from
Lemma 3.17, we know that 'C.DCrk

/ contains all points � 2 P† with disthk
.�; �k/� dk ,

where
dk � c2rk � injradk.�k/:
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We have also the estimates

disthk
.zk ; �k/� C2�k � injradk.zk/;

injradk.�k/� .c3� c4�k/ � injradk.zk/:

Then when �k is sufficiently small we can set

rk D
2C2

c2.c3� c4�k/
�k

and compute,

disthk
.�k ; zk/�

C2

c3� c4�k

�k � injradk.�k/D
1

2
c2rk injradk.�k/ < dk :

We can thus choose a sequence z0
k
2DC with z0

k
! 0 and 'C

k
.z0

k
/D zk . Defining a

sequence of zJk –holomorphic half-disks

zvk D zuk ı'
C
W DC!R�S3;

we have

Rk WD jdzvk.z
0
k/j D jd zuk.zk/jk � jd'

C.z0k/jk � C jd zuk.zk/jk � injradk.�k/

� C.c3� c4�k/jd zuk.zk/jk � injradk.zk/!1:

Using Lemma 3.8, we may assume there is a sequence of positive numbers �k ! 0

such that �kRk!1 and jdzvk.z/j � 2Rk for all z 2DC with jz�z0
k
j � �k . Writing

z0
k
D sk C i tk , there are two possibilities.

Case 2a Assume tkRk is unbounded. Passing to a subsequence, we may assume
tkRk!1, thus r 0

k
WDminf�kRk ; tkRkg!1. Then for sufficiently large k we can

define embeddings  k W Dr 0
k
,!DC by

 k.z/D zk C
z

Rk

:

Arguing as in case 1, there is now a sequence of rescaled maps

zwk D .ˇk ; wk/D zvk ı k W Dr 0
k
!R�S3

and constants ck 2R such that a subsequence of .ˇk C ck ; wk/ converges in C1loc to
a nonconstant zJ1–holomorphic finite energy plane zw1 D .ˇ1; w1/W C!R�S3 ,
giving the same contradiction as before.
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Case 2b Assume tkRk is bounded. Now define  k W D
C

�kRk
,!DC by

 k.z/D sk C
z

Rk

;

and let
zwk D .ˇk ; wk/D zvk ı k W D

C

�kRk
!R�S3:

Then jd zwk j is uniformly bounded. Passing to a subsequence, .ˇk � ˇk.0/; wk/

converges in C1loc to a zJ1–holomorphic half-plane

zw1 D .ˇ1; w1/W H!R�S3;

satisfying E1. zw1/ <1 and the boundary condition zw1.R/� f0g �Lj for some
j 2 f1; : : : ;mg. It is not constant, since jd zwk.i tkRk/j D

1
Rk
jdzvk.sk C i tk/j D 1

and a subsequence of i tkRk converges in DC . Now identifying H conformally with
D n f1g, we can regard zw1 as a holomorphic disk with a puncture on the boundary,
and Theorem 3.12 tells us that the puncture is removable. Thus extending over the
puncture defines a zJ1–holomorphic disk

zw D .ˇ;w/W D!R�S3

with w.@D/�Lj . By topological considerations, we can severely restrict the homotopy
class of the loop 
 Dwj@DW @D!Lj . Indeed, choose a radius r slightly less than 1 so
that wj@Dr

W @Dr!S3 is uniformly close to 
 . Returning to the half-plane H , there is
then a large simply connected region ��H with smooth boundary such that for large
k , wk j@�W @�! S3 is also uniformly close to 
 . Undoing the reparametrization one
step further, there is then an embedded disk D � P† such that for some large k ,

uk j@DW @D! S3

is uniformly close to 
 . Since uk does not intersect either P1 or any of the knots
Kj �K , this implies

lk.
;P1/D lk.
;K1/D � � � D lk.
;Km/D 0:

This is only possible if 
 is contractible on Lj . But this implies that the Maslov index
�. zw/ is zero. In this case ind. zw/D��.D/C 1D 0, and Theorem 2.4 gives

0� 2 wind�. zw/� ind. zw/� 2D�2;

unless E!1. zw/D 0. The latter is also impossible by Proposition 3.11, since zw is not
constant.

Having proved the gradient bound when m� 2, we now apply similar arguments for
m� 1 and finish the proof of C1loc –covergence for this case.
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Proposition 3.20 The statement about C1loc –convergence in Theorem 3.4 holds if
�. P†/� 0.

Proof This includes two cases: P† is diffeomorphic to either a plane or a singly
punctured disk. In both cases the space of conformal structures on the domain is trivial,
so we can assume . P†; jk/ is either .C; i/ or .CnD; i/ for all k , where DD int D . We
then have a sequence of maps zukD .ak ;uk/W P†!R�S3 satisfying T zukıiD zJkıT zu,
all positively asymptotic at 12† to the simply covered orbit P1 .

We address first the case P† D C ; then there is no boundary condition and M D

S3 . By the same rescaling argument as in Proposition 3.19, we may assume after
reparametrization that jd zuk.z/j satisfies a global uniform bound and that jd zuk.0/j is
bounded away from zero. Then a subsequence of .ak�ak.0/;uk/ converges in C1loc to
a nonconstant zJ1–holomorphic finite energy plane zu1D .a1;u1/W C!R�S3 . If
the puncture is removable, then just as in Proposition 3.19, zu extends to a nonconstant
sphere of index �2, which violates Theorem 2.4. Thus zu1 is positively asymptotic
to a periodic orbit P , which we claim must be P1 . Indeed, if P and P1 are
geometrically distinct, then the same linking argument implies lk.P;P1/ D 0, a
contradiction. Suppose now that P is an n–fold cover of P1 for some integer n� 1.
Writing !k D d˛k by Lemma 3.13 and fixing any smooth map uW C ! S3 that
approaches P1 asymptotically,

E!k
.zuk/D

Z
C

u�!k D

Z
P1

˛k !E1 WD

Z
C

u�!1 D

Z
P1

˛1:

But then

nE1 D

Z
P

˛1 D

Z
C

u�1!1 � lim
Z

C
u�k!k DE1:

The left hand side equals E1.zu1/ and must therefore be positive, so we conclude
nD 1.

Next suppose P† D C nD . We claim that jd zuk j is uniformly bounded. If not, then
as in Proposition 3.19, we can define rescaled maps zvk on an increasing sequence
of either disks or half-disks, depending on whether and how fast zk approaches the
boundary. These then have a subsequence convergent to a non-constant finite energy
plane or half-plane zv1 . The usual arguments show that if zv1 is a plane, it cannot
be extended to a sphere, and the linking conditions on its asymptotic orbit force it
to intersect either P1 or K , neither of which is allowed. For the half-plane case, zv
extends to a non-constant pseudoholomorphic disk, and the same argument as before
shows that zv.@D/ is contractible on L, thus its Maslov index is 0, and it must therefore
have vanishing !1–energy, another contradiction.
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Given the uniform bound, there are constants ck 2R and a subsequence of .akCck ;uk/

which converges in C1loc to a zJ1–holomorphic finite energy map zu1W P†!R�M ,
with the boundary condition zu1.@†/� f0g�L. Then it remains to prove that zu1 has
a positive puncture at 1, asymptotic to P1 with covering number 1. If the puncture
is removable, we obtain a holomorphic disk

D!R�S3
W z 7! zu1.1=z/

mapping @D to a meridian on L, thus u1 must intersect K . But then uk for large k

would have to intersect the interior of N , giving a contradiction. Now suppose zu1
is asymptotic to a periodic orbit P at 1. If we extend zu1 to a smooth map over C ,
taking D into the solid torus N , then the same argument as in the plane case shows
that P cannot be geometrically distinct from P1 . Therefore P is an n–fold cover of
P1 with n¤ 0. (Here we adopt the convention of setting n to negative the covering
number if the puncture is negative; this possibility is not excluded automatically when
@†¤∅.) Now observe uk. P†/\KD∅ for all k , so if k is sufficiently large, a small
perturbation of uk realizes a homology @Œuk �D nŒP1�C Œ
 � in S3 nK , where 
 is a
negatively oriented meridian on L. Consequently

n � lk.P1;K/D� lk.
;K/D 1;

and since lk.P1;K/ > 0 by assumption, n can only be 1.

3.6 Convergence of conformal structures

We now show that in the case �. P†/ < 0, the induced sequence of conformal structures
is compact.

Proposition 3.21 Given the hypotheses of Theorem 3.4, there is a smooth complex
structure j1 on † and a sequence of diffeomorphisms 'k W †! † fixing 1 and
preserving each component of @†, such that a subsequence of '�

k
jk converges to j1

in the C1–topology.

There are also constants ck 2R such that a subsequence of .akCck ;uk/ı'k converges
in C1loc .

P†;R�M / to a map zu1 2MH1;ƒ , which is positively asymptotic to P1 at
the puncture.

Proof A subsequence of .†; jk ; f1g/ converges to a stable nodal surface S D
.S; j ; fpg; �;N /. A choice of decoration r defines the compact connected surface
SSr , with a singular conformal structure jS and singular Poincaré metric hS , both of
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which degenerate on a finite set of circles and arcs ‚�;N �SSr . Then convergence
means there is a sequence of diffeomorphisms

'k W
SSr !†

such that:

(1) 'k.p/D1,

(2) '�
k

jk ! jS in C1loc .
SSr n‚�;N /,

(3) all circles in 'k.‚�;N / are closed geodesics in . P†;hk/, and all arcs in 'k.‚�;N /

are geodesic arcs in . P†; hk/ that intersect @† transversely.

We can assume without loss of generality that the diffeomorphisms 'k map a given
component of @.SSr / always to the same component of @†, ie 'k ı '

�1
j always maps

each connected component 
j � @† to itself.

If Sj is a connected component of S , let PSj be the punctured surface obtained by
removing all points in the set .fpg [�[N /\Sj . Note that the stability condition
implies �. PSD

j / < 0. There is a natural embedding PSj ,!SSr n‚�;N , which we use
to define the sequence of complex structures '�

k
jk and metrics '�

k
hk on PSj . Then

passing to a subsequence, we have '�
k

jk ! j and '�
k

hk ! h in C1loc on PSj , where
h is the Poincaré metric for . PSj ; j /. Since d zuk is uniformly bounded on compact
subsets, we can then find constants c

j

k
2R such that

zv
j

k
D .b

j

k
; v

j

k
/D .ak C c

j

k
;uk/ ı'k j PSj

W . PSj ; '
�
k jk/! .R�S3; zJk/

is a sequence of pseudoholomorphic maps satisfying the appropriate boundary condi-
tions and a uniform C 1 –bound. Thus zvj

k
has a C1loc –convergent subsequence

zv
j

k
! zvj

D .bj ; vj /W PSj !R�S3;

where zvj satisfies T zvj ı j D zJ1 ıT zvj . Due to the uniform energy bound for zuk ,
we see also that E1.zv

j / <1. Repeating this process for every component Sj � S ,
we obtain a set of zJ1–holomorphic maps

zv1
W PS1!R�S3;

:::

zvN
W PSN !R�S3:

Our main goal now is to show that S is actually a smooth Riemann surface with
boundary, ie � and N are empty sets and S has only one component. Then the set of
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solutions above reduces to a single solution zu1W P†!R�M , which we must show
is positively asymptotic to P1 at the puncture. As with the bubbling off arguments in
the previous section, these results will follow mainly from topological considerations.

Recall from Remark 3.1 that our notation allows some of the components Ki and Kj of
K to be identical; in particular, topological considerations require a given component
Ki � K to repeat n times in the list K1; : : : ;Km if lk.Ki ;P1/ D n. The lists of
components N DN1[� � �[Nm and LDL1[� � �[Lm are then defined with similar
repetitions. If 
1; : : : ; 
m are the connected components of @† (not repeated), then
the oriented loop uk.
j / is a meridian on Lj D @Nj with lk.uk.
j /;Kj /D�1. Thus
the linking number lk.Kj ;P1/ is precisely the number of distinct components of @†
mapped into the same torus Lj , and we have also lk.uk.
j /;K/D�1 since uk.
j /

is unlinked with all components of K that are distinct from Kj . Adding this up for all

j � @†, we see that the expression

� lk.uk.@†/;K/

counts the connected components of @†. Also, the map uk realizes a homology
@Œuk �D ŒP1�C Œuk.@†/� in S3 nK , which gives the useful formula

(15) lk.Kj ;P1/D� lk.Kj ;uk.@†//:

In light of this topological setup, uk extends to a smooth map

xuk W C!R�S3

which satisfies T xuk ıjk D
zJk ıT xuk in P†DC n .D1[� � �[Dm/�C , and maps each

of the disks Dj into Nj . We may assume that xuk jDj has a single transverse positive
intersection with Kj .

Let S1 � S be the connected component that contains the marked point p .

Claim zv1 is positively asymptotic to P1 at p .

If the puncture is removable, then we can find an oriented circle C � PS1 winding
clockwise around p such that v1.C / lies in an arbitrarily small neighborhood of
some point in S3 nK . Then this neighborhood also contains v1

k
.C /D uk.'k.C // for

sufficiently large k , and 'k.C / is a large circle in C , bounding a simply connected
region �. One can then define a smooth map

yuk W C! S3
nK;

which matches uk outside of �, so that the loops yuk.@DR/ approach P1 as R!1.
This implies that for any component Kj �K , lk.P1;Kj /D 0, a contradiction.
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If p is a nonremovable puncture and zv1 is asymptotic to an orbit P that is geometrically
distinct from P1 , we similarly find a large clockwise oriented circle 'k.C / � C ,
bounding a region �, such that uk.'k.C // is close to P . Then the existence of
the map xuk j�W �! S3 nP1 implies lk.P;P1/ D 0, and this is impossible. The
alternative is that P could be an n–fold cover of P1 for some integer n¤ 0. (Negative
n would again mean the puncture is negative.) But then restricting uk to the region
outside of � gives a homotopy of uk.'k.C // to P1 in S3 nK , implying that for any
component Kj �K ,

n � lk.P1;Kj /D lk.uk ı'k.C /;Kj /D lk.P1;Kj /;

so nD 1. This proves the claim.

With the asymptotic behavior at p understood, it remains to prove that S has no double
points or unpaired nodes. Note that it suffices to prove this for the component S1 � S .
We shall set up the discussion in a slightly more general way than is immediately
necessary, since it will also be useful for the degeneration argument in the next section.

First some notation. The m connected components of @† are denoted

@†D 
1[ � � � [ 
m;

and let us write the components of @S1 as

@S1 D ˛1[ � � � [˛s:

Note that m� 2 by assumption, but @S1 could conceivably be empty. Assume S1 has
a (possibly empty) set of unpaired nodes

N \S1 D fw1; : : : ; w`g;

interior double points
�\ int S1 D fz1; : : : ; zqg;

and boundary double points

�\ @S1 ��\ j̨ D f�
1
j ; : : : ; �

rj
j g for j D 1; : : : ; s ;

where we are regarding � for the moment as a set of points in S rather than pairs of
points. We know from Theorem 3.12 that zv1 extends smoothly over each boundary
double point �i

j 2�\ @S1 , and at each zj 2�\ int S1 and wj 2N \S1 , zv1 either
has a removable singularity or is asymptotic to some periodic orbit of X1 .

Let SS1 denote the compact surface with piecewise smooth boundary obtained from
S1 n ..�[N /\S1/ by replacing the interior punctures zj ; wj with circles at infinity
ızj ; ıwj and the boundary punctures �i

j with arcs at infinity ı�i
j

. Each component
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j̨ � @S1 then gives rise to a piecewise smooth circular component x̨j � @SS1 . There
is a natural map SS1!

SSr , which is an inclusion except possibly on @SS1 , where two
distinct circles ızj or arcs ı�i

j
may have the same image; this corresponds to the

identification of double points in a pair. Since SSr is diffeomorphic to

†DC[f1g n .D1[ � � � [Dm/;

we can visualize SSr n fpg as the plane with a finite set of disks removed. An example
of this is shown in Figure 6. Here we settle on the convention that the circles ızj are
always oriented as components of @S1 . Thus they appear as embedded loops winding
clockwise in the plane, and each encloses a bounded region which may contain some
of the disks Di . Let mj be the number of such disks enclosed by ızj . Similarly, for
j D 1; : : : ; s , denote by bmj the number of disks in the compact region enclosed by
x̨j ; this number is always at least 1. Figure 6 shows a compact subset of SSr which
contains the entire boundary of SS1 . Here the closure of the white area is SS1 , and the
lightly shaded regions constitute the rest of SSr , while the darkly shaded regions are the
disks Dj .

The integers defined above are related by

(16) mD `C

qX
jD1

mj C

sX
jD1

bmj ;

and as remarked already,

(17) bmj � 1 for all j D 1; : : : ; s :

There are also constraints imposed by the stability condition for each component of S :
the double of PS1 must have negative Euler characteristic, thus

(18) 2.sC qC `/C

sX
jD1

rj > 2;

and applying similar reasoning to the portions of SSr inside the loops ızj , we have

(19) mj � 2 for all j D 1; : : : ; q :

We now transfer this picture onto P† via the diffeomorphism

'k W
SSr n fpg ! P†

for large k (see Figure 7). For j D 1; : : : ; q , denote by @j† the mj components of @†
that are enclosed within 'k.ızj /, and for j D 1; : : : ; s let y@j† be the bmj components
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ıw1

m1 D 2 ız1

SS1 �
SSr

x̨4

ym4 D 3

ı�3
1

ı�4
1

x̨1
ym1 D 4

ı�2
1

ym3 D 1

x̨3

ı�1
4

ı�1
1

x̨2 ı�1
2
D ı�2

2

ym2 D 2

Figure 6: A compact subset of SSr showing the piecewise smooth boundary
of @SS1 . Here we assume @S1 has four components ˛1; : : : ; ˛4 , S1 has
one interior double point �\ int S1 D fz1g , seven boundary double points
�\ ˛1 D f�

1
1 ; : : : ; �

4
1g , �\ ˛2 D f�

1
2 ; �

2
2g , �\ ˛3 D ∅ , �\ ˛4 D f�

1
4g ,

and one unpaired node N \S1 D fw1g .
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in the closed region bounded by 'k.x̨j /. Now for each component j̨ � @S1 , we
define a perturbed loop ˛0j � int S1 which misses the double points. The images
'k.˛

0
j / �

P† are represented as dotted loops in Figure 7; each encloses a bounded

region that contains y@j†. Similarly, for each interior double point zj we choose a
perturbed loop Cj � int SS1 near ızj , so 'k.Cj / encloses @j†. Define also the loops

ǰ � int SS1 as perturbations of ıwj for unpaired nodes wj 2N \S1 : thus each 'k. ǰ /

encloses a unique connected component 
g.j/ � @†. Observe that @† is now the
disjoint union

@†D

0@ q[
jD1

@j†

1A[
0@ s[

jD1

y@j†

1A[
0@[̀

jD1


g.j/

1A :
The images under 'k of the various perturbed loops are shown with dotted lines in
Figure 7.

From this picture we can deduce some topological facts about the behavior of v1W PS1!

S3 at its boundary and punctures. For a component j̨ � @S1 , we have v1. j̨ /�Lf .j/
for some f .j / 2 f1; : : : ;mg, and we can assume uk ı'k.˛

0
j / is C 0 –close to v1. j̨ /.

Then restricting uk to the bounded region inside 'k.˛
0
j / realizes a homology

@Œuk �D�Œuk ı'k.˛
0
j /�C Œuk.y@j†/�

in both S3 nP1 and S3 nK . This implies

lk.uk ı'k.˛
0
j /;P1/D lk.uk.y@j†/;P1/D 0;

and thus

(20) lk.v1. j̨ /;P1/D 0:

This means v1. j̨ / covers a meridian on Lf .j/ , and its homotopy class can be deduced
exactly via the linking number with K :

lk.v1. j̨ /;K/D lk.uk ı'k.˛
0
j /;K/D lk.uk.y@j†/;K/D�bmj :

Since v1. j̨ / is only linked with one component of K ,

(21) lk.v1. j̨ /;Kf .j//D�bmj :

Turning our attention next to the unpaired nodes, let us assume there is a simply
covered orbit Pj � S3 of X1 such that zv1 is asymptotic to an jnj j–fold cover of Pj

at wj 2 N \S1 , for some nj 2 Z. Again, we’re using the convention that the sign
of nj matches the sign of the puncture at wj , and we set nj D 0 if the puncture is
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'k.ˇ1/

'k.C1/
P†

'k.˛
0
4
/

'k.˛
0
1/

'k.˛
0
3/

'k.˛
0
2/

Figure 7: The image of Figure 6 under 'k W
SSr n fpg ! P† , showing the

perturbed loops ˛0
1
; : : : ; ˛0

4
, ˇ1 and C1 as dotted lines.

removable (in which case it doesn’t matter what Pj is). Now, restricting uk to the
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region between 
g.j/ and 'k. ǰ /, we have a homology

@Œuk �D Œuk.
g.j//�� Œuk ı'k. ǰ /�;

in both S3 nP1 and S3 nK , and we can assume Œuk ı 'k. ǰ /� is homologous to
nj ŒPj �. Thus for every component Ki �K ,

(22) nj lk.Pj ;Ki/D lk.uk.
g.j//;Ki/:

Adding these up for all components of K , we find

nj lk.Pj ;K/D�1;

implying that the puncture is nonremovable and the orbit is simply covered. If Pj DP1
this gives nj m D �1, which cannot be true since m � 2 by assumption. Thus Pj

is geometrically distinct from P1 , and using the homology in S3 n P1 , we have
nj lk.Pj ;P1/D lk.uk.
g.j//;P1/D 0, implying

(23) lk.Pj ;P1/D 0:

We can reach similar conclusions about the behavior of zv1 at an interior double point
zj 2�\ int S1 . Using the same convention as above, assume v1 approaches an jn0j j–
fold cover of some simply covered orbit P 0j at zj . Then we may assume Œuk ı'k.Cj /�

is homologous to n0j ŒP
0
j �, and by restricting uk over the bounded region inside 'k.Cj /,

@Œuk �D Œuk.@j†/�� Œuk ı'k.Cj /�

in both S3 nK and S3 nP1 . This implies for all components Ki �K ,

(24) n0j lk.P 0j ;Ki/D lk.uk.@j†/;Ki/;

and summing this over the components of K , we have

n0j lk.P 0j ;K/D�mj � �2;

so n0j cannot be zero, ie the puncture is not removable. If P 0j D P1 , we have
n0j m D �mj , then mj � m implies n0j D �1 and m D mj . But this contradicts
the stability assumption; indeed, combining (17), (19) and (16), we find q D 1 and
s D `D 0, violating (18). Therefore P 0j is geometrically distinct from P1 , and the
homology in S3 nP1 gives n0j lk.P 0j ;P1/D lk.uk.@j†/;P1/D 0, thus

(25) lk.P 0j ;P1/D 0:

At this point all the vital ingredients are in place.

Claim N \S1 and �\S1 are empty.
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If wj 2N \S1 , then v1 is asymptotic to a periodic orbit Pj which is geometrically
distinct from P1 , and is also unlinked with it, by (23). But we have assumed there
is no such orbit, therefore N \S1 D∅. The same argument proves �\ int S1 D∅,
using (25).

It remains only to exclude double points on the boundary. We now can assume that
@S1 ¤∅ and the only puncture of zv1 is at p , where it is positively asymptotic to P1 .
By assumption, there is a trivialization ˆ1 of .v1/��1jM for which �ˆ1CZ .P1/D 3

and, using (21) and the fact that v1. j̨ / covers a meridian for each component j̨ �

@S1 , the Maslov index along j̨ is 2 lk.v1. j̨ /;Kf .j//D�2bmj . Thus we compute
�.zv1/D 3� 2

Ps
jD1 bmj , and

ind.zv1/D �.zv1/��. PS1/C s D 3� 2

sX
jD1

bmj � .1� s/C s D 2C 2

sX
jD1

�
1� bmj

�
:

The !1–energy of zv1 is clearly nonzero since v1.@S1/ and the image of v1 near p

cannot belong to the same orbit. Thus Theorem 2.4 gives

0� 2 wind�.zv1/� 2

sX
jD1

�
1� bmj

�
:

Since bmj � 1 for all j , the right hand side of this expression is never positive, and
is zero if and only if bmj D 1 for all j . This excludes situations such as x̨1 and x̨2
in Figure 6, where double points give rise to arcs that connect two distinct disks. All
the arcs in ı�i

j
� @SS1 must therefore begin and end on the same circle, enclosing a

region of the plane as with x̨4 in the figure. But now the stability condition requires
this enclosed region to have negative Euler characteristic after doubling, which can
only be true if it contains at least one disk, contradicting the fact that bmj D 1. We
conclude that there are no such arcs ı�i

j
, and hence no double points �i

j 2�\ @S1 .

It follows now that S has no double points or unpaired nodes at all, thus the convergence
.†; jk ; f1g/! .S; j ; fpg; �;N / simply means there are diffeomorphisms 'k W S!

† such that 'k.p/ D 1 and '�
k

jk ! j in C1.S/. Then after R–translation,
zuk ı'k ! zv

1 in C1loc .S n fpg;R�S3/, and zv1 has the same asymptotic limit as zuk .
This completes the proof of Proposition 3.21.

3.7 Degeneration at the boundary

The proof of C1loc –convergence in Theorem 3.5 uses many of the same arguments as
Theorem 3.4, so we will not repeat these in any detail, but rather emphasize the aspects
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that change when the new orbits appear at @M in the limit. As before, it’s convenient
to treat the stable and non-stable cases separately.

The non-stable case The assumptions of Theorem 3.5 require that @† be nonempty,
so the only non-stable case to consider is mD 1: then K is a knot with lk.P1;K/D 1,
and we may assume . P†; jk/D .C nD; i/ where DD int D . It will be convenient to
use the biholomorphic map

 W R�S1
!C n f0gW .s; t/ 7! e2�.sCit/

and consider the sequence of zJk –holomorphic half-cylinders

zvk D .bk ; vk/D zuk ı W Œ0;1/�S1
!R�S3;

with vk.fsg � S1/! P1 as s !1. We claim jdzvk j is uniformly bounded. The
proof is almost identical to what was done in Proposition 3.20: a sequence zk with
jdzvk.zk/j ! 1 gives rise to a non-constant finite energy plane or disk. A disk is
impossible for the same reasons as before: its boundary would have to be contractible
on L, leading to the conclusion that the map is constant. A plane cannot be asymptotic
to any cover of P1 or any orbit that is linked with it. The only new feature is that a
priori the plane could be asymptotic to one of the orbits on L, but this would imply
that vk intersects K for large k , and is thus also excluded.

Pick an open neighborhood U of P1 in M , small enough so that its closure does not
intersect L. Then define

sk Dminfs 2 Œ0;1/ j vk..s;1/�S1/� Ug:

Claim sk !1.

If not, there is a subsequence for which sk! s1 2 Œ0;1/ and (in light of the gradient
bound), there are real numbers ck such that .bk C ck ; vk/ is C1loc –convergent to a
zJ1–holomorphic half-cylinder

zv D .b; v/W Œ0;1/�S1
!R�S3

with finite energy. Observe that v.f0g �S1/ is a meridian on L. Then if the puncture
of zv is removable, v extends to a disk which must intersect K , implying that some part
of the image of vk lies inside the solid torus N for sufficiently large k , a contradiction.

Since 1 is not a removable puncture, denote by P its asymptotic orbit. Now the usual
linking arguments imply

lk.P;K/D lk.P1;K/D 1;
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and if P and P1 are geometrically distinct,

lk.P;P1/D 0:

This leaves only two possibilities: P is P1 (positive puncture, simply covered) or it
is a simply covered orbit on L (negative puncture). In the latter case, the fact that !1
is exact and vanishes on L implies E!1.zv/D 0, thus the image of v is contained in a
periodic orbit, and therefore in L. But this gives a contradiction, because v.fs1g�S1/

is in the closure of U , which is disjoint from L.

There remains the possibility that zv is positively asymptotic to P1 . But then zv has
precisely the same asymptotic and boundary conditions as zvk , hence ind.zv/D 2 and
Theorem 2.4 gives wind�.zv/ D 0. This implies v is transverse to X1 , which is
impossible at f0g�S1 because both the image of v and the orbits of X1 on L are
meridians. This contradiction proves the claim that sk !1.

With this established, define a sequence

zwk D .ˇk ; wk/W Œ�sk ;1/�S1
!R�S3

by zwk.s; t/ D zvk.s C sk ; t/. Then a subsequence of .ˇk C ck ; wk/ converges in
C1loc .R�S1;R�S3/ to a zJ1–holomorphic finite energy cylinder

zw1 D .ˇ1; w1/W R�S1
!R�S3:

The loop 
 WDw1.f0g�S1/ is now the uniform limit of vk.fskg�S1/, and the usual
arguments show that

lk.
;P1/D 0 and lk.
;K/D 1;

thus zw1 cannot be a constant map. If E!1. zw1/D 0, then these linking conditions
and the fact that 
 is in the closure of U imply that zw1 parametrizes R�P1 . However,
there exists a sequence .s0

k
; t 0

k
/ with s0

k
< sk and sk�s0

k
! 0 such that vk.s

0
k
; t 0

k
/ 62U ,

implying that 
 also meets the boundary of U , a contradiction. Therefore E!1. zw1/>

0.

We shall now show that both punctures of zw1 are positive and asymptotic to the
appropriate orbits. If both are removable, we obtain a nonconstant holomorphic sphere
of index �2, contradicting Theorem 2.4 as before. If only one is removable, then
we can define a smooth map of a disk into S3 n K sending the boundary to 
 ,
implying the contradiction lk.
;K/ D 0. Now denote the two asymptotic orbits
by w1.f˙1g�S1/D P˙ . We find,

lk.P˙;K/D lk.P1;K/D 1;
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and if P˙ is geometrically distinct from P1 ,

lk.P˙;P1/D 0:

Therefore each orbit P˙ is either P1 or is contained in L, simply covered in either
case. We can determine the sign of each puncture by comparing the orientations of
w1.f˙1g�S1/ with the orientations of the orbits. This allows four possibilities:

(i) PC D P1 (positive puncture) and P� D P1 (negative puncture),

(ii) PC �L (negative puncture) and P� �L (positive puncture),

(iii) PC D P1 (positive puncture) and P� �L (positive puncture) and

(iv) PC �L (negative puncture) and P� D P1 (negative puncture).

Case (iv) is immediately excluded because both punctures can’t be negative. Cases
(i) and (ii) would both imply E!1. zw1/D 0, using again the fact that !1 is exact
and vanishes on L. We conclude that both punctures are positive, with PC D P1 and
P� �L.

To apply this result to the sequence zuk , define a sequence of diffeomorphisms

'k W C n f0g !C nD

such that 'k.z/ D e2�sk z for all z with jzj � 2e�2�sk . Then observe that zwk ı

 �1.z/D zuk ı'k.z/ whenever jzj � 2e�2�sk , thus after R–translation, a subsequence
of zu ı'k converges in C1loc .C n f0g;R�S3/ to

zu1 D zw1 ı 
�1
W C n f0g !R�S3;

which is asymptotic to P1 at 1 and an orbit on L at 0. Clearly also '�
k

i ! i in
C1loc .S

2 n f0g/. We have thus proved C1loc –convergence for Theorem 3.5 in the case
�. P†/� 0.

The stable case Now assume �. P†/ < 0. The proof of Theorem 3.5 in this case will
follow roughly the same sequence of steps as in Theorem 3.4, with a few important
differences.

Step 1: Gradient bounds We begin by establishing a bound

jd zuk.z/jk �
C

injradk.z/
:

The proof is mostly the same as in Proposition 3.19. If a finite energy plane bubbles
off, then it is asymptotic to an orbit P which (for topological reasons) cannot be a
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cover of P1 , and lk.P;P1/D 0. The only remaining alternative (which is new in
this situation) is that P is a meridian on one of the tori Lj , but this would imply
lk.P;Kj /¤ 0, so uk. P†/ would have to intersect Kj for some large k . The argument
excluding disk bubbles is the same as before.

As in the proof of Proposition 3.21, a subsequence of .†; jk ; f1g/ converges to a stable
nodal surface SD .S; j ; fpg; �;N /. We again denote the connected components by
S D S1[ � � � [SN with corresponding punctured surfaces PSj , choosing the labels so
that p 2 S1 . The gradient bound above implies that we can find constants c

j

k
2R such

that
.ak C c

j

k
;uk/ ı'k j PSj

! zvj
W PSj !R�S3

in C1loc .
PSj ;R � S3/, where T zvj ı j D zJ1 ı T zvj . Our main goal will be to show

that S has no double points and no boundary, but does have m unpaired nodes, one
corresponding to each component of @†.

Step 2: Asymptotic behavior at p The same arguments as in Proposition 3.21 show
that p is a nonremovable puncture for zv1W PS1!R�S3 , and if P is an asymptotic limit
then either P D P1 (simply covered) or P is geometrically distinct from P1 , with
lk.P;P1/D 0. In the present context this last possibility implies that P is an n–fold
cover of some orbit P1 on one of the tori Li , with lk.P;Ki/D n � lk.P1;Ki/D�n.
(As always, n¤ 0 and is negative if the puncture is negative.) Then we can choose a
small circle C about p such that uk.'k.C // is close to P for some large k , and thus
construct a homotopy from P to P1 through S3 nK , implying

lk.P;Kj /D lk.P1;Kj / > 0

for each component Kj �K . The left hand side is 0 if Kj ¤Ki , so this alternative
can only happen if K is connected: in that case �n D lk.P1;K/ D m, so p is a
negative puncture and P is an m–fold cover of P1 . We shall use arguments similar to
the proof of the non-stable case to show that this is also impossible.

Identify a punctured neighborhood of p in PS1 with the positive half-cylinder via a
holomorphic embedding

 W Œ0;1/�S1 ,! S1 n fpg;

and define zwk D .ˇk ; wk/D zuk ı'k ı W Œ0;1/�S1!R�S3 . These half-cylinders
are zJk –holomorphic with the varying complex structures .'k ı  /

�jk D  �'�
k

jk

on the domain, and they converge in C1loc (possibly after translation in R �M ) to
zv1 ı . Observe that '�

k
jk ! j in C1 on any compact neighborhood of p , thus

 �'�
k

jk !  �j D i in C1.Œ0;1/�S1/, not just on compact subsets; this follows
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from Lemma 3.22 below. The familiar argument then establishes a uniform bound
on jd zwk j over Œ0;1/�S1 : the alternative is that jd zwk.sk ; tk/j blows up on some
sequence with sk !1, in which case a zJ1–holomorphic finite energy plane bubbles
off, leading to the usual contradictions.

Due to the asymptotic behavior of zv1 , there exists a sequence sk ! 1 such that
wk.sk ; �/ converges in C1.S1;S3/ to a negatively oriented m–fold cover of the orbit
P1 . But the half-cylinders zwk are each asymptotic to P1 , thus we can (as in the stable
case) pick a small open neighborhood P1 � U �M and define

s0k Dminfs 2 Œ0;1/ jwk..s;1/�S1/� Ug:

Clearly s0
k
> sk , thus s0

k
!1. Now define zvk W Œ�s0

k
;1/�S1!R�M by

zvk.s; t/D .bk.s; t/; vk.s; t//D .ˇk.sC s0k ; t/�ˇk.s
0
k ; 0/; wk.sC s0k ; t//:

These satisfy a uniform C 1 –bound and are zJk –holomorphic with respect to a sequence
of complex structures which converge to i in C1loc .R � S1/, hence a subsequence
converges to a zJ1–holomorphic finite energy cylinder

zv1 D .b1; v1/W R�S1
!R�M:

As in the stable case, the loop 
 WD v1.f0g � S1/ is necessarily nontrivial and not
contained in a periodic orbit, thus zv1 is nonconstant and E!1.zv1/ >1. The usual
topological constraints now imply that both punctures are nonremovable: in particular
zv1 is asymptotic to P1 at C1, and an m–fold covered orbit on L at �1, with
both punctures positive. Denote the m–fold covered orbit on L by P� .

This leads to the following contradiction. Let ‰ denote the natural trivialization of
�1 along P� defined by the intersection TL\ �1 . Then if e� is the asymptotic
eigenfunction at the puncture, we claim wind‰.e�/ D 0. Otherwise, we could find
some s0 near �1 such that for large k , the loop uk ı'k ı .s0; �/ winds nontrivially
around P� , and must therefore intersect L, which is a contradiction. Then Lemma
2.5 gives �‰�CZ .P�/ D 1. In terms of the given trivialization ˆ1 of �1jM , we
have windˆ1

P�
.‰/D�m and thus �ˆ1�CZ .P�/D 1� 2m. Now ind. zw/D �CZ. zw/D

3C 1� 2mD 4� 2m, and Theorem 2.4 gives

0� 2 wind�. zw/� ind. zw/� 2C #�0 D 2� 2m:

This is impossible, since we’ve assumed m� 2. We’re left with the alternative that zv1

is positively asymptotic to P1 at the marked point p .

Before moving on, we should note the following lemma, which was used in the argument
above to prove C1–convergence on the noncompact set Œ0;1/�S1 .
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Lemma 3.22 Let Ak W D! End.T D/ be a sequence of smooth sections of the tensor
bundle End.T D/!D such that Ak!0 in C1.D/. Then if  W Œ0;1/�S1!Dnf0g
is the biholomorphic map  .s; t/ D e�2�.sCit/ , the tensors  �Ak on Œ0;1/ � S1

converge uniformly to 0 with all derivatives.

Proof Define the Euclidean metric on both D and Œ0;1/�S1 , and use the natural
coordinates on each to write sections of End.T D/ or End.T .Œ0;1/�S1// as smooth
real 2-by-2 matrix valued functions. If  .s; t/D z , then the first derivative of  at
.s; t/ and its inverse can be written as

D .s; t/D�2�e�2�.sCit/
D�2�z;

D �1.z/D�
1

2�z
D�

1

2�
e2�.sCit/;

(26)

using the natural inclusion of C in the space of real 2-by-2 matrices. Then

. �Ak/.s; t/DD �1.z/ ıAk.z/ ıD .s; t/D e2�itAk.z/e
�2� it ;

so k �AkkC 0DkAkkC 0!0 since the matrices on either side of Ak.z/ are orthogonal.
We obtain convergence for all derivatives by observing that for any multiindex ˛ ,
@˛. �Ak/.s; t/ is a finite sum of expressions of the form

c �U � e2�it
�Dj Ak.z/.z; : : : ; z/ � e

�2�it
�V

where c is a real constant, U and V are constant unitary matrices (ie complex numbers
of modulus 1), and j � j˛j. This is clearly true for j˛j D 0 and follows easily for all
˛ by induction, using (26). The norm of this expression clearly goes to 0 uniformly in
.s; t/ as k!1.

Step 3: Degeneration of jk Most of the hard work for this step was done in the proof
of Proposition 3.21; in particular, the discussion surrounding Figure 6 and Figure 7
applies in the present situation as well. The main difference here is that, since there
are now orbits that are unlinked with P1 , it is not so trivial to exclude interior double
points. Unpaired nodes, of course, will not be excluded at all; they will replace the
boundary.

Claim �\S1 is empty.

This will follow from similar algebraic relations to the ones that were previously used
only to exclude boundary double points. At any component j̨ � @S1 , the homotopy
class of v1. j̨ / in Lf .j/ is fully determined by (21), giving the Maslov index �2bmj

with respect to the given trivialization ˆ1 of �1jM .
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The behavior at an unpaired node wj 2N \S1 is similarly constrained: by (23), the
asymptotic limit Pj can only be one of the Morse–Bott orbits on some torus Li . Then
(22) tells us the torus in question must be Lg.j/ , and since lk.Pj ;Kg.j//D�1, the
covering number nj D 1. So wj is a positive puncture, and repeating the argument
from Step 2, the asymptotic eigenfunction has zero winding relative to the natural
framing determined by TLg.j/\ �1 . Lemma 2.5 then gives Conley–Zehnder index
1 with respect to this framing. The framing itself has winding number �1 along Pj

with respect to the trivialization ˆ1 , which changes the Conley–Zehnder index to
�2C 1D�1.

Likewise at an interior double point zj 2 �\ int S1 , the asymptotic limit P 0j must
belong to a Morse–Bott torus, and summing (24) over all components Ki �K we have

�n0j D n0j lk.P 0j ;K/D lk.uk.@j†/;K/D�mj ;

so zj is a positive puncture with covering number mj . The Conley–Zehnder index
with respect to the natural framing on the torus is again 1, but now the framing winds
�mj times with respect to ˆ1 , giving index �2mj C 1.

We now compute the Maslov index

�.zv1/D 3C `.�1/C

qX
jD1

.1� 2mj /� 2

sX
jD1

bmj

D 3� `C q� 2

0@ qX
jD1

mj C

sX
jD1

bmj

1A ;
and (9) gives

ind.zv1/D �.zv1/��. PS1/C s

D 3� `C q� 2

0@ qX
jD1

mj C

sX
jD1

bmj

1A� .1� s� `� q/C s

D 2C 2

qX
jD1

.1�mj /C 2

sX
jD1

.1� bmj /:

We can assume that at least one of the sets @S1 , N \S1 and �\ int S1 is nonempty,
in which case v1 approaches one of the tori Li somewhere, while approaching P1
at the marked point p . It follows that the image of v1 is not contained in any single
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periodic orbit, so E!1.zv
1/ > 0. Thus Theorem 2.4 gives

(27) 0� 2 wind�.zv1/� 2

0@ qX
jD1

.1�mj /C

sX
jD1

.1� bmj /

1A :
Recalling that always mj � 2 and bmj � 1, we conclude q D 0 and bmj D 1 for each
j , so �\ int S1 is empty, and by the same argument as in the proof of Theorem 3.4,
so is �\ @S1 .

Claim @S1 D∅ and #N Dm.

We’ve now established that S can have only one connected component (there are no
double points to connect S1 with anything else), thus SSr D

SS1 Š†, and mD sC `.
We need to prove s D 0. Having just shown that everything on the right hand side of
(27) vanishes, we have wind�.zv1/D 0, so vW PS1! S3 is immersed and transverse to
X1 . But if @S1 ¤∅ this cannot be true, because v1.@S1/ and all orbits of X1 on
Lj are meridians.

By the above results, S is a sphere with one marked point p and unpaired nodes
N Dfw1; : : : ; wmg �S nfpg, so we can identify it holomorphically with the Riemann
sphere .S2; i/, setting 1 WD p and � 0 WD N . The diffeomorphisms 'k W

SSr ! †

preserve 1, and restricting them to the interior they define diffeomorphisms

'k W S n�
0
! int†;

with '�
k

jk ! i in C1loc .S n �
0/. Moreover, after R–translation, zuk ı 'k ! zv

1 in
C1loc .S n .f1g[�

0/;R�S3/, and zv1 has precisely the required asymptotic behavior
at the punctures 1 and wj 2 �

0 . This concludes the proof of C1loc –convergence for
Theorem 3.5.

3.8 Convergence at the punctures

To finish proving Theorem 3.4 and Theorem 3.5, it remains only to establish that the
sequences of maps .ak C ck ;uk/ ı 'k behave well on small neighborhoods of the
punctures and boundary. This follows from the next three results.

Lemma 3.23 Let jk be a sequence of complex structures on PD WDD n f0g such that
jk ! i in C1loc .

PD/, and take a sequence of biholomorphic maps

 k W .Œ0;Rk/�S1; i/! . PD; jk/

for Rk 2 .0;1�. Then after passing to a subsequence, Rk !1 and  k converges in
C1loc .Œ0;1/�S1; PD/ to a biholomorphic map  W .Œ0;1/�S1; i/! . PD; i/.
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This can be proved by a routine bubbling off analysis for the embedded holomorphic
maps  �1

k
W . PD; jk/ ,! .R�S1; i/; we refer to [29] for the details. With this preparation,

we can reduce the problem of convergence at the boundary and ends to the following
two statements; we’ll prove only the second, since both use almost identical arguments.
Let HkD .�k ;Xk ; !k ;Jk/ be a sequence of stable Hamiltonian structures on a compact
3–manifold M with boundary, converging in C1 to H1D .�1;X1; !1;J1/, with
associated almost complex structures zJk !

zJ1 . Assume also that the taming forms
!k are exact.

Proposition 3.24 Assume P �M is a nondegenerate periodic orbit of Xk for all
k �1. Suppose zvk D .bk ; vk/W Œ0;1/�S1!R�M is a sequence of finite energy
zJk –holomorphic maps asymptotic to P , with uniformly bounded energy Ek.zvk/ <

C and converging in C1loc .Œ0;1/ � S1;R �M / to a zJ1–holomorphic map zv1 D
.b1; v1/W Œ0;1/� S1 ! R�M , also asymptotic to P . Then for every sequence
sk !1, the loops vk.sk ; �/ converge in C1.S1;M / to a parameterization of P .

Proposition 3.25 Assume L �M is a 2–torus which is tangent to all Xk and is a
Morse–Bott torus for X1 . Let Rk !1, and suppose zvk D .bk ; vk/W Œ0;Rk ��S1!

R�M is a sequence of zJk –holomorphic maps converging in C1loc .Œ0;1/�S1;R�M /

to a zJ1–holomorphic half-cylinder zv1 D .b1; v1/W Œ0;1/ � S1 ! R �M , and
satisfying a uniform energy bound Ek.zvk/ < C . Assume also that zvk.fRkg�S1/�

fckg �L for some sequence ck 2R, and zv1 is asymptotic to a periodic orbit P �L

which is homotopic along L to each of the loops vk.fRkg � S1/. Then for every
sequence sk 2 Œ0;Rk � with sk!1, the loops vk.sk ; �/ have a subsequence convergent
in C1.S1;M / to a closed orbit homotopic to P in L.

Proof We claim first that for any sequence sk �Rk with sk !1,Z
Œsk ;Rk ��S1

v�k!k ! 0:

Indeed, the loop vk.s0; �/ can be made arbitrarily close in C1.S1;M / to a parame-
terization of P by choosing s0 and k large enough. Then for any � > 0, the exactness
of !k implies that we can find k0 2N and s0 2 Œ0;Rk0

� such thatZ
Œs0;Rk ��S1

v�k!k < �

for all k � k0 . Since v�
k
!k is positive,

R
Œsk ;Rk ��S1 v

�
k
!k is bounded by this as soon

as sk � s0 , proving the claim.
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From this and the uniform energy bound, we use the same argument as in Theorem
3.12 to derive a uniform bound on jdzvk j: else a nonconstant finite energy plane or
half-plane with zero !1–energy bubbles off, contradicting Proposition 3.11.

Consider now a sequence sk �Rk with sk!1, and suppose Rk � sk is unbounded.
Then a subsequence of

zwk W Œ�sk ;Rk � sk ��S1
!R�M W .s; t/ 7! zvk.sC sk ; t/

converges (after R–translation) in C1loc .R�S1;R�M / to a zJ1–holomorphic finite
energy cylinder zw1 D .ˇ1; w1/W R � S1 ! R �M with E!1. zw1/ D 0. By
Proposition 3.11, such an object is either constant or an orbit cylinder. To rule out the
former, we claimZ

f0g�S1

w�1�1 D lim
Z
fskg�S1

v�k�k D

Z
P

�1 DWQ0 ¤ 0:

Indeed, since vk.Rk ; �/ is homotopic to P and d�k vanishes along L, we can assume
for k sufficiently large that ˇ̌̌̌

Q0�

Z
fRkg�S1

v�k�k

ˇ̌̌̌
< �:

Then assuming also
R
Œsk ;Rk ��S1 v

�
k
!k < � and using Lemma 3.15,ˇ̌̌̌

Q0�

Z
fskg�S1

v�k�k

ˇ̌̌̌
D

ˇ̌̌̌
Q0�

Z
fRkg�S1

v�k�k C

Z
Œsk ;Rk ��S1

v�kd�k

ˇ̌̌̌
� .1CC /�:

Consequently, zw1 is a trivial cylinder over a closed orbit with the same period as P .

If instead Rk � sk remains bounded as k!1, we consider the maps

zwk W Œ�Rk ; 0��S1
!R�M W .s; t/ 7! zvk.sCRk ; t/;

which satisfy the boundary condition zwk.f0g �S1/� fckg �L. Then a subsequence
converges in C1loc ..�1; 0��S1;R�M / after R–translation to a zJ1–holomorphic
finite energy half-cylinder zw1W .�1; 0��S1! R�M , with E!1. zw1/D 0. Re-
peating the argument above, zw1 parametrizes half of an orbit cylinder.

We’ve shown now that for every sequence sk !1 with sk � Rk , the sequence of
loops vk.sk ; �/ has a subsequence converging in C1.S1;M / to a closed orbit of
X1 . We claim finally that this orbit lies in L. If not, then we can find a sequence
s0
k
2 .sk ;Rk/ such that the loops vk.s

0
k
; �/ touch the boundary of a small neighborhood

of L. But by the Morse–Bott condition, we may assume this neighborhood contains
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no other closed orbits of the same period, thus s0
k

can have no subsequence for which
vk.s

0
k
; �/ converges to an appropriate orbit, giving a contradiction.

4 The main construction

4.1 Surgery and Lutz twists on transverse links

We now define precisely the type of surgery on contact manifolds that we wish to
perform. In the following, S1 is always defined to be the quotient R=Z.

Lemma 4.1 Let .�; �; �/ be the standard cylindrical polar coordinates on S1 �R2 ,
oriented by the basis .@� ; @�; @�/. For � � 0, choose real-valued functions f .�/ and
g.�/ such that .�; �/ 7! f .�/ and .�; �/ 7! g.�/=�2 define smooth functions on R2 .
Then

� WD f .�/ d� Cg.�/ d�

defines a smooth 1–form on S1 �R2 , which is a positive contact form if and only if
the following two conditions are met:

(i) the Wronskian D.�/ WD f .�/g0.�/�f 0.�/g.�/ > 0 for all � > 0,

(ii) f .0/g00.0/ > 0.

In that case, the corresponding Reeb vector field is given by

(28) X.�; �; �/D
1

D.�/
.g0.�/@� �f

0.�/@�/:

Proof A simple calculation shows that

�^ d�DD.�/ d� ^ d�^ d� D
D.�/

�
d� ^ dx ^ dy;

where .x;y/ are Cartesian coordinates on R2 . Then lim�!0 D.�/=� D D0.0/ D

f .0/g00.0/, and it is straightforward to verify that the expression for X above satisfies
d�.X; �/� 0 and �.X /� 1.

Intuitively, these conditions on f and g mean that the curve � 7! .f .�/;g.�// always
winds counterclockwise around the origin in the xy –plane, beginning on the x–axis
with zero velocity and nonzero angular acceleration.

Let .M; �/ be an oriented 3–manifold with a positive and cooriented contact structure,
and suppose K �M is an oriented knot which is positively transverse to � , ie its
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orientation matches the coorientation of � . A Lutz twist along K is defined as follows.
By the contact neighborhood theorem, K has a solid torus neighborhood NK �M

which can be identified with S1 �B2
� .0/, where B2

� .0/ is the closed ball of radius �
around the origin in R2 , such that K D S1 � f0g and �jNK

is the kernel of

(29) �0 WD d� C �2 d�;

using the cylindrical polar coordinates of Lemma 4.1. We then change � by replacing
�0 on NK with �K WD f .�/ d� Cg.�/ d� , where f and g are functions chosen as
in Lemma 4.1 so that �K is a contact form, and furthermore the following hold.

(1) There exists ı 2 .0; �/ such that .f .�/;g.�//D .1; �2/ for � � ı .

(2) The trajectory � 7! .f .�/;g.�// rotates at least halfway around the origin for
� 2 Œ0; ı� (see Figure 9 and Figure 10).

This operation produces a new contact structure �K D ker�K , such that there ex-
ists at least one radius �0 2 .0; ı/ at which g.�0/ D 0. This means the meridian
f.0; �0; �/ j� 2R=2�Zg is Legendrian and forms the boundary of an overtwisted disk,
so that �K is necessarily overtwisted. Relatedly, there is at least one radius �1 2 .0; �0/

at which g0.�1/D 0 and f 0.�1/> 0, so that the Reeb vector field on the torus f�D�1g

generates periodic orbits which are negatively oriented meridians. This detail will be
important for constructing finite energy foliations in such neighborhoods.

The twists shown in Figure 9 and Figure 10 may be called the “half Lutz twist” and
“full Lutz twist” respectively: the former changes the homotopy class of � as a 2–plane
distribution, while the latter does not (see Bennequin [2] for an explicit homotopy).
The half Lutz twist is particularly important for the following reason: by an obstruction
theory argument due originally to Lutz [20; 21], any homotopy class of cooriented
2–plane distributions on M admits a positive contact structure, which can be obtained
from any other � by half Lutz twists along some positively transverse link. See Geiges
[7] for a fuller discussion of this result.

We next generalize this to a twisting version of nontrivial Dehn surgery on contact
manifolds. Assume M DS3 with positive contact structure � and positively transverse
knot K � S3 . Identify a neighborhood NK of K once more with S1 � B2

� .0/,
requiring in particular that �jNK

be the kernel of �0 D d� C �2 d� and that the
longitude f.�; �; 0/ j � 2 S1g � S3 be homologous to zero in S3 nK . Let �1 D

f1.�/ d� Cg1.�/ d� be a contact form on NK obtained from �0 by a Lutz twist as
described above, choosing f1 and g1 so that there is a radius �1 2 .0; �/ at which
g0

1
.�1/D 0 and f 0

1
.�1/ > 0, while g0

1
.�/ > 0 for all � 2 .�1; ��.

Geometry & Topology, Volume 12 (2008)



Foliations on overtwisted contact manifolds 589

A framing of K is a number p=q 2Q[f1g, where we assume p and q are relatively
prime integers. Define now another solid torus N 0 WD S1 �B2

� .0/, with canonical
cylindrical polar coordinates .� 0; �0; �0/. Define also � WD �=2� , �0 WD �0=2� 2 S1 ,
so that the pairs .�; �/, .� 0; �0/ 2 S1 �S1 give coordinates on the tori @NK and @N 0

respectively. Now choose ı 2 .0; �1/ and define an embedding

 W N 0 n .S1
�B2

ı .0// ,!NK W .�
0; �0; �0/ 7! .�.� 0; �0/; �0; �.� 0; �0//;

where the map .� 0; �0/ 7! .�; �/ is determined by an orientation preserving diffeomor-
phism @N 0 7! @NK of the form

(30)
�
�

�

�
D

�
n q

m p

��
� 0

�0

�
;

for some matrix in SL.2;Z/. A new manifold MK is defined by removing S1 �

B2
ı
.0/�NK from S3 and gluing in N 0 via this embedding. The topological type of

MK depends only on p=q 2Q[f1g (see Saveliev [24]).

The contact form �1 on NK pulls back via  to a contact form �K on N 0 n .S1 �

B2
ı
.0//, which in the coordinates .� 0; �0; �0/ has the form

�K D fK .�
0/ d� 0CgK .�

0/d�0

D
�
nf1.�

0/C 2�mg1.�
0/
�

d� 0C
h q

2�
f1.�

0/Cpg1.�
0/
i

d�0:

Clearly �K WD ker�K has a natural extension to MK nN 0 , and we can extend fK and
gK to � 2 Œ0; ı� so that �K becomes a contact form on N 0 .

We will refer to the operation described above as a rational twist surgery along K , or
integral in the case where p=q 2Z[f1g, ie q D˙1 or 0. Observe that when q D 0,
we can choose the surgery matrix to be the identity, which gives simply a Lutz twist
along K . By the theorem of Lickorish [19] and Wallace [27], every closed oriented
3–manifold M can be obtained by integral surgery along some link K � S3 ; then
making K positively transverse by a C 0 –perturbation, the procedure we’ve described
proves the result of Martinet [22] that every such 3–manifold admits a cooriented and
positive contact structure � .

Let N � S3 be the union of all the solid tori removed from S3 in the above gluing,
and let N 0 �M be the corresponding solid tori that are glued in, so there’s a natural
diffeomorphism S3 nN DM nN 0 . The Lutz argument now provides a link K1 �M ,
positively transverse to �K , such that the contact structure �1 obtained by half Lutz
twists along the components of K1 may represent any desired homotopy class. In
particular, we can specify the homotopy class of �1 over the complement of a small
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3–ball B �M by choosing any link K0 representing the appropriate class in H1.M /,
then perturbing it to be positively transverse—note that we’re thus free to assume
K0 �M nN 0 . We can also assume B �M nN 0 , and then the homotopy class of � 0

over B can be changed as needed by twisting along a transverse link K00 � B with
the appropriate self-linking number. In summary, we can assume the transverse link
K1 needed to change the homotopy class of �K lies in M nN 0 D S3 nN , and this
leads to be following statement of the famous Lutz–Martinet theorem.

Theorem 4.2 (Lutz, Martinet) Given a closed oriented 3–manifold M with a coori-
ented 2–plane distribution ˛ , there exists a positive contact structure � homotopic to
˛ , and .M; �/ can be obtained from the tight three-sphere .S3; �0/ by a rational twist
surgery along some transverse link.

Remark 4.3 By Eliashberg’s classification theorem for overtwisted contact structures
[4], the procedure above produces every overtwisted contact structure on every closed
3–manifold.

The main goal of this paper is to construct finite energy foliations on contact manifolds
obtained from .S3; �0/ by twist surgeries. The following result will be helpful for
establishing that these foliations can be made to have certain nice properties, eg that all
punctures are positive and all orbits are simply covered.

Proposition 4.4 For the surgery in Theorem 4.2, we can assume without loss of
generality any or all of the following.

(1) The surgery is integral.

(2) � is overtwisted.

(3) For each component Kj �K , let �12 .0; �/ be the largest radius where g0
1
.�1/D

0. Then for all � 2 .0; �1�,

f 0K .�/g
00
K .�/�f

00
K .�/g

0
K .�/ > 0:

(4) If the surgery at Kj is topologically nontrivial (ie q ¤ 0), �1 is the radius above
and r 2 .0; �/ is the smallest radius at which f 0

K
.r/=g0

K
.r/D f 0

K
.�1/=g

0
K
.�1/,

then
f 0

K
.r/

g0
K
.r/
�
f 00

K
.0/

g00
K
.0/

is positive and close to 0.
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Proof The Lickorish–Wallace theorem guarantees that integral surgeries are sufficient.
If the surgery is topologically nontrivial (ie not merely a Lutz twist) at each component
of K , then the contact structure � defined as above need not generally be overtwisted.
We can, however, make it overtwisted by performing an extra full Lutz twist along
a transverse knot disjoint from K ; this doesn’t change the homotopy class of � .
Condition (3) simply means that the trajectory � 7! .f .�/;g.�// in R2 has nonzero
inward acceleration for all � 2 .0; �1�. Condition (4) is a relation between the slopes
of the trajectory at �D 0 and �D r , and can always be achieved by changing fK and
gK near �D 0. This change may involve an extra half Lutz twist, which changes the
homotopy class of � , but it can be changed back by adding Lutz twists along extra
transverse knots.

g

.f;g/D .1; �2/

�D ı

�D 0
f

Figure 8: The trajectory � 7! .f .�/;g.�// for the contact structure �0 D

f .�/d� Cg.�/d� D d� C �2d� .

It will be helpful to know that transverse links in the tight 3–sphere .S3; �0/ can be
assumed after transverse isotopy to approximate covers of Hopf circles, as the latter
admit coordinate neighborhoods in which the standard contact form takes an especially
simple form. In the following, we view S3 as the unit sphere in C2 , with

(31) �0.z/v WD
1
2
hiz; vi;

for z 2 S3 � C2 and v 2 TzS3 � C2 , where h ; i is the standard Euclidean inner
product. It was shown by Bennequin [2] that all transverse links in the standard
contact R3 are transversely isotopic to closed braids about the z–axis. Using a contact
embedding of R3 into the tight 3–sphere, one can then prove the following lemma
(see [29] for details).
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g

.f;g/D .1; �2/

�D 0

�D ı

f

Figure 9: Half Lutz twist of �0 .

g

.f;g/D .1; �2/

�D ı

�D 0
f

Figure 10: Full Lutz twist of �0 .

Lemma 4.5 Let K�S3 be a link positively transverse to the standard contact structure
�0 . Then for each component Kj �K there is a smooth immersion Fj W Œ0; 1��S1!S3

such that Fj .1; �/W S
1!S3 parametrizes Kj , Fj .0; t/D .e

2�ikj t ; 0/ for some kj 2N ,
and for all fixed � 2 .0; 1�, the collection of maps Fj .�; �/W S

1! S3 parametrizes a
transverse link.

4.2 Some simple foliations in S 1 � R2

In this section we construct stable finite energy foliations on the local neighborhoods
that arise from twist surgery on transverse links. Let M D S1 �R2 , with cylindrical
polar coordinates .�; �; �/ as in the previous section. Then using Lemma 4.1, define a
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positive contact form
�D f .�/ d� Cg.�/ d�;

where

D.�/ WD f .�/g0.�/�f 0.�/g.�/ > 0 for all � > 0, and f .0/g00.0/ > 0:

Notice that smoothness at �D 0 requires g.0/D f 0.0/D g0.0/D 0.

The contact structure � D ker� is spanned for all � > 0 by the two vector fields

(32) v1.�; �; �/D @�; v2.�; �; �/D
1

D.�/
.�g.�/@� Cf .�/@�/;

and the Reeb vector field X is given by (28). The flow of X and its linearization are
quite easy to compute, leading to the following characterization of periodic orbits.

Proposition 4.6 Suppose r > 0 and f 0.r/=2�g0.r/D p=q 2Q[f1g for relatively
prime integers p and q , whose signs match the signs of f 0.r/ and g0.r/ respectively.
Then the torus

Lr WD f�D rg �M

is foliated by closed orbits of the form

x.t/D

�
�0C

g0.r/

D.r/
t; r; �0�

f 0.r/

D.r/
t

�
D

�
�0C

q

T
t; r; �0�

2�p

T
t

�
;

all having minimal period

(33) T D q
D.r/

g0.r/
D 2�p

D.r/

f 0.r/

(in the cases where f 0.r/ D p D 0 or g0.r/ D q D 0, pick whichever one of these
expressions makes sense). The torus is Morse–Bott if and only if the function � 7!
f 0.�/=g0.�/ (or its reciprocal) has nonvanishing derivative at r .

Likewise, the circle
P WD f�D 0g �M

is a closed orbit with minimal period T D jf .0/j. For k 2N , its k –fold cover Pk is
degenerate if and only if kf 00.0/

2�g00.0/
2 Z, and otherwise has

�
ˆ0

CZ .P
k/D 2

�
�

kf 00.0/

2�g00.0/

�
C 1;

where ˆ0 is the natural symplectic trivialization of � along P induced by the coordi-
nates. Here bxc means the greatest integer � x .
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In terms of the curve � 7! .f .�/;g.�// in R2 , this says that the torus Lr is Morse–Bott
when the slope of the curve has nonvanishing derivative at r . The nondegeneracy and
index of any cover of P depend similarly on the slope of this curve as it pushes off
from the x–axis at �D 0.

We’ve chosen the vector fields v1 and v2 above so that d�.v1; v2/� 1, ie they give
a symplectic trivialization of � over M nP . Use these now to define an admissible
complex multiplication J by

(34) Jv1 D ˇ.�/v2; Jv2 D�
1

ˇ.�/
v1

for some smooth function ˇ.�/. The behavior of ˇ near 0 can be chosen to ensure
that J is smooth at � D 0. Then an R–invariant almost complex structure zJ on
R�M is defined in the standard way, and we seek maps zuW .S; j /! .R�M; zJ /

defined on a Riemann surface .S; j / and satisfying T zu ı j D zJ ı T zu. Choosing
conformal coordinates .s; t/ on S , the map u can be written in coordinates as u.s; t/D

.�.s; t/; �.s; t/; �.s; t//, and then the Cauchy–Riemann equation becomes

(35)
as D f �t Cg�t �s D

1

ˇ
.f 0�t Cg0�t /

at D�f �s �g�s �t D�
1

ˇ
.f 0�sCg0�s/:

Given two concentric tori L˙ D f� D �˙g, each foliated by periodic orbits that are
homologous (up to a sign) in H1.M nP /, we shall now construct a stable finite energy
foliation of the region between them, each leaf being a cylinder with ends asymptotic
to orbits at L� and LC respectively (Figure 11).

In particular, suppose there are two radii �˙ with 0< �� < �C , such that

f 0.�˙/

2�g0.�˙/
D

p

q
2Q[f1g and

f 0.�/

2�g0.�/
¤

p

q
for � 2 .��; �C/:

A choice of sign must be made for p and q : for reasons that will become clear shortly,
let us choose both so that the quantity qf 0.�/�2�pg0.�/ is positive for � 2 .��; �C/.
The two tori L˙ are each foliated by families of periodic orbits, of the form

x˙.t/D

�
�0C

q˙

T˙
t; �˙; �0�

2�p˙

T˙
t

�
:

Here p˙ and q˙ are the same as p and q up to a sign, which must be chosen so that
the periods T˙ D

q˙D.�˙/

g0.�˙/
D

2�p˙D.�˙/

f 0.�˙/
are positive. Fixing values of �0 and �0 ,
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�

L�
LC

u.R�S1/

u.R�S1/

�

L�

LC

Figure 11: Concentric tori with homologous periodic orbits connected by a
finite energy cylinder. On the left is the case where g0.�˙/D 0 , so the orbits
are parallel to @� . On the right, f 0.�˙/D 0 gives orbits parallel to @� .

suppose zuD .a;u/W R�S1!R�M is a map of the form

(36) .a.s; t/; �.s; t/; �.s; t/; �.s; t//D .a.s/; �0C qt; �.s/; �0� 2�pt/:

Then using (35), the Cauchy–Riemann equation for zu reduces to the pair of ordinary
differential equations

d�

ds
D

1

ˇ.�/
.qf 0.�/� 2�pg0.�//;(37a)

da

ds
D qf .�/� 2�pg.�/:(37b)
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These have unique solutions for any choice of �.0/ 2 .��; �C/ and a.0/ 2R. Notice
that due to our sign convention for p and q , the right hand side of (37a) is always
positive, thus lims!˙1 �.s/ D �˙ , and we see that u.s; �/ converges in C1 to
parameterizations of the orbits x˙ as s!˙1. It follows then from (1) and Stokes’
theorem that zu has finite energy E.zu/� TCCT� . We shall refer to this solution as a
cylinder of type .p; q/. An example is shown in Figure 13.2

It is clear from (37b) that a is a proper function with asymptotically linear growth to
˙1, as the condition D.�/>0 guarantees that lims!˙1 a0.s/Dqf .�˙/�2�pg.�˙/

cannot be zero. This expression determines the sign of the puncture at s D ˙1 as
˙ sgn.qf .�˙/�2�pg.�˙//. To put this in a more revealing form, write f˙ WDf .�˙/,
f 0
˙
WD f 0.�˙/ etc, and observe that by assumption there is a nonzero number

c˙ D
2�p

f 0
˙

D
q

g0
˙

:

Then the expression above for the sign becomes

˙ sgnŒc˙.f˙g0˙�f
0
˙g˙/�D˙ sgn.c˙/

since D.�˙/ is positive. Now if both tori L˙ satisfy the Morse–Bott condition, then
0 ¤ f 0

˙
g00
˙
� f 00
˙

g0
˙
D �

1
c˙
.qf 00
˙
� 2�pg00

˙
/, and our sign convention for p and q

implies sgn.qf 00
˙
�2�pg00

˙
/D�1, thus sgn.f 0

˙
g00
˙
�f 00
˙

g0
˙
/D� sgn.c˙/ sgn.qf 00

˙
�

2�pg00
˙
/D˙ sgn.c˙/, and we have

(38) sign of puncture at L˙ D sgn.f 0˙g00˙�f
00
˙g0˙/:

This means that in the Morse–Bott case, the sign of a puncture approaching Lr is
positive if and only if the counterclockwise trajectory � 7! .f .�/;g.�// is accelerating
inward at �D r , and negative if it accelerates outward.

The equations (37) can be thought of as defining a direction field in the subset .��; �C/�
R of the �a–plane, which integrates to a one-dimensional foliation. Since (37b) defines
a.s/ only up to a constant, this foliation is invariant under the natural R–action on
the a–coordinate. Meanwhile the set of trajectories t 7! .�0 C qt; �0 � 2�pt/ 2

S1 �R=2�Z for all choices of �0 and �0 defines another one-dimensional foliation.
Putting these together as in (36) creates a two-dimensional foliation of the region
f.a; �; �; �/ 2 R �M j � 2 .��; �C/g by zJ –holomorphic cylinders with uniformly
bounded energy, and it projects to a one-dimensional foliation of f� 2 .��; �C/g �M .
We may assume without loss of generality that f and g are chosen so that both tori
L�˙ are Morse–Bott. Then using the frame .v1; v2/ to trivialize � over this region,

2Thanks to Joel Fish for providing Figure 13 and Figure 14.

Geometry & Topology, Volume 12 (2008)



Foliations on overtwisted contact manifolds 597

it follows from Lemma 2.5 and (6) that each leaf zu has #�0 D 0 and ind.zu/D 2, so
Theorem 2.6 implies that the foliation is stable.

We can extend this foliation to �D �˙ by adding the cylinders over periodic orbits at
L˙ . Moreover, if there exists a radius �0 2 .0; ��/ such that �0 and �� satisfy the
same conditions as �� and �C , then we can repeat this construction for � 2 .�0; ��/

and thus extend the foliation to the region � 2 Œ�0; �C�.

It remains to extend the foliation further toward the center in the case where there is
no � < �� with f 0.�/=2�g0.�/D p=q . To that end, let us redefine our notation with
�� D 0 and LC D f�D �Cg; choose �C > 0 so that

f 0.�C/

2�g0.�C/
D

p

q
2Q[f1g and

f 0.�/

2�g0.�/
¤

p

q
for � 2 .0; �C/:

Choose the signs of p and q so that qf 0� 2�pg0 > 0 for � 2 .0; �C/, and consider
once more the family of zJ –holomorphic cylinders defined by

zuD .a;u/W R�S1
!R�M W .s; t/ 7! .a.s/; �0C qt; �.s/; �0� 2�pt/;

where �.s/ and a.s/ satisfy the ODEs (37) with �.0/ 2 .0; �C/. Once again u.s; �/

converges in C1 as s ! 1 to some parameterization of a simply covered orbit
PC �LC , and (38) gives the sign of this puncture as

�C WD sgn.f 0Cg00C�f
00
Cg0C/:

Define F.�/ to be the right hand side of (37a). The requirement that J be smooth at
�D 0 implies that ˇ.�/ is bounded away from zero as �! 0, thus lim�!0 F.�/D 0,
and we conclude that �.s/! 0 as s!�1.

We must now distinguish between two cases in order to understand fully the behavior
as s!�1. If q ¤ 0, u.s; �/ converges to the jqj–fold cover of P , and the sign of
the puncture at �1 is

�� WD � sgn.q/ � sgnŒf .0/�D� sgn.q/ � sgnŒg00.0/�;

where we’re using the fact that f .0/g00.0/ > 0. We can put this in a more geometrically
revealing form analogous to (38): observe first that if P jqj is nondegenerate, Proposition
4.6 implies qf 00�=2�g00� 62Z and thus f 00�=2�g00� ¤ f

0
C=2�g0C D p=q . Meanwhile our

sign convention qf 0� 2�pg0 > 0 for � 2 .0; �C/ implies

qf 00� � 2�pg00� > 0:

This together with the above expression for �� yields

1

2�
��

�
f 00�
g00�
�
f 0C

g0C

�
D ��

�
f 00�

2�g00�
�

p

q

�
< 0;
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hence

(39) �� D sgn
�
f 0C

g0C
�
f 00�
g00�

�
:

Thus when P jqj is nondegenerate, �� depends on whether the slope of the trajectory
� 7! .f .�/;g.�// at �D 0 is greater than or less than the slope at �D �C .

We now have a foliation of the region � 2 .0; �C/ by an R–invariant family of finite
energy cylinders, each convergent to P jqj at one end and a simply covered orbit
PC � LC at the other. These together with the orbit cylinder over P form a finite
energy foliation in the region f� < �Cg. Figure 12, right, shows an example with
.p; q/D .0; 1/. An example with p and q both nonzero is shown in Figure 14.

Stability for these cylinders is a somewhat more subtle question than before. Assume
P jqj is nondegenerate and LC is Morse–Bott. Then since P jqj has odd Conley–
Zehnder index, Lemma 2.5 and Theorem 2.4 imply that each solution zu above has
ind.zu/� 2; in general however, this inequality can be strict. We claim that the functions
f and g can always be adjusted near 0 so that ind.zu/ D 2; in this case Theorem
2.6 will imply that the corresponding foliation is stable. Let ˆ0 be the symplectic
trivialization of � along P defined by the Cartesian coordinates, and extend this over
f� � �Cg. Then accounting for the orientation of � determined by �, we have

windˆ0

PC
.v1/D��C � sgnŒf .0/� �p;

and hence

(40) �
ˆ0�

CZ .PC/D �C .1� 2 sgnŒf .0/� �p/ :

In order to write �ˆ0

CZ .P
jqj/ in a convenient form, we compute�

�
jqjf 00�
2�g00�

�
D

�
� sgn.q/

�
qf 00� � 2�pg00�

2�g00�
Cp

��
D

�
��

qf 00� � 2�pg00�
2�jg00�j

�
�sgn.q/ �p:

Then using the index formula in Proposition 4.6,

ind.zu/D �C ��
ˆ0�

CZ .PC/C �� ��
ˆ0

CZ .P
jqj/

D 1� 2 sgnŒf .0/� �pC ��

�
2

�
�
jqjf 00�
2�g00�

�
C 1

�
D 1C ��� .2 sgnŒf .0/� �p/� .2�� � sgn.q/ �p/

C 2��

�
��

qf 00� � 2�pg00�
2�jg00�j

�
D 1C ��C 2��

�
��

qf 00� � 2�pg00�
2�jg00�j

�
:
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If �� D 1 this gives

ind.zu/D 2C 2

�
qf 00� � 2�pg00�

2�jg00�j

�
;

or if �C D�1,

ind.zu/D 2

�
qf 00� � 2�pg00�

2�jg00�j

�
;

where dxe denotes the smallest integer � x . Recalling qf 00� � 2�pg00� > 0, we see
indeed that in both cases ind.zu/ � 2, with equality if and only if qf 00� � 2�pg00� is
sufficiently small. This can always be achieved by adjusting the slope of the trajectory
� 7! .f .�/;g.�// for � near 0, without creating any new points at which qf 0.�/�

2�pg0.�/D 0. The key point is to make the slopes of the trajectory � 7! .f .�/;g.�//

at �D 0 and �D �C as close as possible.

If on the other hand q D 0, we have p D � sgn.g00�/ D � sgnŒf .0/� D ˙1 and
lims!�1 u.s; t/D .�0; 0/ 2 P � S1 �R2 . In fact, since

lim
�!0

F 0.�/D�
2�pg00.0/

lim�!0 ˇ.�/
¤ 0;

one can easily show that �.s/ converges exponentially fast to 0, and plugging this
behavior into the equation �0 D F.�/, so does its derivative. We now claim that a.s/

is bounded at �1. For this it suffices to prove that the integralZ 0

�1

da

ds
ds D�2�p

Z 0

�1

g.�.s// ds

converges. We know �0.s/ satisfies a bound of the form j�0.s/j �Me�s with � > 0.
Since g0 is continuous and � stays within a bounded interval for all s , we have

jg.�.s//j D

ˇ̌̌̌Z s

�1

d

d�
g.�.�// d�

ˇ̌̌̌
�

Z s

�1

jg0.�.�//j ; j�0.�/j d�

�M1

Z s

�1

e�� d� DM2e�s

for some constant M2>0. Then
R 0
�1
jg.�.s//j ds<1 and the claim follows. It’s clear

now that zu has finite area as s!�1, thus Gromov’s removable singularity theorem
implies that zu can be extended smoothly to a finite energy plane zvD .b; v/W C!R�M

with zv.e2�.sCit//D zu.s; t/ and v.0/D .�0; 0/ 2 S1 �R2 . The set of all such planes
forms a finite energy foliation in the region f� < �Cg. Each is positively asymptotic
to a simply covered orbit PC �LC , and transverse to the central orbit P (Figure 12,
left). From (40), we find

ind.zv/D �ˆ0�

CZ .PC/��.C/D .1� .�2//� 1D 2;
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�

LC

u.C/

�

u.R�S2/

LC

Figure 12: Holomorphic curves inside the innermost torus. If orbits on LC
have nontrivial @� component (right), we get finite energy cylinders with a
puncture asymptotic to the central axis; else that puncture is removable (left)
and we get a finite energy plane.

so the foliation is stable.

We now apply these constructions to a contact manifold .M; �K / obtained from .S3; �/

by a twist surgery along a knot K . Let N � S3 be the corresponding solid torus
neighborhood of K , identified with S1�B2

� .0/, and denote by N 0DS1�B2
� .0/�M

the solid torus that replaces it after surgery; thus M nN 0 D S3 nN . On N 0 , �K is
the kernel of �K D fK .�

0/ d� 0CgK .�
0/ d�0 , which for � 2 Œı; �� is the pull back of

�1 D f1.�/ d� C g1.�/ d� on N via the gluing map. Let �1 2 .ı; �/ be the largest
radius for which g0

1
.�1/ D 0, so the Reeb orbits on the torus L�1

WD f� D �1g are
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Figure 13: A cylinder of type .p; q/ in S1 �R2 with �C > �� > 0 .

Figure 14: A cylinder of type .p; q/ in S1 �R2 with �C > �� D 0 .

negatively oriented meridians on N . They are generally not meridians on N 0 , but will
represent the homology class q�0�n�0 2H1.L�1

/, where �0 and �0 are the standard
longitude and meridian respectively for N 0 , and q and n are the integers appearing in
the matrix (30). There is then a finite set of radii

�1 > �2 > � � �> �s > 0

for which the Reeb orbits on L�j represent classes ˙.q�0� n�0/ 2H1.L�j /, and we
can foliate the regions in between each of these concentric tori by cylinders of type
.n; q/. For the region f� 2 .0; �s/g, we obtain planes if q D 0, otherwise cylinders
asymptotic to the jqj–fold cover of the orbit S1 � f0g �N 0 .
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By Proposition 4.4, we’re free to assume without loss of generality that q is either 0

or ˙1, in which case all the orbits in this foliation are simply covered. By conditions
(3) and (4) in the proposition, we can also assume the tori L�j are all Morse–Bott, the
orbit S1 � f0g is nondegenerate, all punctures approaching these orbits are positive
and the cylinders in the innermost region have index 2.

Before turning to more global considerations, we note another useful local result, which
allows a kind of “analytic continuation” for some foliations.

Proposition 4.7 Let M D S1 �B2
� .0/ with contact form � D f .�/ d� C g.�/ d�

and Jv1D ˇ.�/v2 defining the almost complex structure zJ on R�M . Now for some
ı 2 .0; �/, choose new smooth functions f1 , g1 and ˇ1 which match f , g and ˇ
for � 2 Œı; �/, such that f1g0

1
� f 0

1
g1 > 0 for � 2 .0; �/ and ˇ1.0/ > 0. These define

new data �1 , J1 and zJ1 , which are smooth on M n .S1 � f0g/ but not necessarily at
S1 � f0g. Suppose there is a neighborhood U of S1 �B2

ı
.0/ in M and a family of

zJ –holomorphic finite energy half-cylinders zuD .a;u/W .�1; 0��S1!R�M , all
asymptotic to a particular cover of the orbit P WD S1�f0g, and defining a finite energy
foliation on U . Assume moreover that either of the following is true:

(1) f 0g00�f 00g0 � f 0
1
g00

1
�f 00

1
g0

1
� 0 or

(2) u.s; t/D .�.s; t/; �.s; t/; �.s; t// satisfies �s�t � �t�s � 0.

Then for each zu there is a unique zJ1 –holomorphic half-cylinder zu1.s; t/ which matches
zu on some annulus of the form Œ�s0; 0��S1 . If additionally .f1;g1/ are C 1 –close
to .f;g/ then the new maps zu1 are proper and asymptotic to the same orbit as zu, and
they form an R–invariant foliation of R� .U nP /, projecting to a foliation of U nP .

Proof Writing the given curves as zu.s; t/D .a.s; t/; �.s; t/; �.s; t/; �.s; t//, there are
constants �0 , �0 and fixed integers p and q such that

�.s; t/! �0C qt; �.s; t/! �0� 2�pt as s!�1;

and the functions .a; �; �; �/ satisfy (35). Combining this with the expressions ast �

ats D 0 and �st � �ts D 0 implies

f�� Cg�� D 0;(41)

f 0�� Cg0�� �
1

ˇ
.f 0g00�f 00g0/.�s�t � �t�s/D 0;(42)

where � WD @ssC @t t , and f , g and ˇ are understood to depend on �.s; t/. We now
seek a map of the form

zu1.s; t/D .a1.s; t/; �.s; t/; �1.s; t/; �.s; t//
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such that a1.s; t/D a.s; t/ and �1.s; t/D �.s; t/ for s � �s0 , and solving the corre-
sponding Cauchy–Riemann equations with respect to f1 , g1 and ˇ1 . Since �.s; t/ and
�.s; t/ are now fixed functions, the new equations for �1 in (35) can be interpreted as
saying that the graph ��1

WD f.s; t; �1.s; t//g is tangent to a certain 2–plane distribution
in .�1; 0��S1 �R. This distribution turns out to be integrable if and only if

(43) f1
0�� Cg1

0�� �
1

ˇ1

.f1
0g1
00
�f1

00g1
0/.�s�t � �t�s/� 0;

where the expression is to be understood as a function of three independent variables
.s; t; �/ 2 .�1; 0� � S1 �R. If it vanishes identically then solutions �1.s; t/ exist
locally. Assume this for the moment: then choosing s0 2 .�1; 0/ such that �.s; t/� ı
for all s � s0 , there is a solution �1.s; t/ on .�s1; 0� � S1 for some �s1 < �s0 ,
with �1.s; t/D �.s; t/ for s � �s0 . For topological reasons, the continued solution is
automatically 1–periodic in t . Then for fixed t , the function s 7! �1.s; t/ satisfies the
ODE

d�1

ds
D

1

ˇ1.�1/

�
f1
0.�1/�t Cg1

0.�1/�t

�
;

and we see that the solution �1.s; t/ extends to .�1; 0��S1 with

lim
s!�1

�1.s; t/D �0;

where �0� 0 is the largest radius at which f 0
1
.�0/=2�g0

1
.�0/Dp=q , or zero if there is

no such radius. The latter is necessarily the case, in particular, if .f1;g1/ is C 1 –close
to .f;g/, because the same argument for zu shows that .f;g/ cannot admit any radius
at which this relation is satisfied.

The remaining two equations in (35) specify the gradient of a1.s; t/ in terms of known
functions, so solutions exist locally if and only if this gradient is curl-free, which in
this case means

(44) f1�� Cg1�� � 0

for all .s; t/ 2 .�1; 0� � S1 and � D �1.s; t/. There is then a unique solution on
.�1; 0� � S1 with a1.s; t/ D a.s; t/ for all s � s0 , and another ODE argument
establishes that in the case �0 D 0, a.s; t/ blows up linearly as s!�1.

We claim that the integrability conditions are satisfied whenever either of the two
additional assumptions in the Proposition are met. Indeed, if f 0g00�f 00g0� f1

0g1
00�

f1
00g1
0 � 0, then (41) and (42) give f�� C g�� D f 0�� C g0�� D 0, and since

the contact condition requires .f;g/ and .f 0;g0/ to be linearly independent in R2 for
all � , we conclude that both �.s; t/ and �.s; t/ are harmonic. Thus (43) and (44) are
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satisfied for all .s; t; �/. In the other case, �s�t ��t�s � 0 together with (41) and (42)
implies again that � and � are harmonic, so the same argument applies.

4.3 Surgery on a holomorphic open book

4.3.1 F0!F1 : Stabilizing an open book decomposition The global construction
begins with a stable foliation of open book type on the tight 3–sphere. Such foliations
follow from a general existence result in Hofer–Wysocki–Zehnder [15], but for our
purposes, we can produce one using much less machinery.

Define �0 on S3 as in (31): then the Reeb vector field X0 generates the Hopf fibration.
At each z 2S3 , �0D ker�0 is the unique complex line in TzS3�C2 , which therefore
admits a natural complex multiplication i 2 �.End.�//. Let zJ0 be the R–invariant
almost complex structure on R�S3 associated to �0 and i . Then the diffeomorphism

ˆW .R�S3; zJ0/! .C2
n f0g; i/W .a;m/ 7! e2am

is biholomorphic. For each � 2C n f0g, we now define a zJ0 –holomorphic plane

zu� D .a� ;u�/W C!R�S3
W z 7!ˆ�1.z; �/;

and for � D 0, a cylinder (ie punctured plane)

zu0 D .a0;u0/W C n f0g !R�S3
W z 7!ˆ�1.z; �/:

The latter is in fact the trivial cylinder over the Hopf circle

P1 WD f.e
2�i� ; 0/ j � 2 S1

g;

and the collection of planes fzu�g�2Cnf0g is an R–invariant 2–parameter family of
embedded, pairwise disjoint finite energy planes asymptotic to P1 . Altogether these
define a finite energy foliation F0 on .S3; �0; i/. The projection to S3 is a planar
open book decomposition with one binding orbit.

The foliation F0 is not stable, because the degeneracy of P1 gives the planes index
4. We can fix this with a small change to �0 near P1 , using Proposition 4.7. Indeed,
pick any R� 1=

p
2� and identify a neighborhood of P1 with S1 �B2

R
.0/ via the

embedding

(45)  W S1
�B2

R.0/ ,! S3
W .�; �; �/ 7! e2� i�

�q
1� 2��2; ei�

p
2��

�
:

Then  .S1 � f0g/D P1 and  ��0 D �.d� C �
2d�/D f .�/ d� Cg.�/ d� , where

f .�/ D � and g.�/ D ��2 . Defining the vector fields v1 and v2 as in (32), the

Geometry & Topology, Volume 12 (2008)



Foliations on overtwisted contact manifolds 605

complex multiplication is now specified by iv1 D ˇ.�/v2 , where

ˇ.�/D
2�

1� 2��2
:

For � D rei�0 2C n f0g, we can express the asymptotic behavior of the holomorphic
plane zu�.z/D .a�.z/;u�.z//D

�
1
2

ln j.z; �/j; .z;�/
j.z;�/j

�
in these coordinates by

.a.s; t/; �.s; t/; �.s; t/; �.s; t// WD
�
a
�
e�2�.sCit/

�
;  �1

ıu�

�
e�2�.sCit/

��
D

 
1

4
ln.e�4�s

C r2/;�t;
rp

2�.e�4�sC r2/
; �0C 2� t

!
;

with .s; t/ 2 .�1; s0� � S1 for s0 sufficiently close to �1. Observe now that
�s�t � �t�s � 0, thus by Proposition 4.7, any C 1 –small change in f and g for �
near 0 admits a new foliation, which is identical to F outside some neighborhood of
P1 . In particular, pick ı 2 .0;R/ and define

�1 D f1.�/ d� Cg1.�/ d� D h.�/ � .� d� C��2 d�/

for some function h that satisfies h.�/D 1 for �� ı and is C 1 –close to this on Œ0;R/,
and such that h00.0/ is small but positive. Then a calculation using Proposition 4.6
shows that for the new contact form, P1 is a nondegenerate orbit with �CZ.P1/D 3.
The new family of planes asymptotic to P1 then have index 2 and form a stable
foliation F1 on .S3; �1; i/.

4.3.2 F1!F2 : Fixing � and J near a link Next, introduce a positively transverse
link KDK1[� � �[Kn�S3 . By Lemma 4.5, there are smooth families 
 �j W S

1!M

for � 2 Œ0; 1� such that 
 1
j .S

1/DKj , 
 0
j .t/D .0; e

2�ikj t / for some kj 2N , and for
each fixed � 2 .0; 1�, the maps 
 �

1
; : : : ; 
 �n W S

1!M are mutually non-intersecting
embeddings transverse to � . Denote K�

j D 

�

j .S
1/ and K� D K�

1
[ � � � [K�

N
for

� 2 .0; 1�.

Lemma 4.8 For � > 0 sufficiently small, there is a contact form �2 with ker�2 D �0
and the following properties:

(i) �2 is C 1 –close to �, and differs from � only in an arbitrarily small neighborhood
of K� ,

(ii) Each of the knots K�
j has a tubular neighborhood Nj Š S1 � B2

� .0/ with
coordinates .�; �; �/ in which K�

j Df�D 0g and �2D c.d�C�2 d�/ for some
constant c > 0.
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For a complete proof, we refer to [29, Proposition 5.1.3]. The main idea is as follows:
observe first that a neighborhood of P0 WD f.0; e

2�i� / j � 2 S1g admits coordinates in
which �1D c.d�C�2 d�/. These are defined by an embedding ‰0W S

1�B2
� .0/ ,!S3

quite similar to (45). One can then use a parameterized version of the Moser deformation
argument to construct for each Kj a family of contact immersions  �j W S

1�B2
� .0/!

S3 , which are embeddings near S1 � f0g for � > 0, taking S1 � f0g to K�
j , and

converge as � ! 0 to a kj –fold cover of ‰0 . These define coordinate neighborhoods
near K�

j in which �1 is C 1 –close to something of the form c.d� C �2 d�/.

Let us now redefine notation and call K� (for sufficiently small � > 0) simply K ;
we can then assume there is a contact form �2 as in Lemma 4.8, taking the form
c.d�C�2 d�/ in coordinates near each component of K . Choose a smooth homotopy
of contact forms f�r gr2Œ1;2� such that ker�r D �0 for all r , and each �r is C 1 –
close to �1 , differing from �1 only in a tubular neighborhood of K . Observe that the
corresponding Reeb vector fields Xr are are all C 0 –close to X1 , and equal to it outside
a compact neighborhood of K . We may therefore assume Xr is always transverse to
the projection of the foliation F1 on S3 nP1 . As a consequence we have, without
loss of generality the following Proposition.

Proposition 4.9 Every periodic orbit of Xr that’s geometrically distinct from P1 is
nontrivially linked with P1 .

For r 2 Œ1; 2�, choose also a smooth homotopy of admissible complex multiplications
Jr W �0! �0 such that J1 � i , Jr differs from i only in a neighborhood of K , and
J2 is defined in the coordinates .�; �; �/ near each component of K by a relation of
the form J2v1 D ˇ.�/v2 , as in Section 4.2. These choices define a smooth homotopy
of almost complex structures zJr . Observe that the binding orbit P1 remains a closed
orbit with �CZ.P1/D 3 for all r . We can now use the machinery of Section 2 and
Section 3 to show that the foliation F1 extends to a continuous family of foliations for
r 2 Œ1; 2�.

Proposition 4.10 For each r 2 Œ1; 2�, there exists a stable finite energy foliation Fr of
.S3; �r ;Jr / which projects to an open book decomposition of S3 , with binding orbit
P1 .

Proof Denote by Mr the moduli space of all zJr –holomorphic finite energy surfaces,
and define the space

MD f.r; zu/ j r 2 Œ1; 2�; zu 2Mr g:

The latter has a natural topology induced by the same notion of convergence as in Mr ,
and there are natural continuous inclusions Mr ,!M for each r , as well as a natural
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R–action on M. Let M�
1

denote the connected component of M1 that contains the
planes in the foliation F1 , let M� be the corresponding connected component of M
containing M�

1
, and then define M�r DM�\Mr .

Combining Theorem 2.6, Theorem 2.7 and Theorem 2.8, we see that for every .r; zu/ 2
M� , zuD .a;u/ is an embedded index 2 plane asymptotic to P1 , and uW C! S3 is
also embedded. Moreover zu is regular, and its neighborhood in M�r foliates neigh-
borhoods of the images of zu and u. Clearly then, M�=R is a smooth 2–dimensional
manifold, for which the projection map

M�=R!RW .r; Œzu�/ 7! r

is always regular. In light of the linking condition in Proposition 4.9, Theorem 3.4
implies that M�=R is compact. It follows that there is a diffeomorphism

 W Œ1; 2��M�1=R!M�=R

such that  .1; Œzu�/D Œzu� and for each r 2 Œ1; 2�,  .r; �/ is a diffeomorphism M�
1
=R!

M�r =R. Thus M�r =RŠM�1=RŠS1 . Applying Theorem 2.6 and Theorem 2.8 again,
we see that any two elements of M�r =R are either identical or have disjoint images
in S3 . Moreover, if Ur � S3 nP1 is the set of points contained in the image of any
curve Œzu� 2M�r =R, then Theorem 2.6 and Theorem 3.4 together imply that Ur is open
and closed, so Ur D S3 nP1 . The collection of curves M�r , together with the trivial
cylinder over P1 , therefore form a stable finite energy foliation of .S3; �r ;Jr /.

4.3.3 F2!F3 : Cutting out disks For the remainder of Section 4.3, we impose the
following restrictive assumption.

Assumption 4.11 For each component Kj �K , lk.Kj ;P1/D 1.

This is needed for technical reasons in the arguments that follow, but will be removed
in Section 4.4 by a branched covering argument.

By the above results, we have a stable foliation F2 of .S3; �2;J2/, transverse to
a link K D K1 [ � � � [Km whose components have disjoint tubular neighborhoods
Nj ŠS1�B2

� .0/ on which �2D cj .d�C�
2 d�/ and J2 has the form J2v1D ǰ .�/v2 .

The Reeb vector field on Nj is X2D
1
cj
@� . Pick ı 2 .0; �/ and let N ı

j Df�� ıg�Nj ,

with Lj WD@N
ı

j . Observe that since Lj is foliated by Reeb orbits, which are necessarily
transverse to the leaves of F2 , Lj is also transverse to these leaves.

We will now replace the planes in F2 with solutions to a boundary value problem,
having boundary mapped to the tori Lj . For this it is necessary to throw out all except
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one of the curves in F2 ; we will be able to reconstruct a foliation afterwards. Therefore,
pick any finite energy plane zuD .a;u/W C!R�S3 which parametrizes a leaf of F2 ,
and define the set of m disjoint open disks

D1[ � � � [Dm �C

by Dj D u�1.int N ı
j /. Then

.†; j / WD .S2
n .D1[ � � � [Dm/; i/

is a compact Riemann surface with boundary

@†D 
1[ � � � [ 
m;

where 
j WD �@SDj , and we have u.
j /�Lj . Let P†D† n f1g. Observe that due to
Assumption 4.11, each torus Lj meets the image of a unique component 
j under u.
Then since each Reeb orbit on Lj has a single transverse intersection with u.
j /, there
are unique smooth functions gj W Lj!R such that dgj .X2/� 0 and a.z/D gj .u.z//

for all z 2 
j . Thus zuj satisfies the totally real boundary condition

zu.
j /� zLj WD f.gj .x/;x/ 2R�S3
jx 2Lj g:

This boundary condition is not Lagrangian, so it does not naturally give rise to any
obvious energy bounds.3 However, the fact that dgj .X2/� 0 will allow us to identify
each zLj with a Lagrangian torus in the symplectization of S3 with a non-contact
stable Hamiltonian structure. This is why Assumption 4.11 is necessary.

Proposition 4.12 Suppose M is an oriented 3–manifold with positive contact form
� and Reeb vector field X , whose flow is globally defined, and J is an admissible
complex multiplication on � D ker� which is preserved by the Reeb flow. Denote by
zJ the associated almost complex structure on R�M , and define an R–equivariant
diffeomorphism by

(46) ‰W R�M !R�M W .a;m/ 7! .aCF.m/;m/

for some smooth function F W M !R that satisfies dF.X /� 0. Then if � 0 � TM is
the unique 2–plane distribution in TM DT .f0g�M /�T .R�M / which is preserved
by ‰� zJ , and J 0 WD‰� zJ j�0 W �

0! � 0 , the data

H0 WD .� 0;X; d�;J 0/

3It is shown in [29] that one can choose a new definition of energy so that suitable bounds are satisfied
and the compactness argument goes through. Here we follow an alternative and somewhat simpler
approach.
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define a stable Hamiltonian structure on M , for which the associated almost complex
structure is precisely ‰� zJ .

Proof Denoting by � W TM ! � the projection along X , define a 1–form

�0 D �� dF ıJ ı�

and let � 0 D ker�0 (we’re not assuming this is the same � 0 defined in the statement
above). Clearly �0.X / � 1, and we claim that also d�0.X; �/ � 0. Since LX �

0 D

d �X �
0C �X d�0 D �X d�0 , this is equivalent to the statement that � 0 is preserved by the

flow of X . Denote this flow by 't W M !M and observe that 't
�X � X for all t ,

and by assumption similarly F ı't � F and 't
�J � J . For m 2M , any v 2 � 0m can

be written as v D ŒdF.m/J yv�X.m/C yv where yv WD �v 2 �m . Then

't
�v D ŒdF.m/J yv�X.'t .m//C't

�yv

D Œd.F ı't /.m/J yv�X.'t .m//C't
�yv

D ŒdF.'t .m// �'t
�.J yv/�X.'

t .m//C't
�yv

D ŒdF.'t .m// �J.'t
�yv/�X.'

t .m//C't
�yv 2 �

0
't .m/;

proving the claim.

Now observe d�.X; �/� 0, and since � 0 is transverse to X , d� is nondegenerate on
� 0 and provides a suitable taming form for any complex multiplication J 0W � 0 ! � 0

with the correct orientation. We show next that � 0 is in fact the unique distribution
preserved by ‰� zJ . Indeed, for v D ŒdF.m/J yv�X.m/C yv 2 � 0m , we have

.‰� zJ /v D T‰ ı zJ ıT‰�1.ŒdF.m/J yv�X.m/C yv/

D T‰ ı zJ .ŒdF.m/J yv�X.m/� ŒdF.m/yv�@aC yv/

D T‰ .�ŒdF.m/J yv�@a� ŒdF.m/yv�X.m/CJ yv/

D�ŒdF.m/J yv�@a� ŒdF.m/yv�X.m/C ŒdF.m/J yv�@aCJ yv

D�ŒdF.m/yv�X.m/CJ yv

D ŒdF.m/J.J yv/�X.m/CJ yv 2 � 0m;

thus ‰� zJ restricts on � 0 to the unique map J 0W � 0! � 0 such that J ı�j�0 � � ıJ 0 .
Finally, observe that ‰� zJ is clearly R–invariant, and since T‰�1 and T‰ each
preserve both @a and X ,

.‰� zJ /@a D T‰ ı zJ ıT‰�1.@a/DX:

Remark 4.13 There is an obvious smooth homotopy between the two stable Hamil-
tonian structures H0 WD .�;X; d�;J / and H1 WD .�

0;X; d�;J 0/: just define H� D
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.�� ;X; d�;J� / for � 2 Œ0; 1� by the same trick, but using the functions F� WD �F W M!

R.

Remark 4.14 Finding nontrivial examples of the situation in Proposition 4.12 requires
very precise knowledge of the Reeb dynamics. One interesting example is the case
where M is a principal S1 –bundle over a Riemann surface with compatible symplectic
structure, and the fibers are generated by X (cf [3, Example 2.2]). Then the choice of
F determines � 0 as a principal connection on this bundle.

We apply the above idea as follows. Pick a smooth function F W S3!R supported in
N1[ � � � [Nm , such that dF.X2/� 0 and F.x/D�gj .x/ for all x 2Lj . Then the
diffeomorphism (46) satisfies

‰. zLj /D f0g �Lj ;

and there is a stable Hamiltonian structure H3 D .�
0
2
;X2; d�2;J

0
2
/ with associated

almost complex structure zJ3 such that

zv D .b; v/ WD‰ ı zuW P†!R�S3

is zJ3 –holomorphic and satisfies the Lagrangian boundary condition zv.
j /� f0g �Lj .
Thus writing ƒD .f0g �L1; : : : ; f0g �Lm/, we have zv 2MH3;ƒ ; in fact zv satisfies
the same assumptions as the sequence in our main compactness theorem, so Lemma 3.2
implies ind.zv/D 2. Then by Theorem 2.6, the connected component M�

3
�MH3;ƒ

containing zv is a smooth 2–manifold with free and proper R–action, so M�
3
=R is

a smooth 1–manifold, and Theorem 3.4 implies it is compact, ie it is diffeomorphic
to S1 . Arguing again as in Proposition 4.10, we find that the curves in M�

3
form an

R–invariant foliation F3 of R� .M nP1/, where

M WD S3
n int.N ı

1 [ � � � [N ı
m/:

It projects to a smooth foliation of M nP1 by an S1 –parameterized family of leaves
asymptotic to P1 and transverse to @M DL1[ � � � [Lm .

Definition 4.15 A foliation with the properties named above is called a stable holo-
morphic open book decomposition with boundary.

4.3.4 F3 ! F4 : Twisting It follows from Remark 4.13 that there is a smooth
homotopy of stable Hamiltonian structures Hr for r 2 Œ3; 7=2�, deforming H3 back to
the original contact data H7=2 WD .�2;X2; d�2;J2/. Finally, continue this homotopy
for r 2 Œ7=2; 4� by choosing a smooth family of contact forms �r on M such that:

(1) �r � �2 outside coordinate neighborhoods of the tori Lj ,
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(2) in a coordinate neighborhood near Lj , �r D fr .�/ d� C gr .�/ d� where
g0r .�/ > 0 for all r < 4 and � � ı , but g0

4
.ı/D 0,

(3) f4 and g4 extend for � in some open neighborhood of ı such that g00
4
.ı/ > 0

and f 0
4
.ı/ > 0.

These conditions guarantee that all closed Reeb orbits for r < 4 are nontrivially linked
with P1 , and this remains true at r D 4 in int M , but the boundary components Lj

then become Morse–Bott tori with closed orbits forming negatively oriented meridians.
Notice that no such homotopy of contact forms exists globally on S3 ; this is why we
introduced the boundary condition, to remove the interiors of N ı

j from the picture.

For any r02 .3; 4/, we can apply the arguments of Proposition 4.10 and find a continuous
family Fr of stable holomorphic open book decompositions with boundary for r 2

Œ3; r0�. Then taking r ! 4, the degeneration theorem (Theorem 3.5) gives limits in
the form of finite energy surfaces without boundary, having mC 1 positive punctures
asymptotic to P1 and the simply covered Morse–Bott orbits on N ı

1
; : : : ;N ı

m . In
particular, for any m 2M n .P1 [ @M /, there exists such a curve zv1 D .b1; v1/
with m in the image of v1 : it is obtained by taking sequences of corresponding curves
in Fr passing through m and letting r approach 4. By positivity of intersections, the
limit curves are also embedded, and any pair of them has projections that are either
identical or disjoint in M . Finally, a simple computation using (6) and Lemma 2.5
shows that these curves have index 2. They therefore constitute a stable finite energy
foliation of Morse–Bott type on the manifold with boundary M . This, together with
the constructions in Section 4.2, proves the main result for any situation in which
Assumption 4.11 is satisfied.

4.4 Lifting to general closed braids

We now complete the proof of Theorem 1.1 by constructing foliations in cases where
Assumption 4.11 does not hold. The idea is to define a branched cover over S3 so that
the assumption does hold on the cover, thus the previous arguments produce a foliation,
which we will then show has a well defined projection.

By way of preparation, define the usual cylindrical coordinates .�; �; �/ on M WD

S1 �B2
� .0/, pick n 2N and consider the map

(47) pW S1
�B2

� .0/! S1
�B2

� .0/W .�; �; �/ 7! .�; �; n�/:

Writing P WD S1 � f0g, this map is smooth on M nP and continuous everywhere.
Suppose M is endowed with a smooth contact form of type �D f .�/ d� Cg.�/ d�
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and admissible complex multiplication defined by Jv1 D ˇ.�/v2 as in Section 4.2.
Then on M nP , � pulls back to another contact form

(48) �.n/ WD p��D fn.�/ d� Cgn.�/ d� D f .�/ d� C ng.�/ d�;

which extends smoothly to P . In fact, let ˆ0 be the trivialization of � D ker� along P

defined by these coordinates, and suppose P is a nondegenerate Reeb orbit for � with
�
ˆ0

CZ .P /D 1. From Proposition 4.6, this means �f 00.0/=2�g00.0/ 2 .0; 1/, and thus
the same is true of �f 00n .0/=2�g00n.0/, so P also has �ˆ0

CZ .P /D 1 with respect to the
extended contact form �.n/ . Writing our standard symplectic frame on �.n/ D ker�.n/

as .v.n/
1
; v
.n/
2
/, the complex multiplication J also pulls back on M nP to J .n/Dp�J ,

satisfying J .n/v
.n/
1
D ˇn.�/v

.n/
2

where ˇn.�/ D ˇ.�/. It turns out that J .n/ does
not have a smooth extension over P , but this will be only a minor irritation in the
following.

If Assumption 4.11 does not hold, choose n to be the least common multiple of all the
linking numbers lk.Kj ;P1/, and define an n–fold branched cover of S3 as follows.
By the results of Section 4.3.2, there is a contact form �2 and complex multiplication
J2 , both of which take the usual simple forms in the neighborhoods Nj of Kj , and
.S3; �2;J2/ admits a stable finite energy foliation F2 which projects to an open book
decomposition of S3 with binding orbit P1 . Denoting E WDS3 nP1 , this open book
defines a fibration E! S1 , and there is a natural n–fold covering map pW E.n/!E

and smooth fibration E.n/ ! S1 such that p.E
.n/
� / D En� for each � 2 S1 . Let

 W E.n/!E.n/ be the deck transformation which maps

E.n/
� !E

.n/

�C 1
n

I

then every deck transformation is of the form  k for k 2 Zn .

In order to compactify E.n/ , we shall modify this construction carefully near P1 .
Recall from (45) that a neighborhood of P1 admits cylindrical polar coordinates
.�; �; �/ such that P1 Š S1 � f0g and �2 takes the form

�2 D f .�/ d� Cg.�/ d�;

where f and g are smooth functions with f 0g00 � f 00g0 � 0 near 0. Moreover J2

is defined in this neighborhood by a relation of the form J2v1 D ˇ.�/v2 . These
properties continue to hold if we change the coordinates by any diffeomorphism of
the form .�; �; �/  ! .�; �; � C 2�k�/ for k 2 Z, thus we can assume without
loss of generality that the planes in F2 have trivial winding around P1 as they
approach it in these coordinates. In this case the coordinates define a trivialization ˆ0

in which �ˆ0

CZ .P1/D 1. We can now replace F2 with another (homotopic) open book
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decomposition whose pages look like f� D constg in a neighborhood of P1 . Then
applying the covering construction above, E.n/ admits a compactification

SE.n/
DE.n/

[P
.n/
1 Š S3;

where P
.n/
1 is a circle identified with S1 � f0g in a certain cylindrical coordinate

neighborhood, and p maps this neighborhood to a neighborhood of P1 via (47).

There is thus a continuous extension pW SE.n/! S3 , such that �.n/ D p��2 has the
form (48) and thus extends smoothly over SE.n/ ; in fact for this extension, P

.n/
1 is a non-

degenerate Reeb orbit with �ˆ0

CZ .P
.n/
1 /D 1. The lift J .n/ D p�J2 is uniquely defined

over E.n/ but singular at P
.n/
1 . These are both preserved by the deck transformation

 , and together they define an almost complex structure zJ .n/ on R�E.n/�R� SE.n/ ,
such that the diffeomorphism

z WR�E.n/
!R�E.n/

W .a;m/ 7! .a;  .m//

is zJ .n/–holomorphic. Each leaf zu 2 F2 lifts to an embedded zJ .n/–holomorphic plane
C! R�E.n/ , giving a foliation of E.n/ by planes asymptotic to P

.n/
1 . These can

be made into an honest stable foliation by changing ˇn.�/ for � near 0 so that J .n/

becomes smooth. This is possible by Proposition 4.7, because f 0ng00n�f
00

n g0n� 0 in this
neighborhood: thus for a suitable smooth choice of J .n/ , we obtain a stable foliation
F .n/

2
which matches the original lift of F2 outside some neighborhood of P

.n/
1 .

Here is the main point: the link K�E lifts to another transverse link K.n/Dp�1.K/�

E.n/ , and our choice of n guarantees that every connected component K
.n/
j �K.n/

satisfy lk.K.n/
j ;P

.n/
1 / D 1 (see Figure 15). Thus the arguments of Section 4.3.3

and Section 4.3.4 produce a stable finite energy foliation F4 of Morse–Bott type
on .M .n/; �

.n/
4
;J
.n/
4
/, where M .n/ is the complement of a neighborhood N .n/ of

K.n/ in SE.n/ Š S3 . We can easily arrange moreover that N .n/ , �.n/
4

and J
.n/
4

be
invariant under the deck transformation  , so the diffeomorphisms z k for k 2Zn are
zJ
.n/
4

–holomorphic. This gives rise to a set of n stable foliations Fk
4
WD z k.F4/ for

k 2 Zn .

Proposition 4.16 The foliations Fk
4

are all identical.

Proof It suffices to show that for any leaf zuD .a;u/ 2 F4 , the curve

z ı zuD .a;  ıu/W P†!R�M .n/

is also a leaf of the foliation. This follows from positivity of intersections. Indeed, if
z ı zu is not a leaf, it must have finitely many isolated intersections with some other
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Figure 15: The top is a transverse knot K with lk.K;P1/D 3 , represented
as a closed braid. The bottom is the 3–fold cover K.3/ � E.3/ , with three
components cyclically permuted by  .

leaf zv D .b; v/ 2 F4 , and these cannot be eliminated under homotopies. Thus z ı zu
also has isolated intersections with zu. Now applying an R–translation, z ı zu also
intersects zu� WD .aC �;u/ for all � 2R. Since aW P†!R is a proper map, choosing
� large forces these intersections toward the asymptotic limits. But zu and z ı zu clearly
have distinct asymptotic limits, and neither curve intersects the asymptotic limits of
the other, thus we have a contradiction.

It follows that F4 has a well defined projection under p to an R–invariant foliation
of R�S3 , inducing also a foliation of S3 nP1 by planes asymptotic to P1 . The
projection of J4 is singular at P1 , but this can again be fixed by an application of
Proposition 4.7. The proof of Theorem 1.1 is now complete.
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