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Topological Hochschild homology
and cohomology of A1 ring spectra

VIGLEIK ANGELTVEIT

Let A be an A1 ring spectrum. We use the description from our preprint [1] of the
cyclic bar and cobar construction to give a direct definition of topological Hochschild
homology and cohomology of A using the Stasheff associahedra and another family
of polyhedra called cyclohedra. This construction builds the maps making up the A1
structure into THH.A/ , and allows us to study how THH.A/ varies over the moduli
space of A1 structures on A .

As an example, we study how topological Hochschild cohomology of Morava K–
theory varies over the moduli space of A1 structures and show that in the generic
case, when a certain matrix describing the noncommutativity of the multiplication is
invertible, topological Hochschild cohomology of 2–periodic Morava K–theory is
the corresponding Morava E–theory. If the A1 structure is “more commutative”,
topological Hochschild cohomology of Morava K–theory is some extension of
Morava E –theory.

55P43; 18D50, 55S35

1 Introduction

The main goal of this paper is to calculate topological Hochschild homology and
cohomology of A1 ring spectra such as Morava K–theory. Because THH is sensitive
to the A1 structure we need to study the set (or space) of A1 structures on a spectrum
more closely. In particular, THH.A/ is sensitive to whether or not the multiplication
is commutative, which is not so surprising if we think of topological Hochschild
cohomology of A as a version of the center of A. The Morava K–theory spectra
are not even homotopy commutative at p D 2, and at odd primes there is something
noncommutative about the Ap structure. Moreover, if we make Morava K–theory 2–
periodic it has many different homotopy classes of homotopy associative multiplications,
most of which are noncommutative and all of which can be extended to A1 structures.

Let us write THH.A/ for either topological Hochschild homology or cohomology of
A, while using THHS .A/ for topological Hochschild homology and THHS .A/ for
topological Hochschild cohomology. While THH of an A1 ring spectrum A can
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be defined in a standard way after replacing it with a weakly equivalent S –algebra
zA, it is hard to see how the A1 structure on A affects the S –algebra structure on
zA. Instead we will define THH.A/ directly in terms of associahedra and cyclohedra,

following our paper [1]. In this way, the maps making up the A1 structure on A play
a direct role, instead of being hidden away in the construction of a strictly associative
replacement of A.

Our construction has the added advantage that given an An structure on A, we can
define spectra skn�1 THHS .A/ and Totn�1 THHS .A/. If the An structure can be
extended to an A1 structure, skn�1 THHS .A/ coincides with the .n�1/–skeleton of
THHS .A/, but it is defined even if the An structure cannot be extended, and similarly
for Totn�1 THHS .A/.

We will be especially interested in THHR.R=I/ and THHR.R=I/, where R is an
even commutative S –algebra and I D .x1; : : : ;xm/ is a regular ideal. In this case
any homotopy associative multiplication on R=I can be extended to an A1 structure
(Corollary 3.7) and we have spectral sequences

E
�;�
2
DR�=I Œq1; : : : ; qm�H) �� THHR.R=I/I

E2
�;� D �R�=I Œxq1; : : : ; xqm�H) �� THHR.R=I/:

Here �R�=I Œxq1; : : : ; xqm� denotes a divided power algebra, though topological Hoch-
schild homology is not generally a ring spectrum, so this has to be interpreted additively
only. Topological Hochschild cohomology on the other hand is a ring spectrum. By the
Deligne conjecture (see for example [26]) topological Hochschild cohomology admits
an action of an E2 operad, and in particular THHR.A/ is a homotopy commutative ring
spectrum. The first spectral sequence is a spectral sequence of commutative algebras,
and it acts on the second spectral sequence in a natural way with qij .xqi/D j�1.xqi/,
corresponding to the natural action THHR.A/^R THHR.A/! THHR.A/.

The above spectral sequences collapse, because they are concentrated in even total
degree. But there are hidden extensions, and we can find these extensions by studying
the A1 structure on R=I more closely. In the easiest case, when I D .x/, there is a
hidden extension of height n� 1 if the An structure is “noncommutative” in a sense
we will make precise in Section 4. In general a careful analysis of the A1 structure
gives all of the extensions, and shows that

�� THHR.R=I/ŠR�ŒŒq1; : : : ; qm��=.x1�f1; : : : ;xm�fm/

for power series f1; : : : ; fm which depend on the A1 structure on R=I . By varying
the A1 structure the power series fi change, and this shows how THHR.R=I/ varies
over the moduli space of A1 structures on R=I .
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Organization

In Section 2 we define topological Hochschild homology and cohomology using
associahedra and cyclohedra following [1], and prove that our definition agrees with
the standard definition whenever they overlap. In Section 3 we improve Robinson’s
obstruction theory [31] for endowing a spectrum with an A1 structure, and use our
obstruction theory to prove that a large class of spectra can be given an A1 structure.

In Section 4 we define two notions of what it means for an An structure on a spectrum
A to be “commutative”. Let Kn be the n–th associahedron, and let Wn be the n–th
cyclohedron. Then the An structure is defined in terms of maps .Km/C ^A.m/!A

for m � n. We say that the An structure is cyclic if the n maps .Kn/C ^A.n/! A

obtained by first cyclically permuting the factors and then using the An structure are
homotopic, in the sense that a certain map .@Wn/C ^A.n/ ! A which is given by
the An structure on each of the n copies of Kn on @Wn can be extended to all of
Wn . There is a dual notion, where instead of cyclically permuting the copies of A we
use the maps .a1; a2; : : : ; an/ 7! .a2; : : : ; ai ; a1; aiC1; : : : ; an/. The notion of a cyclic
An structure plays a natural role in the study of topological Hochschild homology
while the notion of a cocyclic An structure plays a corresponding role for topological
Hochschild cohomology.

In Section 5 we connect the “commutativity” of the multiplication on A with THH.A/,
and do some sample calculations. Baker and Lazarev [8, Theorem 3.1] proved that

THHKU .KU=2/'KU^2 ;

and we are able to vastly generalize their result. For example, for an odd prime p ,
THHKU .KU=p/ is not constant over the moduli space of A1 structures on KU=p .
For p� 1 of the p possible homotopy classes of multiplications (A2 structures) on
KU=p we find that THHKU .KU=p/ ' KU^p , while THHKU .KU=p/ is a finite
extension of KU^p , ramified at p , on the rest of the moduli space. But the extension
has degree at most p � 1, so while KU^p ! THHKU .KU=p/ might be a ramified
extension, it is always tamely ramified.

In the last section (Section 6), which is somewhat different from the rest of the paper, we
compare THH of Morava K–theory over different ground rings. While the calculations
before used the corresponding Morava E–theory or Johnson–Wilson spectrum as the
ground ring, we are really interested in using the sphere spectrum as the ground ring.
We prove that in this particular case the choice of ground ring does not matter, that in
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fact the canonical maps

THHR.A/ �! THHS .A/

THHS .A/ �! THHR.A/and

are weak equivalences.

Notation

Throughout the paper R will denote a commutative S –algebra as in Elmendorf, Kriz,
Mandell and May [17], and all smash products and function spectra will be over R

unless indicated otherwise. We will often assume that R is even, meaning that R�
is concentrated in even degrees. We let I be a regular ideal in R� , generated by the
regular sequence .x1; : : : ;xm/, with jxi j D di . For some applications we allow I to
be infinitely generated. We let A be an R–module, often an An algebra for some
2 � n � 1, and we let M be another R–module, often an .An;A/–bimodule for
some 2� n�1. We will often take ADR=I , an R–module with A� DR�=I .

We will be especially interested in writing the Morava K–theory spectra as quotients
R=I for suitable R and I . To this end, let 1E.n/ denote the K.n/–localization of the
Johnson–Wilson spectrum E.n/. It has homotopy groups

1E.n/� Š Z.p/Œv1; : : : ; vn�1; vn; v
�1
n �^I ;

the I –completion of E.n/� . Here I D .p; v1; : : : ; vn�1/, and K.n/D1E.n/=I has
homotopy groups

K.n/� Š Fp Œvn; v
�1
n �;

which is a graded field with jvnj D 2.pn� 1/. It is known [32] that 1E.n/ is an E1
ring spectrum, or equivalently [17, Corollary II.3.6] a commutative S –algebra.

We will also consider a 2–periodic version of Morava K–theory. Let En D E.k;�/
be the Morava E–theory spectrum associated to a formal group � of height n over a
perfect field k of characteristic p . Then

.En/� ŠW kŒŒu1; : : : ;un�1��Œu;u
�1�;

where W k denotes the Witt vectors on k (isomorphic to kŒŒu0�� as a set). Here
jui j D 0, and we take juj D 2 rather than �2 as some authors do. Thus u corresponds
to the Bott element in the complex K–theory spectrum, rather than its inverse. It is
known (see Goerss and Hopkins [20]) that En is an E1 ring spectrum, or equivalently
a commutative S –algebra. We let I D .p;u1; : : : ;un�1/ and Kn DEn=I . Thus

.Kn/� Š kŒu;u�1�:
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2 THH of A1 ring spectra

We first recall some things from [1]. Let �C be Connes’ category of cyclic sets, and
recall the construction in [1, Definition 3.1] of the category �CK , which is a version
of the category of cyclic sets which is enriched over Top, the category of (compactly
generated, weak Hausdorff) topological spaces. Here K denotes the associahedra operad
(by operad we really mean non–† operad), with K.f1; 2; : : : ; ng/ D Kn Š Dn�2 ,
and each Hom space in �CK is a disjoint union of products of associahedra. Let
0�C be the category of based cyclic sets and basepoint-preserving maps, which is
equivalent to the simplicial indexing category �op [1, Lemma 3.3], and let 0�CK be
the corresponding enriched category.

Let W be the collection of cyclohedra, with W.f0; 1; : : : ; n � 1g/ D Wn Š Dn�1 .
Here we think of f0; 1; : : : ; n�1g as a cyclically ordered set, ie, an object in �C . The
cyclohedra W assemble to a functor �C

op
K ! Top, though we will only need that W

is a functor 0�C
op
K ! Top for defining THH.

Let R be a commutative S –algebra, and let MR be the category of R–modules as in
[17]. Most of our spectra will be R–modules, and we write ^ for ^R . Suppose that
A 2MR is an A1 ring spectrum, by which we mean an algebra over the operad K .
Thus A comes with maps

�nW .Kn/C ^A.n/!A

for n� 0 making certain diagrams commute. Also suppose that M is an A–bimodule,
a.k.a. an .A1;A/–bimodule. By that we mean that there are maps

�n;i W .Kn/C ^A.i�1/
^M ^A.n�i/

!M

for n� 1 and 1� i � n making similar diagrams commute. Here, and throughout the
paper, A.j/ denotes the j –fold smash product of A with itself.

In this situation we can define a functor Bcy.AIM /W 0�CK!MR by

Bcy.AIM /.f0; 1; : : : ; ng/DM ^A.n/;
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and a functor C cy.AIM /W 0�C
op
K !MR by

C cy.AIM /.f0; 1; : : : ; ng/D FR.A
.n/;M /:

Definition 2.1 Let A be an A1 ring spectrum and let M be an A–bimodule, with
A and M cofibrant (q–cofibrant in the terminology of [17]) in MR . Topological
Hochschild homology of A with coefficients in M is the spectrum

THHR.A/DW˝0�CK Bcy.AIM /

while topological Hochschild cohomology of A with coefficients in M is the spectrum

THHR.A/D Hom0�CK.W;C cy.AIM //:

Here �˝0�CK� and Hom0�CK.�;�/ are defined as a suitable coequalizer and equal-
izer; see [1, Definition 3.7].

Remark 2.2 If ADM then Bcy.AIA/ can be extended to a functor from �CK to
MR . Because W is a functor �C

op
K ! Top, one can show that THHR.A/ has an

action of S1 , in much the same way as in the classical situation. We omit the details,
since we will not need the S1 –action.

To avoid overusing the word cofibrant, we will assume that all our module spectra are
cofibrant in MR .

If we have a map M !M 0 of A–bimodules, then we get maps THHR.AIM /!

THHR.AIM 0/ and THHR.AIM / ! THHR.AIM
0/. If we have a map A ! A0

of A1 ring spectra and M 0 is an A0–bimodule, we get maps THHR.AIM 0/ !

THHR.A0IM 0/ and THHR.A
0IM 0/! THHR.AIM

0/.

Proposition 2.3 If A is strictly associative, our definition of THHR.AIM / agrees
(in MR ) with the definition of thhR.AIM / given in [17, IX.2]. (They only define
THHR.AIM / in the derived category.) Moreover, our definition is homotopy invariant
in the following sense: If .A;M / ! .A0;M 0/ is a map of A1 ring spectra and
bimodules such that A!A0 and M !M 0 are weak equivalences, then we have weak
equivalences

THHR.AIM /
'
�!THHR.AIM 0/

'
�! THHR.A0;M 0/

THHR.AIM /
'
�!THHR.AIM

0/
'
 � THHR.A

0
IM 0/:and
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Proof The first claim follows in the same way as [1, Proposition 4.13], and the
homotopy invariance follows from the theory of enriched Reedy categories developed
in [2]. In the classical situation, Bcy.AIM / is Reedy cofibrant, and by [2, Observation
6.3] the same is true in our case. Thus the homotopy invariance of THHR.AIM /

follows from [2, Corollary 7.2]. The homotopy invariance of THHR.AIM / is similar,
using that C cy.AIM / is Reedy fibrant.

For ease of reference, we recall the standard spectral sequences used to calculate the
homotopy or homology groups of THH.

Proposition 2.4 [17, chapter IX] There are spectral sequences

E2
s;t D Tor��.A^RAop/

s;t .A�;M�/H) �sCt THHR.AIM /;(2–1)

E
s;t
2
D Exts;t

��.A^RAop/
.A�;M�/H) �t�s THHR.AIM /:(2–2)

If E is a commutative R–algebra, or if E�.A ^R Aop/ is flat over ��.A ^R Aop/,
there are spectral sequences

E2
s;t D TorE�.A^RAop/

s;t .ER
� A;ER

�M /H)EsCt THHR.AIM /;

E
s;t
2
D Exts;t

E�.A^RAop/
.ER
� A;ER

�M /H)Et�s THHR.AIM /:

Here ER
� X means ��.E ^R X /.

Under reasonable finiteness conditions on each group these spectral sequences converge
strongly [10, Theorems 6.1 and 7.1].

The spectral sequence

E2
�;� D TorH�.A^S AopIFp/

�;� .H�.AIFp/IH�.M IFp//H)H�.THHS .AIM /IFp/

is called the Bökstedt spectral sequence, after Marcel Bökstedt who first defined
topological Hochschild homology [12; 13].

Topological Hochschild cohomology acts on topological Hochschild homology via
maps

THHR.A/^R THHR.AIM / �! THHR.AIM /:

This is clear from the definition of THHR.A/ and THHR.AIM / as the derived spectra
FA^RAop.A;A/ and M ^A^RAop A from [17, IX.1]. It is also clear that the natural
action

E
s;t
2
.A/˝R� E2

p;q.AIM / �!E2
p�s;qCt .AIM /

given by the action of Ext on Tor converges to the action of �� THHR.A/ on
�� THHR.AIM /.
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If A is only an An ring spectrum and M is an .An;A/–bimodule, meaning that we
have coherent maps .Km/C^A.i�1/^M ^A.m�i/!M for m� n and 1� i �m,
we get a functor, which we will still denote by Bcy.AIM /, from 0�CKn

to MR .
Here Kn is the operad generated by Km for m� n. We can then consider the functor
WnW �C

op
Kn
! Top generated by Wm for m� n and define spectra

skn�1 THHR.AIM /DWn˝0�CKn
Bcy.AIM /

Totn�1 THHR.A/D Hom0�CKn
.Wn;C

cy.AIM //:and

If the An structure on A can be extended to an A1 structure, and the .An;A/–
bimodule structure on M can be extended to an .A1;A/–bimodule structure, then
these constructions coincide with the constructions obtained from the skeletal and total
spectrum filtrations.

3 A1 obstruction theory

In this section we set up an obstruction theory for endowing a spectrum A with an
A1 structure. There are basically two ways to do this, both reducing to topological
Hochschild cohomology calculations. One way, which only works for connective
spectra, is to build an A1 structure by induction on the Postnikov sections PmA [15].
The other, which we will use here, is to proceed by induction on the An structure.

The original reference for this is [31], but Robinson implicitly assumes that the multi-
plication on A is homotopy commutative, an assumption we would very much like
to get rid of. Other works on the subject, such as Goerss [19], also assume that the
multiplication is homotopy commutative.

The results in this section strengthen several results already in the literature. For
example, Corollary 3.2 strengthens Proposition 3.1(1) of Strickland [34], which says
that for R even commutative and x a nonzero divisor, any multiplication on R=x is
homotopy associative, to saying that any multiplication on R=x can be extended to an
A1 structure. Corollary 3.7 strengthens various results in Lazarev [24] and Baker and
Jeanneret [6] about the associativity of M U=I for certain regular ideals to all regular
ideals.

The most important change from Robinson [31] is that instead of ��A^A we consider
��A^Aop . The result is that the obstructions lie in the .�3/–stem of the potential
spectral sequence converging to �� THHS .A/, in a sense we will make more precise
below.

The obstruction theory works just as well in the category MR for a commutative
S –algebra R, in which case we are looking for A1 R–algebra structures on A. As
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an example of the power of this obstruction theory, we prove that if R is even and I is
a regular ideal in R� , R=I can always be given an A1 R–algebra structure.

Suppose that we have an An�1 structure on a spectrum A and we want to extend it to
an An structure. Then we need a map

.Kn/C ^A.n/!A

which is compatible with the An�1 structure. Because all the faces of Kn are products
of associahedra of lower dimension, the map .Kn/C ^A.n/ ! A is determined on
.@Kn/C ^ A.n/ . If we choose a basepoint in @Kn , the fiber of .@Kn/C ^ A.n/ !

.Kn/C ^ A.n/ is equivalent to @Kn ^ A.n/ ' †n�3A.n/ . Thus the obstruction to
extending the given An�1 structure to an An structure lies in

Œ†n�3A.n/;A�DA3�n.A.n//:

The unitality condition on the An structure also fixes the map on .Kn/C^sj A.n�1/ for
0� j � n�1, where sj W A

.n�1/!A.n/ is given by the unit R!A on the appropriate
factor. (This does not quite make sense; what we mean is that the appropriate diagram
is required to commute.) If we define xA as the cofiber of the unit map R! A, we
can then say that the obstruction lies in

Œ†n�3 xA.n/;A�DA3�n. xA.n//:

We also note that if the set of homotopy classes of An structures on A with a fixed
An�1 structure is nonempty, it is isomorphic to A2�n. xA.n// as a set. This set has no
group structure, but we can say that it is an A2�n. xA.n//–torsor.

We define a bigraded group E
�;�
1

by

E
s;t
1
DA�t .A.s//:

To take the unitality condition into account we also define

xE
s;t
1
DA�t . xA.s//:

Thus the obstruction to extending a given An�1 structure to an An structure lies in
xE

n;n�3
1

.

Note that we do not need the existence of a homotopy associative multiplication on A,
which is the data Robinson starts with in [31], to define xE�;�

1
. We get the following:

Theorem 3.1 Given an An�1 structure on A, n� 2, the obstruction to the existence
of an An structure extending the given An�1 structure lies in xEn;n�3

1
.
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Proof This is clear from the above discussion when n�3, we give a separate argument
for nD 2.

There is a cofiber sequence †�1 xA^ xA! A_A! A^A. Consider the fold map
A_A! A. It can be extended to a map A^A! A if and only if the composite
†�1 xA^ xA!A_A!A is null, so the obstruction lies in Œ†�1 xA^ xA;A�D xE

2;�1
1

.
If the fold map can be extended to A^A, it will automatically be unital, so it is an
A2 structure.

Let R be an even commutative S –algebra. Because R is not a cell R–module, we use
the sphere R–modules Sn

R
to make cell R–modules, as in [17, III.2]. Given x 2 �dR,

we pick a representative xW Sd
R
! S0

R
and define R=x as the cofiber

Sd
R

x
! S0

R!R=x:

This defines R=x up to noncanonical isomorphism.

Corollary 3.2 Let R be an even commutative S –algebra, and let x 2 �dR be a
nonzero divisor. Then any An�1 structure on A D R=x can be extended to an An

structure, for any n� 2. In particular, the set of A1 structures on A is nonempty.

Proof In this case R=x Š†dC1R. Thus

xE
s;t
1
DR�t ..†dC1R/.s//ŠR�t .†s.dC1/R/Š �s.dC1/CtR;

and the obstruction lies in xEn;n�3
1

D �n.dC1/Cn�3R, which is zero because R (and
d ) is even.

In particular, this settles [8, Conjecture 2.16], where Baker and Lazarev conjecture
that any homotopy associative multiplication on R=x can be extended to an A1
multiplication.

Example 3.3 As an example of how R=x fails to be A1 when R is not even, let us
consider the case RD S and xD p , so S=pDMp is the mod p Moore spectrum. In
this case the obstruction to an An structure lies in �2n�3Mp , which is zero for n< p ,
but �2p�3Mp Š Z=p is generated by S2p�3˛1

!S0!Mp .

The obstruction is in fact nonzero. One way to show this is to consider the map
Mp!HZ=p . If Mp is Ap , then this is a map of Ap ring spectra, and the induced
map H�.Mp;Z=p/! H�.HZ=pIZ=p/ commutes with p–fold Massey products.
But there is a p–fold Massey product hx�i ; : : : ; x�ii D �

x�iC1 in H�.HZ=pIZ=p/D
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A� defined with no indeterminacy,1 and in particular the image of the generator
a 2H1.MpIZ=p/ supports a nonzero p–fold Massey product while a clearly does
not.

Now suppose that A comes with an A3 structure, ie, a unital map �2W A^A! A

and a homotopy �3 from �2.�2 ^ 1/ to �2.1 ^ �2/. Then there are s C 2 maps
At .A.s//! At .A.sC1//, which we denote by d i for 0 � i � sC 1. Here d0 sends
f W A.s/!A to

A.sC1/ 1^f
���!A.2/

�2
�!A;

d i sends f to

A.sC1/ 1i�1^�2^1s�i

����������!A.s/
f
!A

for 1� i � s and d sC1 sends f to

A.sC1/ f^1
���! A.2/

�2
�!A:

Adding the obvious codegeneracy maps, this structure makes E
�;�
1

into a graded
cosimplicial group. Note that we could not do this with only an A2 structure, because
homotopy associativity is needed to make sure the cosimplicial identities hold.

With this construction, xE�;�
1

is the associated normalized cochain complex, with
differential d D

P
.�1/id i . We let E

�;�
2

be the homology of . xE�;�
1
; d/. The existence

of an A3 structure is also needed to make sure d2 D 0.

Lemma 3.4 Suppose we have an An�1 structure on A, n� 4. Let cn be the obstruc-
tion to the existence of an An structure extending the given An�1 structure. Then
d.cn/D 0.

Proof The obstruction cn is a map @Kn^A.n/!A, so we think of cn as the boundary
of Kn . In this way we can think of d i.cn/ as the boundary of one of the copies of
Kn on @KnC1 , which is a codimension 2 subcomplex of KnC1 , and we can consider
d.cn/ as a formal sum of codimension 2 subcomplexes of KnC1 . The faces that lie in
the intersection of two copies of Kn sum to zero, while the rest are null because we
can fill the copies of Ki �Kn�iC2 on @KnC1 for 3� i � n� 1.

1We have not found this statement in the literature, but the proof is easy. By Kochman [22, Corollary
20], the p–fold Massey product on a class x in dimension 2n � 1 is given by �ˇQn.x/ , and by
Steinberger’s calculations [14, Theorem III.2.3] this gives the result.
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If we change the An�1 structure by f , the obstruction to an An structure changes by
df . Thus we get the following:

Theorem 3.5 (Compare [31, Theorem 1.11].) Suppose we have an An�1 structure
on A, n� 4. The obstruction to the existence of an An structure on A, while allowing
the An�1 structure to vary but fixing the An�2 structure lies in E

n;n�3
2

.

Under very reasonable conditions on A, for example if ��A^R A is projective over
A� , we can identify E

�;�
2

with Ext�;�
��A^RAop.A�;A�/. Now we are in a position to

prove that any homotopy associative multiplication on A D R=I , where R is even
and I is a regular ideal, can be extended to an A1 structure. Here R=I is defined as
follows. Let I D .x1;x2; : : :/, where .x1;x2; : : :/ is a regular sequence. Then R=I is
the (possibly infinite) smash product R=x1 ^R R=x2 ^R : : :. It is clear [17, Corollary
V.2.10] that R=I does not depend on the choice of regular sequence generating I .
First we need to know the structure of ��A^R Aop . Let di be the degree of xi .

Proposition 3.6 Given any homotopy associative multiplication on ADR=I with R

even and I D .x1;x2; : : :/ a regular ideal, ��A^R Aop is given by

��A^R Aop
DƒA�.˛1; ˛2; : : :/

as a ring. Here j˛i j D di C 1.

Proof This is well known; see Baker and Jeanerret [6] and Lazarev [24]. The proofs
in [6] and [24] both use that ��FR.A;A/ is a (completed) exterior algebra together
with a Kronecker pairing. Here we present a different proof:

There is a multiplicative Künneth spectral sequence (see Baker and Lazarev [7])

E2
�;� D TorR�

�;�.A�;A
op
� /H) ��A^R Aop:

By using a Koszul resolution of A� DR�=I it is clear that E2
�;� DƒA�.˛1; ˛2; : : :/

with ˛i in bidegree .1; di/. The spectral sequence collapses, so all we have to do
is to show that there are no multiplicative extensions. Because ˛2

i is well defined
up to lower filtration and E2

1;�
is concentrated in odd total degree, it follows that

˛2
i 2 A�˝R� A

op
� Š A� in ��A^R Aop D AR

�Aop . Now there are several ways to
show that ˛2

i D 0. If we denote the map AR
�Aop �! A� by � , it is enough to show

that �.˛2/D 0 since � gives an isomorphism from filtration 0 in the spectral sequence
to A� . For example, we can use that A is an A^R Aop –module and study the two
maps AR

�Aop˝AR
�Aop˝A� �!A� . One sends ˛i˝˛i˝ 1 to �.˛2

i /, the other one
sends it to 0.
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An extension of the argument in the proof shows that there cannot even be any Massey
products in ��A^R Aop , by comparing brackets formed in .A^R Aop/.n/ and .A^R

Aop/.n�1/ ^A. The above result is not true for A^R A, in which case ˛i might very
well square to something nonzero. This happens eg for ADK.n/ and RD1E.n/ at
p D 2; see Nassau [27].

Corollary 3.7 Suppose ADR=I with R even and I regular has an An�1 structure,
n � 4. Then A has an An structure with the same underlying An�2 structure. In
particular, any homotopy associative multiplication on ADR=I can be extended to an
A1 structure.

Proof Using Theorem 3.5, the obstructions lie in Extn;n�3
��A^RAop.A�;A�/. In particular

the obstructions are in odd total degree. But by Proposition 3.6, ��A ^R Aop Š

ƒA�.˛1; ˛2; : : :/ with j˛i j D jdi jC 1, so Ext over it is a polynomial algebra

(3–1) Ext�;�
��A^RAop.A�;A�/ŠA�Œq1; q2; : : :�

with jqi j D .1;�di � 1/. Thus Ext�;�
��A^RAop.A�;A�/ is concentrated in even total

degree, and there can be no obstructions.

Equation (3–1) in the above proof also gives the E2 –term of the canonical spectral
sequence calculating �� THHR.R=I/. A similar calculation gives the E2 –term of
the spectral sequence calculating �� THHR.R=I/ as a divided power algebra, as in
Equations (5–1) and (5–2).

Remark 3.8 It might seem like Corollary 3.7 follows from Corollary 3.2, because an
A1 structure on each R=xi gives an A1 structure on R=I , but there are multipli-
cations on R=I which do not come from smashing together multiplications on each
R=xi , so this is a stronger result.

There might also be A2 structures on R=I which do not extend to A3 , although any
A2 structure obtained by smashing together A2 structures on each R=xi will certainly
be homotopy associative.

We will need a more precise classification of the A2 structures on R=I which can
be extended to A3 , and hence to A1 . Recall [34, Proposition 4.15] that A�

R
A is a

(completed) exterior algebra

A�RAŠ yƒA�.Q1;Q2; : : :/;

where Qi is obtained from the composite R=xi

ˇi
!†diC1R!†diC1R=xi and has

degree �di � 1.
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Theorem 3.9 Fix a homotopy associative multiplication �0 on ADR=I . Given any
other homotopy associative multiplication � on A, it can be written uniquely as

� D �0
Y
i;j

�
1^ 1C vij Qi ^Qj

�
for some vij 2 �diCdjC2A, where the product denotes composition (which can be
taken in any order, because all the factors are even). Conversely, any � that can be
written in this form is homotopy associative.

Proof Associativity is some kind of cocycle condition, and one could imagine a simple
proof based on this. However, the relevant maps A0.A^A/ �!A0.A^A^A/ are
not linear, and this complicates things.

We use the Künneth isomorphism

A�AŠ HomA�.A�A;A�/

and similar formulas for A�.A.2// and A�.A.3//. These isomorphisms depend on a
choice of multiplication, and we will use �0 for each of them. For example, the map
A�A �! HomA�.A�A;A�/ is given by sending

A
f
�!A to A�A

A�f
���!A�A

�0

�!A�:

Let �W A�A �! A� be the map induced by �0 . To check if � is associative, it is
enough to check whether or not the diagram

(3–2) A�A˝A� A�A˝A� A�A
�^1 //

1^�

��

A�A˝A� A�A

�

��
A�A

�

��
A�A˝A� A�A

� // A�A
� // A�

commutes.

Recall that A�A Š ƒA�.Q1; : : : ;Qn/ and that A�A Š ƒA�.˛1; : : : ; ˛n/, at least
additively. Under the Künneth isomorphism Qi corresponds to the map sending ˛i to 1.

Now suppose that � is some unital product on A. We can write

� D �0
Y
I;J

�
1^ 1C vIJ QI ^QJ

�
;
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where I and J run over indexes I D .i1; : : : ; ir / and J D .j1; : : : ; js/, and where
QI DQi1

� � �Qir
and QJ DQj1

� � �Qjs
. Let jI j denote the number of indices in I .

By unitality we have jI j> 0 and jJ j> 0, and because A� is even jI jC jJ j has to be
even.

If � D �0.1^ 1C vij Qi ^Qj /, then we can calculate �.� ^ 1/ and �.1^�/ using
diagram (3–2). For example, �.� ^ 1/ and �.1^�/ both send ˛i ˝ j̨ ˝ 1 to vij , as
we see by following diagram (3–2) around both ways. Similarly, they send ˛i˝1˝ j̨

and 1˝ ˛i ˝ j̨ to vij , and they send ˛i ˝ ˛i j̨ ˝ j̨ to �v2
ij . Those are all the

relevant terms, and shows that

(3–3) �.1^�/D �.� ^ 1/D �0.�0
^ 1/ı�

vij .Qi ^Qj ^ 1CQi ^ 1^Qj C 1^Qi ^Qj /� vij Qi ^Qij ^Qj

�
:

This shows that any � as in the theorem is associative.

To show that none of the other products are associative, it is enough to show that

� D �0.1^ 1C vIJ QI ^QJ /

is not associative for any I , J with jI jC jJ j> 2. For example, if

� D �0.1^ 1C vQij ^Qkl/

then �.1^�/ sends ˛i j̨ ˝˛k ˝˛l to v but �.� ^ 1/ sends it to zero.

Remark 3.10 Alternatively, we can say that given a homotopy associative multiplica-
tion � on A, it can be written as

� D �0
Y
i¤j

�
1^ 1C vij Qi ^Qj

�
for a unique �0 which is obtained by smashing together multiplications on each R=xi .

By allowing the An�1 structure but fixing the An�2 structure, we have seen that the
obstruction cn to an An structure lies in E

n;n�3
2

. In fact, we can do even better. By
allowing the An�i structure to vary for 1� i � r � 1, the obstruction to the existence
of an An structure actually lies in E

n;n�3
r , provided that n� 2r .

The reason for this restriction on n and r is the following. The definition of dr�1.cn/

uses the Ai structure for i � r , and if we change the Ar structure, we change the
definition of dr�1W E

n;n�3
r�1

!E
nCr�1;nCr�3
r�1

. This nonlinear behavior prevents dr�1

from squaring to zero, so to define E
�;�
r we have to fix the Ar structure.
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Theorem 3.11 Suppose n� 2r . Then the obstruction to an An structure on A, while
allowing the An�rC1 through An�1 structure to vary but fixing the An�r structure,
lies in E

n;n�3
r .

Proof With n � 2r , this works just like Theorem 3.1 and Theorem 3.5, except the
definition of di for i � 2 is slightly more complicated. Let cn be the obstruction to
an An structure. Then, if f 2 E

n�2;n�4
2

, d2.f / changes the obstruction by a sum
of two terms. First, the obstruction problem for the An�1 structure changes, so the
obstruction changes on the faces of Kn of the form Kn�1 . Second, the obstruction
changes on the faces of Kn of the form K3 �Kn�2 because the map depends directly
on the An�2 structure on those faces. The general case is similar.

Proving that di.cn/ D 0 for i � 2 is also a bit more complicated. We have already
seen that d1.cn/ D 0. If we think of this as a map from a subcomplex of KnC1 ,
we can extend this to all of @KnC1 without changing the map on faces of the form
Ki �KnC2�i for 3 � i � n� 1. This gives us a map from @KnC1 . Now d2.cn/ is
given by a sum of two terms. First, it changes on the codimension 2 faces of KnC2

of the form @KnC1 given by d1 of the map from @KnC1 we just found. Second, it
changes on the faces of the form K3 � @Kn .

Now some parts cancel, and the rest are null because we can fill Ki �KnC3�i for
4� i � n� 1. The general case is similar.

It is also possible to set up an obstruction theory for extending a map f W A! B

between A1 ring spectra to an A1 map. We give a brief outline of one way to do
this. We need to specify what we mean by an A1 map. Requiring the diagrams

.Kn/C ^A.n/ //

��

.Kn/C ^B.n/

��
A // B

to commute on the nose is too restrictive.

Instead we should require, for example, that there is a homotopy between the two
ways of going from A^A to B , and then higher homotopies between all the ways of
going from A.n/ to B . This is encoded in what is sometimes called a colored operad,
or a many-sorted operad, or a multicategory [25]. The idea goes back to Boardman
and Vogt [11], who considered colored PROPs. In this case we want a multicategory
K0!1 with two objects satisfying the following conditions. First of all, each space
where all the source objects and the target object agree gives an associahedron, ie,
K0!1.�; : : : ; �I �/DKn for � D 0; 1. Second of all, K0!1.�1; : : : ; �nI 0/ is empty if
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some �iD 1. And finally, K0!1.0; 0I 1/D I is an interval and each K0!1.0; : : : ; 0I 1/

is contractible.

An algebra over K0!1 is precisely a pair of A1 algebras and an A1 map between
them. It is a little bit harder to describe the spaces in K0!1 , but it is true that
K0!1.0; : : : ; 0I 1/ (with n inputs) is homeomorphic to Dn�1 . Then the usual obstruc-
tion theory argument shows that the obstruction to extending an An�1 map from A to
B to an An map lies in

Œ†n�2A.n/;B�Š B2�n.A.n//:

Unitality implies that we can replace A with xA.

We end the section by looking at how to endow an R–module M with an A–bimodule
structure, given an A1 structure on A. Given an .An�1;A/–bimodule structure on
M , we have to find maps

�n;i W .Kn/C ^A.i�1/
^M ^A.n�i/

�!M

for 1� i � n. Each �n;i is determined by the .An�1;A/–bimodule structure on @Kn ,
so the obstruction to defining �n;i lies in M 3�n.A.i�1/ ^M ^A.n�i//.

As usual, unitality implies that the obstruction really lies in M 3�n. xA.i�1/ ^M ^

xA.n�i//. Similarly, if the set of .An;A/–bimodule structures extending a given
.An�1;A/–bimodule structure is nonempty, it is a torsor overY

1�i�n

M 2�n. xA.i�1/
^M ^ xA.n�i//:

We see that there are generally more A–bimodule structures on A than there are
A1 structures on A, because each of the maps �n;i for 1 � i � n can be chosen
independently.

It is sometimes convenient to introduce another condition. Suppose M comes with a
map R!M . Then there are two natural maps A!M , given by AŠA^R R!

A ^R M ! M and A Š R ^R A ! M ^R A ! M . We can ask for these two
maps to agree, and then for each composite map .Kn/C ^A.i�1/ ^R^A.n�i/ !

.Kn/C^A.i�1/^M ^A.n�i/!M to be given by the An�1 structure on A followed
by the map A!M . In that case we can further reduce the obstruction to an obstruction
in M 3�n. xA.i�1/ ^ xM ^ xA.n�i//. We will call such an A–bimodule unital.

For example, if ADM DR=x with R even commutative, we see that the set of unital
.An;A/–bimodule structures on A is a torsor over .�n.dC2/�2A/n . For convenience
we will always assume that M satisfies this condition, to make the theory of A1
bimodules as closely related to the theory of A1 structures as possible.

Geometry & Topology, Volume 12 (2008)



1004 Vigleik Angeltveit

4 Cyclic and cocyclic An structures

It turns out that in certain cases, such as when ADR=I , the An structure on A controls
certain hidden extensions of height n� 1 in the canonical spectral sequences (2–1)
and (2–2) calculating �� THHR.A/ and �� THHR.A/. For THHR.A/ the extensions
are trivial if and only if the maps .Kn/C ^ A.n/ ! A obtained by first cyclically
permuting the A–factors and then using the An structure are homotopic, in a sense we
will make precise below. If these maps are homotopic we call the An structure cyclic.
For THHR.A/ the cyclic permutations are replaced by the maps A.n/!A.n/ given
by .a1; a2; : : : ; an/ 7! .a2; : : : ; ai ; a1; aiC1; : : : ; an/, and if these maps are homotopic
we call the An structure cocyclic. We will come back to the THH–calculations in the
next section. In this section we concentrate on developing the theory of cyclic and
cocyclic An structures.

Given an operad P in a symmetric monoidal category C and a functor RW 0�C
op
P
!

C , recall from [1, Definition 5.1] the definition of an R–trace on a pair .A;M /

consisting of a P –algebra A and an A–bimodule M in some symmetric monoidal
C–category D with target B as a natural transformation R! EA;M;B of functors.
Here EA;M;B.f0; 1; : : : ; ng/D Hom.M ˝A˝n;B/.

Also recall from [1, Definition 5.3] the definition of an R–cotrace on a pair .A;M /

with source B as a natural transformation R! zEB;A;M , where

zEB;A;M .f0; 1; : : : ; ng/D Hom.B˝A˝n;M /:

In particular, these definitions make sense if P D K is the associahedra operad and
RDW is the cyclohedra, or if P DKn and RDWn .

Definition 4.1 Let A be an An –algebra, 1 � n �1. We say that the An structure
on A is cyclic if the identity map A!A can be extended to a Wn –trace.

This means, roughly speaking, that the maps

.a1; : : : ; an/ 7! ai � � � ana1 � � � ai�1

for 1� i � n are homotopic in a sufficiently nice way. To be more precise, a Wn –trace
on A is a collection of maps .Wm/C^A.m/!A for m�n. The map .Wn/C^A.n/!

A is determined on each of the n copies of Kn on the boundary of Wn by the An

structure precomposed with a cyclic permutation, and given a Wn�1 –trace the map
.Wn/C^A.n/!A is determined on all of @Wn . Thus a Wn –trace on A is a coherent
choice of homotopies between the n maps .Kn/C ^ A.n/ ! A obtained by first
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cyclically permuting the A–factors and then using the An structure, plus some extra
homotopies to glue these maps together.

A cyclic A2 structure is the same as a homotopy commutative (and unital, but not
necessarily homotopy associative) multiplication. A cyclic A3 structure is an A3

structure which is homotopy commutative, and such that for some choice of homotopy
between the multiplication and its opposite, the natural map .@W3/C ^A.3/!A can
be extended to all of W3 , as in Figure 1.

.ca/b b.ca/

.bc/a

a.bc/.ab/c

c.ab/

Figure 1: The cyclohedron that has to be filled for a cyclic A3 structure

We can also make this definition for an A–bimodule M .

Definition 4.2 Let A be an An –algebra and let M be an .An;A/–bimodule. We
say that the bimodule structure on M is cyclic if the identity map M !M can be
extended to a Wn –trace.

Thus M is a cyclic bimodule over the An –algebra A if the maps

.m; a2; : : : ; an/ 7! ai � � � anma2 � � � ai�1

for 1� i � n are homotopic in the same sense as above.

We make a similar definition for a cotrace:

Definition 4.3 Let A be an An –algebra and let M be an .An;A/–bimodule. We say
that the An structure on A is cocyclic if the identity map A!A can be extended to a
Wn –cotrace, and we say that the bimodule structure on M is cocyclic if the identity
map M !M can be extended to a Wn –cotrace.
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Thus M is cocyclic if the maps

.m; a2; : : : ; an/ 7! a2 � � � aimaiC1 � � � an

are homotopic. Note that the cyclic permutations from before have been replaced by
a linear ordering of the A–factors while M is allowed in any position. When nD 2

cyclic and cocyclic mean the same thing, namely that the left and right action of A

on M are homotopic, or that M is homotopy symmetric. When n D 3, M is a
cocyclic .A3;A/–bimodule if the hexagon in Figure 2 can be filled. The boundary of
this hexagon has the same shape as one of the two diagrams relating associativity to
the twist map in the definition of a braided monoidal category.

a.bm/ a.mb/

a.mb/

.ma/bm.ab/

.ab/m

Figure 2: The cyclohedron that has to be filled for a cocyclic .A3;A/–
bimodule structure

Because a W –trace is corepresented by the cyclic bar construction [1, Observation 5.2],
which in the category of spectra is topological Hochschild homology, and a W –cotrace
is represented by the cyclic cobar construction [1, Observation 5.5], or topological
Hochschild cohomology, this helps us study maps out of topological Hochschild
homology and into topological Hochschild cohomology.

Observation 4.4 Let A be an A1 R–algebra and let M be an A–bimodule. Then
the natural map M ! skn�1 THHR.AIM / splits if and only if M , considered as an
.An;A/–bimodule, is cyclic.

Similarly, the natural map Totn�1 THHR.AIM /!M splits if and only if M , con-
sidered as an .An;A/–bimodule, is cocyclic.

The notions of a trace and a cotrace are dual, in the following sense. If M is an
A–bimodule, the dual DM D FR.M;R/ is again an A–bimodule in a natural way,
and we can say the following:
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Proposition 4.5 If M is a cyclic .An;A/–bimodule, then DM is a cocyclic .An;A/–
bimodule. If M is a cocyclic .An;A/–bimodule, then DM is a cyclic .An;A/–
bimodule.

If M is dualizable in the sense that DDM ŠM , then M is cyclic (cocyclic) if and
only if DM is cocyclic (cyclic).

Proof This is clear, because the definition of a cotrace is dual to the definition of a
trace. For example, for W3 the homotopies .ab/m � a.bm/ � a.mb/ � .am/b �

.ma/b �m.ab/� .ab/m for a; b 2A and m 2M are dual to homotopies f .ab/�

.fa/b � b.fa/� .bf /a� a.bf /� .ab/f � f .ab/ for a; b 2A and f 2DM , and
so a filling of the first hexagon is dual to a filling of the second hexagon.

The other case, and the if and only if statements when M is dualizable, are similar.

Because a Wn –trace determines the map .Wn/C ^M ^A.n�1/ ! B on @Wn , we
can play a similar game as with the A1 obstruction theory. As before, let xA be the
cofiber of R! A, and let Es;t

1
D B�t .M ^ xA.s//. Then, given a Wn�1 –trace, the

obstruction to the existence of a Wn –trace lies in En�1;n�2
1

. If the set of Wn –traces is
nonempty, it is a torsor over En�1;n�1

1
.

Similarly, let zEs;t
1
DM�t .B ^ xA.s//. Then, given a Wn�1 –cotrace, the obstruction to

the existence of a Wn –cotrace lies in zEn�1;n�2
1

.

The unreduced versions of E�;�
1

and zE�;�
1

are graded cosimplicial abelian groups, and
the following theorem follows in a similar way as Theorem 3.11.

Theorem 4.6 Suppose we have a Wn�1 –trace extending a map M ! B . Then, for
1 � r � n � 1, the obstruction to the existence of a Wn –trace, while allowing the
Wn�rC1 through Wn�1 –trace to vary but fixing the Wn�r –trace lies in En�1;n�2

r .

Similarly, suppose we have a Wn�1 –cotrace extending a map B ! M . Then, for
1 � r � n� 1, the obstruction to the existence of a Wn –cotrace, while allowing the
Wn�rC1 through Wn�1 –cotrace to vary but fixing the Wn�r –cotrace lies in zEn�1;n�2

r .

For ADR=I with I D .x1; : : : ;xm/ a regular ideal we will be especially interested
in cotraces extending the natural map R=xi !R=I . An important property of R=I

is that it is self dual (over R) up to a suspension. To be precise,

D.R=I/'†�†.diC1/R=I:

The equivalence is not canonical, but a choice of regular sequence .x1; : : : ;xm/ gen-
erating I dictates a choice of equivalence. This is clear from considering R=x and
D.R=x/, which are both 2–cell R–modules with attaching map x .
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Also note that the Bockstein R=x!†dC1R is dual to a map †�d�1R!D.R=x/'

†�d�1R=x , and this is precisely the unit map (desuspended) for R=x .

Thus the canonical map R=xi!R=I is dual to the map

R=I !††j¤i .djC1/R=xi

given by the Bockstein ǰ on each factor R=xj for j ¤ i . We then have the following.

Theorem 4.7 There is a Wn –cotrace extending the canonical map R=xi!R=I if
and only if there is a Wn –trace extending the canonical map R=I!††j¤i .djC1/R=xi .
In particular, an An structure on ADR=xi is cyclic if and only if it is cocyclic.

Proof For this we will need the spectral sequences (5–1) and (5–2), and the action
described in Proposition 5.1. We have a Wn –cotrace on R=xi!R=I if and only if
xi acts trivially on �� THHR.R=I/ up to filtration n� 1. Consider the pairing

THHR.R=I/^R THHR.R=I/! THHR.R=I/;

which is R–linear. Let I .xq/ denote some element i1
.xq1/ � � � im

.xqm/ with i1 C

� � � im D n� 1. If xiI .xq/D v ¤ 0, then xi.1; I .xq// 7! v , so .xi ; I .xq// 7! v . But
xi is in filtration � n and I .xq/ is in filtration n� 1, so in fact .xi ; I .xq// 7! 0.

It will be convenient to write down exactly what the cotrace obstructions look like in the
cases we care about. Let ADM DR=I and consider Wn –cotraces from B DR=xi

to .A;M /. Then

zEs;��
1
DA�.R=xi ^

xA.s//ŠƒA�.˛i/˝A�
xE

s;��
1

;

where xE1 is the (reduced) E1 –term of the spectral sequence converging to
�� THHR.A/. The d1 –differential on zE1 is tensored up from the d1 –differential
on xE1 , so

zE�;��
2

ŠƒA�.˛i/˝A� A�Œq1; : : : ; qm�:

The obstruction to a Wn –cotrace lies in zEn�1;n�2
2

, which has odd total degree. The
only generator of zE�;�

2
which has odd degree is ˛i , so the obstruction has to look like

˛iri.q1; : : : ; qm/ for some polynomial ri of degree n� 1 in the qi ’s and total degree
di . For notational convenience, we will write this obstruction as ri.q1; : : : ; qm/dqi . If
B DR=x1 _ : : :_R=xm then the obstruction looks likeX

ri.q1; : : : ; qm/dqi

for polynomials r1; : : : ; rm . We will see in Corollary 5.13 that if we change the An

structure on A D R=I by f .q1; : : : ; qm/ then this obstruction changes by df DP @f
@qi

dqi .
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The case A D R=x

Now let us study the case ADM D B DR=x with R even and x a nonzero divisor.
We need to go into more detail about how to calculate the actual obstructions. We first
do the n D 2 case, following Strickland [34]. In this case we want to know how to
determine whether or not an A2 structure on A is (co)cyclic, or in other words whether
or not A has a homotopy commutative multiplication.

Given a multiplication (A2 structure) � on ADR=x , we note that � and �op agree
on the bottom 3 cells of R=x^R R=x regarded as a 4–cell R–module, and following
Strickland we define c.�/ by the equation

�op
�� D c.�/ ı .ˇ^ˇ/:

Clearly � is homotopy commutative, or (co)cyclic, if and only if c.�/D 0.

If �0 D �C v ı .ˇ^ˇ/ for some v 2 �2dC2R=x then .�0/op D �op� v ı .ˇ^ˇ/, so
c.�0/D c.�/� 2v . In particular, if 2 is invertible in ��R=x then R=x always has a
cyclic A2 structure. Strickland defines xc.x/ as the image of c.�/ in �2dC2R=.2;x/.

Now the following proposition, except the last part about power operations, is clear:

Proposition 4.8 (Strickland [34, Proposition 3.1])

(1) All products (A2 structures) are associative (A3 ), and unital.

(2) The set of products on R=x has a free transitive action of the group R2dC2=x .

(3) There is a naturally defined element xc.x/ 2 �2dC2R=.2;x/ such that R=x

admits a commutative product if and only if xc.x/D 0.

(4) If so, the set of commutative products has a free transitive action of

ann.2;R2dC2=x/D fy 2R2dC2=x j 2y D 0g:

(5) If d � 0 there is a power operation zP W Rd ! R2dC2=2 such that xc.x/ D
zP .x/ .mod 2;x/ for all x .

The power operation is constructed as follows. Consider the map x2W †2dR! R.
Because R is E1 , we can extend this map over .RP1

2d
/C ^R. By restricting to

RP2dC2
2d

'†2dRP2 we get a map †2dRP2
C ^R!Rf , or an element P .x/ in

R�2d .RP2
C^R/ŠR2d˚R2dC2=2. zP .x/ is defined as the projection of P .x/ onto

R2dC2=2. The above proposition is also true when d < 0, though some details in the
proof would have to be changed.

The obstruction theory for cyclic An structures for n > 2 is somewhat harder. As
before, given an An structure � D .�2; : : : ; �n/ on R=x where the An�1 structure
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is cyclic, we can define an obstruction cn.�n/ 2 �n.dC2/�2R=x to the An structure
being cyclic by factoring @Wn ^R=x.n/!R=x as

@Wn ^R=x.n/ Š†n�2R=x.n/
ˇ^:::^ˇ
�����!†n.dC2/�2R

c.�n/
���!R=x:

Recall that the cyclohedron Wn has n copies of Kn on its boundary. Now, if �0n D
�nC v ı .ˇ^ : : :^ˇ/, then the obstruction to the An structure being cyclic changes
on each of the Kn ’s, and the net effect is that cn.�

0
n/ D cn.�n/C nv . We define

xcn.x/ 2 �n.dC2/�2R=.n;x/ as the image of cn.�n/ for some An structure extending
a cyclic An�1 structure. It follows that if n is invertible in R�=x then we can always
find a cyclic An structure extending a cyclic An�1 structure. If nD p is not invertible,
we make the following conjecture.

Conjecture 4.9 Suppose n is invertible in R� for n< p and 2.p�1/ j d . Then there
is a power operation zP W Rd !Rp.dC2/�2R=p such that xcn.x/D zP .x/ .mod p;x/

for all x .

There certainly is such a power operation, constructed by extending the p–th power
map xpW †pdR!R over a skeleton of B†p , the problem is identifying the power
operation with the obstruction.

The Morava K –theories

Conjecture 4.9 would generalize Proposition 4.8, and in particular this would show
that there is no Wp –trace (or cotrace) on K.n/. Instead we show this, and more,
by finding A� comodule extensions in the Bökstedt spectral sequence converging to
H�.THHS .k.n//IFp/. This will also supply us with the obstructions to W –cotraces
extending the natural maps 1E.n/=vi �!K.n/ for 0 � i � n� 1 (v0 D p ). We will
give the argument for odd primes; the p D 2 case is similar after making the usual
changes in the notation. Consider the connective Morava K–theory spectrum k.n/.
From [5] we know that

H�.k.n/IFp/D P .x�i j i � 1/˝E.x�i j i ¤ n/:

The calculation of the E2 –term of the Bökstedt spectral sequence converging to
H�.THHS .k.n//IFp/ is similar to the calculations found for example in [3, Section 5],
and we get

E2
�� DH�.k.n/IFp/˝E.�x�i j i � 1/˝�.�x�i j i ¤ n/:

Because there is no multiplication on THHS .k.n// this has to be interpreted additively
only.
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This E2 –term injects into the E2 –term for the corresponding spectral sequence for
HZ=p , so the differentials are induced by the corresponding differentials for HZ=p .
Thus there is a differential dp�1.p.�x�i//D �x�iC1 , and the Ep –term looks like

E
p
�� DH�.k.n/IFp/˝E.�x�nC1/˝Pp.�x�i j i ¤ n/:

At this point the map of spectral sequences is no longer injective, so we cannot use this
argument to say that the spectral sequence collapses. But we can say that there are no
more differentials in low degrees:

Proposition 4.10 The Bökstedt spectral sequence converging to H�.k.n/IFp/ has no
dn differentials for n� p in degree less than 2pnC1� 1.

Proof By comparing with the Bökstedt spectral sequence for HZ=p , any differential
has to hit something which is in the kernel of the map E

p
��.k.n// �!E

p
��.HZ=p/.

The first element in the kernel is �x�nC1 , which has degree 2pnC1� 1.

In particular, this shows that
N

0�i<n Pp.�x�i/ survives to E1 .

Remark 4.11 If nD 1, then one can show [4] that the spectral sequence does collapse,
by using that the map ` �! k.1/ makes the Bökstedt spectral sequence for k.1/ into
a module spectral sequence over the Bökstedt spectral sequence for `, and using that
E

p
��.k.1// is generated as a module over E

p
��.`/ by classes in filtration 0� i � p�1.

One could imagine a similar argument with E���.k.n// as a module over E���.BP hni/

if BP hni is at least E2 , though in this case the module generators are in filtration
0� i � n.p� 1/.

Recall that in the corresponding Bökstedt spectral sequence for HZ=p there are
multiplicative extensions .�x�i/

p D �x�iC1 . Thus we find that

�.x�n�1.�x�n�1/
p�1/D �x�n

in H�.THHS .HZ=p/;Fp/, and more generally

�.x�i.�x�i/
p�1
� � � .�x�n�1/

p�1/D �x�n:

We use this to prove that there are A� comodule extensions in the Bökstedt spectral
sequence for k.n/.

Proposition 4.12 Let xi D .�x�i/
p�1 � � � .�x�n�1/

p�1 in H�.THHS .k.n//IFp/. Then
the A� comodule action on x�ixi is given by

�.x�ixi/D 1˝x�ixi C

X
x�j ˝x�

pj

i�j xi �

X
x�j ˝x�

pj

n�j :
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All the classes in
N

0�i<n Pp.�x�i/ are A� comodule primitive, and together with
the natural A� comodule structure on H�.k.n// this determines the A� comodule
structure on H�.THH.k.n//IFp/ up to degree 2pnC1� 1.

Proof Consider the commutative diagram:

H�.THHS .k.n//IFp/
� //

��

H�C1.THHS .k.n//IFp/

��

H�.THHS .HZ=p/IFp/
� // H�C1.THHS .HZ=p/IFp/

The classes in question all survive to E1�� by Proposition 4.10, and since �.x�ixi/D 0 in
H�.THHS .k.n//IFp/, we conclude that the image of x�ixi in H�.THHS .HZ=p/IFp/

has to be in the kernel of � . But �.x�ixi/D �x�n in H�.THHS .HZ=p/IFp/, and the
image is given by the element with the same name in the Bökstedt spectral sequence
for HZ=p modulo lower filtration. Thus x�ixi in H�.THHS .k.n//IFp/ has to map to
x�ixi minus something in lower filtration which also maps to �x�n under � . The only
elements in lower filtration that map to �x�n are x�n and x�j xj for j > i . If necessary we
can adjust x�ixi by adding elements in lower filtration in the Bökstedt spectral sequence
for k.n/ so x�ixi maps to x�ixi �x�n .

Because the map from H�.THHS .k.n//IFp/ to H�.THHS .HZ=p/IFp/ is a map of
A� comodules, it follows that the A� comodule action on x�ixi is as claimed. The
claim about all the classes in

N
0�i<n Pp.�x�i/ being primitive follows immediately

by using that

H�.THHS .k.n//IFp/ �!H�.THHS .HZ=p/IFp/

is injective in low degrees.

Now let us see what happens in the Adams spectral sequence with E2 –term
ExtA�.Fp;H�.THHS .k.n//IFp// converging to �� THHS .k.n//. (Here Ext means
Ext of comodules, as opposed to in the topological Hochschild cohomology spectral
sequence.) Because everything is concentrated in Adams filtration 0 and 1 in low
degrees, we can run the whole Adams spectral sequence through a range of dimensions.

Theorem 4.13 The classes
N

0�i<n Pp.�x�i/ and vn all give rise to corresponding
nontrivial classes in �� THHS .k.n//. Moreover, there are relations

vi.�x�i/
p�1
� � � .�x�n�1/

p�1
D vn:
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Proof First of all, since all the classes in
N

0�i<n Pp.�x�i/ are primitive, we get
corresponding classes in filtration 0 in the Adams spectral sequence. Also, because x�n

is missing from H�.k.n/IFp/ we get a class vn in filtration 1. There are no classes in
higher filtration in these degrees, so the classes

N
0�i<n Pp.�x�i/ and vn all survive

to �� THHS .k.n//.

Recall, eg from [28, p 63] that vn is represented by �
P
x�i ˝
x�

pi

n�i in the cobar
complex for p odd, with a similar formula for p D 2. This also implies that
vi.�x�i/

p�1 � � � .�x�n�1/
p�1 is represented by

�

X
x�j ˝x�

pj

i�j .�x�i/
p�1
� � � .�x�n�1/

p�1:

From the A� comodule structure we found in Proposition 4.12, we find that the
expressions representing vi.�x�i/

p�1 � � � .�x�n�1/
p�1 and vn are homologous, so the

two expressions have to be equal in �� THHS .k.n//.

5 Calculations of THH.A/ for A D R=I

In this section we attempt to calculate THHR.A/ and THHR.A/, where as usual R is
even commutative, I D .x1; : : : ;xm/ is a finitely generated regular ideal with jxi j D di

and A D R=I . Some of the results in this section also hold when I is infinitely
generated.

By Proposition 3.6 we know that ��A^R AopŠƒA�.˛1; : : : ; ˛m/ with j˛i j D diC1

and by the Ext calculation in the proof of Corollary 3.7 we find that the E2 –term of
the spectral sequence converging to �� THHR.A/ looks like

(5–1) E
�;�
2
DA�Œq1; : : : ; qm�H) �� THHR.A/;

with qi in bidegree .1;�di � 1/, or total degree �di � 2.

A similar calculation shows that the E2 –term of the corresponding spectral sequence
converging to �� THHR.A/ looks like

(5–2) E2
�;� D �A� Œxq1; : : : ; xqm�H) �� THHR.A/;

where � denotes a divided power algebra. In this case xqi is in bidegree .1; di C 1/,
or total degree di C 2. The first spectral sequence is a spectral sequence of algebras,
while the second spectral sequence has to be interpreted additively only unless the
multiplication on A is more structured than just A1 . For example, if A is En for
some n� 2, then by [9] or [18] THHR.A/ is En�1 and this also gives a multiplication
on the spectral sequence.
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Proposition 5.1 The E2 –term of the spectral sequence (5–1) acts on the E2 –term of
the spectral sequence (5–2) by qi � j .xqi/D j�1.xqi/ and qi � j .xqk/D 0 for k ¤ i .

Here 0.xqi/D 1 and j .xqi/D 0 for j < 0.

Proof This follows because algebraically a divided power algebra is dual to a polyno-
mial algebra, and Tor and Ext are dual in this case.

Both spectral sequences collapse at the E2 –term, and we are now in a position to
look for hidden extensions in the two spectral sequences. The extensions are all of
the following form. Each xi 2 �di

R acts trivially on E1 , but might act nontrivially
on �� THHR.A/ and �� THHR.A/. In the first spectral sequence an element is well
defined modulo higher filtration, so multiplication by xi increases the filtration, while
in the second spectral sequence an element is well defined modulo lower filtration, so
multiplication by xi decreases the filtration.

Height 1 extensions

We will consider ADR=x with jxj D d first. In this case we have spectral sequences

E
�;�
2
DA�Œq�H) �� THHR.A/;(5–3)

E2
�;� D �A� Œxq�H) �� THHR.A/:(5–4)

Baker and Lazarev [8] have one result in this direction. They consider R D KU

and A D KU=2 and go on to calculate THHKU .KU=2/. Their main tool is the
following piece of Morita theory, a kind of double centralizer theorem which is an easy
consequence of the theory developed in [16].

Theorem 5.2 (Baker and Lazarev [8]) For a finite cell R–module A, the natural map

R! FFR.A;A/.A;A/

is an A–localization. (Here F.�;�/ denotes the derived function spectrum.)

In particular, FFKU .KU=2;KU=2/.KU=2;KU=2/ ' KU^
2

, and Baker and Lazarev
proved that THHKU .KU=2/ ' KU^

2
by comparing KU=2 ^KU KU=2op with

FKU .KU=2;KU=2/.

Theorem 5.3 (Baker and Lazarev [8, Theorem 3.1])

THHKU .KU=2/'KU^2 ;

where KU^
2

is the 2–complete K–theory spectrum.
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We will discuss the proof here because we want to compare it to our more general
method. Consider the map KU=2^KU KU=2op! FKU .KU=2;KU=2/ adjoint to
the action map of KU=2^KU KU=2op on KU=2. On homotopy this looks like

ƒKU=2�.˛/!ƒKU=2�.Q/:

Here j˛j D 1 and jQj D �1, so ˛ 7! vQ for some v 2 �2KU=2. The action
map KU=2 ^KU KU=2op ^KU KU=2 ! KU=2 uses the twist map, so not sur-
prisingly [8, Proposition 2.12] v measures the noncommutativity of KU=2, and in
fact v D c.�/D u 2 �2KU=2 is nontrivial. It follows that KU=2^KU KU=2op!

FKU .KU=2;KU=2/ is a weak equivalence, and thus

FFKU .KU=2;KU=2/.KU=2;KU=2/ �! FKU=2^KU KU=2op.KU=2;KU=2/

is a weak equivalence, proving the theorem.

It is clear that a generalization of their proof will tell us exactly when THHR.A/ is
the A–localization of R, but otherwise this method will not tell us much more about
THHR.A/. If we consider the spectral sequence (5–3), then what Baker and Lazarev
really do is identify an additive extension in the spectral sequence. While multiplication
by 2 acts trivially on E2 DE1 , in the abutment �� THHKU .KU=2/ multiplication
by 2 acts nontrivially. By abuse of notation, let q also denote a representative of q in
�� THHKU .KU=2/. Then 2 �1� uq modulo filtration 2 and higher, which is enough
to conclude that �� THHKU .KU=2/ŠZ2Œu;u

�1� and that KU ! THHKU .KU=2/

is a 2–completion.

Let us also consider THHKU .KU=2/ before we return to the more general situation.
In this case the spectral sequence looks almost identical, except the additive extension
will decrease the filtration rather than increasing it. If we let i.xq/ also denote a
representative of i.xq/ in �� THHKU .KU=2/, then 2 � i.xq/ D ui�1.xq/ modulo
filtration i � 2. One way to see this is as follows:

Lemma 5.4 Suppose there is an extension x D
P

aiq
i in the spectral sequence (5–3).

Then there are extensions
xn.xq/D

X
ain�i.xq/

in the spectral sequence (5–4).

Proof Consider the pairing E��
2
˝R� E2

�� ! E2
�� and the corresponding pairing

THHR.A/^R THHR.A/! THHR.A/. Then

.x; n.xq//D
�X

aiq
i ; n.xq/

�
;

which maps to
P

ain�i.xq/.
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Thus we get the following description of THHKU .KU=2/:

Theorem 5.5 Topological Hochschild homology of KU=2 is given by

THHKU .KU=2/'KU Œ1=2�=2KU:

Proof By the lemma, 1 2 �0 THHKU .KU=2/ is 2–divisible, and the same argument
shows that it is infinitely 2–divisible. We can choose 1=2 to be in filtration 1, and
from the spectral sequence it then follows that

�n THHKU .KU=2/Š Z=21

for n even, and the result follows.

Note that while THHKU .KU=2/ is automatically KU=2–local, the same is not true
for THHKU .KU=2/. If we localize (or p–complete) THHKU .KU=2/, we end up
with †KU^

2
, indicating an interesting kind of duality between topological Hochschild

homology and cohomology.

In [35; 36] van den Bergh considered a similar case in the algebraic situation. Sup-
pose A is a ring with the property that ExtiA˝Aop.A;A˝Aop/ D 0 for i ¤ d and
ExtdA˝Aop.A;A˝Aop/D U . Then U inherits an A–bimodule structure by letting A

act from the left on Aop in A˝Aop and from the right on A in A˝Aop . Suppose
moreover that U is invertible as an A–bimodule. Then van den Bergh proved that we
get an isomorphism

HH i.AIM /ŠHHd�i.AIU ˝A M /:

Lemma 5.6 With ADR=I , the derived function spectrum FA^RAop.A;A^R Aop/

is weakly equivalent to †dA as an R–module, where d D
P
.di C 1/.

Proof This follows from the Ext–calculation

(5–5) Ext�;�
ƒA� .˛1;:::;˛m/

.A�; ƒA�.˛1; : : : ; ˛m//Š†
dA�:

Let A� D †�dFA^RAop.A;A ^R Aop/, which is weakly equivalent to A, and let
M� DM ^A A� . As in the proof of [35, Theorem 1], we get

THHR.AIM� /D .M ^A A� /^A^RAop A'M ^A^RAop A� :

Combined with the canonical map

M ^A^RAop FA^RAop.A;A^R Aop/ �! FA^RAop.A;M /
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this gives us a map

†d THHR.AIM� / �! THHR.AIM /:

If A were dualizable as an A ^R Aop –module we would expect this map to be an
equivalence, but A is clearly not dualizable in this sense. Instead the above map is
a completion. In the example with THHKU .KU=2/ and THHKU .KU=2/ this is a
version of the familiar formula .HZ=p1/^p '†HZp .

A straightforward generalization of Baker and Lazarev’s method works equally well to
determine when THHR.A/'RA , the A–localization of R, for ADR=I .

For a multiplication (A2 structure) � on ADR=I which is homotopy associative (can
be extended to an A3 , and thus to an A1 structure) we define an n�n matrix C.�/ as
follows. If �0 is given by smashing together multiplications �i on R=xi for each i we
set cii.�

0/D c.�i/ and cij .�
0/D 0 for i ¤ j . If � D �0

Q
i¤j .1^1Cvij Qi ^Qj /

we set cij .�/D�vij �vji . Thus C.�/D 0 if and only if � is homotopy commutative,
so we can say that C.�/ measures the noncommutativity of the multiplication.

Remark 5.7 If v 2 �diCdjC2A, then we can construct an endomorphism vQiQj of
A, as follows:

A
Qj

�!†djC1A
Qi
�!†diCdjC2A

v
�!A:

Let eD idCvQiQj . Then e is an automorphism of A with inverse e�1D id�vQiQj .
If we have a multiplication � on A, we can conjugate by e to get a new multiplication
�e defined by

A^A
e�1^e�1

������!A^A
�
�!A

e
�!A:

One can check that �e D �.1^1�vQi ^Qj /.1^1CvQj ^Qi/, so C.�e/D C.�/.
If � D �0

Q
i¤j .1^1Cvij Qi ^Qj / and �0D �0

Q
i¤j .1^1Cv0ij Qi ^Qj / for the

same �0 , then C.�/D C.�0/ if and only if �0 is obtained from � by conjugating by
an endomorphism. Thus, at least off the diagonal the matrix C.�/ determines � up to
conjugation.

Theorem 5.8 Suppose ADR=I and let � be an A2 structure on A which extends
to an A1 structure. If C.�/ is invertible we get

THHR.A/'RA;

the A–localization of R.
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Proof The map A^RAop!FR.A;A/ sends ˛i to
P

cij ǰ , so we get an equivalence
A^R Aop '!FR.A;A/ if and only if C.�/ is invertible. The result then follows from
Theorem 5.2.

Alternatively, we can identify the extensions in the spectral sequence (5–1). Let
B D R=xi , and consider the obstruction to a W2 –cotrace from B to .A;A/. The
obstruction is .

P
j cij qj /dqi . On the other hand, the obstruction is also the obstruction

to the existence of the dotted arrow in the diagram

R
xi // R

��

// R=xi

xx

Tot1 THHR.A/

which is exactly the nontriviality of xi 2 �di
Tot1 THHR.A/. Thus xi �

P
j cij qj

modulo filtration 2 and higher. By the Weierstrass preparation theorem this is enough
to conclude that when C.�/ is invertible then �� THHR.A/Š .R�/

^
I

.

Since this result holds whenever C.�/ is invertible, it holds generically in some sense.
On the other hand, it can happen that each cij 2 �diCdjC2R=I is 0 for degree reasons.
If R is 2–periodic we have no degree considerations, and we can say that if 2 is
invertible in A� or if n � 2 then there exists a multiplication � on A with C.�/

invertible. In the characteristic 2 case we use Proposition 4.8, part 5 to determine
whether or not THHR.R=x/ is weakly equivalent to RR=x .

The companion theorem for topological Hochschild homology is as follows.

Theorem 5.9 Suppose ADR=I and let � be an A2 structure on A which extends
to an A1 structure. If C.�/ is invertible we get

THHR.A/'RŒI�1�=IR:

Proof As in Lemma 5.4, 12�0 THHR.A/ is infinitely xi –divisible for each xi , with
1=xi in filtration 1.

To proceed further it is useful to consider THH.AIM / with ADM DR=I as R–
modules, but with a possibly different A–bimodule structure on M . We will assume
all our .An;A/–bimodule structures are unital, in the sense described at the end of
Section 3. Let �2 D .�2;1; �2;2/ be an .A2;A/–bimodule structure on M . Here
�2;1W M ^A!M and �2;2W A^M !M .
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Now, it is possible to vary �2;1 and �2;2 independently. For example, we can get a new
.A2;A/–bimodule structure on M by letting � 0

2;1
D �2;1.1^ 1C vij Qi ^Qj / and

not changing �2;2 . We can define a matrix C.�2/ which measures how nonsymmetric
the .A2;A/–bimodule structure is in a similar way as before. If ADM DR=x , we
define c.�/ by the equation

�2;1 ı � � �2;2 D c.�/.ˇ^ˇ/:

If �2 is obtained by smashing together .A2;R=xi/–bimodule structures �i
2

on each
R=xi we set cii.�2/D c.�i

2
/. If � 0

2
D .� 0

2;1
; �2;2/ where � 0

2;1
is obtained from �2;1 by

� 0
2;1
D �2;1.1^1Cvij Qi ^Qj / we set cij .�2/D cij .�2/�vij . If �2;2 is changed we

adjust cji in the same way.

It is clear that for any, not necessarily symmetric, n�n matrix C with cij 2�diCdjC2M

there is an .A2;A/–bimodule structure �2 on M with C.�2/ D C . It is also clear
that C.�2/ controls the height 1 extensions in the THH spectral sequences, so by
choosing the .A2;A/–bimodule structure appropriately we can get any extension
which is possible for degree reasons.

Theorem 5.10 Suppose A DM D R=I , and fix an A1 structure on A. Suppose
there exists a matrix C D fcij g with cij 2 �diCdjC2M which is invertible in M� .
Then there exists an .A1;A/–bimodule structure on M such that

THHR.AIM /'RA

THHR.AIM /'RŒI�1�=IR:and

Proof Choose �2 such that C.�2/D C is invertible.

Height n extensions

Now we claim that this works equally well for .An;A/–bimodule structures on M for
any n � 2. The essential point is that if we perturb the .An;A/–bimodule structure
while fixing the .An�1;A/–bimodule structure, then all the height n� 2 extensions
remain the same and the height n� 1 extensions change in a predictable way.

Suppose we have two .An;A/–bimodule structures

� D .�2; : : : ; �n/ and � 0 D .� 02; : : : ; �
0
n/

on M D A D R=I with �i D � 0i for i < n. Consider �n D f�n;i j 1 � i � ng and
� 0nD f�

0
n;i j 1� i � ng. Let J D .j1; : : : ; jn/ and write QJ for Qj1

^ : : :^Qjn
. Also
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write qJ for qj1
� � � qjn

. The obstruction theory implies that we can write

� 0n;i D �n;i
Y
J

�
1^ : : :^ 1C vJ ;iQJ

�
:

Theorem 5.11 Let A D M D R=I and suppose M has two .An;A/–bimodule
structures � and � 0 as above. Then the extension of xk to filtration n� 2 is the same
for the two .An;A/–bimodule structures, and the extension of xk to filtration n� 1

differs by a sum over i of all J such that ji D k of vJ ;iq
J =qk .

Proof This is mostly bookkeeping. Given � and � 0 as above, the difference between
the degree n� 1 extensions for the two bimodule structures is given by the obstruction
to the existence of a certain map .Wn/C ^R=xk ^A.n�1/!M , given by

.Wn/C ^R=xk ^A.n�1/
�! .Wn/C ^M ^A.n�1/

�!M:

Here the first map is the canonical map R=xk !R=I and the second map is given
by �n;i � � 0n;i on the Kn on the boundary of Wn corresponding to .Kn/C ^A.i�1/ ^

M ^A.n�i�1/!M , and the trivial map on the rest of @Wn because the .An�1;A/–
bimodule structures determined by � and � 0 agree. Using that Wn ŠDn�1 and that
the map on the boundary has to factor through ˇk W R=x!†dkC1R the obstruction
is given by a map

†n�2R=xk ^A.n�1/ ˇk^1
�! †diC.n�1/A.n�1/

�!M;

or an element in M�di�.n�1/.A.n�1//. On the i –th copy of Kn the map .Kn/C ^

A.i�1/ ^R=xk ^A.n�i�1/!M is given by a sum over all J of

.Kn/C ^A.i�1/
^R=xk ^A.n�i�1/ �^1

�!†dkC1.Kn/C ^A.n�1/
�!M;

where � D ˇk if ji D k and 0 otherwise, and the second map is vJ ;iq
J =qk . This

implies the result.

It follows from this theorem that by adjusting the .A1;A/–bimodule structure on M

we have a lot of choice for �� THHR.AIM /.
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Corollary 5.12 Given any power series fi D
P

aiJ qJ in R�ŒŒq1; : : : ; qm�� with no
constant term of total degree di for i D 1; : : : ;m there is an .A1;A/–bimodule
structure on M such that

�� THHR.AIM /ŠR�ŒŒq1; : : : ; qm��=.x1�f1; : : : ;xm�fm/:

For this .A1;A/–bimodule structure we have

�� THHR.AIM /Š �R� Œxq1; : : : ; xqm�=.xiI .xq/�
X

aiJ I�J .xq//:

Here I and J run over indices I D .i1; : : : ; im/ and J D .j1; : : : ; jm/. Also, qJ

means q
j1

1
� � � q

jm
m , and I .xq/ means i1

.xq1/ � � � im
.xqm/.

For generic power series f1; : : : ; fm we see that �� THHR.AIM / is a finite extension
of ��RA Š .R�/

^
I

, and �� THHR.AIM / is a finite free R�ŒI
�1�=IR�–module. It

also has the following consequence, now for ADM :

Corollary 5.13 Suppose we change the An structure on A by f in A�Œq1; : : : ; qm�

of degree n in the qi ’s. Then the extension of xk to filtration n� 1 in �� THHR.A/

with these two An structures (and any A1 extensions of these) changes by df=dqk .

This should be compared with Lazarev’s Hochschild cohomology calculations in [23].
He proved that if R is an even commutative graded ring and A is a 2–cell DG R–
module AD fxW †dC1R!Rg with differential x for some nonzero divisor x , then
the moduli space of A1 structures on A can be identified with the set of power series
f .q/D xqC a2q2C : : : in H�.A/ŒŒq��ŠR=xŒŒq��. In this case, Lazarev proved [23,
Proposition 7.1] that

HH�R.A/ŠH�.A/ŒŒq��=.f
0.q//:

Thus the coefficient an describing the An structure contributes to an extension in
the canonical spectral sequence, where multiplication by x sends 1 to nanqn�1 in
filtration n� 1. But an An structure is really n identical maps �n;i making up an
.An;A/–bimodule structure, and the coefficient n comes from the sum of these n

maps.

The Morava K –theories

There are two cases to consider: the 2.pn� 1/–periodic Morava K–theory

K.n/D1E.n/=.p; v1; : : : ; vn�1/

and the 2–periodic Morava K–theory

Kn DEn=.p; v1; : : : ; vn�1/:
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For K.n/ most of the (co)trace obstructions are zero for degree reasons, and we
conjecture that THH.K.n// is independent of the A1 structure. On the other hand,
THH.Kn/ varies considerably over the moduli space of A1 structures.

We start by connecting the relation

vi.�x�i/
p�1
� � � .�x�n�1/

p�1
D vn

in �� THHS .k.n// from Theorem 4.13 to the W –trace obstruction theory.

Proposition 5.14 Under the composite

THHS .k.n//! THHS .K.n//! THHbE.n/.K.n//;
the class �x�i in �� THHS .k.n// maps to the class xqi in �� THHbE.n/.K.n//.

Proof The key fact is that the exterior generator ˛i in

��K.n/^bE.n/K.n/op

which gives rise to xqi in the spectral sequence converging to �� THHbE.n/.K.n// also
lives in ��k.n/^S k.n/op , under the name x�i . The rest is a simple matter of comparing
two ways to calculate �� THHS .k.n// in low degrees, either by first running the
Bökstedt spectral sequence and then the Adams spectral sequence, or by running the
Künneth spectral sequence.

Theorem 5.15 The canonical map

K.n/!†2.pn�1/=.p�1/�n�2pi�11E.n/=vi

extends to a W.n�i/.p�1/–trace and the obstruction to a W.n�i/.p�1/C1 –trace is non-
trivial, giving a height .n� i/.p� 1/ extension

vixq
p�1
i � � � xq

p�1
n�1
D vn

in the spectral sequence converging to �� THHbE.n/.K.n//.

Here xqp�1
i should be interpreted as �p�1.xqi/.

Proof This follows from Theorem 4.13 and Proposition 5.14, using that this is the
first possible obstruction for degree reasons.
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Corollary 5.16 The canonical map

1E.n/=vi �!K.n/

extends to a W.n�i/.p�1/–cotrace and the obstruction to a W.n�i/.p�1/C1 –cotrace is
.�1/n�ivnq

p�1
i � � � q

p�1
n�1

.

This is enough to determine THH.K.1//, and almost enough to determine THH.K.n//
for n> 1.

Theorem 5.17 Topological Hochschild cohomology of K.1/ is given by

�� THHbE.1/.K.1//Š Zp Œv1; v
�1
1 �ŒŒq��=.pC v1qp�1/

as a ring. Similarly,

�� THHbE.1/.K.1//Š
p�2M
iD0

†2iZ=p1Œv1; v
�1
1 �

as an bE.1/�–module.

Proof This follows from Theorem 5.15, after we use the Weierstrass preparation
theorem to conclude that Zp Œv1; v

�1
1
�ŒŒq��=.pC v1qp�1C a2p�2q2.p�1/C : : :/ does

not depend on the coefficients a2p�2; : : :.

Thus bE.1/�! �� THHbE.1/.K.1// is a tamely ramified (at p ) extension of degree
p� 1, while the p–completion, or K.1/–localization, of

THHbE.1/.K.1//
consists of p� 1 copies of bE.1/ . It is a curious fact that both THHbE.1/.K.1// and
KU^p consist of p � 1 copies of bE.1/ , though these copies are glued together in
different ways.

Remark 5.18 While THHbE.1/.K.1// is an E2 ring spectrum by the Deligne conjec-
ture, it is not an E1 ring spectrum. One can see this by considering suitable power
operations in K.1/–local E1 ring spectra. Recall, eg from [30] that a K.1/–local
E1 ring spectrum T (which has to satisfy a technical condition which we do not have
to worry about here) has power operations  and � such that (in particular)  is a
ring homomorphism and

 .x/D xp
Cp�.x/
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for x 2 T 0X . Now, if T� has an i –th root of some multiple of p , say, �i D ap for a
unit a and i > 1, then we get

ap D  .�/i D .�p
Cp�.�//i ;

and the right hand side is divisible by p2 while the left hand side is not. In particular,
we can apply this to T D THHbE.1/.K.1// as above to show that this cannot be an E1
ring spectrum.

We believe that a similar argument demonstrates that the spectra THHbE.n/.K.n// and
THHEn

.Kn/ can never be E1 , except in the cases when THHEn
.Kn/'En .

In general we get the following.

Theorem 5.19 Topological Hochschild cohomology of K.n/ is given by

�� THHbE.n/.K.n//Š1E.n/�ŒŒq0; : : : ; qn�1��=.p�f0; : : : ; vn�1�fn�1/

as a ring, where fi � .�1/n�ivnq
p�1
i � � � q

p�1
n�1

modulo higher degree. Similarly,

�� THHbE.n/.K.n//Š �bE.n/� Œxq0; : : : ; xqn�1�=.xiI .xq/�
X

aiJ I�J .xq//;

where the notation is the same as in Corollary 5.12.

Conjecture 5.20 The topological Hochschild cohomology of K.n/ is independent
of the A1 structure and is a finite, tamely ramified (at the primes p; v1; : : : ; vn�1 )
extension of degree .p� 1/ � � � .pn� 1/.

One way to prove this conjecture would be to calculate more of the coefficients of the
power series fi . We believe, using the philosophy that if something can happen it will,
that they look like

fn�1 D�vnq
p�1
n�1
C : : :

fn�2 D vnq
p�1
n�2

q
p�1
n�1
˙ vnq

p2�1
n�2

C : : :

:::

f0 D .�1/nq
p�1
0
� � � q

p�1
n�1
˙ vnq

p�1
0
� � � q

p2�1
n�2

C : : :˙ vnq
pn�1
0

C : : :

in which case the conjecture would follow. The conjecture would also follow (by
using that THHbE.n/.K.n//' THHS .K.n//) if we knew that all the A1 structures
on K.n/ become equivalent over S , because knowing that 1E.n/�ŒŒq0; : : : ; qn�1��=

.p�f0; : : : ; vn�1�fn�1/ is independent of the choices we are allowed to make for
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the coefficients of the fi ’s places severe restrictions on the coefficients we are not
allowed to change.

We hope to come back to the uniqueness of the S –algebra structure on K.n/ elsewhere.

For the 2–periodic Morava K–theories Kn D En=.p;u1; : : : ;un�1/ we have many
more choices of A1 structures, and hence more choices for THH.Kn/. In particular,
we have the following.

Theorem 5.21 For any p and n there are A1 structures on Kn such that

THHEn
.Kn/'En

THHEn.Kn/'EnŒI
�1�=IEn:and

Proof If n > 1 or p is odd, this follows from Theorem 5.9. The last case is Baker
and Lazarev’s calculation of THHKU .KU=2/.

In general we get many possible extensions, and while we can choose most of the
coefficients of the power series fi freely, we run into the same problem as in the
calculation of THH.K.n//. Again the case nD 1 is easier than the general case.

Theorem 5.22 Given a d with 1� d < p�1 and a 2 f1; : : : ;p�1g, there is an A1
structure on K1 with

�� THHE1
.K1/Š .E1/�ŒŒq��=.pC a.uq/d /:

For such an A1 structure, ��THHE1.K1/ is a direct sum of d copies of Z=p1Œu;u�1�.
Otherwise,

�� THHE1
.K1/Š .E1/�ŒŒq��=.pC .uq/p�1/;

and �� THHE1.K1/ is a direct sum of p� 1 copies of Z=p1Œu;u�1�.

Thus THHE1
.K1/ is always a finite extension of E1 , of degree d for some 1� d �

p� 1. As in Conjecture 5.20 we believe that THHEn
.Kn/ is always a finite extension

of En .

6 THH of Morava K –theory over S

In this section, which is somewhat different from the previous sections, we prove that
THH.K.n// and THH.Kn/ do not depend on the ground ring. By this we mean that
the canonical maps

THHS .Kn/ �! THHEn.Kn/

THHEn
.Kn/ �! THHS .Kn/and
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are weak equivalences, and similarly for K.n/ using 1E.n/ instead of En . The earliest
incarnation of this equivalence can be found in [31], where Robinson observed that for
p odd the ti ’s in

��.K.n/^S K.n//ŠK.n/�Œ˛0; : : : ; ˛n�1; t1; t2; : : :�=.˛
2
i ; vnt

pn

i � v
pi

n ti/

do not contribute to the Ext groups Ext����K.n/^S K.n/.K.n/�;K.n/�/. Something
similar is true at p D 2 if we use K.n/^S K.n/op . While ˛i squares to tiC1 instead
of 0 in this case, the Ext calculation is still valid. This was used by Baker and Lazarev
in [8] to see that THHS .KU=2/' THHKU .KU=2/.

Much of the material in this section comes from [29], where Rezk does something
similar to show that certain derived functors of derivations vanish. We have also used
ideas from Hopkins and Miller [21].

We expect THH to be invariant under change of ground ring from S to En , or the
other way around, because something similar holds algebraically.

Lemma 6.1 Let R �! R0 be a Galois extension of rings and suppose A is an R0

algebra. Then the canonical maps

HH R
� .A/ �!HH R0

� .A/

HH�R0.A/ �!HH�R.A/and

are isomorphisms.

Proof Recall from Weibel and Geller [37] that Hochschild homology satisfies étale
descent and Galois descent. Étale descent shows that HH R0

� .A/ŠHH R
� .A/ when

ADA0˝R R0 , and then Galois descent shows that it holds for any A. The cohomology
case is similar.

Now, if En is the Morava E–theory associated to the Honda formal group over Fpn ,
Rognes describes [33, Section 5.4] how the unit map S �!En is a K.n/–local (or
Kn –local) pro-Galois extension with Galois group Gn , the extended Morava stabilizer
group. Similarly, S �!1E.n/ is a K.n/–local pro-Galois extension with the slightly
smaller Galois group Gn=K for K D F�pn Ì Gal.Fpn=Fp/ , so we expect the result, if
not the proof, to carry over.

Perfect algebras

Let A and B be commutative Fp –algebras, and suppose i W A �! B is an algebra
map. There is a Frobenius map F sending x to xp on each of these Fp –algebras. Let
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AF denote A regarded as an A–algebra using the Frobenius F . Now we can define
a relative Frobenius FAW A

F ˝A B �! B as FA.a˝ b/D i.a/bp on decomposable
tensor factors, or as the unique map AF ˝A B! B in the following diagram:

A
i //

F

��

B

��
F

��6
66

66
66

66
66

66
66

66

A //

i
))TTTTTTTTTTTTTTTTTTTTTT AF ˝A B

$$
B

Definition 6.2 We say that i W A �! B is perfect if FAW A
F ˝A B �! B is an

isomorphism.

This definition specializes to the usual definition of a perfect Fp –algebra when ADFp .

Now suppose that i W A �! B has an augmentation �W B �! A. Let I D ker.�/ be
the augmentation ideal, so that B ŠA˚ I additively.

Lemma 6.3 For i � 0 and any B –module M we have

TorB
i .I;M /Š TorB

iC1.A;M /

ExtiB.I;M /Š ExtiC1
B

.A;M /:and

Proof This follows by choosing a resolution like

A �A˚ I  � P0 � P1 � : : : ;

of A, where P0 � P1 � : : : is a projective resolution of I as a B –module.

Now, if i W A�!B is perfect, we have an isomorphism FAW A
F˝A.A˚I/�!A˚I ,

and this gives an isomorphism FAW A
F ˝A I �! I of nonunital algebras.

Now suppose that M is an A–module, and regard M as a B –module via � . Then I

acts trivially on M , and we use that to prove the following:

Proposition 6.4 Suppose that i W A �! B is perfect and let M be any A–module
viewed as a B –module via the augmentation �W B �!A. Then we have

TorB
i .I;M /D 0

ExtiB.I;M /D 0and

for all i .
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Proof We show that the maps

.AF
˝A I/˝B M

FA˝1
����! I ˝B M

HomB.I;M /
F�

A
��! HomB.A

F
˝A I;M /and

are both isomorphisms and zero. They are isomorphisms because i W A�!B is perfect.
They are zero because, for example, given any map f W I �!M of B –modules, we
find that F�

A
f is given by F�

A
f .a˝b/D f .abp/D bp�1f .ab/D 0, so F�

A
f is zero.

The same argument applies to a projective resolution of I to show that ExtiB.I;M /D 0

for i > 0. The argument for Tor is similar.

Combining the above two results we get the following:

Theorem 6.5 Suppose that i W A �! B is perfect, and let M be any A–module
regarded as a B –module via the augmentation �W B �!A. Then we get

TorB
i .A;M /D 0

ExtiB.A;M /D 0and

for i > 0, while A˝B M ŠM and HomB.A;M /ŠM .

Formal group laws

Most of what we need to know about formal group laws can be found in Rezk [29].
Let E D E.k1;�1/ and F D E.k2;�2/ be the Morava E–theory spectra associated
to formal group laws �i over ki for i D 1; 2. Recall that if �1 and �2 have the
same height, the maximal ideals in �0E ^S F coming from mE and mF coincide.
Furthermore, .�0E ^S F /=m represents isomorphisms between the formal group
laws. Let W .�1; �2/D k1˝L W ˝L k2 , where L is the Lazard ring (isomorphic to
M U� , or M UP0 , where M UP is the 2–periodic complex cobordism spectrum) and
W DLŒt˙1

0
; t1; : : :�.

Proposition 6.6 [29, Remark 17.4] If E and F are the Morava E–theories associ-
ated to two formal groups �1 and �2 of height n, then

.�0E ^S F /=mŠW .�1; �2/:

Proposition 6.7 [29, Corollary 21.6] The ring W .�1; �2/ is a perfect k1 –algebra.
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Proposition 6.8 Given any multiplication on K DE=m, we have

�0.K ^S Kop/Š .�0E ^S E/=m˝ƒ.˛0; : : : ; ˛n�1/

additively, and each ˛i squares to something that acts trivially on K� .

Proof This is clear additively, and the claim about the multiplicative structure follows
as in the proof of Proposition 3.6.

Now we are in a position to prove the following theorem:

Theorem 6.9 Let E be either En or 1E.n/. If EDEn let KDKn and if ED1E.n/
let K DK.n/. Then the canonical maps

THHS .K/ �! THHE.K/

THHE.K/ �! THHS .K/and

are weak equivalences.

Proof We have spectral sequences calculating �� of both sides, where the E2 –terms
are Tor��.K^EK op/.K�;K�/ and Tor��.K^S K op/.K�;K�/ in the first case and the
corresponding Ext groups in the second case. For .E;K/D .En;Kn/, Theorem 6.5 and
Proposition 6.8 shows that the E2 –terms are isomorphic, and since the isomorphisms
are induced by the obvious maps this proves the theorem.

The case .E;K/D .1E.n/;K.n// is similar, using LŒt1; t2; : : :� instead of W .
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