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Asymptotic properties of coverings
in negative curvature

ANDREA SAMBUSETTI

We show that the universal covering zX of any compact, negatively curved manifold
X0 has an exponential growth rate which is strictly greater than the exponential
growth rate of any other normal covering X ! X0 . Moreover, we give an explicit
formula estimating the difference between !. zX / and !.X / in terms of the systole
of X and of other elementary geometric parameters of the base space X0 . Then we
discuss some applications of this formula to periodic geodesics, to the bottom of the
spectrum and to the critical exponent of normal coverings.

53C23; 53C21, 53C22, 20F67, 20F69

1 Introduction

In this paper we shall investigate an asymptotic property of normal coverings of compact,
negatively curved manifolds, and some of its consequences. A qualitative version of this
property, known as growth tightness, can be stated as follows. Recall that the growth
function of a complete Riemannian manifold X is the function vX .x;R/ given by the
volume of balls of radius R of X centered at some point x , and that its exponential
growth rate is defined as

!.X /D lim sup
R!1

R�1
� log vX .x;R/

(this is clearly independent of the choice of the base point x , as well as all the asymptotic
properties of the function vX ).

Theorem 1 Let X0 be a closed n–dimensional negatively curved manifold. For any
Riemannian normal covering X of X0 , different from the universal covering zX , we
have !. zX / > !.X /.

Notice that the inequality !. zX / � !.X / is obvious, as R–balls of zX always have
volume greater or equal than the corresponding balls of X ; Theorem 1 says that the
universal covering of a closed negatively curved manifold X0 is characterized as
the normal covering of maximal exponential growth rate. Any Riemannian manifold
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X0 having this property will be called growth tight. We call the difference �.X /D
!. zX /�!.X / the asymptotic deficit of the Riemannian manifold X . We shall give
later a formula estimating �.X / for a non–simply connected normal covering X .

The above result generalizes our results in [10], where we proved growth tightness of
hyperbolic surfaces, by using Gauss–Bonnet’s formula and elementary topology of
dimension 2. Remark that this strict inequality is peculiar of negative curvature, and
it does not hold in general, even for nonpositively curved manifolds of exponential
growth. Consider for instance the Riemannian product X0 D†1 �†g of a flat torus
with any closed hyperbolic surface. Then zX has exponential growth and nonpositive
sectional curvature, but the normal covering X D†1 �

z†g D†1 �H2!X0 has the
same exponential growth as zX (as the fiber of zX !X is an orbit of the abelian group
�1.†1/ and has polynomial growth in zX ).

The notion of “growth tightness” was originally introduced by Grigorchuk and de
la Harpe [6] for finitely generated groups endowed with a word metric. Actually,
a discrete group .G; d/ endowed with a left-invariant distance is growth tight if
!.G; d/ > !.G=N; d=N / for every nontrivial normal subgroup N (where !.G; d/D
lim supR!1R�1 � log #B.G;d/.e;R/ is the exponential growth rate of balls of G

with respect to d , and d=N is the distance induced on the quotient group G=N ).
Arzhantseva and Lysenok [1] proved that every Gromov hyperbolic group without
finite normal subgroups (in particular, the fundamental group of any closed, negatively
curved manifold) is growth tight with respect to word metrics. Our Theorem 1 is the
geometric analogue of Arzhantseva and Lysenok’s result, as it can be group-theoretically
reformulated by saying that the fundamental group �1.X0/ of any compact negatively
curved manifold is growth tight with respect to the geometric distance d induced by the
Riemannian length ds2 , that is, when we define d.g1;g2/ as the Riemannian length
of the smallest geodesic loop, at some fixed base point, representing g�1

1
g2 (see the

beginning of Section 5). However, it should be noticed that our result is independent
from Arzhantseva and Lysenok’s; in fact, the geometric distance on �1.X0/ induced
by the Riemannian metric is not a word metric and, even if quasi-isometric to any word
metric, the exponential growth rate of �1.X0/ (hence, apriori, growth tightness) is not
invariant under quasi-isometries.

Actually our proof is conceptually very different from that in [1], as we do not deal
with counting words, nor do we have an efficient algorithm as a finite automaton in
the Riemannian framework. We construct, from any nontrivial quotient � DG=N of
G D �1.X0/, a new discrete metric space that we call `1

c .�/, which is made of finite,
arbitrarily long sequences of elements of � , and we show that it can be immersed into G

by a map which contracts distances. This will immediately give that !.G/�!.`1
c .�//,

while a direct computation (Proposition 21) will show that !.`1
c .�// > !.�/ (actually,
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Asymptotic properties of coverings in negative curvature 619

this argument will not be applied directly to � , but to some maximal, ı–separated net
of � ). Our method to construct the contracting immersion j W `1

c .�/ ,!G consists in
lifting a sequence of elements .i/ of � to G and then enchain them in a particular
way, so that the knowledge of j .1; :::; m/ permits us to recover the whole sequence
of i ’s; to describe properly this process of enchaining, we define a new operation (the
“twisted product”) on the isometry group of zX , whose main properties are studied in
Section 3.

We shall now discuss some consequences of Theorem 1.

Let us consider the problem of estimating the systole of a (possibly open) non–simply
connected Riemannian manifold X . Recall that the systole of X , denoted sys.X /, is
the length of the shortest noncontractible closed curve of X (the systole may of course
vanish for noncompact manifolds, eg a hyperbolic manifold with some cusp, whereas
it equals C1 by definition if X is simply connected). The value of the systole can
theoretically be detected by the difference between the growth functions of zX and X .
Actually, if R0 is the first point where they separate, that is,

R0 D inffR j v zX .zx;R/ > vX .x;R/; zx 2
zX ; x projection of zx to X g

then it is easy to show that sys.X /D 2R0 . (In fact, sys.X /� 2R0 as the projection
map B zX .zx;R0C�/!BX .x;R0C�/ is not injective for some zx 2 zX and � arbitrary;
hence, there exists a curve of length smaller than 2.R0 C �/ which projects into a
noncontractible closed curve of X . The converse inequality is similar.) What is more
surprising is that, if X is a normal covering of some fixed, compact, negatively curved
manifold X0 , then knowing the asymptotic deficit �.X /D !. zX /�!.X / is enough
to deduce an estimate of sys.X /:

Theorem 2 Let X !X0 be a normal covering of a n–dimensional compact manifold
X0 with k.X0/� �1, inj.X0/� r0 and vol.X0/� v0 . Then

(1) sys.X /� C.n; r0; v0/ log
�

1

�.X /

�
where C.n; r0; v0/ is a positive function only depending on the base manifold X0 , via
the parameters n; r0; v0 .

There exist other results relating systole and entropy of a Riemannian manifold (see Katz
and Sabourau [7] and Brunnbauer [3]); however, as far as we know, they all concern
closed manifolds and give upper bounds of the systole in term of the entropy, whereas
here we are interested in estimates from below of the systole for open manifolds.
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Actually, the meaning of formula (1) is the following. Let X0 be a fixed compact,
negatively curved manifold, and let X be a normal covering of X0 ; then the closer
!.X / is to the maximal value !. zX /, the bigger must the systole of X . This can be
seen as a property of continuity of the systole in a weak (asymptotic) topology on the
set of normal coverings, as (1) implies that sys.X /! C1 if �.X /! 0. Notice
that, setting c.n; r0; v0/DC.n; r0; v0/

�1 , formula (1) is equivalent to the lower bound
�.X /� e�c.n;r0;v0/ � sys.X / .

Remark 3 A more explicit estimate of �.X /, in terms of sys.X /, n; r0; v0 and of
d0 D diam.X0/, is given by formula (17). The function c.n; r0; v0/ is then obtained
by showing that diam.X0/ is bounded by a function d0.n; r0; v0/, and plugging it
into (17).

Let now c be some fixed, free homotopy class of closed paths in a compact, negatively
curved manifold X0 . Formula (1) above may be interpreted as a lower bound for the
length of the closed geodesic representing c (which is the curve of minimal length
in the class), in terms of an asymptotic invariant attached to c . Namely, recall that
the set of free homotopy classes of closed curves in X0 can be identified with the set
C�1.X0;x0/ of conjugacy classes of �1.X0;x0/; therefore, for any choice of x0 2X0 ,
the class c naturally determines a normal Riemannian covering Xc of X0 , which is the
covering associated to the smallest normal subgroup containing the conjugacy class of
c . A different choice of the base point x0 yields an isometrically isomorphic covering.
Then we have the following corollary:

Corollary 4 Let X0 be a closed, n–dimensional manifold with k.X0/ � �1 and
inj.X0/� r0 , vol.X0/� v0 , and let c be any fixed free homotopy class in C�1.X0/.
Then the minimal closed geodesic  representing c satisfies

(2) `. /� C.n; r0; v0/ log
�

1

�.Xc/

�
where Xc is the normal Riemannian covering associated with c .

Actually, if X !X0 denotes the covering associated with the infinite cyclic subgroup
of �1.X0/ generated by  , then by covering theory `. /D sys.X /� sys.Xc/, and
(2) follows from (1). Clearly, this formula is significant only when !.Xc/ is sufficiently
close to !. zX /.

We shall now see some consequences of Theorem 1 for normal coverings of negatively
curved, locally symmetric spaces. Recall that these are precisely the regular quotients
of the hyperbolic space forms KHm over the algebras K of real, complex, quaternionic
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Asymptotic properties of coverings in negative curvature 621

or Cayley numbers (in this last case, mD 2); we shall refer to them as to K–hyperbolic
manifolds. It is well known that their curvature can be normalized so that �4 �

k.KHm/� �1 and that, if d D dimR K, then

!.KHm/DmC d � 2D !K;m �0.Km/D
1

4
!2

K;m

where �0.X / denotes the greatest lower bound of the spectrum of the Laplace–Beltrami
operator, that is,

�0.X /D inf
�R

X f � 4fdvR
X f 2dv

ˇ̌̌
f 2 C10 .X /

�
:

For a K–hyperbolic manifold X D�nKHm there is an elegant formula of Sullivan [11]
(for KD R) and Corlette [4] (for KD C;H or Ca) expressing �0.X / in terms of the
exponential growth rate of � :

(3) �0.X /D
�
�0.KHm/ if !.�/� 1

2
!K;m

!.�/.!K;m�!.�// if !.�/� 1
2
!K;m

This implies that the bottom of the spectrum of a quotient of KHm by a discrete,
torsionless group � of isometries is the same as for KHm if � has not a sufficiently
large exponential growth rate. However, analogously to what we have seen for the
exponential growth rate, the bottom of the spectrum always descends when X D
�nKHm is a normal covering of a compact manifold:

Corollary 5 Let X D �nKHm! X0 be a normal, non–simply connected covering
of some compact K–hyperbolic manifold X0 with vol.X0/� v0 . Then

(i) �0.X /� �0.KHm/� 1
4
e�2cK;m.v0/�sys.X /

(ii) !.�/� 1
2

�
!K;mC e�cK;m.v0/�sys.X /

�
for some positive, explicitable universal functions cK;m.v0/.

T Roblin [9] has also recently shown, using conformal densities, the strict inequality
!.�/ > 1

2
!.�0/ in the more general framework of normal subgroups � of a discrete,

divergent group of isometries �0 of any negatively curved space. However, formula (ii)
has the advantage to show and explicitly express the relation between the exponential
growth rate of � and the systole of the quotient space X .

Acknowledgments I am grateful to S Gallot for several stimulating discussions, and
especially to F Dal’Bo for her constant support and her attentive revision of this paper.
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2 Basic facts on negatively curved geometry

We collect here, for the convenience of the reader, some basic results which we shall
use in the following chapters. Everywhere in this chapter zX is a complete, simply
connected Riemannian manifold of sectional curvature k. zX /��1. We shall denote by
†xy; z the (unoriented) angle at x between the geodesics ˛; ˇ connecting respectively
the point x to y and the point x to z .

Proposition 6 Let ABC be a geodesic triangle in zX . Then

d.A;B/� d.A;C /C d.C;B/� d.#/

where # D†C A;B and d.#/D log.2=.1� cos#//. In particular, when # � �=2 we
always have d.A;B/� d.A;C /C d.C;B/� log 2.

Proof Let a D d.A;C / and b D d.C;B/. By comparing with a geodesic triangle
A�B�C � with d.A�;C �/ D a, d.C �;B�/ D b and †C�A

�;B� D # in the space
form of constant curvature �1 we obtain by Rauch’s theorem

cosh d.A;B/� cosh a cosh b� cos# sinh a sinh b

and the equality holds precisely when k. zX /D�1. On the other hand,

(4) cosh a cosh b� cos# sinh a sinh b � cosh.aC b� d.#//:

Actually, developing (4) and dividing by e�.aCb/ , it is enough to verify that

p.T /D .2ed.#/
C cos# � 1/T 2

� 2.1C cos#/T C 2e�d.#/
C cos# � 1� 0

in T D e�.aCb/ . Notice that T � 0 and that we may assume T � e�d.#/ (otherwise,
Proposition 6 is trivially satisfied): therefore, as p.e�d.#//D.cos#�1/.e�d.#/�1/2�0

and p.0/D 0, it follows that p.T /� 0.

Proposition 7 Let ABC be a right geodesic triangle in zX with angles at vertices ˛; ˇ
and  D �=2, and opposite sides of lengths a; b; c respectively. Then

tan˛ � tanh a = sinh b:

Proof Consider a comparison triangle A�B�C � in RHn , that is such that d.B�;C �/D

a, d.A�;C �/ D b , d.A�;B�/ D c , and call ˛�; ˇ� and  � the corresponding an-
gles. Then call P� the projection of C � on the geodesic r supporting A�B� , and
Q� the intersection of r with the geodesic normal to A�C � issuing from C � . By
Rauch’s comparison theorem we deduce ˛� � ˛ , ˇ� � ˇ and  � � �=2. Therefore,
the projection P� falls on the segment A�B� , and Q� falls between P� and B� .
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Moreover, the distance to a point along a geodesic being a convex function in negative
curvature, when a point R� runs from P� and B� the distance d.R�;C �/ grows;
hence, a0 D d.Q�;C �/� a. But, then, we get

tan˛ � tan˛� D
tanh a0

sinh b
�

tanh a

sinh b

by standard hyperbolic trigonometry.

If z� is a geodesic of zX and zx 2 z�, we call geodesic hypersurface orthogonal to z� at
zx the smooth hypersurface swept by all geodesics issuing from zx orthogonally to z�
(notice that this is not a totally geodesic hypersurface if k. zX / is not constant).

Proposition 8 Let z� be a geodesic of zX parameterized by arclength, and let zxr Dz�.r/.
Let Hr be the geodesic hypersurface orthogonal to z� at zxr , and let Ur be the connected
component of zX nHr containing z�.2r/. Then:

(i) if x 2 Ur with r > 0, then †zx0
x; z�.C1/� �.r/, where tan �.r/D 1= sinh r ;

(ii) if x 2 Ur and y 2 U�r , then †zx0
x;y � #.r/, where #.r/ D � � 2�.r/ and

cos#.r/D 1� 2 tanh2 r .

Proof Part (i) immediately follows from Proposition 7, taking AD zx0 , C D zxr , and
B equal to the intersection between the geodesic segment zx0x and Hr . To prove part
(ii), remark that the angle †zx0

x;y satisfies:

†zx0
x;y � †zx0

z�.�1/; z�.C1/ � †zx0
x; z�.C1/ � †zx0

y; z�.�1/ � � � 2�.r/:

Hence cos†zx0
x;y � cos.��2�.r//D 1�2=.1C tan2 �.r//D 1�2 tanh2 r by (i).

Finally, another classical property we shall use is that, in negative curvature, quasimini-
mizing curves stay at bounded distance from geodesics:

Proposition 9 (Ghys and de la Harpe [5]) Let ˛ be a geodesic, and let ˇ be a curve
with same endpoints as ˛ satisfying `.ˇ/ � `.˛/C `. Then ˇ is contained in the
.`=2C log 3/–neighborhood of ˛ .

3 Twisted symmetry and twisted product

Again, throughout all this section zX will denote a complete, simply connected Rie-
mannian manifold with k. zX /� �1.
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In what follows, we shall fix once and for all a hyperbolic isometry � of zX and an origin
zx 2 zX on the axis of � (that is, the unique geodesic z� preserved by �). For any point
x 2 zX and any isometry g 2 Is. zX / we shall denote by jxj and kgk respectively the
distances d.zx;x/ and d.zx;g.zx//. Notice that k k is not a true norm on Is. zX / when
zx is fixed by some nontrivial isometry; this semi-norm naturally induces a left-invariant
pseudometric on Is. zX / that we shall still denote by d .

Let now H0 be the geodesic hypersurface orthogonal to z� at zx , and let HiD�
iH0 . For

i > 0 define D�i as the open submanifold of zX bounded by Hi�1 and by Hi , we set
Di DHi�1[D�i , and we call zxi the midpoint of the geodesic segment cut by Di on z�.
Analogously, for i < 0 we set D�i D �

i.D�
1
/, Di DHi[D�i and zxi D �

i.zx1/. Notice
that each Di is a fundamental domain for the action of the cyclic group generated by
� on zX .

We shall write x > 0 (resp. x < 0) if x belongs to a domain Di with i > 0 (resp.
i < 0) and we set, in this case, sign.x/DC (resp. sign.x/D�). Finally, we shall say
that two points x and y are discordant when they belong to different components of
zX nDi , for some i D˙1.

Definition 10 (Twisted symmetry in zX ) We define the twisted symmetry s.�;zx/W zX!
zX , with respect to .�; zx/, as:

s.�;zx/.x/D

�
��2i�1.x/ if x 2Di ; i > 0

��2iC1.x/ if x 2Di ; i < 0

The points x and s.�;zx/.x/ will often be denoted also by xC and x� respectively,
when .�; zx/ is clear from the context. Notice that the map s.�;zx/ is discontinuous and
not involutive; and that we have .Di/� DD�.i˙2/ according to i ? 0.

Proposition 11 Let s.�;zx/W zX ! zX be the twisted symmetry of zX with respect to
.�; zx/, let LD k�k be the displacement of � and �.L/D 3LC log 2. Then:

(i) s.�;zx/ is injective and not surjective;

(ii) s.�;zx/ almost preserves the distance to zx , namely: j jxj � jx�j j � �.L/.

Proof If x� D y� , then x;y 2Di for some i ; but the map Di! .Di/� is injective
(because it coincides with an isometry) hence x D y , which proves (i).

To prove (ii), assume for simplicity that x 2 Di , i > 0 (when x < 0 the proof is
analogous). Let y and z be the projections from x and x� D �

�2i�1.x/ to z�, and let
hD d.x;y/D d.x�; z/. Notice that y and z fall, respectively, in the same domains
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H�1

H0

H1

H2
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Q�

zx–3 zx–2 zx�1
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zx1 zx2 zx3
z�

D�2
D�1

D3

D1

D2

Figure 1: The twisted symmetry of zX

of x and x� , hence zD ��2i�1.y/D y� . Actually, assume that, for instance, y 2Dj

with j < i ; then, if pDxy\Hi and qDz�\Hi , the geodesic triangle ypq would have
two right angles, which is impossible in negative curvature. So, d.x;y/D d.x�;y�/

(as � is an isometry preserving z�). On the other hand, d.zx;y/ D d.zx; zxi/C � for
some � 2 Œ�L=2;L=2Œ, and

d.zx;y�/D d.zx; .zxi/�/� � D d.zx; zxi/C 2L� �:

Thus, by Proposition 6

hC d.zx; zxi/C �� log 2� jxj � hC d.zx; zxi/C �

hC d.zx; zxi/C 2L� �� log 2� jx�j � hC d.zx; zxi/� �C 2L

and j jx�j � jxj j � 2j�jC 2LC log 2� 3LC log 2.

Proposition 12 Let s.�;zx/W zX ! zX be the twisted symmetry of zX with respect to
.�; zx/, LD k�k and �.L/D 2 log.coth.L=2//C 3L. For every x;y 2 zX we have:

(i) either fx;yg or fx;y�g are separated by a domain Di for some i 2 f˙1;˙2g;

(ii) if fx;yg are separated by a domain Di , for some i 2 f˙1;˙2g, then d.x;y/�

jxjC jyj � �.L/.

Proof If x and y both lie on the same side of H0 , then x;y� are separated by D1

or D�1 by construction. On the other hand, if x;y lie on different sides with respect
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to H0 , they are separated by D1 or D�1 unless they belong to D�1[D1 ; in this case,
x and y� are separated by D�2 or by D2 . To prove (ii), notice that, if Di separates
x and y , then †zxi

x;y � #.L=2/, by Proposition 8. Therefore,

d.x;y/� d.x; zxi/C d.zxi ;y/� d.#.L=2//� d.x; zx/C d.zx;y/� �.L/

for �.L/D 3LC log
�
2=.1� cos#.L=2//

�
D 3LC 2 log.coth.L=2//.

Definition 13 (Twisted product in Is. zX /) For every ˛ 2 Is. zX /, we set ˛C D ˛ and
define

˛� D

�
��2i�1˛ if ˛.zx/ 2Di ; i > 0

��2iC1˛ if ˛.zx/ 2Di ; i < 0:

Then ˛�.zx/D ˛.zx/� , and we shall say that ˛; ˇ have same or opposite sign according
to the sign of ˛.zx/; ˇ.zx/. If ˛; ˇ 2 Is. zX / their twisted product is

(5) ˛ �ˇ D

�
˛ˇ if ˛�1.zx/; ˇ.zx/ are discordant
˛ˇ� otherwise.

The main properties of �,� on Is. zX / are:

(i) the map � almost preserves the norm, ie

(6)
ˇ̌
kg�k�kgk

ˇ̌
� �.L/

for �.L/D 3LC log 2 (by Proposition 11);

(ii) for ˛�ˇ the triangular inequality is almost an equality, ie if ˛�ˇD˛ˇ� with � 2
f˙g, then

k˛kCkˇ�k� �.L/� k˛ �ˇk � k˛kCkˇ�k(7)

k˛kCkˇk� �0.L/� k˛ �ˇk � k˛kCkˇkC �.L/(8)

for �.L/D2 log.coth.L=2//C3L and �0.L/D2 log.coth.L=2//C6LClog 2 (Propo-
sition 12).

Remarks 14 The following properties are easy to verify:

(i) If ˇ.zx/D zx , then ˇ� D ��3ˇ .

(ii) We have .�k/� D

�
��k�3 if k � 0

��kC1 if k < 0:

(iii) For k � 1, we have �k �ˇ D

�
�kˇ if ˇ.zx/ > 0

�kˇ� if ˇ.zx/ < 0:
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(iv) For k � 1, we have .�k �ˇ/� D

�
��kˇ� D �

�k �ˇ� if ˇ.zx/ > 0

��k�4ˇ D ��k�4 �ˇ if ˇ.zx/ < 0:

Also notice that the map Is. zX /
�
! Is. zX / is injective but not involutive (as well as

s.�;zx/ ), and that � has no unit, and it is neither commutative nor associative. Then we
shall write ˛ �ˇ �  for ˛ � .ˇ �  /.

A property slightly weaker than usual left cancellation holds:

Proposition 15 If ˛ �ˇ1 D ˛ �ˇ2 and ˇ1; ˇ2 have same sign, then ˇ1 D ˇ2 .

Proof Let ˛ � ˇi D ˛.ˇi/�i
, with �i 2 f˙g. Assume that �1 D C and �2 D �;

then, from ˛ˇ1 D ˛.ˇ2/� we would deduce ˇ1 D .ˇ2/� , hence ˇ1 and ˇ2 would
have opposite sign, which is a contradiction. Therefore �1 D �2 necessarily, so we
immediately get .ˇ1/�1

D .ˇ2/�2
, hence ˇ1 D ˇ2 .

Let now G be a discrete subgroup of Is. zX /, still endowed with the seminorm kgk D
d.zx;g.zx//. If N is a normal subgroup of G , the quotient group G=N is endowed
with the quotient seminorm, denoted again by k k, defined as the infimum of norms of
all representatives: kgN k D inffkg0k j g0 2 gN g.

We shall say that an element g 2 G is minimal modulo a normal subgroup N if
kgk D kgN k (ie g is a representative of minimal length in the class gN ), and that
g is �–minimal modulo N if kgk � kgN kC � . We shall also denote by NG.g/ the
normal subgroup of G generated by an element g .

Remark 16 Notice that if � 2G , then the twisted symmetry s.�;zx/ of zX induces the
identity map on the quotient Gn zX ! Gn zX (as .Gx/� D Gx ). Moreover, if � 2 G ,
notice that the map G

�
!G associated with s.�;zx/ induces the identity on the quotient

G=NG.�/, ie gNG.�/D g�NG.�/ for all g 2G .

We conclude this section with the following proposition, which is crucial for the proof
of Theorem 1. As explained in the introduction, the proof will consist in injecting
the space `1

c .G=N / of finite, arbitrarily long sequences of elements of G=N (see
Section 4 for a precise definition) in G by a contracting map j . This will be achieved
by lifting any sequence of elements .i/ of G=N to minimal representatives in G and
then enchaining them, interposing between them suitable powers �k

i of some � 2N .
A repeated application of the proposition below will enable us to recover the whole
sequence of i ’s from the knowledge of j .1; :::; m/, thus showing the injectivity of
the map j . Formally, the proposition says that if the equation ˛1��

k�ˇ1D˛2��
k�ˇ2

holds in the discrete group G � Is. zX / (for k large enough and the ˛i minimal modulo
NG.�/), then we can almost recover the identity ˛1 D ˛2 .
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Proposition 17 Let � be the smallest integer ���.L/D.7=L/ log
�
3e2L coth.L=2/

�
,

and set ı.L/ D 9 log.3e3L coth.L=2//. Let G be a discrete group of Is. zX /, let
˛i ; ˇi and � 2 G , and assume that the ˛i ’s are �.L/–minimal modulo NG.�/. If
˛1 � �

� �ˇ1 D ˛2 � �
� �ˇ2 then d.˛1; ˛2/ < ı.L/.

The informal idea behind the proof of Proposition 17 is to look, on the geodesic of zX
representing gD ˛i ��

k �ˇi , for the first point zz such that the geodesic zxzz no longer
minimizes when projected on the quotient space X D zX=NG.�/. Then as the ˛i ’s are
minimal modulo NG.�/, we shall be able to find the points ˛i.zx/ at finite distance
(depending on LD k�k) from zz , and therefore the ˛i will be almost determined.

Proof of Proposition 17 Let  D˛i��
��ˇiD˛i.�

��ˇi/�i
for �i 2f˙g; by Remarks

14 (iii)–(iv) we have .�� �ˇi/�i
D ��i .ˇi/�i

D ��i �.ˇi/�i
, for some �i 2 f˙�;���4g

and �i 2 f˙g. Let now z̨i ; z�i ; ži be respectively the geodesic segments from zx to
Ai D ˛i.zx/, from Ai to Bi D ˛i.�

�i .zx//, and from Bi to  .zx/. Let then z and zi

be the geodesic segments respectively from zx and from Ai to  .zx/. Finally, let xi

and yi be the projections of Ai , and Bi on z . See Figure 2.

x γ(x)

A1

2
η2

η1

zx

˛1

˛2

A1

A2

x2

x1

2

1



�2

�1

y2

y1

B1

B2

ˇ1

ˇ2

 .zx/

Figure 2

We have, by (7)

`.z̨i/C `.zi/D k˛ikCk�
�i .ˇi/�i

k � k˛i � .�
�
�ˇi/kC �.L/D `.z /C �.L/

as well as, by Remarks 14 (iv),

`.z̨i/C `.z�i/C `. ži/� k˛ikCk.�
�
�ˇi/�i

kC �.L/� k˛i � .�
�
�ˇi/kC 2�.L/:
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Hence, by Proposition 9

d.Ai ;xi/D d.Ai ; z /� �.L/=2C log 3(9)

d.Bi ;yi/D d.Bi ; z /� �.L/C log 3(10)

d.Ai ;Bi/D k�
�ik 2 Œ�L; .�C 4/L�:while

Since projections on convex subsets reduce the distance in negative curvature, the
previous equations then yield

(11) �L� 3�.L/=2� 2 log 3� d.xi ;yi/� d.Ai ;Bi/� .�C 4/L:

Consider now the projection � W zX ! X D NG.�/n zX (with the quotient distance).
The action of G on zX induces an action of G=NG.�/ on X , and we clearly have
�.Ai/D �.Bi/ (as NG.�/ is normal). Therefore, by (9) and (10) again we deduce

(12) d.�.xi/; �.yi//� 3�.L/=2C 2 log 3:

The inequalities (11) and (12), in turn, yield

(13) d.xi ;yi/� d.�.xi/; �.yi//� �L� 3�.L/� 4 log 3:

Now, remark that each yi follows xi along z ; otherwise, by (10), we would have

k.ˇi/�k D d.Bi ;  .zx//� d.yi ;  .zx//� d.xi ;  .zx//

� d.Ai ;  .zx//� .�.L/=2C log 3/

D k.�� �ˇi/�i
k� .�.L/=2C log 3/ ;

but, on the other hand, by the main property of �,

k.�� �ˇi/�i
k D k��i � .ˇi/�i

k � k��ikCk.ˇi/�i
k� �.L/� �LCk.ˇi/�i

k� �.L/:

Hence � � .3�.L/=2C log 3/=L, which contradicts our choice of � .

Moreover, the couple .y1;y2/ follows the couple of points .x1;x2/ along z . Actually,
assume for instance that x2 is between y1 and y2 ; then, by the �.L/–minimality
modulo NG.�/ of ˛2 and by (13)

k˛2NG.�/kC �.L/

� k˛2k D d.zx;A2/� d.zx;x2/D d.zx;x1/C d.x1;y1/C d.y1;x2/

� d.�.zx/; �.x1//C d.�.x1/; �.y1//C �L� 3�.L/� 4 log 3C d.�.y1/; �.x2//

� d.�.zx/; �.A2//C �L� 7�.L/=2� 5 log 3

� k˛2NG.�/kC �L� 7�.L/=2� 5 log 3

hence � � .7�.L/=2C �.L/C 5 log 3/=L, which again contradicts the choice of � .
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Concluding, we deduce that d.x1;x2/� d.x1;y1/� .�C 4/L, by (11); so, by (9),

d.˛1; ˛2/�d.A1;x1/Cd.x1;x2/Cd.x2;A2/��.L/C2 log 3C.�C4/L<ı.L/:

4 Growth of nets in normal coverings

Recall that a subset S of a metric space .X; d/ is called a ı–net if, for all x 2X , we
have d.x;S/� ı . For instance, if a discrete group � acts on X with compact quotient
X0 D �nX , and diam.X0/� ı , any orbit of � is a ı–net in X . On the other hand, a
subset S of .X; d/ is called a ı–separated set if all the open balls BS .s; ı/ of radius
ı centered at points of S are disjoint (hence, d.s; s0/ � 2ı for all s; s0 2 S ). Notice
that any maximal ı–separated set S of .X; d/ is a 2ı–net, by maximality.

In this section we shall be interested in estimates on the growth of nets in normal
coverings. We shall use the following notation: for a general, discrete metric space
S whose balls of finite radius are finite, the growth function of S and the exponential
growth rate of S are defined, respectively, as

vS .s;R/D cardBS .s;R/ ; !.S/D lim sup
R!C1

R�1
� log vS .s;R/

where BS .s;R/ denotes, as usual, the subset of elements whose distance from s is
smaller than R. Moreover, for a Riemannian manifold X and any discrete subset
S �X we define, for all � � 0:

A�X .x;R/D BX .x;RC �/ nBX .x;R� �/ ; v�X .x;R/D volA�X .x;R/

A�S .x;R/DA�X .x;R/\S ; v�S .x;R/D cardA�S .x;R/

Remark 18 It is classical that, for a normal Riemannian covering X of a closed
Riemannian manifold X0 we have:

!.X /D lim
R!1

R�1
� log vX .x;R/ D lim

R!1
R�1
� log v�X .x;R/

(the existence of the second limit is justified by Proposition 20 below). Actually, we
have

BX .x; 2N�/D

NG
nD0

A�X .x; 2n�/

so, vX .x; 2N�/ D
P

n v
�
X
.x; 2n�/. But now, if ! D limR!1R�1 � log v�

X
.x;R/,

we know that for all � > 0 there exist constants a; b > 0 such that

ae.!��/R � v�X .x;R/� be.!C�/R:
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It follows that

e2N�.!��/
� a

NX
nD0

e2n�.!��/
� vX .x; 2N�/� b

NX
nD0

e2n�.!C�/
� e2N�.!C�/

and, as � is arbitrary, passing to limits yields ! D limR!1R�1 � log vX .x;R/.
Similarly, if S is a discrete subset of X , then we also have

!.S/D lim
R!1

R�1
� log vS .x;R/D lim

R!1
R�1
� log v�S .x;R/

provided that the second limit exists.

We shall make use of the following estimates, the first of which (à la Bishop–Gromov)
is due to G Reviron:

Proposition 19 [8] Let X be a complete Riemannian manifold admitting some
properly discontinuous cocompact group of isometries. Then for all R � 2r > 0 we
have:

(14)
supx2X vX .x;R/

infx2X vX .x; r/
�

�
supx2X vX .x; 4r/

infx2X vX .x; r/

� R
2r

Proposition 20 Let X be a complete Riemannian manifold admitting some properly
discontinuous cocompact group of isometries � . Let X0 D �nX and inj.X0/ � r0 ,
diam.X0/� d0 and vol.X0/� v0 . Then for any orbit �x of � in X and any ı–net S

of �x , we have

(i) !.S/D !.�x/D !.X /D ! ;

(ii) v�Cı
S

.x;R/� v�
�x
.x;R/=v�x.x; ı/, for all �;R� 0;

(iii) v
2d0

�x
.x;R/� e!.X /R for all R� 0.

Moreover, if k.X /��1 and vn.r/ denotes the volume of balls of radius r in Hn , then

! �
2

r0

log
h v0

vn.r0=4/

i
and v

2d0Cı
S

.x;R/�
hvn.r0=4/

v0

i 2.d0Cı/

r0
�1

e!R:

Proof of Proposition 20 Let �.y/ D fz 2 X j d.z;y/ < d.z;  .y//g be the open
Dirichlet domain, centered at y 2X , for the action of � . Then[

y2A
��d0
�x

.x;R/

�.y/�A�X .x;R/�
G

y2A
�Cd0
�x

.x;R/

�.y/
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hence v��d0

�x
.x;R/ � v0 � v

�
X
.x;R/� v

�Cd0

�x
.x;R/ � v0 . Moreover, notice that

A��x.x;R/�
[

s2A
�Cı
S

.x;R/

B�x.s; ı/;

and that v�x.s; ı/ D v�x.x; ı/ for all s 2 S . Hence, v�
S
.x;R/ � v�

�x
.x;R/ �

v�Cı
S

.x;R/ � v�x.x; ı/. This proves (ii) and, by taking limits, (i).

To show (iii), remark that for all R1;R2 > 0 we have

A
2d0

�x
.x;R1CR2/�

[
y2A

2d0
�x

.x;R1/

A
2d0

�x
.y;R2/:

Actually, let z 2 A
2d0

�x
.x;R1 CR2/; then, d.x; z/ D R1 CR2 C � , for some � 2

�� 2d0; 2d0�. Let now x0 be a point on a minimizing geodesic from x to z such that
d.x;x0/DR1C �=2, and let y 2 �x such that d.x;y/� d0 . Then y 2A

2d0

�x
.x;R1/

and z 2A
2d0

�x
.y;R2/ (because d.x0; z/DR2C �=2). Since for all y 2 �x , we have

cardA
2d0

�x
.y;R2/D cardA

2d0

�x
.x;R2/, we deduce that

v
2d0

�x
.x;R1CR2/� v

2d0

�x
.x;R1/ � v

2d0

�x
.x;R2/;

that is, log v2d0

�x
.x;R/ is a sub-additive function; this implies that the limit !.�x/D

limR!1R�1 � log v2d0

�x
.x;R/ exists and it is equal, by (ii), to !.X /. Best, by subad-

ditivity we deduce
n log v2d0

�x
.x;R/

nR
�

log v2d0

�x
.x; nR/

nR

and, taking limits for n!1, we obtain R�1 log v2d0

�x
.x;R/� !.�x/ for all R> 0,

which proves (iii).

Finally, notice that as BX .x; d0C ı/�
F

y2B�x.x;ı/
�.y/, we have that v�x.x; ı/�

vX .x; d0C ı/=v0 ; hence from (ii) and (iii) we deduce:

(15) v
2d0Cı
S

.x;R/�
v0

vX .x; d0C ı/
e!R

Now assume that k.X /��1. Using Proposition 19 for rD r0=4 we obtain the estimate
vX .x;R/� v0 � Œv0=vn.r0=4/�

2R=r0�1 by Bishop–Gunther’s comparison theorem. This
estimate shows that ! � .2=r0/ logŒv0=vn.r0=4/�, while plugging it into (15) ends the
proof.

We shall now prove a general result on the growth of discrete metric spaces whose
annuli grow by an exponential law. Let .S; s0/ be any discrete, pointed metric space
whose balls of finite radius are finite, and let S� D S n fs0g. We consider the space
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`1.S�/ of finite, arbitrarily long sequences .sk/ of points of S� . Then we define
`1

c .S
�/ to be the same space as above, endowed with the “norm”

k.s1; :::; sm/kc D

mX
kD1

d.sk ; s0/C .m� 1/c:

We can define the “balls of `1
c .S
�/ centered at the empty sequence” as

Bc.R/D f.sk/ j k.sk/kc �Rg:

As S is discrete, these are finite sets for all R, so we can set vc.R/D cardBc.R/ and
consider the exponential growth rate of this space:

!.`1
c .S
�//D lim sup

R!1

R�1 log vc.R/:

Proposition 21 Let .S; s0/ be a pointed, discrete metric space verifying:

(i) all the balls of finite radius of S are finite sets;

(ii) there exist �; �; ! > 0 such that v�
S
.s0;R/� � � e

!R for all R� 0.

Then for every c > 0 we have

!.`1
c .S
�//� !C

log.1C�e�!.�Cc//

2.� C c/
:

Proof Let Bm
c .R/ be the subset of Bc.R/ of sequences of length m, and denote the

subset of Bm
c .R/ made up of sequences .sk/ such that sk 2A�

S�
.s0;Rk/ for all k by

A�
S�
.s0;R1/� � � � �A�

S�
.s0;Rm/. Finally, let �D � C c , and for every ki 2 N� set

Ri D .2ki � 1/�. Then we have a decomposition:

Bc.2M�/�

MG
m�1

Bm
c .2M�/�

MG
m�1

†i kiDMG
k1;:::;km�1

A�S�.s0;R1/� � � � �A�S�.s0;Rm/

Actually, if .sk/ 2 A�
S�
.s0;R1/ � � � � �A�

S�
.s0;Rm/, then we have that k.sk/kc �P

k Œ.2ki � 1/�C ��C .m� 1/c � 2M�. Moreover, remark that these are disjoint
unions, since A�

S�
.s0;Ri/\A�

S�
.s0;Rj / D ∅ if i ¤ j . Also notice that, as each
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Ri ��> � , we have A�
S�
.s0;Ri/DA�

S
.s0;Ri/. Therefore, by (ii), we get:

vc.2M�/�

MX
mD1

†i kiDMX
k1;:::;km�1

v�S .s0;R1/ � � � v
�
S .s0;Rm/

�

MX
mD1

†i kiDMX
k1;:::;km�1

�me2M�!
� e�m�!

D e2M�!
MX

mD1

�
M � 1

m� 1

�
�

�
�e��!

�m

D �e��! � e2M�!
�

�
1C�e��!

�M�1

and thus !.`1
c .S
�//� lim

M!1

log vc.2M�/

2M�
D !C

log.1C�e��!/

2�
:

5 Proof of the main results

We start with the sequence of normal coverings zX !X !X0 of a closed, negatively
curved manifold X0 , and we want to show that !. zX / > !.X /. If we fix a base point
zx in zX , and x;x0 are its projections to X;X0 , the groups of deck transformations
Aut. zX!X0/ and Aut.X!X0/ can be canonically identified, respectively, with GD

�1.X0;x0/ and with the quotient � DG=N by the normal subgroup N D �1.X;x/

of G . We shall systematically identify elements of G and � with the automorphisms
of zX and X they represent.

As explained before Remark 16, G and � carry a natural left-invariant norm (and,
consequently, a left-invariant distance), by identifying them with their orbits in the
Riemannian manifolds zX and X ; these are true norms, as the deck transformations
have no fixed points. With respect to these metric structures we have, by Proposition 20;
!.G/D !.Gzx/D !. zX / and !.�/D !.�x/D !.X /.

Proofs of Theorem 1 and Theorem 2 Let � be a closed geodesic realizing the systole
of X , ie sys.X /D `.�/DL, and let �0 be its projection on X0 (such geodesics exist
by an Ascoli–Arzelà argument, as X0 is compact). We chose the base point x of X on
� and call zx;x0 respectively a lift of x to zX and its projection to X0 ; for this choice
of the base point, we clearly have k�k D `.�/.

Let now S be a maximal .ı=2/–separated set of the orbit �x containing x , for
ı D ı.L/D 9 log.3e3L coth.L=2// as in Proposition 17 (such a subset always exists
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by Zorn’s Lemma), and set S� D S n fxg. Since S is maximal, it is a ı–net in � . We
shall prove that

Proposition 22 There exists an injection j W `1
c .S
�/!G which contracts the norms,

for c � 7 log
�
5e4L coth.L=2/

�
.

Assuming for a moment Proposition 22, we infer that the R–balls of `1
c .S
�/ can be

injected in the R–balls of G (centered at the identity element); therefore

! D !. zX /D !.G/� !.`1
c .S
�//:

Now, let d0 D diam.X0/; we know by Proposition 20 that v�
S
.x;R/� �e!.X /R , for

� D 2d0C ı and �D Œvn.r0=4/=v0�
2.d0Cı/=r0�1 ; hence, Proposition 21 yields

(16) !. zX /� !.`1
c .S;x//� !.X /C

log
�
1C�e�!.�Cc/

�
2.� C c/

which proves Theorem 1.

More precisely, plugging in (16) the value of � , � corresponding to our ıDı.L/, the es-
timate !� .2=r0/ logŒv0=vn.r0=4/� of Proposition 20 and cD7 log

�
5e4L coth.L=2/

�
,

we obtain

(17) �.X /�

log

 
1C

h
vn.r0=4/
v0

i�182C.3d0C33/=r0C13=r2
0

�
.sys.X /=r0/

!
�
182C .3d0C 33/=r0C 13=r2

0

�
sys.X /

(since sys.X /� 2r0 ), where vn.r/ denotes, as usual, the volume of a ball of radius r in
Hn . Now notice that, as k.X /��1, the diameter d0 of X0 can be bounded in terms of
n; r0 and v0 . Actually, if 0 is a minimizing geodesic of length d0 between x0;y02X0 ,
then there exist at least d0=.r0=2/� 1 disjoint balls of radius r0=4 with centers xi on
0 , and vol B.xi ; r0=4/� vn.r0=4/ for all i ; hence, v0 � .2d0=r0� 1/vn.r0=4/ and
d0 � r0v0=vn.r0=4/. Thus, formula (17) can be expressed in the simpler form

�.X /�
log

�
1C c

sys.X /
1

�
c2 � sys.X /

�
log 2

c2

� e�.j log c1jC1=e/�sys.X /
� e�c�sys.X /

for suitable positive functions c1; c2 and c of n;R0; v0 . This proves Theorem 2.

Proof of Proposition 22 The map j is constructed by recurrence on the length of
the sequence as follows. First, for every  2 � we fix a representative g 2G which is
minimal modulo N , ie kgk D kk D d.x;  .x//. Then for a sequence of length 1,
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that is a point x1 D 1x 2 S�
L

, we pick the minimal representative g1 2 G of 1 and
we set j .x1/D g1 ; finally, for a general sequence of depth m, we set

j .x1; :::;xm/D .g1/�2:::m
� �� � j .x2; :::;xm/

where �2:::m D signj .x2; :::;xm/ and � � �.L/ as in Proposition 17.

It is clear that the map j is contracting for our choice of c as, by Proposition 11 and
by (8)

kj .x1; :::;xm/k �
X

i

kgikC .m� 1/
�
k�k�.L/C 3�.L/

�
�

X
i

d.x; i.x//C 7.m� 1/ log
�
5e4L

C coth.L=2/
�

D k.x1; :::;xm/kc :

We must now show that the map j is injective. Assume j .x1; :::;xm/D j .yx1; :::; yx ym/;
this means that, if xi D i.x/, yxi D yi.x/ and if gi ; ygi are the fixed representatives of
i and yi which are minimal modulo N , we have

.g1/�2:::m
� �� � j .x2; :::;xm/D .yg1/y�2::: ym

� �� � j .yx2; :::; yx ym/

where �2:::mD signj .x2; :::;xm/, y�2::: ymD signj .yx2; :::;x ym/. Now, .g1/˙ and .yg1/˙
are also �.L/–minimal modulo NG.�/, therefore Proposition 17 implies

d.1; y1/� d..g1/�2:::m
; .yg1/y�2::: ym

/� ı.L/

but 1; y1 belong to a ı.L/–separated set, hence we deduce that 1D y1 and g1D yg1

necessarily. Moreover, we deduce that �2:::m D y�2::: ym , otherwise

d..g1/�2:::m
; .yg1/y�2::: ym

/� 2kg1k� �.L/� �.L/ > 2ı.L/� �.L/� �.L/ > ı.L/

by Propositions 11 and 12. We can then apply Proposition 15 twice (notice that �k �ˇ

always has the sign of k ) and infer that �k � j .x2; :::;xm/D �
k � j .yx2; :::; yxm/ and

that j .x2; :::;xm/D j .yx2; :::; yx ym/. We conclude therefore by induction that mD ym

and xk D yxk for all k .

Proof of Corollary 5 Let n D dim.X0/ and r0 D inj.X0/. By Theorem 1 and a
well-known formula of Brooks [2] we deduce

�0.X /� 1
4
!.X /2� 1

4

�
!K;m� e�c.n;r0;v0/ � sys.X /

�2
� �0.KHm/� 1

4
e�2c.n;r0;v0/ � sys.X /

because of Sullivan and Corlette’s formula. By the same formula, we infer

!.�/D 1
2
!K;mC

p
�0.KHm/��0.X /� 1

2

�
!K;mC e�c.n;r0;v0/ � sys.X /

�
:
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Now nDm � dimR K and, as k.X0/ � �4, Margulis’ lemma gives r0 � r0.n/; thus
we can express c.n; r0; v0/ as a function cK;m.v0/, which proves the corollary.
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