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Matrix factorizations and link homology II

MIKHAIL KHOVANOV

LEV ROZANSKY

To a presentation of an oriented link as the closure of a braid we assign a complex of
bigraded vector spaces. The Euler characteristic of this complex (and of its triply-
graded cohomology groups) is the HOMFLYPT polynomial of the link. We show
that the dimension of each cohomology group is a link invariant.

57M27; 18G99

1 Introduction

In the paper [8] we constructed, for each n > 0; a bigraded cohomology theory of
links in R3 whose Euler characteristic is a certain one-variable specialization .qn; q/

of the HOMFLYPT polynomial (Freyd et al [4], Przytycki–Traczyk[11]). The nD 0

specialization is the Alexander polynomial, equal to the Euler characteristic of the knot
homology theory discovered by Ozsváth, Rasmussen and Szabó [10; 12]. The approach
in [8] fails for nD 0; assigning trivial groups to any link.

In this sequel to [8] we assume that the reader is familiar with that paper. Recall that
our construction of link cohomology was based on matrix factorizations with potentials
being sums and differences of xnC1; for various x: When n D 0; the category of
matrix factorizations (up to chain homotopies) with the potential

P
˙xi is trivial.

Looking for a remedy, let us add a formal variable a and change the potential from x

to ax: We will show that this potential yields a categorification of the HOMFLYPT
polynomial. Namely, following the method of [8], to a braid closure diagram D of
an oriented link L we will associate a categorification complex eCH .D/ of bigraded
Q–vector spaces

eCH D
�
� � �

@
�! eCH

j
.D/

@
�! eCH

jC1
.D/

@
�! � � �

�
;

where
eCH

j
.D/D ˚

k;l

eCH
j

k;l.D/:
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This association has two properties: if two diagrams D1 and D2 represent the same
link, then their complexes are homotopy equivalent

(1) eCH .D1/' eCH .D2/;

and the graded Euler characteristic of the complex

(2) hDi
def
D

X
j ;k;l

.�1/jCk t2kqkCl dimQ
eCH

j

k;l.D/

is related to the HOMFLYPT function F.D/ of the link represented by D :

(3) hDi D
F.D/

1� t2
:

Here we define the HOMFLYPT function of an oriented link up to a normalization by
the skein relation

(4) t F.LC/� t�1 F.L�/D�.q� q�1/F.Lk/

where LC , L� and Lk are three links which coincide everywhere except at one point
where LC has a positive crossing, L� has negative crossing and Lk has no crossing.
We set the normalization of F.L/ by selecting its value on the unknot to be

(5) F.unknot/D�
t � t�1

q� q�1
:

This normalization corresponds to the multiplicativity condition

F.L1 tL2/D F.L1/F.L2/;

where L1 tL2 is a disjoint union of two links.

In the original version of this paper the categorification complex satisfied the topological
invariance condition (1) and the relation (3) only up to a degree shift. Hao Wu [15]
showed that a degree shift related to the first Reidemeister move can be removed if
one allows half-integer values for the grading degrees. Here we follow his grading
assignment.

2 Matrix factorizations with a parameter

Take an oriented arc c as in Figure 1, label its ends x1 and x2; and assign the potential
ax1� ax2 to the arc. Let RDQŒa;x1;x2� and define Cc as the factorization

R
a
�!R

x1�x2
����!R:
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We have d2D ax1�ax2 and view Cc as an object of the homotopy category of matrix
factorizations with the potential a.x1�x2/:

x 1x 2

c

Figure 1: An arc

Make R bigraded by setting

(6) deg.a/D .2; 0/; deg.xi/D .0; 2/:

We refer to these degrees as t –degree and q–degree respectively. Equation (6) implies
deg.d2/D .2; 2/, and we select the bigrading of the middle R in the factorization so
that deg.d/D .1; 1/:

(7) R
a
�!Rf�1; 1g

x1�x2
�! R;

where the bidegree shift by .n1; n2/ is denoted fn1; n2g:

x1 x2

x3 x4

Figure 2: Wide edge t

Next, given a wide edge t as in Figure 2, assign variables x1;x2;x3;x4 to the edges
next to it. We can write

ax1C ax2� ax3� ax4 D a.x1Cx2�x3�x4/C 0.x1x2�x3x4/:

Define Ct as the tensor product (over R) of factorizations

(8) R
a
�!Rf�1; 1g

x1Cx2�x3�x4
����������!R

and

(9) R
0
�!Rf�1; 3g

x1x2�x3x4
��������!R

Geometry & Topology, Volume 12 (2008)
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where RDQŒa;x1;x2;x3;x4�:

Throughout the paper we work with matrix factorizations with potentials wDa
P

i �ixi

where i ranges over some finite set I of integers and �i 2 f1;�1g are “orientations”
of xi : The category mfw has objects .M; d/ where M DM 0˚M 1 and M 0;M 1

are free bigraded R–modules (possibly of infinite rank), while d is a generalized
differential

M 0 d
�!M 1 d

�!M 0

of bidegree .1; 1/ and subject to d2 D w: Here R is the ring of polynomials in a

and xi with rational coefficients. The bidegrees are given by formula (6). Morphisms
in mfw are bidegree-preserving maps of R–modules M 0! N 0; M 1! N 1 that
commute with d:

We found it useful to visualize a matrix factorization as above by decomposing

M 0
D ˚

k;l
M 0

k;l ; M 1
D ˚

k;l
M 1

k;l ;

as direct sums of vector spaces, one for each bidegree .k; l/; and placing them in the
nodes of a coordinate lattice, see Figure 3. Diagonal arrows denote the differential,
horizontal arrows show multiplication by a and vertical arrows–multiplications by xi :

x i

x ix i

x i x i

x i

M
  0

  0  0

M
  0

  2  2

M
  0

  0  2

M
 1

 1 1

M
  0

  2  4

M
 1

 1 3

M
  0

−2  0

M
 1

−1  1

M
  0

  0  2

x i

x i

x i

d

d

d

d

d

d

d

d

dd

a a

a a

a

a

Figure 3: Lattice of factorization M
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The category hmfw of matrix factorizations up to chain homotopies has the same
objects as mfw and the Q–vector space of morphisms from M to N is the quotient
of the space of morphisms in mfw by null-homotopic morphisms (the homotopy maps
must have bidegree .�1;�1/).

If the index set I is empty, then RDQŒa�, and mfw is equivalent to the category of
complexes of free graded QŒa�–modules.

As the formulas (6), (7), (8) and (9) indicate, in all our matrix factorizations the
homological Z2 degree equals t –degree modulo 2. Therefore we will not trace the Z2

degree separately, while keeping in mind that t –degree is of homological nature, thus
producing a sign factor in the Euler characteristic computation.

t  2

x1

x2

x4

x3

x5
x6

x7

x8

x9

t  1

Figure 4: Graph �; an example

In general, given a planar marked graph � (as described in [8, Introduction]), possibly
with boundary points, we assign to it a matrix factorization C.�/ which is the tensor
product of Cc ; over all arcs c in �; and Ct ; over all wide edges t in �: For instance,
for the graph in Figure 4,

C.�/D Ct1
˝Ct2

˝Cc1
˝Cc2

where c1; c2 are the arcs of � with endpoints labelled x3;x5 and x7;x6; respectively.
The tensor product is taken over suitable polynomial rings QŒa;xi � so that C.�/ is a
finite rank free QŒa;x1; : : : ;x9�–module. The potential

w D a.x1Cx2�x7�x4�x8�x9/;

and we view C.�/ as an object of mfw (or hmfw ) with the ground ring R the
polynomial ring QŒa;x1;x2;x4;x7;x8;x9� in a and external (or boundary) variables.

Geometry & Topology, Volume 12 (2008)
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The other variables x3;x5;x6 are “internal”. Notice that C.�/ has infinite rank as an
R–module.

When � has no boundary points, w D 0 and C.�/ becomes a 2–periodic complex

C 0.�/
d
�! C 1.�/

d
�! C 0.�/

of bigraded QŒa�–modules. Its cohomology, denoted H.�/; is a bigraded QŒa�–
module.

If � is a single circle with one mark (glue together the endpoints of the arc in the
Figure 1 and place a mark there), the complex is

QŒa;x1�
a
�!QŒa;x1�f�1; 1g

0
�!QŒa;x1�

(since now x2 D x1 ), and H.�/ŠQŒx1�f�1; 1g:

x2

x4

Γ 0

x3

x1

x4 x3

x2x1

Γ 1

0χ

χ 1

Figure 5: Graphs �0 and �1

Consider the diagrams �0; �1 in Figure 5. Factorization C.�0/ is the tensor product
of

R
a
�!Rf�1; 1g

x1�x4
����!R

and
R

a
�!Rf�1; 1g

x2�x3
����!R;

where RDQŒa;x1;x2;x3;x4�: In the product basis, C.�0/ has the form

R

˚

Rf�2; 2g

P0
�!

Rf�1; 1g

˚

Rf�1; 1g

P1
�!

R

˚

Rf�2; 2g

with

P0 D

�
a x3�x2

a x1�x4

�
; P1 D

�
x1�x4 x2�x3

�a a

�
:
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Matrix factorizations and link homology II 1393

Likewise, C.�1/ has the presentation

R

˚

Rf�2; 4g

Q0
�!

Rf�1; 1g

˚

Rf�1; 3g

Q1
�!

R

˚

Rf�2; 4g

with

Q0 D

�
a x3x4�x1x2

0 x1Cx2�x3�x4

�
; Q1 D

�
x1Cx2�x3�x4 x1x2�x3x4

0 a

�
:

A map between C.�0/ and C.�1/ can be described by a pair of 2� 2 matrices with
coefficients in R that specify the images of the basis vectors of C i.�0/ in C i.�1/ for
i D 0; 1:

Let �0W C.�
0/ �! C.�1/ be given by the pair of matrices

(10) U 0
0 D

�
x4�x2 0

0 1

�
; U 1

0 D

�
x4 �x2

�1 1

�
:

Our bases in C.�0/ and C.�1/ are homogeneous with respect to the bigrading of R:

It is easy to see that �0 is a homogeneous map of bidegree .0; 2/:

Next, define �1W C.�
1/ �! C.�0/ by the pair of matrices

(11) U 0
1 D

�
1 0

0 x4�x2

�
; U 1

1 D

�
1 x2

1 x4

�
:

The map �1 is bidegree-preserving.

Given a plane diagram D of a tangle, place at least one mark on each internal edge
of the diagram (an edge disjoint from the boundary of D ), and label the marks and
boundary points by x1; : : : ;xm: To each crossing p of the diagram assign the complex
Cp of matrix factorizations as follows. Up to shifts, the complex is the cone of the map
�0 or �1; depending on whether the crossing is positive or negative. The shifts are
shown in Figure 6.

Thus, if the crossing is positive,

(12) Cp D 0 �! C.�0/
�

1
2

n
�

1
2
; 3

2

o
�0
�! C.�1/1

2

n
�

1
2
;�1

2

o
�! 0;

with C.�0/ positioned in cohomological degree �1
2

and C.�1/ positioned in coho-
mological degree 1

2
. If the crossing is negative,

(13) Cp D 0 �! C.�1/
�

1
2

n
1
2
;�3

2

o
�1
�! C.�0/1

2

n
1
2
;�3

2

o
�! 0:
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=

χ 0

χ  1

0

0

= 0

0

�
1
2

�
1
2

1
2

1
2

f�
1
2
; 3

2
g f�

1
2
; 3

2
g

f�
1
2
;�1

2
g f

1
2
;�3

2
g

Figure 6: Complex assigned to a crossing

Bidegree shifts make the differential preserve the bidegree and are also required for the
Reidemeister move invariance. The half-integer values for the cohomological degrees
do not pose a sign problem, because the t –degree is also cohomological and half-integer
so that the combined cohomological degree stays integer.

Define C.D/ as the tensor product of Cp; over all crossings p of D; and Cc ; over all
arcs c: It is a complex built out of matrix factorizations C.�/; over all resolutions �
of D: The differential @ preserves the bigrading of each term C j .D/: We view C.D/

as an object of the category K.hmfw/: The latter is the category whose objects are
complexes of objects in hmfw and whose morphisms are homomorphism of complexes
modulo null-homotopic morphisms.

Now we specialize to the case when D is a link diagram (has empty boundary). Then
each term C j .D/ in the complex C.D/ is an object of the homotopy category of
bigraded free QŒa�–modules. C j .D/; for any diagram D; decomposes as a direct sum
of contractible pieces

0 �!Q
1
�!Q �! 0

and the cohomology H.C j .D//; which we denote CH j .D/: Moreover, a acts trivially
on CH j .D/; so we can ignore the QŒa�–module structure and think of it as a bigraded
Q–vector space,

CH j .D/D ˚
k;l

CH
j

k;l
.D/:

The bigrading descends from the bigrading on matrix factorizations C.�/:

Thus, to D we assign the complex CH.D/ of bigraded Q–vector spaces

� � �
@
�! CH j .D/

@
�! CH jC1.D/

@
�! � � �
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As a Q–vector space, CH.D/ is the direct sum of cohomology groups H.�/ of
complexes C.�/; over all resolutions of D:

For the reasons that we will explain shortly, we consider only link diagrams which are
braid closures (see Figure 7).

Figure 7: A braid diagram

With a slight abuse of notation we use the same symbol D to denote the braid and the
diagram of its closure.

Let D be an n–strand braid closure diagram. We associate to it a grading-corrected
complex

(14) eCH .D/D CH.D/
˚

n
2
; n

2

	 �
n
2

�
:

(see Wu’s grading assignment [15]). The cohomology H.D/DH.eCH .D/; @/ of the
above complex is triply-graded,

H.D/D ˚
j ;k;l

H
j

k;l
.D/:

Of course, for the whole construction to be interesting, H.D/ should not depend
on the choice of a marked diagram D , which represents a given oriented link L:

More precisely, if two diagrams D1 and D2 represent the same link L, then the
corresponding categorification complexes eCH .D1/ and eCH .D2/ should be homotopy
equivalent, that is, isomorphic as objects of the category K.hmfw/. We begin with the
independence of marking placements.

Proposition 1 Let D be a marked tangle diagram. Then C.D/, as an object of
K.hmfw/; does not depend on the number of markings on each edge of D:

Proposition 1 is proved in the next section.

Geometry & Topology, Volume 12 (2008)
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Type I Type IIa

Type IIb
Type III

Figure 8: Reidemeister moves

Now consider unmarked diagrams. Two diagrams represent the same link if they can be
transformed into each other by a sequence of Reidemeister moves depicted in Figure 8.

Since each Reidemeister move is local, it is sufficient to prove that for each pair of
Reidemeister tangles D1 and D2 their complexes C.D1/ and C.D2/ are homotopy
equivalent. Here we encounter an obstacle: we can not prove the invariance under
the Reidemeister move IIb. In order to circumvent this problem, we limit ourselves
to braid closure diagrams. Then it is sufficient to establish the homotopy equivalence
of Reidemeister pairs only for the moves I, IIa and III, all strands in move III being
oriented in the same direction. Indeed, two braid diagrams represent the same braid if
they can be transformed into each other by braid group relations

�i�j D �j�i ; if ji � j j> 1,(15)

�i�
�1
i D I; ��1

i �i D I;(16)

�i�iC1�i D �iC1�i�iC1:(17)

Relation (15) for complexes is satisfied automatically, because both sides correspond to
the same diagram. Relations (16) correspond to Reidemeister moves IIa and relation (17)
correspond to the Reidemeister move III. The closures of two braids produce the same

Geometry & Topology, Volume 12 (2008)
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oriented link if the braids are related by two types of Markov moves

DD0$D0D (conjugation);(18)

D$D�˙1
n ; where D is an n–strand braid.(19)

Relation (18) is satisfied automatically, because both closure diagrams are the same,
while relation (19) corresponds to the Reidemeister move I.

Proposition 2 If a pair of diagrams D1 and D2 is a Reidemeister pair of type I, IIa
or III then the complexes C.D1/ and C.D2/ are isomorphic as objects of the category
K.hmfw/, except in the case of move I, where there is a degree shift:

(20) C.D1/' C.D2/
n

1
2
; 1

2

o h
1
2

i
;

D1 being a straight line and D2 being a line with a loop.

For a proof see Section 3.

Proposition 2 implies the following theorem.

Theorem 1 Given two braid diagrams D1;D2 of an oriented link L; the cohomology
groups H.D1/ and H.D2/ are isomorphic as triply-graded vector spaces.

Note that the degree shift in formula (20) matches the braid closure degree shift (14),
since the diagram D2 involves one strand closure.

The graded Euler characteristic of the complex eCH .D/ is defined by the formula (2)
as a power series in q with coefficients in ZŒt; t�1�. Since the differential @ of the
categorification complex has zero bidegree, one can replace the dimensions of the
graded chain vector spaces with the Betti numbers:

hDi D
X
j ;k;l

.�1/jCk t2kqkCl dimQ H
j

k;l
.D/:

At the end of Section 3 we will prove the following theorem.

Theorem 2 For any braid diagram D the Euler characteristic hDi of H.D/ is related
to the HOMFLYPT polynomial of its closure according to formula (3).

Specializing to t D 1 in the equation (4) nets us the Alexander polynomial. Homologi-
cally, t; q and the minus sign correspond to the three grading directions. Hence, suitably
collapsing the tri-grading to a bigrading we get a categorification of the Alexander
polynomial.

Geometry & Topology, Volume 12 (2008)
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S Gukov, A Schwarz and C Vafa recently conjectured [6] that there exist integer-valued
link invariants DQ;s;r depending on three integer parameters Q; s; r; that can be used
to determine ranks of sl(n) link homology groups as well as the coefficients of the
HOMFLYPT polynomial of a link. These invariants should come from the physical
theory of the BPS states and should be related to ranks of cohomology groups of suitable
moduli spaces. It would be interesting to try relating DQ;s;r to the dimensions of
cohomology groups H

j

k;l
: Our normalization of the HOMFLYPT polynomial is similar

to the one in [6], both having q� q�1 as the denominator of the unknot invariant.

On the other hand, it was independently suggested by several people, including O Viro
[14], that there should exist a triply-graded link homology theory with the HOMFLYPT
polynomial as the Euler characteristic. The current paper resulted from our search for
such a theory and for a combinatorial categorification of the Alexander polynomial.

Triply-graded cohomology theories had previously appeared in the work of Asaeda,
Przytycki and Sikora [1] on categorification of invariants of links in I–bundles over
surfaces, and in Audoux and Fiedler [2], who introduced a refined Jones polynomial
and its categorification, which are only invariant under braid-like isotopies. Restriction
to braid-like isotopies appears in our construction as well, but we do not know how our
invariant relates to those of [1] and [2].

To conclude this section, we mention several modifications, potential generalizations
and illnesses of the homology theory H:

� It is not natural that we have to restrict to braid diagrams to get a link invariant.
In another sign of disfunctionality, the theory does not extend to all cobordisms.
For instance, the cohomology groups of the unknot do not have a Frobenius
algebra structure over the cohomology ring of the empty link (it’s convenient to
define the latter ring to be QŒa�), preventing us from extending the theory even
to unknotted cobordisms between unlinks.

� Any field k can be used instead of Q: More generally, we can work over Z;
so that the invariant of a closed planar graph � is a complex of graded free
abelian groups, up to chain homotopy equivalence, and the invariant of a link is
a complex of complexes as above, up to chain homotopy equivalence. Taking
the homology H.�;Z/ of each resolution of D and forming a complex out of
them produces a complex CH.D;Z/ from a diagram D: We then specialize to
braid diagrams and take the cohomology of CH.D;Z/: The resulting groups
H.D;Z/ are triply-graded and, up to isomorphism, do not depend on the choice
of braid diagram D; given L:

� In Section 3 we rewrite the factorizations C.�0/;C.�1/ and the maps �0; �1 in
the form that depends only on a and the differences xi �xj of the variables xi :

Geometry & Topology, Volume 12 (2008)
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This allows us to pass from the ring RDQŒa;x1; : : : ;xm� to the smaller ring
RDQŒa;x2�x1; : : : ;xm�x1�: The definition of cohomology and the proof
of its invariance work over R as well, leading to reduced cohomology groups
H .D/; with the property H.D/DH .D/˝Q QŒx�: In the reduced theory the
unknot has one-dimensional cohomology groups.

� sl.n/ link homology theory (see [8]) utilized the potential xnC1: Soon afterwards
Gornik [5] studied a deformation of that theory with the potential xnC1� .nC

1/ˇnx: In the nD 2 case the deformation was found earlier by Lee [9] and used
by Rasmussen in his combinatorial proof of the Milnor conjecture [13]. The
definitions in [8] can be generalized to the potential xnC1C anxnC � � �C a1x

where a1; : : : ; an are formal variables. We hope that this generalization will
be invariant under the Reidemeister moves and will turn out to be the “sl.n/–
equivariant” version of sl.n/ link homology. The invariant of the empty link
should be the ring of polynomials in a1; : : : ; an; and naturally isomorphic to
the U.n/–equivariant cohomology ring of the point. The invariant of the unknot
should be the quotient of the polynomial ring QŒx; a1; : : : ; an� by the relation
xnC1CanxnC� � �Ca1xD 0; isomorphic to the U.n/–equivariant cohomology
ring of CPn: A certain version of Bar-Natan link homology [3] from Khovanov
[7] should correspond to the potential x3C ax:

� For a common generalization of the U.n/–equivariant link homology and the
theory described here one could try the potential anC1xnC1CanxnC� � �Ca1x

with all ai being formal variables. Factorizations C.�0/;C.�1/; the maps
�0; �1 and the complex C.D/ can be defined for this potential as well, but we
do not know whether this theory will be invariant under the Reidemeister–Markov
moves of braid diagrams.

3 Proofs

3.1 Product factorizations, graph homology and Koszul complexes

Given a polynomial ring R and a pair of elements a1; b1 2R; we denote by .a1; b1/

the factorization

R
a1
�!R

b1
�!R:

Given a finite set of such pairs .ai ; bi/; 1 � i � n; we denote by .a;b/ their tensor
product (over R):

.a;b/ def
D ˝i.ai ; bi/; aD .a1; : : : ; an/; bD .b1; : : : ; bn/:

Geometry & Topology, Volume 12 (2008)
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We will also write .a;b/ in the column form0BBB@
a1 b1

a2 b2
:::

:::

an bn

1CCCA
and call it a Koszul factorization. By an elementary transformation of rows i and j

we mean a modification�
ai bi

aj bj

�
Œij ��
���!

�
ai bi C�bj

aj ��ai bj

�
for some � 2 R: We denote it by Œij ��: All other rows of .a;b/ are left unchanged.
An elementary transformation takes a Koszul factorization .a;b/ to an isomorphic
factorization, since we are only changing a basis vector in the free R–module underlying
the factorization .a;b/:

Suppose now that y is one of the generators of the polynomial ring R; so we can
write RD R0Œy�; and that the potential w D

P
aibi lies in R0 (in this situation we

say that y is an internal variable). Then any factorization M over R restricts to (an
infinite rank) factorization over R0; which we denote M 0: Assume furthermore that
one of the rows in .a;b/ has the form .0;y ��/ where � 2 R0: Denote by .a0;b0/
the factorization over R0 obtained from .a;b/ by removing the row .0;y ��/ and
substituting � for y everywhere in all other rows.

Proposition 3 Factorizations .a0;b0/ and .a;b/0 are chain homotopy equivalent.

Proof By changing a variable y ! y � � we reduce to the case � D 0: We can
write ai D a0i C ya00i and bi D b0i C yb00i where a0i ; b

0
i 2 R0: Applying elementary

transformations to rows .0;y/ and .ai ; bi/ we reduce the latter to .ai ; b
0
i/; while

.0;y/ is transformed into .
P

aib
00
i ;y/: Next, change .

P
aib
00
i ;y/ into .y;

P
aib
00
i /

(this shifts factorization M to M h1i) and apply elementary transformations to rows
.ai ; b

0
i/ and .y;

P
aib
00
i /: The row .ai ; b

0
i/ becomes .a0i ; b

0
i/; while the row with y

turns into .y;
P
.aib

00
i C a00i b0i//: Since the potential does not depend on y; the latter

sum is zero. Now shift .y; 0/ back to .0;y/: The result is the Koszul factorization,
isomorphic to .a;b/; with rows .a0i ; b

0
i/ and .0;y/: This factorization is the tensor

product of .a0;b0/; as defined above, and .0;y/: Therefore, .a;b/ is isomorphic, as
an R–factorization, to the total factorization of the bifactorization

.a0;b0/˝R0 R
0Œy�

0
�! .a0;b0/˝R0 R

0Œy�
y
�! .a0;b0/˝R0 R

0Œy�:
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As a factorization over the smaller ring R0; it decomposes into a direct sum of con-
tractible factorizations which are the total factorizations of

.a0;b0/˝yjC1 0
�! .a0;b0/˝yj y

�! .a0;b0/˝yjC1;

for j � 0; and the factorization .a0;b0/: The proposition follows.

Remark The second half of the above proof just says that the complex of R0–modules

0 �!R0Œy�
y
�!R0Œy� �! 0

is the direct sum of contractible complexes

0 �!R0yj y
�!R0yjC1

�! 0

and the complex 0 �!R0 �! 0:

Suppose we are given a planar marked graph �; possibly with boundary. To � we
assigned a Koszul factorization C.�/ which has a rather special form. Each arc in �
contributes the row .a;xi �xj / to the Koszul matrix of C.�/; where xi and xj are
the labels at the endpoints of the arc. Each wide edge in � contributes two rows�

a xi Cxj �xk �xl

0 xixj �xkxl

�
to the Koszul matrix, where xi ;xj ; xk ;xl are the labels bounding the edge. If � has
m1 arcs and m2 wide edges, the Koszul matrix of C.�/ will have n D m1C 2m2

rows. Permute these rows so that the first m1Cm2 rows have the form .a; z/ where
the z are some linear functions of the xi . We call these rows linear rows. The last
m2 rows have the form .0;xixj �xkxl/ for various quadruples of indices .i; j ; k; l/:
Call these quadratic rows.

Apply elementary transformations with �D 1 to the first row paired with every other
linear row. In other words, we convert b1 to b1C b2C � � � C bm1Cm2

and subtract
a1 D a from ap D a for p D 2; 3; : : : ;m1Cm2: The Koszul matrix transforms into
a matrix with the first row .a;

P
�ixi/ where the sum is over all boundary points of

� and �i D˙1 depending on the orientation of � at that point. All other linear rows
acquire the form .0; z/; with the same linear functions z as before. Nothing happens
to the quadratic rows. The Koszul matrix now has the form0BBB@

a b1

0 b2
:::
:::

0 bn

1CCCA
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with b1 D
P
�ixi : After this change of basis, every row but the first one has the first

term zero. Hence, it comes from a one-term Koszul complex

0 �!R
bp

�!R �! 0

by collapsing cohomological grading from Z to Z2: Likewise, the tensor product of all
rows save the first is a factorization obtained from the Koszul complex of the sequence
.b2; b3; : : : ; bn/ by collapsing the grading.

Note that our polynomial ring is, in addition, bigraded. Taking all gradings into
account, the collapse is from a triple grading to a bigrading (see Figure 3). No cyclic
components appear in the collapsed grading since the differential has nonzero bidegree
.1; 1/: Finally, observe that in the new Koszul matrix parameter a appears only once,
in the first row.

Next consider the case when � is closed (has no boundary points). The first row
becomes .a 0/ and the whole factorization comes from the Koszul complex of the se-
quence .a; b2; : : : ; bn/ by collapsing its grading. Moreover, a plays a purely decorative
role, and, using Proposition 3, we can throw out this row simultaneously with removing
a from the list of variables, which would then have only the xi . In other words, the
cohomology H.�/ of the factorization C.�/ is isomorphic to the cohomology of the
Koszul complex of the sequence .b2; b3; : : : ; bn/; with the trigrading collapsed to a
bigrading.

Thus, although the 2–periodic complex C.�/ as well as its cohomology H.�/ are
QŒa�–modules, a acts trivially on H.�/:

3.2 Maps �0; �1 revisited

Recall the row operation Œij �� on a Koszul matrix of a factorization:�
ai bi

aj bj

�
�!

�
ai bi C�bj

aj ��ai bj

�
Denote by j0i and j1i the standard basis vectors in factorizations .ai ; bi/ and .aj ; bj /:

Rj0i
ai
�!Rj1i

bi
�!Rj0i;

Rj0i
aj
�!Rj1i

bj
�!Rj0i:

Let j00i; j01i; j10i; j11i be the standard basis vectors in the tensor product factoriza-
tion .ai ; bi/˝ .aj ; bj /: The row operation Œij �� corresponds to the isomorphism of
factorizations

.ai ; bi/˝ .aj ; bj /Š .ai ; bi C�bj /˝ .aj ��ai ; bj /

Geometry & Topology, Volume 12 (2008)



Matrix factorizations and link homology II 1403

which takes the standard basis of the LHS factorization to the basis

j00i; j01i; j10i ��j01i; j11i

of the RHS tensor product.

Denote by  .y/ the following morphism between two Koszul factorizations:

R
x

����! R
yz
����! R

1

??y y

??y 1

??y
R

xy
����! R

z
����! R

Lemma 1 The following squares are commutative:�
a1 b1

a2 b2c2

�
Id˝ .c2/
������!

�
a1 b1

a2c2 b2

�
Œ12��

??y Œ12��c2

??y�
a1 b1C�b2c2

a2��a1 b2c2

�
Id˝ .c2/
������!

�
a1 b1C�b2c2

.a2��a1/c2 b2

�
�

a1 b1

a2 b2c2

�
Id˝ .c2/
������!

�
a1 b1

a2c2 b2

�
Œ21��c2

??y Œ21��

??y�
a1��c2a2 b1

a2 c2.b2C�b1/

�
Id˝ .c2/
������!

�
a1��c2a2 b1

a2c2 b2C�b1

�
Proof The proof follows by direct computation.

Denote by  0.y/ the “opposite” morphism of  .y/:

R
xy
����! R

z
����! R

y

??y 1

??y y

??y
R

x
����! R

yz
����! R

The analogue of Lemma 1 holds for  0 as well (just reverse all horizontal arrows in
the commutative diagrams above). We call  and  0 flip morphisms.

Starting with the Koszul matrices for C.�0/ and C.�1/ and applying a row trans-
formation to each of them, we get the following equivalent Koszul forms for these
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factorizations:

C.�0/W

�
a x1�x4

a x2�x3

�
Œ12�1
���!

�
a x1Cx2�x3�x4

0 x2�x3

�
(21)

C.�1/W

�
a x1Cx2�x3�x4

0 x1x2�x3x4

�
Œ21��x2
�����!

�
a x1Cx2�x3�x4

0 .x2�x3/.x4�x2/

�
(22)

The first rows of these new Koszul matrices for C.�0/;C.�1/ are identical while
the second rows look related. In fact, there is a flip morphism  .x4 � x2/ from
.0; .x2�x3/.x4�x2// to .0;x2�x3/:

R
0

����! R
.x2�x3/.x4�x2/
�����������! R

1

??y x4�x2

??y 1

??y
R

0
����! R

x2�x3
�������! R

and the flip morphism  0.x4 � x2/ back. Tensoring these flip morphisms with the
identity morphism on the first row, we obtain maps of factorizations

Id˝ 0.x4�x2/W C.�
0/ �! C.�1/; Id˝ .x4�x2/W C.�

1/ �! C.�0/:

Lemma 2 Maps Id˝  0.x4 � x2/ and Id˝  .x4 � x2/ are equal to �0 and �1;

respectively.

Proof The proof is a straightforward linear algebra computation.

Therefore, our definition of the complex C.D/ of factorizations assigned to a tangle
diagram can be rewritten via modified Koszul matrices as above and maps  ; 0: We
will use this alternative presentation in our proof of the invariance of C.D/ below. The
new definition simplifies the appearance of C.D/ by creating more zeros in the Koszul
matrices of C.�/ and making the differential easier to describe and understand (at the
cost of breaking the “lateral” symmetry x1 $ x2; x3 $ x4 of the original Koszul
matrices). The differential acts now as the identity on all but m2 rows, where m2 is
the number of crossings of D:

3.3 Markings do not matter

To define the complex C.D/ for a tangle diagram D; we need to place several marks
on D : at least one on each internal edge and each circle and some (possibly none) on
each external edge (an edge containing a boundary point). In this subsection we prove
Proposition 1 that was stated earlier and says that, up to chain homotopy equivalence,
C.D/ does not depend on how marks are placed on the edges of D:
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x1x2

x3

x1x2

x1 x2

x3 x4

x1 x2

x3 x4

x5

Γ 2Γ 1

Figure 9: Mark removal equivalences

Lemma 3 Factorizations �1 and �2 are isomorphic in hmfw if �2 is obtained from
�1 by removing a mark.

Proof It is enough to check this property locally. We depicted two such local pairs
.�1; �2/ in Figure 9, and refer the reader to [8] for a more detailed treatment. We
only check the isomorphism for the top pair in Figure 9, other cases are similar. We
transform the Koszul matrix of C.�1/ as follows:0@ a x1Cx5�x3�x4

0 x1x5�x3x4

a x2�x5

1A Œ13�1
�!

0@ a x1Cx2�x3�x4

0 x1x5�x3x4

0 x2�x5

1A
The variable x5 is internal. According to Proposition 3 with y D x5 we can remove
the last row of the RHS matrix, substitute x2 for x5 everywhere else and forget about
x5: We end up with the Koszul matrix of C.�2/:

Proof of Proposition 1 To show independence of C.D/ on the number and position
of marks, we need to check compatibility of the isomorphisms C.�1/Š C.�2/ above
with maps �0; �1: We will only work through one case and leave the others to an
interested reader. Let’s check that complexes of factorizations

0 �! C.�1
1 /

�1
�! C.�0

1 / �! 0

and

(23) 0 �! C.�1
2 /

�1
�! C.�0

2 / �! 0
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x1 x2

x3 x4

x5

x1

x3 x4

x2

χ  1
Γ 1

0Γ 1
  1

x1

x3 x4

x2

χ  1

x1 x2

x3 x4

Γ 2
0Γ 2

  1

Figure 10

are chain homotopy equivalent, for Figure 10 diagrams. The first complex, written via
Koszul matrices, has the form0@ a x1Cx5�x3�x4

0 .x5�x3/.x4�x5/

a x2�x5

1A Id˝ .x4�x5/˝Id
������������!

0@ a x1Cx5�x3�x4

0 x5�x3

a x2�x5

1A
Applying Œ13�1 simultaneously to both matrices we get an isomorphic complex0@ a x1Cx2�x3�x4

0 .x5�x3/.x4�x5/

0 x2�x5

1A Id˝ .x4�x5/˝Id
������������!

0@ a x1Cx5�x3�x4

0 x5�x3

0 x2�x5

1A :
The only internal variable is x5: We switch from x5 to x D x2 � x5: We think of
x as an internal variable, while a;x1;x2; x3;x4 are external. Both matrices have
identical bottom rows .0;x/ and the differential is the identity on that row. Therefore,
we can eliminate x from the complex, reducing the ground ring to QŒa;x1;x2;x3;x4�;

crossing out the bottom row and setting x D 0: The resulting complex�
a x1Cx2�x3�x4

0 .x2�x3/.x4�x2/

�
Id˝ .x4�x2/
���������!

�
a x1Cx2�x3�x4

0 x2�x3

�
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is isomorphic to (23).

3.4 Invariance under Reidemeister move I

DD 2  1

Figure 11: Type IA Reidemeister move

Consider a type IA Reidemeister move as depicted in Figure 11. The complex
C.D2/f0; 2g has the form�

0 �! C.�1/
�

1
2

�1
�! C.�0/1

2

�! 0
� n

1
2
;�3

2

o
;

see Figure 12. In terms of Koszul matrices, the complex is given by�
a x1�x4

0 0

�
Id˝ .x4�x2/
���������!

�
a x1�x4

0 0

�
(we set x3 D x2 in the formulas (21), (22) for �0 and �1 ).

χ 1

Γ 1x1

x2

x4

Γ  0x1

x2

x4

x1

x4

Γ

Figure 12: Resolutions of D2

The differential is the identity on the first row, and on the second row given by0BBB@
R

0
����! Rf�1; 3g

0
����! R

1

??y x4�x2

??y 1

??y
R

0
����! Rf�1; 1g

0
����! R

1CCCAn1
2
;�3

2

o
:
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Therefore the complex splits into a direct sum of a contractible complex and the tensor
product of .a;x1�x4/ with

0 �!R
�

1
2

f�
1
2
; 3

2
g

x4�x2
����!R1

2

f�
1
2
;�1

2
g �! 0:

Since x2 is an internal variable, we can remove a contractible summand

0 �!R
�

1
2

f�
1
2
; 3

2
g

1
�!R.x4�x2/1

2

f�
1
2
;�1

2
g �! 0

from the above complex and reduce the ground ring to R0 DQŒa;x1;x4�: We get the
complex .a;x1�x4/ shifted by f�1

2
;�1

2
gŒ�1

2
�: Thus,

C.D2/f
1
2
; 1

2
gŒ1

2
�' C.�/

for � as in Figure 12. Since � ŠD1; we arrive at equation (20). We record this as the
following proposition.

Proposition 4 Complexes of matrix factorizations C.D1/ and C.D2/f
1
2
; 1

2
gŒ1

2
� are

isomorphic as objects of K.hmfw/; with w D a.x1�x4/:

D D  1 2

Figure 13: Type IB Reidemeister move

A similar computation takes care of the Reidemeister move IB.

Proposition 5 Complexes of matrix factorizations C.D1/ and C.D2/f
1
2
; 1

2
gŒ1

2
� are

isomorphic as objects of K.hmfw/; for D1;D2 depicted in Figure 13.

3.5 Invariance under Reidemeister move IIa

Complexes of matrix factorizations C.D1/ and C.D2/; for the diagrams depicted in
Figure 14, live in the category K.hmfw/ with wD a.x1Cx2�x3�x4/; viewed as an
element of the ground ring RDQŒa;x1;x2;x3;x4�: The complex C.D2/Š C.�01/

lies entirely in cohomological degree zero, since D2 has no crossings.
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D D  1 2

Figure 14: Type IIa move

Γ 01

x
1

x
2

x
3

x
4

x
5

x
6

Γ 11

x
1

x
2

x
4

x
3

x
5

x
6

Γ 10

x
1

x
2

x
3

x
4

x
5

x
6

Γ 00

x
1

x
2

x
3

x
4

x
5

x
6

f1

f2

Figure 15: Four resolutions of D1

Proposition 6 Complexes of matrix factorizations C.D1/ and C.D2/ are equivalent
as objects of K.hmfw/:

Proof It suffices to show that f1 is an isomorphism (in hmfw ) from C.�00/ to a
direct summand of C.�10/; and that there is a decomposition

C.�10/Š Im.f /˚M;
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where M is isomorphic to C.�11/, with f2jM establishing this isomorphism. Then
C.D1/ would be isomorphic to a direct sum of contractible complexes

0 �! C.�00/
Id
�! Im.f / �! 0;

0 �!M
f2
�! C.�11/ �! 0

and the factorization C.�01/; isomorphic to C.D2/: Since the matrix factorizations
C.�0/ in the complexes (12) and (13) have opposite degree shifts, the matrix factor-
ization C.D2/ in Figure 15 has zero degree shift. Thus the homotopy equivalence
between the complexes C.D1/ and C.D2/ would be established.

We start by writing down the diagram of factorizations and maps

C.�00/
f1
�! C.�10/

f2
�! C.�11/

and simplify them in hmfw by removing contractible direct summand factorizations
from each of the three terms. The diagram has the form0BB@

a x1Cx2�x5�x6

0 x2�x6

a x5Cx6�x3�x4

0 .x6�x4/.x3�x6/

1CCA f1
�!

0BB@
a x1Cx2�x5�x6

0 .x2�x6/.x5�x2/

a x5Cx6�x3�x4

0 .x6�x4/.x3�x6/

1CCA f2
�!

0BB@
a x1Cx2�x5�x6

0 .x2�x6/.x5�x2/

a x5Cx6�x3�x4

0 x6�x4

1CCA
with

f1 D Id˝ 0.x5�x2/˝ Id˝2; f2 D Id˝3
˝ .x3�x6/:

Apply row transformation Œ13�1 to all three Koszul matrices. The new matrices will have
identical first rows .a;x1Cx2�x3�x4/ and identical third rows .0;x5Cx6�x3�x4/:

We remove the third rows and exclude internal variable x6 substituting x3Cx4�x5

in its place everywhere else. The diagram becomes the tensor product of the Koszul
factorization .a;x1Cx2�x3�x4/ and the diagram�

x2�x6

.x6�x4/.x3�x6/

�
g1
�!

�
.x2�x6/.x3Cx4�x6�x2/

.x6�x4/.x3�x6/

�
g2
�!�

.x2�x6/.x3Cx4�x6�x2/

x6�x4

�
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where
g1 D  

0.x3Cx4�x6�x2/˝ Id; g2 D Id˝ .x3�x6/:

We omitted the first columns from the Koszul matrices, since their terms are all zeros.
The only internal variable left is x6: The bottom term in the first two factorizations is

.x6�x4/.x3�x6/D�x2
6 C .x3Cx4/x6�x3x4:

Let R0DQŒa;x1;x2;x3;x4� be the polynomial ring on all external variables. Currently
we are working over the ring R0Œx6�: We remove the bottom term from the first two
factorizations simultaneously reducing to R0; imposing the relation x2

6
D .x3Cx4/x6�

x3x4; and treating multiplication by x6 as an endomorphism of the free R0–module
R0Œx6�=..x6�x4/.x3�x6//: Likewise, in the rightmost factorization, we remove the
bottom row .x6�x4/; reduce to the ground ring R0 and impose the relation x6 D x4:

Our diagram simplifies to

R01˚R0x6

x2�x6
����! R01˚R0x6

1

??y x3Cx4�x6�x2

??y
R01˚R0x6

.x2�x4/.x3�x2/
�����������! R01˚R0x6

x6!x4

??y x6!x4

??y
R0

.x2�x4/.x3�x2/
�����������! R0

where, for instance, the bottom row denotes the factorization

R0
0
�!R0

.x2�x4/.x3�x2/
�����������!R0

and the maps g1;g2 are given by vertical arrows. Stripping off a contractible summand

R01
1
�!R0.x2�x6/

from the first factorization, we reduce it to

R0.x6Cx2�x3�x4/
.x2�x4/.x2�x3/
�����������!R01:

The middle factorization is a direct sum of two isomorphic (up to grading shift)
factorizations

R01
.x2�x4/.x3�x2/
�����������!R01

and

R0.x6Cx2�x3�x4/
.x2�x4/.x3�x2/
�����������!R0.x6Cx2�x3�x4/:
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The map g1 takes the top factorization (in its reduced form) isomorphically onto the
second summand of the middle factorization. The map g2 restricts to an isomorphism
from the first direct summand of the middle factorization to the bottom factorization.
Our claim and the proposition follow.

The invariance under the mirror image of the Figure 14 move can be verified similarly.

3.6 Invariance under Reidemeister move III

Let factorization ‡ be given by the following Koszul matrix:0@ a x1Cx2Cx3�x4�x5�x6

0 x1x2Cx1x3Cx2x3�x4x5�x4x6�x5x6

0 x1x2x3�x4x5x6

1A :
The gradings are normalized so that the differential has bidegree .1; 1/: For instance,
the bottom row denotes the factorization

R
0
�!Rf�1; 5g

x1x2x3�x4x5x6
�����������!R

with RDQŒa;x1; : : : ;x6�: The potential is w D a.x1Cx2Cx3�x4�x5�x6/:

x
2

x
3

x
1

Γ 1

x
5

x
6

x
4

Γ 1

x
5

x
6

x
4

Γ 2

x
4

x
5

x
6

x
2

x
3

x
1

Γ 3

x
4

x
5

x
6

x
1

x
2

x
3

Γ4

x
4

x
5

x
6

x
1

x
2

x
3

Figure 16: Diagrams �1; �2; �3; �4

Proposition 7 In hmfw there are isomorphisms

C.�1/Š C.�4/f0; 2g˚‡;(24)

C.�3/Š C.�2/f0; 2g˚‡;(25)

for �1; �2; �3; �4 depicted in Figure 16.
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Proof To prove the first isomorphism, we place labels x7;x8;x9 (from top to bottom)
on the three marks of �1 and write C.�1/ in the Koszul form

C.�1/D

0BBBBBBB@

a x1Cx2�x8�x7

0 .x2�x7/.x8�x2/

a x7Cx3�x9�x6

0 .x3�x6/.x9�x3/

a x8Cx9�x4�x5

0 .x9�x5/.x4�x9/

1CCCCCCCA
Applying transformations Œ13�1 and Œ15�1 we get a matrix with the third and fifth rows

.0;x7Cx3�x9�x6/; .0;x8Cx9�x4�x5/:

We use these rows to exclude internal variables x7 and x8 and reduce C.�1/ to the
following Koszul form0BB@

a x1Cx2Cx3�x4�x5�x6

0 .x2Cx3�x6�x9/.x4Cx5�x2�x9/

0 .x3�x6/.x9�x3/

0 .x9�x5/.x4�x9/

1CCA :
Notice that variables a and x1 appear only in the first row. Moreover, Koszul forms of
factorizations ‡ and C.�4/ have the same first row. Next, we ignore the first row of
C.�1/ and operate on the other three rows. The first column of the Koszul matrix then
consists of zeros and we omit it. To simplify the factorization0@ .x2Cx3�x6�x9/.x4Cx5�x2�x9/

.x3�x6/.x9�x3/

.x9�x5/.x4�x9/

1A
we use the last term to reduce to at most linear terms in the last remaining internal
variable x9: Remove the last row and impose the relation x2

9
D .x4Cx5/x9�x4x5:

Modulo this relation and after adding the second row, the first row loses x9 and the
matrix becomes�

.x3�x6/.x4Cx5�x2�x3/C .x2�x5/.x4�x2/

.x3�x6/.x9�x3/

�
:

Now x9 appears only in the bottom row, which we can write as

R1˚Rx9

.x3�x6/.x9�x3/
�����������!R1˚Rx9:

Changing basis of the free R–module on the left hand side from f1;x9g to f1;x9C

x3 � x4 � x5g and of the module on the right to f1;x9 � x3g; we decompose this
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complex into a direct sum of

R.x9Cx3�x4�x5/
.x3�x4/.x5�x3/.x3�x6/
�����������������!R1

and
R1

x3�x6
����!R.x9�x3/:

Adding the other rows, we obtain a decomposition of C.�1/ into direct sum of factor-
izations with Koszul matrices0@ a x1Cx2Cx3�x4�x5�x6

0 .x3�x6/.x4Cx5�x2�x3/C .x2�x5/.x4�x2/

0 .x3�x4/.x3�x5/.x3�x6/

1A
and 0@ a x1Cx2Cx3�x4�x5�x6

0 .x3�x6/.x4Cx5�x2�x3/C .x2�x5/.x4�x2/

0 x3�x6

1A ;
the latter shifted by f0; 2g due to the bidegree .0; 2/ vector x9�x3 being a generator of
the module R.x9�x3/: It is easy to check that the matrices above describe factorizations
‡ and C.�4/; respectively.

Proposition 8 Complexes C.D1/ and C.D2/; for diagrams depicted in Figure 17,
are isomorphic in the category K.hmfw/:

D D  1 2

Figure 17: Reidemeister move III

Proof The proof is similar to the one in [8]. The complex C.D1/ consists of eight
factorizations assigned to diagrams depicted in Figure 18 (also see Figure 6). We ignore
the overall shift by

n
1
2
;�3

2

o
in the resolution of each crossing, which was needed for

the invariance under the Reidemeister move IIa, but does not make any difference for
Reidemeister move III. Proposition 7 tells us that

C.�111/Š ‡ ˚C.�100/f0; 2g
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(also observe that �100 Š �001 ), while our proof of the invariance under the Reide-
meister move IIa implies

C.�101/Š C.�100/f0; 2g˚C.�100/:

A computation similar to the one in that proof shows that the map �1W C.�111/ �!

C.�101/; when restricted to the direct summand isomorphic to C.�100/f0; 2g; is an
isomorphism onto a direct summand of C.�101/; while our proof of Proposition 6
implies that �1W C.�101/�!C.�001/ is an isomorphism when restricted to the direct
summand C.�100/ of C.�101/:

Γ 111

 000Γ

Γ 010

Γ 101

Γ 011

Γ 110

Γ 001

Γ 100

Figure 18: Resolution cube of D1
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After removing contractible summands

0 �! C.�100/f0; 2g
Š
�! C.�100/f0; 2g �! 0

and
0 �! C.�100/

Š
�! C.�100/ �! 0

we reduce C.D1/ to a complex C 0 that is graphically depicted in Figure 19, where
factorization ‡ assigned to the diagram Y:

 000Γ

Γ 010

Γ 100 Γ 001

Γ 011

Γ 110

Υ

Figure 19: Complex C 0

Lemma 4 The complex C 0 Š C.D1/ is indecomposable in the category K.hmfw/:

Proof In other words, we cannot write C 0 Š M ˚ N for two nontrivial objects
M;N of K.hmfw/: Indeed, invariance under the Reidemeister move IIa tells us that
tensoring with a complex of factorizations assigned to a crossing is an invertible functor.
Precisely, it is an invertible functor from the category K.hmfv/ to K.hmfu/ where
vDax3Cax4Cf .x/; uDax1Cax2Cf .x/; and f .x/ is any polynomial in variables
x disjoint from x1; : : : ;x4: An invertible functor is indecomposable iff the identity
functor is. The identity functor, in general, corresponds to the diagram comprised of n
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parallel lines, compatibly oriented (the diagram of the trivial braid). Its factorization
S can be written as the tensor product of .a;xi � xnCi/; over i D 1; : : : ; n: An
easy computation (for instance, as in the proof of the next lemma) shows that the
hom space Homhmfw .S;S/ of bigrading-preserving factorization homomorphisms up
to chain homotopies is one-dimensional. Therefore, S and the identity functor are
indecomposable, for otherwise a projection onto a direct summand would ensure that
the above hom space is at least 2–dimensional.

Lemma 5 For any arrow � �! � 0 in Figure 19, the space of bidegree-preserving
maps C.�/! C.� 0/ is one-dimensional (over the ground field Q) and is generated
by �1:

Proof We can prove the lemma on a case-by-case basis, separately for each arrow.
In general, to compute the dimension of Homhmfw .M;N /; for matrix factorizations
M;N; with M of finite rank, we use the isomorphism

EXThmfw .M;N /ŠH.N ˝R M�/

where EXT refers to taking ext groups of the pair M;N in all bidegrees, M� is the
R–module dual of M; and H stands for cohomology. Restricting the left hand side
to Hom corresponds to taking the bidegree .0; 0/ summand of the right hand side.
The dual of a Koszul factorization .ai ; bi/ is the Koszul factorization .bi ;�ai/; with
suitably shifted gradings.

For instance, to determine the dimension of the space

Homhmfw .C.�110/;C.�100//

(the bottom arrow in Figure 19) we first write the Koszul matrix of C.�110/ W0BB@
f0; 0g a f1;�1g x1Cx2�x4�x7

f0; 0g a f1;�1g x7Cx3�x5�x6

f0; 0g 0 f1;�3g .x2�x4/.x2�x7/

f0; 0g 0 f1;�3g .x3�x5/.x3�x6/

1CCA
Here x7 is the variable assigned to the internal mark of �110: We also added two
columns indicating the bidegrees of R: For instance, the second row denotes the
factorization

Rf0; 0g
a
�!Rf1;�1g

x7Cx3�x5�x6
����������!Rf0; 0g:

After we apply Œ12�1; the second row becomes .0;x7Cx3�x5�x6/I we get rid of it
and of the variable x7: Thus, C.�110/ is isomorphic to the factorization assigned to
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the Koszul matrix0@ f0; 0g a f�1; 1g x1Cx2Cx3�x4�x5�x6

f0; 0g 0 f�1; 3g .x2�x4/.x2Cx3�x5�x6/

f0; 0g 0 f�1; 3g .x3�x5/.x3�x6/

1A :
The dual C.�110/� of C.�110/ can be represented by the matrix0@ f0; 0g x1Cx2Cx3�x4�x5�x6 f1;�1g �a

f0; 0g .x2�x4/.x2Cx3�x5�x6/ f1;�3g 0

f0; 0g .x3�x5/.x3�x6/ f1;�3g 0

1A
and the tensor product complex C.�110/�˝C.�100/ by0BBBBBBB@

f0; 0g a f�1; 1g x1Cx2�x4�x5

f0; 0g 0 f�1; 3g .x2�x4/.x2�x5/

f0; 0g a f�1; 1g x3�x6

f0; 0g x1Cx2Cx3�x4�x5�x6 f1;�1g �a

f0; 0g .x2�x4/.x2Cx3�x5�x6/ f1;�3g 0

f0; 0g .x3�x5/.x3�x6/ f1;�3g 0

1CCCCCCCA
;

where the first three rows describe C.�100/: We do transformation Œ13�1 and shift rows
4 and 5 by one each. We get0BBBBBBB@

f0; 0g a f�1; 1g x1Cx2Cx3�x4�x5�x6

f0; 0g 0 f�1; 3g .x2�x4/.x2�x5/

f0; 0g 0 f�1; 1g x3�x6

f1;�1g �a f0; 0g x1Cx2Cx3�x4�x5�x6

f1;�3g 0 f0; 0g .x2�x4/.x2Cx3�x5�x6/

f0; 0g .x3�x5/.x3�x6/ f1;�3g 0

1CCCCCCCA
:

We apply the transformation Œ14��1; then shift rows 1 and 6 to obtain0BBBBBBB@

f�1; 1g 0 f0; 0g a

f0; 0g 0 f�1; 3g .x2�x4/.x2�x5/

f0; 0g 0 f�1; 1g x3�x6

f1;�1g 0 f0; 0g x1Cx2Cx3�x4�x5�x6

f1;�3g 0 f0; 0g .x2�x4/.x2Cx3�x5�x6/

f1;�3g 0 f0; 0g .x3�x5/.x3�x6/

1CCCCCCCA
:
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Cross out row 3 and convert x6 to x3 everywhere else. The matrix reduces to0BBBB@
f�1; 1g 0 f0; 0g a

f0; 0g 0 f�1; 3g .x2�x4/.x2�x5/

f1;�1g 0 f0; 0g x1Cx2�x4�x5

f1;�3g 0 f0; 0g .x2�x4/.x2�x5/

f1;�3g 0 f0; 0g 0

1CCCCA :

We apply Œ24�1; then remove rows 1 and 3 simultaneously with getting rid of the
variables a and x5: The resulting matrix is0@ f0; 0g 0 f�1; 3g .x2�x4/.x4�x1/

f1;�3g 0 f0; 0g 0

f1;�3g 0 f0; 0g 0

1A :
Now let R0 DQŒx1;x2;x3;x4�: The cohomology of the complex described by this
matrix is the tensor product of the quotient R0=..x2�x4/.x4�x1// and the bigraded
vector space

.Qf1;�3g˚Q/˝ .Qf1;�3g˚Q/:

The bigraded dimension of R0=..x2 � x4/.x4 � x1// has the form 1 C ˛ where
˛ 2 q2ZŒq2�; while that of the second term is .1C tq�3/2: Therefore, the bigraded
dimension of the cohomology of the complex C.�110/�˝C.�100/ has the form

.1C˛/.1C 2tq�3
C t2q�6/:

Writing it as a polynomial in t with coefficients being power series in q; we see that
the coefficient of the term t0q0 equals 1: Therefore, the bidegree .0; 0/ summand of
the homology is one-dimensional, and the hom space Homhmfw .C.�110/;C.�100//

has dimension 1:

To show that �1W C.�110/ �! C.�100/ (corresponding to the splitting of the right
wide edge of �110 into two parallel lines) generates this one-dimensional space, it
suffices to show that �1 is not null-homotopic. We can write the factorizations and the
map in the following Koszul form0BB@

a x1Cx2�x4�x7

0 .x2�x4/.x2�x7/

a x7Cx3�x5�x6

0 .x3�x5/.x3�x6/

1CCA �1
�!

0BB@
a x1Cx2�x4�x7

0 .x2�x4/.x2�x7/

a x7Cx3�x5�x6

0 x3�x6

1CCA
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with �1 D Id˝3
˝ .x3�x5/: Applying row transformation Œ13�1 to each matrix and

then excluding x7 we reduce the map to0@ a x1Cx2Cx3�x4�x5�x6

0 .x2�x4/.x2Cx3�x5�x6/

0 .x3�x5/.x3�x6/

1A �1
�!

0@ a x1Cx2Cx3�x4�x5�x6

0 .x2�x4/.x2Cx3�x5�x6/

0 x3�x6

1A
with �1 D Id˝2

˝ .x3�x5/: Turn both �110 and �100 into closed diagrams b� 110

and b� 100 by connecting top endpoints of each diagram with its bottom endpoints by
three disjoint arcs. To check that �1 is not null-homotopic, it is enough to verify that
the induced map on cohomology

b�1W H.
b� 110/ �!H.b� 100/

is non-trivial. We represent this map in Koszul form as0BBBBBBB@

a x1Cx2Cx3�x4�x5�x6

0 .x2�x4/.x2Cx3�x5�x6/

0 .x3�x5/.x3�x6/

a x4�x1

a x5�x2

a x6�x3

1CCCCCCCA
b�1
�!

0BBBBBBB@

a x1Cx2Cx3�x4�x5�x6

0 .x2�x4/.x2Cx3�x5�x6/

0 x3�x6

a x4�x1

a x5�x2

a x6�x3

1CCCCCCCA
;

and b�1 D Id˝2
˝ .x3�x5/˝ Id˝3: Doing transformations Œ14�1; Œ15�1; Œ16�1 and

excluding x4; x5; x6 and a; we reduce the map to the form�
0 0

0 0

� b�1
�!

�
0 0

0 0

�
;

where b�1D Id˝ .x3�x2/ and the ground ring is QŒx1;x2;x3� (we took the quotient
by the ideal .x1�x4;x2�x5;x3�x6; a/). Clearly, b�1 induces a nontrivial map on
cohomology, and �1 is not null-homotopic.

Using symmetries of the graphs and factorizations, the other cases of the lemma can
be reduced to verifying that the hom spaces

Homhmfw .‡;C.�110// and Homhmfw .C.�100/;C.�000//

are both one-dimensional and generated by �1: Actual computations, similar to the
one above, are left to a curious reader. For the first of the two hom spaces, by �1

we mean the composition of �1W C.�111/ �! C.�110/ with the inclusion of ‡ as a
direct summand of C.�111/:
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Lemma 6 For any arrow � �! � 0 in Figure 19, factorizations C.�/ and C.� 0/ are
not isomorphic in hmfw:

Proof (Sketch) Form the closures b� and b� 0 by connecting top endpoints of each
diagram with its bottom endpoints by 3 disjoint arcs. A direct computation shows
that complexes C.b� / and C.b� 0/ have non-isomorphic cohomology groups (their
two-variable Poincare polynomials are different).

Thus, the complex C 0; depicted in Figure 19, consists of 6 factorizations and its
differential is a sum of 10 maps, one for each arrow of the figure. Each map is either 0
or a nonzero multiple of the unique (up to rescaling) nontrivial map between the two
factorizations. For each arrow bW � �! � 0 choose a nontrivial map m.b/W C.�/!

C.� 0/:

Lemma 7 For any two composable arrows �
b1
�! � 0

b2
�! � 00 the composition

m.b2/m.b1/ is nontrivial in hmfw:

Proof It suffices to check that the composition

(26) ‡ � C.�111/
�1
�! C.�110/

�1
�! C.�100/

�1
�! C.�000/

is not null-homotopic. Denote the composition of the last 3 maps by �0
1

and the
corresponding “adjoint” composition

C.�000/
�0
�! C.�100/

�0
�! C.�110/

�0
�! C.�111/

by �0
0
: We claim that the map �0

1
pr�0

0
is non-zero, where pr is the projection from

C.�111/ onto its direct summand ‡: The map �0
0

has degree .0; 6/ and the product
�0

1
�0

0
is equal to the multiplication by .x4�x2/

2.x5�x3/ endomorphism of C.�000/;

since the composition �1�0 is the multiplication by a suitable linear combination of the
x . The complementary direct summand of C.�111/ is isomorphic to C.�100/f0; 2g:

Denote by epr the projection onto this direct summand. Then prC epr is the identity
endomorphism of C.�111/:

The composition �0
1
epr�0

0
factors though a degree .0; 2/ endomorphism of C.�110/:

This endomorphism is a composition

C.�110/ �! C.�100/ �! C.�110/

where the first map has degree .0; 0/ and the second–degree .0; 2/: These maps
are, necessarily, rational multiples of �0 and �1 (corresponding to the right wide
edge of �110 ) and their composition is a rational multiple of the multiplication by
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x3�x5: Hence, the composition �0
1
epr�0

0
is a rational multiple of the multiplication

by .x3�x5/
2.x2�x4/: To show that

�01pr�00 D �
0
1�
0
0��

0
1epr�00

is not null-homotopic, we observe that the right hand side is the multiplication by

.x4�x2/
2.x5�x3/��.x3�x5/

2.x2�x4/

endomorphism of C.�000/; for some rational �: The image of QŒx1; : : : ;x6� in the
endomorphism ring of C.�000/ is the quotient ring by relations x1 D x4; x2 D x5

and x3 D x6: The polynomial above simplifies to

.x1�x2/
2.x2�x3/��.x3�x2/

2.x2�x1/ 6D 0

in QŒx1;x2;x3�: Therefore, the composition �0
1
pr�0

0
is not null-homotopic, and so is

the map ‡ �! C.�000/ in formula (26). Lemma 7 follows.

The differential in the complex C 0 can be written as

d D
X

b

�bm.b/;

with �b 2Q; and the sum over all arrows b:

Lemma 8 All coefficients �b are nonzero rational numbers.

Proof Assume otherwise: �b D 0 for some b: Every square in the diagram of C 0

anticommutes, and from Lemma 7 we derive that some other � would have to be zero.
In fact, there will be enough zero maps to split the complex into the direct sum of at
least two subcomplexes, each comprised of two or four factorizations in Figure 19.
Specifically, the complex will either decompose into a direct sum of 3 subcomplexes
of the form

(27) 0 �! C.�/
m.b/
�! C.� 0/ �! 0

for some three arrows b; or as the direct sum of one subcomplex of type (27) and the
complementary summand containing the other four factorizations.

A decomposition of C 0 into a direct sum of 3 subcomplexes contradicts Lemma 4
and Lemma 6. To see the impossibility of the decomposition of the second kind, it
is enough to show that the complementary summand cannot be trivial in hmfw: This
summand would consist of four factorizations that sit in the vertices of one of the four
squares in Figure 19. For instance, it could have the form

0 �! C.Y / �! C.�110/˚C.�011/ �! C.�010/ �! 0:
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Triviality of the summand would imply that its identity map is null-homotopic. In
particular, the identity map of the rightmost factorization in the complex would factor
through a map to the middle term. This map should have bidegree .0; 0/: The following
lemma establishes the contradiction.

Lemma 9 For any arrow � �! � 0 in Figure 19 we have

Homhmfw .C.�
0/;C.�//D 0:

Proof Thus, any bidegree zero map is trivial. The lemma can be proved in the same
way as Lemma 5.

Lemma 8 follows.

To summarize, we established that the coefficients �b in the differential for the complex
C 0 are all nonzero. Rescaling, if necessary, we can turn them into 1 and �1. Moreover,
the complex C 0 is uniquely determined, up to isomorphism, by the condition that �b 6D0

for all b: We have C.D1/Š C 0: Nearly identical arguments show that C.D2/Š C 0

as well. Therefore, C.D1/Š C.D2/; and Proposition 8 follows.

3.7 Computing the Euler characteristic

For a braid diagram D consider three more diagrams: the diagrams D�i and D�i

resulting from placing a positive or a negative crossing between the i th and .i C
1/th strands on top of D and the diagram Dei resulting from placing a wide edge
between these strands on top of D . Equations (12) and (13) (see also Figure 6) present
categorification complexes eCH .D�i/ and eCH .D��1

i / of the braid closures D�i ,
D��1

i as cones of morphisms between the complexes eCH .D/ and eCH .Dei/ of the
closures of D and Dei :

eCH .D�i/D Cone
�eCH .D/

n
�

1
2
; 3

2

o h
�

1
2

i
�0
��!eCH .Dei/

n
�

1
2
;�1

2

o h
�

1
2

i�
eCH .D��1

i /D Cone
�eCH .Dei/

n
1
2
;�3

2

o h
�

1
2

i
�1
��!eCH .D/

n
1
2
;�3

2

o h
�

1
2

i�
:

As a result, their graded Euler characteristics defined by equation (2) are related as

hD�ii D �t�1q hDiC t�1q�1
hDeii(28)

hD��1
i i D tq�1

hDeii � tq�1
hDi;(29)

so the Euler characteristic hDi satisfies the skein relation (4):

(30) t hD�ii � t�1
hD��1

i i D �.q� q�1/ hDi:
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Proof (Theorem 2) If D is a one-strand braid diagram of the unknot then

H.D/ŠQŒx�
n
�

1
2
; 3

2

o h
1
2

i
and

hDi D
t�1

q� q�1
:

Since the HOMFLYPT function is determined uniquely by the skein relation and by
its value on the unknot, a comparison between the formulas (30) and (5) leads to the
relation (3), which is our normalization of F.D/: Propositions proved above imply
that hDi satisfies all other defining properties of F.D/: Theorem 2 follows.
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