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Non-commutative Donaldson–Thomas invariants and the
conifold

BALÁZS SZENDRŐI

Given a quiver algebra A with relations defined by a superpotential, this paper defines
a set of invariants of A counting framed cyclic A–modules, analogous to rank–1

Donaldson–Thomas invariants of Calabi–Yau threefolds. For the special case when
A is the non-commutative crepant resolution of the threefold ordinary double point,
it is proved using torus localization that the invariants count certain pyramid-shaped
partition-like configurations, or equivalently infinite dimer configurations in the square
dimer model with a fixed boundary condition. The resulting partition function admits
an infinite product expansion, which factorizes into the rank–1 Donaldson–Thomas
partition functions of the commutative crepant resolution of the singularity and its
flop. The different partition functions are speculatively interpreted as counting stable
objects in the derived category of A–modules under different stability conditions;
their relationship should then be an instance of wall crossing in the space of stability
conditions on this triangulated category.

14J32; 14N10

Introduction

This paper is concerned with phenomena in the enumerative geometry of local Calabi–
Yau threefolds, mostly via a study of the example X DOP1.�1;�1/, a toric Calabi–Yau
variety often referred to as the resolved conifold. It is known that topological string
theory associates a function ZX of two variables .q; t/ to X , its topological string
partition function, admitting the following infinite product form:

ZX .q; t/DM.�q/2
Y
k�1

�
1� .�q/ke�t

�k
;

where the MacMahon function M is itself an infinite product

M.q/D
Y
k�1

.1� qk/�k :

According to Maulik et al [23], the function ZX admits two different Laurent series
expansions, with coefficients which are enumerative invariants associated to X . The
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expansion in the variables .q; e�t / gives coefficients which are Donaldson–Thomas
invariants, defined as the virtual number of singular U.1/-connections (more precisely
rank–1 torsion free sheaves) on X , evaluated by enumetating certain combinatorial
arrangements related to 3–dimensional partitions (compare Section 3.1). On the other
hand, dividing by the MacMahon factor, we can expand in variables .u; e�t /, with
the new variable u related to q via q D �eiu . The coefficients in this case are
the (disconnected) Gromov–Witten invariants of X , counting stable maps of (not
necessarily connected) curves to X of arbitrary genus and degree.

In the language of string theory, the variable u is the string coupling constant. The two
expansions are in the parameter region (large t , small u), where perturbative string
theory gives a good description and hence the coefficients are Gromov–Witten invariants,
and (large t , large juj), the region where the physical description is (conjecturally) a
version of U.1/ gauge theory (Iqbal et al [18]), leading to rank–1 Donaldson–Thomas
invariants. This leads to an obvious question: what happens in parameter regions where
t is small?

The parameter t is geometric: it is the Kähler class, measuring the volume of the
zero-section P1 Š C � X . Hence the limit t ! 0 corresponds to contracting the
zero-section, resulting in the conifold singularity Z D fx1x2 � x3x4 D 0g � C4 .
This singular variety is not known to have sensible enumerative invariants. I consider
instead its non-commutative resolution (Van den Bergh [5]), a homologically smooth
non-commutative Calabi–Yau algebra A, and show that this algebra gives rise to a
set of enumerative invariants analogous to the Donaldson–Thomas invariants of X .
These invariants are combinatorial, like those of X , this time given by counting finite
subsets of a certain rectangular arrangement of two-coloured stones, or equivalently,
infinite dimer configurations on the square lattice with fixed asymptotics. Using a
combinatorial result due to Young [29], originally formulated as a conjecture in an
earlier version of this paper, a non-perturbative change of variables leads to a partition
function with a product expansion

ZA.q; t/DM.�q/2
Y
k�1

�
1� .�q/ke�t

�k �
1� .�q/ket

�k
;

closely related to that of ZX , which however only admits a Taylor expansion near
e�t D 1 or t D 0. Thus, in this parameter region, a new phenomenon emerges: the
function ZX is roughly “the positive half” of the full function ZA , which is given
naturally by non-commutative geometry and dimer models.

Dimers have been in fashion lately in the high energy physics literature, already
making an occurence in Okounkov–Reshetikhin–Vafa [24], and independently in work
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of Hanany and coauthors [16; 13] studying gauge/string duality for toric Calabi–
Yau singularities. However, their direct appearance in the mathematical literature,
connecting them to enumerative invariants of non-commutative Calabi–Yau geometries,
seems to be new. It would be interesting to relate this idea to the other direct derivation
of dimer models from toric geometry by Feng et al [12], based on mirror symmetry
and special Lagrangian geometry.

Section 1 studies quiver algebras defined by a superpotential, of which the conifold
algebra A is an example, proving in Section 1.3 the basic fact that moduli spaces of
framed cyclic modules over such algebras (the exact analogues of rank–1 torsion-free
sheaves, or rather the corresponding quotient sheaves) admit a perfect obstruction
theory. The obstruction theory is constructed via natural embeddings of these highly
singular moduli spaces into smooth varieties; the existence of these embeddings may
be of independent interest.

Section 2 is about the non-commutative conifold, reducing the computation of its
enumerative invariants to combinatorics and dimer configurations in Section 2.5–Section
2.6, and discussing the product form of the partition function in Section 2.7.

Section 3 discusses possible interpretations and generalizations. The natural space
parametrized by the variable z D e�t is introduced in Section 3.2; this is the space of
Bridgeland stability conditions of a variant of the derived category of coherent sheaves
on X . The statement that the limit t ! 0 should be thought of as moving to the
non-commutative resolution A becomes more precise on this space. A speculative
interpretation of the partition functions ZX , ZA as counts of stable objects in the
derived category is also given there. This points towards an interpretation of the change
from ZX to ZA as a result of performing a countably infinite number of wall crossings
in the space of stability conditions.

A curious expansion of the partition function ZA near small t , involving Eisenstein-like
sums, is discussed in Section 3.3. In Section 3.4 an obvious combinatorial generaliza-
tion of the partition function is studied, though the enumerative interpretation of this
generalization is currently unclear. Section 3.5 presents a way of extending the problem
studied here to a global situation. The concluding Section 3.6 briefly discusses work of
Bryan–Young [30] on some orbifold examples, where the partition function exhibits
the same “doubling” phenomenon when moving from the commutative resolution to
the non-commutative one.
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1 Non-commutative Donaldson–Thomas theory

1.1 Quiver algebra and the superpotential

Let Q D fV;Eg be a quiver with vertex set V , edge set E and head and tail maps
h; t W E! V prescribing the head and tail of each oriented edge (which may in general
coincide). Let CQ be the path algebra of Q, generated over C by oriented paths, with
multiplication defined by joining paths. The vector space CQ=ŒCQ; CQ� has as basis
the set of cycles up to cyclic permutation of the arrows. Given a superpotential, an
element W 2CQ=ŒCQ;CQ�, define a two-sided ideal IW of CQ by

IW D hh@eW j e 2Eii:

Here represent W as an element in the path algebra consisting of a sum of cycles,
well-defined up to cyclic permutation. Define formal differentiation @e of a cyclic
monomial with respect to an edge e2E to be zero if e does not appear in the monomial;
otherwise, cyclically permute the monomial until the edge e is in the first position,
and delete it. For details, see eg Bocklandt [7] and Ginzburg [14]. Let ADCQ=IW

be the quotient of the path algebra CQ by the ideal IW of relations defined by the
superpotential W .

The algebra A contains a set ffi W i 2 V g of orthogonal idempotents based at the
vertices of Q, represented by paths of length 0. Thus A decomposes as AD˚i2V Afi

into a set Pi D Afi of projective left A–modules. Note that here and everywhere
below, juxtaposition denotes multiplication in the algebra A, or in an A–module,
as appropriate. The algebra A is generated over the commutative idempotent ring
CŒfi W i 2 V � by non-commuting variables fxe W e 2Eg attached to the arrows of the
quiver, which satisfy the relations obtained by formal differentiation of W with respect
to the variables xe . As A is a path algebra of a quiver with relations, the category
A�mod of finite-dimensional left A–modules is equivalent to the category repIW

.Q/

of finite-dimensional representations .Mi ; 'e/ of the quiver satisfying the relations
IW . I will switch between the two languages freely without comment. Objects in
repIW

.Q/ have a dimension vector vD fvi D dim Mig 2 ZV .

Let M be a cyclic left A–module, generated by an element m 2M ; thus M DAm.
Then M D ˚i2V Ami where mi D fim. A cyclic module generated by a vector
m 2 fkM will be called a cyclic module based at the vertex k 2 V .

Example 1.1.1 Consider the quiver Q D fV;Eg with one vertex V D f�g, three
loop edges E D fx1;x2;x3g with heads and tails at the given vertex �, and cubic
superpotential

W D x1x2x3�x1x3x2:
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The quiver algebra
CQDChx1;x2;x3i

is a free non-commutative C–algebra on three generators. The ideal IW in CQ is
generated by the relations

@x1
W D x2x3�x3x2;

@x2
W D x3x1�x1x3;

@x3
W D x1x2�x2x1:

Thus
ADChx1;x2;x3i=hxixj �xj xii ŠCŒx1;x2;x3�

is commutative, the coordinate ring of affine space C3. The dimension lattice of A is Z.

A more substantial example, relevant to the rest of the paper, is discussed in Section
2.1.

1.2 The moduli space of cyclic modules

Let A be an algebra defined by a quiver QD fV;Eg with superpotential W . Fix a
vertex k 2 V , as well as vector spaces fUi W i 2 V g with dimension vector v 2 ZV .
Consider the vector space

S D

 Y
e2E

Hom.Ut.e/;Uh.e//

!
�Uk D f.'e/e2E ;mg :

Let S0 � S be the open subvariety defined by the condition that the vector m 2 Uk

generates the CQ–module .Ui ; 'e/. Let

X D
n
@eW D 0

ˇ̌̌
e 2E

o
� S0

be the closed subscheme of S0 cut out by the superpotential equations.

The group G D
Q

i2V GL.Ui/ acts on S by

.gi/ ı ..'e/;m/D
�
.gh.e/'eg�1

t.e//;gkm
�
;

where h; t W E! V are the head and tail maps. Lift the action to S �C by

(1) .gi/ ı ..'e/;m; z/D
�
.gh.e/'eg�1

t.e//;gkm; ��1.gi/z
�
;

where the character � of G is defined by �.gi/D
Q

i2V det.gi/. The following lemma
is now standard (King [21]).
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Lemma 1.2.1

(1) The action of G on S0 is free.

(2) For a point ..'e/;m; z/ 2 S �C with z ¤ 0, the closure of the orbit

G..'e/;m; z/� S �C

is disjoint from the zero-section S � f0g if and only if ..'e/;m/ 2 S0 .

Proof For .1/, if g 2 G fixes .f'eg;m/ 2 S0 , then ker.g � id/ � ˚i2V Ui is a
subspace containing m and stable under h'j i. Thus, by definition, g D id. Hence the
action of G on S0 is free.

For (2), suppose that ..'e/;m/ is not cyclic. Then there are decompositions Ui D

Vi ˚Wi with

'e D

�
� �

0 �

�
and mD

�
�

0

�
with respect to this decomposition. For s 2C� , let

gi.s/D

�
1 0

0 diag.s�1/

�
;

then

.ge.s// ı

��
� �

0 �

�
;m; z

�
D

��
� s�

0 �

�
;m; sN z

�
with N > 0, having a limit at s D 0 on the zero-section.

Conversely, assume that ..'e/;m/ is cyclic, but the closure of the orbit G..'e/;m; z/

intersects the zero-section. Then there is a one-parameter subgroup �W C�!G with

lim
s!0

�.s/ ı ..'e/;m; z/ 2 S � f0g:

Decompose Ui D˚n2ZUi;n under the action of C� . Since the limit at s D 0 exists,
m 2 ˚n�0Ui;n , and 'eW Ut.e/;m!˚n�0Uh.e/;mCn . Thus, since ..'e/;m/ is cyclic,
Ui D˚n�0Ui;n . Hence �.�.s//D sN , with N � 0. N D 0 is impossible, since then
the limit would be contained in the orbit. If N > 0, then

�.s/ ı ..'e/;m; z/D ..�h.e/.s/'e�
�1
t.e/.s//; �.s/m; s

�N z/

does not converge to a point on the zero-section as s! 0, a contradiction.
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Proposition 1.2.2

(1) There exists a smooth and quasi-projective geometric quotient N of S0 by G ,
containing a closed subscheme Mk;v �N which is a quotient of X by G .

(2) The space Mk;v carries a tautological family .Mk;v;mk;v/ of framed cyclic
A–modules, generated at the vertex k .

(3) The space Mk;v a fine moduli space; the triple .Mk;v;Mk;v;mk;v/ represents
the functor of flat families of framed A–modules (locally free sheaves with
A–structure and A-generator) over schemes, generated by a section based at the
vertex k .

Proof To prove (1), following [21], regard the affine space S as a quasi-projective
variety, and consider the linearization (1) of the action of G on the trivial line bundle
S �C . Lemma 1.2.1 (2) implies that the semistable locus S ss is exactly the subset S0 .
This also agrees with the stable locus, since all stabilizers of points in S0 are trivial by
Lemma 1.2.1 (1). Thus, by Geometric Invariant Theory, a quasi-projective geometric
quotient N D S==�G D S0=G exists, and it is smooth because stabilizers on S0 are
trivial. Since X is G –invariant in S0 , its quotient by G exists as a closed subscheme
Mk;v �N .

For (2), it is enough to observe that, tautologically, S0 carries a tautological family of
CQ–modules, generated by a section. Over X � S0 , the relations are also satisfied,
and hence the family becomes that of A–modules. Being G–equivariant, the family
and its generator descend to the space Mk;v .

Finally, to see (3), let Z be a scheme with a flat family MZ of A–modules, locally
free sheaves with A–structure, generated by a section m 2 H 0.Z;MZ /. Taking
trivializations of MZ on an open cover fZj g of Z gives tautological maps Zj !X ,
and composing with the projection X !Mk;v , these maps glue to a map Z !

Mk;v under which the family on Z is a pullback by construction. This shows that
.Mk;v;Mk;v;mk;v/ is indeed a universal family.

At a point ŒM;m� 2Mk;v , let xmW A!M be the canonical A–module surjection
given by a 7! am. Let I D ker xm. Since m2 fkM , where fk is the idempotent based
at the k -th vertex, the ideal I decomposes as a direct sum I D Ik ˚

L
j¤k Pj , into

the left A–ideal Ik D Ifk and the remaining projective modules Pj DAfj for j ¤ k .

Corollary 1.2.3 The Zariski tangent space to Mk;v at its point ŒM;m� can be identi-
fied with the C–vector space HomA.Ik ;M /.
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Proof Each deformation .M�;m�/ of .M;m/ in Mk;v is still based at the vertex
k . Hence the projectives Pj for j ¤ k must remain in the kernel of xm� . With this
modification, the statement is a standard corollary of Proposition 1.2.2 (2); see eg
Artin–Zhang [1, Proposition E2.4(ii)].

1.3 Perfect obstruction theory on the moduli space

Recall from Behrend–Fantechi [3] that given a scheme Z , a perfect obstruction theory
.E;  / for Z is morphism  W E!LZ in the derived category D.Z/ of quasicoherent
OZ –modules, where LZ is the cotangent complex of Z , E 2 D.Z/ is a perfect
complex of amplitude Œ�1; 0�, and  induces an isomorphism on H 0 and a surjection
on H�1 . A symmetric perfect obstruction theory (Behrend–Fantechi [4]) is a triple
.E;  ; �/ including also a non-degenerate symmetric bilinear form � W E!E_Œ1�.

Theorem 1.3.1 The moduli space Mk;v carries a symmetric perfect obstruction theory.

Proof Recall the superpotential W 2CQ=ŒCQ;CQ� used to define the algebra A.
Consider the regular function w D Tr.W / on the smooth variety S0 , obtained by
taking the sum of the traces of the cycles making up W . As spelled out for example in
Segal [25, Proposition 3.8],

X DZ.dw/� S0

is exactly the scheme-theoretic vanishing locus of the one-form dw 2�1
S0 . Note that

[25] deals with the case where there is no cyclic generator, but the proof carries over
verbatim: the equations defining X � S0 are the relations between various linear maps
prescribed by the superpotential W ; they do not involve the generator. The cyclic
generator is only used to define the open subset S0 � S .

The function w 2H 0.OS0/ is invariant under the G -action above, and hence descends
to a regular function xw 2H 0.ON / on the smooth quotient N . By naturality, Mk;v D

Z.d xw/ is the vanishing locus on N of the exact one-form d xw . By Behrend [2, Remark
3.12], this defines a symmetric perfect obstruction theory on Mk;v .

Remark 1.3.2 Recall that an associative C–algebra A is 3–Calabi–Yau, if for all
M;N 2A�Mod, the category of finitely generated A–modules, with at least one of
M , N finite-dimensional, there exist perfect bifunctorial pairings

ExtiA.M;N /�Ext3�i
A .N;M /!C

between finite-dimensional C–vector spaces. For certain choices of superpotentials, it
is known that the algebra A considered above is 3–Calabi–Yau (see Bocklandt [7] and
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Ginzburg [14]). The Calabi–Yau duality between Ext1 and Ext2 is morally responsible
for the existence of the symmetric perfect obstruction theory on the module space of
A–modules, though as the proof shows, it is not a necessary requirement for cyclic
modules.

For the case of sheaves on a Calabi–Yau threefold, the construction of the symmetric
obstruction theory is due to Thomas. The proof in Thomas [26] uses the equations
of the moduli space inside a Grassmannian; this inspired the proof of Theorem 1.3.1
above. The proof in Thomas [27] uses duality explicitly.

1.4 Cyclic modules and finite-codimension ideals

The purpose of this section is to show that, at least set-theoretically and under the
Calabi–Yau assumption, parametrizing cyclic finite-dimensional A–modules up to
isomorphism, respecting the cyclic generator, is equivalent to parametrizing finite-
codimension ideals of A up to A–module isomorphism. This is analogous to the
relationship between the moduli space of ideal sheaves and the Hilbert scheme on a
projective variety. I state a precise variant of this claim, taking into account that the
generator is based at a particular vertex. As before, for a vertex j 2 V , let fj 2A be
the idempotent based at j , and Pj DAfj the corresponding projective A–module.

Proposition 1.4.1 Assume that the algebra A is 3–Calabi–Yau. Then there is a
bijection between the set of finitely generated left A–modules, embeddable into Pk

with finite codimension, up to A–module isomorphism, and the pairs .M;m/ of
finite-dimensional cyclic A–modules M with generator m 2 fkM , up to A–module
isomorphism respecting generators.

Proof As before, the cyclic module .M;m/ defines a surjection xmW A!M send-
ing 1 2 A to m 2 M . As m 2 fkM , the kernel I D ker xm decomposes as I D

Ik ˚
L

j¤k Pj , with the left A–ideal Ik D Ifk embedded in Pk with finite codimen-
sion. Isomorphic pairs give rise to isomorphic A–modules. Conversely, suppose that
N 2A�Mod is embeddable into Pk with finite-dimensional cokernel. Take such an
embedding i W N ,! Pk , and consider the exact sequence of left A–modules

0!N
i
! Pk !M ! 0:

Part of the corresponding long exact sequence of abelian groups reads

HomA.M;Pk/! HomA.Pk ;Pk/! HomA.N;Pk/! Ext1A.M;Pk/:

However, M is finite dimensional, so by the Calabi–Yau duality, for i < 3

ExtiA.M;Pk/Š Ext3�i
A .Pk ;M /� D 0;
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since Pk is a projective A–module. Hence

HomA.N;Pk/Š HomA.Pk ;Pk/Š fkPk ;

where the last isomorphism is given by g 7!g.fk/2fkPk . Thus the only other A-maps
from N to Pk are multiples of i by some a 2 fkPk . These other embeddings have
cokernel Pk=Na which has Pk=Pka as quotient, the latter being infinite-dimensional
unless a 2 fkPk is a constant multiple of the idempotent fk . Hence the only em-
beddings of N into Pk with finite-dimensional quotient are constant multiples of i ,
and hence i , and thus the surjection A!M defining a pair .M;m/, are uniquely
determined by N up to A–isomorphism.

As usual, one can presumably promote the statement to an isomorphism of moduli
spaces, once the relevant moduli problem is formulated for ideals. Since this is not
relevant for the rest of the paper, I will not pursue this direction.

1.5 Numerical invariants

Given a scheme Z which admits a symmetric perfect obstruction theory, Behrend [2]
proves that there is a canonical constructible Z–valued function �Z on Z . This allows
one to define the virtual number of points of Z to be the integer

#vir.Z/D
X
n2Z

n�.��1
Z .n//;

where � denotes the topological Euler characteristic. For the case of the non-commut-
ative algebra A, we therefore get integers

Dk;v D #vir.Mi;v/;

depending on a choice of base vertex k 2 V and dimension vector v 2 ZV . These can
be encoded in the partition function

ZA;k.q/D
X

v2ZV

Dk;vqv;

using a set of auxiliary variables qD fqi W i 2 V g.

1.6 The commutative Hilbert scheme

Recall the example discussed in Example 1.1.1, with the quiver Q having one vertex
V D f1g and three loop edges, leading to AŠCŒx1;x2;x3� commutative with dimen-
sion lattice Z. For n � 1, the moduli space M1;n is well known to be HilbŒn�.C3/,
the Hilbert scheme of n points on C3 . This space carries a symmetric obstruction
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theory via its manifestation as the moduli of rank–1 sheaves with trivial determinant
(see Thomas [26; 27] and Behrend–Fantechi [4]) on C3 . Theorem 1.3.1 above gives a
new, in some sense more elementary, construction of this obstruction theory.

The series ZA;1.q/ can be computed by torus localization (Okounkov et al [24], Maulik
et al [23] and Behrend–Fantechi [4]), the torus-fixed points being parametrized by
3–dimensional partitions ˛ �N3 . This gives

ZA;1.q/D
X
˛

.�q/wt.˛/;

where wt.˛/ is the total weight of the partition ˛ . By a classical result of MacMahon,
this function is given by

ZA;1.q/DM.�q/D
Y
n�1

.1� .�q/n/�n:

Recall also [24, Section 5.4] that finite 3–dimensional partitions are in one-to-one
correspondence with dimer configurations in the hexagonal lattice (honeycomb dimers),
with a certain boundary condition.

In the rest of the paper, I study the partition function ZA.q/ for a more complicated
example, obtaining analogous results.

2 The non-commutative conifold

2.1 The algebra

Consider the quiver Q D fV;Eg of Figure 1, with two vertices V D f0; 1g, four
oriented edges E D fa1; a2W 0! 1; b1; b2W 1! 0g, and relations coming from the
quartic superpotential W Da1b1a2b2�a1b2a2b1 (the Klebanov–Witten superpotential
[22]). Thus the algebra A contains the idempotent ring CŒf0; f1�, and can be given by
generators and relations as

ADCŒf0; f1�ha1; a2; b1; b2i=hb1aib2� b2aib1; a1bia2� a2bia1 W i D 1; 2i:

The dimension lattice is ZV D Z2 . The center R D Z.A/ is spanned by x1 D

a1b1C b1a1;x2 D a2b2C b2a2;x3 D a1b2C b2a1;x4 D a2b1C b1a2 , so

RDCŒx1;x2;x3;x4�=.x1x2�x3x4/;

the ring of functions on the threefold ordinary double point or conifold singularity
Z D Spec.R/. Indeed, A is a 3–Calabi–Yau algebra, and a crepant non-commutative
resolution (Van den Bergh [5]) of the singular variety Z .
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0

a1; a2

b1; b2

1

Figure 1: The conifold quiver

2.2 Torus actions

Let TF D .C�/E be the “flavour” torus, acting by diagonally rescaling the edge
variables. The relations are automatically preserved, and thus TF acts as a group of
automorphisms of the algebra A. TF has two distinguished subtori. As a subgroup of
Aut.A/, it contains the “gauge” torus .C�/V =C� , acting on A by inner automorphisms
as r 7! .

P
��1

i fi/ r .
P
�ifi/; note diagonal elements act trivially. On the other hand,

TF also acts on the whole quiver algebra CQ, and hence it has a subtorus TF;W �TF

which stabilizes the superpotential W .

Recall the space X D f..'e/e2E ;m/g of cyclic representations of the quiver Q on a
collection of vector spaces .Ui/i2V , generated by a vector m 2 Uk . The flavour torus
TF D .C

�/E D f.�e/e2Eg acts on X by

.�e/ ı ..'e/;m/D ..�e'e/;m/:

The torus TGD .C
�/VDf.�i/i2V g also acts on X , as a subgroup of GD

Q
i2V GL.Ui/,

by
.�i/ ı ..'e/;m/D ..�h.e/�

�1
t.e/'e/; �km/:

The intersection of the image of TF and the image of G in Aut.X / is generated by
the subtorus Tk D .C

�/V nfkg of TF , acting at the other vertex j 2 V nfkg. Hence the
moduli space Mk;v of framed cyclic representations of A is acted on by the quotient
torus T DTF=Tk of rank 3. The latter has a subtorus TW DTF;W =Tk\TF;W which
stabilizes the regular function xw 2 H 0.ON / used in the construction of the perfect
obstruction theory on Mk;v �N .

Explicitly, T can be described as the quotient of the four-dimensional torus .C�/4

acting on the edge variables ai ; bj by the subtorus C� acting by weights .�1;�1; 1; 1/.
TW � T is defined by the condition that the product of the elements is 1.
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2.3 The resolution as moduli space

Let us construct one well known moduli space of cyclic A–modules, that based at the
vertex 0, corresponding to the dimension vector .1; 1/ 2 Z2 . Choosing bases leads to
Ui Š C and then the arrows a1; a2; b1; b2 2 C as well as the generator m 2 C� are
scalars; cyclicity requires that not both a1; a2 should be zero. Thus

M0;.1;1/ Š

�
C4

ai ;bj
�C�m n fai D 0g

�.
C�.�1;�1; 1; 1I 1/�C�.1; 1;�1;�1I 0/

Š

�
C4

ai ;bj
n fai D 0g

�.
C�.�1;�1; 1; 1/

which is well known to be isomorphic to the crepant resolution X of the singular
conifold Z D Spec.R/.

2.4 Pyramid partitions

Consider the infinite combinatorial arrangement (Kenyon [20]) on Figure 2, with two
types of layers of stones. For i � 0, there are .i C 1/2 stones labelled 0 and coloured
grey on layer 2i . On layer 2i C 1, there are .i C 1/.i C 2/ stones labelled 1 and
coloured black.

A finite subset � of the combinatorial arrangement is a pyramid partition, if for every
stone in � , the (usually two) stones immediately above it, of different colour, are also
contained in � . For a pyramid partition � , define wti.�/ to be the number of stones
labelled i in � for i D 0; 1. Denote by P the set of all pyramid partitons.

Figure 2: The pyramid arrangement

Remark 2.4.1 The subset of the combinatorial arrangement of Figure 2 consisting
of grey stones forms a finitely generated semigroup �Z , the intersection of Z3 with
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a polyhedral cone � . The semigroup ring CŒ�Z� is nothing else but the ring R, the
center of A; this is the toric description of the singular conifold.

The effect of the non-commutative resolution is to introduce the odd layers of stones in
the picture. The full pyramid defines the projective left A–module P0 DAf0 , where
f0 2 A is the idempotent corresponding to the chosen vertex 0 2 V . Namely, P0

has, as a C–vector space, a basis labelled by all the stones in the pyramid, and the
multiplication by the basic monomials a1; a2; b1; b2 is also encoded (see Figure 3
below). This is analogous to the way the non-negative octant in the lattice Z3 gives
a basis for the commutative algebra CŒx1;x2;x3�, with the monomials x1;x2;x3

multiplying along the edges (compare Example 1.1.1 as well as Section 1.6).

2.5 Torus-fixed points and pyramid partitions

The two vertices of the conifold quiver Q D fV;Eg are symmetric under an outer
automorphism of the algebra; thus I concentrate on cyclic A–modules based on the
vertex 0 2 V , and drop the index 0 from the notation. (See the end of Section 3.2 for
more discussion of this choice.)

Consider the action of the rank-two torus TW of Section 2.2 on some moduli space
Mv of framed cyclic A–modules.

Proposition 2.5.1

(1) There are finitely many TW –fixed points on the moduli space Mv . There is a
one-to-one correspondence between fixed points and pyramid partitions � 2 P
of weight .wt1.�/;wt2.�//D v 2 Z2 .

(2) At each fixed point P 2Mv , the Zariski tangent space to Mv at P has no
TW –invariant subspace.

Proof Suppose that Œ.M;m/� 2Mv is an isomorphism class of framed cyclic A–
modules fixed by the torus TW , represented by a framed cyclic A–module .M;m/

which can be assumed to be non-zero. Let I C A be the annihilator of the cyclic
generator m 2M , a left ideal in A. As in Section 1.4, since the generating vector
m 2M is based at the vertex 0, we can write I D I0˚P1 , where P1 DAf1 consists
of all paths starting at the vertex 1. First I claim that I0 is a monomial ideal: its
generators over CŒf0� are monomials in the edge variables ai ; bj .

To show this, recall that explicitly, as acting on ideals in A, the rank-two torus TW

manifests itself as a quotient
TW D TF;W =C

�
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of the rank-three torus

TF;W D f.�1; �2; �1; �2/ W �1�2�1�2 D 1g

acting on the variables .a1; a2; b1; b2/, by the “gauge” subtorus

C� D f.�; �; ��1; ��1/g � TF;W :

Generators of I0 split up into sums of paths with the same starting point and endpoint,
and on elements of CQ represented by such paths, this subtorus has a constant diagonal
action. Hence the covering torus TF;W also acts on ideals, and the TW –fixed points in
Mv are in one-to-one correspondence with TF;W –fixed left A–ideals I D I0˚P1 .

If the left A–ideal I D I0 ˚ P1 is fixed by TF;W , then it must be generated by
TF;W –eigenvectors. Let r.a1; a2; b1; b2/ be a (non-commutative) polynomial in the
generators of A, which is a TF;W –eigenvector in I0 . Note that, using the relations
coming from the superpotential W ,

b2a2b1a1 D b2a1b1a2 D b1a2b2a1 D b1a1b2a2 2A:

This element cD biaj b3�ia3�j 2P0 commutes with all elements of P0 , and generates
the weight–0 eigenspace of TF;W acting on P0 . Moving the highest possible power
of c to the right in each monomial making up r , it follows that

r.ai ; bj /D q.a1; a2; b1; b2/ �p.c/ 2A;

where p is a polynomial with nonzero constant term, and q is a monomial in the
generators ai ; bj . Let J D I0\Z.A/f0 , where Z.A/ is the center of A, and f0 is the
idempotent at the vertex 0. Then J is an ideal in Z.A/f0ŠZ.A/, the coordinate ring
of the conifold singularity. Since I is fixed by TW , the ideal J has to be fixed as well,
and hence the zero-set of J must be supported at the singularity 0 2 Spec Z.A/. Thus
this zero-set is disjoint from the zero-set of p.c/ 2Z.A/f0 . By the Nullstellensatz,
this implies that hp;J i DZ.A/f0 , and hence q 2 I0 . So indeed, I0 is generated by
monomials.

Consider the generator m 2M , and the set of vectors

S D fm; a1m; a2m; b1a1m; b2a1m; b1a2m; b2a2m; : : :g �M:

Since m is a generator, the nonzero vectors in S form a spanning set for M . Certain
sets of vectors in S will be equal in M as a consequence of the relations among
the ai ; bj ; delete all but one vector from each equivalence class. Since all remaining
relations, contained in the ideal I , are monomial, the remaining set of nonzero vectors is
linearly independent and hence forms a basis of M , finite since M is finite dimensional.
These nonzero vectors form a finite pyramid partition � 2 P .
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Conversely, given a pyramid partition � 2 P , let Mi for i D 0; 1 be the C–vector
space spanned by basis vectors es for each stone s 2 � of label i . The arrows ai ; bj

act by mapping between basis vectors as in Figure 3. It is immediately seen that
the relations in A are satisfied. Hence this rule defines an A–module structure on
M DM0˚M1 , generated by mD e0 2M0 corresponding to the topmost stone of
label 0. The action of the torus TW can be compensated for by a change of basis,
and hence all these modules are in the fixed locus .Mv/

TW . This gives the inverse
correspondence, concluding the proof of (1).

a2
a1

a2

b2 b1

b2 b1

a1

a2

a1

Figure 3: A pyramid partition defines a module

To prove (2), by Corollary 1.2.3, it remains to study the TF;W -action on the space
HomA.I0;M / for a monomial ideal I D I0˚P1 with quotient M DA=I . I follow
the argument of [4, Lemma 4.1]. It is enough to show that under the induced action of
the “flavour” torus TF D .C

�/E , no weight is a multiple of .1; 1; 1; 1/.

Suppose therefore that 'W I0!M is an eigenvector with weight w.1; 1; 1; 1/. Suppose
first that w � 0. As the .1; 1; 1; 1/ eigenspace of P0 is spanned by the element
c D biaj b3�ia3�j already used above, for any element a 2 I0 , necessarily

'.a/� cwa� 0 mod I;

and so ' D 0.

To treat the case w < 0, let ˛ be the smallest positive integer such that .b1a1/
˛ 2 I0 ,

and let ˇ be the smallest positive integer such that .b2a2/
ˇ.b1a1/

˛�1 2 I0 . Since '
is an TW –eigenvector with weight w.1; 1; 1; 1/,

'..b2a2/
ˇ.b1a1/

˛�1/� .b2a2/
ˇCw.b1a1/

˛�1Cw mod I:
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Now compute, using the fact that b1a1 commutes with b2a2 :

'..b2a2/
ˇ.b1a1/

˛/D b1a1'..b2a2/
ˇ.b1a1/

˛�1/� b1a1.b2a2/
ˇCw.b1a1/

˛Cw�1

� .b2a2/
ˇCw.b1a1/

˛Cw mod I:

On the other hand,
'..b1a1/

˛/� 0 mod I;

since there is no monomial in P0 with negative TW -weights. Hence

'..b2a2/
ˇ.b1a1/

˛/D .b2a2/
ˇ'..b1a1/

˛/� 0 mod I:

Comparing the two expressions,

.b2a2/
ˇCw.b1a1/

˛Cw
2 I:

Since w < 0, this contradicts the definition of ˇ .

I will later need the following additional information on fixed points. Recall from
Section 1.2 the construction of the moduli space Mv of framed cyclic modules as the
free quotient of an locally closed subset X � S0 � S of a vector space S of linear
maps by a group G .

Lemma 2.5.2 Let � 2P be a pyramid partition, and M� the framed cyclic module de-
fined by � . Then at the point ŒM� �2X , the parities of the tangent spaces dim TŒM� �X

and dim TŒM� �S coincide.

Proof In the prescription given in the proof of Proposition 2.5.1, the A–module M�

has a vector space basis indexed by the stones of the partition � . The affine space S

inherits natural coordinates given by the corresponding matrix entries. In this coordinate
system, ŒM� � 2 S has coordinates 0 and 1 as dictated by the partition � ; in Figure 3,
the arrows drawn correspond to coordinates equal to 1, the rest being 0.

The embedding X � S is locally defined by the superpotential equations dTr.W /.
Writing these in the matrix entries, we get cubic equations for every pair of basis
vectors indexed by stones i; l 2 � of opposite colours, and appropriate composable
arrows a; b; c of the conifold quiver, with a and c different, of the form

(2) Œi l I abc� W
X
j ;k

aij bjkckl D

X
j ;k

cij bjkakl :

Here j ; k 2 � run over all stones of appropriate colour. To get the embedding of
tangent spaces, these equations have to be linearized near the point ŒM� � 2 X with
all coordinates either 0 or 1. By changing variables to new variables a0ij D aij � 1
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whenever aij D 1, the linearized form of (2) is non-zero only if at least two of the
consecutive arrows aij ; bjk ; ckl , or cij ; bjk ; akl are non-zero. If for some i and l ,
there are three nonzero arrows aij ; bjk ; ckl , then (by the relations) there is another set
cim; bmn; anl of nonzero arrows, and the linearized form is

Œi l I abc�lin W a0ij C b0jk C c0kl C � � � D c0imC b0mnC a0nl C � � � I

If only two of the arrows, say aij and bjk are nonzero, the linearized form is

Œi l I abc�lin W ckl C � � � D 0:

In both cases, � � � represents further possible terms of the same shape.

Œi l I adc�lin W

bjk

ckl

cml

aij

aij

dli

dli

aij C � � � D 0

dli C � � � D 0

i

l ll

jii

j

j

kk

bjm

m

Œi l I abc�lin W

Œj i I bcd �lin W

bjk

djk

ckl

aij

bjk C � � � D 0

djk C � � � D 0

Œi l I abc�lin W Œi l I abc�lin W

dli C � � � D 0

cml C � � � D 0

ŒlmI dab�lin W

Figure 4: Configurations of arrows, and paired linear equations

I now claim that it is possible to pair these linearized equations so that the embedding
TŒM� �X ,! TŒM� �S is cut out by an even number of linearly independent equations,
proving the lemma. The proof proceeds by induction on the size of the pyramid partition
� , the claim being obvious for small partitions.

Take a stone l 2 � so that � n flg is also a partition. Assume first that the stone l only
touches one other stone of � . There is then only one nonzero incoming arrow ckl to
l , and l is not at the end of a chain of three consecutive nonzero arrows aij ; bjk ; ckl ,
since (by the relations) that would necessitate another nonzero incoming arrow anl . It
is now easy to check that there are only three possible configurations of two nonzero
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arrows, leading to new nonzero linear relations, being part of a path involving l . The
three configurations are depicted on Figure 4, together with the pairs of linear equations
that the configurations give rise to. In the figure, solid arrows represent ones, whereas
dotted arrows represent zeros. For example, in the middle case, we have two different
nonzero arrows aij ; ckl , and there are two ways of completing the pair to a path:
aij bjkckl and aij djkckl , leading to two linear relations cutting out the linear subspace
of interest.

It is immediate that in all cases the linear equations paired are indeed linearly indepen-
dent, and the pairs are well-defined. This proves the claim, and hence the lemma, in
this case. The second case, where there are two nonzero incoming arrows ckl and anl

to l , is similar, with a slightly larger number of diagrams. The details are left to the
reader.

Corollary 2.5.3 Let vD .d0; d1/ be a dimension vector. The parity of the dimension
of the Zariski tangent space at a TW –fixed point P 2 .Mv/

TW is the same as the parity
of d1 .

Proof Let Q 2X lie above P 2Mv . Since the G -action is free,

dim TPMv D dim TQX � dim G:

On the other hand, using Lemma 2.5.2 and the fact that S is just a vector space,

dim TQX � dim TQS D dim S .mod 2/I

hence
dim TPMv � dim S � dim G .mod 2/:

Looking at the definitions of S;G , this difference of dimensions is indeed

4d0d1C d0� d2
0 � d2

1 � d1 .mod 2/:

2.6 Pyramid partitions and dimer configurations

This section is not necessary for the logical flow of the paper. However, it points the
way to generalizations, so I include it here.

Let LŠ Z2 be the square lattice, thought of as an unoriented 4-regular bipartite graph
with infinite vertex set V and edge set E . Recall that a dimer configuration on the
square lattice is a subset F � E of the edges, so that every vertex v 2 V is incident to
exactly one edge in F . Given a fixed dimer configuration F1 , a dimer configuration is
said to be asymptotic to F1 , if the set F nF1 is finite.

Let F1 be the “length one empty room” square dimer configuration shown on Figure 5.
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Figure 5: The “length one empty room” square dimer configuration F1

Proposition 2.6.1 There is a one-to-one correspondence between pyramid partitions
˛ 2 P and dimer configurations F on the square lattice L asymptotic to the configura-
tion F1 .

Proof This is analogous to the correspondence between honeycomb dimers and
ordinary 3–dimensional partitions. Given a pyramid partiton ˛ 2 P , consider its
complement in the infinite pyramid arrangement. Now associate to this complement
a dimer configuration a F as follows. Looking from above, impose a square grid in
which the squares lie over the balls as on Figure 6. Now consider those edges which
lie over balls or half-balls visible from above. As illustrated, black balls or half-balls
correspond to horizontal dimers, whereas grey ones correspond to vertical dimers. The
empty pyramid partition gives the “length one empty room” F1 . Since ˛ 2 P is finite,
F is asymptotic to F1 and it is easy to see that all such arise.

Different pictures, perhaps more illuminating for some, can be found in Young [29,
Figures 1 and 2].

Remark 2.6.2 A general periodic dimer model, under some extra conditions, also
gives rise to a non-commutative toric algebra A defined by a superpotential. Moreover,
there is a correspondence between torus-fixed points in moduli spaces Mk;v and dimer
configurations with fixed asymptotic behaviour. This will be discussed in future work.
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Figure 6: A pyramid partition, its complement with the grid, and the resulting
dimer configuration

2.7 The non-commutative partition function

Consider the generating function

ZA.q/D
X

v2Z2

Dvqv

of virtual counts of framed cyclic representations of A.

Theorem 2.7.1 The generating function ZA.q/ can be expressed combinatorially as

ZA.q0; q1/D
X
�2P

.�1/wt1.�/q
wt0.�/
0

q
wt1.�/
1

;

where P is the set of finite pyramid partitions, or equivalently by Proposition 2.6.1, the
set of square dimer configurations F asymptotic to the “length one empty room” F1 .

Proof The rank–2 torus TW acts on all moduli spaces Mv . By construction, the
symmetric obstruction theory constructed in Theorem 1.3.1 is TW –equivariant in the
sense of [4]. Since Dv is a weighted Euler characteristic, with weights which are
constant on TW -orbits, nontrivial orbits do not contribute, and hence Dv receives
contributions from torus-fixed points only. At a TW –fixed point P 2 .Mv/

TW , the
contribution is simply .�1/dim TPMv by applying [4, Theorem 3.4] to a sufficiently
general one-dimensional subtorus of TW . Hence, the statement follows from Corollary
2.5.3.

The following result was conjectured in an earlier version of this paper, on the ba-
sis of extensive computational evidence, generalizing the one-variable specialization
conjectured earlier by Kenyon [20].
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Theorem 2.7.2 (Young [29]) The partition function ZA.q/ admits the following
infinite product expansion.

(3) ZA.q0; q1/DM.�q0q1/
2
Y
k�1

�
1C qk

0 .�q1/
k�1

�k �
1C qk

0 .�q1/
kC1

�k
:

3 Interpretations and generalizations

3.1 The commutative partition function

Recall the rank one Donaldson–Thomas partition function [23] of the smooth com-
mutative Calabi–Yau resolution X , the resolved conifold. The resolution � W X !Z

contracts a single rational curve C �X to the singular point of Z . Let Dn;d be the
DT invariant (Thomas [27]) of ideal sheaves I on X with �.I/D n and homology
class d ŒC �. Define the DT partition function of X as the series

ZX .q; t/D
X
n2Z

X
d�0

Dn
dqne�dt :

Figure 7: The combinatorial arrangement for the commutative resolution,
with the toric web diagram indicated

An argument using torus localization, similar to the one given above, gives the following
combinatorial interpretation of these DT invariants. Up to sign, Dn

d
is the number of

pairs of semi-infinite 3–dimensional partitions .˛1; ˛2/, bounded in the direction of
two coordinate axes, with infinitely long necks in the third direction with a common
ordinary partition � ` d as cross-section, and having total (renormalized) volume
j˛1jC j˛2j D n�f .�/, where f .�/ is a certain combinatorial invariant [23, Lemma
5] of the partition �. In other words, Dn

d
counts certain subsets of the arrangement of

Figure 7; note that the shape of the latter is closely related to the toric combinatorics of
the resolved conifold X (indicated by the dashed line). Consequently [24; 18; 23], one
obtains the following theorem.
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Theorem 3.1.1

(4) ZX .q; t/DM.�q/2
Y
k�1

�
1� .�q/ke�t

�k
:

In fact, the singularity Z D Spec.R/ admits two, isomorphic, crepant resolutions
X;XC related by a flop XC Ü X . Under the natural isomorphism H 2.X;R/!
H 2.XC;R/ induced by the flop, the positive classes have opposite sign. Therefore
the DT partition function of XC can be written in the variables q; t as

(5) ZX C.q; t/DM.�q/2
Y
k�1

�
1� .�q/ket

�k
:

3.2 Partition functions as functions on Bridgeland space and wall cross-
ing

The formulae (3), (4) and (5) are closely related. The change of variables q D q0q1 ,
z D q1 D e�t gives

ZX .q; z/DM.�q/2
Y
k�1

.1� .�q/kz/k ;

ZA.q; z/DM.�q/2
Y
k�1

.1� .�q/kz/k.1� .�q/kz�1/k ;(6)

ZX C.q; z/DM.�q/2
Y
k�1

.1� .�q/kz�1/k :

Hence dividing by the MacMahon factors, the reduced partition functions satisfy the
curious formal factorization property

(7) Z0A.q; z/DZ0X .q; z/Z
0

X C.q; z/:

The variable z D e�t coordinatizes a parameter space naturally associated to the
problem. To discuss this space, I need some definitions. Recall the map � W X !Z ,
contracting the rational curve C . Let D.X=Z/ denote the bounded derived category
of coherent sheaves on X , supported on a neighbourhood of the exceptional curve
C . It is known [6] that D.X=Z/ is equivalent to the derived category Dnilp.A�Mod/
of complexes of finitely generated A–modules with locally nilpotent cohomology
modules.

Let Stab.X=Z/ denote the component of the space of normalized stability conditions
(Bridgeland [9; 8]) on the category D.X=Z/, which contains stability conditions whose
heart is the category of sheaves on X supported along C . By [9], Stab.X=Z/ is a
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one-dimensional complex manifold. Let finally DAut.X=Z/ be the subgroup of the
derived autoequivalence group of D.X=Z/ which preserves this component. Then it
is proved in Bridgeland [8] and Toda [28] that

Stab.X=Z/=DAut.X=Z/Š P1
n f0; 1;1g:

In physics language, this is the full complexified Kähler structure moduli space of X .

The space Stab.X=Z/=DAut.X=Z/ and its structures are pictured on Figure 8. The
parameter t naturally lives in the upper or lower half planes fBC i!j˙! > 0g of the
complexified cohomology space H 2.X;C/ŠC , with ! D�i Im.t/ measuring the
volume of the embedded projective line in X . After taking the quotient by DAut.X=Z/,
e�t lives in the punctured upper and lower hemispheres in P1 n f0; 1;1g. The two
cusps z D 0;1 correspond to the “large volume” limits t ! ˙1 of X;XC . For
a stability condition corresponding to a point on the upper or lower hemispheres
fjzj> 1g, fjzj< 1g, the t –structure on D.X=Z/ has heart Coh.X=Z/, respectively
Coh.XC=Z/ (up to shift). Along the punctured equator fjzjD 1gnfzD 1g, all stability
conditions correspond to the perverse t –structure on D.X=Z/, with heart A�nilp, the
category of nilpotent A–modules. In this sense, the cusp z D 1 is naturally associated
to the non-commutative algebra A.

At this point, one would like to say that the functions ZA , ZX , ZX C count objects
from D.X=Z/, which are “stable in the limit”. This is however not correct as it
stands. The commutative DT partition function ZX of X certainly counts objects of
Coh.X=Z/, at least if one thinks of it as counting structure sheaves rather than ideal
sheaves. However, most of these are not stable: for example, the sheaf E DOX =I2

C

on C , where IC is the ideal defining the curve C , sits in a sequence

0!OC .1/
˚2
!E!OC ! 0

which is a destabilizing subsequence for any stability condition on D.X=Z/ with
heart Coh.X=Z/. Similarly, ZA does count objects of A�nilp, since all T –fixed A–
representations are in fact nilpotent, but most of these are non-stable (though semistable)
in Dnilp.A�mod/.

An alternative is to return to the original interpretation of the DT partition function
ZX of X as a generating function counting ideal sheaves. These are indeed Gieseker
stable on X , but they are not objects of D.X=Z/, only of D.X /. However, very
little is known about the space of (normalized) stability conditions on D.X /, though
presumably it is also a cover of the thrice punctured Riemann sphere. It is conceivable
that near the large volume limit point corresponding to X , every Gieseker stable sheaf
on X becomes Bridgeland stable, so ZX does in fact count stable objects near a cusp
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in the space of stability conditions. Similarly, by Proposition 1.4.1, the function ZA

can be thought of as counting certain finite-codimension ideals in A, and one might
hope that in fact these, and only these, objects of D.X /ŠD.A�Mod/ are stable under
an appropriate limiting stability condition as one approaches the conifold point z D 1

along the equator. Note that there are two ways to do that, perhaps corresponding
to the two choices of vertex for the cyclic generator. (Compare Denef–Moore [11,
Section 6.1.2] for a similar example of “opposite” sets of objects becoming stable
along two opposite rays leading to the same limit point). The change from ZX to
ZA to ZX C might then be interpreted as an instance of wall crossing in the space
of stability conditions, with a countably infinite number of walls between z D 0 and
z D 1, respectively z D 1 and z D 1. It would be very interesting to pursue this
direction further.

Note finally that although ZA has a Taylor series expansion in the variables .q0; q1/D

.q=z; z/, it is only a Laurent series in the variables .q; z/ near z D 0 or z D1 with
infinitely many positive and negative powers of z . In this sense, this change of variables
is “non-perturbative”. As in (7), ZX and ZX C are the positive and negative parts of
ZA under a factorization on P1

z , reminiscent of Birkhoff factorization; these can then
be expanded as Taylor series near the appropriate cusps.

the large structure limit point of XC

the non-commutative point

the Kähler cone of XC

z D 0

z D 1

z D1

the large structure limit point of X

the Kähler cone of X

Figure 8: The Kähler structure moduli space of X
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3.3 Coefficients at small volume and “modularity”

Starting with the form (6) of the partition function ZA , under the substitution z D e�t

discussed in the last section, write

log ZA.q; t/D
X
k�1

k �
�

log.1� .�q/ke�t /C log.1� .�q/ket /� 2 log.1� .�q/k/
�

D

X
k;n�1

k

n
.�q/kn

�
e�nt
C ent

� 2
�

D

X
d�1

d � .�q/d �
X
njd

1

n2

�
2 sinh

nt

2

�2

:(8)

This is formally very similar to the way the change of variables qD�eiu of [23] leads
to the Gopakumar–Vafa form [15] of the closed string partition function. However, it
is very different in substance, since t is the Kähler parameter. Thus (8) is valid near
small volume, or equivalently high spacetime curvature, and large string coupling u.
Note that it is essential to start with the whole ZA , including its positive and negative
parts as well as the MacMahon factor, to get this form.

To continue, use the series expansion�
2 sinh

x

2

�2

D

X
k�1

2

.2k/!
x2k

to get

log ZA.q; t/D
X

d;k�1

2d

.2k/!
.�q/d t2k

�

X
njd

n2k�2

D

X
d;k�1

2.�1/dd �2k�2.d/

.2k/!
qd t2k ;(9)

with the divisor power sum function for positive integers d defined by

�s.d/D
X
njd

ns:

The expression (9) has the form of a generating series for a set of new “(connected)
enumerative invariants”

Md;k D
2.�1/dd � �2k�2.d/

.2k/!
; d; k � 1;
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associated to X , at small volume/high curvature and large string coupling. I have no
geometric or physical interpretation for these numbers at present.

To continue, for integers l � 1, introduce the series

El.x/D
X
d�1

�l�1.d/x
d :

The reason for the notation will become apparent presently. (9) becomes

(10) log ZA.q; t/D
X
k�1

2

.2k/!
t2k q

d

dq
E2k�1.�q/:

On the other hand, the standard identity (valid for Im � > 0, l > 1)X
n2Z

1

.� C n/l
D
.�2� i/l

.l � 1/!

X
m�1

ml�1e2�im� ;

leads for l � 2 to

El.e
2�i� /D

.l � 1/!

.�2� i/l

X
m�1;n2Z

1

.m� C n/l
:

Thus, El is “essentially” an Eisenstein series. Indeed, for l D 2k even, we can double
the sum to run over m 2 Z n f0g; n 2 Z and add the appropriate constant term, to get
the standard modular (quasi-)invariant Eisenstein series G2k . However, for the odd
values of interest in (10), the signs work against us. So E2k�1 is not modular, but it is
intriguingly close to being so. Compare Dabholkar et al [10, Appendix E] for a similar
discussion involving the MacMahon function.

3.4 A generalized partition function

The combinatorial arragement of Figure 2, leading to pyramid partitions, has an obvious
generalization to an elongated rectangular pyramid with n black stones on level 0. In
the dimer model, finite subsets of this arrangement correspond to configurations with
the “length n empty room” asymptotics.

Let P.n/ denote the set of finite partition-like subsets of the elongated pyramid config-
uration of length n; as before, let wti.�/ denote the number of stones in ˛ 2 P.n/ of
colour i . Define the partition function

Z
.n/
A
.q0; q1/D

X
�2P.n/

q
wt0.�/
0

.�q1/
wt1.�/:
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The choice of signs is motivated by Corollary 2.5.3, but this is only by analogy, since
the precise enumerative interpretation of these invariants is unclear. The following
generalization of Theorem 2.7.2 was again conjectured in an earlier version of this paper
(compare Kenyon [20] for the one-variable specialization), based on computational
evidence.

Theorem 3.4.1 (Young [29]) The partition function Z
.n/
A
.q/ admits the following

infinite product expansion.

Z
.n/
A
.q0; q1/DM.�q0q1/

2
Y
k�1

�
1C qk

0 .�q1/
k�1

�kCn�1
(11)

�
1C qk

0 .�q1/
kC1

�max.k�nC1;0/
:

In the recent physics literature on the conifold, there are expressions which are re-
markably similar to the terms appearing as the ratio Z

.n/
A
=Z

A
; compare Hyun–Yi

[17, (3.30)–(3.32)] as well as Kashani–Poor [19, (3.6)]. These computations are in
the context of Lagrangian branes, so not immediately applicable, but they suggest a
relationship between these generalized partition functions and higher-rank Donaldson–
Thomas theory. I hope to return to this point in future work.

3.5 The global case

In this section, I indicate a possible extension of the ideas of the paper to a global
context. Assume that Y is a projective variety, singular at a finite set of conifold
points (nodes). Assume further that there is a Calabi–Yau small resolution � W X ! Y ,
together with a line bundle L 2 Pic.X / such that LjCi

ŠOCi
.1/ on all � –exceptional

curves Ci Š P1 .

Proposition 3.5.1 (Van den Bergh) There exists a sheaf A of associative, non-
commutative algebras on Y , such that over Y n Sing.Y /, AY nSing.Y / is a sheaf of
Azumaya algebras (locally, matrix algebras over the structure sheaf), and in a neigh-
bourhood of each of the nodes, sections of A define the non-commutative resolution A

discussed before. Further, there is a derived equivalence D.Y /ŠD.A�mod/.

Proof Define the sheaf A of OY –algebras by

AD �� EndX .OX ˚L/:

This is clearly a sheaf of Azumaya algebras on Y n Sing.X /, whereas by [6], in a
neighbourhood of each of the nodes, sections of A define the noncommutative crepant
resolution A. The derived equivalence follows from [6, Propositions 3.3.1–3.3.2].
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Thus, D.A�mod/ is a 3–Calabi–Yau category, with Serre functor the third power of
the shift functor, and thus appropriately defined moduli spaces of (stable) A–modules
will carry a perfect obstruction theory. It would be interesting to compare the invariants
thus obtained to the ordinary DT invariants of Y .

3.6 Some quotient examples

Phenomena similar to the above have been observed by Bryan–Young [30] for some
orbifolds C3=� , where the singularity admits a semismall resolution (no divisors over
points, equivalently all exceptional fibres are rational curves), such as � < SL.2;C/ <
SL.3;C/ and �DZ=2�Z=2<SL.3;C/. Let X!C3=� be the canonical crepant res-
olution given by the � –Hilbert scheme. Consider also the canonical non-commutative
resolution given by the cross product algebra

ADCŒx1;x2;x3� ?C�:

This algebra is known to be (Morita equivalent to) the quiver algebra of the McKay
quiver of � , with a specific superpotential, see Ginzburg [14, Theorem 4.4.6].

In complete analogy with the above discussion, there is a commutative Donaldson–
Thomas partition function ZX , as well as a noncommutative partition function ZA .
Assuming further that � is abelian, both can again be computed by torus localization;
the computation of ZA localizes to a set indexed by standard 3–dimensional partitions
coloured with characters of the group � .

The resulting formulae depend on a set of roots †�Zr , together with a subset †C�†
of positive roots. For a set of dual variables t, the commutative partition function takes
the form

ZX .q; t/DM.�q/�
Y
k�1

Y
˛2†C

.1� .�q/ke�h˛;ti/˙k

(product over positive roots), whereas ZA is of the form

ZA.q; t/DM.�q/�
Y
k�1

Y
˛2†

.1� .�q/ke�h˛;ti/˙k

(product over all roots). In further analogy with the case of the resolved conifold, the
resolution X admits various flops X i (geometric or derived) which have partition
functions ZX i obtained by choosing a different Weyl chamber as dictated by the flop.
In particular, there is a flop XC of X corresponding to the opposite chamber, together
with a factorization

Z0A.q; t/DZ0X .q; t/Z
0

X C.q; t/
as in (7) above.
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