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Degenerations of quadratic differentials on CP 1

CORENTIN BOISSY

We describe the connected components of the complement of a natural “diagonal” of
real codimension 1 in a stratum of quadratic differentials on CP 1 . We establish a
natural bijection between the set of these connected components and the set of generic
configurations that appear on such “flat spheres”. We also prove that the stratum
has only one topological end. Finally, we elaborate a necessary toolkit destined to
evaluation of the Siegel–Veech constants.

32G15; 30F30, 57R30

1 Introduction

The article deals with families of flat metric on surfaces of genus zero, where the
flat metrics are assumed to have conical singularities, Z=2Z linear holonomy and a
fixed vertical direction. The moduli space of such metrics is isomorphic to the moduli
space of meromorphic quadratic differential on CP1 with at most simple poles and is
naturally stratified by the number of poles and by the orders of zeros of a quadratic
differential.

Any stratum is non compact and a neighborhood of its boundary consists of flat surfaces
that admit saddle connections of small length. The structure of the neighborhood of
the boundary is also related to counting problems in a generic surface of the stratum
(the “Siegel–Veech constants”, see Eskin, Masur and Zorich [4] for the case of Abelian
differentials).

When the length of a saddle connection tends to zero, some other saddle connections
might also be forced to shrink. In the case of an Abelian differential this corresponds
to homologous saddle connections. In the general case of quadratic differentials,
the corresponding collections of saddle connections on a flat surface are said to be
ĥomologous1 (pronounced “hat-homologous”). Configurations associated to collections
of ĥomologous saddle connections have been described for general strata by Masur

1The corresponding cycles are in fact homologous on the canonical double cover of S , usually denoted
as bS , see Section 1.2.
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and Zorich in [11] and more specifically for genus zero and in hyperelliptic connected
components by the author in [1].

Usually, the study of the structure of the neighborhood of the boundary is restricted to a
thick part, where all short saddle connections are pairwise ĥomologous (see Masur and
Smillie [9], and also [4; 11]). Following this idea, we will consider the complement of
the codimension 1 subset � of flat surfaces that admit a pair of saddle connections
that are both of minimal length, but which are not ĥomologous.

For a flat surface in the complement of �, we can define the configuration of the
maximal collection of ĥomologous saddle connections that contains the smallest saddle
connection of the surface. This defines a locally constant map outside � (see Section
5 for more details).

We will prove the following result.

Main Theorem Let Q1.k1; : : : ; kr / be a stratum of quadratic differentials on CP1

with at most simple poles. There is a natural bijection between the configurations of
ĥomologous saddle connections existing in that stratum and the connected components
of Q1.k1; : : : ; kr /n�.

We will call the connected components of Q1.k1; : : : ; kr /n� the configuration domains
of the stratum. These configuration domains might be interesting to the extend that
they are “almost” manifolds in the sense of the following corollary.

Corollary 1.1 Let D be a configuration domain of a stratum of quadratic differentials
on CP1 . If D admits orbifoldic points, then the corresponding configuration is

“symmetric” and the locus of such orbifoldic points are unions of copies (or coverings)
of submanifolds of smaller strata.

Restricting ourselves to the neighborhood of the boundary, we show the following
proposition.

Proposition 1.2 Let D be a configuration domain of a stratum of quadratic differen-
tials on CP1 . Then D has only one topological end.

Corollary 1.3 Any stratum of quadratic differentials on CP1 has only one topological
end.

Corollary 1.1 and Corollary 1.3 will be stated later as Corollary 5.4 and Corollary 5.5.
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1.1 Basic definitions

Here we first review standard facts about moduli spaces of quadratic differentials. We
refer to Hubbard and Masur [5], Masur [8] and Veech [12] for proofs and details, and
to Masur–Tabachnikov [10] or Zorich [15] for general surveys.

Let S be a compact Riemann surface of genus g . A quadratic differential q on S

is locally given by q.z/ D �.z/dz2 , for .U; z/ a local chart with � a meromorphic
function with at most simple poles. We define the poles and zeroes of q in a local
chart to be the poles and zeroes of the corresponding meromorphic function � . It is
easy to check that they do not depend on the choice of the local chart. Slightly abusing
notations, a marked point on the surface (resp. a pole) will be referred to as a zero
of order 0 (resp. a zero of order �1). An Abelian differential on S is a holomorphic
1–form.

Outside its poles and zeros, q is locally the square of an Abelian differential. Integrating
this 1–form gives a natural atlas such that the transition functions are of the kind
z 7! ˙zC c . Thus S inherits a flat metric with singularities, where a zero of order
k � �1 becomes a conical singularity of angle .kC 2/� . The flat metric has trivial
holonomy if and only if q is globally the square of any Abelian differential. If not,
then the holonomy is Z=2Z and .S; q/ is sometimes called a half-translation surface
since transition surfaces are either half-turns, or translations. In order to simplify the
notation, we will usually denote by S a surface with a flat structure.

We can associate to a quadratic differential the set with multiplicities fk1; : : : ; kr g of
orders of its poles and zeros. The Gauss–Bonnet formula asserts that

P
i ki D 4g� 4.

Conversely, if we fix a collection fk1; : : : ; kr g of integers, greater than or equal to
�1 satisfying the previous equality, we denote by Q.k1; : : : ; kr / the (possibly empty)
moduli space of quadratic differential which are not globally squares of Abelian
differential, and which have fk1; : : : ; kr g as orders of poles and zeros. It is well known
that Q.k1; : : : ; kr / is a complex analytic orbifold, which is usually called a stratum
of the moduli space of quadratic differentials on a Riemann surface of genus g . We
usually restrict ourselves to the subspace Q1.k1; : : : ; kr / of area one surfaces, where
the area is given by the flat metric. In a similar way, we denote by H1.n1; : : : ; ns/ the
moduli space of Abelian differentials of area 1 having zeroes of degree fn1; : : : ; nsg,
where ni � 0 and

Ps
iD1 ni D 2g� 2.
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There is a natural action of SL2.R/ on Q.k1; : : : ; kr / that preserve its stratification:
let .Ui ; �i/i2I is a atlas of flat coordinates of S , with Ui open subset of S and
�i.Ui/�R2 . An atlas of A:S is given by .Ui ;A ı�i/i2I . The action of the diagonal
subgroup of SL2.R/ is called the Teichmüller geodesic flow. In order to specify
notations, we denote by gt and r� the following matrices of SL2.R/:

gt D

"
e

t
2 0

0 e�
t
2

#
r� D

�
cos.�/ sin.�/
� sin.�/ cos.�/

�
:

A saddle connection is a geodesic segment (or geodesic loop) joining two singularities
(or a singularity to itself) with no singularities in its interior. Even if q is not globally
a square of an Abelian differential we can find a square root of it along the saddle
connection. Integrating it along the saddle connection we get a complex number
(defined up to multiplication by �1). Considered as a planar vector, this complex
number represents the affine holonomy vector along the saddle connection. In particular,
its euclidean length is the modulus of its holonomy vector. Note that a saddle connection
persists under any small deformation of the surface.

Local coordinates for a stratum of Abelian differential are obtained by integrating the
holomorphic 1–form along a basis of the relative homology H1.S; fsingg;Z/, where
fsingg denotes the set of conical singularities of S . Equivalently, this means that local
coordinates are defined by the relative cohomology H 1.S; fsingg;C/.

Local coordinates in a stratum of quadratic differentials are obtained in the following
way: one can naturally associate to a quadratic differential .S; q/ 2Q.k1; : : : ; kr / a
double cover pW bS ! S such that p�q is the square of an Abelian differential ! .
The surface bS admits a natural involution � , that induces on the relative cohomology
H 1.bS ; fsingg;C/ an involution �� . It decomposes H 1.bS ; fsingg;C/ into an invariant
subspace H 1

C.
bS ; fsingg;C/ and an anti-invariant subspace H 1

�.
bS ; fsingg;C/. One

can show that the anti-invariant subspace H 1
�.
bS ; fsingg;C/ gives local coordinates for

the stratum Q.k1; : : : ; kr /.

1.2 Ĥomologous saddle connections

Let S 2Q.k1; : : : ; kr / be a flat surface and denote by pW bS ! S its canonical double
cover and � its corresponding involution. Let † be the set of singularities of S andb† D p�1.†/.

To an oriented saddle connection  on S , we can associate 1 and 2 its preimages
by p . If the relative cycles Œ1� and Œ2� in H1.bS ; b†;Z/ satisfy Œ1�D �Œ2�, then
we define Œy �D Œ1�. Otherwise, we define Œy �D Œ1�� Œ2�. Note that in all cases, the
cycle Œy � is anti-invariant with respect to the involution � .

Geometry & Topology, Volume 12 (2008)
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Definition 1.4 Two saddle connections  and  0 are ĥomologous if Œy �D˙Œ y 0�:

Example 1.5 Consider the flat surface S 2Q.�1;�1;�1;�1/ given in Figure 1 (a
“pillowcase”), it is easy to check from the definition that 1 and 2 are ĥomologous
since the corresponding cycles for the double cover bS are homologous.

bS

S

20

20

10

10

2

2

1

1

3

3

1

2

˙Œy1�

˙Œy2�

Figure 1: An unfolded flat surface S with two ĥomologous saddle connec-
tions 1 and 2 .

Example 1.6 Consider the flat surface given in Figure 2, the reader can check that
the saddle connections 1 , 2 and 3 are pairwise ĥomologous.

The following theorem is due to Masur and Zorich [11]. It gives in particular a simple
geometric criterion for deciding whether two saddle connections are ĥomologous. We
give in the appendix an alternative proof.

Theorem (H. Masur, A. Zorich) Consider two distinct saddle connections ;  0 on a
half-translation surface. The following assertions are equivalent.

� The two saddle connections  and  0 are ĥomologous.

� The ratio of their length is constant under any small deformation of the surface
inside the ambient stratum.

� They have no interior intersection and one of the connected component of
Snf [  0g has trivial linear holonomy.

Geometry & Topology, Volume 12 (2008)
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Figure 2: Unfolded flat surface with three ĥomologous saddle connections
1 , 2 , and 3 .

Furthermore, if  and  0 are ĥomologous, then the ratio of their length belongs to
f1=2; 1; 2g and they are parallel.

A saddle connection 1 will be called simple if they are no other saddle connections
ĥomologous to 1 . Now we consider a set of ĥomologous saddle connections  D
f1; : : : ; sg on a flat surface S . Slightly abusing notation, we will denote by Sn

the subset Sn
�
[s

iD1
i

�
. This subset is a finite union of connected half-translation

surfaces with boundary. We define a graph �.S;  / called the graph of connected
components in the following way (see [11]): the vertices are the connected components
of Sn , labelled as “ı” if the corresponding surface is a cylinder, as “C” if it has
trivial holonomy (but is not a cylinder), and as “�” if it has non-trivial holonomy. The
edges are given by the saddle connections in  . Each i is on the boundary of one or
two connected components of Sn . In the first case it becomes an edge joining the
corresponding vertex to itself. In the second case, it becomes an edge joining the two
corresponding vertices.

Each connected components of Sn is a non-compact surface but can be naturally
compactified (for example considering the distance induced by the flat metric on a
connected component of Sn , and the corresponding completion). We denote this
compactification by Sj . We warn the reader that Sj might differ from the closure
of the component in the surface S : for example, if i is on the boundary of just one
connected component Sj of Sn , then the compactification of Sj contains two copies
of i in its boundary, while in the closure of Sj these two copies are identified. The
boundary of each Si is a union of saddle connections; it has one or several connected
components. Each of them is homeomorphic to S1 and therefore the orientation of
S defines a cyclic order in the set of boundary saddle connections. Each consecutive
pair of saddle connections for that cyclic order defines a boundary singularity with
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an associated angle � which is a integer multiple of � (because the boundary saddle
connections are parallel). We call order of the boundary singularity the integer ���

�
.

The surface with boundary Si might have singularities in its interior. We call them
interior singularities.

Definition 1.7 Let  D f1; : : : ; r g be a maximal collection of ĥomologous saddle
connections on a flat surface. A configuration is the following combinatorial data.

� The graph �.S;  /:

� For each vertex of this graph, a permutation of the edges adjacent to the ver-
tex (encoding the cyclic order of the saddle connections on each connected
component of the boundary of the Si ).

� For each pair of consecutive elements in that cyclic order, a nonnegative inte-
ger corresponding to the order of the boundary singularity defined by the two
corresponding saddle connections.

� For each Si , a collection of integers greater than or equal to �1 that are the
orders of the interior singularities of Si .

We refer to Masur and Zorich [11] for a more detailed definition of a configuration (see
also the author’s paper [1]).

1.3 Neighborhood of the boundary, thick-thin decomposition

For any compact subset K of a stratum, there exists a constant cK such that the length
of any saddle connection of any surface in K is greater than cK . Therefore, we can
define the ı–neighborhood of the boundary of the stratum to be the subset of area 1

surfaces that admit a saddle connection of length less than ı .

According to Masur and Smillie [9], one can split the ı–neigborhood of the boundary
of a stratum into a thin part (of negligibly small measure) and a thick part. The thin
part being for example the subset of surfaces with a pair of nonĥomologous saddle
connections of length respectively less than ı and N ı , for some fixed N � 1 (the
decomposition depends on the choice of N ). We also refer to [4] for the case of
Abelian differentials and to [11] for the case of quadratic differentials.

Let N � 1, we consider QN .k1; k2; : : : ; kr / the subset of flat surfaces such that, if 1

is the shortest saddle connection and  0
1

is another saddle connection nonĥomologous to
1 , then j 0

1
j>N j1j. Similarly, we define QN

1
.k1; k2; : : : ; kr / to be the intersection

of QN .k1; k2; : : : ; kr / with the subset of area 1 flat surfaces.

Geometry & Topology, Volume 12 (2008)
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For any surface in QN .k1; k2; : : : ; kr /, we can define a maximal collection F of
ĥomologous saddle connections that contains the smallest one. This is well defined
because if there exists two smallest saddle connections, they are necessary ĥomologous.
We will show in Section 5 that the associated configuration defines a locally constant map
from QN

1
.k1; k2; : : : ; kr / to the space of configurations. This leads to the following

definition.

Definition 1.8 A configuration domain of Q1.k1; : : : ; kr / is a connected component
of QN

1
.k1; : : : ; kr /.

Remark 1.9 The previous definition of a configuration domain is a little more general
than the one stated in the introduction that corresponds to the case N D 1.

Definition 1.10 An end of a locally compact topological space W is a function

�W fK; K �W is compactg ! fX; X �W g

such that:

� �.K/ is a (unbounded) component of W nK for each K

� if K �L, then �.L/� �.K/.

Proposition If W is � –compact, then the number of ends of W is the maximal
number of unbounded components of W nK , for K compact, when the number is
bounded.

We refer to the book of Hughes and Ranicki [6] for more details on the ends of a space.

1.4 Example on the moduli space of flat torus

If T is a flat torus (ie a Riemann surface of genus one with an Abelian differential
! ), then, up to rescaling ! , we can assume that the holonomy vector of the shortest
geodesic is 1. Then, choosing a second smallest non horizontal geodesic with a good
choice of its orientation, this defines a complex number z D x C iy , with y > 0,
�1=2 � x � 1=2 and jzj � 1. The corresponding domain D in C is a fundamental
domain of H=SL2.Z/.

It is well know that this defines a map from the moduli space of flat torus with trivial
holonomy (ie H.∅/), to H=SL2.Z/ which is a bundle, with C� as fiber. Orbifoldic
points of H.∅/ are over the complex number z1D i and z2D

1Ci
p

3
2

. They correspond
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to Abelian differential on torus obtained by identifying the opposite sides of a square,
or a regular hexagon.

Now with this representation, HN .∅/ is obtained by restricting ourselves to the
subdomain DN DD\fz; jzj>N g (see Figure 3). This subdomain contains neither
z1 nor z2 , so HN .∅/ is a manifold. In the extreme case N D 1, the codimension one
subset � is an arc joining z1 to z2 .

$P_2$P2

P1

P1
P2

�

�N

Figure 3: Configuration domain in H.∅/ .

1.5 Reader’s guide

Now we sketch the proof of the Main Theorem.

(1) We first prove the theorem for the case of configuration domains defined by
a simple saddle connection (we will refer to these configuration domains as
simple). We will explain how we can shrink a simple saddle connection, when
its length is small enough (therefore, describe the structure of the stratum in a
neighborhood of an adjacent one). This is done in Section 4.
There is one easy case, when the shrinking process is done by local and canonical
surgeries. The other case involves some non-local surgeries (hole transport) that
depend on a choice of a path. We will have to describe the dependence of the
choice of the path. More details on these surgeries appear in Section 3.

(2) The list of configurations was established by the author in [1]. The second step of
the proof is to consider each configuration and to show that the subset of surface
associated to this configuration is connected. This will be done in Section 5 and
will use the “simple case”.
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2 Families of quadratic differentials defined by an involution

Consider a polygon whose sides come by pairs, and such that, for each pair, the
corresponding sides are parallel and have the same length. Then identifying these pair
of sides by appropriate isometries, this gives a flat surface. In this section we show that
any flat surface can arise from such a polygon and give an explicit construction. We
end by a technical lemma that will be one of the key arguments of Theorem 4.2.

The construction presented in this section is a natural generalization for the case of
quadratic differentials of the well known zippered rectangle construction, due to Veech
(see [12]). This idea was developed later by the author and Lanneau (see [2]).

�1
�2 �3

�4 D �2

�5

�6

�7 D �6 �8 D �3

�9 D �5
�10 D �1

Figure 4: Flat surface unfolded into a polygon.

2.1 Constructions of a flat surface

Let � be an involution of the set f1; : : : ; l Cmg, without fixed points.

We denote by Q�;l the set of � D .�1; : : : ; �lCm/ 2ClCm such that:

(1) 8i �i D ��.i/

(2) 8i Re.�i/ > 0

(3) 81� i � l � 1 Im.
P

k�i �k/ > 0

(4) 81� j �m� 1 Im.
P

1�k�j �lCk/ < 0

(5)
P

k�l �k D
P

1�k�m �lCk .

Now we will construct a map ZR from Q�;l to the moduli space of quadratic differ-
entials. Slightly abusing conventional terminology, we will call a surface in ZR.Q�;l/

a suspension over .�; l/, and a vector in Q�;l is then a suspension data.

Note that Q�;l might be empty for some � . Furthermore, since Q�;l is convex, the
connected component of the stratum is uniquely determined by (�; l/. This is discussed
in detail in [2] .
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Easy case Now we consider a broken line L1 whose edge number i (1� i � l ) is
represented by the complex number �i . Then we consider a second broken line L2

which starts from the same point, and whose edge number j (1� j �m) is represented
by �lCj . The last condition implies that these two lines also end at the same point. If
they have no other intersection points, then they form a polygon (see Figure 4). The
sides of the polygon, enumerated by indices of the corresponding complex number,
naturally come by pairs according to the involution � . Gluing these pair of sides by
isometries respecting the natural orientation of the polygon, this construction defines a
flat surface which have trivial or non-trivial holonomy.

For this case, we will say that the suspension data defines a suitable polygon.

First return map on a horizontal segment Let S be a flat surface and X be a
horizontal segment with a choice of a positive vertical direction (or equivalently, a
choice of left and right ends). We consider the first return map T1W X!X for geodesics
starting from X in the positive direction (with speed one). Any such geodesic which is
infinite will intersect X again. Therefore, the map T1 is well defined outside a finite
number of points that correspond to vertical geodesics that stop at a singularity before
intersecting the interval X again. This set Xnfsingg is a finite union X1; : : : ;Xl of
open intervals and the restriction of T1 on each Xi is of the kind x 7! ˙xC ci . For
each i , the first return time for the vertical geodesics starting from Xi (in the positive
direction) is constant. Similarly, we define T2 to be the first return map for geodesics
in the negative direction and denote by XlC1; : : : ;XlCm the corresponding intervals.
Remark that for i � l (resp. i > l ) , T1.Xi/ D Xj (resp. T2.Xi/ D Xj ) for some
1� j � l Cm. Therefore, .T1;T2/ induce a permutation �X of f1; l Cmg, and it is
easy to check that �X is an involution without fixed points. When S is a translation
surface, T2 D T �1

1
and T1 is called an interval exchange transformation.

Note that the pair .T1;T2/ can also be seen as a particular case of a linear involution,
which was introduced by Danthony and Nogueira [3] in order to encode the first return
map of a measured foliation on a transverse segment. See also [2].

If S 2ZR.Q�;l/, constructed as previously, we choose X to be the horizontal line
whose left end is the starting point of the broken lines, and of length Re.

P
k�l �k/ .

Then it is easy to check that �X D � .

Veech zippered rectangle construction The broken lines L1 and L2 might intersect
at other points (see Figure 5).

However, we can still define a flat surface by using an analogous construction as the
well known zippered rectangles construction due to Veech. We give a description
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of this construction and refer to Veech [12] and Yoccoz [14] for the case of Abelian
differentials. This construction is very similar to the usual one, although its precise
description is quite technical. Still, for completeness, we give an equivalent but rather
implicit formulation.

�1

�2

�3
�4 �5

�6

�7
�8

�9

�10

Figure 5: Suspension data that does not give a “suitable” polygon.

We first consider the previous case when L1 and L2 define an suitable polygon. For
each pair of interval Xi ;X�.i/ on X , the return time hi D h�.i/ for the corresponding
geodesics starting from x 2 Xi and returning in y 2 X�.i/ is constant. This value
depends only on .�; l/ and on the imaginary part of � . For each pair ˛ D fi; �.i/g
there is a natural embedding of the open rectangle R˛ D .0;Re.�i//� .0; hi/ into the
flat surface S (see Figure 6). For each R˛ , we glue a horizontal side to Xi and the
other to X�.i/ . The surface S is then obtained after suitable identifications of the
vertical sides of the the rectangles fR˛g˛ . These vertical identifications only depend
on .�; l/ and on the imaginary part of � .

For the general case, we construct the rectangles fR˛g˛ by using the same formulas.
Identifications for the horizontal sides are straightforward. Identifications for the
vertical sides do not depends on the horizontal parameters, and will be the same as for
a suspension data �0 that have the same imaginary part as � , but which correspond to a
suitable polygon. This will be well defined after the following lemma.

Lemma 2.1 Let � be a collection of complex numbers in Q�;l then there exists
�0 2Q�;l with the same imaginary part as � , that defines a suitable polygon.

Proof We can assume that
Pl

kD1 Im.�k/ > 0 (the negative case is analogous and
there is nothing to prove when the sum is zero). If we find a suspension data �0 with the
same imaginary part as � , and such that Re.�0

lCm
/ < Re.�0

l
/C ", for " small enough.

Then such suspension data defines a suitable polygon.

Geometry & Topology, Volume 12 (2008)
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1

2

2

1

Rf1;10g

Rf2;4g

Figure 6: Zippered rectangle construction, for the case the flat surface of
Figure 4.

It is clear that �.l Cm/ ¤ l otherwise there would be no possible suspension data.
If �.l Cm/ < l , then we can shorten the real part of �lCm and of ��.lCm/ , keeping
conditions (1)—(5) satisfied, and get a suspension data �0 with the same imaginary
part as � , and such that Re.�0

lCm
/ is less than Re.�0

l
/. This last condition implies that

�0 defines a suitable polygon.

Similarly, if �.l/ > l , then one can freely increase the real part of �l and ��.l/ , keeping
conditions (1)—(5) satisfied and get a suspension data �0 with the same imaginary part
as � , and such that �0 defines a suitable polygon.

Now we assume that �.l Cm/ > l . If there exists i; �.i/ > l , such that fi; �.i/g ¤
fl Cm; �.l Cm/g, then we define �0 by decreasing arbitrarily the real part of the
corresponding �lCm; ��.lCm/ , and increasing the real parts of �i ; ��.i/ such that the
sum

P
l<k�lCm �k is constant. More precisely:

Re.�0lCm/D Re.�0�.lCm//D x

Re.�0i/D Re.�0�.i//D Re.�i/CRe.�lCm/�x

Re.�0k/D Re.�k/ for all k … fi; �.i/; l Cm; �.l Cm/g

Im.�0k/D Im.�k/ for all k:

Then �0 satisfy condition (1)—(5) and defines a suitable polygon for instance for
x < Re.�l/.

The last remaining case corresponds to when fl C m; �.l C m/g is the only pair
fk; �.k/g such that k; �.k/ > l , and when �.l/ < l . There exists i0; �.i0/ < l , such
that fi0; �.i0/g ¤ fl; �.l/g otherwise condition .5/ implies that �l D �lCm , and � is

Geometry & Topology, Volume 12 (2008)



1358 Corentin Boissy

not a suspension data. Now for each pair fi; �.i/g, with i; �.i/ < l and different from
fl; �.l/g we can shorten arbitrarily the real part of the corresponding �i ; ��.i/ , and
increase the real parts of �l ; ��.l/ such that the sum

P
k�l �k is constant, in a similar

way as previously. If we do this operation for each pair i; �.i/ < l , then we get a new
suspension data �0 such that Re.�0

lCm
/ <Re.�0

l
/C", for " arbitrarily small. This gives

a suitable polygon.

2.2 The converse: construction of suspension data from a flat surface

Now we give a sufficient condition for a surface to be in some Q�;l . Note that an
analogous construction for hyperelliptic flat surfaces has been done by Veech in [13].

�1

�2 �3

�4

�1;1

�1;2

x1;1 x1;2
X2 T1.X2/

Figure 7: Construction of a polygon from a surface.

Proposition 2.2 Let S be a flat surface with no vertical saddle connection. There
exists an involution � and an integer l such that S 2ZR.Q�;l/.

Proof Let X be a horizontal segment whose left end is a singularity. Up to cutting
X on the right, we can assume that the vertical geodesic starting from its right end hits
a singularity before meeting X again.

Let x1;1 < � � � < x1;l�1 be the points of discontinuity of T1 and .x1;0;x1;l/ be the
endpoints of X . For each positive k , there exists �1;k > 0 such that the vertical
geodesic starting from x1;k in the positive direction stops at a singularity at time
�1;k (here �1;0 D 0, since by convention x1;0 is located at a singularity). Then for
k � 1 we define �k W .x1;k � x1;k�1/C i.�1;k � �1;k�1/. Now we perform a similar
construction for geodesics that starts in the negative direction: let x2;1 < � � �< x2;m�1
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be the points of discontinuity of T2 and .x2;0;x2;m/ be the extremities of X . For each
k … f0;mg, the vertical geodesic starting from x2;k in the positive direction stops at a
singularity at time �2;k < 0 (here again �2;0 D 0 and �2;l > 0). For 1 � k �m, we
define �kCl W .x2;k �x2;k�1/C i.�2;k � �2;k�1/. So, we have a collection of complex
numbers �lC1; : : : ; �mCl that defines a polygon P .

We have always Re.�k/ D Re.��X .k// D jXk j. Let 1 � k � l . If �X .k/ � l , then
�1;k�1C �1;�X .k/ D �1;kC �1;�X .k/�1 D hk (with hk the time of first return to X for
the vertical geodesics starting from the subinterval Xk ), otherwise there would exist a
vertical saddle connection (see Figure 8). So Im.�k/D Im.��X .k//. The other cases
are analogous. Thus � is a suspension data, and ZR.�/ is isometric to S .

Vertical
Saddle connexion

X2

T1.X2/

A

B

A
B

X2 T1.X2/

Figure 8: The complex numbers �k and ��X .k/ are necessary equal.

Remark 2.3 In the previous construction, the suspension data constructed does not
necessary give a suitable polygon. However, a sufficient condition to get a suitable
polygon is to have �1;l Dmin.�1;k ; 0 < k � l/, were �1;k are as in the proof of the
previous proposition. Up to choosing carefully a subinterval X 0 of X , this condition
is satisfied and the construction will give a true polygon. Since for any surface, we can
find a direction with no saddle connection, we can conclude that any surface can be
unfolded into a polygon as in Figure 4, up to rotating that polygon.

2.3 A technical lemma

The following lemma is a technical lemma that will be needed in Section 4.2. It can be
skipped in a first reading. We previously showed that a surface with no vertical saddle
connection belongs to some ZR.Q�;l/. Furthermore, the corresponding pair .�; l/
is completely defined by first return maps of the vertical foliation on a well chosen
horizontal segment.
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We define the set Q0
�;l

defined in a similar way as Q�;l , but here we replace condition
(2) by the following two conditions.

.2/ 8i … f1; �.1/g Re.�i/ > 0.

.20/ Re.�1/D Re.��.1//D 0.

In other words, the first vector of the top broken line L1 is now vertical and no other
vector is vertical except the other one of the corresponding pair. Then we define in a
very similar way a map ZR0 from Q0

�;l
to a stratum of the moduli space of quadratic

differentials.

Note that the subset Q0
�;l

is convex.

Lemma 2.4 Let S be a flat surface with a unique vertical saddle connection joining
two singularities P1 and P2 . Let X be a horizontal segment whose left end is P1 , and
such that the vertical geodesic starting from its left end is the unique vertical saddle
connection joining P1 to P2 . There exists .�; l/, that depends only on the first return
maps on X of the vertical foliation and on the degree of P2 , such that S 2ZR0.Q0

�;l
/.

Proof We define as in Proposition 2.2 the xi;j ; �i;j and �j , with the slight difference
that now, �1;0 > 0. Now, because there exists only one vertical saddle connection, the
same argument as before says that there exists at most one unordered pair f�i0

; ��.i0/g

such that �i0
¤ ��.i0/ . If this pair doesn’t exists, then the union of the vertical geodesics

starting from X would be a strict subset of S , with boundary the unique vertical saddle
connection. Therefore, we would have P1 D P2 , contradicting the hypothesis.

Now we glue on the polygon P an Euclidean triangle of sides given by f�i ; ��.i/; i�1;0g,
and we get a new polygon. The sides of this polygon appear in pairs that are parallel
and of the same length. We can therefore glue this pair and get a flat surface. By
construction, we get a surface isometric to S , and so S belongs to some ZR0.Q0

z�;l
/.

The permutation z� is easily constructed from � as soon as we know i0 . This value is
obtained by the following way: we start from the vertical saddle connection, close to
the singularity P2 . Then, we turn around P2 counterclockwise. Each half-turn is easily
described in terms of the permutation � . Then after performing k2C 2 half-turns, we
must arrive again on the vertical saddle connection. This gives us the value of i0 .

3 Hole transport

Hole transport is a surgery used by Masur and Zorich in [11] to show the existence of
some configurations and especially to break an even singularity to a pair of odd ones.
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It was defined along a simple path transverse to the vertical foliation. In this section,
we generalize this construction to a larger class of paths and show that breaking a zero
using that procedure does not depend on small perturbations of the path.

Hole transport also appears in the paper of Eskin, Masur and Zorich [4] for the compu-
tation of the Siegel–Veech constants for the moduli space of Abelian differentials. This
improved surgery, and “dependence properties” that are Corollary 3.5 and Lemma 4.5
are a necessary toolkit for the future computation of the these Siegel–Veech constants
for the case of quadratic differentials.

Definition 3.1 A hole is a connected component of the boundary of a flat surface
given by a single saddle connection (loop). The saddle connection bounds a singularity.
If this singularity has angle 3� , this hole is said to be simple.

Convention 1 We will always assume that the saddle connection defining the hole is
vertical

A simple hole � has a natural orientation given by the orientation of the underlying
Riemann surface. In a neighborhood of the hole, the flat metric has trivial holonomy
and therefore q is locally the square of an Abelian differential.

Convention 2 When defining the surgeries around a simple hole using flat coordinates,
we will assume (unless explicit warning) that the flat coordinates come from a local
square root ! of q , such that

R
� ! 2 iRC .

S

Vertical hole

Figure 9: A hole in flat coordinates.

Remark 3.2 Under Convention 2, we may speak of the left or the right direction in a
neighborhood of a simple hole. Note that there exists two horizontal geodesics starting
from the singularity of and going to the right, and only one starting from the singularity
and going to the left.
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3.1 Parallelogram constructions

We first describe the three basic surgeries on the surface that allow us to transport a
simple hole along a segment (see Figure 10). Consider a simple hole � and chose
flat coordinates in a neighborhood of the hole that satisfy Convention 2. We consider
a vector v such that Re.dz.v// > 0 (ie the vector v goes “to the right” in our flat
coordinates). Consider the domain � obtained as the union of geodesics of length jvj,
starting at a point of � with direction v . When � is an embedded parallelogram, we
can remove it and glue together by translation the two sides parallel to v . Here we
have transported the simple hole by the vector v . Note that the area changes under this
construction.

When Re.dz.v// < 0, this construction (removing a parallelogram) cannot work. The
singularity is the unique point of the boundary that can be the starting point of a
geodesic of direction v . Now from the corresponding geodesic, we perform the reverse
construction with respect to the previous one: we cut the surface along a segment of
length v and paste in a parallelogram. By means of this construction we transport the
hole along the vector v .

When Re.dz.v//D 0, we consider a geodesic segment of direction v starting from the
singularity, and cut the surface along the segment, then glue it with a shift (“Earthquake
construction”).

Figure 10: Parallelogram constructions.

There is an easy way to create a pair of holes in a compact flat surface: we consider a
geodesic segment embedded in the surface, we cut the surface along that segment and
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paste in a parallelogram as in the previous construction. We get parallel holes of the
same length (but with opposite orientation). Note that we can assume that the length
of these holes is arbitrary small. In a similar way, we can create a pair of holes by
removing a parallelogram.

3.2 Transport along a piecewise geodesic path

Now we consider a piecewise geodesic simple path  D1 : : : n with edges represented
by the vectors v1; v2; : : : ; vn . We assume for simplicity that none of the vi is vertical.
The spirit is to transport the hole by iterating the previous constructions. We make the
hole to “follow the path”  in the following way (under Convention 2).

� At step number i , we ask that the geodesic i starts from the singularity of the
hole.

� When Re.dz.vi// > 0, we ask i to be the bottom of the parallelogram �

defined in the previous construction.

Naive iteration does not necessary preserve these conditions. The surgery can indeed
disconnect the path but then we can always reconnect  by adding a geodesic segment.
If the first condition is satisfied, but not the second, we can add a surgery along a
vertical segment of the size of the hole to fulfill it. We just have to check that each
iteration between two consecutive segments of the initial path can be done in a finite
number of steps, see Figure 11.

(1) If Re.dz.vi// and Re.dz.viC1// have the same sign, then as soon as both
transports are successively possible, our two conditions keep being fulfilled.

(2) If Re.dz.vi//>0 and Re.dz.viC1//<0, and if .vi ; viC1/ is positively oriented,
the surgery with vi disconnect the path, and we must add a new segment zv , but
then Re.zv/ and Re.viC1/ are both negative, therefore, we can iterate the surgery
keeping the two conditions fulfilled.

(3) If Re.dz.vi//<0 and Re.dz.viC1//>0, and if .vi ; viC1/ is negatively oriented,
we must add a surgery along a vertical segment to fulfill the second condition.

(4) It is an easy exercise to check that for any other configuration of .vi ; viC1/, the
direct iteration of the elementary surgeries works.

Of course, in the process we have just described, we implicitly assumed that at each step,
the condition imposed for the basic surgeries (ie the parallelogram must be imbedded
in the surface) is fulfilled. But considering any compact piecewise geodesic path, the
process will be well defined as soon as the hole is small enough.
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3)

2)

1)

vi

viC1 viC1

viC1

viC1

viC1viC1

viC1

vi

vi

zv

a)

b)

c)

Figure 11: Hole transport along a piecewise geodesic curve.

Remark 3.3 We can also define hole transport along a piecewise geodesic path that
have self intersections. Here hole transport will disconnect the path at each intersections,
but we can easily reconnect it and hole transport also ends in a finite number of steps.
We will not need hole transport along such paths.

3.3 Application: breaking up an even singularity

We consider a singularity P of order k D k1Ck2 . When k1 and k2 are not both odd,
there is a local surgery that continuously break this singularity into pair of singularities
of order k1 and k2 (see Section 4.1.1). When k1 and k2 are both odd, this local
surgery fails. Following Masur and Zorich [11] we use hole transport instead.

Consider a pair .I; II/ of sectors of angle � in a small neighborhood of P , and such
that the image of the first one by a rotation of .k2C 1/� is the second sector. Now
let  be a simple broken line that starts and ends at P , and such that its first segment
belongs to sector I and its last segment belongs to sector II . We require parallel
transport along  to be Z=2Z (this has sense because k is even, so P admits a parallel
vector field in its neighborhood).

Then, we create a pair of holes by cutting the first segment and pasting in a parallelogram.
Denote by " the length of these holes. One hole is attached to the singularity. The
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I II

Figure 12: Breaking a singularity.

other one is a simple hole. We can transport it along  , to the sector II . Then gluing
the holes together, we get a singular surface with a pair of conical singularities that
are glued together. If we desingularise the surface, we get a flat surface with a pair of
singularities of order k1 and k2 and a vertical saddle connection of length ". We will
denote by ‰.S; ; "/ this surface. The construction is continuous with respect to the
variations of ".

3.4 Dependence on small variations of the path

The previous construction might depend on the choice of the broken line. We show the
following proposition.

Proposition 3.4 Let  and  0 be two broken lines that both start from P , sector I

and end to P , sector II . Let " be a positive real number. We assume that there exists
an open subset U of S , such that the following hold.

� U contains nfPg and  0nfPg.

� U is homeomorphic to a disc and have no conical singularities.

� The surgery described in Section 3.3, with parameters .; "/ or . 0; "/ does not
affect @U nP .

Then ‰.S; ; "/ and ‰.S;  0; "/ are isometric.
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$U$

I

II



U V or V 0

Figure 13: The boundary of U and V (or V 0 ).

Proof We denote by @U the boundary of the natural compactification of U (that
differ from the closure of U in S , see Section 1.2). We denote by zP and zP 0 the ends
of  in @U (that are also the ends of  0 by assumption). We denote by V (resp. V 0 )
the flat discs obtained from U after the hole surgery along  (resp.  0 ). Our goal is to
prove that V and V 0 are isometric.

The hole surgery along  (resp.  0 ) does not change the metric in a neighborhood
of @U nf zP ; zP 0g. Furthermore, the fact that both  and  0 start and end at sectors I

and II correspondingly implies that V and V 0 are isometric in a neighborhood of
their boundary. We denote by f this isometry. Surprisingly, we can find two flat discs
that are isometric in a neighborhood of their boundary but not globally isometric (see
Figure 14).

Figure 14: Immersion in R2 of two non isometric flat discs with isometric boundaries.

In our case, we have an additional piece of information that will make the proof
possible: hole transport does not change the vertical foliation (recall that the hole
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is always assumed to be vertical). Therefore, for each vertical geodesics in V with
endpoints fx;yg � @V , then ff .x/; f .y/g are the endpoints of a vertical geodesic of
V 0 .

z

lz

xz

yz

Figure 15: Parameters on a flat disc.

For each z 2 V we define xz 2 @V (resp. yz ) the intersection of the vertical geodesic
starting from z in the negative direction (resp. positive direction) and the boundary of
V (see Figure 15). We also call lz the length of this geodesic. We can assume that @V
is piecewise smooth. So we can restrict ourself to the open dense subset V1 � V of z

such that xz and yz are regular and nonvertical points.

Then we define ˆW V1!V 0 that send z to �lz
.f .xz//, where � is the vertical geodesic

flow. Because V and V 0 are (noncompact) translation surfaces, the length of the vertical
segment Œxz;yz � is obtained by integrating the corresponding 1–form along any path
between xz and yz . Such a path can be chosen in a neighborhood of the boundary
of V . Then, the isometry f implies that this length is the same as the length of the
vertical segment Œf .xz/; f .yz/�. Therefore ˆ is well defined and coincides to f in a
neighborhood of the boundary of V . This map is also smooth because z 7! .xz; lz/ are
smooth on V1 . It’s easy to check that Dˆ.z/� Id and that ˆ continuously extends
to an isometry from V to V 0 .

Corollary 3.5 Let  0 be close enough to  and such that  and  0 intersect the same
sectors of a neighborhood of P . Then ‰.S; ; "/ and ‰.S;  0; "/ are isomorphic for "
small enough.

Proof If  0 is close enough to  (and intersect the same sectors in a neighborhood of
P ), then there exists a open flat disk that contains  and  0 , and for " small enough,
the last condition of Proposition 3.4 is fulfilled.
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Remark 3.6 using Proposition 3.4, one can also extend hole transport along a differ-
entiable curve.

4 Simple configuration domains

Recall the following notation: if Q.k1; k2; : : : ; kr / is a stratum of meromorphic qua-
dratic differentials with at most simple poles, then Q1.k1; k2; : : : ; kr / is the subset
of area 1 flat surfaces in Q.k1; k2; : : : ; kr /, and Q1;ı.k1; k2; : : : ; kr / is the subset of
flat surfaces in Q1.k1; k2; : : : ; kr / that have at least a saddle connection of length less
than ı .

Definition 4.1 A configuration domain is said to be simple if the corresponding
configuration is realized by a simple and non closed saddle connection.

The goal of this section is to prove the following theorem, which proves the Main
Theorem for the case of simple configuration domains (but for a larger class of strata).

Theorem 4.2 Let Q.k1; k2; : : : ; kr / be a stratum of quadratic differentials with
.k1; k2/ ¤ .�1;�1/ and such that the stratum Q.k1C k2; k3; : : : ; kr / is connected.
Let C be the subset of flat surfaces S in QN .k1; : : : ; kr / such that the shortest saddle
connection of S is simple and joins a singularity of order k1 to a distinct singularity
of order k2 . For any pair N � 1 and ı > 0, the sets C , C \Q1.k1; k2; : : : ; kr / and
C \Q1;ı.k1; k2; : : : ; kr / are non empty and connected.

In this section we denote by P1 and P2 the two zeros of order k1 and k2 respectively
and by  the simple saddle connection between them. There are two different cases.

� When k1 and k2 are not both odd, then there exists a canonical way of shrinking
the saddle connection  if it is small enough. Furthermore, this surgery doesn’t
change the metric outside a neighborhood of  . This is the local case.

� When k1 and k2 are both odd, then we still can shrink  , to get a surface
in the stratum Q.k1 C k2; k3; : : : ; kr /, but this changes the metric outside a
neighborhood of  and this is not canonical. This is done by reversing the
procedure of Section 3.3.
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4.1 Local case

4.1.1 Breaking up a singularity Here we follow Eskin, Masur and Zorich [4; 11].
Consider a singularity P of order k � 0, and a partition kD k1Ck2 with k1; k2��1.
We assume that k1 and k2 are not both odd. If � is small enough, then the set
fx 2 S; d.x;P / < �g is a metric disc embedded in S . It is obtained by gluing kC 2

standards Euclidean half-disks of radius � .

There is a well known local construction that breaks the singularity P into two singu-
larities of order k1 and k2 , and which is obtained by changing continuously the way
of gluing the half-discs together (see Figure 16, or [4; 11]). This construction is area
preserving.

"

�� "
2

�C "
2

�� "
2

�� "
2

�C "
2

�� "
2

� �

� �

� �

�

�

�

�

�

�

�

�� "

�� "

�C " "

6�

5�

4� C 4�

4� C 3�

Figure 16: Breaking up a zero into two zeroes (after [4; 11]).

4.1.2 Structure of the neighborhood of the principal boundary When  is small
enough, (for example j j � j 0j=10, for any other saddle connection  0 ), then we can
perform the reverse construction because a neighborhood of  is precisely obtained
from a collection of half-discs glued as before. This defines a canonical map ˆW V !
Q.k1Ck2; k3; : : : ; kr /, where V is a subset of Q.k1; k2; k3; : : : ; kr /. We can choose
U N � V such that ˆ�1.feS g/\ U N is the set of surfaces such that the shrinking
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process leads to eS , and whose smallest saddle connection is of length smaller than

min
�
zj j

100
;
zj j

2N

�
with z the smallest saddle connection of eS . From the proof of

[4, Lemma 8.1], this map gives to U N a structure of a topological orbifold bundle
over Q.k1 C k2; k3; : : : ; kr /, with the punctured disc as a fiber. By assumption,
Q.k1Ck2; k3; : : : ; kr / is connected, and therefore U N is connected, so the proof will
be completed after the following three steps.

� U N � C .

� There exists L> 0 such that QL.k1; : : : ; kr /\ C � U N .

� For any S 2 C , there exists a continuous path .St /t in C that joins S to
QL.k1; : : : ; kr /.

4.1.3 Proof of Theorem 4.2: local case To prove the first step, it is enough to show
that U N is a subset of QN .k1; k2; : : : ; kr /: let S be a flat surface in U N and leteS Dˆ.S/. We denote by  the smallest saddle connection of S . The surgery doesn’t
change the surface outside a small neighborhood of the corresponding singularity ofeS . If jz j is the length of the smallest saddle connection of eS , then S has no saddle
connections of length smaller than zj j � j j except  , which has length smaller than
zj j

2N
by construction. We have jz j�j j

j j
D
jz j
j j
� 1 > 2N � 1 � N , so S belongs to

QN .k1; k2; : : : ; kr /. Hence we have proved that U N � C .

To prove the second step, we remark that if S 2QL.k1; : : : ; kr /\C , for L� 10, then
the smallest saddle connection of ˆ.S/ is of length at least Lj j� j j, where  is the
smallest saddle connection of S . Hence if j j �min

�
.L�1/j j

100
; .L�1/j j

2N

�
then S 2

U N . So we have proved that QL.k1; : : : ; kr /\ C � U N for L�max.101; 2N C 1/.

The last step is given by the following lemma.

Lemma 4.3 Let S be a surface in QN .k1; : : : ; kr / whose smallest saddle connection
S is simple and joins a singularity of order k1 to a singularity of order k2 , and let L be
a positive number. Then we can find a continuous path in QN .k1; : : : ; kr /, that joins
S to a surface whose second smallest saddle connection is at least L times greater than
the smallest one.

Proof The set QN .k1; : : : ; kr / is open, so up to a small continuous perturbation of
S , and up to changing S by r� :S for some suitable � , we can assume that S has no
vertical saddle connection except the smallest one.

Now we use the geodesic flow gt on S . There is a natural bijection from the saddle
connections of S to the saddle connections of gt :S . The holonomy vector vD .v1; v2/
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of a saddle connection becomes vt D .e
�tv1; e

tv2/. This imply that the quotient of
the length of a given saddle connection to the length of the smallest one increases and
goes to infinity.

The set of holonomy vectors of saddle connections is discrete, and therefore, any other
saddle connection of gt :S has length greater than L times the length of the smallest
one, as soon as t is large enough.

Note that the previous proof is the same if we restrict ourselves to area 1 surfaces. The
case when restricted to the ı–neighborhood of the boundary is also analogous, since
U N \Q1;ı.k1; : : : ; kr / is still a bundle over Q1.k1; : : : ; kr / with the punctured disc
as a fiber.

Hence the theorem is proven when k1 and k2 are non both odd.

4.2 Proof of Theorem 4.2: non-local case

We first show that the two surfaces that are close enough (in a certain sense that will be
specified below) to the stratum Q.k1Ck2; k3; : : : ; kr / belong to the same configuration
domain. Then we show that we can always continuously reach that neighborhood.

4.2.1 Neighborhood of the principal boundary Contrary to the local case, we do
not have a canonical map from a subset of Q.k1; k2; : : : ; kr / to Q.k1C k2; : : : ; kr /

that gives to this subset a structure of a bundle.

Let S 2Q.k1Ck2; : : : ; kr /, and let � be a path in S , we will say that � is admissible
if it satisfies the hypothesis of the singularity breaking procedure of Section 3.3. Let �
be an admissible closed path whose endpoint is a singularity P of degree k1Ck2 and
let " > 0 be small enough for the breaking procedure. Recall that ‰.S; �; "/ denotes
the surface in Q.k1; k2; : : : ; kr / obtained after breaking the singularity P , using the
procedure of Section 3.3 along the path � , with a vertical hole of length ".

Proposition 4.4 Let .S;S 0/ be a pair of surfaces in Q.k1C k2; : : : ; kr / and � (resp.
�0 ) be an admissible broken line in S (resp. S 0 ). Then ‰.S; ; "/ and ‰.S 0;  0; "/
belong to the same configuration domain for any sufficiently small ".

Proof By assumption, Q.k1 C k2; : : : ; kr / is connected, so there exists a path
.St /t2Œ0;1� , that joins S and S 0 . We can find a family of broken lines t of St

such that, for " small enough, the map t 7!‰.St ; t ; "/ is well defined and continuous
for t 2 Œ0; 1�. The surface ‰.S 0; 1; "/ might differ from ‰.S 0;  0; "/ for two reasons.
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� The paths 1 and  0 , that both start from the same singularity P , might not start
and end at the same sectors. In that case, we consider the path r�S 0 obtained by
rotating the surface S 0 by an angle of � . We find as before a family of broken
lines 1;� 2 r�S 0 . Then, for some �k an integer multiple of � , we will have
r�k

S 0 D S 0 and 1;�k
that starts and ends on the same sectors than  0 .

� Even if the paths 1 and  0 start and end in the same sectors of the singularity
P , they might be very different (for example in a different homotopy class
of S 0nfsingg, where fsingg denotes the set of conical singularities of S ), so
Proposition 3.4 does not apply. This case is solved by the following lemma,
which says that the resulting surfaces are in the same configuration domain.

Lemma 4.5 For any surface S 2Q.k1C k2; k3; : : : ; kr /, the configuration domain
that contains a surface obtained by the non-local singularity breaking construction does
not depend on the choice of the admissible path, once sector I is chosen, and the hole
is small enough.

Proof We consider a surface S in Q.k1 C k2; : : : ; kr / and perform the breaking
procedure. We do not change the resulting configuration domain if we perform some
small perturbation of S . Therefore, we can assume that S has no vertical saddle
connections (this is the case for almost all surface). Now we consider an admissible
path and perform the corresponding singularity breaking procedure and get a surface
S1 . Then we choose a horizontal segment X1 in sector I adjacent to the singularity
k1 . Then we perform the same construction for another admissible path (and get a
surface S2 ) and consider a horizontal segment X2 of the same length as before (see
Figure 17).

Because the hole transport preserves the vertical foliation, the first return maps on X1

and X2 , of the vertical flow in the two surfaces are isomorphic as soon as the hole is
small enough.

Now from Lemma 2.4, there exists .�; l/ such that S1 and S2 belong to ZR0.Q0
�;l
/,

with parameters �1
1
; : : : ; �1

lCm
and �2

1
; : : : ; �2

lCm
. Note that Re.�1

i /DRe.�2
i /, because

these depends only on the first returns maps of the vertical foliation (and they coincide).
The family of polygons with parameters t�1

i C .1� t/�2
i gives a path in MZ0.Q0

�;l
/

that joins S1 and S2 . Furthermore, the singularity breaking procedure is continuous
with respect to ". Hence, for all i , �1

i and �2
i are arbitrary close as soon as " is

small enough. Consequently, the constructed path in MZ0.Q0
�;l
/ keeps being in a

configuration domain.
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Figure 17: Breaking a singularity with two different paths.

Now for each S 2Q.k1C k2; : : : ; kr / and each admissible path  , we can find "S;

maximal such that ‰.S; ; "/ 2QN .k1; : : : ; kr / for all " < "S; . Now we consider
the set

U N
D

[
�2Œ0;2��

[
S;

[
0<"<"S;

r� .‰.S; ; "//:

This set is in a connected subset of QN .k1; : : : ; kr / from Proposition 4.4.

4.2.2 Reaching a neighborhood of the principal boundary Now we consider a
surface in QN .k1; : : : ; kr / whose unique smallest saddle connection joins a singularity
of order k1 to a singularity of order k2 . As in the local case, we can assume that
its smallest saddle connection is vertical and that there are no other vertical saddle
connections. Then we make use of the Teichmüller geodesic flow. This allows us to
assume that the smallest saddle connection is arbitrary small compared to any other
saddle connection.

We then want to contract the saddle connection using the reverse procedure of Section
3.3.
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Proposition 4.6 Let N be greater than or equal to 1. There exists L>N such that
QL.k1; : : : ; kr /\ C � U N .

Proof We choose L large enough such that we can find L0 satisfying 2N <L0 , and
1�L0�L. Denote by  the smallest saddle connection and by " its length. We want
to find a path suitable for reversing the construction of Section 3.3. When contracting
 in such way, we must insure that the surface stay in QN .k1; : : : ; kr /, by keeping a
lower bound of the length of the saddle connections different from the shortest one.

Let B be the open L0"–neighborhood of  , and fBigi2f3;:::;rg the open L0"–neighbor-
hoods of the singularities that are not endpoints of  . Note that each of these neighbor-
hoods is naturally isometric to a collection of half-disk glued along their boundary. We
denote by S 0 the closed subset of S obtained by removing to S the set [iBi [B .

$B$B B

B1 B1

B2 B2



�1 �3

Figure 18: Constructing a suitable path.

Now we consider the set of paths of S 0 whose endpoints are on @B and with nontrivial
holonomy (which makes senses in a neighborhood of @B ), and we choose a path �1 of
minimal length with this property. Note that, we do not change the holonomy of a path
by “uncrossing” generic self intersections (see Figure 19). Therefore, we can choose
our path such that, after a small perturbation, it has no self intersections.
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� �0

Figure 19: Uncrossing an intersection does not change the holonomy.

Now the condition L0�L implies that we can find a path �2 in the same homotopy
class, such that the "–neighborhood of �2 is homeomorphic to a disk. Now joining
carefully the endpoints of �2 to each sides of  , we get a path �3 . By construction,
we can use this path to contract the saddle connection  . The surgery doesn’t touch
the "N –neigborhoods of the singularities, except for the endpoints of  , hence any
saddle connection that starts from such singularity will have a length greater than N "

during the shrinking process. A saddle connection starting from an endpoint a  , and
different from  will leave B . choosing properly �3 , then the length of such saddle
connection will have a length greater than .L0� 1/" during the shrinking process, and
L0� 1�N C .N � 1/�N .

Therefore, when contracting  , there is no saddle connection except  that is of length
smaller than N j j �N ", were " is the initial length of the saddle connection  . Up
to rescaling the surface, we can assume that the area of the surface is constant under
the deformation process.

Now let C be the open subset of surfaces in QN .k1; : : : ; kr / whose unique smallest
saddle connection joins a singularity of order k1 to a singularity of order k2 . The
previous proposition shows that there exists a path from any S 2 C to U N , which is
pathwise connected. Therefore C is pathwise connected and hence, connected. This
also implies the connectedness of C \Q1.k1; : : : ; kr /.

Now let ı > 0 and let S1 and S2 be two surfaces in C\Q1;ı.k1; : : : ; kr /. There exists
a path .St /t2f1;2g in C \Q1.k1; : : : ; kr / that joins S1 to S2 . We can easily deduce
from .St /t a path in Q1;ı.k1; : : : ; kr / that join S1 and S2 . Indeed, denote by l.t/ the
length of the shortest saddle connection of St . The function l is continuous, and there
exists a continuous function l 0 with l 0.j /D l.j /, for j D 1; 2, and such that l 0.t/ is
always smaller than ı . Then we apply to St the matrix A.t/ in SL2.R/ that multiply
the length of this saddle connection by the factor �.t/D l 0.t/

l.t/
and multiply by�.t/�1
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the distances in the orthogonal direction. By construction, we get a continuous path in
C \Q1;ı.k1; : : : ; kr / that joins S1 and S2 .

Hence we have proven the theorem for the case when k1 and k2 are odd.

5 Configuration domains in strata of quadratics differentials
on the Riemann sphere

Theorem 5.1 describes all the configurations of ĥomologous saddle connections that
exist on a given stratum of quadratic differential on CP1 . It was proved by the author
in [1]. We now show that they are in bijections with the configuration domains. In this
section, we denote by  a collection fig of saddle connections.

Theorem 5.1 Let Q.k1; : : : ; kr / be a stratum of quadratic differentials on CP1

different from Q.�1;�1;�1;�1/, and let  be a maximal collection of ĥomologous
saddle connections on a generic surface in that stratum. Then the possible configurations
for  are given in the list below (see Figure 20).

a) Let fk; k 0g � fk1; : : : ; kr g be an unordered pair of integers such that .k; k 0/¤
.�1;�1/. The set  consists of a single saddle connection joining a singularity
of order k to a distinct singularity of order k 0 .

b) Let .a1; a2/ be a pair of positive integers such that a1C a2 D k 2 fk1; : : : ; kr g

(with k � 2), and let A1 tA2 be a partition of the set fk1; : : : ; kr gnfkg such
that .

P
a2Ai

a/C ai � 2 mod 4 for each i . The set  consists of a simple
saddle connection that decomposes the sphere into two 1–holed spheres S1 and
S2 , such that each Si has interior singularities of order given by Ai , and has
a single boundary singularity of order ai .

c) Let fa1; a2g� fk1; : : : ; kr g be a pair of positive integers. Let A1tA2 be a parti-
tion of fk1; : : : ; kr gnfa1; a2g such that for each i , we have .

P
a2Ai

a/Cai � 2

mod 4. The set  consists of two closed saddle connections that decompose the
sphere into two 1–holed spheres S1 and S2 and a cylinder, and such that each
Si has interior singularities of orders given by Ai and has a boundary singularity
of order ai .

d) Let k 2 fk1; : : : ; kr g be a positive integer. The set  is a pair of saddle connec-
tions of different lengths, and such that the largest one starts and ends from a
singularity of order k and decompose the surface into a 1– holed sphere and a
half-pillowcase, while the shortest one joins a pair of poles and is on the other
end of the half pillowcase.
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When the stratum is Q.�1;�1;�1;�1/, there is only one configuration, which corre-
sponds to two saddle connections that are the two boundary components of a cylinder
(the surface is a “pillowcase”, see Figure 1).

e)

c)

b)a)

d)

a) b)

c) d)

e)

Figure 20: “Topological picture” of configurations for CP 1 .

Now let S 2 QN .k1; : : : ; kr / . We can define FS to be the maximal collection of
ĥomologous saddle connections that contains the smallest one. We have the following
lemma.

Lemma 5.2 The configuration associated to FS is locally constant with respect to S .

Proof Any saddle connection in FS persists under any small continuous deformation.
This lemma is obvious as soon the number of elements of FS is locally constant.

Let 1 be a saddle connection of minimal length. We assume that after a small
perturbation S 0 of S , we get a bigger collection of saddle connections. That means
that a new saddle connection 2 appears. Therefore there was another saddle connection
3 nonĥomologous to 1 , of length less than or equal to j2=2j (see Figure 21). But
this is impossible since it would therefore be of length less than or equal to the length
of 1 , contradicting the hypothesis.

The following lemma (due to Kontsevich) implies that Theorem 4.2 can be used for
any stratum of quadratic differentials on CP1 (see also Kontsevich and Zorich [7]).
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$S$

3 3

2

S S 0

Figure 21: The configuration associated to FS is locally constant.

Lemma (Kontsevich) Any stratum of quadratic differentials on CP1 is non empty
and connected.

Proof There is only one complex structure on CP1 . Therefore, we can work on the
standard atlas C[ .C�[1/ of the Riemann sphere.

Now we remark that if we fix .z1; : : : ; zr / 2 Cr that are pairwise distinct, and
k1; : : : ; kr some integers greater than or equal to �1, then the quadratic differential on
C , q.z/D

Q
.z�zi/

ki dz2 , extends to a quadratic differential on CP1 with possibly a
singularity of order �4�

P
i ki over the point 1. Now two quadratic differentials on

a compact Riemann surface with the same singularities are equal up to a multiplicative
constant (because they differ by a holomorphic function).

Therefore, any stratum of quadratic differentials on CP1 is a quotient of C times a
space of configurations of points on a sphere, which is connected.

Main Theorem Let Q.k1; : : : ; kr / be a stratum of quadratic differentials with at most
simple poles. Let N be greater than or equal to 1. There is a natural bijection between
the configurations of ĥomologous saddle connections on Q.k1; : : : ; kr / described in
Theorem 5.1 and the connected components of QN .k1; : : : ; kr /.

Proof Lemma 5.2 implies that there is a well defined map ‰ from the set of connected
components of QN .k1; : : : ; kr / to the set of existing configurations for the stratum.
This map is surjective because if we choose a generic surface S with a maximal
collection of ĥomologous saddle connections  that realizes the given configuration
C , then after a small continuous perturbation of the surface, we can assume that there
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are no other saddle connections on S parallel to an element of  . Then we use the
Teichmüller geodesic flow to contract the elements of  , until  contains the smallest
saddle connection of the surface. Then by construction, this surface belongs to ‰�1.C/.

Now we prove that ‰ is injective. We keep the notations of Theorem 5.1, and consider
U D‰�1.fCg/, for C any existing configuration.

� If C belongs to the a) case, then U is connected from Theorem 4.2 and the
lemma of Kontsevich.

� If C belongs to the b) case, then we consider a surface S in U . Its smallest
saddle connection 0 is closed and separates the surface in a pair .S 0

1
;S 0

2
/ of

1–holed spheres with boundary singularities of orders a1 and a2 correspondingly.
Now for each S 0i we decompose the boundary saddle connection of S 0i in two
segments starting from the boundary singularity, and glue together these two
segments, then we get a pair of closed flat spheres Si 2 Q.Ai ; ai � 1;�1/,
i D 1; 2. For each of the sphere, the smallest saddle connection  0i is simple and
joins a singularity Qi of order .ai � 1/ to a newborn pole Pi , and is of length
j0j=2, where j0j is the length of 0 . Let �i be the smallest saddle connection
of Si except  0i .
– If �i intersects the interior of  0i , then it is easy to find another saddle

connection on Si , smaller than �i and different from  0i .
– If �i does not intersect  0i , or intersect it in Qi , then �i was a saddle

connection on S , hence j�i j> 2N j 0i j.
– If �i intersects Pi , then we can find a saddle connection in S of length

smaller than j�i jC j0j=2.

These remarks imply that Si is in Q2N�1.Ai ; ai � 1;�1/ which is a subset of
QN .Ai ; ai � 1;�1/. Hence we have defined a map f from U to U1 � U2 , with
Ui a simple configuration domain of QN .Ai ; ai � 1;�1/.

Conversely, let fSigi2f1;2g be two surfaces in Q2N .Ai ; ai �1;�1/, such that for each
Si , the smallest saddle connection i is simple and joins a pole to a singularity of order
ai � 1. If 1 and 2 are in the same direction and have the same length, then we can
reconstruct a surface S D f �1.S1;S2/ in Q.k1; : : : ; kr / by cutting Si along i , and
gluing together the two resulting surfaces by an appropriate isometry. The surface S

belongs to QN .k1; : : : ; kr /. Note that in the reconstruction of the surface, the length of
smallest saddle connection is doubled, hence we must start from Q2N .Ai ; ai � 1;�1/,
and not QN .Ai ; ai � 1;�1/.

Now we prove the connectedness of U : let X 1;X 2 be two flat surfaces in U . After
a small perturbation and after using the geodesic flow, we get a surface S1 (resp.
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S2 ) in the same connected component of U as X 1 (resp. X 2 ), with S1 and S2 in
Q2N .k1; : : : ; kr /.

There exist continuous paths .Si;t /t2Œ1;2�2Q2N.Ai ; ai�1;�1/ such that .S1;j ;S2;j /D

f .Sj / for j D 1; 2. The pair .S1;t ;S2;t / belongs to f .U / if and only if their
smallest saddle connections are parallel and have the same length. This condition is
not necessary satisfied, but rotating and rescaling S2;t gives a continuous path At in
GL2.R/ such that S1;t and At :S2;t satisfy that condition. Note that we necessary
have A2:S2;2 D S2;2 . Therefore f �1

�
S1;t ;A2:S2;t

�
is a continuous path in U that

joins S1 to S2 . So the subset U is connected. Note that the connectedness of U

clearly implies the connectedness of U \Q1.k1; : : : ; kr /.

The cases c) and d) are analogous and left to the reader, hence the Main Theorem is
proven.

Note that the connectedness of U also implies the connectedness of U\Q1;ı.k1;: : :; kr /

by using the same argument as in the end of Section 4.2. Hence Proposition 1.2 is
proven too.

Definition 5.3 A configuration is said to be symmetric if there exists a nontrivial
isomorphism f of the corresponding graph of connected component � , such that:

� f commutes with the permutations of the edges associated to the configuration,

� f preserves the order of the boundary singularities,

� f preserves the order of the interior singularities.

Corollary 5.4 Let Q.k1; : : : ; kr / be a stratum of quadratic differentials on CP1 , and
let N � 1. If a connected component of QN .k1; : : : ; kr / admits orbifoldic points, then
the corresponding configuration is symmetric and the locus of orbifoldic points are a
finite union of copies (or coverings) of open subset of configuration domains, which are
manifolds, of smaller strata.

Proof Recall that S corresponds to an orbifoldic point if and only if S admits a
nontrivial orientation preserving isometry. Now let U be a connected component of
QN .k1; : : : ; kr /, S 2 U an orbifoldic point, and let � be an orientation preserving
isometry of S .

Suppose that U corresponds to the a/ case of Theorem 5.1. Then � must preserve
the smallest saddle connection 0 of S . Either � fixes the endpoints of S , either it
interchanges them. In the first case, � D Id , in the other case it is uniquely determined
and is an involution that fixes the middle of 0 . In that case the endpoints of 0 have
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the same order k � 0. Then S=� is a half-translation surface whose smallest saddle
connection is of length j0j=2 and joins a singularity of order k�0 to a pole. Any other
saddle connection in S=� is of length l or l=2 for l the length of a saddle connection
(different from 0 ) on S . Therefore, S=� belongs to a configuration domain of a/

type in the corresponding stratum. The flat surface S=� does not have a nontrivial
orientation preserving isometry because k ¤�1. Therefore the configuration domain
that contains S=� is a manifold. The involution � induces an involution on the set of
zeros of S and the stratum and configuration domain corresponding to S=� depends
only on that involution. This induces a covering from the locus of orbifoldic points
whose corresponding involution share the same combinatorial data to an open subset
of a manifold.

If U corresponds to the b/ case, then similarly, a nontrivial isometric involution �
interchanges the two 1–holed spheres of the decomposition. We have A1 DA2 and
a1D a2 > 0 (see notations of Theorem 5.1), hence the configuration is symmetric. The
set of orbifoldic points is isomorphic to the configuration domain of a/ type with data
fa1;�1g which is a manifold.

If U corresponds to the c/ case then similarly, � interchanges the two 1–holed sphere
of the decomposition. We must have A1 DA2 and a1 D a2 > 0. The set of orbifoldic
points is isomorphic to an open subset of a configuration domain of d/ type, which is
a manifold (see next).

In the d/ case, any isometry � fix the saddle connection 1 that separates the surface
in a 1–holed sphere and a half-pillowcase, which are nonisometric. Hence they are
fixed by � . Now since � is orientation preserving, it is easy to check that necessary, �
is trivial.

Here we use Theorem 4.2 and the description of configurations to show that any stratum
of quadratic differentials on CP1 admits only one topological end.

Corollary 5.5 Let Q1.k1; : : : ; kr / be any stratum of quadratic differential on CP1 .
Then the subset Q1;ı.k1; : : : ; kr / is connected for any ı > 0.

Proof Let S 2 Q1;ı.k1; : : : ; kr /. We first describe a path from S to a simple
configuration domain with corresponding singularities of orders f�1; kg. Then we
show that all of these configuration domains are in the same connected component of
Q1;ı.k1; : : : ; kr /.

Let 1 be a saddle connection of S of length less than ı (we can assume that 1 is
vertical). Up to the Teichmüller geodesic flow action, we can assume that 1 is of
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length less than ı2 . Now let P be a pole. There exists a saddle connection 2 of
length less than 1 starting from P , otherwise the 1–neighborhood of P would be an
embedded half-disk of radius 1 in the surface, and would be of area �

2
> 1. Then up to

a slight deformation, we can assume that there are no other saddle connections parallel
to 1 or 2 (except the ones that are ĥomologous to 1 or 2 ). Now we contract 2

using the Teichmüller geodesic flow. This gives a path .gt :S/t�0 in Q1.k1; : : : ; kr /.
For each t � 0 the saddle connections corresponding to 1 and 2 in gt :S are of
length at most ı2et=2 and e�t=2 respectively. Hence the first one is smaller than or
equal to ı for 0� t ��2 ln.ı/, and the second one is smaller than ı for t >�2 ln.ı/.
Hence the path gt :S is in the ı–neigborhood of the boundary, and we now can assume
that 2 is of length smaller than ı .

The other end of 2 is a singularity of order k . If k � 0, then from the list of
configurations given in Theorem 5.1, the saddle connection 2 is simple.

Figure 22: Deformation of a surface in Q1;ı.k1; : : : ; kr / .

We assume that k D �1, then the surface is a 1–holed sphere glued with a cylinder,
one end of this cylinder is 2 (we have a half-pillowcase), and the other end of that
cylinder is a closed saddle connection whose endpoint is a singularity P 0 of order
k 0 > 0. We can assume, up to using the Teichmüller geodesic flow, that 2 is of length
at most .1� c/ı , where c is the area of the cylinder. Now we consider 3 to be the
shortest path from P to P 0 . It is clear that 3 is a simple saddle connection. Now up
to twisting and shrinking the cylinder, we can make this saddle connection as small
as possible (see Figure 22). However, this transformation, is not area preserving and
we must rescale the surfaces to keep area one surfaces . This rescalling increase the
length of 2 by a factor which is at most 1

1�c
, and therefore the length of 2 is always
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smaller than ı during this last deformation, and the resulting surface is in a simple
configuration domain with corresponding singularities of orders f�1; k 0g.

Now let .Ui/iD1;2 be simple configuration domains. Up to renumbering, we can
assume that their corresponding configurations are represented by simple paths that
joins a pole to a singularity of order ki > 0, for i D 1; 2 (here we assume that there
exists two distinct singularities of positive order, the complementary case is trivial).
From Theorem 4.2, for each i D 1; 2, the set Ui \Q1;ı.k1; : : : ; kr / is connected.
So, it is enough to find a path between two specific surfaces in Ui that stays in
Q1;ı.k1; : : : ; kr /. We have r � 4, so we can assume that kr�1 D kr D�1. We start
from a surface in Q.k1 � 1; k2 � 1; k3; : : : ; kr�2/ and for i D 1; 2, we successively
break a singularity of order ki � 1 into two singularities of order ki and �1. We get
a surface in Q1;ı.k1; : : : ; kr / with two arbitrary small saddle connections. We can
assume that one of these short saddle connections is vertical, and the other not. Then
action on this surface by the Teichmüller geodesic flow easily gives a path between U1

and U2 that keeps being in Q1;ı.k1; : : : ; kr /.

Remark 5.6 As was seen previously, one can see more or less a stratum of quadratic
differentials as a space of configuration of points in a sphere, hence one could use it to
prove Corollary 1.3. However, Corollary 5.5 is stated in terms of flat metrics, and it
is not clear how to relate precisely the degenerations we have described in terms of
configurations of ĥomologuous saddle connections and the corresponding degenerations
in the space of configurations of points. Moreover, the previous proof could be more
easily extended to other strata.

Appendix. A geometric criterion for ĥomologous saddle con-
nections

Here we give a proof of the following theorem.

Theorem (H Masur, A Zorich) Consider two distinct saddle connections ;  0 on a
half-translation surface. The following assertions are equivalent.

a) The two saddle connections  and  0 are ĥomologous.

b) The ratio of their length is constant under any small deformation of the surface
inside the ambient stratum.

c) They have no interior intersection and one of the connected component of
Snf [  0g has trivial linear holonomy.
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Proof The proofs of the statements a, b and c) b are the same as in Masur and
Zorich [11]. We will write them for completeness. Our proof of b) c is new and
more geometric than the initial proof.

We first show that statement a/ is equivalent to statement b/. We have defined Œy �
and Œy 0� in H�

1
.bS ; bP ;Z/. We claim that they are primitive cycles. Let 1 and 2 be

the two preimages of  in bS . If Œ1�D�Œ2�, then Œy �D Œ1� is primitive since it is
realized by a simple curve. Otherwise Œ1� and Œ2� are independent in H1.bS ; bP ;Z/,
since they cannot be equal and are primitive. We assume first that 1 and 2 are closed
paths. If they have no intersection point, then by choosing suitably a path joining 1

and 2 , one can realize Œy �D Œ1�� Œ2� by a simple curve, and hence it is a primitive
cycle. If they have an intersection point bP , then it is the preimage of the adjacent
singularity P of  , which is therefore a ramification point. Since the natural involution
on bS is a rotation in a neigborhood of bP , one can always deform 1 and 2 to get
two simple closed curves with no intersection point.

Now we assume that 1 and 2 are not closed, then we can find a basis of H1.bS ; bP ;Z/
that contains Œ1� and Œ2�. Hence we can find one that contains Œ1�� Œ2� and Œ2�,
hence Œ1�� Œ2� is primitive. So we have proved that Œy � and Œy 0� are primitive.

If  and  0 are ĥomologous, then integrating ! along the cycles Œy � and Œ y 0�, we see
that the ratio of their length belongs to f�1=2; 1; 2g, and this ratio is obviously constant
under any small deformations of the surface. Conversely, if they are not ĥomologous,
then .;  0/ is a free family on H�

1
.bS ; bP ;C/ (since they are primitive elements of

H�
1
.bS ; bP ;Z/) and so

R
y ! and

R
y 0 ! correspond to two independent coordinates in

a neighborhood of S . Therefore the ratio of their length is not locally constant.

Now assume c/. We denote by SC a connected component of Snf;  0g that has
trivial holonomy. Its boundary is a union of components homeomorphic to S1 . The
saddle connections have no interior intersections, so this boundary is a union of copies
of  and  0 and it is easy to check that both  and  0 appears in that boundary. The
flat structure on SC is defined by an Abelian differential ! . Now we have

R
@SC !D 0,

which impose a relation on j j and j 0j. This relation is preserved in a neighborhood
of S , and therefore, the ratio is locally constant and belongs to f1=2; 1; 2g depending
on the number of copies of each saddle connections on the boundary of SC .

Now assume b/. We can assume that the saddle connection  is vertical. Then using
the Teichmüller geodesic flow gt on S , for some small t , induce a small deformation
of S . The hypothesis implies that the saddle connection  0 is necessary vertical too,
and so the two saddle connections are parallel and hence have no interior intersections.
Let S1 and S2 the connected components of Snf;  0g that bounds  (we may have
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S1 D S2 ), and assume that S1 has nontrivial linear holonomy. That implies there
exists a simple broken line � with nontrivial linear holonomy that starts and ends on
the boundary of S1 that correspond to  . Now, we create an small hole by adding a
parallelogram on the first segment of the path � . This creates only one hole � in the
interior of S1 because the other one is sent to the boundary (this procedure adds the
length of the hole to the length of the boundary). If we directly move the hole � to the
boundary, we obtain a flat surface isometric to the initial surface S1 . But if we first
transport � along � , then this will change its orientation, and its length will be added
again to the length of the boundary. So the resulting surface has a boundary component
corresponding to  bigger than the initial surface S1 . The surgery did not affect the
boundary corresponding to  0 . Assume now that S2 has also nontrivial holonomy,
then performing the same surgery on S2 , and gluing back S1 and S2 , this gives a
slight deformation of S that change the length of  and not the length of  0 . This
contradicts the hypothesis b/.
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École Norm. Sup. .4/ 23 (1990) 469–494 MR1055445

[4] A Eskin, H Masur, A Zorich, Moduli spaces of abelian differentials: the principal
boundary, counting problems, and the Siegel-Veech constants, Publ. Math. Inst. Hautes
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