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Instanton Floer homology with
Lagrangian boundary conditions

DIETMAR SALAMON

KATRIN WEHRHEIM

In this paper we define instanton Floer homology groups for a pair consisting of
a compact oriented 3–manifold with boundary and a Lagrangian submanifold of
the moduli space of flat SU.2/–connections over the boundary. We carry out the
construction for a general class of irreducible, monotone boundary conditions. The
main examples of such Lagrangian submanifolds are induced from a disjoint union
of handle bodies such that the union of the 3–manifold and the handle bodies is
an integral homology 3–sphere. The motivation for introducing these invariants
arises from our program for a proof of the Atiyah–Floer conjecture for Heegaard
splittings. We expect that our Floer homology groups are isomorphic to the usual
Floer homology groups of the closed 3–manifold in our main example and thus can
be used as a starting point for an adiabatic limit argument.

57R58; 58J32

1 Introduction

In this paper we define instanton Floer homology groups for a pair consisting of
a compact oriented 3–manifold with boundary and a Lagrangian submanifold of
the moduli space of flat SU.2/–connections over the boundary. We carry out the
construction for a general class of irreducible, monotone boundary conditions. The
main examples of such Lagrangian submanifolds are induced from a disjoint union
of handle bodies such that the union of the 3–manifold and the handle bodies is an
integral homology 3–sphere. The motivation for introducing these invariants arises
from our program for a proof of the Atiyah–Floer conjecture for Heegaard splittings [3;
28]. We expect that our Floer homology groups are isomorphic to the usual Floer
homology groups (see Floer [14] and Donaldson [10]) of the closed 3–manifold in our
main example and thus can be used as a starting point for an adiabatic limit argument as
in Dostoglou and Salamon [12]. On the level of Euler characteristics, the Atiyah–Floer
conjecture was proven by Taubes [30].
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748 Dietmar Salamon and Katrin Wehrheim

Floer homology groups for 3–manifolds with boundary were first constructed by
Fukaya [16] with a different method. His setup uses nontrivial SO.3/–bundles and
thus cannot immediately be used for the proof of the Atiyah-Floer conjecture where
the bundles are necessarily trivial. Our approach is motivated by the construction of a
Chern–Simons functional on 3–manifolds with boundary.

Let Y be a compact oriented 3–manifold with boundary and denote

† WD @Y; G WD SU.2/; g WD su.2/; h �; � i WD �tr.��/

for �; � 2 g. While many of the results in this paper carry over to general compact
Lie groups (and nontrivial bundles), our construction of Floer homology works in
this form only for GD SU.2/ (where the bundles are necessarily trivial). The whole
story also carries over to nontrivial SO.3/–bundles, where the moduli spaces of flat
connections are nonsingular and monotone, however, in this paper we restrict to the
case GD SU.2/.

The space A.†/ WD�1.†; g/ of connections on † carries a natural symplectic form

(1) !.˛; ˇ/ WD

Z
†

h˛^ˇ i

for ˛; ˇ 2 TAA.†/D�1.†; g/, the action of the gauge group G.†/ WD C1.†;G/ on
A.†/ is Hamiltonian, and the moment map is the curvature (see Atiyah and Bott [4]).
The (singular) symplectic quotient is the moduli space

M† WDAflat.†/=G.†/DA.†/==G.†/

of flat connections. We assume throughout that L � A.†/ is a gauge invariant,
monotone, irreducible Lagrangian submanifold in the following sense.

(L1) L is a Fréchet submanifold of A.†/, each tangent space TAL is a Lagrangian
subspace of �1.†; g/, L�Aflat.†/, and L is invariant under G.†/.

(L2) The quotient of L by the based gauge group Gz.†/ is compact, connected,
simply connected, and �2.L=Gz.†//D 0.

(L3) The zero connection is contained in L and is nondegenerate (as a critical point
of the Chern–Simons functional). Moreover, every nontrivial flat connection
A 2A.Y / with Aj† 2 L is irreducible.

A detailed explanation and a finite dimensional characterization of these conditions is
given in Section 2. In particular, the assumptions imply that L descends to a (singular)
Lagrangian submanifold L WDL=G.†/�M† . If H is a disjoint union of handlebodies
with @H D x† then the subset LH �A.†/ of all flat connections on † that extend to
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Instanton Floer homology with Lagrangian boundary conditions 749

flat connections on Y satisfies (L1) and (L2). It satisfies (L3) if and only if Y [† H

is an integral homology 3–sphere.

The space A.Y;L/ WD fA 2A.Y / jAj† 2 Lg of connections on Y with boundary
values in L carries a gauge invariant Chern–Simons functional

CSLW A.Y;L/!R=4�2Z;

well defined up to an additive constant, whose differential is the usual Chern–Simons
1–form (see Section 2). The critical points are the flat connections in A.Y;L/. If we
fix a Riemannian metric g on Y then the gradient flow lines of the Chern–Simons
functional with respect to the L2 inner product are smooth maps R!A.Y / W s 7!A.s/

satisfying the differential equation

(2) @sAC�FA D 0; A.s/j† 2 L 8s 2R:

As in Floer’s original work [14], the main idea is to use the solutions of (2) to construct
a boundary operator on the chain complex generated by the gauge equivalence classes
of the nontrivial flat connections in Aflat.Y;L/. This defines the Floer homology groups
HF.Y;L/. To make this precise one needs perturbations that turn CSL into a Morse
function whose gradient flowlines satisfy Morse–Smale type transversality conditions.

We shall work with gauge invariant holonomy perturbations hf W A.Y / ! R as
in Taubes [30], Floer [14] and Donaldson [10] (see Section 2 and Appendix D).
The differential of hf has the form dhf .A/˛ D

R
Y hXf .A/^˛ i for a suitable map

Xf W A.Y /!�2.Y; g/. The space of gauge equivalence classes of critical points of
the perturbed Chern–Simons functional CSLC hf will be denoted by

Rf WD
˚
A 2A.Y;L/ jFACXf .A/D 0

	
=G.Y /

and the perturbed gradient flow lines are solutions of the boundary value problem

(3) @sAC�
�
FACXf .A/

�
D 0; A.s/j† 2 L 8s 2R:

The space of gauge equivalence classes of solutions of (3) that are asymptotic to
ŒA˙�2Rf as s tends to ˙1 will be denoted by M.A�;ACIg; f /. In the transverse
case with irreducible limits ŒA˙� ¤ 0 this moduli space is a manifold whose local
dimension near ŒA� 2M.A�;ACIg; f / is given by the Fredholm index ıf .A/ of a
suitable linearized operator. A crucial fact is the energy-index relation

ıf .A/D
2

�2
Ef .A/C �f .A

�/� �f .A
C/

for the solutions of (3) with energy Ef .A/ D
R

R k@sAk2
L2.Y /

, and with a function
�f W Rf ! R. This is Floer’s monotonicity formula; it follows from the fact that
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L=Gz.†/ is simply connected. The assumption on �2 is only needed for the orientabil-
ity of the moduli spaces.

Floer’s original work corresponds to the case @Y D ∅. The object of the present
paper is to show that all of Floer’s ideas carry over to the case of nonempty boundary.
The upshot is that, for a generic perturbation hf , all critical points of CSLC hf are
nondegenerate and so Rf is a finite set, and that, for every pair ŒA˙� 2Rf the moduli
space M1.A�;ACIg; f / of index 1 connecting trajectories consists of finitely many
flow lines up to time shift. The monotonicity formula plays a central role in this
finiteness theorem. As a result we obtain a Floer chain complex

CF�.Y;LIf / WD
M

ŒA�2Rf nŒ0�

Z hAi

with boundary operator given by

@hA�i WD
X

ŒAC�2Rf nŒ0�

#
�
M1.A�;ACIg; f /=R

�
hACi:

Here the connecting trajectories are counted with appropriate signs determined by
coherent orientations of the moduli spaces (Section 10). It then follows from gluing
and compactness theorems (Sections 7 and 9) that @2D 0. The Floer homology groups
are defined by

HF�.Y;LIf;g/ WD ker @=im @:

We shall prove that the Floer homology groups are independent of the choice of the
metric g and the perturbation f used to define them (Section 11).

Remark 1.1 In the handle body case we expect the Floer homology groups HF.Y;LH /

to be naturally isomorphic to the instanton Floer homology groups of the homology
3–sphere Y [† H . The proof will be carried out elsewhere.

Remark 1.2 An interesting special case arises from a Heegaard splitting M D

H0[†
xH1 of a homology 3–sphere into two handle bodies Hi with @Hi D †. We

obtain the Floer homology groups HF�.Œ0; 1� �†;LH0
�LH1

/ from the following
setup: The 3–manifold Y WD Œ0; 1��† has two boundary components @Y D x†t†, and
attaching the disjoint union of the handle bodies H WDH0t

xH1 yields the homology 3–
sphere Y [x†t†H ŠM: The Lagrangian submanifold is LH0

�LH1
ŠLH �A.x†t†/:

If this Floer homology is isomorphic to HF�.M /, as expected, then the proof of the
Atiyah–Floer conjecture for M reduces to an adiabatic limit argument as in [12] which
identifies the symplectic Floer homology group of the pair of Lagrangian submanifolds
LH0

;LH1
of the singular symplectic manifold M† WDAflat.†/=G.†/ with the Floer
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Instanton Floer homology with Lagrangian boundary conditions 751

homology groups HF.Œ0; 1��†;LH0
�LH1

/ defined in the present paper. Since M† is
a singular space, this requires as a preliminary step the very definition of the symplectic
Floer homology groups of LH0

and LH1
with LHi

WD LHi
=G.†/.

Remark 1.3 If H0;H1;H2 are three handle bodies with boundary † such that the
manifold Mij WDHi [†

xHj is a homology 3–sphere for i ¤ j , then there is a product
morphism

HF�.Y;LH0
�LH1

/�HF�.Y;LH1
�LH2

/! HF�.Y;LH0
�LH2

/;

where Y WD Œ0; 1��†. A key ingredient in the definition is the observation that (3) is the
perturbed anti-self-duality equation for a connection on R�Y in temporal gauge. Thus
Equation (3) can be generalized to a 4–manifold X with a boundary space-time splitting
and tubular ends (Section 6). The definition of the product morphism will be based on
the moduli space for the 4–manifold X D��†, where � is a triangle (or rather a
disc with three cylindrical ends attached). The details will be carried out elsewhere.
We expect that our conjectural isomorphisms will intertwine the corresponding product
structures on the symplectic and instanton Floer homologies.

The construction of the Floer homology groups in the present paper is based on the
foundational analysis by Wehrheim [33; 35; 36] and Mrowka and Wehrheim [23] for
the solutions of the boundary value problem (2). In our exposition we follow the work
of Floer [14] and Donaldson [10] and explain the details whenever new phenomena
arise from our boundary value problem. Recall that the present Lagrangian boundary
conditions are a mix of first order conditions (flatness of the restriction to @Y ) and
semi-global conditions (pertaining the holonomy on @Y ), so they cannot be treated by
standard nonlinear elliptic methods.

In Section 2 we recall the basic properties of the Chern–Simons functional on a 3–
manifold with boundary and in Section 3 we discuss the Hessian and establish the basic
properties of the linearized operator on R�Y . Section 4 examines the spectral flow and
the determinant line bundle for operators over S1�Y . Section 5 establishes exponential
decay on tubular ends. Section 6 sets up the Fredholm theory for general 4–manifolds
with space-time splittings of the boundary and tubular ends. In the second half of the
section we focus on the tube R�Y , examine the spectral flow, and prove monotonicity.
Section 7 proves the compactness of the moduli spaces, based on [35; 36].

In Section 8 we establish transversality, using holonomy perturbations. The novel
difficulty here is that we do not have a geometric description of the bubbling effect at
the boundary. So, instead of a gluing theorem converse to bubbling, we use monotonicity
and work inductively on the energy levels. The second difficulty is that we need to keep
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the support of the perturbations away from the boundary, since the techniques of [36]
do not extend to the perturbed equation. As a result we cannot obtain an open and
dense set of regular perturbations but – still sufficient – we find a regular perturbation
up to index 7 near any given perturbation. In an appendix to this section we establish
the relevant unique continuation results. In the process we reprove Taubes’ unique
continuation result [31] for anti-self-dual connections that vanish to infinite order at
a point. This is needed to overcome difficulties arising from the nonlinear boundary
conditions. After these preparations, the construction of the Floer homology follows
the standard routine. For the gluing results in Section 9 we focus on the pregluing map
and the Banach manifold setup for the inverse function theorem. In Section 10 we
construct coherent orientations in the Lagrangian setting. The Floer homology groups
are defined in Section 11.

There are several appendices where we review standard techniques and adapt them
to our boundary value problems. Appendix A deals with the spectral flow for self-
adjoint operator families with varying domains. Appendix B discusses the Gelfand–
Robbin quotient, an abstract setting which relates self-adjoint operators with Lagrangian
subspaces. These results are needed for the index calculations and orientations in
Sections 4 and 6. Appendix C reviews the Agmon–Nirenberg unique continuation
technique used in Section 8. In Appendix D we discuss the basic analytic properties
of the holonomy perturbations and prove a compactness result needed in Section 7.
Appendix E deals with Lagrangian submanifolds in the space of connections. We
construct an L2 –continuous trivialization of the tangent bundle TL, used in Sections 3
and 6, and a gauge invariant exponential map for L, used in Section 9.

Notation We denote the spaces of smooth connections and gauge transformations
on a manifold Z by A.Z/ WD�1.Z; g/ and G.Z/ WD C1.Z;G/. The gauge group
G.Z/ acts on A.Z/ by u�A WD u�1AuCu�1du and the gauge equivalence class of
A 2A.Z/ is denoted by ŒA�. A connection A 2A.Z/ induces an exterior differential
dAW �

k.Z; g/ ! �kC1.Z; g/ via dA� WD d� C ŒA ^ ��: Here Œ�; �� denotes the Lie
bracket on g. The curvature of A is the 2–form FA WD dACA^A and it satisfies
dAdA� D ŒFA ^ ��. The space of flat connections is denoted by Aflat.Z/ WD fA 2

A.Z/
ˇ̌
FA D 0g: Connections on X DR�Y or other 4–manifolds will be denoted

by A or „, whereas A denotes a connection on a 3–manifold Y or a 2–manifold †.
We say that a connection ADACˆ ds on R�Y is in temporal gauge on I �Y if
ˆjI�Y � 0.

Acknowledgements The second author gratefully acknowledges support by the Swiss
and US national science foundations and thanks IAS Princeton and FIM Zürich for
their hospitality, during which most of this work was undertaken.
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Instanton Floer homology with Lagrangian boundary conditions 753

2 The Chern–Simons functional

Let Y be a compact oriented 3–manifold with boundary @Y D † and G D SU.2/.
The Chern–Simons 1–form on A.Y / is defined by

(4) ˛ 7!

Z
Y

hFA^˛ i

for ˛ 2 TAA.Y /D�1.Y; g/. If Y is closed, then (4) is the differential of the Chern–
Simons functional CSW A.Y /!R given by

CS.A/ WD
1

2

Z
Y

�
hA^dA iC

1

3
hA^ŒA^A� i

�
:

It changes by

(5) CS.A/� CS.u�A/D 4�2 deg.u/

under a gauge transformation u2 G.Y /; thus the Chern–Simons functional descends to
a circle valued function B.Y / WDA.Y /=G.Y /!R=4�2Z which will still be denoted
by CS . If Y has nonempty boundary @Y D †, then the differential of (4) is the
standard symplectic form (1) on A.†/. To obtain a closed 1–form we restrict the
Chern–Simons 1–form to a subspace of connections satisfying a Lagrangian boundary
condition.

Lagrangian submanifolds

The relevant Lagrangian submanifolds of A.†/ were studied in detail by Wehrheim [33,
Section 4]. Following [33] we assume that L�A.†/ is a gauge invariant Lagrangian
submanifold satisfying (L1). This condition can be rephrased as follows.

(L1) First, L is contained in Aflat.†/ and is invariant under the action of G.†/.
Second, for some (and hence every) p > 2 the Lp –closure of L is a Banach
submanifold of the space of Lp –connections, A0;p.†/ WD Lp.†;T�†˝ g/.
Third, for every A 2 L the tangent space TAL��1.†; g/ is Lagrangian, ie

(6) !.˛; ˇ/D 0 8ˇ 2 TAL () ˛ 2 TAL

for every ˛ 2�1.†; g/.

Let L0;p �A0;p.†/ denote the Lp –closure of L. Then LD L0;p \A.†/ and the
tangent space TAL of a smooth element A 2 L – as in (L1) – is understood as the
intersection of the Banach tangent space TAL0;p with the space of smooth 1–forms.
This space is independent of p>2 and coincides with the space of derivatives of smooth
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paths in L passing through A.1 This follows from a finite dimensional characterization
of the manifold property which we explain next.

A base point set is a finite set z � † which intersects each component of † in
precisely one point. For every base point set z the based gauge group Gz.†/ WD fu 2

G.†/ ju.z/ � 1lg acts freely on A.†/. Let 2g WD dim H1.†/ and pick 2g loops
in † that generate H1.†/ with base points chosen from z . The holonomy around
these loops defines a map �z W Aflat!G2g which is invariant under the action of the
based gauge group Gz.†/. If L is a gauge invariant subset of Aflat.†/ then L0;p

is a Banach submanifold of A0;p.†/ if and only if the image �z.L/ � G2g of the
holonomy morphism is a smooth submanifold. There is however no well defined
moment map for the action of Gz.†/, so the symplectic structure does not descend
to the quotient. On the other hand, the quotient L WD L=G.†/ has singularities in
general, but it intersects the smooth part of the moduli space M† WDAflat.†/=G.†/
in a Lagrangian submanifold.

If L0;p � A0;p.†/ is a Lagrangian submanifold then L is gauge invariant if and
only if L � Aflat.†/ [33, Section 4]. Condition (L1) implies that L is a totally real
submanifold with respect to the Hodge �–operator for any metric on †, ie

�1.†; g/D TAL˚�TAL 8A 2 L:

The construction of Floer homology groups for the Chern–Simons 1–form will require
the following additional assumptions on L.

(L2) The quotient space L=Gz.†/ is compact, connected, simply connected, and
�2.L=Gz.†//D 0 for some (and hence every) base point set z �†.

(L3) The zero connection is contained in L. It is nondegenerate in the sense that
d˛D 0() ˛ 2 im d for every ˛ 2 T0A.Y;L/. Moreover, every flat connection
in A.Y;L/ that is not gauge equivalent to the zero connection is irreducible.

In (L2) the hypothesis that L=Gz.†/ is simply connected is needed to establish an
energy-index relation for the Chern–Simons functional. The hypothesis �2.L=Gz.†//D

0 is only used to orient the moduli spaces. It can be dropped if one wants to define
Floer homology with Z2 coefficients. These two conditions imply that �1.L/ is
isomorphic to �1.Gz.†//Š�1.G.†// and the map �2.Gz.†//Š�2.G.†//!�2.L/
is surjective. To see this, note that L is a fiber bundle over the base L=Gz.†/ (see
[33, Lemma 4.3]). In particular, (L2) implies that �1.L/ Š Z�0.†/ since the fiber

1 It is not clear whether one could also work with Hilbert submanifolds L � A0;2.†/ . This is
connected to subtle questions concerning the gauge action at this Sobolev borderline; see Mrowka and
Wehrheim [23].
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Gz.†/ has fundamental group ZN whenever † has N connected components. (For a
connected component †0 an isomorphism �1.Gz.†

0//ŠZ is given by the degree of a
map S1 �†0! SU.2/Š S3 .)

The main example of a Lagrangian submanifold of A.†/ arises from the space of flat
connections on a disjoint union H of handle bodies2 with boundary @H D x†. Here x†
is the same manifold as † but equipped with the opposite orientation. Given such a
manifold H define

LH WD
˚
zAj†

ˇ̌
zA 2Aflat.H /

	
:

Lemma 2.1 Let H be a disjoint union of handle bodies with @Y D x†. Then the
following holds.

(i) LH is a Lagrangian submanifold of A.†/ that satisfies (L1) and (L2) and contains
the zero connection.

(ii) The zero connection is nondegenerate if and only if Y [H is a rational homology
3–sphere.

(iii) Every nontrivial flat connection in Aflat.Y;LH / is irreducible if and only if Y [H

is an integral homology 3–sphere.

Proof That LH satisfies (L1) was proved in [33, Lemma 4.6]. That LH contains
the zero connection is obvious. That it satisfies (L2) follows from the fact that the
based holonomy map �z induces a homeomorphism from LH =Gz.†/ to Gg with
GD SU.2/ when † is connected and has genus g , and that

LH1t:::tHm
=Gfz1;:::;zmg.†1 t : : :t†m/Š LH1

=Gz1
.†1/� : : :�LHm

=Gzm
.†m/

in the case of several connected components. This proves (i).

To prove (ii) we need to consider ˛ 2�1.Y; g/ with d˛D 0. The linearized Lagrangian
boundary condition on ˛ is equivalent to the existence of an extension z̨ 2�1.Y [H; g/

with dz̨ D0. If H 1.Y [H IR/D0 (or equivalently H1.Y [H IQ/D0), then any such
1–form is exact on Y [H and thus on Y . Conversely, if z̨ 2 ker d, then nondegeneracy
implies z̨jY 2 im d and hence

R

 z̨ D 0 for every loop 
 � Y . This implies that z̨ is

also exact on Y [H since every loop in Y [H is homotopic to a loop in Y . This
proves (ii).

We prove (iii). Flat connections in A.Y;LH / can be identified with flat connections in
A.Y [H /. The gauge equivalence classes of irreducible but nontrivial connections

2 A handle body is an oriented 3–manifold with boundary that is obtained from a 3–ball by attaching
1–handles. Equivalently, it admits a Morse function with exactly one minimum, no critical points of index
2 , and attaining its maximum on the boundary.
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are in one-to-one correspondence with nontrivial homomorphisms �1.Y [H /! S1 .
These exist if and only if H1.Y [H IZ/¤ 0.

Lagrangian submanifolds and representations

We characterize our Lagrangian submanifolds as subsets of the representation spaces
for Riemann surfaces. For simplicity we assume first that † is connected. Fix a base
point z 2† and choose based loops ˛1; : : : ; ˛g; ˇ1; : : : ; ˇg representing a standard set
of generators3 of the fundamental group. The based holonomy around the loops ˛i and
ˇi gives rise to a map �z W A.†/!G2g: This map identifies the moduli space M† of
flat connections with the quotient of f �1.1l/ by conjugation, where f W G2g! G is
defined by

(7) f .x1; : : : ;xg;y1; : : :yg/ WD
Qg

iD1
xiyix

�1
i y�1

i :

The correspondence between flat connections and representations is reformulated in (a)
and (b) below. Assertions (c) and (d) are the infinitesimal versions of these observations.

Remark 2.2 (a) Let w D .x1; : : : ;xg;y1; : : :yg/ 2 G2g . Then there exists a flat
connection A 2Aflat.†/ with �z.A/D w if and only if f .w/D 1l.

(b) Let A;A0 2Aflat.†/. Then A is gauge equivalent to A0 if and only if �z.A/ is
conjugate to �z.A

0/.

(c) Let A 2 Aflat.†/, w WD �z.A/, and yw 2 TwG2g . Then df .w/ yw D 0 if and
only if there exists an ˛ 2�1.†; g/ such that dA˛ D 0 and d�z.A/˛ D yw .

(d) Let A 2Aflat.†/ and ˛ 2�1.†; g/. Denote w WD �z.A/ and yw WD d�z.A/˛ .
Then ˛ 2 im dA if and only if yw belongs to the image of the infinitesimal
conjugate action LwW g! TwG2g given by Lw� D �w�w� .

While the identity element 1l 2 G is not a regular value of f , it follows from (c),(d)
that the differential d�z.A/W �

1.†; g/! TwG2g at a flat connection A 2 Aflat.†/

identifies H 1
A
WD ker dA=im dA (the virtual tangent space of M† ) with the quotient

ker df .w/=im Lw at w D �z.A/. The gauge invariant symplectic form (1) descends
to H 1

A
and thus induces a symplectic form

�wW ker df .w/=im Lw � ker df .w/=im Lw!R

�w. yw; yw
0/ WD

Z
†

h˛^˛0 i;

where the (infinitesimal) connections A 2 Aflat.†/ and ˛; ˛0 2 ker dA are chosen
such that w D �z.A/, yw D d�z.A/˛ , and yw0 D d�z.A/˛

0 . An explicit formula

3 The standard generators of �1.†; z/ satisfy the relation
Qg

iD1
˛iˇi˛

�1
i ˇ�1

i D 1l.
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for this symplectic form at the point w D .x1; : : : ;xg;y1; : : : ;yg/ on the vectors
yw D .�1x1; : : : ; �gxg; �1y1; : : : ; �gyg/, yw0 D .� 01x1; : : : ; �

0
gxg; �

0
1
y1; : : : ; �

0
gyg/ is

�w. yw; yw
0/D

gP
iD1

�
h .x�1

i �ixi Cx�1
i ıixi � ıi�1/; �

0
i i(8)

� h .y�1
i �iyi Cy�1

i ıiyi � ıi�1/; �
0
i i
�
:

In this formula ıj D �.dhol.A/˛/hol.A/�1 is the infinitesimal holonomy along the
path

Qj
iD1

˛iˇi˛
�1
i ˇ�1

i , ie

ıj D c�1
j ıcj C c�1

j c�1
j�1ıcj�1

cj C : : :C c�1
j : : : c�1

1 ıc1
c2 : : : cj ;

ci WD xiyix
�1
i y�1

i ; ıci
WD xiyi

�
y�1

i �iyi � �i C �i �x�1
i �ixi

�
x�1

i y�1
i :

One should compare this with the identities f .w/D c1 � � � cg D 1l and

df .w/. yw/D c1 : : : cg�1ıcg
C c1 : : : cg�2ıcg�1

cgC : : :C ıc1
c2 : : : cg D 0:

Combining these we see that ıcg
D 1l. So on the torus †D T2 the formula simplifies

to �w. yw; yw0/D hx�1�x; �0 i � hy�1�y; � 0 i. Moreover, if T � G is any circle and
w 2 T 2g � G2g then the restriction of �w to R2g Š TwT 2g � ker df .w/ is the
standard symplectic form on Euclidean space. By construction and assertions (a-
d) above, � descends to the symplectic form on the (singular) symplectic quotient
f �1.1l/=G Š M† D A.†/==G.†/. In fact, one can verify directly that � is G–
invariant and that its kernel at each point is the tangent space to the G–orbit. Thus, on
the complement of the reducible set, � descends to a smooth symplectic structure on
the G–quotient.

In the case of the torus †D T2 all points of f �1.1l/ are reducible; in this case MT2

can be identified with the quotient of the moduli space of flat S1 –connections by a
residual Z2 –action with four isolated fixed points f.˙1l;˙1l/g (corresponding to the
same four points in G2 ). For a general surface †, the set of reducibles in f �1.1l/ is
the union

S
T�G T 2g over all maximal tori T �G. For g> 2 this set has codimension

4g � 2 > 3g in G2g . So for a half dimensional submanifold N � G2g the set of
irreducibles will always be dense in N . In the case of genus 2 the same is true if
we require �jTN � 0, since the codimension of the set of reducibles is 3g but N

cannot intersect it in an open set since � is nondegenerate on each subtorus T 2g of
the reducibles.

If † has several connected components we fix a base point set z � † and obtain
the 2–form � as sum of the 2–forms of the connected components. We then have
M† Š f

�1.1l/=G�0.†/ , where G�0.†/ acts by conjugation with a fixed group element
on each connected component and f W G2g!G�0.†/ is the product of the relations (7)
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for each connected component. Now we can reformulate the assumptions (L1)–(L3)
on the Lagrangian submanifolds L�A.†/ as follows: LD ��1

z .N /�A.†/ is the
preimage of a submanifold N � G2g satisfying the following conditions.

(L1) N � f �1.1l/, N is invariant under G�0.†/ , dim N D 3g , and �jTN � 0.

(L2) N is compact, connected, simply connected, and �2.N /D 0.

(L3) N \ �z.Aflat.Y // contains .1l; : : : ; 1l/ as isolated point and does not contain
any other reducible points (with respect to the conjugate action of G�0.†/ ).

The above discussion of the reducible locus shows that, by condition (L1), the quotient
L WDN=G�0.†/ �M† is Lagrangian at a dense set of smooth points.

The Chern–Simons functional

Fix a compact, connected, oriented 3–manifold Y with nonempty boundary @Y D†
and a gauge invariant, monotone, irreducible Lagrangian submanifold L � A.†/
satisfying (L1)–(L3). Then the restriction of the Chern–Simons 1–form (4) to the
submanifold

A.Y;L/ WD fA 2A.Y /
ˇ̌
Aj† 2 Lg

is closed. It is the differential of the circle valued Chern–Simons functional

CSLW A.Y;L/!R=4�2Z

given by CSL.A/ WD ŒCS.A;B/�, where

CS.A;B/ WD
1

2

Z
Y

�
hA^dA iC

1

3
hA^ŒA^A� i

�
�

1

2

Z 1

0

Z
†

hB.s/^@sB.s/ i ds:

Here BW Œ0; 1�! L is a smooth path satisfying B.0/DAj† and B.1/D 0.

Remark 2.3 Note that CS.A;B/ is the value of the Chern–Simons functional on the
connection zA on zY WD Y [

�
Œ0; 1��†

�
given by A on Y and by B on Œ0; 1��†. Here

we glue @Y D† to f0g � x†, and on the new boundary @ zY D f1g �† we have zA� 0.

Lemma 2.4 (i) The Chern–Simons functional CS.A;B/ is invariant under homo-
topies of B with fixed endpoints.

(ii) If uW Œ0; 1�! G.†/ satisfies u.0/D u.1/D 1l then

CS.A;B/� CS.A;u�B/D 4�2 deg u:
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(iii) If B0;B1W Œ0; 1�!L are two paths with B0.0/DB1.0/ and B0.1/DB1.1/D 0

then there is a path uW Œ0; 1�! G.†/ with u.0/D u.1/D 1l such that B1 is homotopic
to u�B0 (with fixed endpoints).

(iv) The circle valued function CSLW A.Y;L/! R=4�2Z descends to the quotient
B.Y;L/ WDA.Y;L/=G.Y /.

Proof The Chern–Simons functional is invariant under homotopies since

�@tCS.A;Bt /D
1

2

Z 1

0

Z
†

�
h @tBt .s/^@sBt .s/ iC hBt .s/^@t@sBt .s/ i

�
ds

D

Z 1

0

Z
†

h @tBt .s/^@sBt .s/ i dsC

�Z
†

hBt .s/^@tBt .s/ i

�1

0

:

for every smooth homotopy Bt W Œ0; 1�! L with fixed endpoints. The first term on the
right is the symplectic form on @tBt ; @sBt 2 TBL and the second term vanishes since
@tBt .s/D 0 for s D 0; 1. Hence @tCS.A;Bt /D 0. This proves (i).

To prove (ii), we abbreviate S1 WD R=Z, define zuW S1 �†! SU.2/ by zu.t; z/ WD
u.t/.z/, and calculate

2
�
CS.A;B/� CS.A;u�B/

�
D

Z 1

0

Z
†

�
hu�B^@s.u

�B/ i � hB^@sB i
�

ds

D

Z 1

0

Z
†

�
hB^dB.@su �u�1/ iC h du �u�1

^
�
@sBC dB.@su �u�1/

�
i

�
ds

D

Z 1

0

Z
†

�
hB^

�
2d.@su �u�1/C ŒB; @su �u�1�

�
iC h du �u�1

^d.@su �u�1/ i
�

ds

D 2

Z 1

0

Z
†

hFB^@su �u�1
i �

1

3

Z
S1�†

tr
�
dzu � zu�1

^ dzu � zu�1
^ dzu � zu�1

�
D 8�2 deg zu:

Here the first equation follows from the definitions, the second equation uses the
formula @s.u

�B/D u�1.@sBC dB.@su �u�1//u, the third equation uses integration
by parts in s and the fact that du.0/D du.1/D 0, the fourth equation uses the formula
d.@su � u�1/� @s.du � u�1/ D Œdu � u�1; @su � u�1� and integration by parts over †,
and the last equation follows from the fact that FB.s/ D 0 for every s and that the
standard volume form on SU.2/ with integral 1 is 24�2zu� dvolSU.2/D�tr.dzu � zu�1^

dzu � zu�1 ^ dzu � zu�1/: Thus we have proved (ii).

Geometry & Topology, Volume 12 (2008)



760 Dietmar Salamon and Katrin Wehrheim

To see (iii) note that the catenation of �B0 and B1 is a loop in L based at 0. It is
contractible in the base of the fibre bundle Gz.†/ ,! L! L=Gz.†/ and hence it is
homotopic to a loop uW Œ0; 1�! Gz.†/ in the fibre based at u.0/D u.1/� 1l. Now
the catenation of B0 , �B0 , and B1 is homotopic with fixed endpoints to B1 on the
one hand, and on the other hand to the catenation of B0 with the loop u�0, which is
also homotopic to u�B0 .

It follows from (i–iii) that the map .A;B/!CS.A;B/ induces a circle valued function
CSLW A.Y;L/ ! R=4�2Z. We prove that this function is invariant under gauge
transformations. To see this we can use Remark 2.3 and extend any given u 2 G.Y /
to a gauge transformation zu 2 G. zY / on zY WD Y [

�
Œ0; 1��†

�
with zuj zY � 1l. Such

an extension exists because G.†/ is connected (which in turn follows from the fact
that GD SU.2/ is connected, simply connected, and �2.G/D 0). Hence assertion (iv)
follows from (5), which directly extends to gauge transformations that are trivial over
the boundary. This proves the lemma.

Corollary 2.5 Let B0 2 L and uW Œ0; 1�! G.†/ with u.0/D u.1/D 1l. ThenZ 1

0

Z
†

hu.s/�B0^@s.u.s/
�B0/ i ds D 8�2 deg.u/:

Proof The left hand side is twice the difference of the Chern–Simons functionals in
Lemma 2.4 (ii).

Perturbations

We work with holonomy perturbations as in [30; 14; 10]. Let D WD fz 2C
ˇ̌
jzj � 1g be

the closed unit disc and identify S1 with R=Z, with the real coordinate denoted by � .
Choose embeddings 
i WS

1�D ,! int.Y / for iD1; : : : ;N such that the 
i coincide on
a neighbourhood of f0g�D . We denote by �i W D�A.Y /!G the map that assigns to a
pair .z;A/ the holonomy of the connection A around the loop Œ0; 1�!Y W � 7!
i.�; z/.
Then the map �D .�1; : : : ; �N /W D�A.Y /! GN descends to a map between the
quotient spaces D�B.Y /!GN =G, where the action of G on GN is by simultaneous
conjugation and B.Y / WDA.Y /=G.Y /.

Now every smooth function f W D�GN !R that is invariant under conjugation and
vanishes near the boundary induces a gauge invariant perturbation hf W A.Y /!R
given by

hf .A/ WD

Z
D
f .z; �.z;A// d2z:
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The differential dhf .A/W TAA.Y /!R has the form

(9) dhf .A/˛ D

Z
Y

hXf .A/^˛ i;

where Xf W A.Y /!�2.Y; g/ is a smooth map satisfying

(10) dAXf .A/D 0; Xf .u
�A/D u�1Xf .A/u; dXf .A/dA� D ŒXf .A/; ��

for A 2 A.Y /, u 2 G.Y /, � 2 �0.Y; g/. This follows from the gauge invariance of
hf (see Appendix D). Since dXf .A/ is the Hessian of hf we have

(11)
Z

Y

h dXf .A/˛^ˇ i D

Z
Y

h dXf .A/ˇ^˛ i:

Moreover, Xf .A/ is supported in the union of the thickened loops 
i.S
1 �D/ and

hence in the interior of Y .

Critical points

The critical points of the perturbed Chern–Simons functional CSLChf are the solutions
A 2A.Y / of the equation

FACXf .A/D 0; Aj† 2 L:

Let Crit.CSLC hf / denote the set of critical points and abbreviate

Rf WD Crit.CSLC hf /=G.Y /:

Associated to every critical point A 2 A.Y;L/ of CSL C hf is a twisted deRham
complex

�0.Y; g/
dA
�! �1

TAL.Y; g/
dACdXf .A/
�! �2

0.Y; g/
dA
�! �3.Y; g/;(12)

�1
TAL.Y; g/ WD

n
˛ 2�1.Y; g/ j˛j† 2 TAj†L

o
;where

�2
0.Y; g/ WD

n
� 2�2.Y; g/ j � j† D 0

o
:

The first operator in this complex is the infinitesimal action of the gauge group, the
second corresponds to the Hessian of the Chern–Simons functional, and the third to
the Bianchi identity. A critical point A is called irreducible if the cohomology group
H 0

A
of (12) vanishes, ie the operator dAW �

0.Y; g/!�1.Y; g/ is injective. It is called
nondegenerate if the cohomology group H 1

A;f
vanishes, ie for every ˛ 2 TAA.Y;L/

we have

(13) dA˛C dXf .A/˛ D 0 () ˛ 2 im dA:

Geometry & Topology, Volume 12 (2008)



762 Dietmar Salamon and Katrin Wehrheim

This nondegeneracy means that the Hessian of the Chern–Simons functional is non-
degenerate on a local slice of the gauge action. In Section 8 we will prove that for
a generic perturbation every critical point is nondegenerate, ie CSLC hf induces a
Morse function on the quotient B.Y;L/.

Gradient flow lines

Fix a metric g on Y . Then a negative gradient flow line of the perturbed functional
CSLChf is a connection A 2A.R�Y / in temporal gauge, represented by a smooth
path R!A.Y / W s 7!A.s/ that satisfies the boundary value problem

(14) @sAC�
�
FACXf .A/

�
D 0; A.s/j† 2 L 8s 2R:

The energy of a solution is

Ef .A/D
1

2

Z
R�Y

�
j@sAj2C

ˇ̌
FACXf .A/

ˇ̌2�
:

In Section 5 we prove that (in the nondegenerate case) a solution A of (14) has finite
energy if and only if there exist critical points AC;A� 2 Crit.CSLC hf / such that
A.s/ converges exponentially to A˙ as s tends to ˙1. Denote the moduli space of
connecting trajectories from ŒA�� to ŒAC� by

M.A�;AC/ WD

8<:A 2Atmp.R�Y /

ˇ̌̌̌
ˇ .14/; Ef .A/ <1;

lim
s!˙1

A.s/ 2 ŒA˙�

9=;
�
G.Y /;

where Atmp.R� Y / denotes the space of connections on R� Y in temporal gauge.
The analogue of Equation (14) for connections ADˆ dsCA that are not in temporal
gauge is

(15) @sA� dAˆC�
�
FACXf .A/

�
D 0; A.s/j† 2 L 8s 2R:

This equation can be written in the form

(16) FACXf .A/C�.FACXf .A//D 0; Ajfsg�@Y 2 L 8s 2R;

where Xf .A/.s;y/DXf .A.s//.y/. In this form it generalizes to 4–manifolds with a
space time of the boundary and tubular ends.

The moduli space M.A�;AC/ can also be described as the quotient of the space of all
finite energy solutions of (15) in temporal gauge outside of a compact set that converge
to A˙ as s!˙1. In this case the gauge group consists of gauge transformations that
are independent of s outside of a compact set and preserve A˙ at the ends. The study
of the moduli space is based on the analysis of the linearized operator for Equation
(15). As a first step we examine the Hessian of the Chern–Simons functional.
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3 The Hessian

In this section we establish the basic analytic properties of the Hessian of the Chern–
Simons functional and draw some conclusions on the structure of the set of critical
points and the linearized operator of the gradient flow lines.

We continue the notation of Section 2. The augmented Hessian of the perturbed
Chern–Simons functional at a connection A 2A.Y;L/ is the operator

(17) HA WD

�
�dAC�dXf .A/ �dA

�d�
A

0

�
:

The additional terms �dA and �d�
A

arise from a local slice condition. Think of HA as
an unbounded operator on the Hilbert space L2.Y;T�Y ˝ g/�L2.Y ˝ g/ with dense
domain

domHA WD f.˛; '/ 2W 1;2.Y;T�Y ˝ g/�W 1;2.Y; g/j �˛j@Y D 0; ˛j@Y 2 TALg:

Here we abbreviate TAL WD TAj†L for A 2A.Y;L/.

The operator HA is symmetric: for ˛; ˇ 2�1.Y; g/ and '; 2�0.Y; g/

hHA.˛; '/; .ˇ;  /iL2 � h .˛; '/;HA.ˇ;  / iL2

D

Z
Y

h .dA˛C dXf .A/˛��dA'/^ˇ iC

Z
Y

h .dA �˛/^ i

�

Z
Y

h˛^.dAˇC dXf .A/ˇ��dA / i �

Z
Y

h'^.dA �ˇ/ i

D

Z
@Y

h˛^ˇ i �

Z
@Y

h';�ˇ iC

Z
@Y

h �˛; i:

(18)

If both .˛; '/ and .ˇ;  / belong to the domain of HA , then the boundary conditions
guarantee that the last three integrals vanish. In particular,

R
@Y h˛^ˇ i is the symplectic

form on ˛j@Y ; ˇj@Y 2 TAL. An L2 –estimate for the Hessian is obtained from the
following elementary calculation: If .˛; '/ 2 domHA then

kHA.˛; '/k
2
L2 D k�dA˛� dA'k

2
L2 C



d�A˛


2

L2

D kdA˛k
2
L2 CkdA'k

2
L2 C



d�A˛


2

L2 � 2

Z
Y

h˛^ŒFA; '� i

� ı k.˛; '/k2
W 1;2 �C k.˛; '/k2

L2 :

Here the second equation follows from integration by parts. The inequality, with suitable
constants ı > 0 and C , follows from the Cauchy–Schwarz inequality and [34, Theo-
rem 5.1] with p D 2. The resulting estimate k.˛; '/kW 1;2 � ı�1=2kHA.˛; '/kL2 C
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.C=ı/1=2k.˛; '/kL2 implies that HA has a finite dimensional kernel and a closed
image. In Proposition 3.1 below (which is the main result of this section) we will
identify the cokernel .imHA/

?/ with the kernel and thus prove that the Hessian is a
Fredholm operator and self-adjoint. We moreover establish the estimate for the Hessian
in general W k;p –Sobolev spaces. This will be used in the analysis of the linearized
operator on R�Y and for the exponential decay analysis.

Proposition 3.1 (i) HA is a self-adjoint Fredholm operator.

(ii) For every A 2 A.Y;L/ and every integer k � 0 and every p > 1 there exists a
constant C such that the following holds. If .˛; '/ 2 domHA and HA.˛; '/ is of class
W k;p , then .˛; '/ is of class W kC1;p and

.˛; '/



W kC1;p.Y /
� C

�

HA.˛; '/




W k;p.Y /
C


.˛; '/



Lp.Y /

�
:

(iii) If FACXf .A/D 0 then ker HA DH 1
A;f
�H 0

A
; where

H 0
A WD ker dA ��

0.Y; g/;

H 1
A;f WD ker .dAC dXf .A//\ ker d�A ��

1
A.Y; g/;

�1
A.Y; g/ WD

˚
˛ 2�1.Y; g/

ˇ̌
�˛j@Y D 0; ˛j@Y 2 TAL

	
:

(19)

Definition 3.2 Let A 2 A.Y;L/ be a critical point of the perturbed Chern–Simons
functional, ie FACXf .A/D0. The connection A is called nondegenerate if H 1

A;f
D0;

it is called irreducible if H 0
A
D 0.

Remark 3.3 (i) The vector spaces H 0
A

and H 1
A;f

in Proposition 3.1 are isomorphic
to the first two cohomology groups in the complex (12); they are the spaces of harmonic
representatives. Hence a critical point A 2A.Y;L/ is nondegenerate in the sense of
Definition 3.2 if and only if it satisfies (13).

(ii) Hypothesis (L3) says that AD 0 is nondegenerate for the zero perturbation f D 0.
Since the differential dXf .A/ vanishes at A D 0 for every f (see Appendix D) it
follows that AD 0 is nondegenerate for any perturbation.

The proof of Proposition 3.1 requires some preparation. First, we need to introduce
norms for the boundary terms in the upcoming estimates. Let p� denote the dual
exponent of p given by 1=p C 1=p� D 1. We define the following norms (which
strictly speaking depend on Y ) for a smooth function 'W †D @Y ! g

k'kbW 1�1=p;p.†/ WD inf
˚
kz'kW 1;p.Y /

ˇ̌
z'j† D '

	
;

k'kbW �1=p;p.†/ WD sup
0¤ 2�0.†;g/

ˇ̌R
†h'; i dvol†

ˇ̌
k kbW 1�1=p�;p� .†/

:
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For a 2–form � 2 �2.†; g/ the corresponding norms are understood as the norms
of the function �� 2�0.†; g/. The following estimates for these boundary Sobolev
norms will be useful.

Lemma 3.4 For A 2A.Y / and ˛ 2�1.Y; g/ we have

dAj† .˛j†/




bW �1=p;p.†/
D sup

0¤ 2�0.Y;g/

ˇ̌R
Y

�
h dA˛^dA i � h˛^ŒFA;  � i

�ˇ̌
k kW 1;p� .Y /

:

Moreover, if A 2A.Y;L/ is a critical point of CSLC hf then

dAj† .˛j†/




bW �1=p;p.†/
�
�
1CkAkL1.Y /

�

dA˛C dXf .A/˛




Lp.Y /
:

Proof By definition we have

dAj† .˛j†/




bW �1=p;p.†/
D sup
 ¤0

ˇ̌R
†h dAj† .˛j†/;  i

ˇ̌
k kbW 1�1=p�;p� .†/

D sup
 ¤0

ˇ̌R
Y dh˛^dA i

ˇ̌
k kW 1;p� .Y /

;

where the supremum runs over all nonzero functions  2 �0.Y; g/. Now the first
identity follows from dh˛^dA i D h dA˛^dA i� h˛^ŒFA;  � i. If A 2A.Y;L/ is
a critical point of CSLC hf then FACXf .A/D 0 and hence



dAj† .˛j†/




bW �1=p;p.†/
D sup
 ¤0

ˇ̌R
Y h .dA˛C dXf .A/˛/^dA i

ˇ̌
k kW 1;p� .Y /

�
�
1CkAkL1.Y /

�

dA˛C dXf .A/˛




Lp.Y /
;

where we have used (10) and (11). This proves the lemma.

The following lemma provides the basic estimates for Proposition 3.1. The first part is
a regularity statement which goes a long way towards identifying the dual domain of
HA with its domain (thus establishing self-adjointness). The second part is an estimate
for the Hessian on pairs .˛; '/ that do not necessarily satisfy the boundary conditions.
This degree of generality is necessary since the Lagrangian boundary conditions are
nonlinear, so differences in A.Y;L/ or derivatives of tangent vectors only satisfy the
boundary conditions up to some small curvature term.

Lemma 3.5 The following holds for every p > 1 and every A 2A.Y;L/.

(i) If .˛; '/ 2Lp.Y;T�Y ˝ g/�Lp.Y; g/ and there is a constant c such that

(20)
ˇ̌̌̌Z

Y

h˛; .�dAˇ� dA / i �

Z
Y

h'; d�Aˇ i
ˇ̌̌̌
� c k.ˇ;  /kLp� .Y /
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for every .ˇ;  / 2 �1.Y; g/ ��0.Y; g/ with ˇj@Y 2 dAj†�
0.†; g/ and �ˇj@Y D

0, then .˛; '/ 2 W 1;p.Y;T�Y ˝ g/ �W 1;p.Y; g/ and it satisfies �˛j@Y D 0 and
dAj@Y

.˛j@Y /D 0 in the weak sense.

(ii) There is a constant C such that

.˛; '/


W 1;p.Y /

� C
�

�dA˛� dA'




Lp.Y /

C


d�A˛




Lp.Y /

C


.˛; '/



Lp.Y /

C


�˛j†

bW 1�1=p;p.†/

C


dAj† .˛j†/




bW �1=p;p.†/

�
for all ˛ 2�1.Y; g/ and ' 2�0.Y; g/.

Before we prove this lemma let us draw a conclusion that will be useful for the
exponential decay analysis.

Corollary 3.6 Let p > 1 and A 2 A.Y;L/ be a nondegenerate critical point of
CSLC hf . Then there is a constant C such that

˛



W 1;p.Y /
� C

�

dA˛C dXf .A/˛




Lp.Y /
C


d�A˛




Lp.Y /

C


�˛j†

bW 1�1=p;p.†/

C




…?A .˛j†/



Lp.†/

�
for every ˛ 2 �1.Y; g/, where …?

A
W �1.†; g/! TAL? denotes the L2 orthogonal

projection onto the L2 orthogonal complement of TAL.

Proof By Lemma 3.5 (ii) with ' D 0 we have

˛


W 1;p.Y /

� C
�

dA˛




Lp.Y /

C


d�A˛




Lp.Y /

C


˛



Lp.Y /

C


�˛j†

bW 1�1=p;p.†/

C


dAj† .˛j†/




bW �1=p;p.†/

�
� C 0

�

dA˛C dXf .A/˛




Lp.Y /
C


d�A˛




Lp.Y /

C


�˛j†

bW 1�1=p;p.†/

C




…?A .˛j†/



Lp.†/

C


˛



Lp.Y /

�
:

Here we have used the estimate


dXf .A/˛




Lp.Y /

� c k˛kLp.Y / of Proposition D.1 (iv)
and Lemma 3.4. We added the term



…?
A
.˛j†/




Lp.†/

on the right since

…?A .˛j†/D 0 () ˛j† 2 TAL

and the restriction of the operator HA to the subspace f.˛; 0/g � domHA is injective.
Hence the operator ˛ 7!

�
dA˛C dXf .A/˛; d�A˛;�˛j†;…

?
A
.˛j†/

�
is injective and it

follows that the compact term k˛kLp.Y / on the right can be dropped. This proves the
corollary.
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Proof of Lemma 3.5 It suffices to prove the lemma in the case �Aj@Y D 0. The
general case can be reduced to this by a compact perturbation of the operator (leaving
the boundary conditions fixed). To prove (i) consider a pair .˛; '/2Lp.Y;T�Y ˝ g/�

Lp.Y; g/ that satisfies (20) with a constant c . Let � 2�0.Y; g/ with @�
@�
j@Y D 0 and

choose .ˇ;  /D .dA�; 0/. Then �ˇj@Y D 0 and ˇj@Y D dAj† .�j†/ and hence, by (20),

ˇ̌̌̌Z
Y

h';�A� i

ˇ̌̌̌
� c kdA�kLp� .Y /C

ˇ̌̌̌Z
Y

h˛;�ŒFA; �� i

ˇ̌̌̌
�
�
cC c kAkL1.Y /CkFAkL1.Y / k˛kLp.Y /

�
k�kW 1;p� .Y /

(21)

Hence it follows from the regularity theory for the Neumann problem (see Agmon,
Douglis and Nirenberg [1] or eg Wehrheim [34, Theorem 2.3’]) that ' 2W 1;p.Y; g/

and

(22) k'kW 1;p.Y / � C
�
cCk.˛; '/kLp.Y /

�
;

for a suitable constant C D C.A/.

Now fix a vector field Z 2 Vect.Y / with kZkL1.Y / � 1 that is perpendicular to @Y .
Then it follows from (20) with ˇ D 0 and  D LZ � thatˇ̌̌̌Z

Y

h˛; d.LZ �/ i

ˇ̌̌̌
� c kLZ �kLp� .Y /C

ˇ̌̌̌Z
Y

h˛; ŒA;LZ �� i

ˇ̌̌̌
�
�
cCkAkL1.Y / k˛kLp.Y /

�
k�kW 1;p� .Y /

(23)

for every � 2�0.Y; g/. Choosing  D 0 and ˇ D �
�
�Z g^ d�

�
givesˇ̌̌̌Z

Y

h˛; d�.�Z g^ d�/ i
ˇ̌̌̌

� c k�Z g^d�kLp� .Y /C

ˇ̌̌̌Z
Y

h'; dA.�Z g^d�/i
ˇ̌̌̌
C

ˇ̌̌̌Z
Y

h˛;�ŒA^� .�Z g^d�/�i
ˇ̌̌̌

�
�
cCCZ k'kLp.Y /CkAkL1.Y / k.˛; '/kLp.Y /

�
k�kW 1;p� .Y /(24)

for every � 2 �0.Y; g/ with �j@Y D 0, where CZ WD kd�Z gkL1.Y / . Here we have
used (20) with �ˇj@Y D 0 and ˇj@Y D 0. Combining (23) and (24) we obtain the
estimate ˇ̌̌̌Z

Y

h˛.Z/;�� i

ˇ̌̌̌
�
�
2cCC 0 k.˛; '/kLp.Y /

�
k�kW 1;p� .Y /

for every � 2�0.Y; g/ with �j@Y D 0 and a suitable constant C 0DC 0.A;Z/ (see [34,
Theorem 5.3 (ii)]). This implies ˛.Z/ 2W 1;p.Y; g/ and

(25) k˛.Z/kW 1;p.Y / � C
�
cCk.˛; '/kLp.Y /

�
;
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where the constant C depends on A and the vector field Z . This proves the interior
regularity of ˛ as well as the regularity of its normal component. Moreover, partial
integration now shows that, for every � 2�0.Y; g/ with �j@Y D 0, we haveˇ̌̌̌Z

@Y

h˛.Z/; @�
@�
i

ˇ̌̌̌
�
�
2cCC 0 k.˛; '/kLp.Y /Ckd.˛.Z//kLp.Y /

�
k�kW 1;p� .Y / :

In particular, we can fix any normal derivative @�
@�
D g 2�0.@Y; g/ and find an admis-

sible function � 2�0.Y; g/ with �j@Y D 0 and k�kW 1;p� .Y / arbitrarily small. Thus
we have

R
@Y h˛.Z/;g i D 0 for all g 2�0.@Y; g/, and hence ˛.Z/D 0 for normal

vector fields Z , ie �˛j@Y D 0.

To deal with the tangential components near the boundary @Y D † we use normal
geodesics to identify a neighbourhood of the boundary with Œ0; "/�† with the split
metric dt2Cgt , where .gt /t2Œ0;"/ is a smooth family of metrics on †. In this splitting
we write

˛ D ˛†C a dt

for ˛† 2Lp.Œ0; "/�†;T�†˝ g/ and a 2W 1;p.Œ0; "/�†; g/. Then

ajtD0 D 0; kakW 1;p � C
�
cCk.˛; '/kLp.Y /

�
by (25). From now on �, d, and d� will denote the Hodge operator, the exterior
derivative, and its adjoint on †. We abbreviate I WD Œ0; "/ and denote by C1

0
.I �†/

the space of functions with compact support in .0; "/�†. Then the inequality (20)
can be rewritten asˇ̌̌̌Z

I�†

h˛†;
�
�@tˇ† ��dbC d 

�
i

�

Z
I�†

h a;
�
@t ��dˇ†

�
iC

Z
I�†

h';
�
@tb�d�ˇ†

�
i

ˇ̌̌̌
� c



.ˇ†; b;  /

Lp� .I�†/

for all ˇ† 2 C10 .I �†;T
�†˝ g/ and b;  2 C1

0
.I �†; g/. Partial integration in the

terms involving a and ' then yieldsˇ̌̌̌Z
I�†

h˛†;
�
@tˇ† � db��d 

�
i

ˇ̌̌̌
�
�
cCkakW 1;p Ck'kW 1;p

�
k.ˇ†; b;  /kLp� :

Since C1
0
.I �†/ is dense in Lp�.I �†/ we obtain @t˛† 2Lp.I �†;T�†˝ g/

and �d˛†; d�˛† 2 Lp.I �†; g/ with corresponding estimates. Hence r†˛† is of
class Lp (see eg [35, Lemma 2.9]); so ˛† is of class W 1;p and satisfies the estimate

k˛†kW 1;p � C
�
cCkakW 1;p Ck'kW 1;p Ck˛†kLp

�
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with yet another constant C . In combination with (22) and (25) this proves the regularity
claimed in (i) and the estimate

k.˛; '/kW 1;p.Y / � C
�
cCk.˛; '/kLp.Y /

�
:

To prove the second boundary condition on ˛j@Y we use partial integration in (20) to
obtain ˇ̌̌̌Z

†

h˛^ˇ i

ˇ̌̌̌
�
�
cCkdA˛kLp.Y /CkdA'kLp.Y /

�
kˇkLp� .Y /

for every ˇ 2 �1.Y; g/ with �ˇj† D 0 and ˇj† 2 dAj†�
0.†; g/. In particular, we

can fix ˇj† D dAj†� for any � 2 C1.†; g/ and find admissible ˇ 2 �1.Y; g/ with
�ˇj† D 0 and kˇkLp� .Y / arbitrarily small. Thus we have

R
†h˛^dAj†� i D 0 for all

� 2�0.†; g/, that is dAj† .˛j†/D 0 in the weak sense. This proves (i).

To prove (ii) let .˛; '/ 2�1.Y; g/��0.Y; g/ be given and choose 
 2�1.Y; g/ such
that

�
 j† D �˛j†; 
 j† D 0; k
kW 1;p.Y / � 2k �˛j†kbW 1�1=p;p.†/;

and denote ˛0 WD˛�
: There is a constant C0DC0.A/>0 such that kHA.
; 0/kLp.Y /�

C0k �˛j†kbW 1�1=p;p.†/ and hence



HA.˛
0; '/




Lp.Y /

� kHA.˛; '/kLp.Y /CC0 k�˛j†kbW 1�1=p;p.†/ DW c:

Then it follows from (18) that, for every pair .ˇ;  / 2 �1.Y; g/ � �0.Y; g/ with
�ˇj† D 0, we have

(26)
ˇ̌
h .˛0; '/;HA.ˇ;  / i

ˇ̌
� c k.ˇ;  /kLp� .Y /C

ˇ̌̌̌Z
†

h˛^ˇ i

ˇ̌̌̌
:

Let � 2 �0.Y; g/ with @�
@�
j@Y D 0 and choose .ˇ;  / D .dA�; 0/. Then, by Lemma

3.4, we have ˇ̌̌̌Z
†

h˛^dA� i

ˇ̌̌̌
�


dAj† .˛j†/




bW �1=p;p.†/

k�kW 1;p� .Y /
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and hence, by (26),ˇ̌̌̌ Z
Y

h';�A�i

ˇ̌̌̌
D

ˇ̌̌̌
h .˛0; '/;HA.dA�; 0/ i �

Z
Y

h˛0;�ŒFA; �� i

ˇ̌̌̌
� c kdA�kLp� .Y /C

ˇ̌̌̌Z
†

h˛^dA� i

ˇ̌̌̌
C


˛0



Lp.Y /
kFAkL1.Y / k�kLp� .Y /

� C
�

HA.˛; '/




Lp.Y /

C


�˛j†

bW 1�1=p;p.†/

C


dAj† .˛j†/




bW �1=p;p.†/

C


˛



Lp.Y /

�

�


W 1;p� .Y /

for a suitable constant C D C.A/. (Compare this with (21).) As in the proof of (i) this
implies

k'kW 1;p.Y / � C
�

HA.˛; '/




Lp.Y /

C


�˛j†

bW 1�1=p;p.†/

C


dAj† .˛j†/




bW �1=p;p.†/

C


.˛; '/



Lp.Y /

�
with a possibly larger constant C . (Compare this with (22).) To prove the same estimate
for ˛0 (and hence for ˛ ) one can repeat the argument in the proof of (i), because in
this part of the argument the inequality (26) is only needed for .ˇ;  / with �ˇj† D 0

and ˇj† D 0. This proves (ii) and the lemma.

Proof of Proposition 3.1 We prove (ii) by induction. Observe that

(27)


dXf .A/˛




W k;p.Y /

� C k˛kW k;p.Y /

for all ˛ 2�1.Y; g/ and a constant C D C.A; f /, by Proposition D.1 (iv). Hence it
suffices to prove the estimate with f D 0. For k D 0 regularity holds by assumption
and the estimate follows from Lemma 3.5 (ii), using the fact that dAj†�

0.†; g/�TAL,
so dAj† .˛j†/D 0. (For p D 2 an elementary proof of the estimate was given at the
beginning of the section.) Thus we have proved (ii) for k D 0. It follows that HA has
a finite dimensional kernel and a closed image.

Now let k�1 and suppose that (ii) has been established for k�1. Let .˛; '/2domHA

and assume that HA.˛; '/ is of class W k;p . By the induction hypothesis .˛; '/ is of
class W k;p and

k.˛; '/kW k;p.Y / � C
�
kHA.˛; '/kW k�1;p.Y /Ck.˛; '/kLp.Y /

�
:

Let X1; : : : ;Xk 2Vect.Y /. Then, using the symmetry of HA and integration by parts,
we obtain for every smooth pair .ˇ;  / 2�1.Y /��0.Y / with compact support in
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the interior of Y , we have

jhLX1
� � �LXk

.˛; '/;HA.ˇ;  /ij

D

ˇ̌̌
h .˛; '/;L�Xk

� � �L�X1
HA.ˇ;  / i

ˇ̌̌
�
ˇ̌
h .˛; '/ ; HAL�Xk

� � �L�X1
.ˇ;  / i

ˇ̌
CC1k.˛; '/kW k;p.Y /k.ˇ;  /kLp� .Y /

D
ˇ̌
hLX1

� � �LXk
HA.˛; '/ ; .ˇ;  / i

ˇ̌
CC1k.˛; '/kW k;p.Y /k.ˇ;  /kLp� .Y /

� C2

�
kHA.˛; '/kW k;p.Y /Ck.˛; '/kW k;p.Y /

�
k.ˇ;  /kLp� .Y /

with uniform constants Ci . This estimate extends to the W 1;p� –closure, so it holds
for all .ˇ;  / with zero boundary conditions. However, in order to apply Lemma
3.5 (i) to the pair LX1

� � �LXk
.˛; '/ we would have to allow for more general test

functions .ˇ;  /. Unfortunately, this weak equation does not extend directly, but
we can still use the arguments of Lemma 3.5. For that purpose let the vector fields
X1; : : : ;Xk 2 Vect.Y / be tangential to the boundary. Then the boundary condition
�˛j@Y D 0 will be preserved, and the Lie derivatives LXi

in the following all have
a dual L�

Xi
which does not include a boundary term. To adapt the proof of Lemma

3.5 (i) to LX1
� � �LXk

.˛; '/ instead of .˛; '/ we replace (21) and (23), which use test
functions with nonzero boundary values.

Instead of (21) we calculate for all � 2�0.Y; g/ with @�
@�
j@Y D 0 and with a W k;p –

approximation �0.Y; g/ 3 'j ! 'ˇ̌
hLX1

: : :LXk
' ; �A� i

ˇ̌
D lim

j!1

ˇ̌
h dALX1

: : :LXk
'j ; dA� i

ˇ̌
� lim

j!1

�ˇ̌
hLX1

: : :LXk
dA'j ; dA� i

ˇ̌
CC1k'jkW k;pk�kW 1;p�

�
D
ˇ̌
hLX2

: : :LXk
dA' ; L�X1

dA� i
ˇ̌
CC1k'kW k;pk�kW 1;p�

�
ˇ̌
hLX2

: : :LXk
� dA˛ ; dAL�X1

� i
ˇ̌
C
ˇ̌
hLX1

: : :LXk
.�dA˛� dA'/ ; dA� i

ˇ̌
CC2k'kW k;pk�kW 1;p�

�
ˇ̌
h �dA˛ ; dAL�Xk

: : :L�X1
� i
ˇ̌
C
ˇ̌
h �dA˛ ;

�
L�Xk

: : :L�X2
; dA

�
L�X1

� i
ˇ̌

CC3

�
k � dA˛� dA'kW k;p Ck'kW k;p

�
k�kW 1;p�

� C4

�
kHA.˛; '/kW k;p Ck.˛; '/kW k;p

�
k�kW 1;p�

with uniform constants Ci . Here the components of
�
L�

Xk
: : :L�

X2
; dA

�
L�

X1
� are sums

of derivatives of � including at most one normal derivative, so all but one derivative
can be moved to the left hand side �dA˛ by partial integration. Moreover, we have
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used the fact that dAL�Xk
: : :L�

X1
�j@Y 2 TAL to obtain

h �dA˛; dAL�Xk
: : :L�X1

� i D h˛;�ŒFA;L�Xk
: : :L�X1

� i

D hLX1
: : :LXk

� ŒFA ^˛�; � i:

The last term can be estimated by k˛kW k;p k�kLp� .

Instead of (23) we pick a W k;p –approximation �1.Y; g/ 3 j̨ ! ˛ satisfying the
boundary condition � j̨ j@Y D 0 and hence �LX1

: : :LXk j̨ j@Y D 0. Then we obtain
for all � 2�0.Y; g/ˇ̌̌̌ Z

Y

hLX1
: : :LXk

˛; d.LZ �/ i

ˇ̌̌̌
� lim

j!1

�ˇ̌̌̌Z
Y

hLX1
: : :LXk j̨ ; dA.LZ �/ i

ˇ̌̌̌
CC1k j̨kW k;pk�kW 1;p�

�
� lim

j!1

�ˇ̌̌̌Z
Y

hLX1
: : :LXk

d�A j̨ ;LZ � i

ˇ̌̌̌
CC2k j̨kW k;pk�kW 1;p�

�
D

ˇ̌̌̌Z
Y

hLX2
: : :LXk

d�A˛;L
�
X1
LZ � i

ˇ̌̌̌
CC2k˛kW k;pk�kW 1;p�

� kLX1
: : :LXk

d�A˛kLpkLZ �kLp� CC2k˛kW k;pk�kW 1;p�

� C3

�
kHA.˛; '/kW k;p Ck.˛; '/kW k;p

�
k�kW 1;p� .Y /

with uniform constants Ci . Now the remaining arguments of Lemma 3.5 (i) go through
to prove the regularity LX1

: : :LXk
.˛; '/ 2W 1;p and the estimate

(28)


LX1

: : :LXk
.˛; '/




W 1;p � C .kHA.˛; '/kW k;p Ck.˛; '/kW k;p /

for the tangential derivatives and in the interior. To control the normal derivatives near
the boundary we use the same splitting as in Lemma 3.5 (i). If HA.˛; '/ 2W k;p then
this argument shows that

@t˛† 2 da��d'CW k;p.I �†;T�†˝ g/;

@ta 2 d�˛†CW k;p.I �†; g/;

@t' 2 �dˇ†CW k;p.I �†; g/:

This can be used iteratively to replace the derivatives in (28) by normal derivatives.
It then follows from the assumption HA.˛; '/ 2W k;p and the induction hypothesis
.˛; '/ 2W k;p that .˛; '/ 2W kC1;p and

k.˛; '/kW kC1;p � C .kHA.˛; '/kW k;p Ck.˛; '/kLp / :

This finishes the proof of (ii).
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We prove (iii). If FACXf .A/D 0 and .˛; '/2 ker HA , then the pair .˛; '/ is smooth
by (ii). Integration by parts shows that �dA˛C�dXf .A/˛ is orthogonal to dA' , hence
both vanish, so the kernel has the required form.

To prove (i) we first show that the cokernel of HA agrees with its kernel. Let .˛; '/ 2
L2.Y;T�Y /�L2.Y / be orthogonal to the image of HA . Denote by H the operator
of Lemma 3.5 for the perturbation f D 0. Then

h .˛; '/;H.ˇ;  / iL2 D �
˝
˛;�dXf .A/ˇ

˛
L2 � c k.ˇ;  /kL2

for some constant c and every pair .ˇ;  /2�1.Y; g/��0.Y; g/ satisfying the boundary
conditions �ˇj@Y D 0 and ˇj@Y 2 TAL. Hence it follows from Lemma 3.5 (i) that
˛ 2W 1;2.Y;T�Y / and ' 2W 1;2.Y /. So by (18)

0D

Z
Y

h .dA˛C dXf .A/˛��dA'/^ˇ iC

Z
Y

h .dA �˛/^ i

�

Z
@Y

h˛^ˇ iC

Z
@Y

h';�ˇ i �

Z
@Y

h �˛; i

for all ˇ 2 �1
A
.Y; g/ and  2 �0.Y; g/. (See (19) for the definition of �1

A
.Y; g/.)

Taking �ˇj@Y D 0, ˇj@Y D 0, and  j@Y D 0 this implies

�dA˛C�dXf .A/˛� dA' D 0; d�A˛ D 0:

Taking .ˇ;  / 2 domHA we then getZ
@Y

h˛^ˇ iC

Z
@Y

h �˛; i D 0

for every ˇ 2 �1
A
.Y; g/ and every  2 �0.Y; g/. This (re-)proves �˛j@Y D 0 and,

since ˇj@Y can take any value in the Lagrangian subspace TAL, it also shows that
˛j@Y 2 TAL. Thus we have identified the cokernel of HA with its kernel. Since the
kernel is finite dimensional, this proves that HA is a Fredholm operator. Furthermore,
every symmetric Fredholm operator with this property is self-adjoint. (Let x 2 domH� ,
ie hx;Hy iD h z;y i for all y 2 domH and some z in the target space. By assumption
we can write zD z0CHx1 with z02 .imH/? and x12domH . Then, using symmetry,
we have hx � x1;Hy i D h z0;y i D 0 for all y 2 imH \ domH . The latter is a
complement of kerH � domH so we obtain x � x1 2 .imH/? D kerH � domH
and hence x 2 domH .) This proves the proposition.

The set of critical points

Using the properties of the Hessian we can now show finiteness of the set of gauge
equivalence classes of critical points of the Chern–Simons functional, where the critical
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points are assumed to be nondegenerate. More generally, we establish a compactness
result that will be needed to achieve nondegeneracy by a transversality construction.

Proposition 3.7 Fix a Lagrangian submanifold L�A.†/ that satisfies (L1) and an
integer k � 1. Let f � be a sequence of perturbations converging to f in the CkC1

topology and A� 2 A.Y;L/ be a sequence of critical points of CSL C hf � . Then
there is a sequence of gauge transformations u� 2 G.Y / such that .u�/�A� has a Ck

convergent subsequence.

Moreover, if all the critical points of CSLChf are nondegenerate, then Rf is a finite
set.

Proof Fix a constant p > 4. The critical points of CSL C hf � are S1 –invariant
solutions of the perturbed anti-self-duality equation on S1 � Y and, by Proposition
D.1 (iii), they satisfy a uniform L1 bound on the curvature. Hence, by Uhlenbeck’s
weak compactness theorem (see Uhlenbeck [32] or Wehrheim [34, Theorem A]), there
is a sequence of gauge transformations u� 2 G.Y / such that .u�/�A� is bounded in
W 1;p . Passing to a subsequence, we may assume that .u�/�A� converges strongly
in C0 and weakly in W 1;p to a connection A 2 A1;p.Y;L/. The limit connection
is a (weak) solution of FACXf .A/ D 0 and hence, by [35, Theorem A], is gauge
equivalent to a smooth solution. Applying a further sequence of gauge transformation
we may assume that A is smooth and, by the local slice theorem (eg [34, Theorem F]),
that

(29) d�A..u
�/�A� �A/D 0; �..u�/�A� �A/j@Y D 0:

It now follows by induction that .u�/�A� is uniformly bounded in W kC1;p . Namely,
if .u�/�A� is uniformly bounded in W j ;p for any j 2 f1; : : : ; kg then the curvature
F.u�/�A� D�Xf � ..u

�/�A�/ is uniformly bounded in W j ;p , by Proposition D.1 (iii),
and hence .u�/�A� is uniformly bounded in W jC1;p by [35, Theorem 2.6]. Since
the Sobolev embedding W kC1;p ,! Ck is compact, the sequence .u�/�A� must have
a Ck convergent subsequence.

To prove finiteness in the nondegenerate case it remains to show that nondegenerate
critical points are isolated in the quotient A.Y;L/=G.Y /. Thus let A be a nondegenerate
critical point and A� 2 A.Y;L/ be a sequence of critical points converging to A

in the W 1;p topology (for some p > 2). Then, by the local slice theorem, there
exists a sequence of gauge transformations u� 2 G.Y /, converging to 1l in the W 2;p

topology, such that .u�/�A� satisfies (29). Since A1;p.Y;L/ is a gauge invariant
Banach submanifold of A1;p.Y / it follows that the intersection with a local slice gives
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rise to a Banach submanifold

XA WD

�
˛ 2W 1;p.Y;T�Y ˝ g/

ˇ̌̌̌
�˛j† D 0; d�

A
˛ D 0; k˛kW 1;p < "

AC˛ 2A1;p.Y;L/

�
for " > 0 sufficiently small. The tangent space of XA at A is

TAXA D

n
˛ 2W 1;p.Y;T�Y ˝ g/

ˇ̌
�˛j† D 0; ˛j† 2 TAL; d�A˛ D 0

o
:

Define the map FAW XA �
˚
' 2W 1;p.Y; g/ j' ? ker dA

	
!Lp.Y;T�Y ˝ g/ by

FA.˛; '/ WD �.FAC˛CXf .AC˛//� dA':

It has a zero at the origin, and we claim that its differential

dFA.0; 0/.y̨; y'/D �.dA y̨ C dXf .A/y̨/� dA y'

is bijective. The injectivity follows from the nondegeneracy of A and the fact that
im dA ? im � .dA C dXf .A//. To check the surjectivity notice that dFA.0; 0/ is
the first factor of the Hessian HA . The Hessian is self-adjoint by Proposition 3.1
with cokernel .imHA/

? D kerHA D H 1
A;f �H 0

A
, so the cokernel of dFA.0; 0/ is

H 1
A;f , which vanishes by the nondegeneracy assumption. This proves that dFA.0; 0/

is bijective. Since .u�/�A� � A 2 XA converges to zero in the W 1;p norm and
FA..u

�/�A��A; 0/D 0 for every � , it then follows from the inverse function theorem
that .u�/�A� DA for � sufficiently large. This proves the proposition.

For nondegenerate critical points (that is, H 1
A;f D 0) we have the following control on

the kernel of the Hessian, H 0
A
D ker dA ��

0.Y; g/, which measures reducibility.

Remark 3.8 The twisted cohomology groups H 0
A

form a vector bundle over the space
of pairs .f;A/ with A a nondegenerate critical point of CSLChf . In particular, the
dimension cannot jump. This follows from the general fact that the cohomology groups
H 0 form a vector bundle over the space of all chain complexes with H 1 D 0. To see
this consider two chain complexes

C 0 d0

! C 1 d1

! C 2; C 0 d0CP0

�! C 1 d1CP1

�! C 2

of operators with closed images (between Hilbert spaces) and assume that the first
homology of the unperturbed complex vanishes, H 1 D ker d1=im d0 D 0. (Then the
homology of the other complex, H 1

P
D ker.d1CP1/=im .d0CP0/ also vanishes for

sufficiently small perturbation P .) Choose a complement D1 � C 1 of im d0 D ker d1

and let …W C 1! C 1=D1 be the projection. Then … ı d0W C 0! C 1=D1 is surjective
and the restriction d1jD1 W D1! C 2 is an injective operator with a closed image. If
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P i W C i ! C iC1 are sufficiently small then … ı .d0 C P0/W C 0 ! C 1=D1 is still
surjective and .d1CP1/jD1 W D1! C 2 is still injective. From the latter and the
identity .d1CP1/ı .d0CP0/D 0 it follows that H 0

P
D ker.d0CP0/ agrees with the

kernel of the surjective map …ı.d0CP0/. Now let D0�C 0 be a complement of H 0D

ker d0 , then …ıd0jD0 W D0!C 1=D1 is bijective, and so is …ı .d0CP0/jD0 W D0!

C 1=D1 for sufficiently small P0 . Its inverse is an injective map IP W C
1=D1! C 0

with image D0 that depends continuously on P and satisfies … ı .d0CP0/ ı IP D Id.
Now �P WD IP ı… ı .d0 C P0/W C 0 ! C 0 is a projection, �P ı �P D �P , with
ker�P D ker.…ı .d0CP0//D im .1��P / and im�P D im IP DD0D ker.1��P /.
The opposite projection 1��P then provides an isomorphism H 0D ker d0! ker.…ı
.d0CP0//DH 0

P
that depends continuously on P .

The linearized operator on R � Y

Next, we shall use the above results on the Hessian to establish some basic properties
of the linearized operator for (14). Let I �R be an open interval and ADACˆ ds 2

A.I �Y / such that A.s/j@Y 2 L for every s 2 I . A g–valued 1–form on I �Y has
the form ˛C' ds with ˛.s/ 2�1.Y; g/ and '.s/ 2�0.Y; g/. Thus we shall identify
�1.I � Y; g/ with the space of pairs .˛; '/ of smooth maps ˛W I ! �1.Y; g/ and
'W I ! �0.Y; g/. For any integer k � 1 and any p > 1 let W

k;p
A .I �Y;T�Y ˝ g/

denote the space of W k;p –regular 1–forms ˛W I � Y ! T�Y ˝ g that satisfy the
boundary conditions

(30) �˛.s/j@Y D 0; ˛.s/j@Y 2 TA.s/L

for all s 2 I . (The first equation arises from a gauge fixing condition.)

Remark 3.9 The boundary conditions (30) are meaningful for every ˛ of class W 1;p

with p > 1. In this case we have ˛.s/j@Y 2Lp.†;T�†˝ g/ for almost all s 2 I , so
there is a Hodge decomposition

˛.s/j@Y D ˛0C dA.s/j†�C�dA.s/j†�;

and the second condition in (30) means that �D 0 and ˛0 2 TA.s/j†L. In other words,
˛.s/j@Y lies in the Lp –closure of TA.s/j†L. This Lp –closure is Lagrangian in the
following sense: If ˛ 2 Lp.†;T�†˝ g/, then ˛ lies in the Lp –closure of TAL if
and only if

R
†h˛ ^ ˇ i D 0 for all smooth ˇ 2 TAL. (This extends the Lagrangian

condition (6) to nonsmooth tangent vectors.)

On a general 4–manifold X , the linearized operator DA for (16) with a gauge fixing
condition has the form

�1.X; g/!�2;C.X; g/��0.X; g/ W z̨ 7!
�
.dA z̨ C dXf .A/z̨/

C;�d�A z̨
�
:
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In the case X D I �Y we identify �2;C.X; g/��0.X; g/ with the space of pairs of
maps I !�1.Y; g/ and I !�0.Y; g/, using the formula

z̨ D
1
2
.�˛.s/�˛.s/^ ds/

for self-dual 2–forms on I �Y . With this notation the linearized operator

DAW W
k;p

A .I �Y;T�Y ˝ g/�W k;p.I �Y; g/

!W k�1;p.I �Y;T�Y ˝ g/�W k�1;p.I �Y; g/

for I �Y is given by
DA WD rsCHA.s/;

where rs WD @sC Œˆ; ��; explicitly,

(31) DA

�
˛

'

�
D

�
rs˛C�dA˛C�dXf .A/˛� dA'

rs' � d�
A
˛

�
:

Here we have dropped the argument s in the notation, eg dA' stands for the path
s 7! dA.s/'.s/ of g–valued 1–forms on Y .

Remark 3.10 The formal adjoint operator has the form

D�A D�rsCHA.s/:

It is isomorphic to an operator of type rs C HA via time reversal. Namely, if
� W .�I/�Y ! I �Y denotes the reflection in the s–coordinate, then

D�A.ˇ;  / ı � DD��A.ˇ ı �;  ı �/

for every pair of smooth maps ˇW I !�1.Y; g/ and  W I !�0.Y; g/.

The following theorem provides the basic regularity (i) and estimate (ii) for the Fredholm
theory of DA and will also be needed to prove exponential decay. The Lp –regularity
has been established in [35] by techniques that do not extend to p D 2. Here we prove
the L2 –regularity using the analytic properties of the Hessian. A fundamental problem
is that its domain varies with the connection, unlike in the closed case. The variation
will be controlled in step 1 of the proof, using a trivialization of the tangent bundle of
L in Appendix E. This control then allows to apply the general theory of Appendix A

Theorem 3.11 For every integer k � 0, every p > 1, and every compact subinterval
J � I there is a constant C such that the following holds.

(i) Assume k D 0 and define p� WD p=.p� 1/. Let

.˛; '/ 2Lp.I �Y;T�Y ˝ g/�Lp.I �Y; g/
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and suppose that there is a constant c such that

(32)
ˇ̌̌̌Z

I�Y

hD�A.ˇ;  / ; .˛; '/ i
ˇ̌̌̌
� ck.ˇ;  /kLp� .I�Y /

for every compactly supported smooth map .ˇ;  /W I !�1.Y; g/��0.Y; g/ satisfy-
ing (30). Then .˛; '/jJ�Y is of class W 1;p and satisfies the boundary condition (30)
and the estimate

k.˛; '/kW 1;p.J�Y / � C
�
kDA.˛; '/kLp.I�Y /Ck.˛; '/kLp.I�Y /

�
:

(ii) Assume k � 1. If .˛; '/ 2W 1;p.I �Y;T�Y ˝g/�W 1;p.I �Y; g/ satisfies (30)
and DA.˛; '/ is of class W k;p , then .˛; '/jJ�Y is of class W kC1;p and

k.˛; '/kW kC1;p.J�Y / � C
�
kDA.˛; '/kW k;p.I�Y /Ck.˛; '/kLp.I�Y /

�
:

Proof Using the estimates on the perturbation dXf .A/ in Proposition D.1 (iv) we
may assume without loss of generality that f D 0. Fix s0 2 J . We prove the result for
a neighbourhood of s0 in four steps.

Step 1 After shrinking I , there exists a family of bijective linear operators

Q.s/W �1.Y; g/��0.Y; g/!�1.Y; g/��0.Y; g/;

parametrized by s 2 I , such that the following holds.

(a) For every s 2 I and every .˛; '/ 2�1.Y; g/��0.Y; g/

.˛; '/ 2 domHA.s0/ () Q.s/.˛; '/ 2 domHA.s/:

(b) For every integer k � 0 and every p > 1 the operator family Q induces a
continuous linear operator from W

k;p
loc .I � Y;T�Y ˝ g/�W

k;p
loc .I � Y; g/ to

itself.

Let U �A.Y;L/ be a neighbourhood of A.s0/ that is open in the C0 –topology and
fQAgA2U be an operator family which satisfies the requirements of Theorem E.2.
Shrink I so that A.s/ 2 U for every s 2 I . Then the operators Q.s/ WDQA.s/ � Id
satisfy the requirements of Step 1.

Step 2 We prove (i) for p D 2.

Abbreviate
H WDL2.Y;T�Y ˝ g/�L2.Y; g/
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and let W .s/�H be the subspace of .˛; '/ 2W 1;2.Y;T�Y ˝ g/�W 1;2.Y; g/ that
satisfy the boundary conditions

�˛j@Y D 0; ˛j@Y 2 TA.s/L:

Let Q be as in Step 1, so each Q.s/ induces an operator on H that descends to
a Hilbert space isomorphism from W .s0/ to W .s/. Then, by Proposition 3.1 with
pD 2, the operator family HA.s/W W .s/!H satisfies the conditions (W1)–(W2) and
(A1)–(A2) in Appendix A for every compact subinterval of I . Hence the estimate
in (i) with p D 2 follows from Lemma A.2 and a cutoff function argument, and the
regularity statement follows from Theorem A.3.

Step 3 We prove (i) for p ¤ 2.

The result follows from [35, Theorem C]. The intervals I and J can be replaced by S1

by using cutoff functions, and one can interchange D�A and D��A in (32) by reversing
time as in Remark 3.10. Then [35, Theorem C (iii)] implies that .˛; '/ ı � is of class
W 1;p (with corresponding estimate). The same holds for .˛; '/, and partial integration
as in (18) implies that

C k.ˇ;  /kLp� �

ˇ̌̌̌Z
I�Y

hD�A.ˇ;  / ; .˛; '/ i � h .ˇ;  / ; DA.˛; '/ i

ˇ̌̌̌
D

ˇ̌̌̌Z
I�@Y

h˛^ˇ iC h �˛ ;  i

ˇ̌̌̌
:

Here we can choose any compactly supported ˇjI�@Y W I ! TAL � �1.@Y; g/ and
 jI�@Y W I!�0.@Y; g/ and extend them to I�Y with k.ˇ;  /kLp� arbitrarily small.
Thus the above estimate implies that ˛ satisfies the boundary conditions ˛.s/j@Y 2

TA.s/L and �˛.s/j@Y D 0.

Step 4 We prove (ii).

The assertion of (ii) continues to be meaningful for k D 0; we prove it by induction on
k . For k D 0 the regularity statement holds by assumption and the estimate follows
from (i). Fix an integer k � 1 and assume, by induction, that (ii) has been established
with k replaced by k � 1. Let

.˛; '/ 2W 1;p.I �Y;T�Y ˝ g/�W 1;p.I �Y; g/
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such that (30) holds and

.ˇ;  / WDDA.˛; '/ 2W k;p.I �Y;T�Y ˝ g/�W k;p.I �Y; g/:

.˛0; '0/ WDQ@s.Q
�1.˛; '//;Denote

.ˇ0;  0/ WDQ
�
@s.Q

�1.ˇ;  //�
�
@s.Q

�1DAQ/
�
Q�1.˛; '/

�
:and

Then .˛0; '0/ satisfies the hypotheses of (i) and hence is of class W 1;p and satisfies
the boundary conditions (30). Thus

DA.˛
0; '0/D .ˇ0;  0/

is of class W k�1;p . Hence, by the induction hypothesis, .˛0; '0/ is of class W k;p and

k.˛0; '0/kW k;p.J�Y / � C1

�
k.ˇ0;  0/kW k�1;p.I�Y /Ck.˛

0; '0/kLp.I�Y /

�
� C2

�
k.ˇ;  /kW k;p.I�Y /Ck.˛; '/kW k;p.I�Y /

�
:

Since .˛0; '0/D .@s˛; @s'/� .@sQ/Q�1.˛; '/, this implies that .@s˛; @s'/ is of class
W k;p and

k.@s˛; @s'/kW k;p.J�Y / � C3

�
kDA.˛; '/kW k;p.I�Y /Ck.˛; '/kW k;p.I�Y /

�
� C4

�
kDA.˛; '/kW k;p.I�Y /Ck.˛; '/kLp.I�Y /

�
:

It remains to establish regularity and estimates for .˛; '/ in Lp.J;W kC1;p.Y //. To
see it note that HA.˛; '/ D DA.˛; '/�rs.˛; '/ is of class Lp.J;W k;p.Y //. By
Proposition 3.1, .˛.s/; '.s// 2W kC1;p.Y / for almost every s 2 J and

k.˛; '/k
p

Lp.J ;W kC1;p.Y //

D

Z
J

k.˛.s/; '.s//k
p

W kC1;p.Y /
ds

� C4

Z
J

�

HA.s/.˛.s/; '.s//


p

W k;p.Y /
Ck.˛.s/; '.s//k

p

Lp.Y /

�
ds

� C5

�
kDA.˛; '/k

p

W k;p.I�Y /
Ck.˛; '/k

p

Lp.I�Y /

�
:

This completes the proof.

Remark 3.12 The proof of Theorem 3.11 carries over word for word to the case
where the metric and perturbation on Y depend smoothly on s 2 I .

We finish this section with a complete description of the linearized operator for the
trivial gradient flow line at an irreducible, nondegenerate critical point.
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Theorem 3.13 Let A 2 A.Y;L/ be a critical point of the perturbed Chern–Simons
functional CSLC hf such that H 0

A
D 0 and H 1

A;f
D 0. Then the operator

DA WD
@

@s
CHA

on Lp.R�Y;T�Y ˝ g/�Lp.R�Y; g/ with domain

domDA WD

n
.˛; '/ 2W 1;p.R�Y;T�Y ˝ g/�W 1;p.R�Y; g/

ˇ̌̌
�˛.s/j@Y D 0; ˛.s/j@Y 2 TAL 8s 2R

o
is a Banach space isomorphism for every p > 1.

Proof For p D 2 it follows from [26, Theorem A] and Proposition 3.1 that DA is
a Fredholm operator of index zero; that it is bijective follows from the inequality (8)
in [26]. Another argument is given in [10, Proposition 3.4]; it is based on the fact
that HA is a bijective self-adjoint Fredholm operator, and on the local L2 –regularity
(Theorem 3.11). The case p ¤ 2 can be reduced to the case p D 2 by Donaldson’s
argument in [10, Proposition 3.21]; it uses in addition the local Lp –regularity in
Theorem 3.11. (For an adaptation of Donaldson’s argument to the symplectic case
see [29, Lemma 2.4].)

4 Operators on the product S 1 � Y

In this section we study the anti-self-duality operator on SU.2/–bundles over the
product S1 �Y with Lagrangian boundary conditions. Our goal is, first, to establish a
formula for the Fredholm index and, second, to prove that the relevant determinant line
bundle is orientable. Both results are proved with the same technique. The problem
can be reduced to the case of a suitable closed 3–manifold Y [† Y 0 by means of an
abstract argument involving the Gelfand–Robbin quotient.

Throughout we fix a compact connected oriented 3–manifold Y with nonempty bound-
ary @Y D † and a gauge invariant, monotone Lagrangian submanifold L � A.†/
satisfying (L1)–(L2). We identify S1 Š R=Z. Every gauge transformation vW Y !
GD SU.2/ determines a principal SU.2/–bundle Pv! S1 �Y defined by

Pv WD
R�Y �G

Z
; Œs;y;u�� ŒsC 1;y; v.y/u�:

A connection on Pv with Lagrangian boundary conditions is a pair of smooth maps
AW R!A.Y;L/ and ˆW R!�0.Y; g/ satisfying

(33) A.sC 1/D v�A.s/; ˆ.sC 1/D v�1ˆ.s/v:
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The space of such connections will be denoted by A.Pv;L/ and we write ADˆdsCA

or .A; ˆ/ for the elements of A.Pv;L/. The space

A.S1
�Y;L/ WD

˚
.v;A/

ˇ̌
A 2A.Pv;L/

	
is a groupoid. We will see that it has several connected components, correspond-
ing to �1.L=Gz.†// respectively the degree of vW .Y; @Y /! .G; 1l/. A morphism
from .v0;A0/ to .v1;A1/ is a smooth gauge transformation uW R! G.Y / on R�Y

satisfying

v1 D u.s/�1v0u.sC 1/;

A1 D u�A0:
(34)

We abbreviate (34) by .v1;A1/DW u
�.v0;A0/. In the case v0 D v1 D v a map u that

satisfies the first equation in (34) is a gauge transformation on Pv . Since the gauge
group G.Y / is connected there is, for every pair v0; v1 2 G.Y /, a gauge transformation
uW R! G.Y / that satisfies the first equation in (34).

Fix a perturbation Xf . Then every pair .v;A/D .v;A; ˆ/ 2A.S1�Y;L/ determines
Sobolev spaces

W k;p
v .S1

�Y; g/ WD
˚
' 2Wlock;p .R�Y; g/

ˇ̌
'.sC 1/D v�1'.s/v

	
;

W k;p
v .S1

�Y;T�Y ˝ g/ WD
˚
˛ 2Wlock;p .R�Y; g/

ˇ̌
˛.sC 1/D v�1˛.s/v

	
;

W
k;p
v;A .S

1
�Y;T�Y ˝ g/ WD

˚
˛ 2W k;p

v .S1
�Y;T�Y ˝ g/

ˇ̌
.30/

	
and an anti-self-duality operator

Dv;AW W k;p
v;A .S

1
�Y;T�Y ˝ g/�W k;p

v .S1
�Y; g/

!W k�1;p
v .S1

�Y;T�Y ˝ g/�W k�1;p
v .S1

�Y; g/

given by Dv;A WD rsCHA.s/ respectively by (31) as in Section 3.

Definition 4.1 The degree of a pair .v;A/D .v;A; ˆ/ 2A.S1 �Y;L/ is the integer

deg.v;A/ WD �
1

4�2

Z 1

0

Z
Y

hFA^@sA i ds:
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Remark 4.2 (i) The degree is an integer because it is the difference of the Chern–
Simons functionals. Explicitly,

deg.v;A/D�
1

8�2

Z 1

0

Z
†

hA^@sA i ds

�
1

8�2

�Z
Y

�
hA^dA iC

1

3
hA^ŒA^A� i

��sD1

sD0

D
1

4�2

�
CS.A.0/;Aj†#B/� CS.A.1/;B/

�
�

1

4�2

�
CSL.ŒA.0/�/� CSL.ŒA.0/�/

�
D 0 2 R=Z:

Here BW Œ0; 1�! L is a smooth path from B.0/DA.1/j† to B.1/D 0 and Aj†#B is
the catenation of Aj†W Œ0; 1�! L with B .

(ii) If vj† � 1l then A.sC 1/j† DA.s/j† and, by (5),

deg.v;A/D deg.v/�
1

8�2

Z 1

0

Z
†

hA^@sA i ds:

The last term is the symplectic action of the loop R=Z! L W s 7!A.s/j† , multiplied
by the factor 1=4�2 .

(iii) If v�1l and A.s/j†Du.s/�A.0/j† with u.sC1/Du.s/2G.†/ then deg.v;A/
is minus the degree of the map uW S1 �†! G; see Corollary 2.5.

Theorem 4.3 Fix p > 1 and an integer k � 1. Then the following holds.

(i) Two pairs .v;A/; .v0;A0/ 2 A.S1 � Y;L/ belong to the same component of
A.S1�Y;L/ if and only if they have the same degree.

(ii) For every pair .v;A/ 2A.S1 �Y;L/ the operator Dv;A is Fredholm and

index.Dv;A/D 8 deg.v;A/:

(iii) The determinant line bundle det! A.S1 � Y;L/ with fibers det.Dv;A/ is ori-
entable.

(iv) Let uW R! G.Y / be a morphism from .v;A/ to .v0;A0/D .u�v;u�A/. Then
.v;A/ and .u�v;u�A/ have the same degree and the induced isomorphism

u�W det.Dv;A/! det.D.u�v;u�A//

is orientation preserving (ie the map on orientations agrees with the one induced by a
homotopy).
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The proof of (ii) will be based on an identification of the index with the spectral flow of
the Hessian. Both the index and orientation results in (ii)–(iv) require a description of
the space of self-adjoint boundary conditions for the Hessian on a pair of domains with
matching boundary. We will use it to homotop from Lagrangian boundary conditions
to the diagonal (representing the closed case). More precisely, we will use the abstract
setting of Appendix B.

We think of the div-grad-curl operator on Y as an unbounded operator

D WD

�
�d �d
�d� 0

�
W W0!H

on the Hilbert space
H WDL2.Y;T�Y ˝ g/˚L2.Y; g/

with the dense domain

dom D WDW0 WDW
1;2

0
.Y;T�Y ˝ g/˚W

1;2
0
.Y; g/:

With this domain D is symmetric and injective and has a closed image, see Lemma 4.4
below. Hence D satisfies the assumptions of Appendix B and thus defines a symplectic
Hilbert space, the Gelfand–Robbin quotient

V WD dom D�=dom D DW =W0; !.�; �/ WD hD��; � i � h �;D�� i;

where W WD dom D� is the domain of the adjoint operator D� . The crucial property
of the Gelfand–Robbin quotient is the fact that self-adjoint extensions of D are in
one-to-one correspondence with Lagrangian subspaces of V .

If A 2A.Y / is a smooth connection on Y then the restricted (unperturbed) Hessian
HAjW0

W W0!H is an unbounded operator on H with domain W0 . It is a compact
perturbation of the div-grad-curl operator D . The next lemma shows how these
operators fit into the setting of Appendix B.

Lemma 4.4 (i) For every smooth connection A 2A.Y / on Y the operator

HAjW0
W W0!H

is symmetric, injective, and has a closed image. Its domain W0 is dense in H , the
graph norm of HA on W0 is equivalent to the W 1;2 –norm, and the inclusion W0!H

is compact.

(ii) For every A 2A.Y / the domain of the dual operator .HAjW0
/� is equal to W

and the symplectic form on the quotient W =W0 is given by

!.�; �/D

Z
@Y

h˛^ˇ i �

Z
@Y

h';�ˇ iC

Z
@Y

h �˛; i:
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for smooth elements � D .˛; '/ and �D .ˇ;  / in W .

(iii) The kernel of .HAjW0
/� determines a Lagrangian subspace

ƒ0.A/ WD
ker.HAjW0

/�CW0

W0

� V:

If two connections A;A0 2 A.Y / coincide in a neighbourhood of the boundary @Y
then ƒ0.A

0/ is a compact perturbation of ƒ0.A/.

Proof The operator HAjW0
is symmetric by (18) and it has a closed image by Lemma

3.5 (ii). To prove that it is injective let .˛; '/ 2 kerHA \W0 . Extend A to an S1 –
invariant connection „ on S1�Y and .˛; '/ to an S1 –invariant 1–form �D ˛C' ds

on S1 � Y . Then dC
„
� D 0, d�

„
� D 0, and � vanishes on the (nonempty) boundary.

Near the boundary we choose coordinates .s; t; z/ 2 S1 � Œ0; "/�† so that .t; z/ are
normal geodesic coordinates on Y . Interchanging s and t we can first bring „ into
temporal gauge with respect to t and then use Lemma 8.7 (ii) to deduce that � vanishes
near the boundary. Since Y is connected it follows from an open and closed argument
that � vanishes identically. The graph norm of HA on W0 is given by (35) below.
The boundary term vanishes on W0 and hence this norm is equivalent to the W 1;2

norm. The compactness of the inclusion W0! H follows from Rellich’s theorem.
This proves (i).

The domain of the dual operator and the symplectic form are independent of A because
the difference HAjW0

�DD .HA�H0/jW0
W W0!H extends to a bounded self-adjoint

operator from H to itself. The formula for the symplectic form follows from (18).

Assertion (iii) follows from Lemma B.11. This uses the fact that the difference operator
� WD .HAjW0

/�� .HA0 jW0
/�W W !H is compact since it coincides with � ı � ı‰ .

Here ‰W W !W0 is a bounded map, given by multiplication with a cutoff function
 2 C1

0
.Y; Œ0; 1�/,  jsupp.A�A0/ � 1, the inclusion �W W0!H is compact by (i), and

�W H !H is bounded. This proves the lemma.

Remark 4.5 (i) The symplectic Hilbert space .V; !/ can be viewed as a space of
boundary data for the Hessian, containing the space

�1.Y; g/��0.Y; g/

W0\ .�1.Y; g/��0.Y; g//
Š�1.†; g/��0.†; g/��0.†; g/

of smooth boundary data as a dense subspace; see Lemma 4.6 below. The isomorphism
is by Œ.˛; '/� 7! .˛j@Y ; 'j@Y ;�†.�˛j@Y //. In this notation, an explicit formula for the
symplectic form is given in Lemma 4.4 (ii).
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(ii) The space �1.Y; g/��0.Y; g/ of smooth pairs .˛; '/ is contained in the domain
of the dual operator, and the restriction of .HAjW0

/� to this subspace agrees with HA .
The graph norm on �1.Y; g/��0.Y; g/� dom .HAjW0

/� is

k.˛; '/k2.HAjW0
/� D k.˛; '/k

2
L2.Y /

CkdA˛k
2
L2.Y /

Ckd�A˛k
2
L2.Y /

CkdA'k
2
L2.Y /

C 2

Z
Y

h'; ŒFA; ˛� i � 2

Z
@Y

h'; dA˛ i:
(35)

The dual domain W D dom .HAjW0
/� is the completion of �1.Y; g/��0.Y; g/ with

respect to this norm. It is bounded by the W 1;2 –norm and hence

W
1;2

Y
WDW 1;2.Y;T�Y ˝ g/˚W 1;2.Y; g/�W:

Moreover, it follows from interior elliptic regularity that every element of the dual
domain W is of class W 1;2 on every compact subset of the interior of Y . However,
W is not contained in W

1;2
Y

; see Lemma 4.6 below.

The next Lemma gives a precise description for the spaces W and V , including
some parts of weak regularity. However, our theory does not depend on the explicit
description of these spaces. In our applications we only use the fact that the Gelfand–
Robbin quotient is independent of the connection, see Lemma 4.4. In the following we
slightly abuse notation and identify the Gelfand–Robbin quotient V DW =W0 with
the orthogonal complement of W0 in W in the graph norm of D� . Remark B.1 (ii)
shows that it is given by

V D
˚
� 2 dom D� jD�� 2 dom D�; D�D��C � D 0

	
:

Lemma 4.6 (i) The space V admits an orthogonal Lagrangian splitting

V Dƒ0˚ƒ1; ƒ0 WDD�ƒ1; ƒ1 WD V \ im D;

where ƒ0 is the orthogonal projection of the kernel of D� onto V .

(ii) The space W admits an orthogonal splitting W DW0˚ƒ0˚ƒ1 , where W0 and
ƒ1 are closed subspaces of W

1;2
Y

and ƒ0 is a closed subspace of H DWL2
Y

.

(iii) The spaces of smooth elements are dense in ƒ0 , ƒ1 , V , and W (with respect to
the graph norm of D� ). The restriction map

(36) � D .˛; '/ 7! �j† WD .˛j†; 'j†;�†.�˛j†//

on the smooth elements extends continuously to ƒ0 and ƒ1 . This gives rise to injective
operators

ƒ0!W
�1=2;2
†

; ƒ1!W
1=2;2
†
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with closed images. Here we denote W
�1=2;2
†

WD
�
W

1=2;2
†

�� and

W
1=2;2
†

WDW 1=2;2.†;T�†˝ g/˚W 1=2;2.†; g/˚W 1=2;2.†; g/:

Proof The splitting in (i) is the one in Remark B.1 (iii) with ƒ1 Dƒ
?
0

. To prove (ii)
we examine the operator D�D of Lemma B.4. On smooth elements this is the Laplace–
Beltrami operator. Hence its domain is

dom .D�D/D

(
� 2W0

ˇ̌̌
sup
�2W0

hD�;D� iL2

k�kL2

<1

)
DW0\W

2;2
Y

by elliptic regularity. This implies that dom D�\ im D DD.W0\W
2;2

Y
/ is a closed

subspace of W
1;2

Y
. One can also think of D� as a bounded linear operator from L2

Y

to W
�1;2

Y
WD .W0/

� , see the proof of Lemma B.4. Then the operator

(37) W
1;2

Y
!W

�1;2
Y

�W
1=2;2
†

W � 7! .D�D��C �; �j†/

is bijective, by elliptic regularity and the Sobolev trace theorem, and V \W
1;2

Y
is

the preimage of f0g�W
1=2;2
†

under this operator. Hence V \W
1;2

Y
is also a closed

subspace of W
1;2

Y
and so is the space

ƒ1 D .V \W
1;2

Y
/\ .dom D�\ im D/:

Next, the kernel of D� is a closed subspace of L2
Y

and hence, so is the space

ƒ0 D
˚
� �

�
1lCD�D

��1
�
ˇ̌
� 2 ker D�

	
:

See Remark B.1 (ii) for the projection W ! V ; the formula simplifies for � 2 ker D� .
This proves (ii).

We prove that the spaces of smooth elements are dense in ƒ0 , ƒ1 , V , and W .
Any element in ƒ1 can be approximated by a smooth sequence in ƒ1 : The W 1;2 –
approximation by any smooth sequence converges in the graph norm of D� and projects
under the map …0 in Remark B.5 to a convergent smooth sequence in ƒ1 . Since
ƒ0 D D�ƒ1 , this shows that the smooth elements are dense in ƒ0 as well as in
W DW0˚ƒ0˚ƒ1 .

That the restriction map (36) extends to an injective bounded linear operator from ƒ1

onto a closed subspace of W
1=2;2
†

follows by restricting the isomorphism (37) to the
closed subspace ƒ1 of V \W

1;2
Y

. Next we prove that the map (36) sends ƒ0 to a
closed subspace of W �1=2;2.†/. For this it is convenient to use the following norms
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for � 2W :

k�j†kW �1=2;2

†

WD sup
�2W

1;2

Y

!.�; �/

k�k
W

1;2

Y

; k�kD� WD

r
k�k2

L2
Y

CkD��k2
L2

Y

By definition there is a constant c > 0 such that

k�j†kW �1=2;2

†

� c k�kD�

for every � 2 W . Thus (36) is a bounded linear operator from W to W
�1=2;2
†

.
Moreover, ƒ1 is complete both with respect to the graph norm of D� and the W 1;2 –
norm, and the former is bounded above by the latter. Hence, by the open mapping
theorem, there is a constant ı > 0 such that

k�kD� � ı k�kW 1;2

Y

8� 2ƒ1:

Now let � 2ƒ0 be given. Then D�� 2ƒ1 �W
1;2

Y
and hence

k�j†kW �1=2;2

†

� ı sup
�2W

1;2

Y

!.�; �/

k�kD�
� ı

!.�;D��/

kD��kD�
D ı k�kD� :

Since ƒ0 is a closed subspace of W , the operator ƒ0!W
�1=2;2
†

W � 7! �j† is injective
and has a closed image. This proves the lemma.

Remark 4.7 The dual domain W admits another orthogonal splitting

W D .dom D�\ im D/˚ ker D�

where dom D�\ im D is a closed subspace of W
1;2

Y
and the kernel of D� is a closed

subspace of L2
Y

. It can be described as the image under D� of the space of harmonic
pairs � D .˛; ˇ/ 2W

1;2
Y

:

ker D� D
n
.�d˛� d';�d�˛/ j .˛; '/ 2W

1;2
Y
; d�d˛C dd�˛ D 0; d�d' D 0

o
:

This can also be used to prove that the restriction map (36) maps the kernel of D� to
W
�1=2;2
†

: If ' is a W 1;2 harmonic function on Y then its restriction to the boundary
is of class W 1=2;2 and its normal derivative on the boundary is of class W �1=2;2 .

Yet another splitting of W can be obtained from eigenspace decompositions along the
lines of Atiyah–Patodi–Singer [5]. The operator D has the form J.@t CB/ near the
boundary, where J 2 D�1l and B is a self-adjoint first order Fredholm operator over
†. The decomposition involves the eigenspaces of B [8].

Geometry & Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 789

Proof of Theorem 4.3 It suffices to prove the theorem for Xf D 0 because any two
perturbations are homotopic and result in compact perturbations of the operators Dv;A
and hence in isomorphic determinant line bundles.

We prove (i). By Lemma 2.4 the degree depends only on the homotopy class of .v;A/.
Given such a pair, there is a smooth path Œ0; 1�! G.Y / W � 7! v� with v0 D v and
v1 D 1l, because G.Y / is connected. Let u� W R! G.Y / be the smooth path of gauge
transformations constructed in Lemma 4.8 below with X D pt and define

A� WD .u� /�A:

Then � 7! .v� ;A� / is a smooth path in A.S1 �Y;L/ connecting .v0;A0/D .v;A/
to a pair of the form .1l;A1/. Hence we may assume without loss of generality that
v D v0 D 1l and A;A0 2A.P;L/ where P D P1l D S1 �Y �G. Now the map

A.P;L/! C1.S1;L/ W A 7!AjS1�†

is a homotopy equivalence. Hence (i) follows from the fact that, by (L2), every
loop in L is homotopic to a loop of the form R=Z ! L W s 7! u.s/�A0 with
u.sC 1/D u.s/ 2 G.†/, and that the homotopy class of such a loop is characterized
by the degree of the map uW S1 �†! G.

We prove (ii). That the operator Dv;A has a finite dimensional kernel and a closed image
follows immediately from the estimate in Theorem 3.11 (ii) and Rellich’s theorem
(see [21, Lemma A.1.1]). That it has a finite dimensional cokernel follows from the
regularity results in Theorem 3.11 and Remark 3.10. (The dual operator has a finite
dimensional kernel.) Thus we have proved that Dv;A is a Fredholm operator for every
pair .v;A/ 2 A.S1 � Y;L/. The regularity theory in Theorem 3.11 also shows that
its kernel and cokernel, and hence also the Fredholm index, are independent of k and
p . Moreover, the Fredholm index depends only on the homotopy class of .v;A/; to
see this one can use the argument in the proof of Step 1 in Theorem 3.11 to reduce
the problem to small deformations with constant domain and then use the stability
properties of the Fredholm index. So by (i) it suffices to consider one pair .v;A/ in
each degree. Hence we can assume

vjN D 1l; ˆD 0; A.s/jN D 0

for all s and an open neighbourhood N �Y of @Y . Then deg.v;A/D deg.v/. Choose
a handle body Y 0 with @Y 0 D x† and extend A.s/ smoothly by the trivial connection
on Y 0 to obtain a smooth connection zA.s/ on the closed 3–manifold

zY WD Y [† Y 0
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for every s . Note that zA.sC 1/D zv� zA.s/, where zv 2 G. zY / agrees with v on Y and
is equal to 1l on Y 0 . Let H0

0
denote the Hessian on Y 0 (at the trivial connection) and

HA.s/ the Hessian on Y , both with the same boundary Lagrangian T0L. These are
self-adjoint Fredholm operators, by Proposition 3.1. The Hessian (17) over the closed
manifold zY will be denoted by �H zA.s/ . Choose " > 0 such that the operators H0

0
C"Id,

HA.0/C "Id, and �H zA.0/C "Id are all bijective. We shall introduce the spectral flow
�spec (as defined in Appendix A) and prove that

index.Dv;A/D �spec
�˚�
HA.s/C "Id

�
˚
�
H00C "Id

�	
s2Œ0;1�

�
D �spec

�˚�H zA.s/C "Id	s2Œ0;1�

�
D index.D

zv;zA/D 8 deg.zv/D 8 deg.v;A/:

(38)

Here D
zv;zA DrsC

�H zA.s/ denotes the anti-self-duality operator on the twisted bundle
Pzv over S1 � zY .

To prove (38) we may assume kD 1 and pD 2. In this case the first and third equations
follow from Theorem A.5, the fourth equation follows from the Atiyah–Singer index
theorem (the second Chern class of the principal bundle Pzv! S1� zY is the degree of
zv ), and the last equation is obvious from the definitions. To prove the second equation
in (38) consider the operator family

D.s/ WD
�
HA.s/C "Id

�
˚
�
H00C "Id

�
on the Hilbert space

H WDL2.Y;T�Y ˝ g/˚L2.Y; g/˚L2.Y 0;T�Y 0˝ g/˚L2.Y 0; g/

with the constant dense domain dom D.s/DW0 , where

W0 WDW
1;2

0
.Y;T�Y ˝ g/˚W

1;2
0
.Y; g/˚W

1;2
0
.Y 0;T�Y 0˝ g/˚W

1;2
0
.Y 0; g/:

As in Remark 4.5, this choice of domain makes D.s/ closed, symmetric, and injective.
Moreover, the Gelfand–Robbin quotient and its symplectic structure

V WD dom D.s/�=dom D.s/DW =W0

are independent of s . Now, by Appendix B, self-adjoint extensions of D.s/ are in
one-to-one correspondence with Lagrangian subspaces of V . The operators in the first
row of (38) all correspond to the Lagrangian subspace

ƒ1 WD

�
.˛; '; ˛0; '0/ 2W 1;2

ˇ̌̌̌
�˛j@Y ;�˛

0j@Y 0 D 0;

˛j@Y ; ˛
0j@Y 0 2 T0L

�.
W0 � V;
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where W 1;2 WDW 1;2.Y;T�Y ˝g˚g/�W 1;2.Y 0;T�Y 0˝g˚g/�W . The operators
in the second row of (38) all correspond to the “diagonal”

ƒ2 WD

8<:.˛; '; ˛0; '0/ 2W 1;2

ˇ̌̌̌
ˇ̌ 'j@Y D '

0j@Y 0 ;

˛j@Y D ˛
0j@Y 0 ;

�˛j@Y D �˛
0j@Y 0

9=;
�

W0 � V:

For i D 1; 2 and s 2R let D.s/ƒi
W dom D.s/ƒi

!H denote the restriction of D.s/�

to the preimage of ƒi under the projection W !W =W0 . Then D.s/ƒi
is self-adjoint.

Moreover, we have D.sC1/DQ�1D.s/Q, where QW H!H is given by conjugation
with the gauge transformation v and satisfies � �Q� 2W0 for all � 2W since v � 1l
near @Y . This implies that

ƒ0 WD .ker D.0/�˚W0/=W0 D .ker D.1/�˚W0/=W0:

Then, by the choice of ", the Lagrangian subspaces ƒ1 and ƒ2 are transverse to ƒ0 .
Moreover, they are compact perturbations of ƒ?

0
by Lemma B.10, since the graph norm

on dom D.s/ƒi
is equivalent to the W 1;2 –norm; see (35). The second identity in (38)

follows from Remark B.14, which asserts that the spectral flow of fD.s/ƒgs2Œ0;1� is
independent of the Lagrangian subspace ƒ� V that is transverse to ƒ0 and a compact
perturbation of ƒ?

0
. This proves (38) and thus (ii).

We prove (iii) and (iv). That two isomorphic pairs .v0;A0/ and .v1;A1/D u�.v0;A0/

have the same degree follows from (ii) and the fact that conjugation by u identifies
kernel and cokernel of the operator Dv0;A0

with kernel and cokernel of Dv1;A1
. For

every .v;A/2A.S1�Y;L/ denote by Or.Dv;A/ the two element set of orientations of
det.Dv;A/. Then the remaining assertions in (iii) and (iv) can be rephrased as follows.

Claim Let f.v�;A�/g0���1 be a smooth path in A.S1�Y;L/ and uW R! G.Y / be
a morphism from .v0;A0/ to .v1;A1/. Then the isomorphism

u�W Or.Dv0;A0
/! Or.Dv1;A1

/

agrees with the isomorphism induced by the path � 7! .v�;A�/.

When u � 1l, the claim asserts that the automorphism of det.Dv0;A0
/ induced by a

loop in A.S1 �Y;L/ is orientation preserving and hence the determinant bundle over
A.S1 �Y;L/ is orientable. Throughout we write A� Dˆ�.s/ dsCA�.s/ We prove
the claim in five steps.

Step 1 It suffices to assume that v� D 1l for every �.
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Since G.Y / is connected, there exists a smooth homotopy Œ0; 1� � Œ0; 1� ! G.Y / W
.�; �/ 7! v�

�
from v0

�
D v� to v1

�
D 1l. By Lemma 4.8 below with X D Œ0; 1�, there

exists a smooth map Œ0; 1�� Œ0; 1��R! G.Y / W .�; �; s/ 7! u�
�
.s/ such that

v�� D u��.s/
�1v�u��.sC 1/; u0

�.s/D 1l:

Define A�� WD .u
�
�/
�A�; u� WD .u�0/

�1uu�1:

Then .v�
�
/�A�

�
.s/DA�

�
.sC 1/, A�

1
D .u� /�A�

0
, and v�

1
D u� .s/�1v�

0
u� .sC 1/: Hence

.v�
�
;A�

�
/ 2 A.S1 � Y;L/ for all � and �, and u� is a morphism from .v�

0
;A�

0
/ to

.v�
1
;A�

1
/ for every � . By continuity, the claim holds for � D 0 if and only if it holds

for � D 1. Since v1
�
D 1l for every �, this proves Step 1.

Step 2 It suffices to assume that v� D 1l and ujS1�† D 1l.

By Step 1 we can assume v� D 1l. The restriction of the map uW S1 �Y ! G to the
boundary has degree zero (see eg [22, Section 5,Lemma 1]). Hence there exists a
smooth path Œ0; 1�! G.P / W � 7! u� such that u0 D u and u1jS1�† D 1l. Composing
the paths fA�g0���1 and f.u�� /�A0g0���1 we obtain a homotopy of homotopies
� 7! fA�

�
g0���1 with A0

�
DA� and A�

1
D .u� /�A�

0
. Hence Step 2 follows as in Step 1

by continuity.

Step 3 Using (L2) we see that it suffices to assume that v� D 1l, ujS1�† D 1l, and
there exists a smooth map Œ0; 1��S1! Gz.†/ W .�; s/ 7!w�.s/ satisfying A�.s/j† D

w�.s/
�1dw�.s/ and w�.sC 1/D w�.s/, w0.s/D w1.s/, w0.0/D 1l.

By Step 2 we can assume v� D 1l and ujS1�@Y D 1l. Then A�.sC 1/D A�.s/ and
A0.s/DA1.s/ for all s and �. Since L=Gz.†/ is connected and simply connected, the
loops Œ0; 1�! L W � 7!A�.0/j† and S1! L W s 7!A0.s/j† are homotopic to loops
in the based gauge equivalence class of the zero connection in L. This implies that
there is a smooth homotopy Œ0; 1�2 � S1! L W .�; �; s/ 7! B�

�
.s/ of homotopies of

loops, satisfying
B��.sC 1/D B��.s/; B�0.s/D B�1.s/;

starting at B0
�
.s/DA�.s/j† and ending at a homotopy of loops satisfying

B1
�.0/;B

1
0.s/ 2

n
w�1dw

ˇ̌
w 2 Gz.†/

o
:

The composition of the map Œ0; 1�2! L W .�; s/ 7! B1
�
.s/ with the projection L!

L=Gz.†/ maps the boundary to a point. Since �2.L=Gz.†//D 0 the homotopy � 7!
B� can be extended to the interval 0� � � 2 so that B2

�
.s/Dw�.s/

�1dw�.s/: This
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determines the map Œ0; 1��R! Gz.†/ W .�; s/ 7! w�.s/ uniquely, hence w satisfies
the requirements of Step 3. Since the restriction map A.Y;L/! L is a homotopy
equivalence, there exists a smooth homotopy Œ0; 2�� Œ0; 1�!A.P1l;L/ W .�; �/ 7!A�

�

with A�
1
D u�A�

0
from A0

�
DA� to A2

�
satisfying A2

�
.s/j† D B2

�
.s/. Step 3 follows

since, by continuity, the claim holds for � D 0 if and only if it holds for � D 2.

Step 4 It suffices to assume that v� D v is independent of � and there exists a
neighbourhood N � Y of @Y such that vjN D 1l, A�.s/jN D 0, ˆ�.s/jN D 0, and
u.s/jN D 1l.

By Step 3 we can assume v�D 1l, ujS1�† D 1l, and A�.s/j† Dw�.s/
�1dw�.s/ for a

smooth map wW Œ0; 1��S1!Gz.†/. By a further homotopy argument we may assume
that w is transversally constant near the edges of the square, @�w�.s/D 0 for �' 0

and �' 1, and @sw�.s/D 0 for s' 0 and s' 1. Since every gauge transformation on
† extends to a gauge transformation on Y and the same holds for families parametrized
by contractible domains, there is a smooth map Œ0; 1�2! G.Y / W .�; s/ 7! u�.s/ such
that

u�.s/j† D w�.s/
�1:

This map can be chosen such that @�u�.s/D0 for �'0 and �'1, and @su�.s/D0 for
s ' 0 and s ' 1. Moreover, we can achieve �–independence of v0

�
WD u�.0/

�1u�.1/.
To see this, note that v0

�
j†D 1l and there is a ı > 0 such that @�v0�D 0 for � 62 .ı; 1�ı/.

Let ˇW Œ0; 1�! Œ0; 1� be a smooth monotone cutoff function such that ˇ.�/ D � for
� 2 Œı; 1� ı�, ˇ � 0 for � ' 0, and ˇ � 1 for � ' 1. Now we can replace u�.s/

by u�.s/.v
0
ˇ.s/ˇ.�/

/�1 . The resulting map .�; s/ 7! u�.s/ satisfies u�.1/D u�.0/v
0

with v0 independent of �, as claimed. Hence it extends to Œ0; 1��R such that v0 D
u�.s/

�1u�.sC 1/ for all � and s . Define

A0� WD u��A� 2A.Pv0 ;L/; u0 WD u�1
0 uu1:

Then v0j† D 1l, A0
�
j† � 0, u0j† � 1l, and u0

�
.v0;A0

0
/D .v0;A0

1
/. Moreover u� is a

morphism from .1l;A�/ to .v0;A0
�
/ for every �. This gives a commuting diagram

det.D1l;A0
/

u�

�! det.D1l;A1
/??yu�

0

??yu�
1

det.Dv0;A0
0
/

u0
�

�! det.Dv0;A0
1
/:

There is a second diagram where the horizontal arrows are induced by the paths � 7!
.1l;A�/ and � 7! .v0;A0

�
/D u�

�
.1l;A�/. That this second diagram commutes as well

follows from a homotopy argument; namely the space of smooth maps Œ0; 1�2!G.Y / W
.s; �/ 7! u�.s/ is connected and the diagram obviously commutes when u�.s/� 1l.
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This shows that the claim holds for .u; 1l;A�/ if and only if it holds for .u0; v0;A0
�
/.

Hence Step 4 follows from a further homotopy argument (to achieve the relevant
boundary conditions and vanishing of ˆ in a neighbourhood of @Y ).

Step 5 We prove the claim.

By Step 4, we may assume that v� D v and there exists a neighbourhood N � Y of
@Y such that vjN D 1l, A�.s/jN D 0, ˆ�.s/jN D 0, and u.s/jN D 1l. We shall argue
as in the proof of (ii), namely choose a handle body Y 0 with @Y 0 D x† and transfer the
problem to the closed 3–manifold zY WD Y [† Y 0 .

Since the map on orientations induced by the path � 7!A� is invariant under homotopy
we may assume that the path is the straight line

A� D .1��/AC�u�A;

where A 2A.Pv/ vanishes near the boundary and u 2 G.Pv/ is equal to the identity
near the boundary. Since v2G.Y / is the identity near the boundary we can extend it to a
gauge transformation zv2G. zY / via zvjY 0 WD v0 WD1l. Then u2G.Pv/ extends to a gauge
transformation zu2 G.Pzv/ via zu.s/jY 0 WD 1l and A extends to a connection zA 2A.Pzv/
via zAjS1�Y 0 WDA0 D 0. As in the proof of (ii) we have three Fredholm operators
Dv;A on S1 �Y , Dv0;A0 on S1 �Y 0 (both with boundary conditions �˛j@Y D 0 and
˛j@Y 2 T0L), and D

zv;zA on S1 � zY (without boundary conditions). We must prove
that the isomorphism

u�W Or.Dv;A/! Or.Dv;u�A/

agrees with the isomorphism determined by the homotopy. Since both the gauge
transformation and the homotopy act trivially on det.Dv0;A0/ this means that the
isomorphism

(39) u�˝ IdW Or.Dv;A �Dv0;A0/! Or.Dv;u�A �Dv0;A0/

agrees with the homotopy isomorphism. As in the proof of (ii) we choose a family
of Lagrangian subspaces connecting ƒ1 to ƒ2 to obtain two continuous families of
isomorphisms (see Lemma B.16; we use the fact that the Lagrangian subspaces can be
chosen as compact perturbations of ƒ?

0
). For ƒ1 the gauge transformation induces

the isomorphism (39) and for ƒ2 the isomorphism

(40) zu�W Or.D
zv;zA/! Or.D

zv;zu� zA/

and similarly for the homotopy induced isomorphisms. For ƒ2 both isomorphisms
agree by the standard theory for self-duality operators on closed 4–manifolds (see
Donaldson [9]). Hence they agree for ƒ1 . This proves the claim and the theorem.
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Lemma 4.8 Let X be a manifold and Œ0; 1��X ! G.Y / W .�;x/ 7! v�x be a smooth
map. Then there is a smooth map

Œ0; 1��X �R! G.Y / W .�;x; s/ 7! u�x.s/

such that

(41) v�x D u�x.s/
�1v0

xu�x.sC 1/; u�x.0/D 1l:

Proof Choose a cutoff function ˇW Œ0; 1�! Œ0; 1� such that ˇ.s/D 0 for s ' 0 and
ˇ.s/D 1 for s ' 1. Define

u�x.s/ WD .v
0
x/
�1vˇ.s/�x ; 0� s � 1:

Then u�x.s/ D 1l for s ' 0 and u�x.s/ D .v0
x/
�1v�x for s ' 1. Hence u�x extends

uniquely to a smooth map from R to G.Y / that satisfies (41); the extension to .1;1/
is given by u�x.sC1/ WD .v0

x/
�1u�x.s/v

�
x and the extension to .�1; 0/ by u�x.s�1/ WD

v0
xu�x.s/.v

�
x/
�1 , in both cases for s > 0. Moreover, the resulting map Œ0; 1��X �R!

G.Y / is smooth in all variables.

5 Exponential decay

Let Y be a compact oriented 3–manifold with boundary @Y D† and let L�A.†/ be a
gauge invariant, monotone Lagrangian submanifold satisfying (L1)–(L2). (Actually this
section only requires the compactness of L=Gz.†/ from (L2).) We fix a perturbation
Xf W A.Y /!�2.Y; g/ as in Section 2. The purpose of this section is to establish
the exponential decay for finite energy solutions in the following two Theorems. The
unperturbed Yang–Mills energy of a connection A 2A.R�Y / is 1

2

R
jFAj

2 . In the
presence of a holonomy perturbation the gauge invariant energy of ADACˆ ds is

Ef .A/D
1

2

Z
R�Y

ˇ̌
FACXf .A/

ˇ̌2
D

1

2

Z
R�Y

�ˇ̌
@sA� dAˆ

ˇ̌2
C
ˇ̌
FACXf .A/

ˇ̌2�
:

An anti-self-dual connection in temporal gauge satisfies @sAC�
�
FACXf .A/

�
D 0

and ˆD 0 and the energy simplifies to Ef .A/D
R

R�Y j@sAj2 .

Theorem 5.1 Suppose that every critical point of the perturbed Chern–Simons func-
tional CSLChf is nondegenerate. Then there is a constant ı >0 such that the following
holds. If AW Œ0;1/!A.Y / is a smooth solution of

(42) @sAC�.FACXf .A//D 0; A.s/j@Y 2 L;
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satisfying Z 1
0

Z
Y

j@sAjp dvolY ds <1; p � 2;

then there is a connection A1 2 A.Y;L/ such that FA1 CXf .A1/ D 0 and A.s/

converges to A as s!1. Moreover, there are constants C0;C1;C2; : : : such that

kA�A1kCk.Œs�1;sC1��Y / � Cke�ıs

for every s � 1 and every integer k � 0.

Remark 5.2 Let X be a compact Riemannian manifold with boundary. We shall need
gauge invariant Sobolev norms on the spaces �`.X; g/ depending on a connection
A 2A.X /. For p � 1 and an integer k � 0 we define

k˛kW k;p;A WD

� kX
jD0

Z
X

ˇ̌
r

j
A˛
ˇ̌p�1=p

for ˛ 2�`.Y; g/, where rj
A˛ denotes the j –th covariant derivative of ˛ twisted by

A. For p D1 we define

k˛kW k;1;A WD k˛kCk ;A WD max
0�j�k

sup
X

ˇ̌
r

j
A˛
ˇ̌
:

These norms are gauge invariant in the sense that


u�1˛u





W k;p;u�A
D k˛kW k;p;A

for every gauge transformation u 2 G.X /. In particular, for k D 0 the Lp –norms are
gauge invariant and do not depend on the connection A.

Theorem 5.3 Suppose that every critical point of the perturbed Chern–Simons func-
tional is nondegenerate. Then, for every p > 1, there are positive constants ", ı ,
C0;C1; : : : such that the following holds for every T � 1. If AW Œ�T;T �!A.Y / is a
smooth solution of (42) satisfying

(43)
Z T

�T

Z
Y

j@sAj2 dvolY ds < ";

then, for every s 2 Œ0;T � 1� and every integer k � 0,

(44) k@sAkCk.Œ�s;s��Y /;A � Cke�ı.T�s/
k@sAkL2..Œ�T;1�T �[ŒT�1;T �/�Y / ;
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where A 2A.Œ�T;T ��Y / is the connection associated to the path A. Moreover, there
is a connection A0 2A.Y;L/ with FA0

CXf .A0/D 0 such that

(45) kA�A0kC0.Œ�s;s��Y /CkA�A0kW 1;p.Œ�s;s��Y /;A0

� C0e�ı.T�s/
k@sAkL2..Œ�T;1�T �[ŒT�1;T �/�Y /

for every s 2 Œ0;T � 1�.

The proofs of these results will be given below. Theorem 5.1 guarantees the existence of
a limit for each finite energy solution of (42), however, the constants in the exponential
decay estimate depend on the solution. With the help of Theorem 5.3 one can show
that these constants can be chosen independent of the solution of (42) and depend only
on the limit A1 . This will be important for the gluing analysis.

Corollary 5.4 Let A1 be a nondegenerate critical point of the perturbed Chern–
Simons functional CSLChf . Then there are positive constant ı , ", C0;C1; : : : such
that the following holds. If AW Œ0;1/!A.Y / is a smooth solution of (42) satisfyingZ 1

0

Z
Y

j@sAj2 dvolY ds < "; lim
s!1

A.s/DA1;

then kA�A1kCk.Œs;1/�Y / � Cke�ıs k@sAkL2.Œ0;1/�Y /

for every s � 1 and every integer k � 0.

Proof Let ı , ", C 0
k

be the constants of Theorem 5.3. Then

k@sAkCk.Œs;1/�Y /;A � C 0ke�ıs k@sAkL2.Œ0;1/�Y /

for k D 0; 1; 2; : : : and s � 1. For k D 0 the desired estimate follows by integrating
from s to 1 because the C0 –norm is independent of the reference connection A. Now
argue by induction. If the result has been established for any k then there is a constant
ck , depending on Ck , such that

k˛kCkC1.Œs;1/�Y / � ck k˛kCkC1.Œs;1/�Y /;A

for every ˛W Œ1;1/!�1.Y; g/. Applying this to ˛ D @sA we obtain

k@sAkCkC1.Œs;1/�Y / � ckC 0kC1e�ıs k@sAkL2.Œ0;1/�Y /

and the required CkC1 –estimate follows again by integrating from s to1. This proves
the corollary.
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The proof of Theorem 5.1 and Theorem 5.3 is based on the following three lemmas
concerning solutions on a long cylinder with little energy. We show that such solutions
are uniformly close to a critical point and establish uniform estimates for the Hessian
and the linearized operator.

Lemma 5.5 For every � > 0, � > 0, and p > 1 there is an " > 0 such that the
following holds. If AW Œ��; ��!A.Y / is a solution of (42) that satisfiesZ �

��

Z
Y

j@sAj2 dvolY ds < "

then there is a connection A1 2A.Y;L/ with FA1 CXf .A1/D 0 such that

kA.0/�A1kW 1;p.Y /;A1
CkA.0/�A1kL1.Y /Ck@sA.0/kL1.Y / < �:(46)

Proof Assume by contradiction that this is wrong. Then there exist constants � > 0,
� > 0, and p > 1 and a sequence A� W Œ��; ��!A.Y / of solutions of (42) such that

(47) lim
�!1

Z �

��

Z
Y

j@sA� j
2 dvolY ds D 0

but (46) fails. Let A� 2 A.Œ��; �� � Y / denote the connection in temporal gauge
associated to the path A� . Then FA� CXf .A�/ converges to zero in the L2 –norm,
by (47) and (42). Now it follows from the energy quantization of Wehrheim [36,
Theorems 1.2, 2.1] (for general Lagrangians see Mrowka and Wehrheim [23], and
for the perturbed version see Theorem D.4) that A� satisfies an L1–bound on the
curvature. Hence, by [35, Theorem B] and Theorem D.4, there is a subsequence (still
denoted by A� ) and a sequence of gauge transformations u� 2 G.Œ��=2; �=2��Y /

such that u��A� converges to A1DA1.s/Cˆ1.s/ ds 2A.Œ��=2; �=2��Y / in the
C1–topology. By (42) and (47) the limit connection satisfies

@sA1.s/� dA1.s/ˆ1.s/D 0; FA1.s/CXf .A1.s//D 0; A1.s/j† 2 L

for every s 2 Œ��=2; �=2�. After modifying the gauge transformations u� we may as-
sume in addition that ˆ1.s/D0 and A1.s/DA1 is independent of s . It then follows
that u�1

� @su� converges to zero in the C1–topology. So after a further modification we
can assume that the u�.s/D u� is independent of s , and so the convergent connections
u��A� are in temporal gauge, given by the paths Œ��=2; �=2�!A.Y / W s 7! u��A�.s/.
Hence

lim
�!1



A�.0/� .u
�1
� /�A1




W 1;p.Y /;u�1�

� A1
D lim
�!1



.u��A� �A1/.0/




W 1;p;A1
D 0;

lim
�!1



A�.0/� .u
�1
� /�A1




L1.Y /

D lim
�!1



.u��A� �A1/.0/




L1.Y /
D 0;

lim
�!1

k@sA�.0/kL1.Y / D lim
�!1



@s.u
�
�A�/.0/




L1.Y /

D k@sA1kL1.Y / D 0:
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This contradicts the assumption that (46) fails, and thus proves the lemma.

Lemma 5.6 Suppose that every critical point of the perturbed Chern–Simons func-
tional CSLC hf is nondegenerate. Then, for every � > 0, there are positive constants
c0 and " with the following significance. If AW Œ��; ��!A.Y / is a solution of (42)
such that Z �

��

Z
Y

j@sAj2 dvolY ds < ";

then for every ˛ 2�1
A.0/

.Y; g/

k˛kL6.Y /Ck˛kL4.@Y / � c0

�

dA.0/˛C dXf .A.0//˛




L2.Y /
C


d�A.0/˛




L2.Y /

�
:

Proof Assume by contradiction that this is wrong. Then there is a constant � > 0,
a sequence A� W Œ��; ��!A.Y / of solutions of (42) with (47), and a sequence ˛� 2
�1

A�.0/
.Y; g/ such that

k˛�kL6.Y /Ck˛�kL4.@Y /

dA�.0/˛� C dXf .A�.0//˛�




L2.Y /
C


d�

A�.0/
˛�




L2.Y /

�!
�!1

1:(48)

Arguing as in the proof of Lemma 5.5 we find a subsequence, still denoted by A� , and
a sequence of gauge transformations u� 2 G.Y / such that u��A�.0/ converges in the
C1–topology to a connection A1 2A.Y;L/ that satisfies FA1 CXf .A1/D 0. By
assumption A1 is nondegenerate, so by Corollary 3.6 there is a constant C such that

(49)


.˛; 0/



W 1;2.Y /
� C



HA1.˛; 0/




L2.Y /

for every .˛; 0/ 2 domHA1 . By Theorem E.2 this estimate is stable under C1 –
small perturbations of A1 , and by gauge invariance it continues to hold with A1
replaced by A�.0/. Precisely, let U � A.Y;L/ be a neighbourhood of A1 and
fQAgA2U be an operator family that satisfies the requirements of Theorem E.2. Then
u��A�.0/2U for large � add the isomorphisms Q� WDQu��A�.0/ � Id from domHA1

to domHu��A�.0/ converge to QA1 � Id D Id in both L.W 1;2/ and L.L2/; so the
sequence Q�1

� Hu��A�.0/Q� has the constant domain domHA1 , and it converges to
HA1 in the operator norm on L.W 1;2;L2/. Hence, for large � , we can replace HA1

by Q�1
� Hu��A�.0/Q� in (49) to obtain estimates with a uniform constant C . Since

Q� converges to the identity in the relevant operator norms we obtain the following
estimate with uniform constants Ci but varying domain:

k˛kL6.Y /Ck˛kL4.@Y / � C1



.˛; 0/


W 1;2.Y /

� C2



Hu��A�.0/.˛; 0/




L2.Y /

for every .˛; 0/ 2 domHu��A�.0/ . Here we used the Sobolev embedding W 1;2.Y / ,!

L6.Y / and the trace theorem W 1;2.Y / ,!L4.@Y /. Since Tu�ALD u�1.TAL/u we
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can apply the last estimate to
�
u�1
� ˛�u� ; 0

�
2 domHu��A�.0/ . Since the norms on the

left and right hand side are all gauge invariant the resulting inequality contradicts (48).
This proves the lemma.

Lemma 5.7 Suppose that every critical point of the perturbed Chern–Simons func-
tional CSL C hf is nondegenerate. Then, for every � > �0 > 0, there are positive
constants c0; c1; : : : and " with the following significance. If AW Œ��; ��!A.Y / is a
solution of (42) such that Z �

��

Z
Y

j@sAj2 dvolY ds < ";

then, for every smooth path Œ��; ��!�1.Y; g/��0.Y; g/ W s 7! .˛.s/; '.s// satisfying
˛.s/ 2�1

A.s/
.Y; g/ and every integer k � 0, we have



.˛; '/

Ck.Œ��0;�0��Y /;A

� ck

�

DA.˛; '/




W kC2;2.Œ��;���Y /;AC


.˛; '/



L2.Œ��;���Y /

�
:

Proof If this is wrong, then there exist constants k � 0, � > �0 > 0 and a sequence
A� W Œ��; �� ! A.Y / of solutions of (42) with (47), for which the constant in the
estimate blows up. As in the proof of Lemma 5.5 we find a subsequence of the
connections on Œ��; ���Y , still denoted by A� , and gauge transformations u� 2 G.Y /
such that u��A� converges in the C1–topology on Œ��=2; �=2� � Y to a constant
connection A1 DA1 2A.Y;L/. Now by Theorem 3.11 and the Sobolev embedding
theorem, and with the norms of Remark 5.2, there is a constant C such that for every
.˛; '/ satisfying ˛.s/ 2�1

A1
.Y; g/,

(50)


.˛; '/

Ck.Œ��0;�0��Y /;A1

� C
�

DA1.˛; '/




W kC2;2.Œ��;���Y /;A1

C


.˛; '/



L2.Œ��;���Y /;A1

�
:

The same argument as in the proof of Lemma 5.6 (with the sequence of operators
Q�.s/ WDQu��A�.s/� Id) shows that this estimate continues to hold with A1 replaced
by u��A� . Note that Du��A�u�1

� .˛� ; '�/u� D u�1
�

�
DA� .˛� ; '�/

�
u� . So since the

norms are gauge invariant, the above estimate also holds with A1 replaced by A� ,
which contradicts the choice of A� and thus proves the lemma.

Proof of Theorem 5.1 The proof has three steps.
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Step 1 There is a uniform constant ı > 0 (independent of the solution A) and a
constant C (which depends on A) such that

@sA.s/




L2.Y /

� Ce�ıs for s � 0:

Define g.s/ WD
1

2

Z
Y

ˇ̌
@sA

ˇ̌2
D

1

2

Z
Y

ˇ̌
FACXf .A/

ˇ̌2
:

Then g0.s/D

Z
Y

h
�
dA@sAC dXf .A/@sA

�
^�

�
FACXf .A/

�
i;

and hence

g00.s/D

Z
Y

ˇ̌
dA@sAC dXf .A/@sA

ˇ̌2
�

Z
Y

h
�
Œ@sA^ @sA�C dA@

2
s A
�
^@sA i

�

Z
Y

h
�
d2Xf .A/.@sA; @sA/C dXf .A/@

2
s A
�
^@sA i

D

Z
Y

ˇ̌
dA@sAC dXf .A/@sA

ˇ̌2
�

Z
Y

h @2
s A^

�
dA@sAC dXf .A/@sA

�
i

�

Z
Y

h
�
Œ@sA^ @sA�C d2Xf .A/.@sA; @sA/

�
^@sA i �

Z
†

h @2
s A^@sA i

� 2


dA@sAC dXf .A/@sA



2

L2.Y /

� c1



@sA




L1.Y /



@sA


2

L2.Y /
� c1



@sA


3

L3.@Y /

�

�
4ı2
� c2



@sA




L1.Y /

� �

@sA


2

L2.Y /
C


@sA



2

L3.@Y /

�
� 2ı2



@sA


2

L2.Y /

for uniform constants ci and ı > 0 and s sufficiently large. Here we used (42).
In the first inequality the term

R
†h @

2
s A^@sA i is controlled by k@sAk3

L3.@Y /
; see

Wehrheim [36, Lemma 2.3; 23] for general Lagrangian submanifolds. The first in-
equality also uses the estimate on d2Xf .A/ from Proposition D.1 (v). For the second
inequality note that every solution of (42) satisfies @sA.s/ 2 TA.s/L and

�@sAj@Y D�.FACXf .A//j@Y D 0;

d�A@sAD �dA.FACXf .A//D 0:
(51)

These identities use (10) and the Bianchi identity as well as the facts that the perturbation
vanishes near @Y and that the Lagrangian submanifold L is contained in the flat
connections on @Y . Now we can apply Lemma 5.6 to the paths Œ�1; 1�!A.Y / W � 7!
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A.sC �/ (whose derivative is L2 –small due to the finite Lp –energy of the path) and
to the 1–forms ˛ D @sA.s/ 2�1

A.s/
.Y; g/, for sufficiently large s � 0 to obtain

@sA



2

L2.Y /
C


@sA



2

L3.@Y /
� .2ı2/�1



dA@sAC dXf .A/@sA


2

L2.Y /
:

Here we have chosen .2ı2/�1 D .c0c/2 with the constant c0 from Lemma 5.6 and a
further Sobolev constant c , so ı>0 is independent of the solution A. The last inequality
in the estimate of g00 is due to k@sA.s/kL1.Y / � 2ı2c�1

2
for s sufficiently large. This

follows from Lemma 5.5 applied to the paths Œ�1; 1�!A.Y / W � 7!A.sC �/. So we
have g00.s/ � 4ı2g.s/ for s sufficiently large. This implies the assertion of Step 1,
ie g.s/� C 2e�2ıs , by a standard argument (see eg the proof of [29, Lemma 2.11]).

Step 2 Let ı > 0 be the constant of Step 1 and A 2A.Œ0;1/�Y / be the connection
associated to the path A. For every integer k � 0 there is a constant Ck such that for
every s � 1 

@sA




Ck.Œs�1;sC1��Y /;A � Cke�ıs:

Fix k � 0 and consider the connections A� 2 A.Œ�2; 2� � Y / given by the paths
A� .s/ WD A.� C s/. Due to the finite Lp –energy of A on Œ0;1/ for some p � 2

these paths on Œ�2; 2� satisfy k@sA�kL2.Œ�2;2��Y /! 0 as � !1. So by Lemma 5.7
there is a constant ck such that for all sufficiently large �

.˛; '/

Ck.Œ�1;1��Y /;A�

� ck

�

DA� .˛; '/




W kC2;2.Œ�2;2��Y /;A�
C


.˛; '/



L2.Œ�2;2��Y /

�
for every smooth 'W Œ�2; 2�!�0.Y; g/ and ˛W Œ�2; 2�!�1.Y; g/ satisfying ˛.s/ 2
�1

A� .s/
.Y; g/. Now apply the estimate to the pair

˛.s/ WD @sA.� C s/; '.s/ WD 0:

Differentiate (42) and recall (51) to see that .˛; '/ 2 kerDA� and hence

k@sAkCk.Œ��1;�C1��Y /;A � ck k@sAkL2.Œ��2;�C2��Y / � ckC.2ı/�
1
2 e2ıe�ı� :

The last inequality follows from Step 1 and proves Step 2.

Step 3 Let ı > 0 be the constant of Step 1. Then there is a connection A1 2A.Y;L/
such that FA1 CXf .A1/D 0 and a sequence of constants C0;C1;C2; : : : such that

(52)


A�A1




Ck.Œs�1;sC1��Y /

� Cke�ıs

for every integer k � 0 and every s � 1.
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By Step 2 we have k@sA.s/kL1.Y / � C0e�ıs for every s � 0. Hence the integral

A1 WD A.0/C

Z 1
0

@sA.s/ ds D lim
s!1

A.s/

converges in L1.Y;T�Y˝g/ and defines a C0 –connection on Y . This directly implies
A1j† 2 L. Moreover, (52) holds with k D 0. We prove by induction on k that A1
is a Ck connection that satisfies (52). For k D 0 this is what we have just proved. Fix
an integer k � 1 and suppose that A1 is a Ck�1 connection that satisfies (52) with k

replaced by k�1. Then A is bounded in Ck�1 and so there is a constant C such that

(53) k˛kC`.Œs�1;sC1��Y / � C k˛kC`.Œs�1;sC1��Y /;A

for every `� k , s � 1, and every ˛ 2�1.Œs� 1; sC 1��Y;T�Y ˝ g/. So it follows
from Step 2 that

k@sAkCk.Œs�1;sC1��Y / � C Cke�ıs:

Hence for s1 � s0 � 0

kA.s0/�A.s1/kCk.Y / �

Z s1

s0

k@sAkCk.Y / ds �
C Ck

ı
e�ıs0 :

This shows that A1 is a Ck connection with

kA.s/�A1kCk.Y / �
C Ck

ı
e�ıs:

The exponential decay of @`s .A.s/�A1/D @
`
sA.s/ in Ck�`.Y / for ` D 1; : : : ; k

follows from Step 2 and (53), so this implies (52). Moreover,

FA1 CXf .A1/D lim
s!1

�
FA.s/CXf .A.s//

�
D� lim

s!1
�@sA.s/D 0:

This proves Step 3 and the lemma.

Proof of Theorem 5.3 Let ı > 0 be the constant of Step 1 in the proof of Theorem
5.1. We prove that there are constants C and " > 0 such that the following holds for
every T � 1. If AW Œ�T;T �! A.Y / is a solution of (42) that satisfies (43), then it
also satisfies

(54) k@sA.s/kL2.Y / � Ce�ı.T�jsj/ k@sAkL2..Œ�T;1�T �[ŒT�1;T �/�Y /

for jsj � T � 1=2. Let " > 0 be the constant of Lemma 5.6 with �D 1
4

and assume
that (43) holds with this constant ". Define f W Œ�T;T �!R by

f .s/ WD 1
2
k@sA.s/k2

L2.Y /
:
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Then the same argument as in Step 1 in the proof of Theorem 5.1 shows that there is a
constants c2 , independent of A, such that for jsj � T � 1=4

f 00.s/� 2
�
4ı2
� c2 k@sA.s/kL1.Y /

� �
f .s/Ck@sA.s/k2

L3.@Y /

�
:

Shrinking " if necessary we may assume that k@sA.s/kL1.Y / � 2ı2=c2 by Lemma
5.5 with �D 1=4, and hence

f 00.s/� 4ı2f .s/ for jsj � T � 1=4:

Now (54) follows from Lemma 5.8 below with � D 1=4, ı replaced by 2ı , and T

replaced by T � 1=4.

Integration of (54) yields

k@sAkL2.Œ��3=2;�C3=2��Y / � C 00e�ı.T�j� j/ k@sAkL2..Œ�T;1�T �[ŒT�1;T �/�Y /

for every � 2 Œ�T C2;T �2� with C 00DCe3ı=2ı�1=2 . Now, shrinking " if necessary,
we can apply Lemma 5.7 with �D 3=2 and �0 D 1 to the paths shifted by � . Since
.@sA; 0/ 2 kerDA (as in Step 2 of the proof of Theorem 5.1) we obtain constants Ck

and C 0
k

for every k � 0 such that

k@sAkCk.Œ��1;�C1��Y /;A � C 0k k@sAkL2.Œ��3=2;�C3=2��Y /

� Cke�ı.T�j� j/ k@sAkL2..Œ�T;1�T �[ŒT�1;T �/�Y / :

for every � 2 Œ�T C 2;T � 2�. Taking the supremum over � 2 Œ�sC 1; s � 1� then
proves the assertion (44) on @sA.

To prove (45) it remains to estimate the derivatives tangent to Y . We fix any two
constants � > 0 and p > 1 and then, by Lemma 5.5, find a connection A0 2A.Y;L/
such that FA0

CXf .A0/D 0 and

kA.0/�A0kW 1;p.Y /;A0
CkA.0/�A0kL1.Y / � �:

After a gauge transformation on A0 we can assume that A.0/ lies in the local slice
SA.0/ of A.0/, that is d�

A0
.A.0/�A0/D 0 and �.A.0/�A0/j@Y D 0. Since all critical

points are nondegenerate, Corollary 3.6 provides a universal constant c0 depending on
q >maxf3;pg such that for all ˛ 2�1.Y; g/ with �˛j@Y D 0,

k˛kL1.Y /Ck˛kW 1;p.Y /;A0

� c0

�

dA0
˛C dXf .A0/˛




Lq.Y /

C




d�A0
˛





Lq.Y /
C




…?TAL.˛j@Y /





Lq.@Y /

�
:
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When applying this to ˛ DA.0/�A0 we can use the estimate


…?TAL.˛j@Y /





Lq.@Y /
� c1 k.A.0/�A0/j@Y k

2
Lq.@Y /

with a uniform constant c1 since A.0/j@Y and A0j@Y both lie in the submanifold
L � A0;q.†/. More precisely, we abbreviate A0

0
WD A0j@Y , then we can use the

exponential map in Lemma E.3 to write

A.0/j@Y D‚A0
0
.ˇ/DA00CˇC

Z 1

0

�
D‚A0

0
.�ˇ/�D‚A0

0
.0/
�
ˇ d�

for some ˇ 2 TA0
L, using the identities ‚A.0/DA and D‚A D Id. The map ‚ is

smooth and gauge invariant, and L=G.†/ is compact, so by the choice of � > 0 we
obtain arbitrarily small bounds on kˇkLq.†/ and a uniform linear bound kD‚A0

0
.�ˇ/�

D‚A0
0
.0/k � c0kˇkLq.†/ . This implies the uniform estimate

�A.0/j@Y �A00

�
�ˇ




Lq.†/

� c0kˇk2Lq.†/ � c1k.A.0/�A0/j@Y k
2
Lq.@Y /:

We also use the identity dA0
˛ D FA.0/�FA0

�
1
2
Œ˛^˛� to obtain

kA.0/�A0kL1.Y /CkA.0/�A0kW 1;p.Y /;A0

� c0

�
kFA.0/CXf .A.0//kLq.Y /Ck

1
2
Œ˛^˛�kLq.Y /

CkXf .A0C˛/�Xf .A0/� dXf .A0/˛kLq.Y /C c1k˛j@Y k
2
Lq.@Y /

�
� c0k@sA.0/kLq.Y /C c2�kA.0/�A0kL1.Y /:

Here c2 is another uniform constant and we have used Proposition D.1 (v) for the
perturbation term. If we choose �D .2c2/

�1 and the corresponding "> 0 from Lemma
5.5, then this proves

kA.0/�A0kL1.Y /CkA.0/�A0kW 1;p.Y /;A0
� 2c0k@sA.0/kLq.Y /:

Now (45) follows by integrating over the estimate (44) for @sA.

Lemma 5.8 For every ı > 0 and every � > 0 there exists a constant C such that the
following holds. If T � � and f W Œ�T;T �!R is a C2 –function satisfying

(55) f 00.s/� ı2f .s/; f .s/� 0

for all s 2 Œ�T;T �, then

(56) f .s/� Ce�ı.T�jsj/E�.f /
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for all jsj � T � � , where

E�.f / WD

Z ��T

�T

f .s/ dsC

Z T

T��

f .s/ ds:

Proof We claim that there is a constant C0DC0.ı; �/>0 such that every C2 –function
f W Œ�T;T �!R with T � � that satisfies (55) also satisfies

(57) f 0.s/� ıf .s/� �C0e�ıT E�.f /

for all 0� s � T . To see this note that, for every s 2 Œ�T;T �, we have

d
ds

eıs
�
f 0.s/� ıf .s/

�
D eıs

�
f 00.s/� ı2f .s/

�
� 0:

f 0.s/� ıf .s/� eı.r�s/
�
f 0.r/� ıf .r/

�
Hence

for all �T � r � s � T . Integrating this over the interval t � r � t C �=2 for
�T � t � ��=2 �T � t � �=2�T and s � 0 gives

f 0.s/� ıf .s/�
2e�ıs

�

Z tC�=2

t

eır
�
f 0.r/� ıf .r/

�
dr

D
2e�ıs

�

Z tC�=2

t

�
d
dr
.eırf .r//� 2ıeırf .r/

�
dr

� �
2

�
eıtf .t/�

4ıeı�=2

�
eıtE�.f /:

Integration over the interval �T � t � �=2� T yields (57) with C0 WD 12��2eı� .
By (57), we have

d
ds

e�ısf .s/D e�ıs
�
f 0.s/� ıf .s/

�
� �C0e�ı.sCT /E�.f /

for 0� s � T and hence

e�ıtf .t/� e�ısf .s/� �C1e�ıT E�.f /

for 0� s � t � T , where C1 WD C0=ı . For s � T � � � t � T this implies

f .s/� eı.s�t/f .t/CC1eı.s�T /E�.f /� eı.s�T /
�
eı�f .t/CC1E�.f /

�
:

Integrating this inequality over the interval T ��� t � T gives (56) for 0� s � T ��

with C WD C1C �
�1eı� . To prove the estimate for �T C � � s � 0 replace f by the

function s 7! f .�s/.
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We close this section with a useful exponential estimate for the solutions of the linearized
equation.

Theorem 5.9 Let AW Œ0;1/!A.Y;L/ be a finite energy solution of (42) that con-
verges to a nondegenerate critical point AC 2A.Y;L/ of CSLChf . Then there exists
a constant ı > 0 with the following significance. If ˛W Œ0;1/!�1.Y; g/ is a smooth
solution of the equation

@s˛.s/D �
�
dA.s/˛C dXf .A.s//˛.s/

�
; d�A.s/˛.s/D 0

satisfying the boundary conditions ˛.s/j† 2 TA.s/L and �˛.s/j† D 0, andZ 1
0

e�ıs k˛.s/k2
L2.Y /

ds <1;

then there are constants Ck such that, for every s � 1 and every integer k � 0,

k˛kCk.Œs�1;sC1��Y / � Cke�ıs:

Proof We prove first that

(58) k˛.s/k2
L2.Y /

� Ce�ıs:

Since the limit connection is nondegenerate, Corollary 3.6 provides an estimate

k˛.s/kW 1;2.Y / � c


dA.s/˛C dXf .A.s//˛.s/




L2.Y /

for s sufficiently large. This implies that the function

g.s/ WD 1
2
k˛.s/k2

L2.Y /

satisfies

g00.s/D k@s˛k
2
L2 Ch .dAC dXf .A//@s˛; ˛ iC h

�
Œ@sA; ˛�C d2Xf .@sA; ˛/

�
; ˛ i

� 2


dA˛C dXf .A/˛



2

L2.Y /
C

Z
@Y

h @s˛j@Y ^˛j@Y i �Ck@sAk1 k˛k
2
L2.Y /

� 2c�2
k˛k2

W 1;2.Y /
�Ck@sAk1 k˛j@Y k

2
L2.@Y /

�Ck@sAk1 k˛k
2
L2.Y /

� ı2g.s/(59)

for some ı > 0 and all s � s0 . Here we used Proposition D.1 (v) to estimate
kd2Xf .@sA; ˛/kL2.Y / and Theorem E.1 to write ˛.s/j@Y D PA.s/j@Y

ˇ.s/ for tangent
vectors ˇ.s/ 2 TA0

L at the limit connection A0 WD lims!1A.s/j@Y . This gives the
estimateZ

@Y

h @s˛j@Y ^˛j@Y i D

Z
@Y

h
�
@sPA.s/j@Y

�
ˇ^˛j@Y i � Ck@sAk1k˛j@Y k

2
L2.@Y /

:
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The final inequality in (59) follows from the exponential decay of @sA (see Theorem
5.1) with any ı < 2c�1 and sufficiently large s0 . This shows that the function h.s/ WD

e�ıs.g0.s/C ıg.s// is monotonically increasing for s � s0 . We claim that h.s/ � 0

for all s � s0 . Suppose otherwise that there is an s1 � s0 such that c1 WD h.s1/ > 0.
Then h.s/� c1 for all s � s1 , hence

d

ds
.eısg.s//D e2ısh.s/� e2ısc1; s � s1;

and hence, by integration,

eısg.s/�
c1

2ı
e2ıs
�

� c1

2ı
e2ıs1 � eıs1g.s1/

�
:

But this means that the function s 7! e�ısg.s/ is not integrable, in contradiction to our
assumption. Thus we have proved that h.s/� 0 and hence g0.s/� �ıg.s/ for every
s � s0 . Hence either g vanishes identically for all sufficiently large s or g > 0 for all
s � s0 and .log g/0 � �ı . This proves (58).

To obtain bounds on the derivatives of ˛ we use Theorem 3.11 (ii) with DA replaced
by the adjoint �D�A D rs �HA . Since A.s/ converges in the C1 topology for
s!1 we obtain k˛kW kC1;2.Œs�1;sC1��Y / � Ckk˛kL2.Œs�2;sC2��Y / with a uniform
constant Ck for each integer k and all s � 2. The result then follows from the Sobolev
embeddings W kC3;2.Œ�1; 1��Y / ,! Ck.Œ�1; 1��Y /.

6 Moduli spaces and Fredholm theory

In this section we set up the Fredholm theory for the boundary value problem (16). For
the purpose of this paper we could restrict the discussion to the case of a tube R�Y

as base manifold. In view of a future definition of product structures however, we take
some time to introduce a more general class of base manifolds and develop the basic
Fredholm theory for these. For the index computations we then restrict to the case
of a tube. We begin by introducing the basic setup followed by a discussion of the
relevant moduli spaces. The main part of this section then discusses the properties of
the linearized operators.

Instanton data

Definition 6.1 A 4–manifold with boundary space-time splitting and tubular ends is
a triple .X; �; �/ consisting of

� an oriented smooth 4–manifold X with boundary,
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� a tuple � D .�1; : : : ; �m/ of orientation preserving embeddings

�i W Si �†i! @X; i D 1; : : :m;

where each †i is a compact oriented 2–manifold and each Si is either R or
S1 ŠR=Z,

� a tuple �D .�1; : : : ; �n/ of orientation preserving embeddings

�j W .0;1/�Yj !X; j D 1; : : : ; n;

where Yj is a compact oriented 3–manifold with boundary,

satisfying the following conditions.

(i) The images of the embeddings �1; : : : ; �m have disjoint closures and

@X D

m[
iD1

�i.Si �†i/:

(ii) For j D 1; : : : ; n the image Uj WD �j ..0;1/� Yj / of �j is an open subset of
X , the closures of the sets Uj are pairwise disjoint, and the set X n

Sn
jD1 Uj is

compact.

(iii) For every j 2 f1; : : : ; ng there is a subset Ij � f1; : : : ;mg and a map "j W Ij !

f˙1g such that

@Yj D

G
i2Ij

†i ; �j .s; z/D �i."j .i/.sC 1/; z/

for s> 0, i 2 Ij , and z 2†i . The orientation of †i coincides with the boundary
orientation of Yj iff "j .i/D�1.

Definition 6.2 Let .X; �; �/ be a 4–manifold with boundary space-time splitting and
tubular ends. A Riemannian metric g on X is called compatible with the boundary
space-time splitting and the tubular ends if

(i) on each tubular end the metric is of split form

��j g D ds2
Cgj ;

where gj is a metric on Yj independent of s 2 .0;1/,

(ii) each �i can be extended to an embedding x�i W Si � Œ0; "i/�†i ! X for some
"i > 0 such that

x��i g D ds2
C dt2

Cgi;s;t ;

where gi;s;t is a smooth family of metrics on †i .

Geometry & Topology, Volume 12 (2008)



810 Dietmar Salamon and Katrin Wehrheim

A quadruple .X; �; �;g/ with these properties is called a Riemannian 4–manifold with
boundary space-time splitting and tubular ends.

Remark 6.3 (i) On the tubular ends condition (ii) in Definition 6.2 follows from (i).
Indeed, on Uj the extension x�i for i 2 Ij is obtained by composing �j with the
embedding Œ0; "/�†i! Yj associated to geodesic normal coordinates.

(ii) Let .X; �; �;g/ be a Riemannian 4–manifold with boundary space-time splitting
and tubular ends. Then X can be exhausted by compact deformation retracts. Hence
the triple .X; �;g/ is a Riemannian 4–manifold with a boundary space-time splitting
in the sense of [35, Definition 1.2].

Example 6.4 Let Y be a compact oriented 3–manifold with nonempty boundary
@Y D†. Then X WD R � Y satisfies the requirements of Definition 6.1 with the
obvious inclusion � W R � † ! @X , Y1 WD Y , Y2 WD

xY (which has the reversed
orientation), �1.s;y/ WD .sC 1;y/, �2.s;y/ WD .�s� 1;y/. For any metric gY on Y

the metric ds2CgY on R�Y satisfies the conditions of Definition 6.2. If g˙ are two
metrics on Y then, by [35, Example 1.4], there is a metric g on R�Y that satisfies
the conditions of Definition 6.2 and has the form g D ds2Cg˙ for ˙s � 1.

The following result will be needed in the proof of independence of the Floer homology
from the choice of a metric.

Lemma 6.5 Let .X; �; �/ be a 4–manifold with boundary space-time splitting and
tubular ends and, for j D 1; : : : ; n, let gj be a metric on Yj . Then there is a metric g

on X , compatible with the boundary space-time splitting and the tubular ends, such
that (i) in Definition 6.2 holds with the given metrics gj .

Moreover, the space of such metrics g is contractible if we restrict the consideration to
those metrics with "i � " in (ii) for any fixed " > 0.

Proof The construction of a metric with given ends works as in [35, Example 1.4].
Denote by Met.X; �; �/ the set of metrics on X that satisfy (i) in Definition 6.2 and
��i g D ds2C gi;s for i D 1; : : : ;m and some families of metrics .gi;s/s2Si

on †i .
Then Met.X; �; �/ is convex and hence contractible. Fix " > 0 and let Met".X; �; �/�
Met.X; �; �/ denote the subset of all metrics that are compatible with the boundary
space-time splitting and the tubular ends as in Definition 6.2 with "i � " in (ii). To
prove that Met".X; �; �/ is contractible it suffices to construct a continuous left inverse
of the inclusion Met".X; �; �/ ,!Met.X; �; �/.
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Every metric g 2Met.X; �; �/ determines embeddings

x�g;i W Si � Œ0; ı/�†i!X

x�g;i.s; t; z/ WD exp�i .s;z/
.t �i.s; z//;defined by

where �i W Si �†i! ��i TX denotes the inward unit normal. The constant ı > 0 for
which the x�g;i are embeddings can be chosen uniform on a C1 –neighbourhood of
the metric. Taking a locally finite refinement of the cover of Met.X; �; �/ by these
neighbourhoods and using a partition of unity one can construct a function

xıW Met.X; �; �/! .0; "�;

continuous with respect to the C1–topology, such that the maps x�g;i are embeddings
for 0< ı � xı.g/.

For g 2 Met.X; �; �/ and i D 1; : : : ;m let us define the metrics hg;i on the strips
Si � Œ0; xı.g//�†i by

hg;i WD ds2
C dt2

Cgi;s;t ;

where the metric gi;s;t on †i is the pullback of the metric on X under the embedding
z 7!x�g;i.s; t; z/. We fix a smooth cutoff function �W Œ0; 1�! Œ0; 1� such that �.t/D0 for
t near 0 and �.t/D1 for t near 1. Then for ı >0 we define �ıW Si�Œ0; ı/�†i! Œ0; 1�

by

�ı.s; t; z/ WD �.t=ı/:

Now we can define the map Met.X; �; �/!Met".X; �; �/ W g 7! zg by

zg WD .x�g;i/�
�
�xı.g/x�

�
g;igC

�
1��xı.g/

�
hg;i

�
on the image of x�g;i for i D 1; : : : ;m and by zg WD g on the complement. This map is
the identity on Met".X; �; �/ since "i � "� xı.g/. So we have constructed the required
left inverse of the inclusion Met".X; �; �/ ,!Met.X; �; �/.

Definition 6.6 Let .X; �; �/ be a 4–manifold with boundary space-time splitting and
tubular ends. Instanton data on X are given by a triple .g;L; f / with the following
properties.

� g is a Riemannian metric on X compatible with the boundary space-time
splitting and the tubular ends.

� L D .L1; : : : ;Lm/ is an m–tuple of gauge invariant, monotone Lagrangian
submanifolds Li �A.†i/, satisfying (L1)–(L2).
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� Xf W A.X /!�2.X; g/ is a holonomy perturbation as in the introduction such
that, on every tubular end and for every A 2 A.X /, the 2–form ��j Xf .A/ 2
�2..0;1/�Yj ; g/ is induced by the path s 7!Xfj .Aj .s//, where ��j A DW
Aj .s/C ĵ .s/ ds . Here Xfj W A.Yj /!�2.Yj ; g/ is as in (9). The perturbation
f involves a choice of thickened loops, ie embeddings 
i W S

1 ��! int.X /,
where ��R3 is a contractible open set.

The moduli space

Let .X; �; �/ be a 4–manifold with boundary space-time splitting and tubular ends and
let .g;L; f / be instanton data on X . The perturbed anti-self-duality equation with
Lagrangian boundary conditions has the form

(60) FACXf .A/C�
�
FACXf .A/

�
D 0; ��i;sA 2 Li 8s 2 Si :

Here the embedding �i;sW †i ! X is defined by �i;s.z/ WD �i.s; z/. The energy of a
solution is

Ef .A/ WD
1

2

Z
X

ˇ̌
FACXf .A/

ˇ̌2
:

By Theorem 5.1 every finite energy solution of (60) that is in temporal gauge on the
tubular ends converges to critical points Aj of the perturbed Chern–Simons functionals,
ie

(61) lim
s!1

k��j A�AjkCk.Œs�1;sC1��Yj /
D 0

for every j 2 f1; : : : ; ng and every integer k � 0. This equation is understood as
follows. We denote by A.X;L/ the set of smooth connections A 2A.X / that satisfy
the Lagrangian boundary conditions ��i;sA 2 Li for all i 2 f1; : : : ;mg and s 2 Si . On
a tubular end, any such connection decomposes as

��j AD Bj C ĵ ds

with ĵ W .0;1/!�0.Yj ; g/ and Bj W .0;1/!A.Yj ;L/. Here A.Yj ;L/ denotes the
set of smooth connections B 2A.Yj / that satisfy the Lagrangian boundary conditions
Bj†i

2 Li for all i 2 Ij . The temporal gauge condition means that ĵ � 0. For
j D 1; : : : ; n the connection Aj 2A.Yj ;L/ in (61) is a critical point of the perturbed
Chern–Simons functional for Yj , ie

FAj CXfj .Aj /D 0:

The space of solutions of (60) and (61) that are in temporal gauge on the tubular ends
will be denoted by �M.A1; : : : ;AnIXf /�A.X;L/:

Geometry & Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 813

Let us denote by GAj�G.Yj / the isotropy subgroup of Aj . So the group G.A1; : : : ;An/

of all gauge transformations u 2 G.X / that satisfy u ı �j � uj 2 GAj for j D 1; : : : ; n,
acts on the space �M.A1; : : : ;AnIXf /. The quotient will be denoted by

(62) M.A1; : : : ;AnIXf / WD �M.A1; : : : ;AnIXf /=G.A1; : : : ;An/:

In the case of the tube X DR�Y , this moduli space can easily be identified with the one
that is mentioned in the introduction. Similarly, the moduli space M.A0

1
; : : : ;A0nIXf /

for gauge equivalent limits A0i 2 ŒAi � can be identified with M.A1; : : : ;AnIXf /.

The linearized operator

Fix critical points Aj 2 A.Yj ;L/, j D 1; : : : ; n, of the perturbed Chern–Simons
functionals and let A 2A.X;L/ be a connection satisfying (61). Denote by �1

A.X; g/

the space of smooth 1–forms that satisfy the boundary conditions

(63) �˛j@X D 0; ��i;s˛ 2 T��
i;s

ALi

for i 2 f1; : : : ;mg and s 2 Si . Then A determines a differential operator

DAW �
1
A.X; g/!�2;C.X; g/��0.X; g/;

DA˛ WD
�
.dA˛C dXf .A/˛/

C;�d�A˛
�
;(64)

where !C WD 1
2
.!C�!/ denotes the self-dual part of a 2–form ! 2�2.X; g/. This

is a generalization of the linearized operator on R� Y in (31). The formal adjoint
operator

D�AW �
2;C
A .X; g/��0.X; g/!�1.X; g/

D�A.!; '/D d�A!C dXf .A/
�! � dA':is given by

Here �2;C
A .X; g/ denotes the space of self-dual 2–forms ! on X that satisfy the

boundary condition

(65) ��i;s! D 0; �.@=@s/��i !jfsg�† 2 T��
i;s

ALi

for i 2 f1; : : : ;mg and s 2 Si .

To obtain a Fredholm operator we must impose decay conditions on ˛ at the tubular ends
and extend the operator to suitable Sobolev completions. For any integer k � 1 and any
p > 1 denote by W

k;p
A .X;T�X ˝ g/ the space of 1–forms on X of class W k;p with

values in g that satisfy the boundary conditions (63)4 and by W
k;p

A .X; ƒ2;CT�X ˝ g/

4 Note that the subscript A in W
k;p

A indicates boundary conditions for the 1–forms in this space. This
is not to be confused with the norms k � kW k;p ;A in Remark 5.2, where the subscript indicates that the
covariant derivatives are twisted by A .
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the space of self-dual 2–forms on X of class W k;p with values in g that satisfy the
boundary conditions (65). The following theorem summarizes the Fredholm properties
of DA and D�A . The regularity results (ii) and (iii) are steps towards the proof of (i).

Theorem 6.7 Suppose the limit connections Aj are nondegenerate and irreducible,
ie H 0

Aj
D 0 and H 1

Aj ;fj
D 0 for j D 1; : : : ; n. Then the following holds for every

connection A 2A.X;L/ that satisfies (61).

(i) The operators

DAW W
k;p

A .X;T�X ˝ g/!W k�1;p.X; ƒ2;CT�X ˝ g/�W k�1;p.X; g/;

D�A WW
k;p

A .X; ƒ2;CT�X ˝ g/�W k;p.X; g/!W k�1;p.X;T�X ˝ g/

are Fredholm for every integer k � 1 and every p > 1. Their Fredholm indices

ıf .A/ WD indexDA D�indexD�A
are independent of k and p and depend only on the homotopy class of A subject
to (61).

(ii) If ˛ 2 Lp.X;T�X ˝ g/, ! 2 W k�1;p.X; ƒ2;CT�X ˝ g/, ' 2 W k�1;p.X; g/

satisfy the equation

(66)
Z

X

hD�A.!0; '0/; ˛ i D
Z

X

�
h!0; ! iC h'0; ' i

�
for every compactly supported smooth .!0; '0/ 2�2;C

A .X; g/��0.X; g/, then

˛ 2W
k;p

A .X;T�X ˝ g/ and DA˛ D .!; '/:

(iii) If ! 2Lp.X; ƒ2;CT�X ˝g/, ' 2Lp.X; g/, ˛ 2W k�1;p.X;T�X ˝g/ satisfy
the equation

(67)
Z

X

h .!; '/;DA˛
0
i D

Z
X

h˛; ˛0 i

for every compactly supported smooth 1–form ˛0 2�1
A.X; g/, then we have

! 2W
k;p

A .X; ƒ2;CT�X ˝ g/; ' 2W k;p.X; g/ and D�A.!; '/D ˛:

Proof Assertions (ii) and (iii) follow from Theorem 3.11 and Remark 3.10. (To obtain
global W k;p –regularity one sums up estimates on compact domains – with and without
boundary – exhausting X .) To prove (i) we combine Theorems 3.11 and 3.13 with a
cutoff function argument to obtain the estimate

(68) k˛kW k;p.X / � c
�
kDA˛kW k�1;p.X /Ck˛kW k�1;p.K /

�
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for a sufficiently large compact subset K �X . (See Donaldson [10, p 50] or Robbin
and Salamon [26] for the case X DR�Y , k D 0, and p D 2). This estimate shows
that DA has a finite dimensional kernel and a closed image. (See for example [21,
Lemma A.1.1].) By (iii) the cokernel of DA agrees with the kernel of D�A . Since D�A
satisfies a similar estimate as (68), it follows that the cokernel is finite dimensional
as well. Hence DA and D�A are Fredholm operators. By (ii) and (iii), their Fredholm
indices add up to zero and are independent of k and p . That they depend only on the
homotopy class of A follows from the stability properties of the Fredholm index.

In the case @X D ∅ the space of connections satisfying (61) is convex and so the
index of DA depends only on the limit connections Aj . The change of the index under
gauge transformations on Yj depends on the degrees of the gauge transformations. By
contrast, in the case @X ¤∅ and @Yj ¤∅ the space of gauge transformations on Yj

is connected, but the Lagrangian submanifolds Li have nontrivial fundamental groups.
So the index of DA also depends on the homotopy classes of the paths in Li that are
given by Aj@X .

Weighted theory

In order to deal with reducible critical points we set up a refined Fredholm theory on
weighted Sobolev spaces. Fix small nonzero real numbers ı1; : : : ; ın and choose a
smooth function wW X ! .0;1/ such that on all tubular ends

w.�j .s;y//D eıj s for s � 1;

w is independent of y 2 Yj for s 2 Œ0; 1�, and w� 1 on the complement. We introduce
the weighted spaces

W
k;p

A;ı .X;T
�X ˝ g/ WD

˚
˛W X ! T�X ˝ g

ˇ̌
w˛ 2W

k;p
A .X;T�X ˝ g/

	
;

and similarly for W
k;p

ı
.X; g/ and W

k;p

ı
.X; ƒ2;CT�X ˝ g/. The function w does

not appear in the notation because the spaces only depend on the choice of the ıj . The
weighted inner product on L2

ı
.X;T�X ˝ g/ is

h˛ ; ˇ iL2
ı
WD

Z
X

w2
h˛^�ˇ i;

and similarly for L2
ı
.X; g/. The adjoint operator of dA with respect to these two inner

products is given by

d�;ıA WD w
�2d�Aw

2
WW

k;p

A;ı .X;T
�X ˝ g/!W

k�1;p

ı
.X; g/:

It has the form .˛; '/ 7! d�
A
˛�rs' � 2ıj' on the tubular ends. We will be using the

following generalized Hodge decomposition.
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Lemma 6.8 Let k be a positive integer and p > 1 and suppose A 2A.X;L/ satisfies
(61). Then the operator

d�;ıA dAW W
kC1;p

A;ı .X; g/!W
k�1;p

ı
.X; g/

with domain W
kC1;p

A;ı .X; g/ WD
˚
� 2W

kC1;p

ı
.X; g/

ˇ̌
� dA�j@X D 0

	
is bijective and

there is a Hodge decomposition

W
k;p

A;ı .X;T
�X ˝ g/D ker d�;ıA ˚ dAW

kC1;p

A;ı .X; g/;

Proof This Hodge decomposition is standard (see eg [10, Section 4.3]) except for the
boundary conditions. The two subspaces do not intersect since

h dA�; ˛ iL2
ı
� h �; d�;ıA ˛ iL2

ı
D

Z
@X

w2
h �;�˛ i D 0

for all ˛ 2W
k;p

A;ı .X;T
�X ˝ g/. Assuming the operator d�;ıA dA is bijective we obtain

the Hodge decomposition of ˇ 2W
k;p

A;ı .X;T
�X ˝ g/ by solving the Neumann problem

d�;ıA dA� D d�;ıA ˇ; �dA�j@X D 0

for � 2 W
kC1;p

ı
.X; g/. Since dA� satisfies the Lagrangian boundary condition we

have ˛ WD ˇ� dA� 2W
k;p

A;ı .X;T
�X ˝ g/.

To prove that the operator d�;ıA dA is bijective we work with the weight function
w D eV W X ! .0;1/ given by V .s/D ıj s on the tubular ends. Since w has normal
derivative zero the function � 0 WDw� 2W kC1;p.X; g/ satisfies the boundary condition
�dA�

0j@X D 0 whenever � does. On the tubular ends we have

w d�;ıA dAw
�1
D d�Aj dAj �rsrsC ı

2
j :

This operator is bijective on W
kC1;p

A .R�Yj ; g/ since it is Fredholm, symmetric, and
positive definite. So, as in the proof of Theorem 6.7, one can use a cutoff function
argument to show that d�;ıA dA is a Fredholm operator. Partial integration then shows
that its kernel and cokernel are equal to the kernel of dA . To prove that the kernel is
zero let � 2W

kC1;p

A;ı .X; g/ with dA� D 0 and assume w.l.o.g. that A is in temporal
gauge on the tubular ends. Then on each tubular end we have @s�j � 0, hence �j � 0

by the decay condition, and hence � � 0. This proves the lemma.

Every connection A 2A.X;L/ that satisfies (61) determines a differential operator

DA;ıW W
k;p

A;ı .X;T
�X ˝ g/!W

k�1;p

ı
.X; ƒ2;CT�X ˝ g/�W

k�1;p

ı
.X; g/

DA;ı˛ WD
�
.dA˛C dXf .A/˛/

C;�d�;ıA ˛
�
:given by

Different choices of w with the same ıj give rise to compact perturbations of DA;ı .
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Theorem 6.9 For j D 1; : : : ; n let Aj 2 A.Yj ;L/ and A 2 A.X;L/ such that
FAj CXfj .Aj /D 0 and A 2A.X;L/ satisfies (61). Then the following holds.

(i) The operator DA;ı is Fredholm for every integer k � 1, every p > 1, and every
n–tuple of sufficiently small nonzero real numbers ı1; : : : ; ın .

(ii) The Fredholm index of DA;ı is independent of k and p ; it depends only on the
signs of the ıj and on the homotopy class of A subject to (61).

(iii) If the limit connections Aj are all nondegenerate and irreducible, then we have
indexDA;ı D indexDA .

(iv) If the limit connections Aj are all nondegenerate and A satisfies (60) then the
cokernel of DA;ı is independent of the weight function (up to natural isomorphisms)
as long as the jıj j are sufficiently small.

Proof The operator wDA;ıw
�1 differs from DA by a zeroth order perturbation which

makes the operators on the tubular ends invertible. Hence assertions (i–iii) follow by
adapting the proof of Theorem 6.7 to the present case. To prove (iv) we observe that
the restriction of the second component d�;ıA of DA;ı to the image of dA is surjective
and, when A satisfies (60), the image of dA is contained in the kernel of the first
component .dAC dXf .A//

C of DA;ı . Hence every element in the cokernel of DA;ı

has the form .�; 0/. Moreover, .�; 0/ belongs to the kernel of the adjoint operator D�A;ı
(with respect to the L2 –inner product determined by w ) if and only if � D w�2� ,
where

(69) w�1� 2W
k�1;p

A .X; ƒ2;CT�X ˝ g/; .dAC dXf .A//
�� D 0:

The subscript in W
k�1;p

A indicates the dual boundary condition. It follows from linear
exponential decay in Theorem 5.9 that every solution � of (69) decays exponentially.
Hence the space of solutions of (69) is independent of the choice of the weight function
w as long as the

ˇ̌
ıj
ˇ̌

are sufficiently small. This proves the theorem.

Remark 6.10 (i) The linearized operator is gauge equivariant in the sense that
Du�A;ı.u

�1˛u/D u�1.DA;ı˛/u for all ˛ 2W
k;p

A;ı .X;T
�X ˝ g/ and all gauge trans-

formations u 2 G.X / that satisfy u ı �j � uj 2 G.Yj /.

(ii) In contrast to Theorem 6.9 (iv), the kernel of DA;ı is not independent of the sign
of the ıj unless the Aj are also irreducible.

(iii) On a tube X DR�Y we will use weight functions of the form

(70) w.s;y/D exp.V .s//
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with V 2 C1.R/ such that V .s/D˙ıs for ˙s � 1 (ie ı1D ı2DW ı > 0). Then DA;ı

can – as in Section 3 – be identified with the operator

(71) DA;ıW W
k;p

A;ı .R�Y;T�Y ˝ g/�W
k;p

ı
.R�Y; g/

!W
k�1;p

ı
.R�Y;T�Y ˝ g/�W

k�1;p

ı
.R�Y; g/

given by DA;ı WD rsCHA.s/C

�
0 0

0 2�

�
; � WD @sV:

The formal L2
ı

–adjoint operator of DA;ı has the form

D�A;ı.˛; '/ WD �rsCHA.s/�

�
2� 0

0 0

�
:

(iv) The operator (71) is conjugate to the operator

(72) wDA;ıw
�1
DrsCHA.s/� I�.s/; I� WD

�
� 0

0 ��

�
;

on the unweighted Sobolev spaces. By Theorem 6.9 (iv) and its proof, this operator is
surjective if and only if the operator rsCHA.s/�Iı is surjective, provided ı 2Rnf0g
is sufficiently small and A 2 �M.A�;ACIXf / is a Floer connecting trajectory with
nondegenerate ends.

The nonlinear setup

In the remainder of this section we fix the constants ı1 D � � � D ın D ı > 0. Then
the operators DA;ı have the following significance for the study of the moduli space
M.A1; : : : ;AnIXf /. Let A2 �M.A1; : : : ;AnIXf / and suppose that DA;ı is surjective.
If the Aj are all nondegenerate and irreducible and ıD0, then M.A1; : : : ;AnIXf /

is a smooth manifold near ŒA� whose tangent space is the kernel of DA D DA;ı . In
general, the kernel of DA;ı is the tangent space of the quotient

M0.A1; : : : ;AnIXf / WD �M.A1; : : : ;AnIXf /=G0.X /;

where G0.X / denotes the group of gauge transformations u 2 G.X / that satisfy
u ı �j � 1l for every j . Hence the dimension of M.A1; : : : ;AnIXf / is equal to

(73) ıf .A/ WD indexDA;ı �

nX
jD1

dim H 0
Aj
:

(This agrees with the notation in Theorem 6.7.) To prove these assertions one can set
up the nonlinear theory as follows. Fix an integer k � 1 and a real number p > 2.
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Associated to a tuple Aj 2A.Yj ;L/, j D 1; : : : ; n, of critical points of the perturbed
Chern–Simons functionals is a Banach manifold

(74) Ak;p

ı
.X;LIA1; : : : ;An/ WD

(
ADA0C˛

ˇ̌̌̌
ˇ ˛ 2W

k;p

ı
.X;T�X ˝ g/

��i;sA 2 Li 8i 8s 2 Si

)
where A0 2A.X;L/ is a reference connection satisfying ��j A0 �Aj for all j . The
tangent space of Ak;p

ı
.X;LIA1; : : : ;An/ is

TAAk;p

ı
.X;LIA1; : : : ;An/D

˚
˛ 2W

k;p

ı
.X;T�X ˝ g/

ˇ̌
��i;s˛ 2 T��

i;s
ALi

	
:

Banach submanifold charts for Ak;p

ı
.X;LIA1 : : :An/�A0CW

k;p

ı
.X;T�X ˝ g/

can be constructed with the help of the Banach submanifold coordinates for Li �

A0;p.†i/ in [33, Lemma 4.3] (see Appendix E). The gauge group

(75) GkC1;p

ı
.X / WD

n
uW X ! G

ˇ̌̌
u�1du 2W

k;p

ı
.X; g/; lim

s!1
u ı �j D 1l

o
acts freely on Ak;p

ı
.X;LIA1; : : : ;An/. Its Lie algebra is the Banach space

W
kC1;p

ı
.X; g/ and the quotient Ak;p

ı
.X;LIA1; : : : ;An/=GkC1;p

ı
.X / is a Banach

manifold. There is a gauge equivariant smooth map

Ak;p

ı
.X;LIA1; : : : ;An/!W

k;p

ı
.X; ƒ2;CT�X ˝ g/ WA 7! .FACXf .A//

C

and the moduli space M0.A1; : : : ;AnIXf / can be identified with the quotient of
the zero set of this map by the action of GkC1;p

ı
.X /. The operator DA;ı arises from

linearizing this setup in a local slice of the gauge group action and hence, if this operator
is surjective, it follows from the implicit function theorem that M0.A1; : : : ;AnIXf /

is a smooth manifold near A, whose tangent space can be identified with the kernel of
DA;ı . The isotropy group GA1

� � � � �GAn
still acts on M0.A1; : : : ;AnIXf / and the

quotient by this action is the moduli space M.A1; : : : ;AnIXf /. If all limit connections
Aj are irreducible then the action is free, so the moduli space is smooth.

The spectral flow

We now specialize to the case X WD R � Y and establish index identities for the
linearized operator. The main results are Theorem 6.11 and Corollary 6.14 below. They
will be proven by identifying the index with a spectral flow.

We fix a gauge invariant, monotone Lagrangian submanifold L�A.@Y / satisfying (L1)–
(L2) such that the zero connection is contained in L and is nondegenerate. Choose a
perturbation hf W A.Y /!R as in the introduction with a conjugation invariant function
f W D�GN !R. Then the zero connection is a (nondegenerate) critical point of the
perturbed Chern–Simons functional. For A2Crit.CSLChf / and a path BW Œ0; 1�!L
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from B.0/DAj† to B.1/D 0 we define an integer �f .A;B/ as follows. Choose a
smooth path AW Œ0; 1�!A.Y;L/ such that A.0/DA, A.1/D 0, and A.s/j† DB.s/.
Define

�f .A;B/ WD �spec

�˚
HA.s/C I"

	
s2Œ0;1�

�
; I" WD

�
" 0

0 �"

�
;

where �spec denotes the upward spectral flow (see eg Robbin and Salamon [26] and
Appendix A) and " > 0 is sufficiently small. This integer is independent of the
choice of the path A and the constant " used to define it. (The space of paths A

with fixed endpoints and boundary values is in fact convex. Moreover, the kernel
ker HA DH 1

A;f
�H 0

A
splits at the endpoints ADA.0/;A.1/ by Proposition 3.1.)

The significance of the following theorem is that the index resp. local dimension of the
moduli space M.A�;AC/ is determined modulo 8 by the limit connections A�;AC .

Theorem 6.11 (i) Let A˙2A.Y;L/ be critical points of CSLChf and A2A.R�Y /

be the connection associated to a smooth path AW R!A.Y;L/ with limits

(76) lim
s!˙1




A�A˙




C1.Œs�1;sC1��Y /

D 0:

Choose paths B˙W Œ0; 1�! L from B˙.0/ D A˙j† to B˙.1/ D 0 such that B� is
homotopic to the catenation of the path R! L W s 7!A.s/j† with BC . Then

indexDA;ı D �spec
�˚
HA.s/� I�.s/

	
s2R

�
and moreover

ıf .A/ WD indexDA;ı � dim H 0
A� � dim H 0

AC

D�f .A
�;B�/��f .A

C;BC/� dim H 0
A� � dim H 1

AC;f
:

(77)

(ii) If A 2A.Y;L/ is a critical point of CSLC hf and BW Œ0; 1�! L is a path from
B.0/DAj† to B.1/D 0, then for every loop uW Œ0; 1�! G.†/ with u.0/D u.1/D 1l

�f .A;B/��f .A;u
�B/D 8 deg u:

Proof Multiplication by w defines an isomorphism W
k;p

ı
! W k;p , so DA;ı has

the same index as the operator wDA;ıw
�1 on W

k;p
A .R�Y;T�.R�Y /˝ g/. Hence,

by (72) and Theorem A.4, the index of the operator DA;ı is given by

index.DA;ı/D �spec
�˚
HA.s/� I�.s/

	
s2R

�
D �spec

�˚
HA.s/C Iı

	
s2R

�
� dim H 1

AC;f
C dim H 0

AC
:
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Here � WD @sV W R!R satisfies �.s/D�ı for s � �1 and �.s/D ı for s � 1. The
second equation follows from a homotopy argument. Namely, the path HA.s/� I�.s/
is homotopic to the catenation of the path HA.s/C Iı with HAC � I�.s/ . Now the
catenation of the path HA.s/CI" with the path in the definition of �f .AC;BC/ yields
a path homotopic to the one in the definition of �f .A�;B�/. (By assumption the
paths are homotopic over the boundary @Y , and this homotopy can be extended to the
interior.) Hence

�f .A
�;B�/D �spec

�˚
HA.s/C I"

	
s2R

�
C�f .A

C;BC/:

For ı > 0 sufficiently small we can choose "D ı and obtain

�f .A
�;B�/��f .A

C;BC/D index.DA;ı/� dim H 0
AC
C dim H 1

AC;f
:

This proves (i).

To prove (ii) choose a path A.s/W Œ0; 1�! A.Y;L/ with A.0/ D A, A.1/ D 0, and
B.s/ D A.s/j† . By homotopy invariance we may assume that A.s/ D 0 for s �

1=2. Now let uW Œ0; 1�! G.†/ be a loop with u.0/ D u.1/ D 1l and choose a path
A0W Œ0; 1� ! A.Y;L/ such that A0.0/ D A, A0.1/ D 0 and A0.s/j† D u.s/�B.s/.
Assume w.l.o.g. that u.s/D 1l and A0.s/DA.s/ for s� 1=2. Then the spectral flow of
the path HA0.s/CI" on the interval 0�s�1=2 is equal to �f .A;B/. On the other hand,
by Theorem A.5 and a homotopy from HA0CI" to HA0 , the spectral flow on the interval
1=2� s � 1 is equal to index.D1l;A/ for a connection AD zu�1dzu 2A.S1�Y;L/ on
the bundle P1l in the notation of Section 4. Here zu 2 G.S1 �Y / is homotopic to u on
Œ1=2; 1��Y and identically 1l on the complement. Hence

�f .A;B/��f .A;u
�B/D��spec

�˚
HA0.s/C I"

	
1=2�s�1

�
D�index.D1l;A/ D 8 deg.1l;A/ D 8 deg.u/:

Here the third identity follows from Theorem 4.3 (ii) and the last from Remark 4.2 (iii).
This proves the theorem.

For every critical point A 2 A.Y;L/ of the perturbed Chern–Simons functional we
define the real number �f .A/ by

�f .A/ WD �f .A;B/�
2

�2

�
CS.A;B/C hf .A/

�
;

where BW Œ0; 1�! L is a path from B.0/DAj† to B.1/D 0, and CS.A;B/ denotes
the value of the Chern–Simons functional for the connection given by A and B .

Corollary 6.12 (i) The spectral flow .A;B/ 7!�f .A;B/ descends to a circle valued
function �f W Rf ! Z=8Z.
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(ii) The function �f W Crit.CSL C hf /! R is well defined and descends to a real
valued function on Rf .

Proof Lemma 2.4 (iii), the homotopy invariance of the spectral flow, and Theorem
6.11 (ii) imply that �f .A;B/ 2 Z=8Z is independent of the choice of B . Given a
gauge transformation u 2 G.Y / we can connect it to the identity by a smooth path
zuW Œ0; 1�! G.Y / from zu.0/D u to zu.1/D 1l. Let AW Œ0; 1�!A.Y;L/ be the path in
the definition of �f .A;B/, then �f .u�A; .zuj@Y /

�B/ is defined as the spectral flow
along the path s 7! zu.s/�A.s/ and hence, by the gauge equivariance of the Hessian,

�f .A;B/D �f .u
�A; .zuj@Y /

�B/:

This proves (i). That �f is well defined (ie independent of the choice of B ) follows
from Lemma 2.4 and Theorem 6.11 (ii). To see that �f is gauge invariant it remains to
check that

CS.A;B/D CS.u�A; .zuj@Y /
�B/:

This follows from the same argument as Lemma 2.4 (iv). Namely, CS.A;B/ is the
Chern–Simons functional on zY DY [.Œ0; 1��†/ of a connection zA given by A and B .
The connection given by u�A and .zuj@Y /

�B is yu� zA, where the gauge transformation
yu 2 G. zY / is given by u and zuj@Y . It satisfies yuj@Y D 1l and has degree zero since
a homotopy to 1l is given by combining zu.�/ on Y with s 7! zu.s C .1� s/�/j@Y

on Œ0; 1��†. Hence the equality of the Chern–Simons functionals follows from the
analogue of (5) for manifolds with boundary and gauge transformations that are trivial
on the boundary.

Remark 6.13 The function .f;A/ 7! �f .A/ is continuous on the space of nondegen-
erate pairs .f;A/. To see this note that the dimension of H 0

A
cannot jump, by Remark

3.8, and hence one can locally work with the same constant " > 0 for the definition of
�f in a neighbourhood of a pair .f;A/.

We can now state further index identities. The monotonicity formula in (i) below – a
linear relationship between index and energy – will be central for excluding bubbling
effects.

Corollary 6.14 (i) Let A 2 A.R � Y / be the connection associated to a smooth
solution AW R!A.Y;L/ of (14). Suppose that it satisfies (76) with the critical points
A˙ 2A.Y;L/ of CSLC hf . Then

ıf .A/D
2

�2
Ef .A/C �f .A

�/� �f .A
C/� dim H 0

A� � dim H 1
AC;f

:
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(ii) If A;A0W R! A.Y;L/ are paths connecting A� to B , respectively B to AC ,
then the index of their catenation is given by

ıf .A#A0/D ıf .A/C ıf .A
0/C dim H 0

BC dim H 1
B;f :

(iii) If AW R! A.Y;L/ is a self-connecting path with limits A� DAC DWA0 and
s 7! A.s/j† is homotopic to s 7! u.s/�A0j† for uW R! G.†/ with u.˙1/D 1l,
then

ıf .A/D 8 deg.u/� dim H 0
A0
� dim H 1

A0;f
:

Proof Assertions (ii) and (iii) follow immediately from Theorem 6.11. Assertion (i)
follows from the definition of �f , Theorem 6.11, and the following energy identity.
For a path AW R!A.Y;L/ satisfying

@sAD�� .FACXf .A//

choose paths B˙W Œ0; 1�! L from B˙.0/ D A˙j† to B˙.1/ D 0 such that B� is
homotopic to the catenation of A.s/j† with BC . Then

�Ef .A/D

Z
R

Z
Y

h @sA^
�
FACXf .A/

�
i ds

D

Z
R

�
1

2

@

@s

Z
Y

�
hA^ dA iC

1

3
hA^ ŒA^A� i

�
C

1

2

Z
†

hA^ @sA i C
@

@s
hf .A/

�
ds

D CS.AC;BC/C hf .A
C/� CS.A�;B�/� hf .A

�/:

Here the second equation follows from (9) and the fact that

2

Z
Y

hFA ^ @sA i D

Z
Y

@

@s

�
hA^ dA iC

1

3
hA^ ŒA^A� i

�
C

Z
@Y

hA^ @sA i:

The last identity follows from the C1 –convergence of A for s!˙1. Since B� is
homotopic (with fixed endpoints) to the catenation of Aj† with BC , we haveZ

R

Z
†

hA^ @sA i ds D

Z 1

0

Z
†

hB� ^ @sB� i ds �

Z 1

0

Z
†

hBC ^ @sBC i ds:

(See the proof of Lemma 2.4 above for the invariance of this integral under homotopy.)
This proves the corollary.

Remark 6.15 Our notation for the indices is motivated by the following finite dimen-
sional model. Let M be a Riemannian n–manifold, G be a compact Lie group that
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acts on M by isometries, and f W M ! R be a G–invariant Morse–Bott function.
Associated to every critical point x 2M is a chain complex

0 �! g
Lx
�! TxM

r2f .x/
�! TxM

L�x
�! g �! 0;

where Lx is the infinitesimal action of g and r2f .x/ is the Hessian of f (see (12)).
We denote

�0.x/ WD dim ker Lx; �1.x/ WD dim
kerr2f .x/

im Lx
; �.x/ WD indf .x/;

that is �.x/ is the number of negative eigenvalues of the Hessian and �0.x/ is the
dimension of the isotropy subgroup. Now the kernel of the Hessian has dimen-
sion �1.x/C dim G� �0.x/, the unstable manifold W u.x/ of the orbit Gx has di-
mension �.x/C dim G� �0.x/, the stable manifold W s.x/ of Gx has dimension
n��.x/� �1.x/, and, in the transverse case, the moduli space

M.x�;xC/ WDW u.x�/\W s.xC/=G

of connecting trajectories has dimension (compare with (77))

ı.x�;xC/ WD dimM.x�;xC/D �.x�/��.xC/� �0.x
�/� �1.x

C/:

7 Compactness

Let Y be a compact oriented Riemannian 3–manifold with boundary @Y D† and L�
A.†/ be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)–(L2). Fix a collection of embeddings 
i W S

1 �D! int.Y /, i D 1; : : : ;m, as in
Section 2. We use the notation

�M.A�;ACIXf / WD

8<:A 2A� .R�Y /

ˇ̌̌̌
ˇ̌ @sA� dAˆC�.FACXf .A//D 0;

A.s/j† 2 L 8s 2R;
Ef .A/ <1; lims!˙1A.s/DA˙

9=;
for the space of Floer connecting trajectories associated to a perturbation f 2 C1.D�
Gm/G and two critical points A˙ 2A.Y;L/ of CSLC hf . Here A� .R�Y / denotes
the space of connections „Dˆ dsCA on R�Y that are in temporal gauge outside
of Œ�1; 1��Y , ie ˆ.s/D 0 for jsj � 1. The corresponding gauge group G.A�;AC/
consists of all gauge transformations uW R! G.Y / that satisfy u.s/D u˙ 2 GA˙ for
˙s � 1 and the quotient space will be denoted by

M.A�;ACIXf / WD �M.A�;ACIXf /=G.A�;AC/:
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The goal of this section is to establish compactness theorems for these moduli spaces.
The proofs will be heavily based on the basic compactness results in [35; 36]. We start
with a summary of the compactness for uniformly bounded curvature.

Proposition 7.1 Let f � 2 C1.D � Gm/G be a sequence that converges to f1 2
C1.D �Gm/G in the C kC1 –topology for some k � 1. Let I� � R be a sequence
of open intervals such that I� � I�C1 for all � and denote I WD

S
� I� . Let „� D

ˆ�dsCA� 2A.I� �Y / be a sequence of solutions of the Floer equation

(78) @sA� � dA�ˆ
�
C�

�
FA� CXf � .A

�/
�
D 0; A�.s/j† 2 L;

such that the curvature jF„� j is locally uniformly bounded. Then the following holds.

(i) There exists a subsequence, still denoted by „� , and a sequence of gauge trans-
formations u� 2 G.I� �Y / such that .u�/�„� converges in the Ck topology on every
compact subset of I �Y .

(ii) There exists a subsequence, still denoted by „� , and a sequence of gauge transfor-
mations u� 2 G.I� �Y / such that .u�/�„� is in temporal gauge and converges in the
Ck�1 topology on every compact subset of I �Y .

(iii) In both cases, the limit „1 2A.I �Y / of the subsequence can be chosen smooth
and it satisfies (78) with f � replaced by f1 .

Proof In a neighbourhood of the boundary I � @Y , where the perturbations vanish,
compactness for anti-self-dual connections with Lagrangian boundary conditions was
established in [35, Theorem B]. The interior compactness follows from standard
techniques (eg Donaldson and Kronheimer [11] and Wehrheim [34]) and Remark D.2.
The crucial point in the bootstrapping argument is that a W k;p –bound on .u�/�„�

implies a W k;p –bound on Xf � ..u
�/�„�/ and hence on FC.u�/�„� . (The constant

in the W k;p –estimate of Proposition D.1 (iii) depends continuously on f 2 CkC1 .)
Combining these two compactness results via a general patching procedure as in [11,
Lemma 4.4.5] or [34, Proposition 7.6] we deduce that, for a suitable subsequence and
choice of u� , the sequence .u�/�„� is bounded in W kC1;p.K/ for every compact
subset K � I �Y and a fixed p > 4, and hence has a Ck convergent subsequence. A
diagonal argument then proves (i).

To prove (ii) we write z„� WD .u�/�„� DW ẑ � dsC zA� where u� is as in (i). Then z„�

is bounded in W kC1;p on every compact subset of I �Y . Define v� W I� �Y !G as
the unique solution of the differential equation

@sv
�
C ẑ

�v� D 0; v�.0/D 1l:
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Then v� is bounded in W kC1;p on every compact subset of I � Y . (To check this
use the identity @s.v

�1dv/D�v�1ˆv .) Hence .v�/� z„� D .u�v�/�„� is in temporal
gauge and is bounded in W k;p on every compact subset of I � Y . The compact
embeddings W k;p.K/ ,! Ck�1.K/ together with a diagonal argument then prove (ii).

The regularity of the limit „1 can be achieved by a further gauge transformation.
That „1 solves (78) follows from the fact that these equations are gauge invariant
and preserved under weak W k;p convergence.

The following is the most general compactness result for bounded energy.

Theorem 7.2 Let f 2 C1.D�Gm/G be a perturbation such that every critical point
of CSLC hf is nondegenerate. Let f � 2 C1.D�Gm/G be a sequence that converges
to f in the C kC1 –topology and let „� D ˆ� ds C A� 2 �M.A��;A

�
CIXf � / be a

sequence of Floer connecting trajectories with bounded energy

sup
�

Ef � .„
�/D sup

�

Z
R�Y

ˇ̌
@sA� � dA�ˆ

�
ˇ̌2
<1:

Fix p > 1 and suppose that A�
˙

converges to A˙ 2 Crit.CSLC hf / in the Ck topol-
ogy. Then there is a subsequence, still denoted by „� , critical points B0; : : : ;B` 2

Crit.CSLC hf / with B0 D A� , B` D AC , and Floer connecting trajectories „i 2�M.Bi�1;Bi IXf / for i D 1; : : : ; `, such that „� converges to the broken trajectory
.„1; : : : ; „`/ in the following sense.

For every i 2 f1; : : : ; `g there is a sequence s�i 2R and a sequence of gauge transfor-
mations u�i 2 G.R�Y / such that the sequence s 7! ..u�i /

�„�/.sC s�i / converges to
„i in the W 1;p –norm on every compact subset of R�Y nZi . Here Zi �R�Y is the
bubbling locus consisting of finitely many interior points and finitely many boundary
slices; it is nonempty whenever „i has zero energy.

The broken trajectory .„1; : : : ; „`/ has energy and index

X̀
iD1

Ef .„i/� lim
�!1

Ef � .„
�/;

X̀
iD1

ıf .„i/C

`�1X
iD1

dim H 0
Bi
� lim
�!1

ıf � .„
�/:

(79)

If sup� kF„�kL1 < 1 then there is no bubbling (ie Zi D ∅ for all i ), equality
holds in (79), and .u�/�„� converges in the Ck topology on every compact set. If
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sup� kF„�kL1 D1 then there is bubbling (ie Zi ¤∅ for some i ) and

X̀
iD1

Ef .„i/� lim
�!1

Ef � .„
�/� 4�2;

X̀
iD1

ıf .„i/C

`�1X
iD1

dim H 0
Bi
� lim
�!1

ıf � .„
�/� 8:

(80)

Remark 7.3 The assumption that A�
˙

converges in the Ck topology always holds for
a subsequence in a suitable gauge, by Proposition 3.7.

Proof of Theorem 7.2 Replacing the uniform bound on the curvature in Proposition
7.1 by an energy bound on „� allows for bubbling. For the (unperturbed) anti-
self-duality equation with Lagrangian boundary conditions this was dealt with in
[36, Theorems 1.2,1.5], [23], and [37, Section 3]; for the perturbed equation in the
interior the (well known) result is Theorem D.4. Combining these one essentially
obtains the same basic compactness theorem as for anti-self-dual connections (see [10,
Proposition 2.1]). A minor difference is that – due to the holonomy perturbations – we
obtain convergence in the W 1;p –norm for any p > 1 rather than in the C1–topology;
so [10, Proposition 2.1 (1)] is replaced by W 1;p –convergence. The crucial difference
is in the knowledge about the bubbling phenomenon. First, the finite set fx1; : : : ;x`g�

R� Y of bubbling points is replaced by a more general bubbling locus Z � R� Y

consisting of finitely many interior points and finitely many boundary slices fsg � @Y .
On the complement of Z , one has local Lp –bounds on the curvature. Second, we do not
have a geometric description of the bubbles (after rescaling) or the precise quantum 4�2

for the energy concentration. There is however a universal constant „> 0 that is a lower
bound for the energy concentration at each component of the bubbling locus Z ; so [10,
Proposition 2.1 (2)] is replaced by

R
U jFA C Xf .A/j

2 � lim sup˛0!1
R

U jFA˛0
C

Xf˛0 .A˛0/j
2� `„, where ` is the number of points and boundary slices in Z .

The second source of noncompactness, the splitting of trajectories, is the same as
for the usual Floer theories. With the exponential decay results of Section 5 and the
modified basic compactness above, one can adapt the discussion in [10, Chapter 5.1]
to prove the convergence to a broken trajectory. In particular, exponential decay holds
for sufficiently C2 –close perturbations with uniform constants (see Theorem 8.3 for
the nondegeneracy and Proposition D.1 (v) for the constants). More precisely we argue
as follows.

Throughout we denote the perturbed Yang–Mills energy of „� on I �Y by

Ef � .„
�
I I/ WD

Z
I

Z
Y

ˇ̌
@sA� � dA�ˆ

�
ˇ̌2
:
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Passing to a subsequence we may assume that bubbling occurs only for finitely many
sequences t�j , j D 1; : : : ;m, with

„j WD lim
ı!0

lim
�!1

Ef � .„
�
I Œt�j � ı; t

�
j C ı�/� „:

In particular, the limits exist. The sequences are chosen such that t�
jC1
� t�j > 0 and

that these differences converge either to a positive number or to infinity. We may also
assume that the curvature of „� is uniformly bounded on the complement of the sets
Œt�j � ı; t

�
j C ı��Y for every ı > 0 and that the following limits exist:

"0 WD lim
ı!0

lim
�!1

Ef � .„
�
I .�1; t�1 � ı�/;

"j WD lim
ı!0

lim
�!1

Ef � .„
�
I Œt�j C ı; t

�
jC1� ı�/; j D 1; : : : ;m� 1;

"m WD lim
ı!0

lim
�!1

Ef � .„
�
I Œt�mC ı;1//:

Then lim
�!1

Ef � .„
�/D "0C„1C "1C � � �C„mC "m:

Next we choose a constant " > 0 smaller than the constant in Theorem 5.3 and smaller
than „. Following [10, 5.1] we choose the s�i 2R inductively such that

Ef � .„
�
I .�1; s�1 �/D

"

2
; Ef � .„

�
I Œs�i ; s

�
iC1�/DEf .„i/C

X
j2Ji

„j ;

where „i is the limit of the sequence „�.s�i C �/ modulo gauge and bubbling and
Ji � f1; : : : ;mg denotes the set of all j such that the sequence t�j � s�i is bounded.
This choice guarantees that s�

iC1
� s�i !1 for all i , that f1; : : : ;mg is the disjoint

union of the Ji , and that Ji ¤ ∅ whenever „i has zero energy. By Theorem 5.3
(applied to a temporal gauge of the „� on intervals Œs�i CT; s�

iC1
� with energy less

than ") the positive end of „i is gauge equivalent (and hence w.l.o.g. equal to) the
negative end of „iC1 , the negative end of „1 is A� , and the positive end of „` is
AC . The total energy of the broken trajectory is

(81)
X̀
iD1

Ef .„i/D

mX
jD0

"j D lim
�!1

Ef � .„
�/�

mX
jD1

„j :

If the curvature is bounded then m D 0 and all bubbling loci Zi are empty. In this
case the energy identity is (81) and the index identity follows from the monotonicity
formula in Corollary 6.14 (i). If the curvature blows up then m� 1, hence Zi ¤∅ for
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some i , and we obtain the strict inequality

X̀
iD1

ıf .„i/C
X̀
iD1

dim H 0
Bi�1
D

X̀
iD1

�
2

�2
Ef .„i/C �f .Bi�1/� �f .Bi/

�
< lim
�!1

�
2

�2
Ef � .„

�/C �f � .A
�
�/� �f � .A

�
C/

�
D lim
�!1

ıf � .„
�/C dim H 0

A� :

Here the first step follows from Corollary 6.14 (i), the second step uses (81) and the
continuity of the function .f;A/ 7! �f .A/ (see Remark 6.13), and the last step uses
Corollary 6.14 (ii) and dim H 0

A��
D dim H 0

A�
for � sufficiently large (see Remark 3.8).

Each side of our inequality has the form ıf .„/C dim H 0
A�

for a suitable path „
running from A� to AC . For the left hand side, by Corollary 6.14 (ii), „ can be
chosen as the catenation of the „i and for the right hand side as a small deformation
of „� for � sufficiently large. Since the inequality is strict it follows from Theorem
6.11 (i) and Corollary 6.12 that the defect is at least 8. Using monotonicity again we
obtain an energy gap of at least 4�2 . This proves the theorem.

A first consequence of the compactness and index identities is that we can exclude
bubbling in certain moduli spaces by transversality.

Corollary 7.4 Suppose that the sequence of solutions in Theorem 7.2 has index

ıf � .„
�/� 7:

Suppose that either bubbling occurs or one of the limit trajectories „i is a self-
connecting trajectory of ŒBi�1�D ŒBi �D Œ0�. Then one of the limit trajectories „j must
have negative index ıf .„j / < 0 and at least one of its endpoints Bj�1 or Bj is not
gauge equivalent to the trivial connection.

Proof Every nontrivial self-connecting trajectory „i of Œ0� has index ıf .„i/� 5 by
Corollary 6.14 with Ef .„i/D 4�2 deg.u/ > 0. It also adds dim H 0

Œ0�
D 3 to the sum

of indices. So to achieve a sum � 7, one of the other indices must be negative. A trivial
self-connecting trajectory of Œ0� has index �3 but also adds another dim H 0

Œ0�
D 3 to

the sum of indices. Hence there must be a trajectory with negative index and at least
one nontrivial end. The same holds in the bubbling case by (80).

We will refine the compactness theorem in two special cases. First we consider the
case of no breaking and no bubbling in which we obtain actual compactness of moduli
spaces.
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Theorem 7.5 Fix a constant p>1. Let f; f � be as in Theorem 7.2 and A˙2A.Y;L/
such that FA˙ CXf � .A

˙/D 0 for all � . Then there is a ı > 0 such that the following
holds. If „ 2 �M.A�;ACIXf / and, for each � , „� is a solution of (78) that is gauge
equivalent to an element of �M.A�;ACIXf � / such that „� converges to „ in the Ck

topology on compact sets and

Ef .„/D lim
�!1

Ef � .„
�/;

then there exists a sequence of gauge transformations u� 2G.R�Y / such that .u�/�„�

converges to „ in W
k;p

ı
.R�Y /.

Proof Note that, by contradiction, it suffices to prove the convergence statement for a
subsequence. For that purpose we choose v� 2 G.R�Y / such that

z„� WD .v�/�„� 2 �M.A�;ACIXf � /:

In particular, z„� DW ẑ � dsC zA� is in temporal gauge outside of Œ�1; 1�� Y . Fix a
constant " > 0 smaller than the constant in Corollary 5.4 and note that the exponential
Ck estimate in Corollary 5.4 holds with uniform constants ı0 WD ı > 0 and C0 WD Ck

in a sufficiently small CkC1 neighborhood of f . We write „Dˆ dsCA and choose
T0 > 0 such that Z T0

�T0

Z
Y

j@sA� dAˆj
2 >Ef .„/� ":

Since „� Dˆ� dsCA� converges in the Ck norm on compact sets we haveZ T0

�T0

Z
Y

ˇ̌
@s
zA� � d zA�

ẑ �
ˇ̌2
D

Z T0

�T0

Z
Y

ˇ̌
@sA� � dA�ˆ

�
ˇ̌2
>Ef � .„

�/� "

and thus E.„� I .�1;T0�/CE.„� I ŒT0;1// < " for sufficiently large � � �0 . Hence
it follows from Corollary 5.4 that

 zA� �AC




Ck.Œs;1/�Y /

� C0e�ı0.s�T0/E.„� I ŒT0;1//;

 zA� �A�



Ck..�1;�s��Y /

� C0e�ı0.s�T0/E.„� I .�1;�T0�/

for s � T0C1 and � � �0 . The same estimate holds with zA� replaced by A. Now fix
a constant 0 < ı < ı0 . Then there exists a constant C (depending on C0 , ı , ı0 , k ,
and p ) such that 

z„� �„



W
k;p

ı
..RnŒ�T;T �/�Y /

� Ce�.ı0�ı/.T�T0/

for T � T0C 1 and � � �0 .
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Next, fix a sequence �n! 0 and choose Tn!1 so that Tn � T0C 1 and

Ce�.ı0�ı/.Tn�T0/ <
�n

2
:

For fixed n 2N note that both „� and z„� D .v�/�„� converge to „ in the Ck norm
on ŒTn;TnC 1��Y and on Œ�Tn� 1;�Tn��Y . Using the identity

(82) .v�/�1dv� D z„� � .v�/�1„�v�

we thus inductively obtain bounds on v� in CkC1..˙ŒTn;TnC 1�/�Y /. Then, by a
compact Sobolev embedding, we find a subsequence lim`!1 �n.`/ D1 such that
v�n.`/j.˙ŒTn;TnC1�/�Y ! v˙n converges in the Ck norm. Again using (82) we see that
this convergence is in fact in the CkC1 norm. On these domains we moreover have

.v˙n /�„�„

Ck D lim

�D�n.`/!1



.v�/�„�„

Ck

� lim
�!1

�

.v�/�„� �„

Ck C


.v�/�1

�
„� �„

�
v�



Ck

�
D 0:

First, this implies that v˙n 2 G.Y / is independent of s 2 ˙ŒTn;TnC 1�. Secondly, by
unique continuation (Proposition 8.6), it implies .v˙n /

�„D„ and hence the limits
v˙n 2 GA˙ must lie in the stabilizer of the limit connections. Now we can define the
gauge transformations u`n 2 G.R� Y / by u`n D v

�n.`/.v˙n /
�1 for ˙s � TnC 1, by

u`n D 1l for jsj � Tn , and, for s 2 ˙ŒTn;TnC 1�, by an interpolation which satisfies
d.u`n; 1l/CkC1..˙ŒTn;TnC1�/�Y /! 0 as `!1. With this choice we have

.u`n/�„�n.`/�„




W

k;p

ı
..RnŒ�Tn�1;TnC1�/�Y /

�
�n

2

from the exponential decay, as before for .v�/�„� , and

.u`n/�„�n.`/�„




W
k;p

ı
.Œ�Tn�1;TnC1�/�Y /

�
�n

2

for all sufficiently large ` � Ln , from the convergence of „� and u`n on com-
pact subsets. Now we can pick `n � Ln so large that �n WD �n.`n/ ! 1 and
k.u�n/�„�n �„k

W
k;p

ı
.R�Y /

� �n! 0. This proves the theorem.

Corollary 7.6 Let hf be a regular perturbation in the sense of Definition 8.2, and let
AC;A� 2A.Y;L/ be nondegenerate and irreducible critical points of CSLChf . Then
M1.A�;ACIXf /=R is compact and hence is a finite set.

Proof Assume by contradiction that there is a sequence of distinct points Œ„� � 2
M1.A�;ACIXf /=R. These solutions have index 1 and hence fixed energy by Corol-
lary 6.14 (i). By Theorem 7.2 we can pick a subsequence and representatives „�k
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that converge to a broken trajectory .„1; : : : ; „`/ modulo bubbling. By transversality
we do not have solutions of negative index, so Corollary 7.4 implies that there is no
bubbling, and the index identity in Theorem 7.2 implies that `D 1. Now Theorem 7.5
implies that „�k converges to „1 in the W

1;p

ı
–norm. Since M1.A�;ACIXf /=R

is a 0–manifold this implies that „�k is gauge equivalent to a time-shift of „1 in
contradiction to the assumption.

Finally we refine the compactness theorem in the case when bubbling is excluded but
breaking can take place. The precise convergence statement here will be important for
the gluing theory.

Theorem 7.7 Fix a constant p > 1. Let f , f � , „� , s�i , u�i , and „i be as in the
conclusion of Theorem 7.2 and suppose that no bubbling occurs, ie the curvature of
„� is uniformly bounded, ..u�i /

�„�/.s�i C �/ converges to „i in the Ck topology on
compact sets, and

(83)
X̀
iD1

Ef .„i/D lim
�!1

Ef � .„
�/:

Then the following holds.

(i) If D„i ;ı is surjective for i D 1; : : : ; ` then so is D„� ;ı for � sufficiently large.

(ii) If the set of critical points of CSLC hf � is independent of � then, after replacing
the broken trajectory .„1; : : : ; „`/ by a gauge equivalent one, and for a subsequence,
there exists a sequence of gauge transformations u� 2 G.R�Y / such that

lim
�!1



.u�/�„� �„i.� � s�i /




W 1;p.I�
i
�Y /
D 0; for i D 1; : : : ; `;

I�i WD

8̂<̂
:
.�1; 3

4
s�
2
C

1
4
s�
1
�; i D 1;

Œ3
4
s�
i�1
C

1
4
s�i ;

3
4
s�
iC1
C

1
4
s�i �; i D 2; : : : ; `� 1;

Œ3
4
s�
`�1
C

1
4
s�
`
;1/; i D `:

Proof Fix a constant " > 0 smaller than the constant of Theorem 5.3 and recall that
the sequences s�i in Theorem 7.2 are chosen such that

(84) Ef � .„
�
I .�1; s�1 �/D "=2; Ef � .„

�
I Œs�i ; s

�
iC1�/DEf .„i/

for � sufficiently large and i D 1; : : : ; `� 1. Since s�
iC1
� s�i !1 we have for any

T > 0

Ef � .„
�
I Œs�i ; s

�
i CT �/CEf � .„

�
I Œs�iC1�T; s�iC1�/�Ef � .„

�
I Œs�i ; s

�
iC1�/
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for large � . With �!1 this gives Ef .„i I Œ0;T �/CEf .„iC1I Œ�T; 0�/ � Ef .„i/

and, by taking the limit T ! 1, Ef .„iC1I .�1; 0�/ � Ef .„i I .�1; 0�/: Hence
Ef .„i I .�1; 0�/� "=2 for all i . Choose �1; : : : ; �` such that

Ef .„i I Œ��i ; �i �/DEf .„i/� "=4:

Then Ef .„i I Œ0; �i �/�Ef .„i/�3"=4 and hence Ef � .„
� I Œs�i ; s

�
i C�i �/ >Ef .„i/�"

for � sufficiently large. Moreover, Ef � .„
� I Œs�

`
;1// converges to Ef .„`/� "=2,

by (83) and (84). In summary we have for i D 0; : : : ; ` and � sufficiently large

(85) Ef � .„
�
IJ �i / < "; J �i WD

8<:
.�1; s�

1
�; i D 0;

Œs�i C �i ; s
�
iC1

�; i D 1; : : : ; `� 1;

Œs�
`
C �`;1/; i D `:

Now choose gauge transformations v�i on J �i �Y such that .v�i /
�„� is in temporal

gauge on J �i � Y . Thus each connection .v�i /
�„� is represented by a smooth path

zA�i W Ji ! A.Y;L/. Then it follows from Theorem 5.3 that there are critical points
B�i 2 Crit.CSLC hf � / and positive constants C0 and ı0 such that, for i D 0; : : : ; `,
� � �i C 1, and � sufficiently large, we have

(86)


 zA�i �B�i




C0.J �

i
.�/�Y /

C


 zA�i �B�i




W 1;p.J �

i
.�/�Y /;B�

i

� C0e�ı0.���i /
p
":

Here we abbreviate �0 WD 0 and

J �i .�/ WD

8<:
.�1; s�

1
� ��; i D 0;

Œs�i C �; s
�
iC1
� ��; i D 1; : : : ; `� 1;

Œs�
`
C �;1/; i D `:

Moreover we use the fact that the constants in Theorem 5.3 can be chosen uniform for
all f � . Since the estimate is gauge invariant we may modify the gauge transformations
v�i so that the sequence B�i converges in the Ck –norm to the critical point Bi in the
assertion of Theorem 7.2 for every i (see Proposition 3.7). Then (86) continues to hold
if we drop the subscript B�i in the W 1;p –norm and replace C0 with a possibly larger
constant, still denoted by C0 .

Under the assumption of (ii) we may choose v�i so that B�i D Bi is independent of � .
Now we can argue as in the proof of Theorem 7.5. Combining (86) with B�i DBi and
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the exponential decay of „i and „iC1 we obtain the estimates

.v�0/�„� �„1.� � s�1/




W 1;p..�1;s�
1
����Y /

� C1e�ı0� ;

.v�i /�„� �„i.� � s�i /




W 1;p.Œs�
i
C�; 3

4
s�

iC1
C 1

4
s�

i
��Y /
� C1e�ı0.���i /;

.v�i /�„� �„iC1.� � s�iC1/




W 1;p.Œ 3

4
s�

i
C 1

4
s�

iC1
;s�

iC1
����Y /

� C1e�ı0.���i /;

.v�` /�„� �„`.� � s�` /




W 1;p.Œs�
`
C�;1/�Y /

� C1e�ı0.���`/

(87)

for � sufficiently large, some constant C1 , and i D 1; : : : ; `� 1. Fix a constant � > 0

and choose � so large that

C1e�ı0.���i / � �=4 for i D 1; : : : ; `:

Then, on the interval Œs�i � � � 1; s�i � ��� J �
i�1
.�/ the connections .v�

i�1
/�„� and

.u�i /
�„� are both W 1;p close to „i.� � s�i / Thus

�
.v�

i�1
/�1u�i

�
.� C s�i / is bounded

in W 2;p.Œ�� � 1;����Y / and thus, for a subsequence, converges to a gauge trans-
formation g�i 2 G

2;p.Œ�� � 1;���� Y /. For the limit we obtain .g�i /
�„i D„i on

.�1;�1� as in Theorem 7.5, and we deduce that g�i 2 GBi
. Similarly, we can pick the

subsequence such that
�
.v�i /

�1u�i
�
.�Cs�i /!gCi 2GBiC1

in W 2;p.Œ�; �C1��Y / with
.gCi /

�„i D„i on Œ1;1/. With this we can now construct a sequence u� 2 G.R�Y /

that satisfies
� u�.s/D v�

0
.s/g�

1
for s 2 .�1; s�

1
� � � 1�,

� u�.s/D u�
1
.s/ for s 2 Œs�

1
� �; s�

1
C ��,

� u�.s/D v�
1
.s/gCi for s 2 Œs�

1
C � C 1; s�

2
� � � 1�,

� u�.s/D u�i .s/.g
�
i /
�1gC

i�1
.g�

i�1
/�1 : : : .g�

2
/�1gC

1
for s 2 Œs�i � �; s

�
i C �� and

i D 2; : : : ; `,
� u�.s/D v�i .s/g

C
i .g

�
i /
�1gC

i�1
: : : .g�

2
/�1gC

1
for s 2 Œs�i C � C 1; s�

iC1
� � � 1�

and i D 2; : : : ; `,
�
�
.u�i /

�1u�
�
.� C s�i / ! .g�i /

�1gC
i�1
.g�

i�1
/�1 : : : .g�

2
/�1gC

1
as � ! 1 in

W 2;p.Œ�� � 1; � C 1��Y;G/ for i D 1; : : : ; `,
� distW 2;p.Œs�

i
C�;s�

iC1
���/

�
.v�i /

�1u� ;gCi .g
�
i /
�1gC

i�1
.g�

i�1
/�1: : :.g�

2
/�1gC

1

�
! 0

as �!1 for i D 0; : : : ; `.

At the same time we replace the broken trajectory .„1; : : : ; „`/ with „0
1
WD „1

and „0i WD
�
.g�i /

�1gC
i�1
.g�

i�1
/�1 : : : .g�

2
/�1gC

1

��
„i for i D 2; : : : ; `. Note that this

again defines a broken trajectory .„0
1
; : : : ; „0

`
/ between the critical points

lim
s!1

„0i D
�
.g�i /

�1gC
i�1

: : : .g�2 /
�1gC

1

��
BiC1

D
�
.g�i /

�1gC
i�1

: : : .g�2 /
�1gC

1

���
.g�iC1/

�1gCi
��

BiC1 D lim
s!�1

„0iC1:
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Here we used the fact that g�
iC1

;gCi 2 GBiC1
. The convergence of .u�i /

�„� then
implies 

.u�/�„� �„0i.� � s�i /




W 1;p.Œs�

i
��;s�

i
C���Y /

� �=3

for large � and i D 1; : : : ; `, and from the exponential decay (87) we obtain

.u�/�„� �„0i.� � s�i /




W 1;p.Œs�
i
C�; 3

4
s�

iC1
C 1

4
s�

i
��Y /
� �=3;

.u�/�„� �„0i.� � s�i /




W 1;p.Œ 3

4
s�

i�1
C 1

4
s�

i
;s�

i
����Y /

� �=3;

for large � , large � , and i D 1; : : : ; `. Here we denote s�
0
WD �1 and s�

`C1
WD1,

and we use the fact that .gCi /
�„i D„i on Œ1;1/ and .g�i /

�„i D„i on .�1;�1�.
Thus, for every � > 0, we have a subsequence .�n/n2N and a sequence of gauge
transformations u

�n
� such that

.u�n

� /
�„�n �„0i.� � s

�n

i /




W 1;p.I
�n
i
�Y /
� �

holds for all sufficiently large n�N� . Assertion (ii) then follows by taking a diagonal
subsequence.

To prove (i) we can assume by contradiction that, after passing to a subsequence,
none of the D„� ;ı is surjective. Then we use the C0 –estimate of (86) and the same
patching construction as for (ii) to find a further subsequence and a sequence of gauge
transformations u� 2 G.R�Y / such that

(88) lim
�!1



.u�/�„� �„0i.� � s�i /



C0.I�

i
�Y /
D 0

for i D 1; : : : ; `. (The C0 –estimate holds on increasingly large domains because
B�i !Bi converges in C0.R�Y / – but not in W 1;p.R�Y /.) By Theorem 6.9 (iv) the
surjectivity of the linearized operators D„� ;ı is independent of a timeshift in the weight
function, or equivalently in the connection. Hence, applying an overall timeshift to each
element of the sequence „� , we may assume w.l.o.g. that s�

1
D 0 and for each i � 2 we

have s�i !1. By assumption, the linearized operator wD„i ;ıw
�1 DrsCHAi

� I�
is surjective on the unweighted Sobolev spaces, see Remark 6.10 (iv), and so are the
operators rs CHAi

� Iı . (Recall that � D @sV D w�1@sw denotes the derivative
of the weight function.) Equivalently, the adjoint operators �rs CHAi

� I� resp.
�rsCHAi

� Iı are injective. Hence there is a constant c such that

k�kLp � c


�rs�CHAi

� � I��




Lp ; k�kLp � c


�rs�CHAi

� � Iı�




Lp

for every � 2 W 1;p.R � Y;T�Y ˝ g˚ g/. This estimate is stable under C0 –small
perturbations of „i and under the action of the gauge group. Hence, enlarging the
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constant c if necessary, we obtain

supp � � I�i �Y H) k�kLp � c


�rs�CHA�� � I��




Lp

for all � and i and for � sufficiently large. For i � 1 this follows directly from (88)
with s�

1
D 0. For i � 2 we use the fact that �.s/D ı for all s 2 I�i , so we can estimate

�rs�CHA�� � I��




Lp by

�rs�CHAi .��s�
i
/� � Iı�




Lp �



.u�/�„� �„i.� � s�i /



C0.I�

i
�Y /
k�kLp

and identify the first term of this with

.�rsCHAi
� Iı/�.� C s�i /




Lp � c�1

k�kLp :

Now for each � we can choose a partition of unity h�i W R! Œ0; 1� with supp h�i � I�i
and

P
i



@sh�i




L1
! 0. Then we obtain

k�kLp �

X̀
iD1



h�i �




Lp � c
X̀
iD1



h�i .�rs�CHA�� � I��/� .@sh�i /�




Lp

� `c


�rs�CHA�� � I��




Lp C

X̀
iD1



@sh�i




L1
k�kLp :

This shows that the operator �rsCHA� � I� is injective on the unweighted Sobolev
spaces for � sufficiently large, and hence its adjoint rsCHA� �I� is surjective. Since
the latter operator is conjugate to D„� ;ı this is a contradiction to the assumption, and
the theorem is proved.

8 Transversality

Let .Y;g/ be a compact oriented Riemannian 3–manifold with metric g and boundary
@Y D†, and let L�A.†/ be a gauge invariant, monotone, irreducible Lagrangian
submanifold satisfying (L1)–(L3). Then R�Y naturally is a Riemannian 4–manifold
with boundary space-time splitting and tubular ends in the sense of Definition 6.2. In
order to complete the instanton data we must also choose a perturbation. A detailed
construction of holonomy perturbations is given in Appendix D. In this section we
concentrate on achieving transversality by the choice of perturbation.

Fix an embedding ˇW Œ�1; 1� �D ! int.Y / and denote by �m the set of finite se-
quences 
 D .
1; : : : ; 
m/ of embeddings 
i W S

1 �D! int.Y / that agree with ˇ in
a neighbourhood of f0g �D . Every 
 2 �m gives rise to a map

�D .�1; : : : ; �m/W D�A.Y /! Gm
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where �i.z;A/ is the holonomy of the connection A around the loop 
i.�; z/. Let
Fm WD C10 .D�Gm/G denote the space of conjugation invariant real valued compactly
supported smooth functions on D�Gm . Each pair .
; f / 2 �m �Fm determines a
smooth function hf W A.Y /!R via

hf .A/ WD

Z
D
f .z; �.z;A// d2z:

The differential dhf .A/W TAA.Y /!R has the form

dhf .A/˛ D

Z
Y

hXf .A/^˛ i:

Here Xf W A.Y /!�2.Y; g/ is a smooth function satisfying (10). We emphasize that
the tuple .1l; : : : ; 1l/ is a critical point of every conjugation invariant function Gm!R
and hence the trivial connection A D 0 is always a critical point of the perturbed
Chern–Simons functional CSLC hf ; it is nondegenerate by assumption (L3).

Definition 8.1 Fix a perturbation .
; f / 2 �m �Fm and two nondegenerate critical
points A˙2Crit.CSLChf /. A finite energy solution AW R!A.Y;L/ of the boundary
value problem (14) with limits lims!˙1A.s/DA˙ is called regular if the operator
DA;ı defined in (71) is surjective for every sufficiently small constant ı > 0. (This
condition is independent of k and p .)

Definition 8.2 A pair .
; f / 2 �m �Fm is called regular (for .Y;g/ and L) if it
satisfies the following.

(i) Every nontrivial critical point of the perturbed Chern–Simons functional CSLC hf
is irreducible and nondegenerate, ie if A2A.Y;L/ is not gauge equivalent to the trivial
connection and satisfies FACXf .A/D 0 then H 0

A
D 0 and H 1

A;f
D 0.

(ii) Let AW R!A.Y;L/ be a finite energy solution of the boundary value problem (14)
with ıf .A/� 7 and suppose that at most one of the limits A˙ is gauge equivalent to
the trivial connection. Then the operator DA;ı defined in (71) is surjective for every
integer k � 1, every p > 1, and every sufficiently small constant ı > 0.

For every 
 2 �m the set of regular elements f 2 Fm will be denoted by Freg.
 /.

If f 2Freg.
 / and .ŒA��; ŒAC�/¤ .0; 0/ then it follows from the discussion in Section 6
that the moduli space M.A�;ACIXf /, introduced in (62) and the beginning of
Section 7, is a smooth manifold of local dimension

dimŒA�M.A�;ACIXf /D ıf .A/:
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For every integer k � 1 we introduce the following seminorm on the space of perturba-
tionsˇ̌
kXf j




k
WD sup

A2A.Y;L/

 

Xf .A/



Ck

.1CkAkC k /k
C sup
˛2TAA.Y;L/



dXf .A/˛



Ck�1

k˛kCk�1 .1CkAkCk�1/k�1

!
:

We will apply this notation to the difference Xf �Xf 0 associated to two pairs .
; f / 2
�m�Fm and .
 0; f 0/2�m0�Fm0 . This difference can be written as Xf�f 0 associated
to the union 
 [ 
 0 WD .
1; : : : ; 
m; 


0
1
; : : : ; 
m0/ 2 �mCm0 , where f and f 0 are

extended to elements of FmCm0 in the obvious way. Then Proposition D.1 implies thatˇ̌
kXf� �Xf0

j




k
! 0 for kf� �f0kCkC1 ! 0.

Theorem 8.3 (i) For every 
 2 �m the set of all f 2 Fm that satisfy condition (i) in
Definition 8.2 is open in Fm with respect to the C2 –topology.

(ii) Let .
0; f0/2�m0
�Fm0

be such that every nontrivial critical point of CSLC hf0

is irreducible. Then, for every " > 0 and every k 2N , there exists an n 2N and a pair
.
; f / 2 �n �Fn that satisfies condition (i) in Definition 8.2 and

ˇ̌
kXf �Xf0

j




k
< ":

The zero perturbation satisfies the assumptions of Theorem 8.3 (ii) by (L3). Transversal-
ity for the critical points near the unperturbed equation was established by Taubes [30].
The extension to large perturbations requires another proof, similar to that of the
following transversality result for trajectories.

Theorem 8.4 (i) The set Freg.
 / is open in Fm with respect to the C 2 –topology
for every m 2N and every 
 2 �m .

(ii) Assume that .
0; f0/ 2 �m0
�Fm0

satisfies condition (i) in Definition 8.2. Then,
for every " > 0 and k 2N , there exists an n 2N and another pair .
; f / 2 �n �Fn

that is regular, ie f 2 Freg.
 /, and satisfies

Crit.CSLC hf0
/D Crit.CSLC hf /;

A 2 Crit.CSLC hf0
/ H) hf .A/D hf0

.A/;ˇ̌
kXf �Xf0

j




k
< ":

Note that we do not construct a Banach space of perturbations in which regular ones
are of Baire second category. The main reason for this is that the loops in the interior
of Y do not form a Banach space.

Remark 8.5 Fix a point y0 2 int.Y /. For every based, embedded loop 
 W Œ0; 1�!
int.Y / with 
 .0/ D 
 .1/ D y0 denote by �
 W A.Y /! G the holonomy map. For
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later reference we state two facts that follow from the equivalence between connection
1–forms and parallel transport. (Note that it suffices to use embedded loops in the
interior.)

(i) Two connections A;B 2A.Y / are gauge equivalent if and only if there is a g0 2G
such that

�
 .B/D g�1
0 �
 .A/g0

for every based embedded loop 
 .

(ii) Let A 2A.Y / and ˛ 2�1.Y; g/. Then ˛ 2 im dA if and only if there is a �0 2 g

such that
d�
 .A/˛ D �
 .A/�0� �0�
 .A/

for every based embedded loop 
 .

Proof of Theorem 8.3 Assertion (i) follows from the fact that the conditions H 0
A
D 0

and H 1
A;f
D 0 are open with respect to C2 –variations of f and A. The conditions

are moreover gauge invariant, and the set of nontrivial critical points of CSLC hf is
compact in A.Y;L/=G.Y / for every perturbation f . (This follows from Uhlenbeck
compactness [32; 34] since FA D �Xf .A/ is L1–bounded.) The proof of (ii) has
three steps.

Step 1 Let .
0; f0/ 2 �m0
�Fm0

be given. Then there is a 
 2 �m with 
i D 
0i for
i D 1; : : : ;m0 satisfying the following condition. Define � W A.Y /! Gm by

�.A/ WD �.0;A/D .�1.0;A/; : : : ; �m.0;A//:

Then, for every critical point A 2 Crit.CSL C hf0
/ and every nonzero 1–form � 2

�1.Y; g/ satisfying

(89) dA�C dXf0
.A/�D 0; d�A�D 0; �j@Y 2 TAL; ��j@Y D 0;

the vector Œd�.A/�� 2 T.Gm=G/ is nonzero.

The trivial connection is nondegenerate by assumption (L3), so for �¤ 0 we must have
ŒA�¤ Œ0�, and so by assumption A is irreducible. The condition Œd�.A/��¤ 0 is open
with respect to variations of .A; �/, and it is invariant under gauge transformations
.A; �/ 7! .u�A;u�1�u/. Moreover, the set of gauge equivalence classes of pairs
.A; �/ 2 Crit.CSL C hf0

/ ��1.Y; g/ that satisfy k�kL2 D 1, ŒA� ¤ Œ0�, and (89) is
compact. (For � this follows from elliptic estimates for the operator dA˚ d�

A
with

boundary condition ��j@Y D 0; see eg [34, Theorem D].) Hence it suffices to construct

 for a single such pair .A; �/. We shall use Remark 8.5 (ii) to construct 
 . In each
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step it suffices to find the loops � 7! 
i.�; 0/ (with base point y0 WDˇ.0; 0/). Since the
condition is open with respect to smooth variations of 
 , these loops can be deformed
and extended to the required embeddings of D�S1 into the interior of Y .

Since A is irreducible we can choose the loops 
m0C1 and 
m0C2 such that the
matrices g1 WD �m0C1.0;A/ and g2 WD �m0C2.0;A/ do not commute. Then �.A/
lies in the free part of Gm . The tangent space of the G–orbit through �.A/ is

V0 WD
˚
v D

�
�i.A/� � ��i.A/

�
iD1;:::;m

ˇ̌
� 2 g

	
� T�.A/G

m:

We prove that 
 can be chosen such that d�.A/� … V0 .

Since �? im dA , it follows from Remark 8.5 (ii) that for every � 2 g there is a based
loop 
 such that

(90) d�
 .A/�¤ �
 .A/� � ��
 .A/:

Since the map � 7! .g1� � �g1;g2� � �g2/ is injective there is a constant C such that
for j�j � C condition (90) holds for one of the loops 
mC1.0; �/ or 
mC2.0; �/. The
compact set fj�j �C g can be covered by finitely many open sets Uj , on each of which
condition (90) holds with the same loop 
mC2Cj . Thus we have proved that for every
� 2 g there exists an i such that (90) holds with 
 D 
i . This implies that d�.A/� is
not contained in V0 and hence does not vanish in the tangent space of the quotient
Gm=G.

Step 2 Let 
 2 �m be as in Step 1 and fix p > 3. For k 2N and " > 0 denote

Fk;"
m WD

˚
f 2 CkC1.D�Gm/G

ˇ̌
kf �f0kCkC1 < "

	
;

let A1;p.Y;L/ and G2;p.Y / denote the W 1;p – and W 2;p –closure of A.Y;L/ and
G.Y / respectively and denote�M�.Fk;"

m / WD
˚
.A; f / 2A1;p.Y;L/�Fk;"

m

ˇ̌
FACXf .A/D 0; ŒA�¤ Œ0�

	
:

Then for every k 2N there is an " > 0 such that the moduli space

M�.Fk;"
m / WD �M�.Fk;"

m /=G2;p.Y /

is a separable Ck Banach manifold.

We denote W
1;p

TAL.Y;T
�Y ˝ g/ WD

˚
˛ 2W 1;p.Y;T�Y ˝ g/

ˇ̌
˛j@Y 2 TAL

	
and Fk

m WD

CkC1.D�Gm/G D TfFk;"
m , and consider the operator

W
1;p

TAL.Y;T
�Y ˝ g/�W 1;p.Y; g/�Fk

m!Lp.Y;T�Y ˝ g/�Lp.Y; g/(91)

.˛; '; yf / 7!
�
�dA˛C�dXf .A/˛� dA'C�X yf .A/;�d�A˛

�
:given by
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This operator is HA� .�X�.A/; 0/ and hence it is the linearized operator of �M�.Fk;"/

together with the local slice condition for the G2;p.Y /–action. (The nonlinear operator
is a Ck map since the map �Xf W A1;p.Y /!Lp.Y;T�Y ˝ g/ is Ck for f 2 CkC1 .)
We must prove that this operator is surjective for every pair .A; f / 2M�.Fk;"

m / when
" is sufficiently small. We first prove this for f D f0 . Suppose, by contradiction that
there is a nontrivial critical point A 2 Crit.CSLC hf0

/ such that the operator (91) is
not onto. Then with q�1 D 1�p�1 there is a nonzero element

.�; �/ 2Lq.Y;T�Y ˝ g/�Lq.Y; g/

orthogonal to the image of (91). Any such element satisfies

dA� D 0; �dA�C�dXf0
.A/�D 0; d�A�D 0;

dh yf .A/�D

Z
Y

hX yf .A/^� i D 0(92)

for every yf 2 Fk
m;" . This implies � D 0 because A was assumed to be irreducible.

Since �¤ 0 it follows from Step 1 that d�.A/�¤ 0 and hence the map R! Gm=G W
r 7! Œ�.0;AC r�/� is an embedding into the free part of the quotient near r D 0. This
implies that there exists a map yf 2 Fk

m such that

yf .z; �.z;AC r�//D rˇ.r/ˇ.jzj/;

where ˇW R! Œ0; 1� is a smooth cutoff function that is supported in a sufficiently small
neighbourhood of 0 and is equal to 1 near 0. Hence

dh yf .A/�D
d
dr

ˇ̌̌̌
rD0

Z
D

yf .z; �.z;AC r�// d2z D

Z
D
ˇ.jzj/d2z > 0

in contradiction to (92). This proves that the operator (91) is onto whenever f D f0

and ŒA�¤ Œ0�. That this continues to hold for kf �f0kCkC1 sufficiently small follows
from compactness and the fact that the trivial connection is nondegenerate.

Step 3 We prove (ii).

By Step 2, the projection M�.Fk;"
m /! Fk;"

m is a C k Fredholm map of Fredholm
index zero. (Its linearization ker.HAC.�X�.A/; 0/!TFk;"

m has the same index as the
self-adjoint operator HA .) Hence it follows from the Sard–Smale theorem that the set
of regular values of this projection is dense in Fk;"

m . For such a regular value f 2Fk;"
m

we have im .�X�.A/; 0/ � imHA , so by the surjectivity in Step 2, the operator HA

itself is surjective and hence injective. This shows that H 1
A;f
D 0 for all critical points

A 2 Crit.CSLC hf /. For kf �f0kC2 sufficiently small we also have H 0
A
D 0 by (i),

and hence f is “regular” in the sense that Definition 8.2 (i) is satisfied. So we have
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seen that f0 2Fm can be approximated by a sequence of “regular” CkC1 perturbations
f � 2 Fk

m and due to (i) also by a sequence of “regular” smooth perturbations. This
proves the theorem.

Proof of Theorem 8.4 To prove (i) we suppose by contradiction that there is a 
 2�m

and a sequence f � 2FmnFreg.
 / converging to some f 2Freg.
 / in the C 2 topology.
By Theorem 8.3 we may assume that each f � satisfies condition (i) in Definition 8.2.
Thus there is a sequence A� 2 �M.A��;A

�
CIXf � / such that ıf � .A�/� 7, at most one

of the limits A�
˙

is gauge equivalent to the trivial connection, and the operator DA� ;ı

is not surjective. The sequence A� has bounded energy by Corollary 6.14 and hence
a subsequence converges to a broken Floer trajectory .A1; : : : ;A`/ by Theorem 7.2.
Since f 2 Freg.
 /, all moduli spaces with negative index and at least one nontrivial
limit connection are empty, and the assertion of Corollary 7.4 is wrong. So neither
bubbling nor self-connecting trajectories of Œ0� can occur in the limit. Hence DAj ;ı

is surjective for every j and, by gluing (see Theorem 7.7 (i)), the operator DA� ;ı is
surjective for � sufficiently large. This contradiction proves (i).

We prove (ii). By assumption CSLC hf0
has only finitely many critical points in the

configuration space A.Y;L/=G.Y /. By Corollary 6.14 the energy of a Floer connecting
trajectory is E D 1

2
�2
�
�f0
.AC/� �f0

.A�/� dim H 1
A�
C dim H 1

AC
C j

�
; where j is

the Fredholm index of the linearized operator. There are finitely many such numbers
E � 0 with j � 7. We order them as

0�E0 <E1 < � � �<E`:

Claim Let j 2 f0; : : : ; `� 1g and .
; f / 2 �m �Fm such that

A 2 �M.A�;ACIXf /; .ŒA
��; ŒAC�/¤ .0; 0/;

Ef .A/�Ej ; ıf .A/� 7

�
H) DA;ı is onto(93)

Crit.CSLC hf /D Crit.CSLC hf0
/(94)

A 2 Crit.CSLC hf0
/ H) hf .A/D hf0

.A/;(95)

Fix an integer k 2 N and a constant " > 0. Then there is a perturbation .
 0; f 0/ 2
�m0 �Fm0 satisfying (93) to (95) with j replaced by j C 1 and

(96)
ˇ̌
kXf 0 �Xf j




k
< ":

A connection A 2M.A�;ACIXf / with energy Ef .A/� 0 must be gauge equivalent
to the constant path A� DAC 62 Œ0�. By assumption these critical points of CSLChf0

are nondegenerate. So by Theorem 3.13 the hypotheses of the claim are satisfied for
j D 0 and .
; f /D .
0; f0/. Therefore assertion (ii) of the theorem follows from the
claim by induction on j . We prove the claim in four steps.
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Step 1 The quotient of the set

K WD
[

.ŒA��;ŒAC�/¤.0;0/

8̂̂<̂
:̂AW R!A.Y;L/

ˇ̌̌̌
ˇ̌̌̌ @sAC�.FACXf .A//D 0;

lims!˙1A.s/ 2 ŒA˙�;

Ef .A/�EjC1; ıf .A/� 7;

DA;ı not onto

9>>=>>;
by the gauge group G.Y / is compact.

This is proven by the same discussion as in (i). The argument uses in addition the fact
that the energy of each limit trajectory Aj is strictly less than the energy of the A�

if bubbling or breaking of trajectories occurs. (So the relevant moduli spaces will be
transverse or empty by assumption.)

Step 2 There is a 
 0 2 �m0 with 
 0i D 
i for i D 1; : : : ;m satisfying the following
conditions. For z 2 D and A 2A.Y / let �0i.z;A/ be the holonomy of A around the
loop � 7! 
 0i .�; z/ and define � W A.Y /! Gm0 by

�.A/ WD .�01.0;A/; : : : ; �
0
m0.0;A//:

Then, for every A 2K , there is an s0 2R such that the following holds.

(a) The tuple �.A.s0// is not contained in �.Crit.CSLC hf // and belongs to the
free part of Gm0 for the action of G by simultaneous conjugation. Moreover,
�.A.s// 6� �.A.s0// for every s 2R n fs0g.

(b) For every nonzero section .�; 0/ 2 kerD�A;ı the vectors d�.A.s0//@sA.s0/ and

d�.A.s0//�.s0/ are linearly independent in T.Gm0=G/.

For every s0 2R and every 
 0 the set of all A 2K that satisfy conditions (a) and (b)
is open. Moreover, (a) and (b) are preserved under gauge transformations and under
adding further loops to 
 0 . So it suffices to establish (a) and (b) for a single element
of K . (Then K is covered by finitely many gauge orbits of small open sets around
such elements, and the final 
 0 results from taking the union over all loops that are
required by these different elements.) Hence from now on we fix an element A 2K .
Since either AC or A� is irreducible, there is an s0 2R such that A.s0/ is irreducible.
Since the path s 7! .dA.s/�; 0/ is a solution of (105) for every � 2�1.Y; g/, it follows
from Proposition 8.6 (ii) below that

(97) @sA.s0/ … im dA.s0/I
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otherwise we would have @sA.s/D dA.s/� for all s 2 R and, by partial integration,
kdA�kL2.Y / D �

R
Y h dA� ^ .FACXf .A// i D 0 which would imply @sA � 0 and

hence Ef .A/D 0. By Proposition 8.6 (i) below, we have that

(98) A.s0/ …
[

s¤s0

ŒA.s/�[Crit.CSLC hf /I

otherwise AW R!A.Y;L/ would be constant or periodic modulo gauge, in contradic-
tion to 0<Ef .A/ <1. Moreover, for .�; 0/ 2 kerD�A;ı , we have

(99) �.s0/?R@sA.s0/C im dA.s0/:

To see this, fix an element � 2 �0.Y; g/. Then ˛.s/ WD @sA.s/C dA.s/� and �.s/
satisfy the differential equations

@s˛C�.dA˛C dXf .A/˛/D 0; @s�C 2@sV���.dA�C dXf .A/�/D 0;

and the Lagrangian boundary condition �.s/j@Y ; ˛.s/j@Y 2 TA.s/L. Hence

d
ds

exp.2V /

Z
Y

h �; ˛ i D exp.2V /

�Z
Y

h @s�C 2@sV�;�˛ iC

Z
Y

h �;�@s˛ i

�
D 0:

The last identity uses the fact that the operator ˛ 7! �.dA˛ C dXf .A/˛/ with the
Lagrangian boundary condition is self-adjoint for every s . Since the inner product
e2V

R
Y h �; ˛ i converges to zero for s!˙1, this proves (99).

As in the proof of Theorem 8.3 we shall use Remark 8.5 to construct 
 0 and it suffices
in each step to find the loop � 7! 
 0i .�; 0/. Since A.s0/ is irreducible and using (97)
we can argue exactly as in the proof of Step 1 in Theorem 8.3, with .A; �/ replaced by
.A.s0/; @sA.s0//, to prove that 
 0 can be chosen such that �.A.s0// belongs to the
free part of Gm0 and

(100) d�.A.s0//@sA.s0/ … V0;

where V0 � T�.A.s0//G
m0 is the tangent space of the G–orbit through �.A.s0//,

namely
V0 WD

˚
v D

�
�i.A.s0//�0� �0�i.A.s0//

�
iD1;:::;m0

ˇ̌
�0 2 g

	
:

This implies that Œd�.A.s0//@sA.s0/�¤ 0 in the tangent space of the quotient Gm0=G.
It follows that the curve Œs0�ı; s0Cı�!Gm0=G W s 7! Œ�.A.s//� is injective for ı > 0

sufficiently small. The set

C WD
˚
ŒA.s/�

ˇ̌
js� s0j � ı

	
[Crit.CSLC hf /=G.Y /�A.Y /=G.Y /

is compact and, by (98), does not contain ŒA.s0/�. Now (i) holds if and only if
�.B/ 6� �.A.s0// for every ŒB� 2 C . Since this condition is open in B , and C is
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compact, it suffices to prove this for a fixed element ŒB� 2 C . Given ŒB� 2 C it follows
from Remark 8.5 (i) that for every g 2 G there is a based loop 
 such that

�
 .B/¤ g�1�
 .A.s0//g:

For every fixed loop 
 this condition is open in g . Since G is compact there exist
finitely many loops 
 0i such that the tuple .�
 0

i
.B//i is not simultaneously conjugate

to .�
 0
i
.A.s0///i . For this choice of the loops 
 0i we have that �.B/ 6� �.A.s0// as

claimed.

To prove (b) it suffices to consider a fixed nonzero element .�; 0/ 2 kerD�A;ı because
this kernel is finite dimensional. Since �.s0/ ¤ 0 (by unique continuation as in
Proposition 8.6 (ii)) it follows from (99) that

�.s0/��@sA.s0/ 62 im dA.s0/ 8� 2R:

By (100) we have ı WD infv2V0
jd�.A.s0/@sA.s0/� vj> 0 and

(101) d�.A.s0//
�
�.s0/��@sA.s0/

�
62 V0

for j�j> ı�1 kd�.A.s0/�.s0/k DW c . We wish prove that (101) continues to hold for
all � 2 Œ�c; c� with a suitable choice of 
 0 . For each fixed � the proof is the same as
that of Step 1 in the proof of Theorem 8.3. Since condition (101) is open in � this
proves Step 2.

Step 3 Let C WD
˚
.z; �0.z;A// 2 D �Gm0

ˇ̌
A 2 Crit.CSL C hf /

	
: For "0 > 0 and

k 2N (possibly larger than the constant in the claim) denote

Fk;"0

m0 WD
˚
f 0 2 CkC1.D�Gm0/G

ˇ̌
.f 0�f /jB"0 .C / � 0; kf 0�f kCkC1 < "0

	
and for a fixed p > 4 let

�M.A�;AC;Fk;"0

m0 / WD

8<:.A; f 0/ 2A1;p

ı
�Fk;"0

m0

ˇ̌̌̌
ˇ̌ A 2 �M.A�;ACIXf 0/

Ef 0.A/�EjC1

ıf 0.A/� 7

9=; :
Here we abbreviate A1;p

ı
WD A1;p

ı
.R � Y;LIA�;AC/ (see Equation (74)). Let

G2;p
0
.R�Y / be the W 2;p –closure of fuW R! G.Y /

ˇ̌
u.s/D 1l 8jsj � 1g. Then for

every k 2N there is an "0 > 0 such that the following holds.

Every perturbation f 0 2 Fk;"0

m0 satisfies conditions (94), (95), (96), and for every pair of
critical points .ŒA��; ŒAC�/¤ .0; 0/ the universal moduli space

M.A�;AC;Fk;"0

m0 / WD
�M.A�;AC;Fk;"0

m0 /=G
2;p
0
.R�Y /

is a separable Ck –Banach manifold.
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Conditions (94), (95), and (96) are satisfied for every f 0 2Fk;"0

m0 for "0 > 0 sufficiently
small. The assertion about the universal moduli space holds whenever the linearized
operator

(102) .˛; '; yf / 7!DA;ı.˛; '/C .X yf .A/; 0/

is surjective for every pair .A; f 0/ 2 �M.A�;AC;Fk;"0

m0 /. Here DA;ı is the operator
(71) with kD 1. We first prove that this holds for f 0D f . If A is not gauge equivalent
(by G.A�;AC/) to a connection in K , then the operator DA;ı is surjective by Remark
6.10 (i), and hence so is (102). Let A2K (after a gauge transformation in G.A�;AC/)
and q�1 WD 1�p�1 , and suppose, by contradiction, that there is a nonzero pair

.�; '/ 2L
q

ı
.R�Y;T�Y ˝ g/�L

q

ı
.R�Y; g/

orthogonal to the image of (102). Then we have ' D 0 (by the proof of Theorem 6.9),
� 2W

1;p
A .R�Y;T�Y ˝ g/ (by Theorem 3.11), D�A;ı.�; 0/D 0, and

(103)
Z 1
�1

exp.2V .s//dh yf .A.s//�.s/ ds D 0

for every yf 2 TfFk;"0

m0 . By Step 2 there is s0 2 R such that �.A.s//¤ �.A.s0//

for s ¤ s0 and the tangent vectors d�.A.s0//@sA.s0/, d�.A.s0//�.s0/ are linearly
independent. Hence the map

.r; s/ 7! �.z;A.s/C r�.s//

is an embedding in a neighbourhood of .0; s0/ 2R2 for every sufficiently small z 2D .
It follows that there exists a smooth G–invariant map yf W D�Gm0!R vanishing in a
neighbourhood of C and satisfying

yf .z; �.z;A.s/C r�.s///D rˇ.r/ˇ.s� s0/ˇ.jzj/

for a suitable cutoff function ˇW R! Œ0; 1� that is supported in a neighbourhood of 0

and is equal to 1 near 0. This implies

dh yf .A.s//�.s/D

Z
D

@

@r

ˇ̌̌̌
rD0

yf .z; �.z;A.s/C r�.s///d2z

D ˇ.s� s0/

Z
D
ˇ.jzj/d2z � 0

for every s 2 R. Hence the integral on the right hand side of (103) does not vanish,
contradiction. Thus we have proved that the operator (102) is onto whenever f 0 D f .
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We must prove that (102) is onto when kf 0�f kCkC1 is sufficiently small. Otherwise
there are sequences Fk;"0

m0 3 f
�! f and A� 2 �M.A�;ACIXf � / such that the oper-

ator (102), with .A; f 0/ replaced by .A� ; f �/, is not onto. If A� converges (modulo
gauge) to A 2K then (102) is surjective for the pair .A; f / and hence for .A� ; f �/
when � is sufficiently large. Otherwise it follows from the compactness and gluing
theorems as in the proof of (i) that DA� ;ı is surjective for � sufficiently large. This
contradiction finishes the proof of Step 3.

Step 4 We prove the claim.

By Step 3 the projection M.A�;AC;Fk;"0

m0 /! Fk;"0

m0 is a Fredholm map of index at
most 7 for every pair A˙ 2 Crit.CSLC hf / with .ŒA��; ŒAC�/¤ .0; 0/. (The index
at .A; f / is the same as that of the linearized operator DA;ı .) Hence it follows from
the Sard–Smale theorem that, for k � 8, the set of regular values is of the second
category in the sense of Baire. Any such regular value f 2 Fk;"0

m0 satisfies (93). To
prove the claim, pick a regular value of the projection and approximate it by a smooth
perturbation f 0 . In the last step we use the fact that the set of all perturbations that
satisfy the requirements of the claim is open in the CkC1 –topology. (The proof is
analogous to the proof of (i).) This proves the theorem.

The main difference between our proof of Theorem 8.4 and the argument in Donaldson’s
book [10, p 144] for the closed case is that we do not have a gluing theorem converse
to bubbling on the boundary and hence cannot work on a compact part of the moduli
space in the presence of bubbling on the boundary. To circumvent this difficulty we
have restricted the discussion to the monotone case and to Floer connecting trajectories
of index less than or equal to seven. We also made use of a unique continuation result
for perturbed anti-self-dual connections with Lagrangian boundary conditions, which
is established next.

Unique continuation

Proposition 8.6 Let .
; f / 2 �m �Fm and fix an open interval I �R.

(i) Let A;BW I !A.Y / be two solutions of the Floer equation

(104) @sAC�FAC�Xf .A/D 0; A.s/j† 2 L:

If A.s0/D B.s0/ for some s0 2 I then A.s/D B.s/ for all s 2 I .

(ii) Let AW I !A.Y;L/ and � D .˛; '/W I !�1.Y; g/��0.Y; g/ be smooth maps
satisfying the (augmented) linearized Floer equation

(105) @s�CHA� D 0; ˛.s/j† 2 TA.s/L; �˛.s/j† D 0:
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If �.s0/D 0 for some s0 2 I then �.s/D 0 for all s 2 I .

The proof will use the following local continuation result in the interior. This was
proven by Taubes [31] in a slightly different formulation; we include the proof for the
sake of completeness.

Lemma 8.7 Let U be a (not necessarily compact) 3–manifold without boundary and
I �R be an open interval.

(i) Let A;BW I ! A.U / be two solutions of the unperturbed Floer equation (104)
with f D 0. If A.s0/D B.s0/ for some s0 2 I then A.s/D B.s/ for all s 2 I .

(ii) Let AW I ! A.U / and � D .˛; '/W I ! �1.U; g/��0.U; g/ be smooth maps
satisfying the unperturbed linearized Floer equation (105) with f D 0. If �.s0/D 0

for some s0 2 I then �.s/D 0 for all s 2 I .

Proof To prove (i) assume by contradiction that A.s0;y1/ ¤ B.s0;y1/ for some
.s0;y1/ 2 I �U . Let Dr .y1/� U be a geodesic ball of radius r > 0 around y1 and
denote

J WD
˚
s 2 I

ˇ̌
A.s/jDr=2.y1/ D B.s/jDr=2.y1/

	
� I:

This set contains s0 by assumption and it is a closed subset of I because A�B is
continuous. We claim that J � I is open and hence J D I in contradiction to the
assumption.

To prove that J is open we fix an element s1 2J . Then A�B vanishes to infinite order
(ie with all derivatives) at x1 WD .s1;y1/. For the derivatives in the direction of I this
follows from the Floer equation. Let Dr .x1/� I �U denote the geodesic ball centred
at x1 . We fix gauge transformations uA;uB 2 G.Dr .x1// with uA.x1/D uB.x1/D 1l
such that u�

A
A and u�

B
B are in radial gauge on Dr .x1/. Then these can be pulled back

to connections in temporal gauge A0;B0W .�1; log r/! A.S3/ by geodesic polar
coordinates .�1; log r/�S3 �!Dr .x1/n fx1g. The fact that u�

A
A�u�

B
B vanishes to

infinite order at x1 translates into superexponential convergence A0.s/�B0.s/! 0

as s!�1. In particular, for every K > 0, we have

(106) lim
s!�1

e�Ks
kA0.s/�B0.s/kL2.S3/ D 0:

The pullback metric on .�1; log r/�S3 has the form e2s. ds2Cgs/, where g is a
smooth family of metrics on S3 that converges exponentially to the standard metric
on S3 as s!�1. Since the anti-self-duality equation is conformally invariant, the
connections A0 and B0 also satisfy (104) with respect to the metric ds2 C gs on
.�1; log r/�S3 . We now denote ˛ WD B0�A0W .�1; log r/!�1.S3; g/ and use
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the technique of Agmon–Nirenberg in Appendix C to prove that ˛ � 0. The Floer
equations (ie the anti-self-duality of A0 and B0 w.r.t. the conformally rescaled metric)
imply that ˛ satisfies

@s˛C�dA0C 1
2
˛˛ D 0:

We shall use the operator F WD ��dA0C 1
2
˛ (corresponding to A.s/, appropriately

shifted, in the notation of Appendix C) which is self-adjoint with respect to the time
dependent inner product

h˛; ˇ is WD

Z
S3

h˛^�s ˇ i D hQ.s/˛;Q.s/ˇ iE :

Here �s is the Hodge operator for the metric gs on S3 , and the subscript E indicates
the use of the standard metric on S3 . The operator Q.s/W �1.S3; g/! �1.S3; g/

is defined as in [11, p 151], as a self-adjoint operator such that Q.s/2 D �E�s . This
square root exists since �E�s is positive definite. These operators satisfy (Q1) in
Appendix C by the exponential convergence of gs as s!�1. Moreover,

�
d
ds
h˛;�dA0C 1

2
˛˛isC 2h@s˛;�dA0C 1

2
˛˛is D�

Z
S3

h˛^Œ@s.A
0
C

1
2
˛/^˛� i

�




@sA0C 1
2
@s˛





L1.S3/

k˛k2s :

Hence the function x.s/ WD ˛.s2�s/, with s2 2 .�1; log r/, satisfies the assumptions
of Theorem C.2 with c1 D c2 D 0 and c3.s/D k@sA0C 1

2
@s˛kL1.S3/ . The constant

c in Theorem C.2 is finite becauseZ s2

�1

k@sA0C 1
2
@s˛kL1.S3/ <1;

by the exponential decay of A0 and B0 (see Theorem 5.1). We thus obtain

k˛.s/ks � e�c.s2�s/
k˛.s2/ks2

for all s 2 .�1; s2�. This estimate contradicts the superexponential convergence
in (106) unless ˛.s2/ D 0. Since s2 is any element of the interval .�1; log r/

we have shown that ˛ � 0 and hence u�
A

AD u�
B

B on the geodesic ball Dr .x1/

around x1 D .s1;y1/. This ball contains the set Œs1 �
r
2
; s1C

r
2
��Dr=2.y1/. From

the construction of the gauge transformations with A D B on fs1g �Dr=2.y1/ we
know that uAjsDs1

D uBjsDs1
: Now there is a unique gauge transformation v on

Œs1�
r
2
; s1C

r
2
��Dr=2.y1/ with vjsDs1

Du�1
A
jsDs1

Du�1
B
jsDs1

that puts u�
A

ADu�
B

B

back into temporal gauge. By the uniqueness of the temporal gauge with uAvjsDs1
D

uBvjsDs1
D 1l this implies

AD .uAv/
�AD .uBv/

�B D B on Œs1�
r
2
; s1C

r
2
��Dr=2.y1/
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and hence Œs1�
r
2
; s1C

r
2
�� J . This proves that J is open as claimed.

The proof of (ii) is analogous to (i). In conformal polar coordinates near x1 we
choose the radial gauge u�

A
A as before. The pullback � 0W .�1; log r/!�1.S3; g/�

�0.S3; g/ then satisfies the linearized Floer equation with respect to A0 . Now the
Agmon–Nirenberg technique for x D � 0 (with the Hessian HA0.s/ as self-adjoint
operator) shows that � 0 � 0 and hence � D 0 on Dr .x1/. The relevant estimate is

�
d
ds

˝
� 0;HA0�

0
˛
s
C 2

˝
@s�
0;HA0�

0
˛
s

D�
d
ds

�Z
S3

h˛0^dA0˛
0
i � 2

Z
S3

h˛0^� dA0'
0
i

�
C 2

˝
@s.˛

0; '0/;HA0.˛
0; '0/

˛
s

D�

Z
S3

h˛0^Œ@sA0; ˛0� iC 2

Z
S3

h˛0^� Œ@sA0; '0� iC 2

Z
S3

h˛0^.@s�/dA0'
0
i

� 2c2.s/


HA0�

0




s



� 0


s
C c3.s/



� 0

2

s
;

where c2.s/D 2ı�1cQ.s/ and

c3.s/D 2


@sA0




L1.S3/

C 8ı�1cQ.s/ kFA0k
1=2

L1.S3/

with ı and cQ as in (Q1) in Appendix C. We have used the identity @s� D �E@sQ2 ,
which implies k@s � ks � 2ı�3cQ , and

dA0'

0


2

s
C


dA0˛

0


2

s
D


�dA0˛

0
� dA0'

0


2

s
C 2

R
S3h˛

0^ŒFA0 ; '
0� i

which implies kdA0'
0ks � kHA0�

0ksC 2 kFA0k
1=2

L1.S3/
k� 0ks .

Proof of Proposition 8.6 The proof of (i) is similar to that of Lemma 8.7 except
for the presence of boundary terms. To control these we first use Lemma 8.7 (i) on
U WDN n@Y for a neighbourhood N � Y of @Y on which Xf � 0. It implies that A

and B agree on I �U and hence by continuity on I �N . In particular, the 1–form
˛.s/ WD B.s/�A.s/ 2 �1.Y; g/ vanishes near @Y and hence belongs to the space
�1

A.s/
.Y; g/ for every s . To establish unique continuation in the interior we assume,

by contradiction, that ˛.s1/ ¤ 0 for some s1 < s0 . We will apply Theorem C.1 to
x.s/D ˛.s1� s/ and the symmetric operator

F.s/ WD �dA.s/C�dXf .A.s//W �
1
A.s/.Y; g/!�1

A.s/.Y; g/

for s 2 I . We have ˛.s0/D 0 and

@s˛CF˛ D�1
2
� Œ˛^˛���

�
Xf .AC˛/�Xf .A/� dXf .A/˛

�
;

@sh˛;F˛ i � 2h @s˛;F˛ i D
R

Y h˛^Œ@sA^˛� iC
R

Y h˛; d
2Xf .A/.@sA; ˛/ i:
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Hence it follows from Proposition D.1 (v) that

k@s˛.s/CF.s/˛.s/kL2.Y / � c1 k˛.s/kL2.Y / ;

@sh˛.s/;F.s/˛.s/ i � 2h @s˛.s/;F.s/˛.s/ i � c3 k˛.s/k
2
L2.Y /

for s1 � s � s0 and suitable constants c1 and c3 . This shows that the path s 7! ˛.s/

and the operator family F.s/ satisfy the hypotheses of Theorem C.1 with c2 D 0.
Hence ˛.s/D 0 for s1 < s � s0 and ˛.s1/D 0 follows by continuity, in contradiction
to the assumption. The argument for s1> s0 is similar and this proves (i). Assertion (ii)
follows from Lemma 8.7 (ii) and the analogous estimates for the solutions of (104).
This proves the proposition.

9 Gluing

Let Y be a compact oriented Riemannian 3–manifold with boundary @Y D† and L�
A.†/ be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)–(L3). Fix a regular perturbation hf W A.Y /!R in the sense of Definition 8.2.

Let B0;B1;B2 2A.Y;L/ be nondegenerate and irreducible critical points of CSLChf .
We denote by A.R�Y;LIB0;B2/ the space of smooth connections on R�Y with
boundary values in L and C1–limits B0 and B2 as in (61); this is a special case of the
notation (74). Also recall the notation �M.B0;B1IXf / from Section 7 for the space of
solutions that are in temporal gauge over the ends, and M.B0;B1IXf / for this space
modulo gauge equivalence. For T > 1 we define a pregluing map�M.B0;B1IXf /� �M.B1;B2IXf /!A.R�Y;LIB0;B2/

.„1; „2/ 7!„1#T„2

(107)

as follows. The connections „i D Ai C ˆi ds are in temporal gauge outside the
compact set Œ�1; 1��Y and have limits

lim
s!�1

A1.s/D B0; lim
s!1

A1.s/D B1 D lim
s!�1

A2.s/; lim
s!1

A2.s/D B2:

Define „1#T„2 WDACˆ ds by

ˆ.s/ WD

�
ˆ1.sCT /; s � 0;

ˆ2.s�T /; s � 0;

A.s/ WD

8̂<̂
:

A1.
T
2
�'.�T

2
� s//; s < �T

2
;

B1; s 2 Œ�T
2
; T

2
�;

A2.�
T
2
C'.�T

2
C s//; s > T

2
;
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where 'W .0;1/!R is a smooth function satisfying

'.s/D

�
s; s � 2;

�
1
s
; s � 1

2
;

@s' > 0:

This connection is smooth because A1 and A2 converge exponentially as s tends
to ˙1. It satisfies the limit conditions and the Lagrangian boundary conditions
by construction. In fact, this is why we use rescaling in time rather than convex
interpolation in space. The map .„1; „2/ 7! „1#T„2 is gauge equivariant in the
sense that

.u�1„1/#T .u
�
2„2/D u�.„1#T„2/; u.s/ WD

�
u1.sCT /; s � 0;

u2.s�T /; s � 0

for each pair .u1;u2/2G.B0;B1/�G.B1;B2/. Recall from the beginning of Section 7
that each u1 2 G.B0;B1/ satisfies @su1.s/ D 0 for jsj � 1, u1.s/ 2 GB1

for s � 1,
and u1.s/ 2 GB0

for s � �1; similarly for u2 . Since B1 is irreducible we have
u1.s/D u2.�s/D 1l for s � 1.

Theorem 9.1 Let B0;B1;B2 2 A.Y;L/ be nondegenerate and irreducible critical
points of CSLC hf , and fix „1 2

�M.B0;B1IXf / and „2 2
�M.B1;B2IXf / with

ıf .„1/D ıf .„2/D 1. Then, for every p > 2, there exist positive constants � , T0 and
a map

� W .T0;1/!M2.B0;B2IXf /=R; T 7! �T .„1; „2/

with the following properties:

(i) � is a diffeomorphism onto its image.

(ii) The connections �T .„1; „2/ converge without bubbling (as in Theorem 7.2) to
the broken trajectory .„1; „2/ as T !1.

(iii) If „ is a solution of the Floer equation (15) and

„� .„1#T„2/




W 1;p.R�Y /
� �

for some T � T0C 1, then its gauge and time-shift equivalence class Œ„� lies in
the image of � .

Proof The preglued connection

„1#T„2 DW„T DAT CˆT ds

is an approximate solution of the Floer equation and �T .„1; „2/ will be constructed
as a nearby true solution. More precisely, we have

(108)


@sAT � dAT

ˆT C�
�
FAT
CXf .AT /

�


Lp.R�Y /

� Ce�ıT
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for some constants C and ı > 0 by exponential decay, Theorem 5.1. We will use the
inverse function theorem to find near the approximate solution „T a true solution
z„T 2

�M.B0;B2IXf /. For that purpose we use the Banach manifold structure of the
space A1;p.R�Y;LIB0;B2/; see (74). Its tangent space T„T

A1;p.R�Y;LIB0;B2/

is the space of all 1–forms � D ˛ C ' ds with ˛ 2 W 1;p.R � Y;T�Y ˝ g/ and
' 2W 1;p.R�Y; g/ satisfying the boundary condition ˛.s/2TAT .s/L. Using the expo-
nential map of Theorem E.4 and Corollary E.5 we obtain a continuously differentiable
map

T„T
A1;p.R�Y;LIB0;B2/� zU !A1;p.R�Y;LIB0;B2/ W � 7! zE.„T I �/

defined on a neighbourhood zU of zero by

zE.„T I �/ WDEAT .s/.˛.s//C .ˆT .s/C'.s// ds:

We now look for a solution of the form z„T D
zAT C

ẑ
T dsD zE.„T I �/, where � 2 zU

satisfies 5

(109) d�„T
� D 0; ��jR�@Y D 0; � 2 imD�T :

Note that z„T automatically satisfies the boundary conditions zAT .s/j@Y 2 L and has
the limits lims!�1

zAT .s/ D B0 , lims!1
zAT .s/ D B2 . So it remains to solve the

Floer equation

(110) @s
zAT � d zAT

ẑ
T C�

�
F zAT

CXf . zAT /
�
D 0

for � subject to (109). The precise setup for the inverse function theorem is as follows:
In order to keep track of the T –dependence we use the version [21, Proposition A.3.4.]
which provides explicit constants. We apply this version of the inverse function theorem
to the C1 –map

fT W XT !Z; fT .�/ WD .F
C

zE.„T I�/
; d�„T

�/:

Its domain is a neighbourhood of zero in the Banach space XT consisting of � 2
T„T

A1;p.R�Y;LIB0;B2/ that satisfy the boundary condition ��jR�@Y D 0. (Note
that the domain depends on T . One could also work with a T –independent domain
by using simple reparametrizations in s 2 R to identify XT ŠXT0

for a fixed T0 .
This gives rise to a continuous family of inverse function problems zfT W XT0

!Z for

5 Here � denotes the Hodge � operator on the four-manifold R�Y unlike in (110) below. The first
two conditions fix the gauge whereas the third condition fixes a complement of the kernel of the linearized
operator for combined anti-self-duality and gauge fixing.
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T 2 ŒT0;1/.) The first component, F
C

zE.„T I�/
, is identified with the left hand side of

(110), so the target space of fT is the Banach space

Z DLp.R�Y;T�Y ˝ g/�Lp.R�Y; g/:

The differential dfT .0/ at x0 D 0 then is the linearized operator DT WD D„T
. To

check that the differential dfT is uniformly continuous at 0 2 XT we calculate for all
�; � 2XT

�dfT .�/�DT

�
�




Lp.R�Y /
D


��� zE.„T I �/�„T

�
^��

�


Lp.R�Y /

� C sup
s2R



EAT .s/.˛.s//�AT .s/C'.s/ds




L2p.Y /
k�kW 1;p.R�Y /:(111)

Here C is the constant from the Sobolev embedding W 1;p.Y / ,! L2p.Y / and the
second factor converges to zero uniformly in T as k�kW 1;p D k˛C' dskW 1;p ! 0.
Indeed, given " > 0 there is ıT;s > 0 such that kEAT .s/.˛/�AT .s/kL2p.Y / � " for
all ˛ 2 TAT .s/A.Y;L/ with k˛kL2p.Y / � ıT;s . We can choose ıT;s D ı > 0 uniform
for all T > 1, s 2R because the image of AT in A.Y;L/ is compact and independent
of T .

That the linearized operator is surjective for sufficiently large T with a uniform bound
for its right inverse QT WDD�T .DTD�T /�1 follows from the estimates

k�kW 1;p.R�Y / � CkD�T �kLp.R�Y /;(112)

kD�T �kW 1;p.R�Y / � CkDTD�T �kLp.R�Y /:(113)

These estimates hold for T sufficiently large, and the constant C is independent
of T . The inequality (112) implies that DT is surjective and QT W Y ! XT is
defined, and (113) gives a uniform bound for QT . The proof of the estimates is as
in [10, Proposition 3.9], [29, Proposition 3.9] or Theorem 7.7. It rests on the fact
that the connections „1;T WD„1#T B1 and „2;T WD B1#T„2 (which coincide with
„T for s � T

2
and s � �T

2
respectively) satisfy exponential estimates of the form

k„i;T �„i.� ˙T /kCk � Cke�ıT , and hence their linearized operators are surjective
with uniform estimates. Here we use the fact that „1 and „2 are regular in the sense
of Definition 8.1.

We have thus checked that the assumptions of [21, Proposition A.3.4.] are satisfied
with uniform constants for all T � T0 , where T0 > 1 is determined by comparing
(108) with [21, (A.3.5)]. Hence the inverse function theorem provides unique solutions
�T 2 im QT �XT of fT .�T /D0. In other words, we can define �T .„1; „2/ WD z„T D

zE.„T ; �T /; where z„T 2
�M.B0;B2IXf / is the unique solution of the form (109)

with „T D„1#T„2 . This map is gauge equivariant and induces a map to the moduli

Geometry & Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 855

space. Note moreover that �T will be continuous with respect to T in the W 1;p –norm
and hence z„T as well as � will depend continuously on T 2 ŒT0;1/. In the following
we sketch the proof of properties (i)–(iii).

The convergence in (ii) follows from the fact that the infinitesimal connection �T
obtained in the inverse function theorem satisfies an estimate of the form k�T kW 1;p �

CkfT .0/kLp � C 0e�ıT for uniform constants C;C 0 .

The index of �T .„1; „2/ is given by (77), ie

ıf .�T .„1; „2//D �f .B0; zB0/��f .B1; zB1/C�f .B1; zB1/��f .B2; zB2/

D ıf .„1/C ıf .„2/D 2:

Here zBi W Œ0; 1�!L are paths from zBi.0/DBi to zBi.1/D0, where we pick any zB1 and
pick the other paths such that zB0 is homotopic to the catenation of „1jR�† with zB1 and
zB1 is homotopic to the catenation of „2jR�† with zB2 . Then, by construction, zB0 is

homotopic to the catenation of .„1#T„2/jR�† with zB2 . Moreover, �T .„1; „2/jR�†
is homotopic to .„1#T„2/jR�† .

To see that � is a diffeomorphism note first that both domain and target are 1–
dimensional manifolds (by the regularity and additivity of the indices). Hence it
suffices to show that � is an injective immersion by following the argument in [10,
p 96]. In fact, since the domain of � is connected, it suffices to show that d� is nonzero
for all sufficiently large T . We will show below that � is C1 –close to the pregluing
T 7!„T D„1#T„2 as a map ŒT0;1/!A1;p.R�Y;LIB0;B2/, ie

(114)


 d

dT
z„T �

d
dT
„T




W 1;p.R�Y /

�!
T!1

0:

With this, the immersion condition d
dT
� ¤ 0 2 T�.T /M.B0;B2IXf /=R follows if we

can prove that the pregluing map is an immersion modulo gauge and time-shift with a
uniform estimate. Indeed, taking the infimum over all  2 C1.R�Y; g/, � 2R we
have

inf
 ;�



 d
dT
„T � d„T

 �� � @s„T




W 1;p.R�Y /

� inf
�

�
inf
 



@sA1� dA1
 �� � @sA1




W 1;p..�1;�1��Y /

C inf
 



�@sA2� dA2
 �� � @sA2




W 1;p.Œ1;1/�Y /

�
��> 0:

Here we restricted the W 1;p –norm to the half cylinders s ��T � 1 resp. s � T C 1,
where „T .s/DA1.sCT / resp. „T .s/DA2.s�T /. We also dropped the ds–terms
and applied various shifts. The constant �> 0 is obviously independent of T . It is
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positive since otherwise one could pick a minimizing sequence converging to limits
�; 1;  2 such that .1� �/@sA1 D dA1

 1 and .1C �/@sA2 D �dA2
 2 . However,

from unique continuation (Proposition 8.6 (ii)) we know that @sAi.s/ 62 im dAi .s/ , so
dAi

 i vanishes on both half cylinders, which leaves the contradiction 1D �D�1.

It remains to establish (114). We write P.: : :/ for d
dT
.: : :/ and claim that

 d

dT
z„T �

P„T




W 1;p �



@1
zE.„T ; �T /� Id



 

 P„T



C 

@2
zE.„T ; �T / P�T



 �!
T!1

0

due to the identities zE.�; 0/D Id and @2
zE.„T ; 0/D Id, the boundedness of k P„T kW 1;p

(due to exponential decay), and the convergence �T ! 0 and kP�T kW 1;p! 0. To check
the latter recall the abstract setup for the inverse function theorem. Taking the T –
derivative of fT .�T /D 0 we obtain

dfT .�T / P�T




Lp D



 PfT .�T /




Lp

D


dC
zE.„T ;�T /

@1
zE.„T ; �T / P„T




Lp C



Œ P„T ^��T �




Lp �!
T!1

0:

This convergence uses the same estimates as before and the fact that dC
„T

P„T vanishes
except for near sD˙T

2
, where it is exponentially small. Now write �T DQT �T with

�T DDT �T , then

P�T D �T C PQTDT �T with �T DQT P�T 2 im QT :

We have k PQTDT �T kW 1;p ! 0 since �T ! 0 and the operators DT W W
1;p!Lp

and PQT W L
p! domDT �W 1;p are uniformly bounded. The first bound is due to

kDT �DT0
k�k„T �„T0

kC0 ; similarly PDT W W
1;p!Lp and PD�T W W 2;p!W 1;p

are bounded in terms of k P„T kC0 resp. k P„T kC1 , and we have the identity PQT D

PD�T .DTD�T /�1 � QT . PDTD�T C DT
PD�T /.DTD�T /�1 . Here the uniform bound on

.DTD�T /�1 , that is k�kW 2;p � CkDTD�T �kLp , follows from combining (113) with
the W 2;p –version of (112).

Finally, we can prove that k�T kW 1;p ! 0 because, starting from (113),

k�T kW 1;p � CkDT �T kLp

� C
�
k.dfT .�T /�DT /�T kLp CkdfT .�T / P�T kLp CkdfT .�T / PQTDT �T kLp

�
:

Here the first term can be absorbed into the left hand side by (111) for sufficiently large
T > T0 and the other terms converge to zero as T !1, using a uniform bound on
dfT .�T / from kdfT .�T /�DT k � k

zE.„T ; �T /�„T kC0 . This finishes the proof that
P�T ! 0, hence (114) holds and (i) is proven.

Assertion (iii) follows from the uniqueness statement in the inverse function theorem if
we can find u 2 G.R�Y /, � 2 R, and T 0 > T0 such that u�„.� C �/D zE.„T 0 ; �/
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with � satisfying (109) and W 1;p –small. For each .�;T 0/ close to .0;T / we can use
the local slice theorem to find u�;T 0 and ��;T 0 satisfying

u��;T 0„.� C �/D
zE.„T 0 ; ��;T 0/; d�„T 0

��;T 0 D 0; ���;T 0 jR�@Y D 0:

One then finds .�;T 0/ satisfying ��;T 0 2 imD�
T 0
D .kerDT 0/

? by a further im-
plicit function theorem. Namely, there is a basis .�1;T 0 ; �2;T 0/ of kerDT 0 close
to .@s„1#T 00 ; 0#T 0@s„2/. Then the map .�;T 0/ 7! .h��;T 0 ; �1;T 0i; h��;T 0 ; �2;T 0i/ is
invertible and has a zero close to .0;T /.

Remark 9.2 In Theorem 9.1 we can allow B1 to be reducible (but still nondegenerate).
Then we obtain a gluing map

� W .T0;1/�
�
GB1

=f˙1lg
�
!M2Cdim H 0

B1 .B0;B2IXf /=R

with the same properties as in Theorem 9.1. This map is constructed by starting from a
preglued connection „1#g;T„2 that takes g 2 GB1

=f˙1lg into account by

A.s/ WD

8<:
A1.

T
2
�'.�T

2
� s//; s � �T

2
;

B1 D g�B1; s 2 Œ�T
2
; T

2
�;

g�A2.�
T
2
C'.�T

2
C s//; s � T

2
:

The index identity again follows from (77) and the uniformly bounded right inverse can
be constructed using weighted spaces, as described in [10, 4.4.1].

This shows that the breaking of trajectories at the zero connection can be excluded in
low dimensional moduli spaces since the stabilizer G0 � G.Y / adds 3 to the index of
the glued connection. However, this argument is not needed for the construction of
Floer homology. In the proof of Corollary 9.3 below, we use simpler index bounds to
exclude breaking at the zero connection.

Theorem 9.1 gives rise to maps

�T WM1.B0;B1/=R�M1.B1;B2/=R!M2.B1;B2/=R

defined by choosing one representative for each gauge and shift equivalence class in
each moduli space M1.A�;AC/=R with ŒAC�; ŒA�� 2Rf n Œ0�.

Corollary 9.3 Let AC;A� 2 Crit.CSLC hf / n Œ0�. Then, for T0 sufficiently large,
the sets �.T0;1/.Œ„1�; Œ„2�/�M2.A�;AC/=R, indexed by ŒB� 2Rf n Œ0� and pairs
.Œ„1�; Œ„2�/2M1.A�;B/=R�M1.B;AC/=R, are pairwise disjoint. Moreover, their
complement

M2.A�;AC/=R
� [
Œ0�¤ŒB�2Rf

[
T>T0

�T

�
M1.A�;B/=R�M1.B;AC/=R

�
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is compact.

Proof The sets �.T0;1/.Œ„1�; Œ„2�/ are disjoint for T0 sufficiently large since they
converge to different broken trajectories for T0!1; see Theorem 9.1 (ii).

To prove compactness we assume by contradiction that there exists a sequence Œ„� � 2
M2.A�;ACIXf /=R in the complement of the image of � as above, and that has no
convergent subsequence. These solutions have index 2 and hence fixed energy by
Corollary 6.14 (i). By Theorem 7.2 we can pick a subsequence and representatives, still
denoted by „� , that converge to a broken trajectory .„1; : : : ; „`/ modulo bubbling.
By transversality we do not have solutions of negative index, so Corollary 7.4 implies
that there is no bubbling, and the index identity in Theorem 7.2 implies ` � 2. In
the case `D 1 we would obtain a convergent subsequence from Theorem 7.5, hence
the limit must be a broken trajectory with two index 1 solutions and an irreducible
intermediate critical point B . The time-shifts and gauge transformations in Theorem
7.2 can be chosen such that the limit .„1; „2/ consists of the fixed representatives
used in the definition of �T . Now the assertion of Theorem 7.7 (ii) can be reformulated
as 

v��„�.� C 1

2
.s�1 C s�2//�„1#T �„2




W 1;p.R�Y /

! 0

for T � WD
1
2
.s�

2
� s�

1
/!1. Then, by Theorem 9.1 (iii), Œ„� � lies in the image of �

for sufficiently large � , in contradiction to the assumption.

10 Coherent orientations

Let Y be a compact oriented Riemannian 3–manifold with boundary @Y D† and L�
A.†/ be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)–(L3). In this section it is essential that we restrict to the case of Y being connected
with nonempty boundary, so that the gauge group G.Y / is connected. The construction
of orientations for closed Y can be found in [10, 5.4]. Fix a perturbation hf such
that every critical point of CSLC hf is nondegenerate and every nontrivial critical
point is irreducible (see Definition 8.2). For every pair of irreducible critical points
A�;AC 2 Crit.CSLC hf / we consider the space

A.A�;AC/ WD
˚
A 2A.R�Y;L/

ˇ̌
AjŒs;sC1��Y �!

s!˙1
0 dsCA˙ exponent.

	
;

which consists of smooth connections A D ˆ ds CA on R � Y that are given by
paths ˆW R! �0.Y; g/ and AW R! A.Y;L/ that converge exponentially with all
derivatives to 0 and A˙ , respectively, as s!˙1. If we allow the limits A˙ to vary
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within gauge orbits of critical points, we obtain the spaces

A.ŒA��; ŒAC�/ WD
[

u˙2G.Y /

A..u�/�A�; .uC/�AC/:

We denote by

Or.ŒA��; ŒAC�/ WD
G

A2A.ŒA��;ŒAC�/

Or.DA/ ! A.ŒA��; ŒAC�/

the principal Z2 –bundle whose fibre over A 2 A.ŒA��; ŒAC�/ is the set Or.DA/ of
orientations of the determinant line

det.DA/ WDƒ
max�kerDA

�
˝ƒmax�cokerDA

��
:

Here DA is the linearized operator (31). Any homotopy Œ0; 1� ! A.ŒA��; ŒAC�/,
� 7!A� induces an isomorphism

Or.DA0
/! Or.DA1

/

by path lifting. A gauge transformation u 2 G.R�Y / which converges exponentially
to u˙ 2 G.Y / as s!˙1 gives rise to a bundle isomorphism

u�W Or.A�;AC/! Or..u�/�A�; .uC/�AC/

induced by the conjugate action of u on kernel and cokernel. The pregluing construction
in (107) for A1 2A.B0;B1/ and A2 2A.B1;B2/ induces a natural isomorphism

�T W Or.DA1
/˝Or.DA2

/! Or.DA1#T A2
/

for sufficiently large T . If both DA1
and DA2

are surjective, then DA1#T A2
is

surjective for T sufficiently large, by estimates as in the proof of Theorem 7.7, and
�T is induced by the isomorphism ker.DA1

/ � ker.DA2
/ ! ker.DA1#T A2

/. The
general case is reduced to the surjective case by the method of stabilizations as in [9,
Section 3(a)].

We will also have to glue connections over S4 to connections over R � Y . For
that purpose we denote by A.Pu/ the space of connections on the bundle Pu that is
obtained by gluing two copies of C2�B4 with the transition function u2G.S3/. Then
for every A 2A.A�;AC/ and „u 2A.Pu/ we can construct a preglued connection
A#T„u 2A.A�; xu�AC/ by taking the connected sum .R�Y /#@DT

S4 and trivializing
the induced bundle over R� Y . Here we denote by DT � R� Y the ball of radius
T �1 centred at .0;y/ for some y 2 int.Y /, and after the trivialization we have�

A#T„u

�
j.R�Y /nDT

D zu�A
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for a gauge transformation zu on .R�Y /nDT with zuj@DT
Šu. We fix these extensions

such that zuj.�1;�1��Y � 1l and zujŒ1;1/�Y � 1l, and hence zujR�@Y defines a path
xuW R! G.†/ with xu.s/ D 1l for jsj � 1. A partial integration on Œ�1; 1�� Y then
shows that the degree of this loop is deg.xu/D deg.u/. So we have both A; A#T„u 2

A.A�;AC/, but the homotopy classes (of paths in L with fixed endpoints) of Aj@Y and
.A#T„u/j@Y differ by deg.u/. The determinant line bundle over the contractible space
A.Pu/ is canonically oriented (compatible with gauge transformations, homotopies, and
gluing; see eg [11, Proposition 5.4.1]), and as before pregluing induces an isomorphism

�T W Or.DA/˝Or.D„u
/! Or.DA#T„u

/

for T sufficiently large. The various isomorphisms, induced by homotopies, gauge
transformations, and pregluing, all commute in the appropriate sense.

Definition 10.1 A system of coherent orientations is a collection of sections

A.ŒA��; ŒAC�/! Or.ŒA��; ŒAC�/ WA 7! oA;

one for each pair ŒA��; ŒAC� 2 Crit.CSLC hf /=G.Y / n Œ0� of nontrivial gauge equiva-
lence classes of critical points, satisfying the following conditions.

(Homotopy) The sections oW A.ŒA��; ŒAC�/ ! Or.ŒA��; ŒAC�/ are continuous. In
other words, if Œ0; 1�!A.ŒA��; ŒAC�/ W � 7!A� is a continuous path, then the induced
isomorphism Or.DA0

/! Or.DA1
/ sends oA0

to oA1
.

(Equivariance) For every A 2A.A�;AC/ and every u 2 G.R�Y / that converges
exponentially to u˙ 2 G.Y / as s!˙1 we have

ou�A D u�oA:

(Catenation) Let A 2A.B0;B1/ and A0 2A.B1;B2/, then for T sufficiently large
we have

oA#T A0 D �T .oA˝ oA0/:

(Sum) Let A 2 A.A�;AC/, u 2 G.S3/, and „u 2 A.Pu/, then for T sufficiently
large we have

oA#T„u
D �T .oA˝ o„u

/:

(Constant) If A � A� D AC , then oA is the orientation induced by the canonical
isomorphism det.DA/!R. (Under this assumption DA is bijective.)

Remark 10.2 (i) The (Equivariance) axiom follows from the (Homotopy) axiom.
To see this note that, since Y is connected with nonempty boundary, the gauge groups
G.Y / and hence G.R� Y / are connected. (Here we do not fix the boundary values
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or limits of the gauge transformations.) The claim then follows from the following
observation.

(ii) For every continuous path Œ0; 1�!G.R�Y / W� 7!u� with u0D1l the isomorphism
u�

1
W det.DA/! det.Du�

1
A/ coincides with the isomorphism induced by the homotopy

� 7! u�
�
A. To see this consider the continuous family of paths Œ0; 1�! G.R� Y / W

� 7! u�� for � 2 Œ0; 1�. Then the assertion holds obviously for � D 0 (both maps are
the identity) and hence, by continuity, for all � .

Theorem 10.3 Fix representatives B1; : : : ;BN , one for each nontrivial gauge equiva-
lence class in Crit.CSLChf /=G.Y /n Œ0�, connections Ai 2A.Bi ;BiC1/, and orienta-
tions oi 2 Or.DAi

/ for i D 1; : : : ;N � 1. Then there is a unique system of coherent
orientations oA 2 Or.DA/ such that oAi

D oi for all i .

The proof of this theorem will make use of the following lemma.

Lemma 10.4 Fix a pair A˙ 2A.Y;L/ of irreducible and nondegenerate critical points
of CSLChf . Let Œ0; 1�!A.ŒA��; ŒAC�/ W� 7!A� be a smooth path and u2G.R�Y /

such that A1 D u�A0 . Then the isomorphism

u�W Or.DA0
/! Or.DA1

/

agrees with the one induced by the path � 7!A� . In particular, the orientation bundle
Or.ŒA��; ŒAC�/!A.ŒA��; ŒAC�/ admits a trivialization.

Proof By continuity, it suffices to prove the identity under the assumption @sA�.s/D0,
ˆ�.s/D 0, and @su.s/D 0 for jsj � 1. Then there are paths Œ0; 1�! G.Y /; � 7! v˙

�

such that .v�
�
/�A�.s/D A� for s � �1 and .vC

�
/�A�.s/D AC for s � 1. We can

replace A˙ by ..v˙
0
/�1/�A˙ and thus assume in addition that v˙

0
D 1l. Now there is

a smooth map Œ0; 1��R! G.Y / W .�; s/ 7! u�.s/ such that u0 � 1l, u�.s/D v
�
�

for
s � �1 and u�.s/D v

C

�
for s � 1. Define

A�� WD u���A�; u� WD u�1
0 uu�

for every � 2 Œ0; 1�. Then we have A�
1
D .u� /�A�

0
. By continuity, the assertion now

holds for � D 1 if and only if it holds for � D 0, that is for the original pair .fA�g;u/.
For � D 1 we have A1

�
.s/DA˙ and u1.s/D 1l for ˙s � 1.
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Finally, we prove the lemma in the case A�.s/DA˙ for ˙s� 1. For T � 2 we define
the catenation BT

�
WDˆT

�
dsCBT

�
2A.R=2T Z�Y;L/ and uT 2 G.R=2T Z�Y / by

BT
� .s/ WD

�
A�.s/; �T=2� s � T=2;

A0.T � s/; T=2� s � 3T=2;

ˆT
� .s/ WD

�
ˆ�.s/; �T=2� s � T=2;

ˆ0.T � s/; T=2� s � 3T=2;

uT .s/ WD

�
u.s/; �T=2� s � T=2;

1l; T=2� s � 3T=2:

Then BT
�
.s/DA˙ and ˆT

�
D0 for ˙s2 Œ1;T�1�. Moreover we have BT

1
D .uT /�BT

0
.

For T sufficiently large the linear gluing theory gives rise to a continuous family of
isomorphisms

'T
� W Or.DA�/! Or.DBT

�
/;

where DBT
�

denotes the anti-self-duality operator on R=2T Z�Y introduced in Section
4. The gluing operators commute with the gauge transformations, ie

'T
1 ıu� D .uT /� ı'T

0 W Or.DA0
/! Or.DBT

1
/:

The isomorphisms induced by the homotopies � 7!A� and � 7! BT
�

satisfy the same
relation. By Theorem 4.3 (iv) (with v D 1l), the isomorphism .uT /�W Or.DBT

0
/!

Or.DBT
1
/ agrees with the one induced by the path � 7!BT

�
. Hence the same holds for

u� and this proves the desired identity.

To see that Or.ŒA��; ŒAC�/!A.ŒA��; ŒAC�/ admits a trivialization we only need to
check that parallel transport around loops induces the identity isomorphism on the fibre.
This follows immediately from the identification of the homotopy induced isomorphism
with u�W Or.DA0

/! Or.DA0
/ for uD 1l.

Proof of Theorem 10.3 By the (Homotopy) and (Constant) axioms, the orientation
bundle over the constant component of A.ŒBi �; ŒBi �/ is canonically oriented. The
orientation on the other components of A.ŒBi �; ŒBi �/ is determined by the (Sum) axiom
because any connection A 2A.ŒBi �; ŒBi �/ is homotopic to Bi#T„u for the constant
solution Bi �Bi , a connection „u over S4 associated to a nontrivial u 2 G.S3/, and
any T > 0. Indeed, since G.Y / is connected, A can be homotoped to a connection with
fixed limits in A.Bi ;Bi/. Moreover, there is a homotopy equivalence A.Bi ;Bi/!

C1.S1;L/ which assigns to each connection A2A.Bi ;Bi/ a based loop in L obtained
from the path Aj@Y W R! L with endpoints Bi j@Y . Now, by (L2), the loop Aj@Y in
L is homotopic to yu�B1j@Y for some loop yuW S1! G.†/. Hence A is homotopic
to Bi#T„u for the associated u 2 G.S3/. Similarly, the orientation bundle over
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A.ŒBi �; ŒBiC1�/ is oriented by oAi
and the (Homotopy) and (Sum) axioms, because

any connection in A.ŒBi �; ŒBiC1�/ is homotopic to Ai#T„u for some u 2 G.S3/.
Finally, the orientation bundles over general spaces A.ŒBi �; ŒBj �/ are oriented by the
(Catenation) axiom and the previously fixed orientations. This proves uniqueness.

To establish existence note that, by Lemma 10.4, we have a choice of two possible
orientations over every component of each A.ŒA��; ŒAC�/. Each of the possible com-
binations of choices satisfies the (Homotopy) axiom by construction. To see that the
choices can be made such that the (Constant), (Catenation), and (Sum) axioms are
satisfied (and so the (Equivariance) axiom follows from Remark 10.2), one needs to
check that the isomorphisms in the (Catenation), (Sum), and (Homotopy) axioms all
commute. For example, let A� 2A.Bi ;Bj / and A0

�
2A.Bj ;Bk/ be smooth families

parametrized by � 2 Œ0; 1� and denote by

�W Or.DA0
/! Or.DA1

/; �0W Or.DA0
0
/! Or.DA0

1
/;

�T
W Or.DA0#T A0

0
/! Or.DA1#T A0

1
/

the isomorphisms induced by the homotopies � 7!A� , A0
�

, and A�#A0
�

. Let

�T
� W Or.DA�/˝Or.DA0

�
/! Or.DA�#T A0

�
/

denote the catenation isomorphisms for T sufficiently large. A parametrized version
of the linear gluing construction then proves that

�T
1 ı .�˝ �

0/D �T
ı �T

0 :

A similar statement holds for the (Homotopy) and (Sum) isomorphisms. That two (Cate-
nation) isomorphisms commute is a kind of associativity rule modulo homotopy and
the proof involves a simultaneous gluing construction for three connecting trajectories;
similarly for the commutation rules of the (Sum) and (Catenation) isomorphisms. All
these arguments are exactly as in the standard theory and the details will be omitted.

11 Floer homology

Let Y be a compact connected oriented 3–manifold with boundary @Y D† and L�
A.†/ be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)–(L3). Fix a Riemannian metric g on Y , a regular perturbation .
; f / 2 �m�Fm

as in Theorem 8.4, and a system oD foAgA of coherent orientations as in Theorem
10.3. Associated to these data we define a Floer homology group HF.Y;LIg; f; o/ as
follows.
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Since the trivial connection is nondegenerate by (L3), the set

Rf WD
˚
A 2A.Y /

ˇ̌
FACXf .A/D 0; Aj@Y 2 L

	
=G.Y /

of gauge equivalence classes of critical points of CSLC hf is finite, by Proposition
3.7. The nontrivial critical points determine a chain complex

CF.Y;LIf / WD
M

ŒA�2Rf nŒ0�

Z hAi:

with a Z=8Z–grading �f W Rf ! Z=8Z defined by the spectral flow (see Corollary
6.12). We emphasize that the spectral flow is invariant under homotopies of the metric
and of the perturbation with fixed critical points. To define the boundary operator we
consider the space

�M.A�;ACIg;Xf / WD

8̂̂̂̂
<̂
ˆ̂̂:

ACˆ ds

2A.R�Y /

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
@sA� dAˆC�.FACXf .A//D 0

A.s/j† 2 L 8s 2R
lims!˙1A.s/DA˙

ˆjfjsj�1g � 0

Ef .A/ <1

9>>>>=>>>>; :

This space is invariant under the group G.A�;AC/ of gauge transformations u 2

G.R�Y / that satisfy u.s/D u˙ 2 GA˙ for ˙s � 1. The quotient spaces

�M.A�;ACIg;Xf /=G.AC;A�/

are canonically isomorphic for different choices of representatives A˙ of critical points.
The index of the linearized operator at ŒA� is ıf .A/� �f .A�/��f .AC/ (modulo
8). For k 2 Z we denote the index k part of the Floer moduli space by

Mk.A�;ACIg;Xf / WD
˚
ŒA� 2 �M.A�;ACIg;Xf /=G.A�;AC/

ˇ̌
ıf .A/D k

	
:

For k � 7 this is a smooth k –dimensional manifold (see Section 6 and Definition
8.2). The energy of a solution in this space is Ef .A/D

1
2
�2.kC �f .A

C/� �f .A
�//

by Corollary 6.14 (i), and hence is independent of A. Furthermore, R acts on
Mk.A�;ACIg;Xf / by time-shift, and the action is proper and free unless A� DAC

and k D 0. For k D 1 the quotient space M1.A�;ACIXf /=R is a finite set, by
Corollary 7.6. Counting the elements with signs gives rise to a boundary operator on
CF.Y;LIf / via

(115) @hA�i WD
X

ŒAC�2Rf nŒ0�

0@ X
ŒA�2M1.A�;ACIg;Xf /=R

�.A/

1A hACi:
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Here �.A/ WD 1 whenever the element @sA 2 kerDAD det.DA/ is positively oriented
with respect to oA and �.A/ WD �1 otherwise. The next two theorems are the main
results of this paper; their proofs take up the rest of this section.

Theorem 11.1 The operator @W CF.Y;LIf /!CF.Y;L; f / defined by (115) satisfies
@ ı @D 0.

The Floer homology group of the pair .Y;L/ equipped with the regular data .g; f; o/
is defined by

HF.Y;LIg; f; o/ WD
ker @ W CF.Y;LIf /! CF.Y;LIf /
im @W CF.Y;LIf /! CF.Y;LIf /

:

The next theorem shows that it is independent of the choices of metric, perturbation,
and coherent orientations.

Theorem 11.2 There is a collection of isomorphisms

ˆˇ˛W HF.Y;LIg˛; f ˛; o˛/! HF.Y;LIgˇ; f ˇ; oˇ/;

one for any two regular triples .g˛; f ˛; o˛/ and .gˇ; f ˇ; oˇ/, such that

(116) ˆ
ˇ ıˆˇ˛ Dˆ
˛; ˆ˛˛ D Id

for any three regular triples .g˛; f ˛; o˛/, .gˇ; f ˇ; oˇ/, and .g
 ; f 
 ; o
 /.

Proof of Theorem 11.1 For A˙ 2Rf n Œ0� denote

n.A�;AC/ WD
X

ŒA�2M1.A�;ACIg;Xf /=R

�.A/:

Then the equation @ ı @D 0 is equivalent to the formula

(117)
X

ŒB�2Rf nŒ0�

n.A�;B/ n.B;AC/D 0

for all A˙ 2 Rf n Œ0�. The proof of (117) is exactly as in the standard case. One
studies the moduli space M2.A�;AC/=R. This is a 1–manifold, oriented by the
coherent orientations of Theorem 10.3. By Corollary 9.3 its ends are in one-to-one
correspondence with pairs of trajectories in M1.A�;BIXf /=R�M1.B;ACIXf /=R
for any critical point ŒB� 2 Rf n Œ0�, which are exactly what is counted on the left
hand side of (117). By the (Catenation) axiom in Section 10 the signs agree with the
orientation of the boundary of M2.A�;ACIXf /=R. Hence the sum must be zero and
this proves @ ı @D 0.
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Proof of Theorem 11.2 That the Floer homology groups are independent of the
choice of the system of coherent orientations is obvious; two such systems give rise
to isomorphic boundary operators via a sign change isomorphism (with ˙1 on the
diagonal). To prove the independence of metric and perturbation, we fix two Riemannian
metrics g˙ on Y and two sets of regular perturbation data .
˙; f ˙/. We will
construct a chain map from CF.Y;LIg�; f �/ to CF.Y;LIgC; f C/ following the
familiar pattern. As in the closed case we choose a metric zg on R � Y such that
zg D g˙ for ˙s sufficiently large. However, unlike the closed case this metric cannot
necessarily be chosen in split form since it is required to be compatible with the
boundary space-time splitting in the sense of Definition 6.2 (see Example 6.4 or [35,
Example 1.4]). Next we choose a holonomy perturbation zX W A.R�Y /!�2.R�Y; g/

of the form zX DˇXf �C.1�ˇ/XfCCXf 0 for some cutoff function ˇ 2 C1.R; Œ0; 1�/
and a further holonomy perturbation Xf 0 as in Definition 6.6. This uses thickened loops

 0i W S

1 �B3 ,! R� int.Y / in a compact part of R� Y , so that we have zX D Xf˙
for ˙s sufficiently large. This perturbation is still gauge equivariant but no longer
translation invariant. We use these interpolation data to set up the 4–dimensional
version of the perturbed anti-self-duality equation on R�Y as described in Section 6.
For critical points A˙ 2Rf˙ n Œ0� from the two Floer chain complexes we consider
the space of generalized Floer trajectories

�M.A�;ACI zg; zX / WD

8̂̂̂̂
<̂
ˆ̂̂:
„DACˆ ds

2A.R�Y /

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

F„C zX .„/C�zg.F„C zX .„//D 0

A.s/j† 2 L 8s 2R
lims!˙1A.s/DA˙

ˆjfjsj�1g � 0

Ef .„/ <1

9>>>>=>>>>; :

Here �zg denotes the Hodge operator on R�Y with respect to the metric zg . This space is
invariant under the gauge group G.A�;AC/ as before, and if the perturbation zX is regu-
lar, then the quotient �M.A�;ACI zg; zX /=G.AC;A�/ will be a smooth manifold whose
local dimension near ŒA� is given by the Fredholm index ı.A/� �f �.A�/��fC.A

C/

(modulo 8). By transversality arguments similar to Section 8 we can find a perturbation
Xf 0 (and thus zX ) such that the linearized operators of index less than or equal to 7

are indeed surjective. Thus we obtain smooth k –dimensional moduli spaces

Mk.A�;ACI zg; zX / WD
˚
ŒA� 2 �M.A�;ACI zg; zX /=G.A�;AC/

ˇ̌
ı.A/D k

	
for k � 7. The 0–dimensional moduli spaces are compact by the same analysis as
in Section 7. Namely, the main component will converge to a new solution without
time-shift; energy cannot be lost by bubbling or by shift to ˙1 since the remaining
solution would have negative index. So – again using the orientations from Section 10
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– we can define a homomorphism

ˆW CF.Y;LIg�; f �/! CF.Y;LIgC; f C/;

which preserves the grading and is given by

ˆhA�i WD
X

ŒAC�2R
fC
nŒ0�

0@ X
A2M0.A�;ACIzg; zX /

�.A/

1A hACi:
This time the linearized operator is bijective, so det.DA/ is canonically isomorphic
to R, and the sign �.A/D˙1 is obtained by comparing the coherent orientation oA

with the standard orientation of R.

As in the standard theory there are three identities to verify (eg [29, Section 3.2]). First,
we must prove that ˆ is a chain map, ie

(118) @C ıˆDˆ ı @�:

This is proved just like the formula @ı@D0 in Theorem 11.1. In this case the relevant 1–
manifold is the moduli space M1.A�;ACI zg; zX /. A compactness and gluing theory
similar to Corollary 9.3 identifies the ends of this moduli space with the pairs of
trajectories in M1.A�;B�Ig�;Xf �/�M0.B�;ACI zg; zX / for ŒB��2Rf � n Œ0� and
in M0.A�;BCI zg; zX / �M1.BC;ACIgC;XfC/ for ŒBC� 2 RfC n Œ0�. Summing
over these oriented ends of a 1–manifold then proves that ˆ satisfies (118) and hence
descends to a morphism on Floer homology.

Second, we must prove that the induced map on homology is independent of the
choices. Given two such maps ˆ0; ˆ1W CF.Y;LIg�; f �/! CF.Y;LIgC; f C/ as-
sociated to pairs .zg0; zX0/ and .zg1; zX1/ we must find a chain homotopy equivalence
H W CF.Y;LIg�; f �/! CF.Y;LIgC; f C/ satisfying

(119) ˆ1�ˆ0 D @
C
ıH CH ı @�:

To construct H we choose a 1–parameter family fzg�; zX�g0���1 of interpolating pairs
of metric and perturbation. By Lemma 6.5 the metrics can be interpolated within
the space of metrics that are equal to g˙ over the ends and are compatible with the
space-time splitting of the boundary. The perturbations zX� can be chosen as convex
combinations. We then add further compactly supported holonomy perturbations for
0< � < 1 to achieve transversality of the parametrized moduli spaces

Mk
�
A�;ACI fzg�; zX�g

�
WD
˚
.�; ŒA�/

ˇ̌
ŒA� 2Mk.A�;ACI zg�; zX�/

	
:
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For k D�1 these are compact oriented 0–manifolds which we use to define H :

H hA�i WD
X

ŒAC�2RfCnŒ0�

0@ X
.�;A/2M�1.A�;ACIfzg�; zX�g/

�.�;A/

1A hACi:
The linearized operator has a 1–dimensional cokernel which projects isomorphically
to R and �.�;A/ is the sign of this projection. To prove (119) one studies the
1–dimensional moduli space M0.A�;ACI fzg�; zX�g/ in the usual fashion with the
contributions of ˆ0 corresponding to the boundary at � D 0, the contributions of
ˆ1 to the boundary at � D 1, and the contributions on the right in (119) to the
noncompact ends with 0 < � < 1. These ends have either the form of a pair in
M�1.A�;BCI fzg�; zX�g/�M1.BC;ACIgC;XfC/=R with ŒBC� 2 RfC n fŒ0�g or
in M1.A�;B�Ig�;Xf �/=R �M�1.B�;ACI fzg�; zX�g/ with ŒB�� 2 Rf � n fŒ0�g.
Counting all the ends and boundary points with appropriate signs proves that H

satisfies (119).

Third, we must establish the composition rule in (116) for three sets of regular data
.g˛; f ˛/, .gˇ; f ˇ/, .g
 ; f 
 /. We choose regular interpolating metrics and perturba-
tions to define ˆˇ˛ and ˆ
ˇ on the chain level. The catenation (with gluing parameter
T ) of these data gives rise to a regular interpolation from .g˛; f ˛/ to .g
 ; f 
 / for
T sufficiently large. The resulting morphism ˆ


ˇ
T

will then, for large T , agree with
ˆ
ˇ ıˆˇ˛ on the chain level. This follows from a gluing theorem as in Section 9 and
compactness arguments as in Theorem 7.7 and Corollary 9.3. In particular, the breaking
of connecting trajectories in the limit T !1 at the zero connection is excluded since
the stabilizer G0 � G.Y / adds 3 to the index of the glued connection (compare with
Remark 9.2 or use index inequalities as in Corollary 7.4.). Again, the orientations are
compatible with the gluing by the (Catenation) axiom. The upshot is that, for suitable
choices of interpolating data, Equation (116) already holds on the chain level.

Once these three relations have been established one just needs to observe that ˆ˛˛

is the identity on the chain level for the obvious product metric and perturbation on
R�Y . It follows that each ˆ induces an isomorphism on Floer homology. This proves
Theorem 11.2.

Appendix A The spectral flow

In this appendix we adapt the results of Robbin and the first author [26] to families of
self-adjoint operators with varying domains. Similar results have appeared in various
forms (see Booss-Bavnbeck and Zhu [8], Kirk and Lesch [18] and Ballman, Brüning
and Carron [6]).
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Let H be a separable real Hilbert space. Throughout we identify H with its dual space.
We consider a family of bounded linear operators

A.s/W W .s/!H

indexed by s 2R. Here W .s/ is a Hilbert space equipped with a compact inclusion
W .s/�H with a dense image. We formulate conditions under which the unbounded
operator

D WD @sCA

on L2.R;H / is Fredholm and its index is the spectral flow of the operator family
s 7! A.s/. In contrast to [26] the domain of A.s/ varies with s 2 R. Our axioms
give rise to an isomorphic family of operators with constant domain but which are
self-adjoint with respect to inner products which vary with s 2R. More precisely, we
assume that the disjoint union

F
s2R W .s/ is a Hilbert space subbundle of R�H in

the following sense.

(W1) There is a dense subspace W0 �H with a compact inclusion and a family of
isomorphisms Q.s/W H !H such that Q.s/W0 DW .s/ for every s 2R.

(W2) The map QW R! L.H / is continuously differentiable in the weak operator
topology and there is a c0 > 0 such that, for all s 2R and � 2W0 ,

c�1
0 k�kW0

� kQ.s/�kW .s/ � c0k�kW0
;

kQ.s/�kH Ck@sQ.s/�kH � c0k�kH :

(W3) There exist Hilbert space isomorphisms Q˙ 2 L.H / such that

lim
s!˙1

kQ.s/�Q˙kL.H / D 0:

Two trivializations Q1;Q2W R! L.H / satisfying (W1)–(W3) with W01;W02 , re-
spectively, are called equivalent if there is a family of Hilbert space isomorphisms
ˆ.s/ 2 L.H / such that

ˆ.s/W01 DW02; Q2.s/ˆ.s/DQ1.s/

for every s , the map ˆW R! L.H / is continuously differentiable in the weak op-
erator topology, the map ˆW R ! L.W01;W02/ is continuous in the norm topol-
ogy, sups2R k@sˆ.s/kL.H / <1, and there exist Hilbert space isomorphisms ˆ˙ 2
L.H /\L.W01;W02/ such that

lim
s!˙1

kˆ.s/�ˆ˙kL.H / D 0:
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Remark A.1 To verify (W1)–(W3) it suffices to construct local trivializations on a
finite cover R D

S
U˛ that satisfy these conditions (where condition (W3) is only

required near the ends) and that are equivalent over the intersections U˛ \Uˇ .

We now impose the following conditions on the operator family A. Again, it suffices
to verify these in the local trivializations of Remark A.1.

(A1) The operators A.s/ are uniformly self-adjoint. This means that for each s 2

R the operator A.s/ when considered as an unbounded operator on H with
dom A.s/DW .s/ is self-adjoint and that there is a constant c1 such that

k�k2W .s/ � c1

�
kA.s/�k2H Ck�k

2
H

�
for every s 2R and every � 2W .s/.

(A2) The map B WDQ�1AQ WR! L.W0;H / is continuously differentiable in the
weak operator topology and there exists a constant c2 > 0 such that

kB.s/�kH Ck@sB.s/�kH � c2k�kW0

for every s 2R and every � 2W0 .

(A3) There are invertible operators B˙ 2 L.W0;H / such that

lim
s!˙1

kB.s/�B˙kL.W0;H / D 0:

Given a differentiable curve �W R! H with �.s/ 2 W .s/ for all s 2 R we define
D�W R!H by

.D�/.s/D @s�.s/CA.s/�.s/:

This map extends to a bounded linear operator

DW W 1;2.R;H /\L2.R;W /!L2.R;H /:

Here L2.R;W / WD
˚
Q�0

ˇ̌
�0 2L2.R;W0/

	
is a Hilbert space with the norm

k�k2
L2.R;W /

D

Z 1
�1

k�.s/k2W .s/ ds:

By (W2) this norm is equivalent to the norm on L2.R;W0/ under the isomorphism
� 7!Q�1�. We will prove the following estimate, regularity, and index identity.

Lemma A.2 There exist constants c and T such thatZ 1
�1

�
k@s�.s/k

2
H Ck�.s/k

2
W .s/

�
ds � c2

�Z 1
�1

kD�.s/k2H dsC

Z T

�T

k�.s/k2H ds

�
for every � 2W 1;2.R;H /\L2.R;W /.
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Theorem A.3 Suppose that �; � 2L2.R;H / satisfyZ 1
�1

�
h @s'.s/�A.s/'.s/; �.s/ iC h'.s/; �.s/ i

�
ds D 0

for every test function 'W R!H such that Q�1' 2 C1
0
.R;W0/. Then

� 2W 1;2.R;H /\L2.R;W /; D� D �:

Theorem A.4 The operator D is Fredholm and its index is equal to the upward spectral
flow of the operator family s 7!A.s/.

As in the case of constant domain the spectral flow can be defined as the sum of the
crossing indices

(120) �spec.A/ WD
X

s

sign �.A; s/:

In the present case the crossing form �.A; s/W ker A.s/!R is defined by

�.A; s/.�/ WD
d

dt

ˇ̌̌̌
tD0

h �.t/;A.sC t/�.t/ i;

where �.t/ 2W .sC t/ is chosen such �.0/D � and the path t 7!A.sC t/�.t/ 2H is
differentiable (for example �.t/ WDQ.sC t/Q.s/�1� ); the value of the crossing form
at � is independent of the choice of the path t 7! �.t/. We assume that the crossings are
all regular, ie �.A; s/ is nondegenerate for every s 2R with ker A.s/¤ f0g. Under
this assumption the sum in (120) is finite.

Two operator families A1.s/W W1.s/! H and A2.s/W W2.s/! H with the same
endpoints A˙ are called homotopic if they can be connected by an operator family
A�.s/W W�.s/!H , 1 � � � 2, with the following properties. There is a family of
Hilbert space isomorphisms Q�.s/W H !H that is continuously differentiable in �
and s with respect to the weak operator topology and satisfies Q�.s/W0 D W�.s/

as well as conditions (W2)–(W3) uniformly in �. Moreover A�.s/ satisfies (A1)–
(A3) with constants independent of � and the map Œ1; 2��R! L.W0;H / W .�; s/ 7!

Q�.s/
�1A�.s/Q�.s/ is continuously differentiable in the weak operator topology.

The spectral flow has the following properties:

(Homotopy) The spectral flow is invariant under homotopy.

(Constant) If W .s/ and A.s/ are independent of s 2R then �spec.A/D 0.
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(Direct sum) The spectral flow of a direct sum of two operator families A and B is
the sum of their spectral flows, ie

�spec.A˚B/D �spec.A/C�spec.B/:

(Catenation) The spectral flow of the catenation of two operator families A01 from
A0 to A1 and A12 from A1 to A2 is the sum of their spectral flows, ie

�spec.A01#A12/D �spec.A01/C�spec.A12/:

(Normalization) For W DH DR, A.s/D arctan.s/ we have �spec.A/D 1.

The spectral flow is uniquely determined by the homotopy, constant, direct sum, and
normalization axioms. The proof is the same as that of [26, Theorem 4.23] and will be
omitted.

Proof of Lemma A.2 The proof is analogous to that of [26, Lemma 3.9]. The only
difference is in the first step where we prove the estimate with T D1. For every
�W R!H such that � WDQ�1� 2 C1

0
.R;W0/ we haveZ 1

�1

kD�k2H ds D

Z 1
�1

�
k@s�k

2
H CkA�k

2
H C 2h @s�;A� i

�
ds:

The last summand can be estimated by

2

Z 1
�1

h@s�;A�i ds

D

Z 1
�1

�
2h .@sQ/�;AQ� iC hQ@s�;AQ� iC hQ�;AQ@s� i

�
ds

D

Z 1
�1

�
h .@sQ/�;QB� i � hQ�; .@sQ/B� i � hQ�;Q.@sB/� i

�
ds

� 3c2
0c2

Z 1
�1

k�kH k�kW0
ds

� ck�kL2.R;H /k�kL2.R;W /

with c WD 3c4
0
c2 . Here we used partial integration and the identity AQDQB . Now

use (A1) to obtain

kD�k2
L2.R;H /

� k@s�k
2
L2.R;H /

C c�1
1 k�k

2
L2.R;W /

�k�k2
L2.R;H /

� ck�kL2.R;H / k�kL2.R;W /

� k@s�k
2
L2.R;H /

C .2c1/
�1
k�k2

L2.R;W /
�

�
1C 1

2
c2c1

�
k�k2

L2.R;H /
:

This proves the estimate for T D1.
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Proof of Theorem A.3 We follow the line of argument in [26, Theorem 3.10].

Step 1 Define �0; �0 2L2.R;H / by

�0.s/ WDQ.s/��.s/; �0.s/ WDQ.s/��.s/C .@sQ.s/�/�.s/:

Then �0 2W 1;2.R;W �
0
/ and

(121) @s�0.s/D�B.s/��0.s/C �0.s/:

To see this we calculate for '0 2 C10 .R;W0/Z 1
�1

h @s'0; �0 iH ds D

Z 1
�1

h @s.Q'0/� .@sQ/'0; � iH ds

D

Z 1
�1

�
hAQ'0; � iH � hQ'0; � iH � h .@sQ/'0; � iH

�
ds

D

Z 1
�1

�
h'0;B

��0� �0 iW0;W
�

0

�
ds:

Here the self-adjoint operator A.s/ extends to an operator in L.H;W .s/�/ which we
also denote by A.s/. We denote the dual of the trivialization Q.s/ by Q.s/� 2 L.H /,
which extends to an isomorphism W .s/� ! W �

0
. With this we can write B� D

Q�A.Q�/�1 for the dual operator family of B D Q�1AQ, which is continuously
differentiable in L.H;W �

0
/ with a uniform estimate dual to that in (A2). So we have

B��0� �0 2L2.R;W �
0
/, and since the derivatives of test functions '0 are dense in

L2.R;W0/ this implies Step 1.

Step 2 Suppose that � and � are supported in an interval I such that for all s 2 I the
operator B.s/W W0!H is bijective and satisfies a uniform estimate

kB.s/�1
kL.H ;W0/ � c:

Fix a smooth function �W R! Œ0;1/ with support in .�1; 1/ and
R
�D 1 and denote

by �ı.s/D ı�1�.ı�1s/ for ı > 0 the standard mollifier. Then we find a constant C

such that �ı � .Q�1�/ 2W 1;2.R;H /\L2.R;W0/ for all ı > 0 and

kDQ.�ı � .Q
�1�//kL2.R;H / � C:

Multiply Equation (121) by .B�/�1 to obtain �0 D .B�/�1
�
�0� @s�0

�
and note that

Q�1� D .Q�Q/�1�0 . Then convolution gives

�ı �.Q
�1�/D �ı �

�
@s

�
.B�Q�Q/�1

�
�0C .B

�Q�Q/�1�0

�
� P�ı �

�
.B�Q�Q/�1�0

�
D �ı � �0� P�ı �

�
.Q�QB/�1�0

�
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with �0 D @s

�
.Q�QB/�1

�
�0C .Q

�QB/�1�0 2L2.R;W0/. This takes values in W0

since

(122) .B�Q�Q/�1
DQ�1A�1.Q�/�1

D B�1.Q�Q/�1

and its derivative are uniformly bounded in L.H;W0/.

So, after convolution, Q
�
�ı � .Q

�1�/
�

lies in the domain of D and

Q�1DQ
�
�ı � .Q

�1�/
�

D P�ı � .Q
�1�/CQ�1.@sQ/

�
�ı � .Q

�1�/
�
CB

�
�ı � .Q

�1�/
�

D B
�
B�1

�
P�ı � .Q

�1�/
�
� P�ı �

�
.Q�QB/�1�0

��
CQ�1.@sQ/

�
�ı � .Q

�1�/
�
CB

�
�ı � �0

�
The second line is uniformly bounded in L2.R;H /. For the first term we haveZ 1
�1



B�1
�
P�ı � .Q

�1�/
�
.s/� P�ı �

�
.Q�QB/�1�0

�
.s/




W0
ds

D

Z 1
�1





Z sCı

s�ı

1
ı
P�. t�s

ı
/
B.s/�1�B.t/�1

ı

�
Q.t/�Q.t/

��1
�0.t/ dt





W0

ds

� C

Z 1
�1

Z 1
�1

ˇ̌̌
1
ı
P�. t�s

ı
/
ˇ̌̌
k�0.t/kH dt ds

� Ck P�kL1.R/

Z 1
�1

k�0.t/kH dt:

Here the constant C contains a uniform bound for @sB�1 D�B�1.@sB/B�1 on I .
This proves Step 2.

Step 3 � 2W 1;2.R;H /\L2.R;W / and D� D �.

Under the assumptions of Step 2 it follows from Lemma A.2 that �ı � .Q�1�/ is
uniformly bounded in W WD L2.R;W0/ \W 1;2.R;H / for all ı > 0. So there is
a sequence ı� ! 0 such that �ı� � .Q

�1�/ converges weakly in W . The limit has
to coincide with the strong L2.R;H /–limit Q�1� . Thus we have � 2 L2.R;W /\

W 1;2.R;H /. Now it follows from (121) and (122) that

D� D .Q�/�1@s�0� .Q
�/�1.@sQ�/.Q�/�1�0CB.Q�/�1�0

D �� .Q�/�1B��0CB.Q�/�1�0 D �:

This proves the theorem under the assumption that � and � are supported in an interval
on which B is bijective. In general, one can cover the real axis by finitely many open
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intervals on which �1lCB.s/W W0! H has uniformly bounded inverses for some
� 2 R. Then one can use a partition of unity argument to deduce the regularity and
equation for � on each interval.

Sketch of proof of Theorem A.4 By Lemma A.2 the operator D has a finite dimen-
sional kernel and a closed image. By Theorem A.3 the cokernel of D is the kernel
of the operator D0 with A replaced by �A. Hence the cokernel of D is also finite
dimensional and thus D is Fredholm.

To prove the index identity one verifies as in [26, Theorem 4.1] that the Fredholm index
satisfies the (Homotopy), (Constant), (Direct sum) and (Normalization) axioms, which
characterize the spectral flow. For the homotopy and the direct sum property one can
extend the proofs in [26] without difficulty to nonconstant domains; the constant and
normalization properties are immediate since they only refer to constant domains.

We conclude this appendix with a version of the index identity for twisted loops of
self-adjoint operators.

Theorem A.5 Let A.s/W W .s/! H be an operator family that satisfies the condi-
tions (W1)–(W2), (A1)–(A2) and

W .sC 1/DQ�1W .s/; A.sC 1/DQ�1A.s/Q

for every s 2R and a suitable Hilbert space isomorphism QW H!H . Then A induces
a Fredholm operator DD @sCAW W!H; where

H WD
˚
� 2L2

loc.R;H /
ˇ̌
�.sC 1/DQ�1�.s/

	
;

W WD
˚
� 2L2

loc.R;W /\W
1;2

loc .R;H /
ˇ̌
�.sC 1/DQ�1�.s/

	
:

Its Fredholm index is equal to the upward spectral flow of the operator family A on a
fundamental domain Œs0; s0C 1�.

Proof The Fredholm property follows from Lemma A.2 and Theorem A.3. The
proof of the index formula can be reduced to Theorem A.4 by using the homotopy
invariance of spectral flow and Fredholm index, stretching the fundamental domain,
and comparing kernel and cokernel with a corresponding operator over R via a gluing
argument. We omit the details. For a version of the relevant linear gluing theorem see
Donaldson [10, Propositions 3.8, (3.2)].
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Appendix B Symmetric operators and Fredholm pairs

Associated to a closed densely defined symmetric operator on a Hilbert space is a
(possibly infinite dimensional) symplectic vector space, namely the quotient of the
domain of the dual operator by the domain of the original operator. This space can be
thought of as the space of boundary data and the symplectic form is obtained from
integration by parts. We call this space the Gelfand–Robbin quotient, because the
first author learned about this notion from Joel Robbin and Israel Gelfand in the early
nineties, who arrived at these ideas independently, but never wrote them up. Though a
precursor to this discussion can be found in Dunford and Schwarz [13, Chapter XII.4]
we are not aware of an earlier reference explicitly making the connection between
self-adjoint operators and symplectic geometry. Since then many researchers have
contributed to this field. In particular, the notion of a Fredholm pair of Lagrangian
subspaces (of what we call the Gelfand–Robbin quotient) plays a central role in the
work of Booss-Bavnbek and his coauthors [7; 8]; they introduced the Maslov index
for paths of such Fredholm pairs and related it to the spectral flow in a suitable setting
(see Remark B.15 below). The results proved in this appendix play a crucial role in
reducing our orientation and index theorems to the case of closed 3–manifolds. We
couldn’t find these results in the relevant papers, although most of the definitions and
some of the basic lemmas below are contained in the existing literature.

Let H be a Hilbert space and DW dom D! H be an injective, symmetric, but not
necessarily self-adjoint, operator with a dense domain and a closed image. Then the
domain of the adjoint operator D�W dom D�!H contains the domain of D and the
restriction of D� to the domain of D agrees with D . The Gelfand–Robbin quotient

V WD dom D�=dom D

carries a natural symplectic form

!.Œx�; Œy�/ WD hD�x;y i � hx;D�y i:

The Lagrangian subspaces ƒ � V are in one-to-one correspondence to self-adjoint
extensions Dƒ of D with

dom Dƒ WD
˚
x 2 dom D� j Œx� 2ƒ

	
:

Moreover, the kernel of D� determines a Lagrangian subspace

(123) ƒ0 WD
˚
Œx� 2 V jx 2 dom D�; D�x D 0

	
:

The operator Dƒ is bijective if and only if V Dƒ0˚ƒ. (See Lemma B.3 below.)
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The domain of D� is a Hilbert space with the graph inner product

hx;y iD� WD hx;y iH C
˝
D�x;D�y

˛
H
:

The domain of D is a closed subspace because D has a closed graph. Hence both
dom D and the quotient space V D dom D�=dom D inherit a Hilbert space structure
from dom D� . One can now check (using the next remark) that .V; !/ is a symplectic
Hilbert space in the sense that the symplectic form is bounded and the linear map
V !V � W v 7! I!.v/ WD!.v; �/ is an isomorphism. If ƒ�V is a Lagrangian subspace,
ie the annihilator ƒ? � V � is given by ƒ? D I!.ƒ/, then ƒ is closed and hence
inherits a Hilbert space structure from V .

Remark B.1 (i) The graph norm on dom D is equivalent to the norm

hx;y iD WD hDx;Dy iH :

because D is injective and has a closed image.

(ii) For convenience, we sometimes identify the Gelfand–Robbin quotient V D

dom D�=dom D with the orthogonal complement

V D .dom D/? D
˚
x 2 dom D� jD�x 2 dom D�; D�D�xCx D 0

	
:

The orthogonal projection of dom D� onto V along dom D is given by

dom D�! V W x 7! x� .1lCD�D/�1.xCD�D�x/;

where 1lCD�D is understood as an operator from dom D to .dom D/� . The graph
inner product on V is compatible with the symplectic form and the associated complex
structure is x 7! Jx WDD�x , that is !.x;Jy/D hx;y iD� . This shows that .V; !/
is indeed a symplectic Hilbert space.

(iii) In the formulation of (ii) the subspace ƒ0 and its orthogonal complement are
given by

ƒ0 D
˚
x 2 V j 9� 2 dom D s:t: D�.xC �/D 0

	
D
˚
x 2 V jD�x 2 im D

	
ƒ?0 DD�ƒ0 D V \ im D:

Definition B.2 A triple .V; ƒ1; ƒ2/ consisting of a Hilbert space V and two closed
subspaces ƒ1; ƒ2 � V is called Fredholm if ƒ1\ƒ2 is finite dimensional, ƒ1Cƒ2

is a closed subspace of V , and the cosum V =.ƒ1Cƒ2/ is finite dimensional (see
Robbin, Ruan and Salamon [24]); equivalently the linear operator S W ƒ1 �ƒ2! V
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given by S.x1;x2/ WD x1Cx2 is Fredholm. The Fredholm index of a Fredholm triple
.V; ƒ1; ƒ2/ is defined by

index.V; ƒ1; ƒ2/ WD dim.ƒ1\ƒ2/� dim.V =.ƒ1Cƒ2//D index.S/:

Lemma B.3 Let ƒ � V be a Lagrangian subspace. Then DƒW dom Dƒ! H is a
Fredholm operator if and only if .V; ƒ0; ƒ/ is a Fredholm triple.

Proof This follows from the definition and the fact that the homomorphisms

ker Dƒ!ƒ0\ƒ W x 7! Œx�;

V

ƒ0Cƒ
!

H

im Dƒ

W Œx� 7! ŒD�x�

are bijective. For the second map this uses Lemma B.4 below.

Lemma B.4 Let DW dom D!H be an injective symmetric operator with a closed
image and a dense domain. Then

Y WD
˚
� 2 dom D jD� 2 dom D�

	
is a Hilbert space with the inner product

h �; � iY WD h �; � iH ChD�;D� iH ChD
�D�;D�D� iH

and the operator D�DW Y !H is an isomorphism.

Moreover, if the inclusion dom D ! H is a compact operator then the operator
D.D�D/�1W H !H is compact.

Proof We prove that Y is complete. Let �i 2 Y be a Cauchy sequence. Then �i ,
D�i , D�D�i are Cauchy sequences in H . Define � WD lim �i , x WD lim D�i , y WD

lim D�D�i . Since D and D� have closed graphs we have � 2 dom D , x 2 dom D� ,
D� D x , and D�x D y . Hence � 2 Y and �i converges to � in Y .

That D�DW Y ! H is injective follows since D is injective and hD�D�; � iH D
kD�k2H for � 2 Y . Now consider the Gelfand triple

Z �H �Z�;

where Z WD dom D and h �; � iZ D hD�;D� iH . We identify H with its dual space
and define the inclusion H!Z� as the dual operator of the inclusion Z!H . We can
think of DW Z!H as a bounded linear operator and of its adjoint as bounded linear
operator D�W H !Z� . Then dom D� D fx 2H jD�x 2H g : Since DW Z!H is
injective and has a closed image the dual operator D�W H !Z� is surjective. Now
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let y 2H . Then y 2 Z� and hence there exists an element x 2H with D�x D y .
Since D�x 2H we have x 2 dom D� . Now it follows from the definitions that the
kernel of D� is the orthogonal complement of the image of D . Since the image of D

is closed this implies H D ker D�˚ im D: Hence there is a vector x0 2 ker D� such
that x�x0 2 im D . Choose � 2 dom D such that D� D x�x0 . Then D� 2 dom D�

and D�D� DD�x D y . This proves that D�D is surjective.

Now assume that the inclusion Z ! H is compact. To prove that the operator
D.D�D/�1W H !H is compact we observe that

(124) kxkZ� WD sup
0¤�2dom D

hx; � iH

kD�kH
D kD.D�D/�1xkH

for every x 2H �Z� . Here the last equation follows from the fact that the supremum
in the second term is attained at the vector �0 D .D�D/�1x with x DD�D�0 . Now
let xi be a bounded sequence in H . Since the inclusion H !Z� is compact, there
exists a subsequence xik

which converges in Z� and it follows from (124) that the
sequence D.D�D/�1xik

converges in H . This proves the lemma.

Remark B.5 (i) By Lemma B.4 the subspaces ƒ0 and ƒ?
0

of V in Remark B.1 can
also be written in the form

ƒ0 D fx 2 dom D� jD�xCD.D�D/�1x D 0g D ker.D�CT /;

ƒ?0 D fx 2 V jx DD.D�D/�1D�xg D T ker.D�CT /;

where T WDD.D�D/�1 WH !H maps to im T D dom D�\ im D .

(ii) The orthogonal projection of V onto ƒ?
0

extends to a bounded linear operator
…0W H !H given by

…0x DD.D�DCTD/�1.D�xCT x/:

Here D�DCTDW dom D! .dom D/� is an isomorphism because

hx;D�DxCTDx i D kDxk2CkTDxk2 � ıkxk2:

In fact, …0 is a projection on all of H , its kernel is ƒ0 , and its image is equal to the
image of D . In particular, …0jƒ?

0
D 1l.

(iii) In all our applications the inclusion dom D!H is a compact operator. Then,
by Lemma B.4, T W H !H is compact, and thus the inclusion ƒ?

0
!H is compact.

Indeed, the inclusion is given by the composition x 7! TD�x of a compact and a
bounded operator.
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The inclusions dom D� ! H and ƒ0 ! H , however, are not compact unless V

is finite dimensional. Namely, if V is infinite dimensional then so is the kernel of
D� (since ƒ0 � V is Lagrangian) and the inclusion dom D� � ker D�! H is an
isometric embedding. Lemma B.10 below gives a condition under which the domain
of a self-adjoint extension of D has a compact embedding into H . This requires the
notion of a compact perturbation of a closed subspace of V .

Definition B.6 Let V be a Hilbert space and ƒ� V be a closed subspace. A closed
subspace ƒ0 � V is called a compact perturbation of ƒ if the projection of ƒ0 onto
some (and hence every) complement of ƒ in V is a compact operator and vice versa.

Remark B.7 The notion of compact perturbation defines an equivalence relation on
the set of closed subspaces of V . To see this denote by …W V !ƒ and …0W V !ƒ0

the orthogonal projections. If ƒ0 is a compact perturbation of ƒ and ƒ00 is a compact
perturbation of ƒ0 then the operators 1l�…W ƒ0!ƒ? and 1l�…0W ƒ00! .ƒ0/? are
compact. Hence the operator .1l�…/jƒ00 D .1l�…/.1l�…0/jƒ00 C .1l�…/…0jƒ00 is
compact. Repeating this argument with ƒ and ƒ00 interchanged we see that ƒ00 is a
compact perturbation of ƒ.

Lemma B.8 Let V be a Hilbert space and ƒ1; ƒ;ƒ
0 � V be closed subspaces such

that ƒ0 is a compact perturbation of ƒ. If .V; ƒ1; ƒ/ is a Fredholm triple then so is
.V; ƒ1; ƒ

0/.

Proof Let …W V ! ƒ and …0W V ! ƒ0 be the orthogonal projections. Then .1l�
……0/jƒD….1l�…0/jƒW ƒ!ƒ and .1l�…0…/jƒ0 W ƒ0!ƒ0 are compact operators.
This implies that …jƒ0 W ƒ0 ! ƒ and …0jƒW ƒ! ƒ0 are Fredholm operators with
opposite indices; see eg [17, Chapter III.3].

Now suppose that .V; ƒ1; ƒ/ is a Fredholm triple, ie the map S W ƒ1 �ƒ! V given
by S.v1; v/D v1C v is Fredholm. Then the operator

S 00 WD S ı .1l�…/ Wƒ1 �ƒ
0
! V

is Fredholm. Define the map S 0W ƒ1 � ƒ
0 ! V by S 0.v1; v

0/ D v1 C v
0 . Since

S 0.v1; v
0/�S 00.v1; v

0/D .1l�……0/v0 the operator S 0�S 00 is compact. Hence S 0 is
a Fredholm operator and so .V; ƒ1; ƒ

0/ is a Fredholm triple.

Lemma B.9 Let .V; !/ be a symplectic Hilbert space. Let ƒ;ƒ0 � V be Lagrangian
subspaces. Then the following are equivalent.

(i) ƒ0 is a compact perturbation of ƒ.
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(ii) The projection of ƒ0 onto ƒ? is a compact operator.

(iii) The operator ƒ0!ƒ� W v0 7! !.v0; �/ is compact.

Proof By definition, (i) implies (ii). The Lagrangian condition asserts that the orthogo-
nal complement ƒ? is isomorphic to ƒ� via the isomorphism ƒ?!ƒ� W v 7!!.v; �/.
Under this isomorphism the orthogonal projection ƒ0!ƒ? corresponds to the operator
ƒ0! ƒ� W v0 7! !.v0; �/, hence (ii) and (iii) are equivalent. To see that (iii) implies
(i) note that the operators ƒ0!ƒ� W v0 7! !.v0; �/ and ƒ! .ƒ0/� W v 7! �!.v; �/ are
dual to each other. Using “.iii/, .ii/” we see that (iii) implies compactness of both
projections ƒ0!ƒ? and ƒ! .ƒ0/? . This proves the lemma.

Lemma B.10 Let DW dom D!H be an injective symmetric operator with a closed
image and a dense domain and suppose that the inclusion dom D!H is a compact
operator. Let V D .dom D/? be the Gelfand–Robbin quotient, ƒ�V be a Lagrangian
subspace, and ƒ0; ƒ

?
0

be as in Remark B.1. Then the following are equivalent.

(i) The inclusion dom Dƒ!H is compact.

(ii) The inclusion ƒ!H is compact.

(iii) ƒ is a compact perturbation of ƒ?
0

.

Proof Let …0W V !V denote the orthogonal projection onto ƒ?
0

. Then …0W V !H

is compact since the inclusion of the image …0.V /Dƒ
?
0

into H is compact by Remark
B.5 (ii). By Lemma B.9, (iii) holds if and only if the operator .1l�…0/jƒW ƒ!ƒ0

is compact. Moreover, the graph norm of D� on ƒ0 D ker.D�CT / is equivalent to
the norm of H so, in fact, (iii) holds if and only if the operator .1l�…0/jƒW ƒ!H

is compact. We deduce that (iii) is equivalent to (ii) because the inclusion ƒ!H is
given by the sum 1ljƒ D .1l�…0/jƒC…0jƒ , where …0jƒW ƒ!H is compact.

That (i) is equivalent to (ii) follows from the fact that the inclusion of dom D into H

is compact, by assumption, and dom Dƒ D dom D˚ƒ.

Lemma B.11 Let DW dom D!H be an injective symmetric operator with a closed
image and a dense domain and suppose that the inclusion dom D!H is a compact
operator. Let V D dom D�=dom D be the Gelfand–Robbin quotient and ƒ0 D fŒx� 2

V jD�x D 0g as in (123). Let P W H !H be a self-adjoint bounded linear operator
such that DCP W dom D!H is injective. Then the following are equivalent.

(i) The composition of P with the inclusion dom D�!H is a compact operator.

(ii) The operator P jker.D�CP/W ker.D�CP /!H is compact.
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(iii) ƒP WD fŒx� 2 V jD�xCPx D 0g is a compact perturbation of ƒ0 .

Proof Abbreviate DP WDDCP . Then dom D�
P
D dom D� and the graph norm

of D� is equivalent to the graph norm of D�
P

. Moreover, on ker D�
P

and ker D�

both graph norms are equivalent to the norm of H . For Œx� 2 ƒP , represented by
x 2 ker D�

P
, and Œx0� 2ƒ0 , represented by x0 2 ker D� , we have

!.Œx�; Œx0�/D hD
�x;x0 i � hx;D

�x0 i D �hPx;x0 i D hTPx�Px;x0 i;

where T WD D.D�D/�1W H ! dom D� . Using Lemma B.9 and the compactness
of the inclusion dom D ! H , we see that ƒP is a compact perturbation of ƒ0 if
and only if .P �TP /jker D�

P
W ker D�

P
! ker D� is a compact operator. Since T is

compact, by Lemma B.4, this shows that (ii) is equivalent to (iii). That (i) implies (ii)
is obvious. To prove that (ii) implies (i) note that, by Remark B.5 with D replaced by
DP , the inclusion of dom D�\ im DP into H is compact. Since the decomposition
dom D� D .dom D�\ im DP /˚ ker D�

P
is orthogonal with respect to the graph norm

of D�
P

, this shows that (ii) implies (i).

Remark B.12 Let D , V , ƒ0 be as in Lemma B.11, P W H ! H be a bounded
self-adjoint operator, and denote ƒP WD fŒx� 2 V jD�xCPx D 0g.

(i) Let ƒ?;P
P

denote the orthogonal complement of ƒP with respect to the graph
inner product of D�CP . Then it always is a compact perturbation of ƒ?

0
. Namely,

by Remark B.5 with D replaced by DCP , the inclusion ƒ?;P
P
! H is compact.

Hence, by Lemma B.10 with D replaced by DCP and ƒ WD ƒ?;P
P

, the inclusion
fv 2 dom D� j Œv� 2ƒg !H is compact. Using Lemma B.10 again we deduce that ƒ
is a compact perturbation of ƒ?

0
.

(ii) The orthogonal complement ƒ?
P

with respect to the graph inner product of D�

is a compact perturbation of ƒ?
0

if and only if the restriction of P to dom D� is a
compact operator. This follows from Lemma B.11 and the fact that ƒ?

P
D D�ƒP

and ƒ?
0
DD�ƒ0 in the notation of Remark B.1, where D� is a compatible complex

structure on V .

(iii) It follows from (i) and (ii) that ƒ?;P
P

is a compact perturbation of ƒ?
P

if and
only if the restriction of P to the domain of D� is a compact operator.

(iv) If ƒ is a compact perturbation of ƒ?
0

then .V; ƒP ; ƒ/ is a Fredholm triple. Since
.V; ƒP ; ƒ

?;P
P

/ is a Fredholm triple, this follows from (i) and Lemma B.8.

Lemma B.13 Let D;V; ƒ0 be as in Lemma B.11 and let P .s/W H!H for s 2R be
a continuously differentiable family of self-adjoint bounded linear operators. Assume
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that P .s/ converges to P .˙1/DW P˙ in the operator norm as s tends to ˙1, that
.DCP .s//jdom D is injective for every s 2R[f˙1g, and that

ker.D�CP�/˚ dom D

dom D
D

ker.D�CPC/˚ dom D

dom D
DWƒ00 � V:

Then the spectral flow of the operator family s 7! .DCP .s//ƒ is independent of the
Lagrangian subspace ƒ� V such that V Dƒ0

0
˚ƒ and ƒ is a compact perturbation

of ƒ?
0

.

Remark B.14 Let D;V; ƒ0 be as in Lemma B.11, and let QW H !H be a Hilbert
space isomorphism such that

x 2 dom D� H) x�Qx 2 dom D:

Then Q induces the identity on V . Let P .s/W H !H for s 2 R be a continuously
differentiable family of self-adjoint bounded linear operators such that

DCP .sC 1/DQ�1.DCP .s//Q:

Assume .DCP .s//jdom D is injective for every s 2R and denote

ƒ00 WD
ker.D�CP .0//˚ dom D

dom D
D

ker.D�CP .1//˚ dom D

dom D
:

Then the spectral flow of the operator family s 7! .DCP .s//ƒ on the fundamental
domain Œ0; 1� is independent of the Lagrangian subspace ƒ�V such that V Dƒ0

0
˚ƒ

and ƒ is a compact perturbation of ƒ?
0

. The proof is the same as that of Lemma B.13.

Proof of Lemma B.13 The operators DCP .s/W dom D! H satisfy the assump-
tions of this section and give rise to the constant Gelfand–Robbin quotient V D

dom D�=dom D since dom .DCP .s//�D dom D� . Hence any Lagrangian subspace
ƒ�V gives rise to a family of self-adjoint operators A.s/ WD .DCP .s//ƒW dom Dƒ!

H , which satisfies the conditions (A1)–(A3) of Appendix A whenever V Dƒ0
0
˚ƒ. In

particular, the estimate in (A1) holds for s D˙1, ie kxkD� � C


.DCP˙/ƒx




H

for x 2 dom Dƒ , because .V; ƒ0
0
; ƒ/ is a Fredholm triple and .DCP˙/ƒ is injective.

The estimate for s 2R follows from a uniform bound of the form kP .s/�P˙k � C

for the operator norm on H . The assumptions (W1)–(W3) are satisfied with the trivial
map Q� 1l and the constant domain W0D dom Dƒ . In particular, the domain embeds
compactly to H , by Lemma B.10, whenever ƒ is a compact perturbation of ƒ?

0
.

Hence the spectral flow is well defined under our assumptions (see Appendix A).

We prove that the set S of Lagrangian subspaces of V that are transverse to ƒ0
0

and
are compact perturbations of ƒ?

0
is connected. For that purpose let ƒ1 � V denote
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the orthogonal complement of ƒ0
0

with respect to the graph inner product of D�CPC

and let I! W ƒ
0
0
! ƒ�

1
be the isomorphism given by v 7! !.v; �/. Then a subspace

ƒ � V D ƒ1˚ƒ
0
0

is a complement of ƒ0
0

if and only if it is the graph of a linear
operator from ƒ1 to ƒ0

0
or, equivalently, ƒDƒA WD graph.I�1

! ıA/ for some linear
operator AW ƒ1 ! ƒ�

1
. One can check that the subspace ƒA is Lagrangian if and

only if A is self-adjoint and that it is a compact perturbation of ƒ?
0

if and only if A

is compact. The last assertion uses the explicit formula xC I�1
! Ax 7! I�1

! Ax for
the projection ƒA!ƒ0

0
along ƒ1 and the fact that ƒA is a compact perturbation of

ƒ?
0

if and only if it is a compact perturbation of ƒ1 , by Remark B.12 (i) and Remark
B.7. Thus we have identified S with the vector space of compact self-adjoint operators
AW ƒ1!ƒ�

1
and so S is contractible, as claimed.

Now the result follows from the homotopy invariance of the spectral flow. The homo-
topies of Lagrangian subspaces do not directly translate into homotopies in the sense of
Appendix A; see the proof of Lemma B.16 below. However, the homotopy invariance
of the spectral flow of the family s 7! .DCP .s//ƒ follows from Remark B.15, where
the spectral flow is identified with a Maslov index, which in turn is invariant under
homotopies of ƒ.

Remark B.15 (i) Let Œ0; 1� 3 s 7! .ƒ0.s/;ƒ1.s// be a smooth path of pairs of
Lagrangian subspaces of V such that .V; ƒ0.s/;ƒ1.s// is a Fredholm triple for every
s . For each s define the crossing form �.ƒ0; ƒ1; s/ Wƒ0.s/\ƒ1.s/!R by

�.ƒ0; ƒ1; s/.v/ WD
d
dt

ˇ̌̌̌
tD0

�
!.v; v00.t//�!.v; v

0
1.t//

�
for v 2 ƒ0.s/ \ ƒ1.s/, where ƒ0

0
; ƒ0

1
� V are Lagrangian subspaces such that

V D ƒ0.s/˚ƒ
0
0
D ƒ1.s/˚ƒ

0
1

and v0
0
.t/ 2 ƒ0

0
, v0

1
.t/ 2 ƒ0

1
are chosen such that

v C v0
0
.t/ 2 ƒ0.s C t/ and v C v0

1
.t/ 2 ƒ1.s C t/. As in [25] the Maslov index is

defined as the sum of the signatures of the crossing forms

�.ƒ0; ƒ1/ WD
X

s

sign�.ƒ0; ƒ1; s/

provided that the crossing forms are all nondegenerate and ƒ0.s/ is transverse to ƒ1.s/

for s D 0; 1. Under this assumption the sum is finite. The nondegeneracy condition
can be achieved by a small perturbation with fixed endpoints. The Maslov index is
invariant under homotopies of paths of Lagrangian Fredholm triples with transverse
endpoints.

(ii) The spectral flow in Lemma B.13 can be identified with the Maslov index

(125) �spec ..DCP /ƒ/D � .ƒP ; ƒ/ ;
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where ƒ0.s/ WDƒP.s/ D fŒx� 2 V jD�xCP .s/x D 0g and ƒ1.s/ WDƒ for every s .
The Fredholm property of the triples .V; ƒP.s/; ƒ/ follows from Remark B.12 (iv).

To prove (125), fix a real number s , choose ƒ0
0

and v0
0
.t/ as in (i), let x0.t/2 dom D�

be the smooth path defined by .D�CP .sC t//x0.t/D 0 and Œx0.t/�D vC v
0
0
.t/ 2

ƒ0.sC t/, and denote x WD x0.0/ so that Œx�D v 2ƒ0.s/\ƒ. Then

d
dt

ˇ̌̌̌
tD0

!.v; v00.t//D
d
dt

ˇ̌̌̌
tD0

!.v; vC v00.t//

D
d
dt

ˇ̌̌̌
tD0

�˝
D�x;x0.t/

˛
�
˝
x;D�x0.t/

˛�
D

d
dt

ˇ̌̌̌
tD0

˝ �
D�CP .sC t/

�
x;x0.t/

˛
D

d
dt

ˇ̌̌̌
tD0

˝ �
D�CP .sC t/

�
x;x

˛
:

This shows that the crossing forms � ..D�CP /ƒ ; s/ and ��.ƒ0; ƒ; s/ agree under
the isomorphism ker .D�CP .s//ƒ!ƒ0.s/\ƒ W x 7! Œx�:

Lemma B.16 Let D;V; ƒ0;Q;P be as in Remark B.14. Denote by ‡ the set of
Lagrangian subspaces ƒ� V that are compact perturbations of ƒ?

0
. For every ƒ 2‡

there is a Fredholm operator

Dƒ WD @sCDƒCP .s/W Wƒ!H

H WD
n
� 2L2

loc.R;H / j �.sC 1/DQ�1�.s/
o
;with

Wƒ WD
˚
� 2L2

loc.R; dom Dƒ/\W
1;2

loc .R;H / j �.sC 1/DQ�1�.s/
	
:

The determinants det.Dƒ/ for ƒ 2 ‡ form a line bundle over ‡ .

Proof Dƒ is Fredholm since it is the operator of Theorem A.5 with A.s/DDƒCP .s/

and constant domain W .s/D dom Dƒ .

We do not know if for any two subspaces ƒ;ƒ02‡ there is a Hilbert space isomorphism
of QW H ! H that identifies dom Dƒ with dom Dƒ0 , as would be required for a
homotopy of operator families in the sense of Appendix A. However, one can prove
directly that the kernel of Dƒ depends continuously on ƒ (as a subspace of H) if
Dƒ is surjective. This proves the lemma since the transverse situation can always be
achieved by finite dimensional stabilization.

To prove the continuous dependence of kerDƒ on ƒ we will use the fact that every
element � 2 ker Dƒ is a smooth function from R to dom Dƒ (see [26, Theorem 3.13])
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and satisfies an estimate of the form k�kWƒ Ck@s�kWƒ � c k�kH . Two Lagrangian
subspaces ƒ;ƒ0 2‡ are close if there exists an isomorphism of V close to the identity
that maps ƒ to ƒ0 . This extends to an isomorphism of dom Dƒ Dƒ˚ dom D and
dom Dƒ0 Dƒ

0˚dom D (which does not necessarily extend to an isomorphism of H ).
This isomorphism of domains followed by the orthogonal projection onto the kernel
of Dƒ0 induces a map kerDƒ!Wƒ0 , which is an isomorphism for ƒ0 sufficiently
close to ƒ.

Appendix C Unique continuation

In this appendix we formulate a general unique continuation theorem based on the
Agmon–Nirenberg technique. The method was also used by Donaldson–Kronheimer
[11, pp150] and Taubes [31] to prove unique continuation results for anti-self-dual
instantons and by Kronheimer–Mrowka [20] and in [27] for the Seiberg–Witten equa-
tions.

Let H be a Hilbert space and A.s/ be a family of (unbounded) symmetric operators
on H with domains dom .A.s// � H . The operators A.s/ are not required to be
self-adjoint although in the main applications they will be and, moreover, their domains
will be independent of s . However, in some interesting cases these operators are
symmetric with respect to time-dependent inner products. The following theorem is a
special case of a result by Agmon and Nirenberg [2].

Theorem C.1 (Agmon–Nirenberg) Let H be a real Hilbert space and consider a
family of symmetric linear operators A.s/W dom .A.s//!H . Assume that xW Œ0;T /!

H for 0 < T � 1 is continuously differentiable in the weak topology such that
x.s/ 2 dom .A.s// and

(126) k Px.s/CA.s/x.s/k � c1.s/ kx.s/k

for every s 2 Œ0;T /, where Px.s/ WD @sx.s/ 2H denotes the time derivative of x . As-
sume further that the function s 7! hx.s/;A.s/x.s/ i is also continuously differentiable
and satisfies

(127)
d

ds
hx;Ax i � 2h Px;Ax i � 2c2.s/ kAxk kxkC c3.s/ kxk

2 :

Here c1; c2; c3W Œ0;T /!R are continuous nonnegative functions satisfying

a0 WD 2

Z T

0

c2 <1; b0 WD

Z T

0

.c2
1 C c2

2 C c3/ <1; c0 WD sup c1 <1:

Then the following holds.
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(i) If x.0/D 0 then x.s/D 0 for all s 2 Œ0;T /.

(ii) If x.0/¤ 0 then x.s/¤ 0 for all s 2 Œ0;T / and, moreover,

kx.s/k � e�cs
kx.0/k ; c WD c0C ea0

�
b0Ckx.0/k

�1
kA.0/x.0/k

�
:

Proof The basic idea of the proof is to use the convexity of the function t 7!

log kx.t/k2 . Assume that x.0/¤ 0 and define

'.s/ WD log kx.s/k�
Z s

0

hx.�/; Px.�/CA.�/x.�/ i

kx.�/k2
d�

for 0 � s < T wherever x.s/ ¤ 0. Then we prove that ' is twice continuously
differentiable and satisfies the differential inequality

(128) R'C a j P'jC b � 0; a WD 2c2; b WD c2
1 C c2

2 C c3:

Define f .s/ WD Px.s/CA.s/x.s/. Then the derivative of ' is given by

P' D
hx; Px i

kxk2
�
hx; f i

kxk2
D�
hx;Ax i

kxk2
:

Hence

R' D�

d
ds
hAx;x i

kxk2
C

2hAx;x ih Px;x i

kxk4

�
2hAx;Ax�f i � 2c2 kAxk kxk� c3 kxk

2

kxk2
�

2hAx;x ihAx�f;x i

kxk4
:

Here the second step follows from the inequality (127) and the definition of f . The
terms on the right hand side can now be organized as follows

R' �
2

kxk2

�
kAxk2�

hAx;x i2

kxk2

�
�

2

kxk2

�
Ax�

hAx;x i

kxk2
x; f

�
� 2c2

kAxk

kxk
� c3:

D
2

kxk2





Ax�
hAx;x i

kxk2
x





2

�
2

kxk2

�
Ax�

hAx;x i

kxk2
x; f

�
� 2c2

kAxk

kxk
� c3:

Now abbreviate

� D
x

kxk
; �D

Ax

kxk
:
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Then P' D�h �; � i and the previous inequality can be written in the form

R' � 2 k�� h �; � i�k2� 2

�
�� h �; � i�;

f

kxk

�
� 2c2 k�k� c3

� 2 k�� h �; � i�k2� 2 k�� h �; � i�k
kf k

kxk
� 2c2 k�k� c3

� k�� h �; � i�k2�
kf k2

kxk2
� 2c2 k�k� c3

� k�� h �; � i�k2� c2
1 � 2c2 k�k� c3:

The last but one inequality uses the fact that ˛ˇ � ˛2=2Cˇ2=2 and the last inequality
uses kf k � c1kxk. To obtain (128) it remains to prove that

k�� h �; � i�k2� 2c2 k�k � �2c2 j P'j � c2
2 :

Since P' D�h �; � i this is equivalent to

2c2 k�k � k�� h �; � i�k
2
C 2c2 jh �; � ijC c2

2 :

Now the norm squared of � can be expressed in the form

k�k2 D u2
C v2; uD k�� h �; � i�k ; v D jh �; � ij :

Hence the desired inequality has the form

2c2

p
u2C v2 � u2

C 2c2vC c2
2 :

This follows from the inequalities
p

u2C v2 � uC v and 2c2u� u2C c2
2 . Thus we

have proved (128).

Define ˛.s/ WD
R s

0 a.�/d� . Then ˛ is nonnegative and P̨ D a. Hence at each point
s 2 Œ0;T / with P'.s/� 0 we have

d
ds

�
e�˛ P'

�
D e�˛

�
R'C aj P'j

�
� �b:

Integrating this inequality over maximal intervals where P' is negative we obtain

e�˛.s/ P'.s/�minf0; P'.0/g�
Z s

0

b.�/d�; for 0� s < T:

This implies P'.s/� �ea0.b0Cj P'.0/j/; hence '.s/� '.0/� ea0.b0Cj P'.0/j/s; and
hence, again for 0� s < T ,

log kx.s/k � '.s/�
Z s

0

kxk�1
k PxCAxk � '.0/� ea0.b0Cj P'.0/j/s� c0s:
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Now we can use log kx.0/k D '.0/ and j P'.0/j � kx.0/k�1kA.0/x.0/k to prove (ii):

kx.s/k � e'.0/�ea0 .b0Cj P'.0/j/s�c0s
� kx.0/ke�cs:

To prove (i) we assume by contradiction that x.s0/¤ 0 for some s0 2 .0;T /. Then
part (ii) applies to the path s 7! x.s0 � s/ and the operator family s 7! �A.s0 � s/.
It implies kx.�/k � ec��cs0kx.s0/k for all � 2 .0; s0�, so by continuity kx.0/k �
e�cs0kx.s0/k ¤ 0 in contradiction to the assumption.

Time-dependent inner products

There are interesting applications to operator families A.s/ on a Hilbert space which
are self-adjoint with respect to a time-dependent family of inner products which are all
compatible with the standard inner product on H . Any such family of inner products
can be expressed in the form

(129) hx ; y is D hQ.s/x ; Q.s/y i

for some invertible bounded linear operators Q.s/W H!H . Without loss of generality
one can consider operators Q.s/ which are self-adjoint. Assume throughout that these
operators satisfy the following conditions.

(Q1) The operator Q.s/ is self-adjoint for every s and there exists a constant ı > 0

such that for all x 2H and s 2 Œ0;T /

ı kxk � kQ.s/xk � ı�1
kxk :

Moreover, the map Œ0;T /! L.H / W s 7!Q.s/ is continuously differentiable in
the weak operator topology and there exists a continuous function cQW Œ0;T /!

Œ0;1/ such that



 PQ.s/

L.H /
� cQ.s/ 8s 2 Œ0;T /; CQ WD

Z T

0

cQ <1:

Theorem C.2 Let H be a real Hilbert space, Q.s/2L.H / a family of (bounded) self-
adjoint operators satisfying .Q1/, and A.s/W dom .A.s//!H a family of (unbounded)
linear operators such that A.s/ is symmetric with respect to the inner product (129).
Assume that xW Œ0;T /!H is continuously differentiable in the weak topology such
that x.s/ 2 dom .A.s// and

k Px.s/CA.s/x.s/ks � c1.s/ kx.s/ks
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for every s 2 Œ0;T /. Assume further that the function s 7! hx.s/;A.s/x.s/ is is also
continuously differentiable and satisfies

d
ds
hx.s/;A.s/x.s/ is � 2h Px.s/;A.s/x.s/ is

� 2c2.s/ kA.s/x.s/ks kx.s/ksC c3.s/ kx.s/k
2
s

for every s 2 Œ0;T /. Here c1; c2; c3W Œ0;T /!R are continuous nonnegative functions
satisfying

a0 WD 2

Z T

0

.c2C ı
�1cQ/ <1;

b0 WD

Z T

0

�
.c1C ı

�1cQ/
2
C .c2C ı

�1cQ/
2
C c3

�
<1;

c0 WD sup.c1C ı
�1cQ/ <1:

Then the following holds.

(i) If x.0/D 0 then x.s/D 0 for all s 2 Œ0;T /.

(ii) If x.0/¤ 0 then x.s/¤ 0 for all s 2 Œ0;T / and, moreover,

kx.s/ks � e�cs
kx.0/k0 ; c WD c0C ea0

�
b0Ckx.0/k

�1
0 kA.0/x.0/k0

�
:

Proof The result reduces to Theorem C.1. Define

zA WDQAQ�1; zx WDQx; zf WD PQxCQf

with dom . zA.s// D Q.s/dom .A.s// and f D Px CAx . Then the operator A.s/ is
symmetric with respect to the inner product (129) if and only if zA.s/ is symmetric
with respect to the standard inner product. (Moreover, one can easily check that A.s/

is self-adjoint with respect to (129) if and only if zA.s/ is self-adjoint with respect to
the standard inner product. However, this is not needed for the proof.) It also easy to
see that

PxCAx D f () PzxC zAzx D zf :

It remains to show that under the assumptions of Theorem C.2 the triple zA, zx , zf
satisfies the requirements of Theorem C.1. First, note that

k zf k D k PQxCQf k � cQ kxkCkf ks � cQı
�1
kxksC c1 kxks

and hence zx satisfies (126) with c1 replaced by zc1D c1CcQ=ı . Secondly, the function

s 7! h zx.s/; zA.s/zx.s/ i D hx.s/;A.s/x.s/ is
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is continuously differentiable and a simple calculation shows that

d
ds
h zx; zAzx i � 2h Pzx; zAzx i D

d
ds
hx;Ax is � 2h Px;Ax is � 2h PQx;QAx i:

Hence
d
ds
h zx; zAzx i � 2h Pzx; zAzx i � 2c2 kxks kAxksC c3 kxk

2
s C 2k PQxkk zAzxk

� 2c2 kzxk k zAzxkC c3 kzxk
2
C 2cQı

�1
kzxk k zAzxk:

This shows that zx satisfies (127) with c2 and c3 replaced by zc2 D c2 C cQ=ı and
zc3 D c3 . Hence zx and zA satisfy the requirements of Theorem C.1 and this proves
Theorem C.2.

Appendix D Holonomy perturbations

In this appendix we review the properties of the holonomy perturbations used in this
paper. Throughout this appendix Y is a compact oriented 3–manifold, D �C is the
closed unit disc, and we identify the circle S1 with R=Z. The elements of S1 will
be denoted by � and those of D by z . Fix a finite sequence of orientation preserving
embeddings 
i W S

1 �D! Y for i D 1; : : : ;N that coincide in a neighbourhood of
f0g �D . Define the holonomy maps

gi W R�D�A.Y /! G; �i W D�A.Y /! G

@�gi CA.@�
i/gi D 0; gi.0; zIA/D 1l; �i.zIA/ WD gi.1; zIA/:by

and abbreviate � WD .�1; : : : ; �N /W D � A.Y / ! GN . Fix a smooth conjugation
invariant function f W D �GN ! R that vanishes near the boundary, and define the
perturbation hf W A.Y /!R by

hf .A/ WD

Z
D
f .z; �.zIA// d2z:

This map is smooth and its derivative has the form

(130) dhf .A/˛ D
d
ds

ˇ̌̌̌
sD0

Z
D
f .z; �.zIAC s˛// d2z D

Z
Y

hXf .A/^˛ i

for ˛ 2�1.Y; g/. The map Xf W A.Y /!�2.Y; g/ is uniquely determined by (130);
it has the form

Xf .A/D

NX
iD1


i�

�
Xf;i.A/d

2z
�
;
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where Xf;i.A/ 2�
0.S1 �D; g/ is given by

Xf;i.A/.�; z/D�gi.�; zIA/rif .z; �.zIA//gi.�; zIA/
�1:(131)

Here the gradient rif W D�GN ! g is defined by

h rif .z;g/; � i WD
d
dt

ˇ̌̌̌
tD0

f .z;g1; : : : ;gi�1;gi exp.t�/;giC1; : : : ;gN /

for z 2 D , g D .g1; : : : ;gN / 2 GN , and � 2 g. It vanishes near the boundary of D
and, since f is conjugation invariant, it satisfies

(132) rif .z; hgh�1/D hrif .z;g/h
�1

for h2G. If follows from (132) that Xf;i.A/W R�D!g descends to a function on S1�

D . If the center of G is discrete then Equation (132) implies that rif .z; .1l; : : : ; 1l//D0

and hence Xf .0/ D 0 for every f 2 C1
0
.D � GN /G . Thus, for G D SU.2/ the

trivial connection is always a critical point of the perturbed Chern–Simons functional
CSL C hf . The next proposition summarizes the properties of Xf . We denote the
space connections of class W k;p by

Ak;p.Y / WDW k;p.Y;T�Y ˝ g/:

Proposition D.1 Let f 2 C`C1
0

.D�GN /G for some integer `� 0. Then the following
holds (with uniform constants independent of f ).

(i) For every integer `� k � 1 and every p > 2 with kp > 3, Xf extends to a C`�k

map from Ak;p.Y / to W k;p.Y; ƒ2TY ˝ g/, mapping bounded sets to bounded sets.

(ii) For all A 2A.Y /, u 2 G.Y /, � 2�0.Y; g/, and ˛ 2�1.Y; g/ we have

dA.Xf .A//D 0; Xf .u
�A/D u�1Xf .A/u;

dXf .A/dA� D ŒXf .A/; ��; dA.dXf .A/˛/D ŒXf .A/^˛�:

(iii) For every k 2 f0; : : : ; `g and every p 2 Œ1;1� there is a constant c such that

Xf .A/




W k;p � c krf kCk

�
1C

X
j0C���CjsDk

s�0; j��1

kAkW j0;p kAkCj1 � � � kAkCjs

�

for every A 2A.Y /. If k D 0 then


Xf .A/




Lp � c krf kLp .

(iv) For every k 2 f0; : : : ; `� 1g and p 2 Œ1;1� there is a constant c such that

dXf .A/˛




W k;p.Y /
� c krf kCkC1

�
1CkAkCk

�k
k˛kW k;p.Y /

for all A 2A.Y / and ˛ 2�1.Y; g/.
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(v) For all p; q; r 2 Œ1;1� with q�1C r�1 D p�1 there is a constant c such that


d2Xf .A/.˛; ˇ/





Lp.Y /
� c krf kC1 k˛kLq.Y / kˇkLr .Y / ;

Xf .AC˛/�Xf .A/� dXf .A/˛




Lp.Y /

� c krf kC1 k˛kLq.Y / k˛kLr .Y /

for all A 2A.Y / and ˛; ˇ 2�1.Y; g/.

(vi) For every p 2 Œ1;1� there is a uniform constant c such that

(133)


rA.Xf .A//




Lp � c

�
1Ckrf kC1

��
1CkFAkLp

�
for every A 2A.Y /.

Remark D.2 Consider a connection „Dˆ dsCA2A.I�Y / for a compact interval
I , given by AW I ! A.Y / and ˆW I ! �0.Y; g/. Proposition D.1 extends to the
perturbation Xf .„/ WD Xf ıA 2 �2.I � Y; g/ – except for (ii), and in (i) we need
to assume kp > 4. In particular, for every k � 1 and p > 2, Xf maps bounded sets
in Ak;p.I �Y / to bounded sets in W k;p.I �Y; ƒ2TY ˝ g/. In the case k D 1 and
kp � 4 this follows from Proposition D.1 (iii).

The proof requires some preparation. We begin by considering connections on the circle.
The canonical 1–form d� 2�1.S1/ allows us to identify the space A.S1/D�1.S1; g/

of G–connections on S1 with the space �0.S1; g/ of Lie algebra valued functions.
The holonomy of a connection A D �d� 2 A.S1/ with �W S1! g is the solution
gW R! G of the differential equation

(134) @�gC �g D 0; g.0/D 1l:

The solutions give rise to a map holW R��0.S1; g/! G which assigns to each pair
.�; �/ 2R��0.S1; g/ the value hol.� I �/ WD g.�/ of the unique solution of (134) at
� . The gauge invariance of the holonomy takes the form

hol.� Iu�1@�uCu�1�u/D u.�/�1hol.� I �/u.0/

for uW S1 ! G. One can think of hol as a map from �0.S1; g/ to C1.Œ0; 1�;G/
defined by hol.�/.�/ WD hol.� I �/. The holonomy then induces a map between Sobolev
completions, for every integer k � 0 and every p � 1,

(135) holW W k;p.S1; g/!W kC1;p.Œ0; 1�;G/:

This map is continuously differentiable and its derivative at � 2W k;p.S1; g/ is the
bounded linear operator d hol.�/ WW k;p.S1; g/!W kC1;p.Œ0; 1�; hol.�/�TG/ given
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by

(136) .hol.�/�1d hol.�/y�/.�/D�
Z �

0

hol.t I �/�1
y�.t/hol.t I �/ dt

for y� 2W k;p.S1; g/. The formula (136) shows, by induction, that the map (135) is
smooth. The next lemma is a parametrized version of this observation.

Lemma D.3 Let � be a compact Riemannian manifold.

(i) For every integer k � 1 and every p > dim �, composition with the holonomy
induces smooth maps

HolW W k;p.S1
��; g/!W k;p.Œ0; 1���;G/;

Hol1W W k;p.S1
��; g/!W k;p.�;G/;

given by Hol.�/ WD g� with g�.�;x/ WD hol.�; �.�;x// and Hol1.�/.x/ WD g�.1;x/

for x 2� and � 2 Œ0; 1�. These map W k;p –bounded sets to W k;p –bounded sets.

(ii) For every integer k � 1 there is a constant c such that

kHol.�/kW k;p CkHol1.�/kW k;p � c

�
1C

X
j0C���CjsDk

s�0; j��1

k�kW j0;p k�kCj1 � � � k�kCjs

�

for every � 2 Ck.S1 ��; g/ and every p 2 Œ1;1�.

(iii) For every integer k � 0 and every p 2 Œ1;1� there is a uniform constant c such
that, for every � 2 C k.S1 ��; g/, the derivatives

Hol.�/�1dHol.�/W W k;p.S1
��; g/!W k;p.Œ0; 1���; g/;

Hol1.�/�1dHol1.�/W W k;p.S1
��; g/!W k;p.�; g/

are bounded linear operators with norms less than or equal to c .1Ck�kCk /k .

Proof Think of � as a map from � to W j ;p.S1; g/ and of Hol.�/ as a map from �

to W jC1;p.Œ0; 1�;G/. Then Hol.�/ is the composition

�
�
�!W j ;p.S1; g/

hol
�!W jC1;p.Œ0; 1�;G/:

Since holW W j ;p.S1; g/! W jC1;p.Œ0; 1�;G/ is smooth the composition induces a
smooth map

HolW W `;p.�;W j ;p.S1; g//!W `;p.�;W jC1;p.Œ0; 1�;G//
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for `p > dim � and any j ; hence it defines a smooth map from

W k;p.S1
��; g/D

k\
`D0

W `;p.�;W k�`;p.S1; g//

k\
`D1

W `;p.�;W k�`C1;p.Œ0; 1�;G//�W k;p.Œ0; 1���;G/to

for k � 1 and p > dim �. This proves (i) for Hol. To prove (i) for Hol1 , take `D k

and note that evaluation at � D 1 gives a smooth map from W k;p.�;W 1;p.Œ0; 1�;G//
to W k;p.�;G/. The boundedness of Hol and Hol1 is a consequence of (ii) and (iii).

To prove (ii) we differentiate the function g.�;x/D hol.�; �.�;x//:

g�1@�g D�g�1�g; .g�1@xg/.�;x/D�

Z �

0

g.t;x/�1@x�.t;x/g.t;x/ dt:

Hence there are constants c1; c2; c3; : : : such that

(137) kgkW k;p � ck

�
1C

X
j0C���CjsDk

s�0; j��1

k�kW j0;p kgkCj1 � � � kgkCjs

�

for every smooth function �W S1 ��! g, every integer k � 1, and every p 2 Œ1;1�.
For p D 1 assertion (ii) now follows by induction on k . Inserting the resulting
estimate into (137) proves (ii) for all p . For k D 0 assertion (iii) follows immediately
from (136) with c D 1. To prove (iii) for k � 1 differentiate Equation (136) with
respect to � and x and use (ii). This proves the lemma.

Proof of Proposition D.1 The map Xf;i W Ak;p.Y /!W k;p.S1 �D; g/ can be ex-
pressed as composition of three maps. The first is the product of the N maps

Ak;p.Y /!W k;p.S1
�D; g/ WA 7! �j WDA.@�
j /;

the second is given by composition with the holonomy

W k;p.S1
�D; g/!W k;p.Œ0; 1��D;G2/ W �j 7! .gj ; �j /;

where gj .�; z/ WD hol.�j .�; z//.�/ and �j .�; z/ WD hol.�j .�; z//.1/, and the third map
has the form

W k;p.Œ0; 1��D;G2N /!W k;p.S1
�D; g/ W .g1; �1; : : : ;gN ; �N / 7! �;

� WD girif .�1; : : : ; �N /g
�1
iwith
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(see Equation (131)). The first map is bounded linear (and hence smooth) for all k and
p because composition with a smooth embedding at the source and multiplication with
a smooth function define bounded linear maps between W k;p –spaces. The second map
is smooth and bounded for k � 1 and p > 2 by Lemma D.3. The third map is bounded
and C`�k because composition with a Ck –map at the target defines a continuous map
from W k;p to W k;p for all kp � dim.R�D/ (or kp � dim.R2 �D/ in the case of
Remark D.2). This proves (i). Assertion (ii) follows by straight forward calculations
and (iii) follows from (131) and Lemma D.3 (ii).

To prove (iv) we abbreviate Ai WD 

�
i Ai , ˛i WD 


�
i ˛i , and differentiate Equation (131)

to obtain

Hol.Ai/
�1
�
dXf;i.A/˛

�
Hol.Ai/

D
�
Hol.Ai/

�1Xf;i.A/Hol.Ai/;Hol.Ai/
�1dHol.Ai/˛i

�
�

NX
jD1

rjrif ..Hol1.A`//`D1;:::N /Hol1.Aj /
�1dHol1.Aj / j̨ :

The estimate now follows from Lemma D.3 and the uniform bounds in (iii).

To prove (v) we differentiate the last equation again and obtain the inequalityˇ̌
d2Xf .A/.˛; ˇ/

ˇ̌
�
ˇ̌
dXf .A/˛

ˇ̌ˇ̌
dHol.A/ˇ

ˇ̌
C
ˇ̌
dXf .A/ˇ

ˇ̌ˇ̌
dHol.A/˛

ˇ̌
CjXf .A/j

ˇ̌
dHol.A/˛

ˇ̌ˇ̌
dHol.A/ˇ

ˇ̌
CjXf .A/j

ˇ̌
d
�
Hol.A/�1dHol.A/˛

�
ˇ
ˇ̌

Cjr
2f j

ˇ̌
dHol1.A/˛

ˇ̌ˇ̌
dHol1.A/ˇ

ˇ̌
Cjr

2f j
ˇ̌
d
�
Hol1.A/�1dHol1.A/˛

�
ˇ
ˇ̌

d
�
Hol.A/�1dHol.A/˛

�
ˇ D

Z �

0

�
Hol.A/�1dHol.A/˛;Hol.A/�1dHol.A/ˇ

�
:with

A similar inequality holds for Hol1 . The first estimate in (v) now follows from the Lq –
and Lr –bounds in (iv) and Lemma D.3 and the L1–bounds on Xf and r2f . The
second estimate in (v) follows from the first and

Xf .AC˛/�Xf .A/� dXf .A/˛ D

Z 1

0

Z �

0

d2Xf .AC t˛/.˛; ˛/ dt d�:

Assertion (vi) is a result of Froyshov [15]. The proof uses the formula

@tg.�; t/CA.@t
 .�; t//g.�; t/

D g.�; t/

�Z �

0

g.s; t/�1FA.@�
 .s; t/; @t
 .s; t//g.s; t/ ds

�
(138)
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for 
 W Œ0; 1�2! Y and gW Œ0; 1�2! G with

@�gCA.@�
 /g D 0; g.0; t/D 1l:

Namely, inserting a t –dependent parameter z D z.t/ into (131), abbreviating

g.�; t/ WD gi.�; z.t/IA/; 
i.�; t/ WD 
i.�; z.t//;

�.�; t/ WDXf;i.�; z.t//D�g.�; t/rif .z.t/; �.z.t/IA//g.�; t/
�1;

and differentiating � covariantly with respect to 
 �i A we find that r�� D 0 and

rt� D @t�C ŒA.@t
i/; ��

D
��
@tg g�1

CA.@t
i/
�
; �
�
�g�1

�
.@1rif /.z; �.zIA//@tz

�
g

� g�1

 
NX

jD1

.rjrif /.z; �.zIA//�j .zIA/
�1@t�j .zIA/

!
g:

Since the estimate (133) is gauge invariant and the 
j all coincide near 
j .0; z/ D

j .1; z/ we can assume that A.@t
j .1; z.t/// D 0 for all j and t . Then it follows
from (138) that

�j .z.t/IA/
�1@t�j .z.t/IA/D

Z 1

0

gj .s; t/
�1FA.@�
j .s; t/; @t
j .s; t//gj .s; t/ ds:

So the first and third term on the right hand side of (139) can be estimated by the
curvature of A, and the second term is uniformly bounded. This proves the proposition.

In the remainder of this section we give a proof of the basic compactness result for
solutions „ 2A.R�Y / of the perturbed anti-self-duality equation

(139)
�
F„CXf .„/

�C
D 0

with bounded energy

Ef .„/D
1
2

Z
R�Y

ˇ̌
F„CXf .„/

ˇ̌2
:

A similar proof for somewhat different perturbations can be found in [19].

Theorem D.4 There exists a universal constant „ > 0 such that the following holds
for every perturbation Xf , every real number E > 0, and every p > 1.

Let „� 2A.R�Y / be a sequence of solutions of (139) with bounded energy

sup
�

Ef .„�/�E:
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Then there exists a subsequence (again denoted .„�/) and a finite set of bubbling points
S D fx1; : : : ;xN g �R� int.Y / with

lim inf
�!1

1

2

Z
Bı.xj /

ˇ̌
F„� CXf .„�/

ˇ̌2
� „ 8ı > 0;xj 2 S:

Moreover, there is a sequence of gauge transformations u� 2 G..R� int.Y // nS/ and
a limit connection „1 2 A.R � int.Y // such that u��„� converges to „1 in the
W 1;p –norm on every compact subset of R�int.Y / nS . The limit „1 solves (139)
and has energy

Ef .„1/ � lim sup
�!1

Ef .„�/�N „:

Remark D.5 If S � .T�;TC/ � Y in Theorem D.4, then the convergence can be
improved to the C1–topology on every compact subset of .�1;T��� int.Y / and
ŒTC;1/ � int.Y / (in particular on R � int.Y / if S D ∅/. This follows from the
standard bootstrapping techniques (eg [11], [34]) and Remark D.2. The crucial point
is that a W k;p –bound on u��„� implies a W k;p –bound on Xf .u

��„�/ and thus on
FCu��„� . The appropriate gauge transformations can be interpolated to the ones over
.T�;TC/� int.Y /.

Proof of Theorem D.4 Without loss of generality we prove the theorem for a fixed
constant p > 4. We follow the line of argument in [11, 4.4.4]. Let "U h > 0 and
CU h be the (universal) constants in Uhlenbeck’s gauge fixing theorem [32] (see also
Wehrheim [34, Theorem B]). Then for each x 2R�Y , each sufficiently small constant
ı > 0 with Bı.x/�R�Y , and each connection „ 2A.R�Y / with energyZ

Bı.x/

jF„j
2
� "U h

on the geodesic ball Bı.x/ there is a gauge transformation u 2 G.R�Y / such that

u�„




L4.Bı.x//
C


u�„




W 1;2.Bı.x//

� CU h kF„kL2.Bı.x//
:

Step 1 For every " > 0 there is a finite set of bubbling points S" �R� int.Y / and a
subsequence, still denoted by „� , such that the following holds.

(a) If x 2 .R� int.Y // nS" then there is a ı > 0 with sup�
R

Bı.x/

ˇ̌
F„�

ˇ̌2
� ":

(b) If x 2 S" then infı>0 lim inf�!1
R

Bı.x/

ˇ̌
F„�

ˇ̌2
� "=2:

Let S" be the set of points x 2 R� int.Y / that satisfy the inequality in (b). Since
Xf .„�/ is uniformly bounded we have

inf
ı>0

lim inf
�!1

Z
Bı.x/

ˇ̌
F„� CXf .„�/

ˇ̌2
D inf
ı>0

lim inf
�!1

Z
Bı.x/

ˇ̌
F„�

ˇ̌2
�
"

2

Geometry & Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 899

for every x 2 S" and hence the energy bound guarantees that S" contains at most
4E=" elements. If each point in .R� int.Y //nS" satisfies (a) we are done. Otherwise
there is a point x 2 .R� int.Y // nS" with

inf
ı>0

sup
�

Z
Bı.x/

ˇ̌
F„�

ˇ̌2
� ":

In this case we can choose a subsequence (still denoted by „� ) such thatZ
B1=�.x/

ˇ̌
F„�

ˇ̌2
�
"

2

for all � . After passing to this subsequence we obtain a new strictly larger set S" .
Continue by induction. The induction terminates when each point x 2 .R� int.Y //nS"
satisfies (a). It must terminate because in each step the set S" contains at most 4E="

points.

Step 2 We denote q WD 4p=.p C 4/ 2 .2; 4/. If " > 0 is sufficiently small and
S D S" is as in Step 1, then there exists a subsequence, still denoted by „� , and a
sequence of gauge transformations u� 2 G..R�Y / nS/ such that u��„� converges
to „1 2A1;q

loc ..R� int.Y // nS/ in the W 1;q –norm on every compact subset of .R�
int.Y // nS .

There are universal constants C0 � 1 and C1 � 1 such that

(140) kr˛kL2 � C0

�

dC˛




L2 C


d�˛




L2

�
; k˛kL4 � C1 kr˛kL2

for ˛ 2�1.B1.0// supported in the interior of the Euclidean unit ball. These in-
equalities are scale invariant, and for ı > 0 sufficiently small the metric in geodesic
coordinates on Bı.x/ is C1 –close up to a conformal factor to the Euclidean metric on
B1.0/. Hence the estimates (140) continue to hold with the same constants C0 and C1

for every compactly supported 1–form on a geodesic ball Bı.x/�R�Y , provided
that ı > 0 is sufficiently small.

Now fix 0 < " � .4C0C1CU h/
�1 and choose a finite set S D S" � R� int.Y / and

a subsequence (still denoted by „� ) as in Step 1. Since " � "U h it follows from
Uhlenbeck’s gauge that, for every x 2 .R� int.Y // nS , there is a radius ı > 0 and a
gauge transformation u�;x 2 G.Bı.x// such that

(141)


u��;x„�




W 1;2.Bı.x//

� CU h"; d�.u��;x„�/D 0:

By a global patching argument as in [11, Lemma 4.4.5] or [34, Proposition 7.6],
it suffices to construct gauge transformations, limit connections, and establish the
convergence on every compact deformation retract K � .R � int.Y // n S . We fix
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K and find a covering by finitely many of the Uhlenbeck gauge neighbourhoods
Bıi

.xi/. On each of these u��;xi
„� satisfies (141). Now we fix a smooth cutoff

function hW Bıi
.xi/! Œ0; 1� that vanishes near the boundary. Then

1
2



h �u��;xi
„�




W 2;2

� C0khrdC.u��;xi
„�/kL2 CCku��;xi

„�kW 1;2

� C0



hr
�
u�1
�;xi

Xf .„�/
Cu�;xi

�
1
2
Œu��;xi

„� ^u��;xi
„� �
C
�



L2 CC


u��;xi

„�




W 1;2

� C0



u��;xi
„�




L4



r�h �u��;xi
„�
�



L4 CC


u��;xi

„�


2

L4 CC


u��;xi

„�




W 1;2

CC0

�


u�1
�;xi

�
r„�Xf .„�/

�
u�;xi





L2
C


u��;xi

„�




L2



Xf .„�/




L1

�
� C0C1CU h"



h �u��;xi
„�




W 2;2 CC C 2
U h"

2
CC CU h"

CC0

�


u�1
�;xi

�
r„�Xf .„�/

�
u�;xi





L2
CCU h"



Xf .„�/




L1

�
:

Here all norms are in Bıi
.xi/ and C denotes a constant that only depends on h and the

radius ıi . In the first step we have used (140) with ˛ D @i.h �u
�
�;xi

„�/, i D 1; : : : ; 4,
and (141). In the last step we have used (141) and the inequality

r.h �u��;xi

„�/




L4 � C1



h �u��;xi
„�




W 2;2

of (140). Since C0C1CU h"� 1=4 and

r„�Xf .„�/




L2.Bıi .xi //
� C

�
1C



F„�




L2.I�Y /

�
for an interval I � R with Bıi

.xi/ � I � Y we obtain a W 2;2 –bound on u��;xi
„�

over a slightly smaller ball in Bıi
.xi/ where h� 1.

By Uhlenbeck’s patching procedure [32] (see also Wehrheim [34, Chapter 7]) the gauge
transformations u�;xi

can then be interpolated to find u� 2 G.K/ such that u��„� is
bounded in W 2;2.K/. The compact Sobolev embedding W 2;2.K/ ,!W 1;q.K/ for
q < 4 then provides a W 1;q –convergent subsequence u��„�!„1 2A1;q.K/.

Step 3 We prove the theorem with „ D "=4 where " is as in Step 2. In particular,
we remove the singularities to find z„1 2A.R� int.Y //, a subsequence, and gauge
transformations zu� 2 G..R� int.Y // nS/ such that zu��„�! z„1 in the W 1;p –norm
on every compact subset of .R� int.Y // nS .

Step 2 gives u��„� ! „1 2 A1;q
loc ..R� int.Y // nS/ with q > 2. This implies L2 –

convergence of the curvature on every compact subset of .R� int.Y // nS , and hence
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with the exhausting sequence Kı WD .Œ�ı
�1; ı�1��Y / nBı.S [R� @Y /Z

R�Y

jF„1 j
2
D lim

ı!0

Z
Kı

jF„1 j
2
D lim

ı!0
lim
�!1

Z
Kı

jF„� j
2
� E:

Next we consider small annuli around the singularities and denote their union, for
k 2N sufficiently large, by

Ak WD B21�k .S/ nB2�k .S/:

Then
R
Ak
jF„1 j

2! 0 as k!1 since the above limit exists. For sufficiently large
k we can now patch Uhlenbeck gauges to obtain a gauge transformation uk 2 G.Ak/

such that ku�
k
„1kL4.Ak/

� CkF„1kL2.Ak/
! 0. The patching procedure does not

introduce k –dependent constants or a flat connection since the inequality is scale
invariant and each annulus can be covered by two balls whose intersection is connected
and simply connected (see [11, 4.4.10]).

We extend uk to .R�Y / nS and denote

„0k WD .u�k
uk/
�„�k

:

Here we pick a subsequence �k !1 such that

Fu��k
„�k



2

L2.Ak0
/
� 2



F„1


2

L2.Ak0
/

for all k � k0 sufficiently large, and

lim
k!1

sup
`�k



u��`„�` �„1




L4.Ak/
D 0:

In particular, we have k„0
k
kL4.Ak/

! 0 as k !1. Now consider the sequence of
extended connections

z„k WD hk �„
0
k 2A.R�Y /;

where hk W R�Y ! Œ0; 1� is a cutoff function that vanishes on B2�k .S/, varies smoothly
on Ak with jdhk j � 2kC1 , and equals to 1 on the complement of B21�k .S/. The
curvature of the extended connections is

Fz„k
D hk �F„0

k
C

1
2
.h2

k � hk/Œ„
0
k ^„

0
k �C dhk ^„

0
k :
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So for ı D 2�` , and k � `C 1 we haveZ
Bı.S/

jFz„k
j
2

� 2

Z
Bı.S/nB21�k .S/

jF„1 j
2
C

Z
Ak

�
h2

k jF„0k
j
2
Cjh2

k � hk j
2
j„0k j

4
Cjdhk j

2
� j„0k j

2
�

� 2

Z
Bı.S/nB2�k .S/

jF„1 j
2
Ck„0kk

4
L4.Ak/

C 22kC2Vol.Ak/
1
2 k„0kk

2
L4.Ak/

:

The right hand side converges to

2

Z
Bı.S/

jF„1 j
2

as k!1, so for sufficiently small ı D 2�` we have locally small energy

sup
k

Z
Bı.x/

jFz„k
j
2
� "

at every x 2 R � int.Y / for the subsequence .z„k/k�` . (For x … S this is true by
Step 1.)

Now we can find an Uhlenbeck gauge vk 2 G.Bı.S// such that

(142) d�.v�k z„k/D 0;


v�k z„k




W 1;2.Bı.S//

� CU h":

The W 1;2 –bound allows us to choose a W 1;2 –weakly convergent subsequence

v�k
z„k !

z„1 2A1;2.Bı.S//:

On the other hand, for every closed ball D � Bı.S/ nS and every sufficiently large
k (such that hk jD � 1) the same estimate as in Step 2 provides W 2;2 –bounds on
v�

k
z„k jD and thus W 1;q –convergence v�

k
z„k !

z„1 2 A1;q
loc .Bı.S/ n S/ on every

compact subset.

We can extend the gauge transformations vk 2 G.Bı.S// by Uhlenbeck’s patching
procedure to a compact deformation retract S �K � R� int.Y / (which is covered
by Bı.S/ and finitely many balls in .R � int.Y // n S on which we also have an
Uhlenbeck gauge and hence W 2;2 –bounds), and to R�int.Y / by the general extension
procedure [34, Proposition 7.6]. This provides a subsequence and gauge transformations
vk 2 G.R� int.Y // such that the v�

k
z„k converge in the W 1;q –norm on every compact

subset of .R� int.Y // n S to a limit connection z„1 2 A1;q
loc ..R� int.Y // n S/. In

particular, this means that

zu��k
„�k
! z„1; zu�k

WD u�k
ukvk 2 G..R� int.Y // nS/;
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because z„k D .u�k
uk/
�„�k

on compact subsets of .R � int.Y // n S . Moreover,
the limit connection extends to S such that v�

k
z„k !

z„1 2A1;2.Bı.S// converges
W 1;2 –weakly and L4 –weakly.

Since z„1 is of class W 1;2 , the perturbation Xf .z„1/ 2L1.R�Y / is well defined,
and we claim that

(143) Xf .v
�
k
z„k/!Xf .z„1/; zu�1

�k
Xf .„�k

/zu�k
!Xf .z„1/

in the Lp –norm on every compact subset of R�Y . If S does not intersect the support
supp Xf WD

SN
iD1 R� im 
i of the perturbation then z„1jsupp Xf is the W

1;q
loc –limit

of v�
k
z„k jsupp Xf D v

�
k
„0

k
jsupp Xf D zu

�
�k
„�k
jsupp Xf and the claim follows directly from

Remark D.2 and the Sobolev embedding W 1;q ,!Lp on compact subsets of R�Y .
If S does intersect the set supp Xf at some points .sj ; 
ij .�j ; zj //jD1;:::;n � S , then
we have

Xf .v
�
k
z„k/D v

�1
k Xf .hk„

0
k/vk D v

�1
k Xf .„

0
k/vk D zu

�1
�k

Xf .„�k
/zu�k

only on the complement of a solid cylinder neighbourhood (denoted by Zk ) of the
loops .sj ; 
ij .S

1; zj // � R� Y . More precisely, Zk � R� int.Y / is given by the
union of all loops .s; 
i.S

1; z// that intersect the support of 1�hk . It thus is a union
of solid cylinders whose width is of order 21�k . If we fix the cylinder neighbourhood
Zk0

, then the previous argument still applies for k � k0 to give Lp –convergence
on the complement of Zk0

. The remaining Zk0
has volume of order 23�3k0 , and

the perturbations Xf .z„1/, Xf .v
�
k
z„k/, and Xf .„�k

/ are all uniformly bounded by
Proposition D.1 (iii) (with kD0). So we see that kXf .v�k

z„k/�Xf .z„1/kLp.Zk0
/ and

kzu�1
�k

Xf .„�k
/zu�k
�Xf .z„1/kLp.Zk0

/ also converge to zero as we let k � k0!1.
This proves (143).

A first consequence is that the limit connection satisfies

(144)
�
Fz„1 CXf .z„1/

�C
D 0

because this is the local weak L2 –limit of
�
Fv�

k
z„k
CXf .v

�
k
z„k/

�C and

�Fv�
k
z„k
CXf .v

�
k
z„k/

�C


L2.R�Y /

D


�Fhk„

0
k
CXf .hk„

0
k/
�C
� .u�k

uk/
�1
�
F„�k

CXf .„�k
/
�C
.u�k

uk/




L2.R�Y /

�


Fhk„

0
k
�F„0

k




L2.Ak/

C


Xf .hk„

0
k/� .u�k

uk/
�1Xf .„�k

/.u�k
uk/




L2.Zk/

;

which converges to zero by similar estimates as before. Another consequence is the
energy identity: We have

Fv�
k
z„k
CXf .v

�
k
z„k/! Fz„1 CXf .z„1/
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in the L2 –norm on every compact subset of .R� int.Y // nS . So, exhausting R�Y

with
Kı WD

�
Œ�ı�1; ı�1��Y

�
nBı.S [R� @Y /;

we have

Ef .z„1/

D lim
ı!0

1

2

Z
Kı

ˇ̌
Fz„1 CXf .z„1/

ˇ̌2
D lim

ı!0
lim

k!1

1

2

Z
Kı

ˇ̌
Fz„k
CXf .z„k/

ˇ̌2
� lim
ı!0

lim
k!1

1

2

�Z
Kı

ˇ̌
F„�k

CXf .„�k
/
ˇ̌2
C

Z
Kı

ˇ̌
Fhk„

0
k
�F„0

k

ˇ̌2
C

Z
Kı

ˇ̌
Xf .hk„

0
k/� .u�k

uk/
�1Xf .„�k

/.u�k
uk/

ˇ̌2�
D lim
ı!0

lim
k!1

1

2

�Z
Œ�ı�1;ı�1��Y

ˇ̌
F„�k

CXf .„�k
/
ˇ̌2
�

Z
Bı.S/

ˇ̌
F„�k

CXf .„�k
/
ˇ̌2�

� lim sup
�!1

Ef .„�/�N „:

Here „ WD "=4 with " > 0 as in Step 2.

It follows from (142) and (144) that

d� z„1 D 0;


z„1

L4.Bı.S//

� CU h"; FCz„1 2L1.R�Y /:

This implies z„12A1;3.Bı=2.S// by a standard argument as in [11, Proposition 4.4.13],
using the estimate

A




W 1;3 � C

�

d�A




L3 C


FCA




L3 C



A




L4



A




W 1;3

�
for compactly supported A 2 A.Bı.S//. Hence we have z„1 2 A1;3

loc .R� int.Y //.
Now the standard regularity theory for anti-self-dual connections (eg [34, Chapter 9])
together with Remark D.2, for control of the perturbation, provides another gauge
transformation that makes z„1 smooth and does not affect the convergence.

It remains to strengthen the convergence

zu��k
„�k ! z„1

on .R� int.Y //nS to the W
1;p

loc –topology. Again, it suffices to construct the required
subsequence and gauge transformations on a compact deformation retract K � .R�
int.Y // nS . We pick a compact submanifold

M � .R� int.Y // nS
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such that K � int.M / and apply the local slice theorem (eg [34, Theorem 8.1]) to find
gauge transformations u�k

2 G.M / such that

d�z„1.u
�
�k
„�k
� z„1/D 0; lim

k!1



u��k
„�k
� z„1




W 1;q.M /

D 0:

Since zu��k
„�k
jM has the same W 1;q –limit, the gauge transformations zu�1

�k
u�k
2G.M /

converge, for a further subsequence, in the weak W 2;q.M /–topology to an element
u1 of the isotropy subgroup of z„1 . We can make sure that this limit is in fact 1l, by
modifying u�k

to u�k
u�1
1 in the local slice gauge. With this we have

lim
k!1



u��k
„�k
� z„1




Lp.M /

D 0; lim
k!1



d�.u��k
„�k
� z„1/




Lp.M /

D 0;

so we can use the elliptic estimate for dC˚ d� on M . For that purpose fix a cutoff
function hW M ! Œ0; 1� with hjK � 1 and h� 0 near @M . Then



dC
�
h.u��k

„�k
� z„1/

�


p

� Ch



u��k
„�k
� z„1




p
C


Xf .z„1/�u�1

�k
Xf .„�k

/u�k




p

C


hŒz„1 ^ z„1�

C
� hŒu��k

„�k
^u��k

„�k
�C




p
:

Here the constant Ch WD krhk1 is finite, so the first term converges to zero as
k!1 . The second term also converges to zero due to (143) and the C0 –convergence
zu�1
�k

u�k
! 1l. Finally, the third term can be bounded by the constant�

2kz„1kL1 CCSkh.u
�
�k
„�k
� z„1/kW 1;p

�
ku��k

„�k
� z„1kLp

with a constant CS from the Sobolev embedding W 1;p.M / ,!C0.M /. Now apply the
elliptic estimate for dC˚d� to the compactly supported 1–form �k WDh.u��k

„�k
�z„1/

to obtain

k�kkW 1;p �C
�
1Ck�kkW 1;p

�

u��k
„�k
� z„1




p
CC



Xf .z„1/�u�1
�k

Xf .„�k
/u�k




p

with a finite constant C . Since ku��k
„�k
� z„1kLp.M /! 0 this can be rearranged to

prove that 

u��k
„�k
� z„1




W 1;p.K /

� k�kkW 1;p.M /! 0:

This finishes the proof of Step 3 and the theorem.
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Appendix E The Lagrangian and its tangent bundle

For any compact manifold X , any integer k � 0, and any p > 1 we denote the space
of W k;p –connections by

Ak;p.X / WDW k;p.X;T�X ˝ g/:

If .kC 1/p > dim X then the gauge group

GkC1;p.X / WDW kC1;p.X;G/

acts smoothly on Ak;p.X /. For p D1 we denote by Ak;1.X / the space of Ck –
connections; similarly for Gk;1.X /.

Let Y be a compact oriented Riemannian 3–manifold with boundary @Y D † and
L�A.†/ be a gauge invariant Lagrangian submanifold (in the sense of (L1) of the
introduction) such that L=Gz.†/ is compact. For .k C 1/p > 2 the W k;p –closure
of L is a Banach submanifold of Ak;p.†/, which we denote by Lk;p . (This follows
from the Sobolev embedding W k;p.†/ ,!Lq.†/ with q> 2 and the fact that the Lq –
Banach submanifold coordinates in [33, Lemma 4.3] restrict to W k;p –coordinates.)
Again, we denote by Lk;1 the Ck –completion. Denote

Ak;p.Y;L/ WD fA 2Ak;p.Y /
ˇ̌
Aj@Y 2 L0;q

g:

This is a Banach submanifold of Ak;p.Y / for .kC 1/p > 3 since the restriction map
Ak;p.Y / ,! A0;q.†/ with q > 2 is smooth and transverse to L. Theorem E.4 will
provide a gauge equivariant exponential map for A1;p.Y;L/, from which we construct
an exponential map for A1;p.R�Y;LIB�;BC/ in Corollary E.5.

Moreover, consider the vector bundle E!A.Y;L/ with fibre

EA WD�
1
A.Y; g/D

˚
˛ 2�1.Y; g/

ˇ̌
�˛j@Y D 0; ˛j@Y 2 TAL

	
:

In Theorem E.2 below we construct local trivializations of E . In a preliminary step we
construct local trivializations of the tangent bundle of L. Note that these trivializations
extend to the fibrewise L2 –closure of the tangent bundle although it is not known
whether the L2 –closure of L is smooth.

Theorem E.1 For every A0 2 L there exists a neighbourhood U � L of A0 (open in
the C0 –topology) and a family of bijective linear operators

PAW �
1.†; g/!�1.†; g/;

parametrized by A 2 U , such that the following holds.
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(i) PA0
D 1l.

(ii) For every A 2 U and every ˛ 2�1.†; g/ we have

PA˛ 2 TAL () ˛ 2 TA0
L:

(iii) For every integer k � 0 and every p > 1 the operator PA extends to a Banach
space isomorphism from W k;p.†;T�†˝ g/ to itself; this extended operator
depends smoothly on A 2 Lk;1 with respect to the operator norm on PA .

(iv) For every integer k � 0, every p > 1, every � 2 Œ0; 1�, and every A 2 Uk;1

the operator �1lC .1 � �/PA extends to a Banach space isomorphism from
W k;p.†;T�†˝ g/ to itself. Here Uk;1 denotes the interior of the closure of
U in Lk;1 .

Proof Choose a 3–dimensional subspace E ��0.†; g/ such that the restriction of
dA0
W �0.†; g/!�1.†; g/ to E? (the L2 –orthogonal complement of E ) is injective.

Then there is a constant C such that k�kW 1;2 � CkdA0
�kL2 for all � 2 E? . This

estimate continues to hold for each A2L that is sufficiently close to A0 in the C0 –norm.
Hence there is a C0 –open neighbourhood U �L of A0 such that dAW E

?!�1.†; g/

is injective for every A 2 U . Define

H 1
A;E WD

n
˛ 2�1.†; g/

ˇ̌
� dA˛ 2E; d�A˛ 2E

o
:

Then, for every A 2 U , there is a generalized Hodge decomposition

(145) �1.†; g/DH 1
A;E ˚ dA.E

?/˚�dA.E
?/:

The three summands in (145) are orthogonal to each other and the generalized Hodge
decomposition extends to each Sobolev completion Ak;p.†/ in the usual fashion. This
uses the fact that the operator

�A;E WD d�AdA W�
0.†; g/�E?!�0.†; g/=E

extends to an isomorphism from W kC2;p to W k;p (with p > 1) for every A 2 U .
(The operators �A;E are all injective and compact perturbations of the isomorphism
�A0;E .) The standard Hodge decomposition corresponds to the case E D ker dA .
The reason for our construction with E independent of A is the need for a Hodge
decomposition which depends smoothly on A.

The Lagrangian submanifold L gives rise to another L2 –orthogonal decomposition,
�1.†; g/DTAL˚�TAL, see [33, Lemma 4.2]. Since dA.E

?/�TAL and �dA.E
?/

is perpendicular to TAL it follows from (145) that we have TAL D ƒA˚ dA.E
?/,

where
ƒA WDH 1

A;E \TAL
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is a Lagrangian subspace of H 1
A;E

. Hence there is a refined Hodge decomposition

(146) �1.†; g/DƒA˚�ƒA˚ dA.E
?/˚�dA.E

?/:

For A 2 U we define a bijective linear operator PAW �
1.†; g/!�1.†; g/ by

PA.˛0C�ˇ0C dA0
�C�dA0

�/ WD…A˛0C�…Aˇ0C dA�C�dA�

for ˛0; ˇ0 2ƒA0
and �; � 2E? ��0.†; g/, where

…AW �
1.†; g/!ƒA

denotes the L2 –orthogonal projection. (Shrink U , if necessary, so that the restriction
of …A to ƒA0

is a vector space isomorphism for every A 2 U .) Note that PA0
D Id

and PA˛ 2 TAL iff ˛ 2 TA0
L. We claim that each operator PA extends to a Banach

space automorphism of TAAk;p.†/DW k;p.†;T�†˝ g/ for all k and p , and this
automorphism depends smoothly on A 2 Lk;1 . To prove this we write PA as the
composition of three linear operators. The first is the Banach space isomorphism

W k;p.†;T�†˝ g/!ƒA0
�ƒA0

�W
kC1;p

E
.†; g/�W

kC1;p
E

.†; g/

induced by the Hodge decomposition for A0 . Here W
kC1;p

E
.†; g/ denotes the L2 –

orthogonal complement of E in W kC1;p.†; g/. The second operator is the restriction
of …A on the factors ƒA0

and is the identity on the factors W
kC1;p

E
.†; g/. We think

of the target space of this second operator as the product

W k;p.†;T�†˝ g/�W k;p.†;T�†˝ g/�W
kC1;p

E
.†; g/�W

kC1;p
E

.†; g/:

The third operator maps this product to W k;p.†;T�†˝ g/ via

.˛; ˇ; �; �/ 7! ˛C�ˇC dA�C�dA�:

The first operator is independent of A and the third depends smoothly on A 2 Lk;1 .
By the Hodge decomposition for A it restricts to an isomorphism from ƒA �ƒA �

W
kC1;p

E
.†; g/�W

kC1;p
E

.†; g/ to W k;p.†;T�†˝ g/. It remains to prove that the
map

Uk;1
! Hom.ƒA0

;W k;p.†;T�†˝ g// WA 7!…A

is smooth. To see this we write …A as the composition of two projections

…A D…H 1
A;E
ı…TALjƒA0

:

Here …H 1
A;E
W W k;p.†;T�†˝g/!W k;p.†;T�†˝g/ denotes the L2 –orthogonal

projection onto H 1
A;E

given by

…H 1
A;E

˛ WD ˛� dA�
�1
A;E.d

�
A˛/C�dA�

�1
A;E.�dA˛/:
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It depends smoothly on A 2 Lk;1\U since the same holds for the operator

�A;E W W
kC1;p

E
.†; g/!W k�1;p.†; g/=E

and its inverse. The operator

…TALW W
k;p.†;T�†˝ g/!W k;p.†;T�†˝ g/

denotes the L2 –orthogonal projection onto TALk;p . For .kC 1/p > 2 we know that
Lk;p �Ak;p.†/ is a Banach submanifold, so …TAL depends smoothly on A 2 Lk;p ,
and this proves that …A depends smoothly on A 2 Lk;1 . In the case .kC 1/p � 2,
ie k D 0, p � 2, we have A0;3.†/�Ak;p.†/. The Lp – and the L3 –norm are
equivalent on the finite dimensional space ƒA0

��1.†; g/. Hence …A is the com-
position of the projection …TAL WL

3.†;T�†˝G/!L3.†;T�†˝G/, restricted
to ƒA0

, the inclusion L3.†;T�† ˝ G/ ,! Lp.†;T�† ˝ G/, and the projection
…H 1

A;E
W Lp.†;T�†˝ G/ ! Lp.†;T�†˝ G/. All of these depend smoothly on

A 2 L0;1 .

To prove (iv) shrink U such that k1l�PAkL.L2/ � 1=2 for all A 2 U . Then �1lC
.1��/PA is invertible on L2 for every � 2 Œ0; 1� and every A 2 U0;1 . Invertibility
on W k;p for A 2 Uk;1 now follows from elliptic regularity for the Laplace operator.
This proves the theorem.

Theorem E.2 For every A0 2A.Y;L/ there is a neighbourhood U �A.Y;L/ of A0

(open in the C0 –topology) and a family of bijective linear operators

QAW �
1.Y; g/!�1.Y; g/;

parametrized by A 2 U , such that the following holds.

(i) QA0
D 1l.

(ii) For every A 2 U and every ˛ 2�1.Y; g/ we have

QA˛ 2�
1
A.Y; g/ () ˛ 2�1

A0
.Y; g/:

Moreover, �.QA˛/j@Y D �˛j@Y and .QA˛/j@Y D 0 iff ˛j@Y D 0.

(iii) For every integer k � 0 and every p > 1 the operator QA extends to a Banach
space isomorphism from W k;p.Y;T�Y ˝ g/ to itself; this extended operator
depends smoothly on A 2Ak;1.Y;L/ with respect to the operator norm on QA .

Proof Choose geodesic normal coordinates to identify a neighbourhood of @Y with
the product .�"; 0��† via an orientation preserving embedding

�W .�"; 0��†! Y:
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For a connection A 2 A.Y;L/ and a 1–form ˛ 2 �1.Y; g/ we write the pullbacks
under � in the form

(147) ��ADW B.t/C‰.t/ dt; ��˛ DW ˇ.t/C .t/ dt:

Then B.0/ D Aj† 2 L. Choose a neighbourhood U0 � L of B0 WD A0j† (open in
the C0 –topology) and an operator family PBW �

1.†; g/! �1.†; g/, parametrized
by B 2 U0 , which satisfies the requirements of Theorem E.1. Then we have PB0

D 1l.
Now

U WD
˚
A 2A.Y;L/

ˇ̌
Aj† 2 U0

	
is a C0 –open neighbourhood of A0 . For A 2 U we define the bijective linear operator
QAW �

1.Y; g/!�1.Y; g/ by

��.QA˛/ WD h.t/ˇ.t/C .1� h.t//PAj†ˇ.t/C .t/ dt

for ��˛ of the form (147), and by QA˛ WD ˛ outside of the image of �. Here
hW .�"; 0� ! Œ0; 1� is a smooth cutoff function that vanishes near 0 and equals to
1 near �". The operator family fQAgA2U satisfies conditions (i)–(iii).

The construction of exponential maps will be based on the following.

Lemma E.3 Fix a constant p > 2. There is an open neighbourhood

U0;p
�Lp.†;T�†˝ g/

of zero and a smooth map

L0;p
�U0;p

!A0;p.†/ W .A; ˛/ 7!‚A.˛/

satisfying the following conditions:

(i) For every A 2 L0;p the map ‚AW U0;p!A0;p.†/ is a diffeomorphism from
U0;p onto an Lp –open neighbourhood of A in A0;p.†/ such that ‚A.0/DA

and D‚A.0/D Id. In particular, there is a uniform constant C such that

k‚A.˛/�‚A.˛
0/kLp � Ck˛�˛0kLp

kD‚A.˛/ˇ�D‚A.˛
0/ˇkLp � Ck˛�˛0kLpkˇkLp

for all A 2 L0;p , ˛ 2 U0;p , ˇ 2Lp.†;T�†˝ g/.

(ii) ‚ is gauge equivariant in the sense that for u 2 G1;p.†/

‚u�A.u
�1˛u/D u�‚A.˛/:
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(iii) For every A 2 L0;p

‚A.TAL0;p
\U0;p/D L0;p

\‚A.U0;p/:

(iv) For every integer k � 1 and every A 2 Lk;p the restriction of ‚A to the
intersection Uk;p WD U0;p \W k;p is a diffeomorphism onto its (open) image in
Ak;p.†/. It depends smoothly on A 2 Lk;p and satisfies

k‚A.˛/�‚A.˛
0/kW 1;p � C.1CkAkL1/k˛�˛

0
kW 1;p ;

kD‚A.˛/ˇ�D‚A.˛
0/ˇkW 1;p � C.1CkAkL1/k˛�˛

0
kW 1;pkˇkW 1;p

for all A 2 L1;p , ˛; ˛0 2 U1;p , and ˇ 2 W 1;p.†;T�†˝ g/ with a uniform
constant C .

(v) The restriction of ‚ to an open neighbourhood of the zero section in the subbun-
dle �TL0;p � L0;p � U0;p is a diffeomorphism onto an open neighbourhood
W0;p � A0;p.†/ of L0;p . The composition of its inverse with the projection
onto L0;p

� W W0;p
! L0;p

is gauge equivariant and maps Wk;p WDW0;p \W k;p to Lk;p for every k .

Proof Since L0;p=G1;p.†/ is compact it suffices to provide the construction for
smooth A 2 L. The smooth extension to L0;p is then provided by the equivariance
(ii). For every smooth connection A 2 L we have an L2 –orthogonal direct sum
decomposition from [33, Lemma 4.2],

(148) Lp.†;T�†˝ g/D TAL0;p
˚�TAL0;p:

Moreover, TAL0;p D LA˚ dAW 1;p.†; g/, where LA WD TAL0;p \ h1
A
��1.†; g/

is the intersection of TAL with the harmonic (and thus smooth) 1–forms

h1
A WD ker dA\ ker d�A ��

1.†; g/:

We denote the L2 –orthogonal projection in (148) by

�AW L
p.†;T�†˝ g/! TAL0;p:

It smoothly depends on A 2 L, is gauge equivariant �u�A.u
�1˛u/ D u�1�A.˛/u,

and satisfies d�A ı�A D d�A because im dA � TAL0;p . By standard Hodge theory, this
projection restricts to a bounded linear operator from the subspace W k;p.†;T�†˝g/

to TALk;p D LA˚ dAW kC1;p.†; g/ for every integer k � 1. For each A 2 L the
map

L0;p
! TAL0;p

W B 7! �A.B �A/
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is smooth and its differential at B DA is the identity. Hence it restricts to a diffeomor-
phism from an Lp –open neighbourhood of A onto an open set

V0;p
A
� TAL0;p:

We denote its inverse by
 AW V0;p

A
! L0;p:

It follows immediately from the definition that  is smooth and gauge equivariant in
the sense that

 u�A.u
�1˛u/D u� A.˛/

for all A2L, u2G.†/ and ˛ 2V0;p
A

. Its differential at 0 is the identity, D A.0/D Id,
hence on a small ball fk˛kLp � ıg � V0;p

A
, we can bound the Lp –operator norm

kD A.˛/k � 2, and thus obtain a linear estimate for all ˛; ˛0 2 V0;p
A

k A.˛/� A.˛
0/kLp �

Z 1

0

kD A.t˛C .1� t/˛0/kk˛�˛0kLp � 2k˛�˛0kLp :

Similarly, since D A is continuously differentiable, we obtain for all ˛; ˛0 in (the
possibly smaller) V0;p

A
and all ˇ 2 TAL0;p

kD A.˛/ˇ�D A.˛
0/ˇkLp � Ck˛�˛0kLpkˇkLp

with a uniform constant C . (In fact, C is also independent of A2L since the estimates
are gauge invariant and L=G.†/ is compact). In particular, we have

k A.˛/�AkLp � 2k˛kLp ; kD A.˛/ˇ�ˇkLp � Ck˛kLpkˇkLp :

Moreover,  A maps the intersection Vk;p
A
WD V0;p

A
\W k;p to W k;p –regular points

in Lk;p because F A.˛/ D 0 and

d�A. A.˛/�A/ D d�A
�
�A. A.˛/�A/

�
D d�A˛ 2 W k�1;p.†; g/:

In fact, we obtain an estimate for all A 2 L1;p , ˛; ˛0 2 V1;p
A

(denoting all uniform
constants by C )

k A.˛/� A.˛
0/kW 1;p

� C
�

d

�
 A.˛/� A.˛

0/
�



p
C


d�

�
 A.˛/� A.˛

0/
�



p
C


 A.˛/� A.˛

0/




p

�
� C

�
k A.˛/� A.˛

0/




p
Ck A.˛

0/�Akp
�
k A.˛/� A.˛

0/



1

CC


d�A.˛�˛

0/




p
CCkAk1k A.˛/� A.˛

0/kpCCk˛�˛0kp

� C.1CkAk1/k˛�˛
0
kW 1;p CC

�
k˛�˛0kpCk˛

0
kp

�
k A.˛/� A.˛

0/




W 1;p :
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If we choose V0;p
A

sufficiently small, then the second term can be absorbed into the
left hand side, which proves

k A.˛/� A.˛
0/kW 1;p �C.1CkAkL1/k˛�˛

0
kW 1;p 8A 2L1;p; ˛; ˛0 2 V1;p

A
:

Note that this estimate does not simply follow from smoothness of  A since V1;p
A

is not even bounded in the W 1;p –norm. Similarly, we obtain uniform estimates for
the linearization D A of  A using the identities d A.˛/.D A.˛/ˇ/D 0D dAˇ and
d�A.D A.˛/ˇ/D d�Aˇ ,

kD A.˛/ˇ�D A.˛
0/ˇkW 1;p

� C
�

d

�
D A.˛/ˇ�D A.˛

0/ˇ
�



p
C


d�

�
D A.˛/ˇ�D A.˛

0/ˇ
�



p

C


D A.˛/ˇ�D A.˛

0/ˇ




p

�
� C.1CkAk1/k.D A.˛/�D A.˛

0//ˇkpCk A.˛/� A.˛
0/k1kD A.˛/ˇkp

CCk A.˛
0/�Akp



D A.˛/ˇ�D A.˛
0/ˇ



1

� C.1CkAk1/k˛�˛
0
kpkˇkpCCk˛�˛0kW 1;p .1Ck˛0kp/kˇkp

CCk˛kLp



D A.˛/ˇ�D A.˛
0/ˇ




W 1;p :

For V0;p
A

sufficiently small, this can be rearranged to

kD A.˛/ˇ�D A.˛
0/ˇkW 1;p � C.1CkAkL1/k˛�˛

0
kW 1;pkˇkLp :

Now choose an open neighbourhood U0;p �Lp.†;T�†˝ g/ of 0 such that

�A.U0;p/� V0;p
A

for every A 2 L. Then the map ‚AW U0;p!A0;p.†/ defined by

‚A.˛/ WD  A.�A.˛//C˛��A.˛/

has the required properties. The estimates for ‚A follow from the linearity of �A

and the linear estimates for  A . To check (v) note that the differential of ‚j�TL0;p at
.A; 0/ is the isomorphism TAL0;p ��TAL0;p!Lp.†;T�†˝ g/, .�; ˇ/ 7! �Cˇ .
So the restriction of ‚ to �TL0;p is a local diffeomorphism near the zero section. To
see that it is globally injective we assume by contradiction that ‚Ai

.˛i/D‚Bi
.ˇi/ for

some Ai ;Bi 2 L0;p and some ˛i ; ˇi 2 �TAi
L0;p with k˛ikLp CkˇikLp ! 0. Since

‚ is equivariant and L0;p=G1;p.†/ is compact, we can assume w.l.o.g. Ai ! A1
and u�i Bi!

zB1 in the C1–topology for some ui 2 G1;p.†/. Then ‚Ai
.˛i/!A1

and u�i ‚Ai
.˛i/D‚u�

i
Bi
.u�1

i ˇiui/! zB1 , so we can find a convergent subsequence
ui ! u1 2 G.†/. Consequently Bi ! u�1 �

1
zB1 DA1 has the same limit as Ai , in

contradiction to the local injectivity of ‚j�TL0;p .
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Theorem E.4 Fix a constant p > 2 and a compact subset N � A1;p.Y;L/. Then
there is an open neighbourhood U � TA1;p.Y;L/ of the zero section over N and a
smooth map

U !A1;p.Y;L/ W .A; ˛/ 7!EA.˛/

satisfying the following conditions:

(i) For every A 2A1;p.Y;L/ the map EAW U \TAA1;p.Y;L/!A1;p.Y;L/ is a
diffeomorphism from a neighbourhood of 0 onto a neighbourhood of A such
that EA.0/DA and dEA.0/D Id.

(ii) E is gauge equivariant in the sense that for u 2 G1;p.Y /

Eu�A.u
�1˛u/D u�EA.˛/:

Proof Our construction will be based on the two maps from Lemma E.3,

‚W L0;p
�U0;p

!A0;p.†/; � W W0;p
! L0;p:

We start by fixing a tubular neighbourhood � W .�1; 0� � † ,! Y of the boundary
@Y Š f0g �† such that ��Ajftg�† 2W0;p for all A 2 N and t 2 .�1; 0�. This is
possible since ��N �W 1;p..�1; 0��†/� C0..�1; 0�;A0;p.†// is compact.

On the complement of the image of � we define EA.˛/ WDAC˛ . On the image of
� write ��AD B.t/C‰.t/ dt and ��˛ D ˇ.t/C .t/ dt , where ˇ.t/ 2 U0;p can be
ensured by the choice of neighbourhood U 3 ˛ of the zero section. With this we can
define ��EA.˛/ WD zBC .‰C / dt by

zB.t/ WD B.t/C �.t/
�
‚�.B.t//.ˇ.t//��.B.t//

�
C .1� �.t//ˇ.t/;

where �W .�1; 0�! Œ0; 1� is a smooth cutoff function satisfying � � 1 near 0 and
�� 0 near �1. The claimed properties of E now simply follow from the properties
of ‚ and � in Lemma E.3.

Corollary E.5 Let B�;BC 2 A.Y;L/ and „ D ACˆ ds 2 A.R� Y;LIB�;BC/.
Fix p > 2, then there is an open neighbourhood zU � T„A1;p.R�Y;LIB�;BC/ of
zero such that

zEW zU !A1;p.R�Y;LIB�;BC/; zE.˛C' ds/ WDEA.˛/C .ˆC'/ ds

defines a continuously differentiable homeomorphism onto a neighbourhood of „.

Proof Here we follow the construction of the exponential map of Theorem E.4
over the compact subset N WD fA.s/js 2 Rg [ fB�;BCg � A.Y;L/. We fix the
tubular neighbourhood � W .�1; 0� �† ,! Y of the boundary such that ��A.s/ D
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B.s; t/C ‰.s; t/ dt with B.s; t/ 2 W0;p.†/ for all .s; t/ 2 R � .�1; 0�. For ˛ C
' ds 2 T„A1;p.R�Y;LIB�;BC/ with k˛C' dskW 1;p.R�Y / sufficiently small the
Sobolev embedding W 1;p.R� .�1; 0��†/ ,! C0.R� .�1; 0�;Lp.†// ensures that
��˛ D ˇ.s; t/C .s; t/ dt with ˇ.s; t/ 2 U0;p for all .s; t/ 2R� .�1; 0�.

Thus we have zE.˛C' ds/DAC˛C.ˆC'/ ds on R�.Y nim �/ and �� zE.˛C' ds/D
zBC .‰C / dt C .ˆC'/ ds on R� .�1; 0��† with

zB.s; t/D B.s; t/C �.t/
�
‚�.B.s;t//.ˇ.s; t//��.B.s; t//

�
C .1� �.t//ˇ.s; t/:

That zE is a bijection to a neighbourhood of „ follows directly from Theorem E.4. For
a restriction to a compact subset of R�Y the smoothness of zE follows directly from
the smoothness of the 3–dimensional exponential map. To see that the 4–dimensional
exponential map also is continuously differentiable with respect to the W 1;p.R�Y /–
norm on the noncompact domain, it suffices to drop linear terms and the cutoff function �
and check that ˇ 7!‚�.B/.ˇ/��.B/ defines a C1 –map W 1;p.R�.�1; 0�;Lp.†//!

W 1;p.R�.�1; 0�;Lp.†// and also induces a C1 –map Lp.R�.�1; 0�;W 1;p.†//!

Lp.R � .�1; 0�;W 1;p.†//. This follows from the linear bounds for ‚ and � in
Lemma E.3, as follows. For all ˇ; ˇ0 2W 1;p.R� .�1; 0��†;T�†˝ g/ we have

‚�.B.s;t//.ˇ.s; t//�‚�.B.s;t//.ˇ0.s; t//

Lp.†/

� Ckˇ.s; t/�ˇ0.s; t/kLp.†/;

‚�.B.s;t//.ˇ.s; t//�‚�.B.s;t//.ˇ0.s; t//

W 1;p.†/
� Ckˇ.s; t/�ˇ0.s; t/kW 1;p.†/:

For the .s; t/–derivatives we use the smoothness of ‚ in the Lp –norm to obtain
uniform continuity for the derivative by A in the Lp –operator norm, ie kD1‚.A; ˛/�

D1‚.A; ˛
0/k � Ck˛ � ˛0kLp.†/ for all sufficiently small ˛; ˛0 2Lp.†;T�†˝g/.

Since kˇ.s; t/kLp.†/! 0 for s!˙1 this applies for all t 2 .�1; 0� and jsj suffi-
ciently large, so that

@s

�
‚�.B.s;t//.ˇ.s; t//�‚�.B.s;t//.ˇ

0.s; t//
�



Lp.†/

�


D‚�.B.s;t//.ˇ/.@sˇ.s; t/� @sˇ

0.s; t//




Lp.†/

C


�D1‚.�.B.s; t//; ˇ.s; t//�D1‚.�.B.s; t//; ˇ

0.s; t//
�
@s�.B.s; t//




Lp.†/

� C
�
k@sˇ.s; t/� @sˇ

0.s; t/kLp.†/Ckˇ.s; t/�ˇ
0.s; t/kLp.†/k@sB.s; t/kLp.†/

�
:

(The same holds for @t .: : :/.) Integrating these estimates over .s; t/ 2 .�1; 0� �R
proves W 1;p –continuity of zE.˛C' ds/. To check continuity of the differential we
use the analogous estimates for D‚, in particular we use uniform continuity for the
second derivatives of ‚ (which again hold for kˇ.s; t/kLp.†/ sufficiently small, ie jsj
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sufficiently large) to obtain

@s

�
D‚�.B.s;t//.ˇ.s; t//�D‚�.B.s;t//.ˇ

0.s; t//
�

 .s; t/




Lp.†/

�


�D‚�.B/.ˇ/�D‚�.B/.ˇ

0/
�
@s





Lp.†/

C


D2‚�.B/.ˇ/.@sˇ� @sˇ

0; 
 /




Lp.†/

C


�D1D2‚.�.B/; ˇ/�D1D2‚.�.B/; ˇ

0/
�
.@s�.B/; 
 /




Lp.†/

� C
�
kˇ�ˇ0kLp.†/k@s
kLp.†/Ck@sˇ� @sˇ

0
kLp.†/k
kLp.†/

Ckˇ�ˇ0kLp.†/k@sBkLp.†/k
kLp.†/

�
:

Integration then proves the continuity of D zE in W 1;p.R�Y /. (Strictly speaking, we
can only integrate the above estimate over the complement of a compact interval in R.
However, the same estimate holds on the compact part due to the smoothness of ‚.)

@s

�
D‚�.B/.ˇ/�D‚�.B/.ˇ

0/
�






Lp.R�.�1;0��†/

� Ckˇ�ˇ0kL1.R�.�1;0��†/k@s
kLp.R�.�1;0��†/

CCk@sˇ� @sˇ
0
kLp.R�.�1;0��†/k
kL1.R�.�1;0��†/

CCkˇ�ˇ0kL1.R�.�1;0��†/k@sBkLp.R�.�1;0��†/k
kL1.R�.�1;0��†/

� Ckˇ�ˇ0kW 1;p.R�.�1;0��†/

�
1Ck@sBkLp.R�.�1;0��†/

�
k
kW 1;p.R�.�1;0��†/:
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