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Essential curves in handlebodies and topological contractions

VIATCHEVSLAV GRINES

FRANÇOIS LAUDENBACH

If X is a compact set, a topological contraction is a self-embedding f such that
the intersection of the successive images f k.X / , k > 0 , consists of one point.
In dimension 3, we prove that there are smooth topological contractions of the
handlebodies of genus � 2 whose image is essential.

57M25; 37D15

1 Introduction

For a compact set X and a topological embedding f W X !X , we shall say that f is
a topological contraction if

T
k�0 f

k.X / consists of one point. We shall show that
such a contraction can be very complicated when X is a 3–dimensional handlebody.
Namely, we have the following result for which some more classical definitions will be
recalled thereafter.

Theorem A There exists a North–South diffeomorphism f of the 3–sphere S3 and a
Heegaard decomposition S3 D P�[PC of genus g � 2 with the following properties:

(1) f jPC is a topological contraction;

(2) f .PC/ is essential in PC .

We shall limit ourselves to g D 2, since the generalization will be clear. We recall that
a 3–dimensional handlebody of genus 2 is diffeomorphic to the regular neighborhood
P in R3 of the planar figure eight � . A compression disk of P is a smooth embedded
disk in P whose boundary lies in @P in which it is not homotopic to a point. Among
the compression disks are the meridian disks ��1.x/, where x is a regular point1 in
� and � W P ! � is the regular neighborhood projection (that is, a submersion over
the smooth part of � ). A subset X of P is said to be essential in P if it intersects
every compression disk2 .

1Any point other than the center of the figure eight.
2 This definition goes back to Rolfsen’s book [2, p 110].
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A diffeomorphism f of S3 is a North–South diffeomorphism if it has two fixed points
only, one source ˛ 2 P� and one sink ! 2 PC , every other orbit going from ˛ to ! .

A Heegaard splitting of S3 is made of an embedded surface dividing S3 into two
handlebodies. According to a famous theorem of F Waldhausen such a decomposition
is unique up to isotopy [3]. It is not hard to prove that the phenomenon mentioned
in Theorem A does not happen with a Heegaard splitting of genus 1: if T is a solid
torus and f is a topological contraction of T , then there is a compression disk of T

avoiding f .T /.

The example which we are going to construct for proving Theorem A is based on the
next theorem, for which some more notation is introduced. Let �0 � � be a simple
closed curve. There exists a solid torus T � R3 which contains P and which is a
tubular neighborhood of �0 . Let i0W P ! T be this inclusion. We say that a simple
curve is unknotted in T if it bounds an embedded disk in T .

Theorem B There exists an essential simple curve C in P such that i0.C / is unknot-
ted in T .

The second author is grateful to Sylvain Gervais and Nathan Habegger for interesting
conversations on link invariants, in particular on Milnor’s invariants [1]. He is also
grateful to the organizers3 of the conference in Toulouse in memory of Heiner Zieschang
(Braids, groups and manifolds, Sept 2007), who offered him the opportunity to give a
short talk on the subject of this paper. We also thank the anonymous referee for very
valuable comments.

2 Essential curves

Our candidate for C in Theorem B is pictured in Figure 1.

It is clear that i0.C / is unknotted in T (or, equivalently, in the complement of the
vertical axis which is drawn in Figure 1). A way of proving that C is essential in P is
to prove the following lemma (actually equivalent as the referee noticed4).

Lemma 1 Let pW zP ! P be the universal cover of P and let zC be the preimage
p�1.C /. Then zC is essential in zP .

3 Michel Boileau, Thomas Fiedler, John Guaschi and Claude Hayat
4According to the Loop theorem and Dehn’s lemma, C essential in P implies zC essential in zP .
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C

Figure 1

Proof We have the following description of zP : it is a 3–ball with a Cantor set
E removed from its bounding 2–sphere5. This Cantor set is the set of ends of zP .
A simple curve in @ zP is not homotopic to zero if it divides E into two nonempty
parts. We get a fundamental domain F for the action of �1.P / on zP by cutting P

along two non-parallel meridian disks D0 and D1 . Figure 2 shows what the pair
.F; zC \F / looks like: F is a 3–ball whose boundary consists of the union @1F of
four disks d0; d

0
0; d1; d

0
1 and a punctured sphere @0F , where p.d0/ D p.d 00/ D D0

and p.d1/D p.d 01/DD1 ; zC \F is made of four strands with end points in @1F and
pairwise linked as it is shown.

One can show easily that (i) @1F n zC is incompressible and boundary incompressible
in F n zC , and (ii) @0F is incompressible in F n zC . Now suppose on the contrary that
zC is not essential and consider a compression disk � of zP avoiding zC . We take �
to be transversal to zD WD p�1.D0[D1/. A standard innermost circle/arc argument,
using (i), shows that we may assume that � is contained in F n zC , contradicting (ii).

Remarks 1 (1) Globally zC looks like an infinite Borromean chain: any finite number
of components is unlinked. We would like to know whether there exists a topological
algebraic tool proving that C is essential in P .

(2) Our referee proposed another example where ŒC � D aba�1b�1 with respect to
the obvious basis a; b of �1.P /. In this case C is essential in P by an algebraic
argument: the quotient �1.P /=hŒC �i is isomorphic to Z�Z. If C were inessential in
P this quotient would be isomorphic to Z�Zn for some n� 0.

5Take the universal cover of � properly embedded in the hyperbolic plane and take a 3–dimensional
thickening of it.
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Figure 2

3 Proof of Theorem A

We recall the embedding i0W P ! int T . We start with a curve C in P which meets
the conclusion of Theorem B. We equip it with its 0–normal framing (a section of
this framing is not linked with C in R3 ) and we choose an embedding j0W T ! P

whose image is a tubular neighborhood of C . Let B be a small ball in int T . As C

is unknotted in T , there is an ambient isotopy, supported in int T , deforming i0 to
i1W P ! int T such that i1 ı j0.T / is a standard small solid torus in B . One half of
the desired Heegaard splitting of genus 2 will be given by PC WD i1.P /. At the present
time f is only defined on T by f WD i1 ı j0W T ! int T . If we compose i1 with a
sufficiently strong metric contraction of B into itself (with respect to some metric),
then f is a metric contraction. Hence

T
k>0 f

k.T / consists of one point.

Choose a round ball B0 containing T in its interior. Since f jT is isotopic to the
inclusion T ,!R3 , f extends as a diffeomorphism B0! B , and further as a diffeo-
morphism S3! S3 . We are free to choose f W S3 nB0! S3 nB as we like. Let
B” be the closure of S3 nB0 and 'W S3 ! S3 be a diffeomorphism which is the
identity on B0 and a strong metric contraction on a ball containing f �1.B”/. If we
replace f by f ı'�1 (without changing the notation), then f �1jB” becomes a metric
contraction and the intersection

\
k>0

f �k.S3
nB0/ consists of one point. We now have

a North–South diffeomorphism f of S3 which induces a topological contraction of T .
Since f .T /� int PC � PC � int T , f also induces a topological contraction of PC .

It remains to prove that f .PC/ is essential in PC . We know that i1.C / is essential
in PC . As a consequence, any compression disk � of PC intersects f .T /. We can
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take � to be transversal to f .@T / such that no intersection curve is null-homotopic in
f .@T /. Let 
 be an intersection curve which is innermost in � and let ı be the disk
that 
 bounds in �.

Lemma 2 We have ı � f .T /.

Proof If not, we have ı�PCnf .int T / and the simple curve 
 in f .@T / is unlinked
with the core i1.C /. Therefore, up to isotopy in f .@T /, it is a section of the 0–framing.
In that case, i1.C / itself bounds an embedded disk in PC . This is impossible, as i1.C /

is essential in PC .

Therefore ı is a compression disk of the solid torus f .T /. But PC D i1.P /, like
P itself, is essential in T . Hence f .PC/ is essential in f .T / and ı must intersect
f .PC/.
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