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A symplectic manifold homeomorphic but not
diffeomorphic to CP2#3CP
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In this article we construct a minimal symplectic 4–manifold and prove it is homeo-
morphic but not diffeomorphic to CP2#3CP2:

57R17; 57M05, 54D05

1 Introduction

The main result of this article is the construction of a minimal symplectic 4–manifold
that is homeomorphic but not diffeomorphic to CP2#3CP2 .

The construction of manifolds homeomorphic but not diffeomorphic to CP2#kCP2 s
for k � 9 began with Donaldson’s seminal example [8] that the Dolgachev surface
E.1/2;3 is not diffeomorphic to CP2#9CP2 . In 1989, Dieter Kotschick [13] proved
that the Barlow surface is homeomorphic but not diffeomorphic to CP2#8CP2 . In 2004
Jongil Park [17] constructed the first exotic smooth structure on CP2#7CP2 . Since then
Park’s results have been expanded upon by Ozsváth and Szabó [16], Stipsicz and Szabó
[19], Fintushel and Stern [10] and J Park, Stipsicz and Szabó [18], producing infinite
families of smooth 4–manifolds homeomorphic but not diffeomorphic to CP2#kCP2

for k D 5; 6; 7; 8. The k D 5 examples are not symplectic.

Akhmedov [1] describes a construction of a symplectic 4–manifold homeomorphic to
but not diffeomorphic to CP2#5CP2 . Our approach is indebted to his idea of using
the symplectic sum construction along genus 2 surfaces to kill fundamental groups in
an efficient way. Earlier approaches start with a simply connected manifold and kill
generators of the second homology using the rational blowdown approach. Akhmedov
and D Park announce a similar result to our main theorem in [2].

Using Luttinger surgery in addition to symplectic sums expands the palette of available
symplectic constructions, and combined with Usher’s theorem [22], verifying that
a construction yields a minimal symplectic manifold is straightforward. This is the
approach taken in investigating small symplectic manifolds in our previous article [5],

Published: 12 May 2008 DOI: 10.2140/gt.2008.12.919



920 Scott Baldridge and Paul Kirk

which among other things contains examples of symplectic manifolds homeomorphic
but not diffeomorphic to CP2#5CP2 .

Many of our constructions have their origin in Fintushel and Stern [9], where symplectic
sums of products of surfaces and surgery along nullhomologous tori are used to construct
symplectic and nonsymplectic manifolds which are homeomorphic and in some cases
not diffeomorphic.

Our experience, gleaned while working on [7; 5; 6], taught us that there are serious
technical issues arising from working with fundamental groups and cut and paste
constructions, which can easily lead to plausible but unverified or even incorrect
calculations. As usual, base point issues are the culprit. Thus in writing the present
article we take great care in performing fundamental group calculations. This is reflected
in the length of the proof of Theorem 2, whose statement is perhaps not surprising in
hindsight, but critical for what follows. At every stage of our constructions we must
keep track not just of homotopy classes, but representative loops. We encourage the
interested reader to start with the proof of our main result, Theorem 7, and to save the
proof of Theorem 2 for last.

To summarize our construction, our example is the symplectic sum of two manifolds
along genus 2 surfaces. The first manifold W is obtained from Luttinger surgery on a
pair of Lagrangian tori in T 4#2CP2 . The second manifold P is obtained by Luttinger
surgery on four Lagrangian tori in F2 �T 2 , where F2 is a surface of genus 2. Recall
from Gompf [12] that the symplectic sum is obtained by removing a neighborhood of
a surface in each manifold and gluing the resulting manifolds along their boundary.
Thus our approach is informed by the methods of knot theory: we essentially calculate
the fundamental groups of the complement of a link of two tori and a genus 2 surface
in T 4#2CP2 and the complement of a link of four tori and a genus 2 surface in
F2�T 2 , as well as their meridians and longitudes with respect to paths from all the
link components to the base point. It is this last point which makes the calculations
challenging.

To make the exposition as concise as possible, we use the following strategy. To show
a group is trivial, it suffices to show it is a quotient of the trivial group. More generally,
one can view the Seifert–Van Kampen theorem as giving two pieces of information:
first it provides generators and then identifies all relations. Since our goal is to show
that the example is simply connected, it suffices to find all generators and sufficiently
many relations for the building blocks to reach the desired conclusion. Thus we eschew
the problem of finding a complete presentation of the fundamental groups of W and
P , and content ourselves with establishing the relations we require for the proof.
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We remark that the equation `2D bab�1 which appears in the statement of Theorem 2
(rather than the perhaps expected `2 D a) hints at the fact that calculations of funda-
mental groups of torus surgeries on Lagrangian tori in the product of surfaces are likely
to be subtle. By stating Theorem 2 as we did (ie in the product of punctured tori) it will
be very useful in other contexts when small symplectic manifolds are to be constructed,
since, for example, one can build products of closed surfaces starting with the product
of punctured tori.

Acknowledgements The first author gratefully acknowledges support from the NSF
grant DMS-0507857. The second author gratefully acknowledges support from the
NSF grant DMS-0604310.

2 Fundamental group calculations

Let H be an oriented genus 1 surface with one boundary component. Let x;y be
oriented embedded circles representing a symplectic basis of H1.H / so that x and y

intersect transversally and positively in one point, which we denote by h. Denote the
corresponding based homotopy classes in �1.H; h/ also by x and y .

Now let K be another oriented genus 1 surface with one boundary component. Let
a; b be oriented embedded circles representing a symplectic basis of H1.K/ so that a

and b intersect transversally and positively in one point, which we denote by k .

The image of the loops x;y; a; b under the inclusion H � fkg [ fhg �K � H �K

define homotopy classes which we as usual denote by x;y; a; b 2 �1.H �K; .h; k//.
The base point .h; k/ for H �K is to be understood throughout this section.

Let X be a push off of x in H to the right with respect to the orientations on H and
x . Let Y be a parallel push off of y to the left. Thus x and X are disjoint parallel
curves on H .

Now let A1 be a parallel push off of a in K to the right of a. Let A2 be a further
parallel push off of A1 , to the right of A1 . Thus a;A1 and A2 are parallel curves in K .

Figure 1 illustrates all the curves on the surfaces H and K .

We define two disjoint tori T1;T2 in H �K as follows.

T1 DX �A1 and T2 D Y �A2:

Fix a product symplectic form on H � K . (Typically we think of H and K as
codimension 0 submanifolds of closed tori yH and yK and restrict the standard product
symplectic form on yH � yK to H �K .)
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Figure 1: The surface H �K

The proof of the following proposition is simple.

Proposition 1 The tori T1 and T2 are Lagrangian and the surfaces H � fkg and
fhg�K are symplectic. Moreover, T1 and T2 are disjoint and disjoint from H � fkg

and fhg �K .

Notice that every torus of the form C �D �H �K , (where C �H and D �K are
embedded curves) is Lagrangian. Recall that a Lagrangian torus T in a symplectic
4–manifold M has a canonical framing called the Lagrangian framing. In fact, the
Darboux–Weinstein theorem [15] implies that a tubular neighborhood of T can be
identified with T �D2 in such a way that the parallel tori in M corresponding to
T �fdg in this framing are also Lagrangian for every d 2D2 . In particular, given any
such neighborhood and any d 2 @D2 , we will call the torus T �fdg in the boundary
of a tubular neighborhood of T a Lagrangian push off of T , and if  � T is a curve
we call the curve corresponding  � fdg the Lagrangian push off of  .

The following theorem is the critical step in our constructions. Before we state it,
we begin with an observation and a warning. First the observation: the torus T2

intersects the torus x � b transversally in one point. Together with the remarks about
the Lagrangian framing discussed above, one concludes without much trouble that in
�1.H �K� .T1[T2//, the meridian of T2 takes the form Œzx; zb�D zxzbzx�1zb�1 , and
the Lagrangian push off of the curves Y and A2 take the form zy and za respectively,
where for z 2 �1.H �K� .

S
i Ti// we let zz denote some conjugate of z .

Put another way, consider the three circles that lie on the boundary of a tubular
neighborhood of T2 , namely the boundary of a meridian disk ftg � D2 , and the
Lagrangian push offs of the curves Y and A2 with respect to a normal Lagrangian
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vector field. These curves are freely homotopic to (respectively) the triple Œx; b�;y and
a in H �K� .T1[T2/.

But they need not be equal to this triple when the boundary of the tubular neighborhood
is joined by a path to the base point .h; k/ in H�K�.T1[T2/. There is some freedom
in the choice of path to simultaneously conjugate all three. But to expect that there exists
a path to the base point so that .Œzx; zb�; zy; za/D .Œx; b�;y; a/ in �1.H �K� .T1[T2//

is in general too much to hope for, and has led to some confusion and mistakes which
we need to avoid.

The configuration is nevertheless sufficiently explicit in our situation to prove the
following theorem.

Theorem 2 There exist paths in H � K � .T1 [ T2/ from the base point to the
boundary of the tubular neighborhoods T1 � @D

2 and T2 � @D
2 with the following

property. Denote by �i ;mi ; `i 2�1.H�K�.T1[T2// the loops obtained by following
the chosen path to the boundary of the tubular neighborhood of Ti , then following
(respectively) the meridian of Ti and the two Lagrangian push offs of the generators on
Ti , then returning to the base point by the chosen path. Then these loops are given by
the following formulae:

�1 D Œb
�1;y�1�; m1 D x; `1 D a;

�2 D Œx
�1; b�; m2 D y; `2 D bab�1:and

where x;y; a; b 2 �1.H �K � .T1 [ T2// are the loops which lie on the surfaces
H � fkg and fhg �K described above.

Moreover, �1.H �K� .T1[T2// is generated by x ,y ,a,b and the relations

Œx; a�D 1; Œy; a�D 1; Œy; bab�1�D 1

ŒŒx;y�; b�D 1; Œx; Œa; b��D 1; Œy; Œa; b��D 1as well as

hold in �1.H �K� .T1[T2//:

Remark Note that we are not assuming any particular orientation convention on the
meridians, or even that the two meridians are oriented by the same convention. Looking
ahead, when we perform Luttinger surgeries below we are free to do either 1 or �1

surgeries, and we will pick the sign that introduces the relation we require.

Proof Figure 2 and Figure 3 will guide the reader through the argument. View a torus
as a square with opposite sides identified, thus T 4 can be thought of as a quotient
of the product of two squares. Equivalently, we think of it as a quotient of the cube
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with coordinates x;y; b and an interval corresponding to the a coordinate. Since
H �K � T 4 , we visualize H �K as a subset of the 4–cube.

We start with the easy torus T1 first. Let p 2H denote the intersection point of X

and y . Let ˛ be the following path from the base point to the boundary of the tubular
neighborhood of T1 . Starting at .h; k/, let ˛1 denote the path traced out by traveling
backwards along y in H �fkg until you hit X at the point .p; k/. Then let ˛2 denote
the path obtained by traveling in fpg �K backwards along b until just before you hit
A1 . This defines the path ˛ D ˛1 �˛2 in H �K� .T1[T2/ from the base point to
the point .p; q/, where fpg DX \y and q is a point on b just to the right of A1 .

The square Œ0; 1�� Œ0; 1� maps to H �K�T2 by

y�1
� b�1

W I � I !H �K�T2:
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The interior of this square intersects T1 transversally once. Moreover, the path ˛ lies
on this square starting at the image of .0; 0/. It follows that the meridian of T1 is
(based) homotopic to the boundary of this square, starting at .0; 0/, ie �1D Œb

�1;y�1�.

Next consider the loop m1 which follows ˛ to .p; q/, then follows the loop X � fqg

around back to .p; q/, and finally returns to the base point along ˛�1 . This is the
Lagrangian push off of X since the second coordinate q is held fixed as one moves
along X .

We show that the loop m1 is based homotopic to x in H �K � .T1 [ T2/. First,
there is an annulus in H with boundary x and X which contains the arc from h

to p following y backwards. This determines an annulus F1 in H � fkg �H �K

which misses T1[T2 with .h; k/ on one boundary circle, .p; k/ on the other, and the
arc ˛1 spanning these two points. There is another annulus F2 of the form X � ˛2

which contains the arc ˛2 and misses T1[T2 . Gluing F1 to F2 along their common
boundary X � fkg yields a homotopy from x to m1 which is base point preserving
since it contains the path ˛ spanning the two boundary components.

Next, consider the loop `1 which first follows ˛ to .p; q/, then follows the loop
fpg�AC

1
where AC

1
is the parallel copy of A1 in K that passes through q , and finally

returns to the base point along ˛�1 . As explained above, fpg �AC
1

is the Lagrangian
push off of A1 � T1 since it is the push off of A1 in K .

We show that the loop `1 is based homotopic to a. We argue similarly as above. This
time there is an annulus F3 which lies in H � a with boundary the curves fhg � a

and fpg � a which contains the path ˛1 spanning its boundary components. There is
an annulus F4 in fpg �K with boundary the curves fpg � a and fpg �AC

1
which

contains the path ˛2 . This proves that a and `1 are based homotopic.

We now turn to the other torus T2 . The attentive reader will realize that the difficulty
here is that the analogue of the path ˛2 we would want to use intersects T1 . The
solution presents itself from this consideration: we will need to travel forwards along
b until we approach A2 .

Proceeding in earnest now, let r 2H denote a point on x close to and to the right of Y

(and left of y .) Let s 2K denote the intersection point of A2 with b . Let ˇ1 be the
path in fhg �K which starts at .h; k/ and moves forward along fhg � b to the point
.h; s/. Let ˇ2 be the path in H �fsg starting at .h; s/ and moving along x backwards
until the point .r; s/ in the boundary of the tubular neighborhood of T2 is reached.
The path ˇ D ˇ1 �ˇ2 is our path from the base point to the boundary of the tubular
neighborhood of T2 .
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To compute �2 , we notice that there is a map of a square

x�1
� bW I � I !H �K�T1

which intersects T2 transversely once and contains the path ˇ , starting at .0; 0/. Thus
�2 can be read off the boundary of the square, and hence �2 D Œx

�1; b�.

Next, consider the loop m2 which follows ˇ to .r; s/, then follows Y C � fsg and
returns to the base point along ˇ�1 , where Y C is the push off of Y in H which passes
through r . This is the Lagrangian push off of Y , since Y C�fsg is a Lagrangian curve.
There is an annulus F5 with boundary y � fkg and y � fsg which contains the path
ˇ1 . There is an annulus F6�fsg with boundary y�fsg and Y C�fsg which contains
the path ˇ2 . These glue to give a base point preserving homotopy of m2 to y .

We saved the most difficult calculation for last, and it is here that Figure 2 becomes
most helpful. Consider the loop `2 which follows ˇ to .r; s/, then follows frg�A2

and then returns along ˇ�1 . There is a surface F7 in fhg �K (a punctured annulus)
with three boundary components: fhg�a, fhg�A2 , and fhg�@K which contains the
path ˇ1 . There is an annulus F8 of the form ˇ2 �A2 with boundary fhg �A2 and
frg �A2 D `2 .

Cut a slit in F7 along an arc of the form fhg�  , where  is a path in K from k to
the boundary. Then the commutator bab�1a�1 is homotopic to the composite of  ,
the loop that follows the boundary, and then �1 . Cutting F7 along ˇ1 and  and
reading the word on the boundary one finds ˇ1�A�1

2
�ˇ�1

1
�bab�1a�1�a and gluing

on F8 one concludes that

`2 D bab�1a�1aD bab�1:

(For the benefit of the reader, we sketch an alternative way to see this, referring to
Figure 3. Let ˇ3 be the path following b forwards starting at ˇ1.1/, so that ˇ1�ˇ3Db .
The square of the form ˇ�1

2
� a glues to the square ˇ3 � a to give a homotopy from

`2 to bab�1 .)

We now turn to the assertions about �1.H�K�.T1[T2//. The surface K decomposes
into two surfaces: an annulus K1 with boundary A1 and A2 and its complement, a
3–punctured sphere with boundary the disjoint union @K[A1[A2 .

We take the preimages of the Ki via the projection to K . Precisely, let ˆW H �K!K

denote the projection and define

W1 Dˆ
�1.K1/\ .H �K� nbd.T1[T2//

W2 Dˆ
�1.K2/\ .H �K� nbd.T1[T2//:and
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Notice that W1 is homeomorphic to H �K1 and W2 is homeomorphic to H �K2 .

Thus W1[W2DH�K�nbd.T1[T2/. The intersection W1\W2 has two components:
one of them is

ˆ�1.A1/\ .H �K� nbd.T1[T2//DH �A1� nbd.T1/D .H � nbd.X //�A1:

The other one is

ˆ�1.A2/\ .H �K� nbd.T1[T2//DH �A2� nbd.T2/D .H � nbd.Y //�A2:

To apply the Seifert–Van Kampen theorem requires the intersection to be connected, so
we take the usual approach (eg taken when computing fundamental groups of bundles
over S1 ) and change W1 and W2 slightly to make their intersection connected, as
follows.

Let � denote the arc in fhg�K which starts at the base point .h; k/ and travels along
b backwards, passes through A1 , and ends at the intersection point of b with A2 .

We let W 0
1
DW1 [ � , this is just W1 with a small hair attached connecting it to the

base point. Define three loops in W 0
1

based at .h; k/ as follows. Let k 0 denote a point
on b between A1 and A2 . Follow the arc � from .h; k/ to .h; k 0/, then take the loop
x � fk 0g, then return to .h; k/ along ��1 . Call this loop x0 . Similarly define the loop
y0 . Finally, define the loop a0 to be the loop obtained by following � from .h; k/

to .h; k 0/, then following a loop parallel to and between fhg �A1 and fhg �A2 in
fhg �K , and finally returning to .h; k/ along ��1 .

Since W1 is homeomorphic to H �K1 (always taking the base point .h; k/),

�1.W
0

1/D hx
0;y0i˚Za0:

We then let W 0
2
DW2 [ � . This is W2 with an arc attached spanning the boundary

components corresponding to A1 and A2 . Notice that the loops a; b;x; and y all lie
in W 0

2
(recall that these are the explicit loops on H �fkg[ fhg�K which we claim

generate �1.H �K � .T1 [ T2//). Denote by c the loop in K2 based at k which
travels to the boundary @K , goes around once, and returns to k (thus, in �1.K/, c

represents the commutator Œa; b�). We consider the loop c0 WD fhg�c in fhg�K based
at .h; k/, this is also a loop in W 0

2
.

Then because W 0
2

is obtained from W2 ŠH �K2 by adding the arc � , it is clear that
the five loops a; b;x;y; c0 generate �1.W

0
2
/. We will not need this, but note that a

and c0 commute with x;y and that b generates a free factor.

We now apply the Seifert–Van Kampen theorem to conclude that the fundamental group
�1.H �K� nbd.T1[T2// is generated by the loops

a0;x0;y0; a; b;x;y; c0:
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Thus to establish our claim that x;y; a; b generate �1.H�K�nbd.T1[T2//, we must
show that the based homotopy classes a0;x0;y0; and c0 in �1.H �K�nbd.T1[T2//

can be expressed in terms of a; b;x; and y .

Since a0 lies on fhg�K , which misses T1[T2 , it is obvious that a0 and a represent the
same class. Equally easy is the observation that c0D Œa; b� in �1.H�K�nbd.T1[T2//.

This leaves the classes x0 and y0 . Consider first x0 . We claim it is based homotopic
to x . We can give an explicit formula for such a homotopy. Let ˇ denote the path
from k to k 0 in K that follows b backwards. For s 2 Œ0; 1�, let ˇs denote the path
t 7! ˇ..1� s/t/ (so ˇ0 D ˇ and ˇ1 is the constant path at k ).

Then the homotopy

s 7! .fhg �ˇs/� .x � fˇ.1� s/g/� .fhg �ˇs/
�1

is a based homotopy from x0 to x that misses T1 [ T2 . This is because ,when
passing through ˆ�1.A1/\ .H �K�nbd.T1[T2//D .H �nbd.X //�A1 (ie when
ˇs.1/D ˇ.s/ lies on A1 ), the curve x is parallel to X and hence misses it.

We can similarly show that y0 is based homotopic in H �K� nbd.T1[T2/ to a loop
represented by a word in a; b;x;y . This time we need to push across A2 instead of
A1 . Since we have already noticed that any based loop in W 0

2
can be expressed in

terms of a; b;x;y , it is easiest just to slide y0 along � past A2 . This time the fact that
Y is parallel to y and ˆ�1.A2/\ .H �K� nbd.T1[T2//D .H �Y /�A2 allows
us to conclude that y0 can be expressed in terms of a; b;x;y; c0 , and hence a; b;x;

and y .

Thus �1.H �K� nbd.T1[T2// is generated by the loops a; b;x;y , as claimed.

To finish the proof, we establish the stated commutator relations. The torus x � a

contains the base point .h; k/ and the curves x and a, and misses T1 and T2 . Hence
Œx; a�D 1. Similarly the torus y � a shows that Œy; a�D 1. If e denotes the loop in
H that goes from the base point to the boundary of H , travels around the boundary,
then returns to h (avoiding the curves X and Y ) then the mapped in torus e � b

misses T1 [ T2 and hence ŒŒx;y�; b� D 1 in �1.H �K � nbd.T1 [ T2//. Similarly
Œx; Œa; b��D 1 and Œy; Œa; b��D 1.

The other commutator relation is a consequence of the fact that �i ;mi ; and `i commute,
since they live on the boundary of a tubular neighborhood of Ti , a 3–torus.

This completes the proof of Theorem 2.

There are a few other relations in �1.H �K�nbd.T1[T2// which we did not mention
in the statement of Theorem 2, eg ŒŒb�1;y�1�;x�, ŒŒb�1;y�1�; a�, ŒŒx�1; b�;y�, and
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ŒŒx�1; b�; bab�1�. These follow from the fact that they correspond to loops on the
boundary of the tubular neighborhoods of T1 and T2 . We will not need these relations
in our argument.

In Theorem 2 we worked with the product of two punctured tori not for generality’s
sake, but because we will need to use the same construction in three different contexts
later:

(1) H is the complement of a disk in a (closed) torus yH . Thus we will be interested
in the two Lagrangian tori T1;T2 in yH �K , the fundamental group of the
complement �1. yH �K� .T1[T2//, and the corresponding �i mi ; `i .

(2) K is the complement of a disk in a (closed) torus yK . Thus we will be interested
in the two Lagrangian tori T1;T2 in H � yK , the fundamental group of the
complement �1.H � yK� .T1[T2//, and the corresponding �i mi ; `i .

(3) K and H are both complements of disks in a (closed) tori. Thus we will be
interested in the two Lagrangian tori T1;T2 in the four torus T 4 , the fundamental
group of the complement �1.T

4� .T1[T2//, and the corresponding �i mi ; `i .

(Cases (1) and (2) are inequivalent due to the asymmetry of the pair X;Y and the pair
A1;A2 ). The effect on fundamental groups in these three cases is clearly to impose
the appropriate commutator relation.

Scholium 3 In the three cases enumerated above, the statement of Theorem 2 remains
true if we replace H �K by yH �K;H � yK , and T 4 respectively. Moreover, in the
three cases, there is a further relation in the fundamental groups:

(1) The relation Œx;y�D 1 holds in �1. yH �K� .T1[T2//.

(2) The relation Œa; b�D 1 holds in �1.H � yK� .T1[T2//.

(3) The relations Œx;y�D 1 and Œa; b�D 1 hold in �1.T
4� .T1[T2//.

Recall that given a Lagrangian torus T in a symplectic 4–manifold M , with merid-
ian �, and Lagrangian push offs m and ` in �1.M � T /, Luttinger surgery is the
process which removes a neighborhood T �D2 from M and glues it back in by a
diffeomorphism which takes a disk ftg �D2 to a curve of the form �mkp`kq where
p; q are relatively prime integers and k is an integer. To specify the choices, we say
the resulting manifold is obtained by 1=k Luttinger surgery along the curve pmC q`.
Luttinger [14] (see also Auroux, Donaldson and Katzarkov [3]) proved that for any
integer k and any choice of p; q , the result of Luttinger surgery admits a symplectic
structure in which the core T � f0g is also Lagrangian, and so that the symplectic
structure is unchanged in the complement of the tubular neighborhood of T .
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We include the following well-known lemma for completeness.

Lemma 4 The fundamental group of the manifold obtained by 1=k Luttinger surgery
on M along pmC q` is the quotient

�1.M �T /=N.�mkp`kq/

where N.�mkp`kq/ denotes the normal subgroup of �1.M � T / generated by
�mkp`kq .

Proof The 2–torus has a handle structure with one 0–handle, two 1–handles, and one
2–handle. Thus the product T 2 �D2 has a handle structure with one 0–handle, two
1–handles, and one 2–handle. Looking from the outside in, one sees that attaching
T 2 �D2 can be accomplished by attaching one 2–handle, two 3-handles, and one
4–handle. Attaching the 2–handle has the stated effect on fundamental groups, and
attaching 3 and 4 handles does not further affect the fundamental group.

Call the relations in Theorem 2 and Scholium 3 universal relations since they hold for
any Luttinger surgery, and indeed, in the complement of T1 [ T2 . The relations of
Lemma 4 coming from Luttinger surgery will be called Luttinger relations.

We end this section with one lemma which will be used to establish minimality of the
manifolds we construct.

Lemma 5 Let M be obtained from the 4–torus T 4 D yH � yK by 1=k1 Luttinger
surgery on T1 along x and 1=k2 surgery on T2 along a. Then �2.M /D 0, and hence
M is minimal.

Proof First, 1=k1 surgery on T1 along x transforms T 4 into N �S1 , where N is
the 3–manifold that fibers over S1 with monodromy the k1 –th power of the Dehn
twist on yH along x . This follows from the well-known fact for fibered 3–manifolds
that changing the monodromy by a Dehn twist corresponds to a Dehn surgery along a
curve in a fiber. One can find a careful explanation in [3, p 189].

View N � S1 as a trivial circle bundle over N . Removing a neighborhood of T2

and regluing has the effect of changing this trivial S1 bundle to a nontrivial bundle.
Explicitly one removes a neighborhood of y in N and its preimage in N �S1 , then
reglues in such a way that k2Œy� becomes the divisor of the resulting S1 bundle. Details
can be found in the paper [4] by the first author. In any case one can check directly
from the construction that M has a free circle action which coincides with the action
on N �S1 away from T2 .
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Thus M is an S1 bundle over a fibered 3–manifold N with fiber a torus. It follows
from the long exact sequence of homotopy groups that �2.M / D 0, and hence M

contains no essential 2–spheres. In particular, M is minimal.

3 The building blocks

3.1 The manifold W

Consider the 4-torus T 4 D S1 � S1 � S1 � S1 D T 2 � T 2 . Denote the coordinate
circles respectively by s1; t1; s2; t2 . So for example s2 D f1g � f1g �S1 � f1g. These
determine loops in T 4 . Let ˆW T 4Š yH� yK be a base point preserving diffeomorphism
(in fact linear map) that takes the circles s1; t1; s2; t2 to x;y; a; b respectively. Pulling
back the tori T1;T2 via the symplectomorphism ˆ gives a pair of Lagrangian tori in
T 4 which, by abuse of notation, we also denote by T1 and T2 .

It is helpful to call T1 the s1 � s2 torus and T2 the t1 � s2 torus to remember what
(conjugacy) classes in the fundamental group they carry. The nomenclature can be
confusing, since T2 is pushed farther away than T1 from the loop a, due to the fact
that A1 and A2 are different curves in K . In particular, the Lagrangian push offs are
only specified up to conjugacy by this notation: for example, Theorem 2 states that the
Lagrangian push off of the curve on T2 represented by s2 curve is `2 D t2s2t�1

2
.

Theorem 2, Scholium 3, and Lemma 4 allow us to conclude that the fundamental group
of the manifold V obtained by �1 Luttinger surgery on the s1� s2 torus along s1 and
�1 surgery on the t1� s2 torus along s2 is generated by s1; t1; s2; t2 and the Luttinger
relations

Œt�1
2 ; t�1

1 �D s1; Œs
�1
1 ; t2�D t2s2t�1

2

as well as the universal relations

Œs1; t1�D 1; Œs2; t2�D 1; Œs1; s2�D 1; Œt1; s2�D 1; Œt1; t2s2t�1
2 �D 1

hold. Note that by conjugating by t�1
2

we may simplify the second Luttinger relation
to

Œt�1
2 ; s�1

1 �D s2:

The last universal relation reduces to the (redundant) relation Œt1; s2�D 1:

Thus �1.V / is a quotient of the group with presentation

hs1; t1; s2; t2 j Œs1; t1�; Œs2; t2�; Œs1; s2�; Œt1; s2�; Œt
�1
2 ; t�1

1 �s�1
1 ; Œt�1

2 ; s�1
1 �s�1

2 i:

Remark It is critical in these calculations that the loops s1; t1 are to be understood as
explicit loops in the symplectic surface yH D T 2 � f.1; 1/g � T 4� .T1[T2/ and the
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loops s2; t2 are to be understood as loops in the symplectic surface yKDf.1; 1/g�T 2�

T 4� .T1[T2/, all based at .1; 1; 1; 1/.

Lemma 5 shows that V can be described as an S1 –bundle over a 3–manifold that fibers
over a circle with genus one fibers, and so V is a minimal symplectic 4–manifold.

The symplectic tori yH DT 2�f.1; 1/g and yKDf.1; 1/g�T 2 in T 4 miss neighborhoods
of T1 and T2 , and hence determine symplectic tori in V that we continue to call yH
and yK . Notice that yH and yK intersect once transversally and positively at the base
point p D .h; k/D .1; 1; 1; 1/.

Symplectically resolve this intersection point as explained in Gompf [12]. This is a
local modification in a small neighborhood of p which replaces yH [ yK by a smooth
symplectic surface G .

The topological description of this process is as follows. In a small 4–ball around p , a
pair of intersecting 2–disks in yH [ yK are removed and replaced by an annulus so that
the resulting closed genus 2 surface G is oriented consistently with the orientations
of yH and yK . Thus one can choose a base point p0 inside this annulus, based loops
s0
1
; t 0

1
; s0

2
; t 0

2
on G satisfying Œs1; t1�Œs2; t2� D 1 in �1.G;p

0/, and a small arc in the
4–ball from p0 to p so that the inclusion �1.G;p

0/!�1.V;p
0/ followed by the iden-

tification �1.V;p
0/Š �1.V;p/ given by the small arc takes s0i ; t

0
i to si ; ti . Therefore

we can safely rename p0 D p; s0i D si , t 0i D ti and the fundamental group calculations
are unchanged.

Now blow up V twice at two distinct points on G , obtaining a symplectic manifold

W D V #2CP2:

The proper transform of G is a symplectic surface in W [12] which we continue to
call G . It has the same fundamental group properties as it did in V , but, in addition,
G �W has a trivial normal bundle and intersects each exceptional sphere transversally
once. Moreover, since �2.V /D 0, it follows from the Hopf sequence that the spherical
classes in H2.W / are generated by the exceptional spheres, and hence G intersects
every �1 spherical class.

Fix a push off G!W �nbd.G/ and give W �G the base point which is the image of
p via this push off. Use a path in a meridian disk to identify based loops in W �G and
based loops in W . Since the surface G intersects a sphere (either of the two exceptional
spheres) transversally in one point, the meridian of G in W �G is nullhomotopic.
Moreover, the inclusion W �G �W induces an isomorphism on fundamental groups,
since every loop in W can be pushed off G and every homotopy that intersects G can
be replaced by a homotopy that misses G (using the exceptional sphere and the fact
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that G is connected). Therefore we conclude the following lemma. As before N.S/

denotes the normal subgroup generated by a set S .

Lemma 6 (1) The closed symplectic 4–manifold W contains a closed symplectic
genus 2 surface G with trivial normal bundle. There are based loops s1; t1; s2; t2
on G representing a standard symplectic generating set for �1.G;p/ (thus
satisfying Œs1; t1�Œs2; t2� D 1) such that these loops generate �1.W;p/ and, in
�1.W;p/, the relations

1D Œs1; t1�D Œs2; t2�D Œs1; s2�D Œt1; s2�D Œt
�1
2 ; t�1

1 �s�1
1 D Œt

�1
2 ; s�1

1 �s�1
2

hold. The inclusion W � G � W induces an isomorphism on fundamental
groups.

(2) Let R be any 4–manifold containing a genus 2 surface F with trivialized normal
bundle. Let �W G!F be a diffeomorphism, and set gi D ��.si/; hi D ��.ti/ in
�1.R/. Given a map � W G!S1 , let z�W G�S1!F�S1 be the diffeomorphism
given by z�.a; s/D .�.a/; �.a/ � s/. Form the sum:

S D .R� nbd.F //[z� .W � nbd.G//:

Then the quotient group

�1.R/=N.Œg1; h1�; Œg2; h2�; Œg1;g2�; Œh1;g2�; Œh
�1
2 ; h�1

1 �g�1
1 ; Œh�1

2 ;g�1
1 �g�1

2 /

surjects to �1.S/.
Moreover, the Euler characteristic of S , e.S/, equals e.R/C6 and the signature
�.S/ equals �.R/� 2.

Proof The first assertion is explained in the paragraph that precedes the statement of
Lemma 6.

For the second assertion, the statements about the fundamental group of S are a straight-
forward consequence of the Seifert–Van Kampen theorem applied to the decomposition
S D .R� nbd.F //[z� .W � nbd.G//, using the fact that the meridian of G bounds
a disk in W (the punctured exceptional sphere) and that �1.G/! �1.W �G/ is
surjective (because its composite with the isomorphism �1.W � G/ ! �1.W / is
surjective).

The only remaining unverified assertions are the claims about Euler characteristic and
signature. The Euler characteristic of S is computed using the formula e.A#H B/D

e.A/C e.B/ � 2e.H /, which is true for any sum of 4–manifolds along surfaces.
Therefore e.S/D e.W /C e.R/C 4D 2C e.R/C 4D e.R/C 6. Novikov additivity
can be used to compute the signature, so �.S/D �.W /C �.R/D �.R/� 2.
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In Lemma 6, suppose further that R is symplectic and F is a symplectic genus 2
surface in R. Then S admits a symplectic structure [12]. Finally, if R is minimal, and
not an S2 bundle over F , then S is minimal by Usher’s theorem [22]. This follows
since every embedded �1 sphere in W intersects the surface G .

3.2 The manifold P

The second building block P will be the symplectic sum along a torus of two manifolds
constructed in the same manner as V . Alternatively, P can be described as the result
of Luttinger surgeries on four Lagrangian tori in the product of a genus two surface
with a torus. There are three perspectives for the reader to keep in mind:

(1) To apply the calculations of Theorem 2, one should view P as the union along
their boundary of two manifolds obtained by Luttinger surgeries on the product of
a punctured torus with a torus, and then apply the Seifert–Van Kampen theorem.

(2) To conclude that P is symplectic one should view P as the symplectic sum of
two manifolds obtained by Luttinger surgeries on T 4 D T 2 �T 2 .

(3) To conclude that P is minimal one should view P as the symplectic sum of two
minimal symplectic manifolds.

Since the fundamental group calculation is the most delicate, we take the first perspec-
tive, and trust that the reader can follow the claims about symplectic structure and
minimality.

We therefore build P as the union of two manifolds P1 and P2 along their boundary.
Give each torus which appears in the following construction the standard symplectic
form (ie as the quotient R2=Z2 ). A punctured torus should be given the restricted
symplectic form, and the product of two (punctured or unpunctured) tori should be
given the product symplectic form.

For P1 , start with a product yH 1 �K1 of a torus with base point h1 and a punctured
torus with base point k1 . Label the loops on yH 1 generating �1. yH 1/ by x1;y1 and
the loops in K1 generating �1. yK1/ by s1; t1 . Let yH and K be as in Theorem 2 and
Scholium 3.

Let  1W
yH 1 !

yH be the diffeomorphism of the torus which rotates the square by
angle �=2. Thus  1 preserves base points, is orientation preserving, and induces
the isomorphism x1 7! y and y1 7! x�1 on fundamental groups. Similarly, let
 2W K1!K be the diffeomorphism of the punctured torus which rotates the punctured
square by angle �=2. Thus  2 preserves base points, is orientation preserving, and
induces the isomorphism s1 7! b and t1 7! a�1 .
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Since rotation by �=2 induces an area-preserving map on the torus, the diffeomorphism
‰ D  1 � 2W

yH 1 �K1 !
yH �K is a symplectomorphism which takes the loops

x1;y1; s1; t1 to y;x�1; b; a�1 respectively. We do C1 Luttinger surgery on ‰�1.T1/

(the y�1
1
� t�1

1
torus) along y�1

1
and C1 Luttinger surgery on ‰�1.T2/ (the x1� t�1

1

torus) along t�1
1

. Then Theorem 2 and Scholium 3 imply that the fundamental group
of the resulting manifold P1 is generated by

x1;y1; s1; t1

and the Luttinger relations

y1 D Œs
�1
1 ;x�1

1 �; s1t1s�1
1 D Œy1; s1�

as well as the universal relations

Œy�1
1 ; t�1

1 �D 1; Œx1; t
�1
1 �D 1; Œx1; s1t�1

1 s�1
1 �D 1; Œx1;y1�D 1

hold. We rewrite the second Luttinger relation as

t1 D Œs
�1
1 ;y1�:

For P2 , start with a product yH 2 �K2 of a torus and a punctured torus. Label the
loops on yH 2 generating �1. yH 2/ by x2;y2 and the loops in K2 generating �1. yK2/

by s2; t2 .

As above, choose a symplectomorphism ‰2W
yH 2 �K2 !

yH �K which takes the
generators x2;y2; s2; t2 to y;x�1; b; a�1 respectively.

We do C1 Luttinger surgery on ‰�1
2
.T1/ (the y�1

2
� t�1

2
torus) along t�1

2
and �1

Luttinger surgery on ‰�1
2
.T2/ (the x2 � t�1

2
torus) along x2 . Then Theorem 2 and

Scholium 3 imply that the fundamental group of the resulting manifold P2 is generated
by

x2;y2; s2; t2

and the Luttinger relations

t2 D Œs
�1
2 ;x�1

2 �;x2 D Œy2; s2�

as well as the universal relations

Œy�1
2 ; t�1

2 �D 1; Œx2; t
�1
2 �D 1; Œx2; s2t�1

2 s�1
2 �D 1; Œx2;y2�D 1

hold.

Denote by M1 and M2 the symplectic manifolds obtained by the same construction
as P1 and P2 but starting with closed tori, ie yH i �

yKi Š T 4 . Denote by z1 and z2

the centers of the disks removed from yKi to obtain Ki . As a smooth manifold, the
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symplectic sum, P , of M1 and M2 along the symplectic tori with trivial normal bundles
yH 1�fz1g and yH 2�fz2g [12], is the union of P1 and P2 along their boundary 3–tori.

We use the diffeomorphism of the tori along which the symplectic sum is performed so
that x1 is identified with x2 and y1 is identified with y2 .

More precisely, there exists an arc ˇ in K1 which starts at a point k 0
1
2 @K1 and

ends at k1 and which misses  �1
2
.Ai/; i D 1; 2, since cutting the surface K along

a[ b [A1 [A2 does not disconnect k from @K . This arc ˇ should be (and can
be) chosen so that the loop traced out by the boundary is homotopic rel endpoint to
ˇ � Œs1; t1��ˇ

�1 in K1 . The arc ž D fh1g �ˇ � yH 1 �K1 misses T1[T2 , since ˇ
misses A1[A2 , and hence can be viewed as a path in P1 .

Conjugating by ž induces an isomorphism �1.P1; .h1; k1//Š�1.P1; .h1; k
0
1
// so that

the loops x1;y1; s1; t1 are sent to loops we temporarily call x0
1
;y0

1
; s0

1
; t 0

1
. Obviously,

all the relations listed above involving the x1;y1; s1; t1 also hold for the x0
1
;y0

1
; s0

1
; t 0

1
.

The loop x0
1
D ž�x1�

ž�1 is homotopic rel endpoint into the boundary of P1 . In fact,
the one parameter family of loops x0

1
.s/D žs�.x1�ˇ.s//� ž

�1
s (where žs.t/D ž.st/)

gives a homotopy of x0
1

to the loop x1�fk
0
1
g in the boundary 3–torus yH 1�@K1 of P1 .

(Note that this uses the fact that ˇ misses  �1
2
.A1[A2/.) A similar comment applies

to y0
1

. The loop Œs0
1
; t 0

1
� lies entirely on fh1g �K1 �

yH 1 �K1� nbd.T1[T2/� P1 .
Hence the loop fh1g�@K1�@P1 maps to Œs0

1
; t 0

1
� via the inclusion �1.@P1; .h1; k

0//!

�1.P1; .h1; k
0// .

Thus we abuse notation slightly and rename x1 D x0
1
.1/, y1 D y0

1
.1/; s1 D s0

1
, and

t1 D t 0
1

. These loops are based at the base point .h1; k
0
1
/ on the boundary of P1 ,

generate �1.P1/, and all the relations listed above hold. Moreover the three loops
x1;y1; and c D fh1g� @K1 all lie on the boundary @P1 , generate �1.@P1; .h1; k

0
1
//,

and c is sent to Œs1; t1� in �1.P1/.

A similar comment applies to P2 , so we end up with the same presentation, but
with base point .h2; k

0
2
/ 2 @P2 , and the loops x2;y2; and Œs1; t1� in @P2 generating

�1.@P2; .h2; k
0
2
//.

We glue P1 to P2 using a base point preserving diffeomorphism which takes x1 to x2 ,
y1 to y2 , and Œs1; t1� to Œs2; t2�

�1 . (This last gluing actually follows from the first two
and the fact that we are forming the symplectic sum of M1 and M2 to build P .) Note
that we can arrange this to be the relative symplectic sum [12] of .M1; fh1g�

yK1/ and
.M2; fh2g �

yK2/ so that the surfaces fh1g �K1 and fh2g �K2 line up along their
boundary, yielding a closed symplectic genus 2 surface F in P . The loops s1; t1; s2; t2
lie on F and these form the standard set of generators of the fundamental group of F .
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This fact allows us to apply Lemma 6 in the proof of Theorem 7 below. The Seifert–Van
Kampen theorem implies that �1.P / is generated by x1;y1; s1; t1;x2;y2; s2; t2 .

The definition of P , the calculations for P1 and P2 given above, and the Seifert–Van
Kampen theorem imply that the relations

y1 D Œs
�1
1
;x�1

1
�; t1 D Œs

�1
1
;y1�; Œy�1

1
; t�1

1
�D 1; Œx1; t

�1
1
�D 1;

Œx1; s1t�1
1

s�1
1
�D 1; Œx1;y1�D 1

(1)

t2 D Œs
�1
2
;x�1

2
�; x2 D Œy2; s2�; Œy�1

2
; t�1

2
�D 1; Œx2; t

�1
2
�D 1;

Œx2; s2t�1
2

s�1
2
�D 1; Œx2;y2�D 1

(2)

x1 D x2; y1 D y2(3)

hold in �1.P /. The additional relation Œs1; t1�Œs2; t2�D 1 also follows from the Seifert–
Van Kampen theorem, but we will not need it below.

The closed symplectic manifolds M1 and M2 have trivial second homotopy group,
and hence are minimal, by Lemma 5. Thus by Usher’s theorem [22] their symplectic
sum P is also minimal.

The Euler characteristic is e.P /D e.M1/Ce.M2/C0D 0 and the signature �.P /D
�.M1/C �.M2/D 0.

4 Assembly: an exotic symplectic CP2#3CP2

Let X be the symplectic sum of P and W along the genus 2 surfaces F � P and
G �W ,

X D .P � nbd.G//[z� .W � nbd.G//

using a diffeomorphism �W F ! G that identifies generators in �1.F / with their
namesakes in �1.G/.

By Lemma 6 and the text that immediately follows it, X is a symplectic 4–manifold
with e.X /D 6 and �.X /D�2. Furthermore, X is minimal by Usher’s theorem [22]
since P is, and since W �G contains no �1 spheres.

Once we show X is simply connected, then Freedman’s theorem [11] implies that X is
homeomorphic to CP2#3CP2 . It cannot be diffeomorphic CP2#3CP2 however, since
X is minimal, and by results of Taubes [20; 21], a minimal symplectic 4–manifold
cannot contain a smoothly embedded �1 sphere, but CP2#3CP2 contains smoothly
embedded �1 spheres, namely, the exceptional spheres.
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Theorem 7 The minimal symplectic manifold X is simply connected, hence homeo-
morphic but not diffeomorphic to CP2#3CP2 .

Proof Since the loops s1; t1; s2; t2 lie on F , Lemma 6 implies that the fundamental
group of X is a quotient of �1.P /=N where N is the normal subgroup generated by

(4) Œs1; t1�; Œs2; t2�; Œs1; s2�; Œt1; s2�; Œt
�1
2 ; t�1

1 �s�1
1 ; Œt�1

2 ; s�1
1 �s�1

2 :

Denote by relations 1–20 the 14 relations listed for the fundamental group of P in
Equations (1), (2), and (3) and the six additional relations of Equation (4). Recall that
Œr; s��1 D Œs; r �.

To start, observe that relations 1 and 19 imply

y1 D Œs
�1
1 ;x�1

1 �D ŒŒt�1
1 ; t�1

2 �;x�1
1 �:

Relation 4 implies that x1 commutes with t1 and relations 10 and 13 imply that x1

commutes with t2 . This implies that y1 D 1.

The rest of the generators are rapidly killed. Relation 14 implies y2 D 1. Relation
2 implies t1 D 1. Relation 19 implies that s1 D 1. Relation 20 implies that s2 D 1.
Relation 7 now shows that t2 D 1 and Relations 8 and 13 imply that x1 D x2 D 1.

Thus Lemma 6 says that �1.P / is a quotient of the trivial group, hence is trivial. As
explained above this implies that X is homeomorphic to, but not diffeomorphic to
CP2#3CP2 .
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