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Product formulae for Ozsváth–Szabó 4–manifold invariants

STANISLAV JABUKA

THOMAS E MARK

We give formulae for the Ozsváth–Szabó invariants of 4–manifolds X obtained by
fiber sum of two manifolds M1 , M2 along surfaces †1 , †2 having trivial normal
bundle and genus g�1 . The formulae follow from a general theorem on the Ozsváth–
Szabó invariants of the result of gluing two 4–manifolds along a common boundary,
which is phrased in terms of relative invariants of the pieces. These relative invariants
take values in a version of Heegaard Floer homology with coefficients in modules
over certain Novikov rings; the fiber sum formula follows from the theorem that
this “perturbed” version of Heegaard Floer theory recovers the usual Ozsváth–Szabó
invariants, when the 4–manifold in question has bC � 2 . The construction allows
an extension of the definition of Ozsváth–Szabó invariants to 4–manifolds having
bC D 1 depending on certain choices, in close analogy with Seiberg–Witten theory.
The product formulae lead quickly to calculations of the Ozsváth–Szabó invariants
of various 4–manifolds; in all cases the results are in accord with the conjectured
equivalence between Ozsváth–Szabó and Seiberg–Witten invariants.

57R58; 57M99

1 Introduction

At the time of writing, there is no example of a smoothable topological 4–manifold
whose smooth structures have been classified. Indeed, no smooth 4–manifold is known
to support only finitely many smooth structures, and in virtually every case a 4–manifold
that admits more than one smooth structure is known to admit infinitely many such
structures. A substantial amount of ingenuity by a large number of authors—see
Stern [19] for a brief survey—has been required to produce these exotic 4–manifolds,
though ultimately the list of topological tools used in the constructions is perhaps
surprisingly short. The standard approach to distinguishing smooth structures on
4–manifolds has been to make use of gauge-theoretic invariants, which requires an
understanding of how these invariants behave under the cut-and-paste operations used in
constructing examples. In the case of the Seiberg–Witten invariants, this understanding
was provided by Morgan–Mrowka–Szabó [7], Morgan–Szabó–Taubes [8], D Park [17],
Li–Liu [5] and many others, and the Seiberg–Witten invariants have become the tool
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of choice for studying smooth manifolds. Beginning in 2000, Ozsváth and Szabó [12;
11; 15] introduced invariants of 3– and 4–dimensional manifolds meant to mimic
the Seiberg–Witten invariants but also avoid the technical issues that for many years
prevented the expected Seiberg–Witten–Floer theory from taking shape. Their theory
has been remarkably successful and has had a number of important consequences in
the study of 3–manifolds and knot theory. The 4–dimensional side of the story has
been developed to a somewhat lesser extent, however, and the existing gauge-theoretic
technology means it is still the case that Seiberg–Witten invariants are often the easiest
to use in the study of smooth 4–manifolds. Our aim here is to develop reasonably
general cut-and-paste principles for Ozsváth–Szabó invariants, that will be useful in
a variety of situations. A central tool in many constructions of exotic 4–manifolds is
the normal connected sum or “fiber sum,” in which neighborhoods of diffeomorphic
surfaces are excised from closed 4–manifolds and the resulting complements glued
together along their boundary. As an application of the formalism we introduce here,
and as a motivating test case, we give formulae that essentially determine the behavior
of the Ozsváth–Szabó 4–manifold invariants under fiber sum along surfaces of trivial
normal bundle.

To realize this goal we are obliged to introduce a substantial amount of machinery,
including the development of Heegaard Floer homology with coefficients in certain
power series (Novikov) rings. This can be viewed in analogy with Seiberg–Witten
Floer homology perturbed by a 2–dimensional cohomology class, and in many ways
exhibits parallel behavior. It is our hope that this “perturbed” Heegaard Floer theory
will be of interest in other applications as well.

For the sake of exposition, we state our results in this introduction in order of increasing
technicality. In particular, Ozsváth and Szabó defined their invariants initially for
4–manifolds M with bC.M / � 2, and since the theory is simplest in that case we
begin there.

1.1 Constructions and statements of results when bC � 2

The Ozsváth–Szabó invariants [15; 9] are defined using a “TQFT” construction, meaning
that they are built from invariants of 3–dimensional manifolds (the Heegaard Floer
homology groups) and cobordisms between such manifolds. To a closed oriented 4–
manifold M with bC.M /� 2, with a spinc structure s, Ozsváth and Szabó associate
a linear function

ˆM;sW A.M /! Z;

where A.M / is the algebra ƒ�.H1.M IZ/=torsion/˝ZŒU �, graded such that elements
of H1.M / have degree 1 and U has degree 2. This invariant has the property that
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ˆM;s is nonzero for at most finitely many spinc structures s, and furthermore, with s

fixed, vanishes on all elements of A.M / not having degree

d.s/D 1
4
.c2

1.s/� 3�.M /� 2e.M //;

where � denotes the signature of the intersection form on M and e is the Euler
characteristic. Ozsváth and Szabó conjecture [15] that ˆM;s is identical with the
Seiberg–Witten invariant.

We remark that there is a sign ambiguity in the definition of ˆM;s , so that the results
to follow are true up to an overall sign.

The fiber sum of two smooth 4–manifolds is defined as follows. Let M1 and M2 be
closed oriented 4–manifolds, and suppose †i ,!Mi , i D 1; 2, are smoothly embedded
closed oriented surfaces of the same genus g . We assume throughout this paper that
g is at least 1 and that the †i have trivial normal bundles. In this case, †i has a
neighborhood N.†i/ diffeomorphic to †i �D2 . Choose an orientation-preserving
diffeomorphism f W †1!†2 , and lift it to an orientation-reversing diffeomorphism
�W @N.†1/! @N.†2/ via conjugation in the normal fiber. We define the fiber sum
X DM1#†M2 by

X D .M1 nN.†1//[� .M2 nN.†2//:

In general, the manifold X can depend on the choice of � . We assume henceforth that
the homology classes Œ†1� and Œ†2� are nontorsion elements of H2.Mi IZ/ (though
the results of this paper can in principle be adapted to other situations).

To state the results, it is convenient to express the Ozsváth–Szabó invariant in terms of
the group ring ZŒH 2.M IZ/�. That is to say, we write

OSM D

X
s2Spinc.M /

ˆM;s ec1.s/;

where ec1.s/ is the formal variable in the group ring corresponding to the first Chern
class of the spinc structure s (note that c1.s/D c1.s

0/ for distinct spinc structures s

and s0 if and only if s� s0 is of order 2 in H 2.M IZ/, so the above formulation may
lose some information if 2–torsion is present). The coefficients of the above expression
are functions on A.M /, so that OSM is an element of ZŒH 2.M IZ/�˝A.M /� . The
value of the invariant on ˛ 2A.M / is denoted OSM .˛/ 2 ZŒH 2.M IZ/�.

The behavior of ˆM;s under fiber sum depends on the value of hc1.s/; Œ†�i (since
c1.s/ is a characteristic class, this value is always even when Œ†�2 D 0). Thus, we
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partition OSM accordingly: for an embedded surface † ,!M with trivial normal
bundle, let

OSk
M D

X
hc1.s/;Œ†�iD2k

ˆM;s ec1.s/:

The adjunction inequality for Ozsváth–Szabó invariants implies that OSk
M � 0 if

jkj> g� 1.

The topology of fiber sums is complicated in general by the presence of rim tori. A rim
torus is a submanifold of the form  �S1 �†�S1 , where  is an embedded circle
on †. Such tori are homologically trivial in the fiber summands Mi , but typically
essential in X DM1#†M2 . Let R denote the subspace of H 2.X IZ/ spanned by the
Poincaré duals of rim tori, and let �W H 2.X IZ/!H 2.X IZ/=R denote the natural
projection. If bi 2H 2.Mi IZ/, i D 1; 2, are cohomology classes with the property that
b1j@N.†1/ agrees with b2j@N.†2/ under � , then Mayer–Vietoris arguments show that
there exists a class b 2H 2.X IZ/ whose restrictions to Mi nN.†i/ agrees with the
corresponding restrictions of bi , and furthermore that b is determined uniquely up to
elements of R and multiples of the Poincaré dual of †. If b , b1 and b2 satisfy these
conditions on their respective restrictions, we say that the three classes are compatible
with the fiber sum. We can eliminate part of the ambiguity in b given .b1; b2/ by
requiring that

b2
D b2

1 C b2
2 C 4jmj;

where mD hb1; Œ†1�i D hb2; Œ†2�i. With this convention, the pair .b1; b2/ gives rise
to a well-defined element of H 2.X IZ/=R (see Section 10.3 for details).

Theorem 1.1 Let X D M1#†M2 be obtained by fiber sum along a surface † of
genus g > 1 from manifolds M1 , M2 satisfying bC.Mi/� 2, i D 1; 2. If jkj> g�1

then OSk
X D OSk

M1
D OSk

M2
D 0. In general, we have

(1) �
�

OSk
X .˛/

�
D

X
ˇ2Bk

OSk
M1
.˛1˝ˇ/ �OSk

M2
.f�.ˇ

ı/˝˛2/ �uˇ;k

where ˛i 2A.Mi nN.†i// are any elements such that ˛1˝˛2 maps to ˛ under the
inclusion-induced homomorphism.

The notation of the theorem requires some explanation. First, the product of group ring
elements appearing on the right makes use of the construction outlined above, producing
elements of H 2.X IZ/=R from compatible pairs .b1; b2/. The set Bk denotes a basis
over Z for the group H�.Symd .†/IZ/Š

Ld
iD0ƒ

iH1.†/˝ZŒU �=U d�iC1 , thought
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of as a subgroup of A.†/, where d D g� 1� jkj. Likewise, fˇıg denotes the dual
basis to Bk under a certain nondegenerate pairing (see Section 10.3). The terms ˛1˝ˇ

and f�.ˇı/˝ ˛2 are understood to mean the images of those elements in A.M1/

and A.M2/, using the inclusion-induced maps. Finally, uˇ;k is a polynomial in the
variable ePDŒ†� whose constant coefficient is 1, and which is equal to 1 except possibly
in the case k D 0.

The left hand side of (1) lies in the group ring of H 2.X IZ/=R, and its coefficients
are “rim torus averaged” Ozsváth–Szabó invariants. That is to say, each coefficient of
�.OSk

X / is a term of the form

ˆRim
X ;s D

X
s02Spinc.X /

s0�s2R

ˆX ;s0 :

A 4–manifold X is said to have (Ozsváth–Szabó) simple type if any spinc structure s

for which ˆX ;s ¤ 0 has d.s/D 0. We have:

Corollary 1.2 If M1 and M2 have simple type, then the fiber sum X DM1#†M2

has the property that if ˆRim
X ;s D 0 whenever d.s/¤ 0. Furthermore,

�.OSk
X /D 0 if jkj< g� 1,(2)

�.OS˙.g�1/
X

.˛//D

(
OS˙.g�1/

M1
.1/ �OS˙.g�1/

M2
.1/ if ˛ D 1

0 if deg.˛/ > 1:
while

In other words, the fiber sum of manifolds of simple type has simple type after sum
over rim tori. We note that Equation (2) holds if M1 and M2 are assumed only to
have A.†/–simple type, that is, if ˆM;s.˛/D 0 whenever ˛ lies in the ideal of A.M /

generated by U and the image of H1.†/.

We should remark that Taubes [20] has shown that symplectic 4–manifolds with bC� 2

have Seiberg–Witten simple type. It seems safe, therefore, to conjecture the following:

Conjecture 1.3 If X is a symplectic 4–manifold with bC.X / � 2 then X has
Ozsváth–Szabó simple type.

Leaving this issue for now, we turn to the case of a fiber sum along a torus, where the
product formula is slightly different.
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Theorem 1.4 Let X D M1#†M2 be obtained by fiber sum along a surface † of
genus gD 1, such that M1 , M2 , and X each have bC � 2. Let zT denote the Poincaré
dual of the class in H2.X IZ/ induced by Œ†i �, and write T for the image of zT in
H 2.X IZ/=R. Then for any ˛ 2A.X / we have

�.OSX .˛//D .T �T �1/2 OSM1
.˛1/ �OSM2

.˛2/

where ˛1˝˛2 2A.M1/˝A.M2/ maps to ˛ as before.

Here the product between OSM1
and OSM2

uses the previous construction, while
multiplication with T takes place in the group ring of H 2.X IZ/=R.

We will show (Proposition 11.1) that any 4–manifold M containing an essential
torus T of self-intersection 0 has A.T /–simple type, in analogy with a result of
Morgan, Mrowka, and Szabó in Seiberg–Witten theory [7].

It is interesting to compare these results with those in Seiberg–Witten theory. Taubes
proved an analogue of Theorem 1.4 in [21], generalizing work of Morgan–Mrowka–
Szabó [7], and D Park [17] gave an independent proof of that result. The higher-genus
case was considered by Morgan, Szabó and Taubes [8], but only under the condition that
jkj D g�1. In this case the sum appearing in Theorem 1.1 is trivial since Bg�1D f1g,
and the result here gives a product formula directly analogous to that of [8]. To our
knowledge, no product formulae at the level of generality of Theorem 1.1 have yet
appeared in the literature on Seiberg–Witten theory.

1.2 Relative invariants and a general gluing result

The theorems above are proved as particular cases of a general result on the Ozsváth–
Szabó invariants of 4–manifolds obtained by gluing two manifolds along their boundary.
In its most general form, the form that is useful in the context of fiber sums (Theorem
1.6 below), the statement involves perturbed Heegaard Floer invariants. If one is
interested in gluing two manifolds-with-boundary that both have bC � 1, however, the
perturbed theory is unnecessary and there is a slightly simpler “intermediate” result.
To state it, recall that the construction of the 4–manifold invariant ˆM;s is based on
the Heegaard Floer homology groups associated to closed spinc 3–manifolds .Y; s/.
These groups have various incarnations; the relevant one for our immediate purpose is
denoted HF�red.Y; s/. Below, we recall the construction of Heegaard Floer homology
with “twisted” coefficients, whereby homology groups are obtained whose coefficients
are modules M over the group ring RY D ZŒH 1.Y /� (here and below, ordinary
(co)homology is considered with integer coefficients). If Y D @Z is the boundary of
an oriented 4–manifold Z , then such a module is provided by

MZ D ZŒker.H 2.Z; @Z/!H 2.Z//�;
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where H 1.Y / acts by the coboundary homomorphism H 1.Y /!H 2.Z; @Z/. The
intermediate product formula alluded to above can be formulated as follows.

Theorem 1.5 If .Z; s/ is a spinc 4–manifold with connected spinc boundary .Y; sY /

and if bC.Z/� 1, then there exists a relative Ozsváth–Szabó invariant ‰Z;s which is
a function

‰Z;sW A.Z/!HF�red.Y; sY IMZ /;

a diffeomorphism invariant of .Z; s/ well-defined up to multiplication by a unit in
ZŒH 1.Y /�.

Furthermore, if .Z1; s1/ and .Z2; s2/ are two such spinc 4–manifolds with spinc

boundary @Z1 D .Y; s/ D �@Z2 , write X D Z1 [Y Z2 . Then there exists an RY –
sesquilinear pairing

.� ; �/W HF�red.Y; sIMZ1
/˝RY

HF�red.�Y; sIMZ2
/!MX ;Y ;

where MX ;Y D ZŒK.X;Y /� and K.X;Y / D ker.H 2.X / ! H 2.Z1/˚H 2.Z2//.
The pairing has the property that for any spinc structure s on X restricting to si on
Zi , we have an equality of group ring elements:X

h2K.X ;Y /

ˆX ;sCh.˛/ eh
D .‰Z1;s1

.˛1/; ‰Z2;s2
.˛2//;

up to multiplication by a unit in ZŒK.X;Y /�. Here ˛ 2 A.X /, ˛1 2 A.Z1/ and
˛2 2A.Z2/ are related by inclusion-induced multiplication as before.

To understand the term “RY –sesquilinear,” observe that RY DZŒH 1.Y /� is equipped
with an involution r 7! xr induced by h 7! �h in H 1.Y /. To say that the pairing in
the theorem is sesquilinear means that

.g�; �/D g.�; �/D .�; xg�/

for g 2RY , � 2HF�red.Y; sIMZ1
/ and � 2HF�red.�Y; sIMZ2

/.

We note that the reason for the assumption bC.Z/ � 1 in the theorem above is that
this condition guarantees that the homomorphism in HF� induced by Z nB4 (which
gives rise to the relative invariant ‰Z;s above) takes values in the reduced Floer
homology HF�red.Y; sIMZ /�HF�.Y; sIMZ /. That fact in turn is necessary to make
sense of the pairing .�; �/. In the notation of later sections, .�; �/ D h��1.�/; �i where
� W HFC!HF� is the natural map; � is invertible only on the reduced groups.

The utility of Theorem 1.5 is limited somewhat by the difficulty of determining the
relative invariants ‰Z;s in general. Furthermore, in the case of a fiber sum it is natural
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to hope to relate the relative invariants of the complement of the neighborhood †�D2

of the summing surface in M to the absolute invariants of M ; however the manifold
†�D2 has bC D 0 and it is not clear that the relative invariant is well-defined. This
issue is addressed by the introduction of a “perturbation.”

1.3 Perturbed Heegaard Floer theory and results when bC � 1

Let Y be a closed oriented 3–manifold and � 2H 2.Y IR/ a given cohomology class.
The Novikov ring associated to � is the set of formal series

RY;� D

� X
g2H 1.Y IZ/

ag �g j ag 2 Z

�
� ZŒŒH 1.Y IZ/��

subject to the condition that for each N 2Z, the set of g 2H 1.Y IZ/ with ag nonzero
and hg[�; ŒY �i<N is finite. This means RY;� consists of “semi-infinite” series with
variables in H 1.Y IZ/, with the usual convolution product.

In Section 8 below, we develop the theory of Heegaard Floer homology for 3–manifolds
Y and 4–dimensional cobordisms W equipped with 2–dimensional cohomology
classes �, having coefficients in a module M� over RY;� . We refer to this theory
as Heegaard Floer homology perturbed by �. Many features of the unperturbed
theory carry over to this setting with minimal modification, but one key simplification
is that if � is chosen “generically” in a suitable sense (in particular � ¤ 0), then
HF1.Y; sIM�/D 0 for any RY;�–module M� . In fact, one can arrange this latter
fact to hold for any nonzero perturbation � by a further extension of coefficients:
Heegaard Floer homology is naturally a module over a polynomial ring ZŒU �, and
we form a “U –completion” by extension to the power series ring ZŒŒU ��. The U –
completed Floer homology is written HF�.Y; sIM�/ by notational analogy with a
similar construction in monopole Floer homology (see Kronheimer and Mrowka [4]).
The vanishing of HF1� .Y; sIM�/ means that HF�� .Y; sIM�/DHF�red.Y; sIM�/

for all such M� , and allows us to define a relative invariant

‰Z;s;� 2HF�red.Y; sIMZ;�/

that has the desired properties so long as �jY ¤ 0. Note, however, that ‰Z;s;� is
defined only up to sign and multiplication by an element of H 1.Y /. We remark that if
�jY D 0 then RY;� DRY , and we recover the unperturbed theory.

Now suppose that X is a closed 4–manifold, Y �X a separating submanifold, and
� 2H 2.X IR/ a cohomology class such that either �jY ¤ 0, or in the decomposition
X DZ1[Y Z2 we have bC.Zi/�1. (Such a submanifold Y is said to be an allowable
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cut for �.) Then we can define the perturbed Ozsváth–Szabó invariant associated to
X , Y , �, and a spinc structure s to be

(3) OX ;Y;�;s.˛/D h�
�1.‰Z1;�;s.˛1//; ‰Z2;�;s.˛2/i:

This invariant takes values in a module MX ;Y;� , which is a suitable Novikov completion
of MX ;Y introduced previously. In Section 8 we show (Theorem 8.17) that if bC.X /�2

then OX ;Y;�;s is in fact a polynomial lying in MX ;Y , whose coefficients are the Ozsváth–
Szabó invariants of X in the various spinc structures having restrictions to Z1 and
Z2 that agree with the restrictions of s. The precise statement is the following:

Theorem 1.6 Let X be a closed oriented 4–manifold with bC.X /� 2, and Y �X

a connected submanifold determining a decomposition X D Z1 [Y Z2 , where Zi

are 4–manifolds with boundary. Fix a class � 2 H 2.X IR/, and assume that Y is
an allowable cut for �. If bC.Z1/ and bC.Z2/ are not both 0, then for any spinc

structure s on X and element ˛ 2A.X /,

(4)
X

t2K.X ;Y /

ˆX ;sCt .˛/e
t
DOX ;Y;�;s.˛/D h�

�1‰Z1;�;s.˛1/; ‰Z2;�;s.˛2/i

up to sign and multiplication by an element of K.X;Y /, where ˛1˝˛2 7! ˛ as before.
If bC.Z1/D bC.Z2/D 0 then the same is true after possibly replacing � by another
class z�, where z�jZi

D �jZi
for i D 1; 2.

The above definition (3) of OX ;Y;�;s makes sense for any allowable pair .Y; �/ and spinc

structure s, but its dependence on the choice of .Y; �/ is not clear. When bC.X /� 2

it follows from Theorem 1.6 that since ˆX ;s is independent of Y and �, so is OX ;Y;�;s .
However when bC.X /D 1 the situation is not so simple; indeed, different choices of
.Y; �/ for a given .X; s/ can lead to different results. This situation is analogous to the
chamber structure of Seiberg–Witten invariants for 4–manifolds with bC D 1; partial
results in this direction are given in Section 8.

Note that the existence of a separating 3–manifold Y � X and a class � 2H 2.X;R/
restricting nontrivially to Y implies that X is indefinite, in particular bC.X /� 1.

We also point out a minor difference between Theorem 1.1 and Theorem 1.4 from the
first section, and Theorem 1.6 above and Theorem 1.8 and Theorem 1.9 below. In the
former results, the various spinc structures are labeled by their Chern classes, while
in the latter they are identified in an affine way with two-dimensional cohomology
classes. Thus the results in the present situation do not lose information corresponding
to classes whose difference is of order 2, and to translate from results in this subsection
to those in the first one we must square the variables.
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An immediate consequence of Theorem 1.6 is the following result on the Ozsváth–
Szabó invariants of a manifold obtained by gluing two 4–manifolds along a boundary
3–torus. To state it, note first that if Z is a 4–manifold with boundary diffeomorphic to
T 3 and � 2H 2.ZIR/ is a class whose restriction to T 3 is nontrivial then the relative
invariant ‰Z;s;� is well-defined, and takes values in the ring K.Z; �/ � ZŒŒK.Z/��,
where K.Z/ D ker.H 2.Z; @Z/! H 2.Z// and K.Z; �/ is a Novikov completion
of the group ring ZŒK.Z/�. (If bC.Z/ � 1 then ‰Z;s;� lies in ZŒK.Z/�.) Indeed,
K.Z; �/ is precisely the perturbed Floer homology of T 3 in the appropriate coefficient
system. Note that K.Z; �/ can be identified with a multivariable Laurent series ring,
which is polynomial in variables that pair trivially with � (and some variables may
have finite order, if there is torsion in the cokernel of H 1.Z/!H 1.@Z/).

If X DZ1[Z2 is obtained by gluing two 4–manifolds Z1 and Z2 with boundary
T 3 , and � 2H 2.X IR/ restricts nontrivially to the splitting 3–torus, then the pairing
appearing in (4) is naturally identified with a multiplication map

K.Z1; �/˝K.Z2; �/
�- MX ;T 3;� � ZŒŒH 2.X IZ/��

induced by the maps j �i W H
2.Zi ; @Zi/ ! H 2.X / Poincaré dual to the inclusion

homomorphisms. Thus Theorem 1.6 gives:

Corollary 1.7 Let X D Z1 [@ Z2 be a 4–manifold obtained as the union of two
manifolds Z1 and Z2 whose boundary is diffeomorphic to the 3–torus T 3 , � 2
H 2.X IR/ a class restricting nontrivially to T 3 , and s a spinc structure on X . Then

OX ;T 3;s;� D j �1 .‰Z1;�;s/ j �2 .‰Z2;�;s/:

In particular if bC.X /� 2 thenX
k2ıH 1.T 3/

ˆX ;sCk ek
D j �1 .‰Z1;�;s/ j �2 .‰Z2;�;s/

up to sign and translation by an element of ıH 1.T 3/, where ıW H 1.T 3/!H 2.X / is
the Mayer–Vietoris coboundary.

We deduce the fiber sum formulae in Theorem 1.1 and Theorem 1.4 from the following
somewhat more general results, which apply in particular to the situation in which M1 ,
M2 , and/or X have bC D 1. In each case, the perturbed invariants OMi ;†�S1 take
values in MMi ;†�S1;� , which is isomorphic to the ring L.t/ of Laurent series in the
variable t corresponding to the Poincaré dual of the surface †. Each of the following
is obtained by an application of (3), combined with knowledge of the relative invariants
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of manifolds of the form †�D2 . In particular, Theorem 1.8 follows quickly from the
fact that up to multiplication by ˙tn ,

‰T 2�D2;�;s D
1

t � 1

where s is the spinc structure with trivial first Chern class and � 2H 2.T 2 �D2IR/
has

R
T 2 � > 0 (Proposition 10.3). Note that this implies that the complement Z of a

torus of square 0 in a closed 4–manifold M has relative invariant satisfying

�.‰Z;�;s/D .t � 1/OM;T 3;�;s;

where � is a class as above. To understand the homomorphism �W K.Z; �/! L.t/,
recall that K.Z; �/ can be identified with a Laurent series ring in variables generating
K.Z/ Š H 1.@Z/=H 1.Z/. Since � is defined on M (in particular � extends from
@Z D T 3 to T 2 �D2 ), its restriction to T 3 is a multiple of the Poincaré dual of
the meridian circle pt�D2 . Thus we can choose generators for K.Z/ in such a way
that �[ t is nonzero, while � pairs trivially with the other generators. Then there
is a well-defined homomorphism �W K.Z; �/! L.t/ that corresponds to setting the
variables other than t equal to 1 (for more detail on homomorphisms between Novikov
rings see Section 8.1; this particular case is considered in Section 10, specifically
Equation (32)).

Theorem 1.8 Let X D M1#T1DT2
M2 be the fiber sum of two 4–manifolds M1 ,

M2 along tori T1 , T2 of square 0. Assume that there exist classes �i 2H 2.Mi IR/,
i D 1; 2, such that the restrictions of �i to Ti �S1 �Mi correspond under the gluing
diffeomorphism f W T1�S1!T2�S1 , and assume that

R
Ti
�i > 0. Let �2H 2.X IR/

be a class whose restrictions to Zi DMi n.Ti�D2/ agree with those of �i , and choose
spinc structures si 2 Spinc.Mi/, s2 Spinc.X / whose restrictions correspond similarly.
Then for any ˛2A.X /, the image of ˛1˝˛2 under the map A.Z1/˝A.Z2/!A.X /,
we have

�.OX ;T�S1;�;s.˛//D .t
1=2
� t�1=2/2OM1;T1�S1;�1;s1

.˛1/ �OM2;T2�S1;�2;s2
.˛2/

up to multiplication by ˙tn .

In the higher-genus case we have the following.

Theorem 1.9 Let X DM1#†1D†2
M2 be the fiber sum of two 4–manifolds M1 , M2

along surfaces †1 , †2 of genus g > 1 and square 0. Let �1 , �2 , � be 2–dimensional
cohomology classes satisfying conditions analogous to those in the previous theorem,
and choose spinc structures s1 , s2 , and s restricting compatibly as before. If the
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Chern classes of each spinc structure restrict to †�S1 as a class other than 2k PDŒS1�

with jkj � g� 1 then the Ozsváth–Szabó invariants of all manifolds involved vanish.
Otherwise, writing f for the gluing map †1 �S1!†2 �S1 , we have

�.OX ;†�S1;�;s.˛//

D

X
ˇ

OM1;†1�S1;�1;s1
.˛1˝ˇ/ �OM2;†2�S1;�2;s2

.˛2˝f�.ˇ
ı// �uˇ;k

up to multiplication by ˙tn .

In this theorem, fˇg is a basis for H�.Symd†/, d D g� 1� jkj, as before, and uˇ;k
is a polynomial in t with constant coefficient 1, which is equal to 1 except possibly if
k D 0.

The maps �WMX ;†�S1;� ! L.t/ appearing in Theorem 1.8 and Theorem 1.9 are
“change of coefficient” homomorphisms as before, defined in (32) below.

1.4 Examples

1.4.1 Elliptic surfaces For n�1, let E.n/ denote the smooth 4–manifold underlying
a simply connected minimal elliptic surface with no multiple fibers and holomorphic
Euler characteristic n. In [13], Ozsváth and Szabó calculated that OSE.2/D1, meaning
that ˆE.2/;s is trivial on all spinc structures s with c1.s/¤ 0, while if c1.s/D 0 then
ˆE.2/;s D 1. We infer a posteriori that E.2/ has simple type.

In general, we have that E.n/ is diffeomorphic to the fiber sum of n copies of the
rational elliptic surface E.1/DCP2# 9CP2 , summed along copies of the torus fiber
F of the elliptic fibration, using the fibration structure to identify neighborhoods of
the fibers. From Theorem 1.8 we infer that the perturbed Ozsváth–Szabó invariant of
E.1/, calculated with respect to the splitting along the boundary of a neighborhood of
F and using a spinc structure whose Chern class restricts trivially to the complement
of F , is given by the Laurent series .t � 1/�1 , up to multiplication by ˙tn . For other
spinc structures the perturbed invariant vanishes.

It is straightforward to deduce from this and Theorem 1.4 that for n� 2,

OSE.n/ D .T �T �1/n�2;

where T is the class Poincaré dual to a regular fiber. In fact, Theorem 1.4 gives this after
summing over rim tori using the homomorphism � on the left hand side. Arguments
based on the adjunction inequality [15, Theorem 1.5], familiar from Seiberg–Witten
theory [2], show that only multiples of T can contribute to OSE.n/ and therefore
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application of � is unnecessary. Likewise, the only ambiguity remaining in the formula
above is an overall sign; the conjugation-invariance of ˆX ;s when bC.X / � 2 due
to Ozsváth and Szabó [15, Theorem 3.6] shows that OSE.n/ must be a symmetric
polynomial.

1.4.2 Higher-genus sums The elliptic surface E.n/ can be realized as the double
branched cover of S2 � S2 , branched along a surface obtained by smoothing the
union of 4 parallel copies of S2 � fptg and 2n copies of fptg �S2 . The projection
�1W S

2 � S2 ! S2 to the first factor lifts to an elliptic fibration on E.n/, while
projection �2 on the second factor realizes E.n/ as a fibration with typical fiber a
surface † of genus n�1, which can be perturbed to be a Lefschetz fibration if desired.
Note that † intersects the fiber F of the elliptic fibration in two (positive) points. Let
XnDE.n/#†E.n/ denote the fiber sum of two copies of E.n/ along †, and suppose
n� 3. We wish to use Theorem 1.1 to calculate the Ozsváth–Szabó invariants of Xn .

A useful observation is that E.n/ has simple type by the example above. Corollary
1.2 then shows that we can have a nontrivial contribution to �.OSXn

/ only when
jkj Dg�1, ie, from spinc structures s with jhc1.s/; Œ†�ijD 2g�2D 2n�4. From the
preceding example and the fact that Œ†�:ŒF �D 2, the right-hand side of (1) in the case
jkj D g� 1 is equal to ˙1, being the product of the invariants arising from T˙.n�2/ .
Since T˙.n�2/ is equal (up to sign) to the first Chern class c1.E.n//, a convenient way
to express these conclusions is that OSXn

D˙K˙K�1 , where K is the canonical
class on Xn . This formula is true after summing over rim tori.

Note that Xn is diffeomorphic to a minimal complex surface of general type, and
therefore this calculation agrees with the corresponding one in Seiberg–Witten theory;
see Witten [22].

1.5 Organization

The first goal of the paper is to set up enough machinery for the proof of Theorem
1.5. To this end, the next section recalls the definition of Heegaard Floer homology
with twisted coefficients from [12] and the corresponding constructions associated to
4–dimensional cobordisms in [15]. Section 3 discusses a refinement of the relative
grading on Heegaard Floer homology, available with twisted coefficients. Sections 4,
5 and 6 extend other algebraic features of Heegaard Floer homology to the twisted-
coefficient setting, including the pairing mentioned in Theorem 1.5 and the action
on Floer homology by H1.Y IZ/=tors which is useful in later calculations. With
this machinery in place, Section 7 proves Theorem 1.5. Section 8 defines perturbed
Heegaard Floer theory, and deals with the extension of many of the results in preceding
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sections to that case; in particular Theorem 1.6. After making the necessary Floer
homology calculations in Section 9, Section 10 gives the proofs of Theorem 1.8 and
Theorem 1.9, and thence Theorem 1.1 and Theorem 1.4. We conclude with some
remarks on manifolds of simple type in Section 11.

Acknowledgements S Jabuka was supported by NSF grant DMS 0709625.

2 Preliminaries on twisted coefficients

2.1 Definitions

We briefly recall the construction of the Heegaard Floer homology groups with “twisted”
coefficients. For more details, the reader is referred to Ozsváth–Szabó [12; 11].
To a closed oriented 3–manifold Y we can associate a pointed Heegaard diagram
.†; ˛; ˇ ; z/ where † is a surface of genus g � 1 and ˛ D ˛1; : : : ; ˛g and ˇ D
ˇ1; : : : ; ˇg are sets of attaching circles for the two handlebodies in the Heegaard
decomposition. We consider intersection points between the g–dimensional tori
T˛ D ˛1 � � � � � ˛g and Tˇ D ˇ1 � � � � � ˇg in the symmetric power Symg.†/,
which we assume intersect transversely. Recall that the basepoint z , chosen away from
the ˛i and ˇi , gives rise to a map sz W T˛ \Tˇ! Spinc.Y /. Given a spinc structure
s on Y , and under suitable admissibility hypotheses on the Heegaard diagram, the
generators for the Heegaard Floer chain complex CF1.Y; s/ are pairs Œx; i � where
i 2 Z and x 2 T˛ \Tˇ satisfies sz.x/D s.

The differential in CF1 counts certain maps uW D2! Symg.†/ of the unit disk in
C that connect pairs of intersection points x and y. That is to say, we consider maps
u satisfying the boundary conditions:

u.ei� / 2 T˛ for cos � � 0 u.i/D y

u.ei� / 2 Tˇ for cos � � 0 u.�i/D x:

For g > 2 we let �2.x; y/ denote the set of homotopy classes of such maps; for
g D 2 we let �2.x; y/ be the quotient of the set of such homotopy classes by a further
equivalence, the details of which need not concern us (see Ozsváth–Szabó [12]).

There is a topological obstruction to the existence of any such disk connecting x and y,
denoted �.x; y/ 2H1.Y IZ/. To any homotopy class � 2 �2.x; y/ we can associate the
quantity nz.�/, being the algebraic intersection number between � and the subvariety
fzg �Symg�1.†/. The following is a basic fact in Heegaard Floer theory:
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Proposition 2.1 [12, Proposition 2.15] Suppose g > 1 and let x; y 2 T˛ \ Tˇ .
If �.x; y/ ¤ 0 then �2.x; y/ is empty, while if �.x; y/ D 0 then there is an affine
isomorphism

�2.x; y/D Z˚H 1.Y IZ/;

such that the projection �2.x; y/! Z is given by the map nz .

We remark that if xD y, then the isomorphism in the above proposition is natural (not
merely affine).

There is a natural “splicing” of homotopy classes

�2.x; y/��2.y; z/! �2.x; z/;

as well as an action

� 02.Symg.†g//��2.x; y/! �2.x; y/;

where � 0
2

denotes the second homotopy group divided by the action of the fundamental
group. (For g > 1, � 0

2
.Symg.†g// Š Z, generated by a class S with nz.S/ D 1.

When g > 2, � 0
2
.Symg.†g// D �2.Symg.†g//.) The isomorphism in the above

proposition is affine in the sense that it respects the splicing action by �2.x; x/, under
the natural identification �2.x; x/D Z˚H 1.Y /.

The ordinary “untwisted” version of Heegaard Floer homology takes CF1 to be
generated (over Z) by pairs Œx; i � as above, equipped with a boundary map such that
the coefficient of Œy; j � in the boundary of Œx; i � is the number of pseudo-holomorphic
maps in all homotopy classes � 2 �2.x; y/ having moduli spaces of formal dimension
1 and nz.�/D i � j . The twisted version is similar, but where one keeps track of all
possible homotopy data associated to � . In light of the above proposition, this means
that we should form a chain complex freely generated by intersection points x as a
module over the group ring of Z˚H 1.Y /, or equivalently by pairs Œx; i � over the
group ring of H 1.Y /. Following [11, Section 8.1], we define:

Definition 2.2 An additive assignment for the diagram .†; ˛; ˇ ; z/ is a collection of
functions

Ax;yW �2.x; y/!H 1.Y IZ/

that satisfies the following:

(1) Ax;z.� � /DAx;y.�/CAy;z. / whenever � 2 �2.x; y/ and  2 �2.y; z/.

(2) Ax;y.S ��/DAx;y.�/ for S 2 � 0
2
.Symg.†g//.
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We will drop the subscripts from Ax;y whenever possible. It is shown in [11] how
a certain finite set of choices (a “complete set of paths”) gives rise to an additive
assignment in the above sense. We can also assume that Ax;xW �2.x; x/ŠZ˚H 1.Y /!

H 1.Y / is the natural projection on the second factor.

Definition 2.3 Let .†; ˛; ˇ ; z/ be a pointed Heegaard diagram for Y and s 2

Spinc.Y /. Fix an additive assignment A for the diagram. The twisted Heegaard Floer
chain complex CF1.Y; sIZŒH 1.Y /�/ is the module freely generated over ZŒH 1.Y /�

by pairs Œx; i �, with differential @1 given by

@1Œx; i �D
X

y2T˛\Tˇ

X
�2�2.x;y/
�.�/D1

# �M.�/ � eA.�/Œy; i � nz.�/�;

where the symbol eA.�/ indicates the variable in ZŒH 1.Y /� corresponding to A.�/.

Here M.�/ denotes the space of holomorphic disks in the homotopy class � , where
“holomorphic” is defined relative to an appropriately generic path of almost-complex
structure on Symg.†g/. For such a path, M.�/ is a smooth manifold of dimension
given by a Maslov index �.�/. There is an action of R on M.�/ by reparametrization
of the disk, and �M.�/ denotes the quotient of M.�/ by this action. When �.�/D 1,�M.�/ is a compact, zero-dimensional manifold. An appropriate choice of “coherent
orientation system” serves to orient the points of �M.�/ in this case, and # �M.�/

denotes the signed count of these points. It is shown in [12; 11] that under appropriate
admissibility hypotheses on the diagram .†; ˛; ˇ ; z/ the chain homotopy type of
CF1.Y; sIZŒH 1.Y /�/ is an invariant of .Y; s/.

As in the introduction, in much of what follows we will write RY for the ring ZŒH 1.Y /�,
or simply R when the underlying 3–manifold is apparent from context. Note that by
choosing a basis for H 1.Y / we can identify R with the ring of Laurent polynomials
in b1.Y / variables.

By following the usual constructions of Heegaard Floer homology, we obtain other
variants of the above with coefficients in RY : namely by considering only generators
Œx; i � with i < 0 we obtain a subcomplex CF�.Y; sIR/ whose quotient complex is
CFC.Y; sIR/, with associated homology groups HF� and HFC respectively. There
is an action U W Œx; i � 7! Œx; i � 1� on CF1 as usual; the kernel of the induced action
on CFC is written bCF with homology bHF .Y; sIR/. There is a relative grading on
the Floer complex with respect to which U decreases degree by 2; we will discuss
gradings further in Section 3.
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Given any module M for RY we can form Heegaard Floer homology with coefficients
in M by taking the homology of the complex CF ˝R M . In particular if M D Z,
equipped with the action of RY by which every element of H 1.Y / acts as the identity,
we recover the ordinary untwisted theory.

For use in later sections, we introduce the following notion of conjugation of RY –
modules. First, observe that the automorphism x 7! �x of H 1.Y / induces an auto-
morphism RY !RY that we refer to as conjugation, and write as r 7! xr for r 2RY .
Now if M is a module for RY , we let SM denote the additive group M equipped with
the “conjugate” module structure in which module multiplication is given by

r ˝m 7! xr �m

for r 2RY and m 2 SM .

2.2 Twisted cobordism invariants

We now sketch the construction and main properties of twisted-coefficient Heegaard
Floer invariants associated to cobordisms, which can be found in greater detail in [15].
Recall that if W W Y1!Y2 is an oriented 4–dimensional cobordism and M is a module
for R1 WDRY1

DZŒH 1.Y1/�, then there is an induced module M.W / for R2 DRY2

defined as follows. Let

K.W /D ker.H 2.W; @W /!H 2.W //

be the kernel of the map in the long exact sequence for the pair .W; @W /: then ZŒK.W /�

is a module for R1 and R2 via the coboundary maps H 1.Yi/!K.W /�H 2.W; @W /.
Define

M.W /D SM ˝R1
ZŒK.W /�:

Then M.W / is a module for R2 in the obvious way. The reason for the appearance
of the conjugate module SM above has to do with the fact that the orientation of W

induces the opposite orientation on Y1 from the given one, and will be explained more
fully in the next section.

Ozsváth and Szabó show in [15] how to associate to a cobordism W as above with
spinc structure s a homomorphism

FıW ;sW HFı.Y1; s1IM /!HFı.Y2; s2IM.W //

(where si denotes the restriction of s to Yi , and ı indicates a map between each of
the varieties of Heegaard Floer homology, respecting the long exact sequences relating
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them). This is defined as a composition

FıW DEı ıH ı ıGı;

where Gı is associated to the 1–handles in W , H ı to the 2–handles, and Eı to the 3–
handles. Note that the coefficient module remains unchanged by cobordisms consisting
of 1– or 3–handle additions. Indeed, such cobordisms induce homomorphisms in
an essentially formal way, so we simply refer the reader to [15, Section 4.3] for the
definition of Eı and Gı .

Suppose that W is a cobordism consisting of 2–handle additions, so that we can think
of W as associated to surgery on a framed link L� Y1 . In this situation, Ozsváth and
Szabó construct a “Heegaard triple” .†; ˛; ˇ ;  ; z/ associated to W . This diagram
describes three 3–manifolds Y˛ˇ , Yˇ and Y˛ obtained by using the indicated circles
on † as attaching circles, such that

Y˛ˇ D Y1; Yˇ D #kS1
�S2; Y˛ D Y2;

where k is the genus of † minus the number of components of L. In fact the diagram
.†; ˛; ˇ ;  ; z/ describes a 4–manifold X˛ˇ in a natural way, whose boundaries are
the three manifolds above. Furthermore, in the current situation, X˛ˇ is obtained
from W by removing the regular neighborhood of a 1–complex (see [15, Proposition
4.3]).

We can arrange that the top-dimensional generator of

HF�0.Yˇ ; s0IZ/Šƒ
�H 1.Yˇ IZ/˝ZŒU �

is represented by an intersection point ‚2Tˇ\T (here s0 denotes the spinc structure
on #kS1 �S2 having c1.s0/D 0). The map Fı is defined by counting holomorphic
triangles, with the aid of another additive assignment. To describe this, suppose
x 2 T˛ \ Tˇ , y 2 Tˇ \ T , and w 2 T˛ \ T are intersection points arising from
a Heegaard triple .†; ˛; ˇ ;  ; z/. Let � denote a standard 2–simplex, and write
�2.x; y;w/ for the set of homotopy classes of maps uW �! Symg.†/ that send the
boundary arcs of � into T˛ , Tˇ , and T respectively, under a clockwise ordering of
the boundary arcs e˛ , eˇ , and e of �, and such that

u.e˛ \ eˇ/D x; u.eˇ \ e /D y; u.e˛ \ e /D w:

Again there is a topological obstruction �.x; y;w/ 2H1.X˛ˇ IZ/ that vanishes if and
only if �2.x; y;w/ is nonempty. The analogue of Proposition 2.1 in this context is the
following.
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Proposition 2.4 [12, Proposition 8.3] Let .†; ˛; ˇ ;  ; z/ be a pointed Heegaard
triple as above, and X˛ˇ the associated 4–manifold. Then whenever �.x; y;w/D 0

we have an (affine) isomorphism

�2.x; y;w/Š Z˚H2.X˛ˇ IZ/

where the projection to Z is given by  7! nz. /.

There is an obvious “splicing” action on homotopy classes of triangles by disks on
each corner; the above identification respects this action.

Recall from [12, Section 8.1] that the basepoint z gives rise to a map

sz W

a
x;y;w

�2.x; y;w/! Spinc.X˛ˇ /;

such that triangles  2 �2.x; y;w/ and  0 2 �2.x0; y0;w0/ have sz. / D sz. 
0/ if

and only if there exist disks �x 2 �2.x; x0/, �y 2 �2.y; y0/ and �w 2 �2.w;w0/ with
 0 D  C�xC�yC�w . In this case  and  0 are said to be spinc equivalent. Note
that in case .†; ˛; ˇ ;  ; z/ describes a 2–handle cobordism W as previously, we can
think of sz as a function

sz W

a
x;w
�2.x; ‚;w/! Spinc.W /:

Definition 2.5 An additive assignment for a Heegaard triple .†; ˛; ˇ ;  ; z/ describ-
ing a 2–handle cobordism W W Y1! Y2 as above is a function

AW W

a
s2Spinc.W /

s�1
z .s/!K.W /

obtained in the following manner. For a fixed  0 2 s�1
z .s/, let  D 0C�˛ˇC�ˇ C

�˛ be an arbitrary element of s�1
z .s/. Then set

AW . /D ı.�A1.�˛ˇ/CA2.�˛ //

where Ai are additive assignments for Yi and ı W H 1.@W /! H 2.W; @W / is the
coboundary from the long exact sequence of .W; @W /.

We are now in a position to define the map on Floer homology induced by W (given
additive assignments on Y1 , Y2 , and W ). We again refer to [15, Section 4] for the
details required to make full sense of the following.
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Definition 2.6 For a triple .†; ˛; ˇ ;  ; z/ describing a 2–handle cobordism W with
spinc structure s, we define

FıW ;sW HFı.Y1; s1IM /!HFı.Y2; s2IM.W //;

where si D sjYi
, to be the map induced on homology by the chain map

Œx; i � 7!
X

w2T˛\T

X
 2�2.x;‚;w/
�. /D0

#M. / � Œw; i � nz. /�˝ eAW . /:

Here �. / denotes the expected dimension of the moduli space M. / of pseudo-
holomorphic triangles in the homotopy class  , and #M. / indicates the signed count
of points in a compact oriented 0–dimensional manifold.

We should note that while the Floer homology HFı.Y; sIM / does not depend on
the additive assignment AY , the map FW ;s does depend on the choice of AW as in
Definition 2.5 through the reference triangle  0 . Changing this choice has the effect
of precomposing (postcomposing) FW with the action of an element of H 1.Y1/ (resp
H 1.Y2/), which in turn act in M.W / via the coboundary. Likewise the generator ‚
is determined only up to sign, so that FW has a sign indeterminacy as well. Following
[15], we let ŒFı

W ;s� denote the orbit of Fı
W ;s under the action of H 1.Y1/˚H 1.Y2/.

With the conventions employed here Fı
W ;s is “antilinear” with respect to the action of

RY1
, meaning that Fı

W ;s.r �/D xr Fı
W ;s.�/ for r 2RY1

.

2.3 Composition law

An advantage to using twisted coefficient modules for Heegaard Floer homology is the
availability of a refined composition law in this situation. To describe this, we must
first understand the behavior of the coefficient modules themselves under composition
of cobordisms. The following lemma will be useful in formulating results to come; as
usual, ordinary (co)homology is taken with integer coefficients.

Lemma 2.7 Let W DW1[Y1
W2 be the composition of two cobordisms W1W Y0!Y1

and W2W Y1! Y2 . Define

K.W;Y1/D kerŒ�1˚ �2W H
2.W; @W /!H 2.W1/˚H 2.W2/�;

where �i denotes the restriction map H 2.W; @W /!H 2.Wi/. Then

ZŒK.W1/�˝ZŒH 1.Y1/�
ZŒK.W2/�Š ZŒK.W;Y1/�

as modules over ZŒH 1.Y0/� and ZŒH 1.Y2/�.

Geometry & Topology, Volume 12 (2008)



Product formulae for Ozsváth–Szabó 4–manifold invariants 1577

Proof We have

ZŒK.W1/�˝ZŒH 1.Y1/�
ZŒK.W2/�Š Z

�
K.W1/˚K.W2/

H 1.Y1/

�
;

so the claim amounts to exhibiting an isomorphism

K.W1/˚K.W2/

H 1.Y1/
ŠK.W;Y1/:

To see this, consider the diagram

H 1.Y1/ - H 2.W1; @W1/˚H 2.W2; @W2/
f - H 2.W; @W /

H 2.W1/˚H 2.W2/;

�1˚�2

?

where the horizontal row is (the Poincaré dual of) the Mayer–Vietoris sequence. Write

i�W H
2.W1; @W1/!H 2.W; @W / and j�W H

2.W2; @W2/!H 2.W; @W /

for the components of f ; then it is not hard to see that

�1 ı i�W H
2.W1; @W1/!H 2.W1/ and �2 ı j�W H

2.W2; @W2/!H 2.W2/

agree with the maps induced by inclusion, while

�2 ı i� D 0 and �1 ı j� D 0:

From this it is easy to deduce that f �1.K.W;Y1//DK.W1/˚K.W2/, from which
the lemma follows.

Remark 2.8 If W is a cobordism between homology spheres, or more generally if
H 2.W; @W /!H 2.W / is an isomorphism, then there is an identification

K.W;Y1/D kerŒH 2.W /!H 2.W1/˚H 2.W2/�;

the kernel of the restriction map in the ordinary Mayer–Vietoris sequence in cohomol-
ogy. In this case if s1 and s2 are spinc structures on W1 and W2 , then K.W;Y1/

parametrizes spinc structures s on W such that sjWi
D si (when that set is nonempty).

In the case of a closed 4–manifold X , the module MX ;Y of the introduction is simply
ZŒK.W;Y /� where W is obtained from X by removing a 4–ball on each side of Y .

When regarding W as a single cobordism the group relevant to twisted coefficient
modules is K.W /, while if W DW1[W2 is viewed as a composite the coefficient
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modules change by tensor product with the group ring of K.W;Y1/ (in light of the
lemma above). By commutativity of the diagram

H 2.W; @W / - H 2.W /

H 2.W1/˚H 2.W2/;

?

�
1˚
�
2

-

there is a natural inclusion �W K.W /!K.W;Y1/. This gives rise to a projection map

…W ZŒK.W;Y1/�! ZŒK.W /�;

namely (cf [15, Section 3.1])

….ew/D

�
ew if w D �.v/ for some v
0 otherwise.

Equivalently, if we think of a group ring ZŒG� as a set of functions G! Z, then …
corresponds to the restriction of functions on K.W;Y1/ to K.W /.

Thus, if M is a module for ZŒH 1.Y0/� we obtain a map

…M W M.W1/.W2/!M.W /

by tensor product of the identity with … under the identifications

M.W1/.W2/D SM ˝ZŒH 1.Y0/�
ZŒK.W;Y1/�

M.W /D SM ˝ZŒH 1.Y0/�
ZŒK.W /�:and

The refined composition law for twisted coefficients can be stated as follows.

Theorem 2.9 [15, Theorem 3.9] Let W DW1[Y1
W2 be a composite cobordism as

above with spinc structure s. Write siD sjWi
. Then there are choices of representatives

for the various maps involved such that

ŒFıW ;s�D Œ…M ıFıW2;s2
ıFıW1;s1

�:

More generally, if h 2H 1.Y1/ then for these choices we have

ŒFıW ;s�ıh�D Œ…M ıFıW2;s2
ı eh
�FıW1;s1

�;

where ıh is the image of h under the Mayer–Vietoris coboundary H 1.Y1/!H 2.W /.
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We should also remark that for a cobordism W W Y1! Y2 with spinc structure s the
map

FıW ;sW HFı.Y1; s1IZ/!HFı.Y2; s2IZ/

in untwisted Floer homology can be obtained from the twisted-coefficient map

HFı.Y1; s1IZ/!HFı.Y2; s2IZ.W //

(here Z.W / is the module M.W / with M D Z, namely Z.W / D Z˝ZŒH 1.Y1/�

ZŒK.W /�DZŒker.H 2.W;Y2/!H 2.W //�) by composition with the map �� induced
in homology by the homomorphism

�W Z.W /! Z

of coefficient modules that sends each element of ker.H 2.W;Y2/!H 2.W // to 1.

3 Refined relative gradings

The Z–coefficient version of Heegaard Floer homology is naturally a relatively cycli-
cally graded theory, in general. This means that if S D fŒx; i � j sz.x/D sg denotes the
natural generating set for CF1.Y; sIZ/ then there is a map

grW S �S! Z=d.s/Z;

d.s/D gcdfhc1.s/; hi j h 2H2.Y IZ/gwhere

is the divisibility of c1.s/ (or by abuse of language, of s itself). The differential in
CF1 has degree �1 with respect to this grading, while the endomorphism U has
degree �2.

In the case of fully twisted coefficients (coefficients in ZŒH 1.Y /�), Ozsváth and Szabó
[11, Section 8] observe that there is a lift of this cyclic grading to a relative Z–grading.
Here we provide an extension of this construction to Floer homology with coefficients
in an arbitrary (graded) module M , in which elements of H 1.Y /�RY are explicitly
assigned nontrivial degrees depending on their Chern numbers. That the action of such
elements on fully-twisted Floer homology shifts degree by their Chern numbers is
implicit in the definition given in [11].

Definition 3.1 Fix a closed, oriented, spinc 3–manifold .Y; s/. Define the s–grading
of ZŒH 1.Y /� by

(5) grs.x/D�hc1.s/[x; ŒY �i for x 2H 1.Y /.
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The s–grading makes ZŒH 1.Y /� into a graded ring, isomorphic to a multivariable
Laurent polynomial ring in which the variables have degrees determined by their
negative Chern numbers (5). When thinking of ZŒH 1.Y /� as a graded ring, we write it
as RY;s or just RY . It is important to recognize that this grading depends on both the
spinc structure s and the orientation of Y , though we usually do not include s in the
notation. In particular, if �Y denotes the 3–manifold Y with its orientation reversed,
then although RY;s D R�Y;s as sets, the gradings have opposite sign. On the other
hand, the conjugation homomorphism cW r 7! xr induces an isomorphism of graded
rings cW RY;s!R�Y;s .

Definition 3.2 Let .†; ˛; ˇ ; z/ be a marked Heegaard triple describing the 3–mani-
fold Y . Fix a spinc structure s for Y and an additive assignment fAx;yg for the diagram.
The relative Z grading between generators Œx; i � and Œy; j � for CFı.Y; sIRY / is
defined by

(6) gr.Œx; i �; Œy; j �/D �.�/C 2.i � j /� 2nz.�/� hc1.s/[Ax;y.�/; ŒY �i;

where � is any element of �2.x; y/. More generally, if r1; r2 2RY are homogeneous
elements, then we set

gr.r1 � Œx; i �; r2 � Œy; j �/D gr.Œx; i �; Œy; j �/C grs.r1/� grs.r2/:

It is not hard to check that the expression (6) is independent of the choice of �2�2.x; y/,
and that the differential in CF1.Y; sIRY / has relative degree �1 with respect to the
above grading.

Now suppose M is a module for RY , which is equipped with a grading grM satisfying

grM .r �m/D grs.r/C grM .m/:(7)

(Here we suppose RY is equipped with the s–grading induced by some s2 Spinc.Y /.)
Then the twisted Floer complex CF.Y; sIM /DCF.Y; sIRY /˝RY

M naturally carries
a relative Z grading given by

gr.m1 Œx; i �;m2 Œy; j �/D gr.Œx; i �; Œy; j �/C grM .m1/� grM .m2/;

inducing a relative Z grading on the Floer homology with coefficients in M .

More generally, if (7) holds modulo some integer d 2 Z, we obtain a relative Z=dZ
grading on CF.Y; sIM /. For example, taking M D Z to be the trivial RY –module
supported in grading 0, we have for n 2 Z and r 2H 1.Y /,

grM .r � n/D grM .n/D 0 while grs.r/C grM .n/D�hc1.s/[ r; ŒY �i:
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Thus (7) holds modulo the divisibility d.s/ of s; in particular, the “untwisted” Floer
complex CF.Y; sIZ/ carries a relative cyclic grading by Z=d.s/Z.

In light of these observations, henceforth we will assume that all modules for RY are
graded, and often omit this assumption from statements. In particular, we will suppose
that (7) holds at least modulo some d 2 Z.

That the homology of CFı.Y; sIM / is an invariant of .Y; s/ follows by verifying
that the arguments in [12; 11] respect the grading described here, together with the
following.

Lemma 3.3 The chain complex CF1.Y; sIM /, equipped with the relative grading
defined above, is independent of the choice of additive assignment up to graded chain
isomorphism.

Proof Suppose A1 and A2 are two additive assignments satisfying the criteria at the
beginning of the previous section, and let f�x 2 �2.x0; x/g be a complete set of paths
for the spinc structure s. That is, x0 is a fixed intersection point with sz.x0/D s and
�x is some choice of homotopy class for each x 2 s�1

z .s/. Define a homomorphism
F W CF1.Y; s;A1/! CF1.Y; s;A2/ between the chain complexes constructed with
the two choices of assignment, by the formula

F.Œx; i �/D eA2.�x/�A1.�x/Œx; i �:

F.@1Œx; i �/D
X
y;�

#cM.�/Œy; i � nz.�/� e
A1.�/ eA2.�y/�A1.�y/;Then

@1F.Œx; i �/D
X
y;�

#cM.�/Œy; i � nz.�/� e
A2.�x/�A1.�x/ eA2.�/:while

Now, for i D 1; 2 and given � 2 �2.x; y/, we have �x � � D �y �P� for a periodic
domain P� 2 �2.y; y/ (up to addition of a multiple of the sphere class ŒS �, which does
not affect the value of the additive assignment). Therefore by additivity

(8) Ai.�x/CAi.�/DAi.�y/CH.P�/

where H.P�/ 2H 1.Y IZ/ is the cohomology class corresponding to P� . It follows
that the group ring elements appearing in the previous expressions are equal, so
that F is a chain map. Since F is clearly an isomorphism of RY –modules, we
get that CF1.Y; s;A1/ and CF1.Y; s;A2/ are isomorphic as ungraded RY –chain
complexes.
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To see invariance of the relative gradings, we calculate that

grA2
.F.Œx; i �/;F.Œy; j �//D grA2

.Œx; i �; Œy; j �/C grs.A2.�x/�A1.�x//

�grs.A2.�y/�A1.�y//

D �.�/C 2.i � j /� 2nz.�/� hc1.s/[A2.�/; ŒY �i

�hc1.s/[ .A2.�x/�A1.�x//; ŒY �i

Chc1.s/[ .A2.�y/�A1.�y//; ŒY �i

Applying the identity (8) twice, this easily reduces to grA1
.Œx; i �; Œy; j �/.

We now show that one can always work with relatively Z–graded Floer homology
(rather than groups with a finite cyclic grading) if the coefficient module and spinc

structure are induced by a cobordism from S3 to Y . To do so we spell out the notion
of a conjugate module in the current, graded, context. As usual, if Y is an oriented
3–manifold then �Y denotes the same manifold with the opposite orientation.

Definition 3.4 Suppose M is a graded RY –module. The conjugate module SM is
the graded R�Y module whose underlying graded group is the same as M , but whose
multiplication is given by

r ˝m 7! xr �m; r 2R�Y :

It is clear that if (7) is satisfied for M as a graded RY –module (modulo d ), then the
same is true for SM as a graded R�Y –module.

Proposition 3.5 Suppose W W S3! Y is an oriented cobordism with spinc structure
sW , and M.W / is the induced module for RY . Then M.W / carries a natural grading
induced by sW that is compatible with the s–grading on RY in the sense of (7), where
s is the restriction of sW to Y . In particular, HFı.Y; sIM.W // carries a relative Z
grading.

More generally, if W W Y1 ! Y2 is an oriented cobordism with spinc structure sW

whose restrictions to Y1 and Y2 are s1 and s2 respectively, and M is a module for RY1

satisfying (7) modulo d , then the induced module M.W / carries a grading induced by
sW also satisfying (7) modulo d .

Proof Observe first that since @W D�Y1 tY2 , we should most naturally consider
ZŒK.W /� as a module for R�Y1

and RY2
. Recall that M.W /D SM˝R�Y1

ZŒK.W /�,
where K.W /D ker.H 2.W; @W /!H 2.W //. Define grW W K.W /! Z by

grW .k/D�hc1.sW /[ k; ŒW; @W �i;
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and use this to impose a grading grW on ZŒK.W /�. We claim that this grading respects
the action by R�Y1

and RY2
, where the latter are equipped with gradings coming from

the restrictions of sW . To see this, it suffices to note that the actions of R�Y1
and RY2

on ZŒK.W /� are induced by the coboundary maps ıi W H 1.Yi/!K.W /, and that

c1.sW /[ ıir D ıi.j
�
i c1.sW /[ r/D ıi.c1.si/[ r/

where ji W Yi !W , i D 1; 2 are the inclusions of the boundary components. Hence
for r 2H 1.Y1/,

hc1.sW /[ ı1r; ŒW; @W �i D hc1.s1/[ r; Œ�Y1�i

and correspondingly for elements of H 1.Y2/.

4 Pairings and duality

In [15], Ozsváth and Szabó defined a pairing

h�; �iW HFC.Y; sIZ/˝HF�.�Y; sIZ/! Z

on Floer homology, with respect to which cobordism-induced maps satisfy a certain
duality. Here we extend this pairing to Floer homology with twisted coefficients and
prove a corresponding duality; throughout we use the ring RY and modules M that
are graded via some choice of spinc structure on Y as in the previous section.

Recall that if .†; ˛; ˇ ; z/ is a pointed Heegaard diagram for Y , then .�†; ˛; ˇ ; z/
describes the oppositely oriented manifold �Y , and the map sz is invariant under this
change of orientation.

Definition 4.1 Define a pairing

h�; �iW CF1.Y; sIRY /˝RY
CF1.�Y; sIR�Y / �!RY

as follows: for generators Œx; i � 2 CF1.Y; sIRY / and Œy; j � 2 CF1.�Y; sIR�Y / set

hŒx; i �; Œy; j �i D
�

1 if xD y and j D�i � 1

0 otherwise.

The desired pairing is obtained by extending by RY –linearity.

We must check that this definition has the desired properties:
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Lemma 4.2 For any � 2 CF1.Y; sIRY /, � 2 CF1.�Y; sIR�Y /, we have

h@1�; �i D h�; @1�i

hU �; �i D h�;U�i:

Proof This is much like the proof of the corresponding fact in untwisted Floer ho-
mology [15, Lemma 5.1], but we must be more careful with the coefficients. Observe
that composition with the reflection r W D2 ! D2 across the real axis gives a map
�2.x; y/ ! �2.y; x/ that exchanges J –holomorphic disks in Symg.†/ with �J –
holomorphic disks in Symg.�†/; in other words

M�†.� ı r/DM†.�/

for � 2 �2.x; y/.

Furthermore, if AY is an additive assignment for .†; ˛; ˇ ; z/ then we can think of
AY as also giving an additive assignment A�Y for .�†; ˛; ˇ ; z/. For � 2 �2.x; y/
we have that � � .� ı r/ is homotopic to a constant map, from which it follows that

A�Y .� ı r/D�AY .�/:

Since n†z .�/D n�†z .� ı r/, we have

@1Œy; j �D
X

�2�2.y;w/

# �M�†.�/Œw; j � n�†z .�/�˝ eA�Y .�/

D

X
z�2�2.w;y/

# �M�†.z� ı r/Œw; j � n�†z .z� ı r/�˝ eA�Y .z�ır/

D

X
z�2�2.w;y/

# �M†.z�/Œw; j � n†z .
z�/�˝ e�AY .z�/:

From this it follows (using the conjugate module structure on the second factor) that

hŒx; i �; @1Œy; j �i D
X

�2�2.x;y/
�†.�/D1

n†z .�/DiCjC1

# �M.�/eAY .�/

D h@1Œx; i �; Œy; j �i:

The first claim of the lemma follows from this, while the second is obvious.

Thus we obtain a pairing on homology

HFC.Y; sIRY /˝RY
HF�.�Y; sIR�Y / �!RY

Geometry & Topology, Volume 12 (2008)



Product formulae for Ozsváth–Szabó 4–manifold invariants 1585

that descends to the reduced homologies.

More generally, suppose M and N are (graded) modules for RY and R�Y , respec-
tively: we can extend the construction above to a pairing between HFC.Y; sIM / and
HF�.�Y; sIN /. To this end, define

h�; �iW CF1.Y; sIM /˝RY
CF1.�Y; sIN /!M ˝RY

xN

on generators by

hŒx; i �˝m; Œy; j �˝ ni D hŒx; i �; Œy; j �i �m˝ n;

where the pairing on the right is the universal one just defined. It follows from the
calculation above that the pairing descends to homology:

HFC.Y; sIM /˝RY
HF�.�Y; sIN / �!M ˝RY

xN :

We can now give the analogue for twisted coefficients of Theorem 3.5 of [15].

Theorem 4.3 (Duality for twisted coefficients) Let W W Y1 ! Y2 be a cobordism
and M1 and M2 coefficient modules for RY1

and R�Y2
respectively. Write W 0

for the manifold W regarded as a cobordism �Y2 ! �Y1 , and let s be a spinc

structure on W with restrictions si D sjYi
. Then for any � 2HFC.Y1; s1IM1/ and

� 2HF�.�Y2; s2IM2/, we have

hFC
W ;s.�/; �i D h�;F

�
W 0;s.�/i:

Observe that the two pairings in the theorem above take values in

M1.W /˝RY2

SM2 D
SM1˝R�Y1

ZŒK.W /�˝RY2

SM2

(for the left hand side) and

M1˝RY1
M2.W /DM1˝RY1

ZŒK.W /�˝RY2

SM2DM1˝RY1
ZŒK.W /�˝R�Y2

M2;

(for the right). Thus the two target groups are identical (with conjugate module
structures), and the equality of the theorem makes sense.

Proof We adapt the proof from [15]. Decompose W into a composition of 1–handle
additions, followed by 2–handles and then 3–handles. The verification of duality for
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1– and 3–handle cobordisms is unchanged from the untwisted case given in [15], so
we omit it here.

Assume, then, that W is a cobordism comprised entirely of 2–handle additions. Let R

denote the reflection of the standard 2–simplex � that fixes one corner and exchanges
the other two. Specifically, if the edges are labeled e˛ , eˇ and e , we take R to
exchange eˇ and e while reversing e˛ . If AW is an additive assignment for a
Heegaard triple .†; ˛; ˇ ;  ; z/ associated to W as in Definition 2.5 (using a base
triangle  0 ), then we obtain an additive assignment AW 0 for W 0 (described by the
triple .�†; ˛;  ; ˇ ; z/) from the triangle  0 ıR.

More generally, for any (homotopy class of) triangle  2 �2.x; y;w/, precomposition
with R gives a triangle  ıR 2 �2.w; y; x/. Moreover, if  D 0C�˛ˇC�ˇ C�˛
then it is easy to see that

 ıRD  0 ıRC .�˛ ı r/C�ˇC .�˛ˇ ı r/;

where r is the reflection across the real axis used previously. Therefore

AW 0. ıR/D ı.�A�Y2
.�˛ ı r/CA�Y1

.�˛ˇ ı r//DAW . /

(cf the proof of Lemma 4.2). Furthermore, just as in the case of disks we have an
identification

M�†. ıR/DM†. /:

Thus for mi 2Mi :

hFW ;s.Œx; i �m1/; Œw; k�m2i D

� X
v2T˛\T
 2�2.x;‚;v/

#M†. / � Œv; i � nz. /�m1˝ eAW . /;

Œw; k�m2

�
D

X
 2�2.x;‚;w/

n†z . /DiCkC1

#M†. / � .m1˝ eAW . //˝m2;

an element of M1.W /˝ SM2 (where all sums are over triangles with Maslov index 0).
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On the other hand, in M1˝M2.W /.

hŒx; i �m1;FW 0;s.Œw; k�m2/i D

�
Œx; i �m1;X
v2T˛\Tˇ
z 2�2.w;‚;v/

#M�†. z / � Œv; k � nz. z /�m2˝ eAW 0 .
z /

�

D

X
z 2�2.w;‚;x/

n�†z . z /DiCkC1

#M�†. z / �m1˝ .m2˝ eAW 0 .
z //

D

X
 2�2.x;‚;w/

n†z . /DiCkC1

#M�†. ıR/ �m1˝ .m2˝ eAW 0 . ıR//

D

X
 2�2.x;‚;w/

n†z . /DiCkC1

#M†. / �m1˝ .m2˝ eAW . //

5 Action of first homology

In this section we extend to twisted coefficients an additional aspect of the algebraic
structure of Heegaard Floer homology, namely the action of ƒ�.H1.Y /=tors/ on
HFı.Y; s/. We also discuss the interaction of this structure with cobordism-induced
homomorphisms. Much of this section is a straightforward generalization of material
from [12; 11; 15], so we omit many of the details.

Proposition 5.1 Fix an oriented spinc 3–manifold .Y; s/ and a module M for RY D

ZŒH 1.Y /�. Then for any h 2 H1.Y /=tors there is a chain endomorphism Ah of
CF1.Y; sIM / of degree �1, equivariant with respect to U and the RY action, with
the property that Ah ıAh is chain homotopic to 0.

Thus, the collection of maps Ah provides HFı.Y; sIM / with the structure of a module
over RY ŒU �˝ƒ

�.H1.Y /=tors/.

Proof For a generator Œx; i �˝m 2 CF1.Y; sIM / we set

Ah.Œx; i �˝m/D
X

y2T˛\Tˇ

X
� 2 �2.x; y/

�.�/D 1

# cM.�/hA.�/; hi � Œy; i � nz.�/�˝ eA.�/
�m:
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Then the proof that Ah is a chain map whose square is trivial in homology is virtually
identical to the proof in the untwisted case (cf Proposition 4.17 of [12]), and it is
straightforward to check that the action of Ah on homology is independent of the
choice of additive assignment A (cf the proof of Lemma 3.3).

We will omit the map Ah from the notation and simply write h:� for the action of h

on the element � 2HFı.Y; sIM /.

Remark 5.2 Though the action of H1.Y /=tors is defined for Floer homology with
any coefficients, it may be largely trivial. Indeed, suppose M is an RY –module, and
let ZM �H 1.Y / denote the stabilizer of M : that is, the set of all ˛ 2H 1.Y / such
that ˛mDm for all m 2M . Then it can be shown that if h 2H1.Y / has the property
that

h˛; hi D 0 for all ˛ 2ZM ,

then Ah is chain homotopic to 0. In particular, this implies that the H1.Y /=tors action
on the fully twisted homology HFı.Y; sIRY / is trivial.

Lemma 5.3 Let .Y; s/ be as above, and let M and N be modules for RY and
R�Y respectively. Then for any h 2 H1.Y /=tors, any � 2 HFC.Y; sIM / and any
� 2HF�.�Y; sIN / we have

hh:�; �i D �h�; h:�i:

Proof This follows from a calculation very similar to the one in Lemma 4.2. Indeed,
the only difference is the appearance of the factors hA.�/; hi, which change sign under
orientation reversal.

We now extend the twisted cobordism invariants from the previous section to include
the action of first homology. Specifically, for a cobordism W W Y0! Y1 we wish to
define FW ;s as a map

(9) FıW ;sW HFı.Y0; s0IM /˝ƒ�H1.W /=tors �!HFı.Y1; s1IM.W //:

With the preceding in place the definition runs precisely as in the untwisted case in [15];
we summarize the construction.

Suppose first that W W Y0! Y1 is a cobordism consisting only of 2–handle additions.
Then it is easy to see that the map

i� D i0�� i1�W H1.Y0/=tors˚H1.Y1/=tors!H1.W /=tors
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is surjective. Fix h2H1.W /=tors and suppose hD i�.h0; h1/. For �2HFı.Y0;s0IM /,
we set

(10) FıW ;s.�˝ h/D FıW ;s.h0:�/� h1:F
ı
W ;s.�/:

Clearly Fı
W ;s..�˝ h/˝ h/D 0, so the action extends to ƒ�H1.W /=tors.

In fact, we can define this action using a Heegaard triple .†; ˛; ˇ ;  ; z/ describing
the cobordism, just as in Lemma 2.6 of [15]. It follows as in that proof that the action
of pairs .h0; h1/ in the image of H2.W; @W;Z/ is trivial, so the action descends as
claimed to H1.W /=tors.

In general for a cobordism containing 1–, 2– and 3–handles we write the induced
homomorphism as a composition Fı

W
DEı ıH ı ıGı as in Section 2.2. This com-

position corresponds to a factorization W D W1 [W2 [W3 where Wi includes
only handles of index i . As observed in [15], the inclusion induces an isomorphism
H1.W2/!H1.W /; thus for ! 2ƒ�H1.W /=tors we set

FıW .�˝!/DEı.H ı.Gı.�/˝!//

just as in [15].

Many properties of the extended cobordism maps (9) follow from corresponding
properties of the original ones. We mention two results here.

Theorem 5.4 Let W W Y0! Y1 be a cobordism with spinc structure s and suppose
! 2 ƒ�H1.W /=tors. Write si for sjYi

Then for modules M and N over RY0
and

R�Y1
respectively, and for any x 2HFC.Y0; s0IM / and y 2HF�.�Y1; s1IN /, we

have

hFC
W ;s.x˝!/; yi D hx; F�W 0;s.y˝!/i:

Proof Assume first that W consists of 2–handles only, and suppose h 2H1.W /=tors
has the expression hD i�.h0; h1/ for hi 2H1.Yi/=tors. Then using the duality theorem
for twisted coefficients (Theorem 4.3) and Lemma 5.3 we have

hFC
W ;s.x˝ h/; yi D hFC

W ;s.h0:x/� h1:F
C

W ;s.x/;yi

D �hx; h0:F
�
W 0;s.y/iC hx; F�W 0;s.h1:y/i

D hx; F�W 0;s.y˝ h/i:

It is a simple matter to extend to general cobordisms and general ! .
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Theorem 5.5 The composition law (Theorem 2.9) holds for the extended maps (9).
More precisely, suppose W DW1[Y1

W2 is a composite cobordism and write

j�W ƒ
�.H1.W1/=tors/˝ƒ�.H1.W2/=tors/!ƒ�.H1.W /=tors/

for the surjection induced on exterior algebras by the Mayer–Vietoris map H1.W1/˚

H1.W2/!H1.W /. Fix !i 2ƒ
�H1.Wi/=tors and write ! for the image of !1˝!2

under j� . Then for any spinc structure s on W , we can find choices of representatives
for the maps Fı such that for any ˛ 2H 1.Y1/

FıW ;s�ı˛.�˝!/D…W

h
FıW2;sjW2

.e˛ �FıW1;sjW1

.�˝!1/˝!2/
i
:

Proof This follows from Theorem 2.9 together with the formal properties of the H1 –
action, particularly (10) in the case of 2–handles. (See Ozsváth–Szabó [15], particularly
Proposition 4.20. Note that here the strengthened composition law means that summing
over spinc structures is unnecessary.)

6 Conjugation and orientation reversal

As in the original Heegaard Floer theory, there are simple relationships between the
twisted Heegaard Floer homologies of .Y; s/, .�Y; s/, and .Y;xs/, where xs is the
conjugate spinc structure. To describe the effect of spinc conjugation, recall that
though we normally do not include it in the notation, the ring RY depends on s

through the grading (5), and here we write RY;s to indicate this. Thus RY;s and
RY;xs are identical rings with opposite gradings; in fact RY;xs DR�Y;s as graded rings.
In particular, if M is a graded module for RY;s , the conjugate module SM can be
considered either as a module for R�Y;s or for RY;xs .

Theorem 6.1 If .Y; s/ is a closed spinc 3–manifold and M is a module for RY;s ,
then there is a grading-preserving isomorphism of RY;s–modules

J W HFı.Y; sIM /
�- HFı.Y;xsI SM /:

Proof We mimic the argument in the untwisted case [11, Theorem 2.4]. Recall that
if .†; ˛; ˇ ; z/ is a Heegaard diagram for Y and x 2 T˛ \ Tˇ has sz.x/ D s, then
.�†; ˇ ; ˛; z/ also describes Y , and in this diagram sz.x/Dxs. If fAx;yg is an additive
assignment for .†; ˛; ˇ ; z/, then we obtain an assignment A0 for .�†; ˇ ; ˛; z/ by
A0x;y.�/D�Ax;y.� ıf /, where f is the reflection across the imaginary axis in C .

Define a homomorphism J W CFı.Y; sIRY;s/! CFı.Y;xsIRY;xs/ by mapping Œx; i �
in the diagram .†; ˛; ˇ ; z/ to Œx; i � in the diagram .�†; ˇ ; ˛; z/ and extending
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by ZŒH 1.Y /�–antilinearity. Then it is a straightforward exercise to check that J is
a chain map preserving relative gradings, recalling that M�†.� ı f / DM†.�/,
n�†z .� ıf /D n†z .�/, and ��†.� ıf /D �†.�/. In general,

J W CFı.Y; s/˝RY;s
M ! CFı.Y;xs/˝RY;xs

SM

is given by Œx; i �˝m 7! Œx; i �˝m. Since this is an antilinear chain isomorphism, the
theorem follows.

It is not hard to generalize the naturality of cobordism-induced maps under conjugation
to the twisted case.

Before describing the effect of orientation reversal, we pause to spell out our duality
conventions. Let M be a graded RY;s–module, and set

CF�ı .Y; sIM /D Hom RY;s
.CFı�.Y; s/;M /;

made into an RY;s–module in the obvious way. For the grading, suppose ˛; ˇ 2
CF�ı .Y; sIM / are homogeneous (as homomorphisms between relatively graded RY;s–
modules). Set

grCF�.˛; ˇ/D grM .˛.f //� grM .ˇ.g//� grCF�
.f;g/

for any homogeneous f;g 2 CF�.Y; s/ with ˛.f / and ˇ.f / nonzero in M . Thus,
for example, grCF�.r˛; ˛/D grs.r/ for r 2RY;s .

Observe that there is a natural generating set for CF�1.Y; sIRY;s/. Namely, for a genera-
tor Œx; i �2CF1� .Y; s/, define Œx; i ��W CF1� .Y; s/!RY;s by setting Œx; i ��.Œy; j �˝r/D

r if Œy; j �D Œx; i �, and 0 otherwise. Since CF1� .Y; s/ is a free complex over RY;s ,
elements of CF�1.Y; sIM / can be expressed as combinations of elements of the form
Œx; i ��˝m, whose value on Œy; j � is Œx; i ��.Œy; j �/ �m.

In terms of these generators, the coboundary in CF� can be expressed explicitly by

ı.Œx; i ��˝m/D
X

�2�2.y;x/
�.�/D1

# �M.�/Œy; i C nz.�/�
�
˝ eA.�/m:

With the grading conventions outlined above, we have

grCF�.Y /.Œx; i �
�; Œy; j ��/D�grCF�.Y /

.Œx; i �; Œy; j �/:

Observe that with these conventions, the codifferential has degree �1, in other words,
CF�1.Y; sIM / is a chain complex rather than a cochain complex. Likewise, the
transpose action of U given by U W Œx; i �� 7! Œx; i C 1�� decreases grading by 2.
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Theorem 6.2 For .Y; s/ a closed spinc 3–manifold and M a module for RY;s , there
is a grading-preserving isomorphism of RY;s–modules

HF˙� .Y; sIM /ŠHF��.�Y; sI SM /:

Proof Just as in the proof in [11, Proposition 2.5], define a homomorphism

CFı�.Y; sIM /! CF�ı .�Y; sI SM /

by Œx; i �˝m 7! Œx;�1� i ��˝m, where on the right we consider m as an element of
SM . One checks easily that this gives rise to a ZŒH 1.Y /�–antilinear chain isomorphism

that preserves relative grading.

7 Invariants for 4–manifolds

We briefly recall the definition of Ozsváth–Szabó 4–manifold invariants from [15], and
then proceed to discuss their calculation in the context of 4–manifolds obtained by
gluing two manifolds with boundary.

Suppose X is a closed 4–manifold having bC.X /� 2. Then we can find an admissible
cut for X : that is, a hypersurface N �X separating X into components X DV1[N V2

with the following properties:

(1) For i D 1; 2, we have bC.Vi/� 1.

(2) The image of the Mayer–Vietoris map ıW H 1.N /!H 2.X / is trivial.

As observed previously (Remark 2.8), the second condition ensures that spinc structures
on X are determined by their restrictions to V1 and V2 .

The first condition is relevant because of the following.

Lemma 7.1 [15] If W is a cobordism having bC.W /� 1 then for any spinc struc-
ture s and in any coefficient module, the map F1

W ;s vanishes.

Recall that for all sufficiently large integers r , the subgroups ker.U r
�/�HF�.Y; s/

and im .U r
C/�HFC.Y; s/ are independent of r (where U˙ denotes the action of U

on HF˙ ). The reduced Floer homology groups are defined by HF�red.Y; s/D ker.U r
�/

and HFCred.Y; s/D coker.U r
C/. Together with the long exact sequence

� � � �!HF1.Y; s/ �!HFC.Y; s/
�
�!HF�.Y; s/ �! � � �
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and the fact that U is an isomorphism on HF1 , Lemma 7.1 implies that the image of
F�

W ;s for W a cobordism with bC.W /� 1 lies in HF�red , while FC
W ;s factors through

HFCred . Note also that the homomorphism � in the sequence induces an isomorphism

� W HFCred.Y; s/!HF�red.Y; s/:

(All of the above holds in any coefficient system).

Definition 7.2 [15] Let ‚� denote a top-degree generator of HF�.S3/. Let N be
an admissible cut for a 4–manifold X as above, and fix a spinc structure s on X . The
Ozsváth–Szabó invariant of .X; s/ is the integer-valued function

ˆX ;sW A.X / WD ZŒU �˝ƒ�.H1.X /=tors/ �! Z=˙ 1

defined by

ˆX ;s.U
n
˝!/D h.FC

V2
ı ��1

ıF�V1
/.U n

�‚�˝!/;‚�i:

Note that ˆX ;s is defined only modulo a sign, due to the sign ambiguity of the maps
associated to cobordisms.

Remark 7.3 As a slight abuse of notation, if Z is a 4–manifold with one boundary
component Y , and s is a spinc structure on Z , we will denote by Fı

Z;s the homo-
morphism HFı.S3/!HFı.Y / induced by the cobordism obtained by removing a
4–ball from the interior of Z .

Remark 7.4 It follows from the formula for the degree shift induced by a cobordism
that ˆX ;s is nonzero only on elements of A.X / having degree d.s/, where

d.s/D
1

4
.c2

1.s/� 2e.X /� 3�.X //:

Here e.X / is the Euler characteristic of X and �.X / is the signature, and A.X / is
graded so that U carries degree 2 and elements of H1.X /=tors carry degree 1.

Ozsváth and Szabó show that ˆX ;s does not depend on the choice of admissible
cut N , and therefore gives an invariant of smooth spinc 4–manifolds with bC � 2.
An important property of ˆX ;s is that it is nonzero for at most finitely many spinc

structures s on X .

In many situations there are convenient decompositions X DZ1[Y Z2 , in which Y

fails to be admissible in the sense above—specifically, condition (2) in the definition
of admissibility is violated. Ozsváth and Szabó prove that one can use such a cut to
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obtain information about sums of invariants of X (Lemma 8.8 of [15]), but in order to
obtain more detailed information we must pass to twisted coefficients.

We express our results in terms of group rings. In the situation of cutting X along a
3–manifold Y satisfying (1) but not (2) in the definition of admissible cut, the relevant
group is K.X;Y /D ker.H 2.X /!H 2.Z1/˚H 2.Z2// (cf Remark 2.8). For a given
s 2 Spinc.X / and ˛ 2A.X /, we would like a way to calculate the element

(11)
X

t2K.X ;Y /

ˆX ;sCt .˛/ � e
t
2 ZŒK.X;Y /�

in terms of invariants on the manifolds-with-boundary Z1 and Z2 . Indeed, the in-
variants of all spinc structures on X can be read from the coefficients of the above
expressions for various s.

Since we need to refer to maps in both twisted and untwisted Floer homology, in this
section we will follow the notation of Ozsváth and Szabó and write Fı

W
for the map

in twisted coefficients induced by W and Fı
W

for the untwisted map.

Definition 7.5 Suppose Z is an oriented 4–manifold with connected boundary @ZD
Y and s 2 Spinc.Z/. Define the relative Ozsváth–Szabó invariant ‰Z;s of Z to be
the function

‰Z;sW A.Z/ �!HF�.Y; sjY IZŒK.Z/�/=K.Z/

‰Z;s.U
n
˝!/D ŒF�Z;s.U

n
�‚�˝!/�:given by

Here the brackets indicate equivalence class under the action of K.Z/, where K.Z/D

ker.H 2.Z;Y /!H 2.Z//.

Normally we will think of ‰Z;s as an honest function with values in HF�.Y / by choos-
ing a representative for the equivalence class (though strictly, the twisted-coefficient
map F�

Z;s is defined only up to sign and the action of ı.H 1.@Z// D K.Z/). Note
also that if bC.Z/� 1 then ‰Z;s takes values in HF�red.Y /.

The following result gives the central statement of Theorem 1.5 from the introduction,
and shows how to calculate (11) in terms of relative invariants.

Theorem 7.6 Let X be a closed 4–manifold with bC.X / � 2 and Y � X a 3–
dimensional submanifold separating X into components Z1 and Z2 . Let s be a spinc

structure on X and write si D sjZi
. Assume that ‰Zi ;si

takes values in HF�red for
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i D 1; 2, and also that bC.Zi/� 1 for at least one of Z1 , Z2 . Then for any ˛i 2A.Zi/

we have

(12)
X

t2K.X ;Y /

ˆX ;sCt .˛/ � e
t
D h��1.‰Z1;s1

.˛1//; ‰Z2;s2
.˛2/i

as elements of ZŒK.X;Y /�, up to sign and multiplication by an element of K.X;Y /.
Here ˛ is the image of ˛1˝˛2 under the natural map A.Z1/˝A.Z2/!A.X /.

In the statement of the theorem, we are implicitly choosing representatives for‰Zi ;si
.˛i/

and pairing them using the twisted-coefficient pairing defined earlier. Lemma 2.7
shows that the pairing does indeed take values in ZŒK.X;Y /�, and it follows also that
different choices of representatives give rise to elements of ZŒK.X;Y /� differing by
multiplication by an element of K.X;Y /.

The rest of this section is devoted to the proof of Theorem 7.6. For simplicity, we focus
on the case ˛ D 1 in the following; the general case follows by an entirely analogous
argument with Theorem 5.4 and Theorem 5.5 replacing Theorem 4.3 and Theorem 2.9.

We begin with a few easy preparatory lemmas.

Lemma 7.7 Fix a spinc 3–manifold Y and RY –modules M and N . Let �W M!N

be a module homomorphism, and write �� W HFı.Y IM / ! HFı.Y IN / for the
induced map in Floer homology. Then the following diagram commutes:

- HF�.Y IM / - HF1.Y IM / - HFC.Y IM / -

- HF�.Y IN /

��

?
- HF1.Y IN /

��

?
- HFC.Y IN /

��

?
-

In particular, �� descends to a map on reduced homology, and commutes with � (and
��1 ).

Proof This is clear.

Lemma 7.8 For i D 1; 2 let Mi and Ni be modules for RY and R�Y respec-
tively, and consider homomorphisms �W M1 ! M2 and  W N1 ! N2 . For any
� 2HFC.Y IM1/ and � 2HF�.�Y IN1/, we have

h��.�/;  �.�/i D �˝ .h�; �i/ 2M2˝RY
xN2:

Proof This follows easily from the definitions.
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Lemma 7.9 Suppose W DW1[Y1
W2W Y0! Y2 is a composite cobordism, and s1

and s2 are spinc structures on W1 and W2 with s1jY1
D s2jY1

. If F�
W1;s1

has image
in HF�red.Y1/ then for any coefficient module M for Y0 ,

(1) im .F�
W2;s2

ıF�
W1;s1

/�HF�red.Y2IM.W1/.W2//, and

(2) ��1 ıF�
W2;s2

ıF�
W1;s1

D FC
W2;s2

ı ��1 ıF�
W1;s1

.

Proof Point (1) is clear from the fact that F�
W2;s2

maps HF�red.Y1IM.W1// into
HF�red.Y2IM.W1/.W2//.

Statement (2) follows from the commutative diagram

HFC.Y1IM.W1//
F
C

W2;s2- HFC.Y2IM.W1/.W2//

HF�.Y0IM /
F�

W1;s1- HF�.Y1IM.W1//

�

? F�
W2;s2- HF�.Y2IM.W1/.W2//

�

?

together with part (1).

With these preliminaries in place, we turn our attention to the proof of Theorem 7.6
(with ˛1 D ˛2 D ˛ D 1). Thus, let X D Z1 [Y Z2 be as in the statement of the
theorem, and let us assume bC.Z2/ � 1. Then we can find an admissible cut N

for X contained in Z2 (cf the construction in example 8.4 of [15]). Suppose X is
decomposed into pieces V1 and V2 along N , so that

X D V1[N V2 DZ1[Y W [N V2

where W D V1\Z2 is a cobordism Y !N .

Let us fix a spinc structure s on X . For simplicity we will omit the spinc structure from
the notation for homomorphisms induced by cobordisms, but all relevant cobordisms
and their boundaries will be equipped with spinc structures obtained by restricting s.

By definition, we have

ˆX ;s.1/D hF
C

V2
ı ��1

ıF�V1
.‚�/; ‚�i

D h��1
ıF�V1

.‚�/; F�V2
.‚�/i

D h��1
ı �� ıF�V1

.‚�/; �� ıF�V2
.‚�/i

D h��1
ıF�V1

.‚�/; F�V2
.‚�/i:(13)
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We have passed to twisted coefficients using the remark after Theorem 2.9. The last
line uses Lemma 7.7 and the twisted pairing which takes values in ZŒK.X;N /�. Since
N is admissible the group K.X;N / is trivial and hence the pairing is Z–valued; the
homomorphism ��˝ �� arising from Lemma 7.8 is the identity here.

According to Theorem 2.9 we can find representatives for the maps involved that satisfy

F�V1
D…V1

ıF�W ıF�Z1
;

where …V1
is the map induced in homology by a projection map ZŒK.V1;Y /�!

ZŒK.V1/�, which we also denote by …V1
. Different choices of representatives for

ŒF�
V1
� and the other maps differ by the action of RN on ZŒK.X;N /�D Z, which is

trivial. Hence we can replace (13) with

ˆX ;s.1/D h�
�1
ı…V1

ıF�W ıF�Z1
.‚�/; F�V2

.‚�/i

D…V1
˝ 1 � h��1

ıF�W ıF�Z1
.‚�/; F�V2

.‚�/i:(14)

Lemma 7.10 Under the isomorphism

ZŒK.V1;Y /�˝RN
ZŒK.V2/�Š Z

�
K.V1;Y /˚K.V2/

H 1.N /

�
;

the map …V1
˝ 1 corresponds to the homomorphism …Z sending an element of a

group ring to the coefficient of the identity element.

Proof We have a diagram of identifications:

ZŒK.V1;Y /�˝RN
ZŒK.V2/�

…V1
˝1
- ZŒK.V1/�˝RN

ZŒK.V2/�

Z
h

K.V1;Y /˚K.V2/

H 1.N /

i
D

?
p - Z

h
K.V1/˚K.V2/

H 1.N /

i
D

?

Again, since N is admissible

K.V1/˚K.V2/

H 1.N /
D ker.H 2.X /!H 2.V1/˚H 2.V2//D 0:

The projection p is induced by some map

K.V1/˚K.V2/

H 1.N /
!

K.V1;Y /˚K.V2/

H 1.N /
;

for which there is only one choice since the domain group is trivial. The construction
of p from this map proves the claim.
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Returning with this to Equation (14), we have

ˆX ;s.1/D…Zh�
�1
ıF�W ıF�Z1

.‚�/; F�V2
.‚�/i

D…ZhF
C

W
ı ��1

ıF�Z1
.‚�/; F�V2

.‚�/i

D…Zh�
�1
ıF�Z1

.‚�/; F�W ıF�V2
.‚�/i(15)

using Lemma 7.9 and Theorem 4.3. Note that the pairings above can be thought of as
taking values in

Z

�
K.Z1/˚K.W /˚K.V2/

H 1.Y /˚H 1.N /

�
with appropriate grading.

We would like to apply the composition law in (15) to replace F�
W
ıF�

V2
by F�

Z2
, but

we are missing a factor of …Z2
required by Theorem 2.9. By commutativity of the

square (�) in the following diagram, we are free to introduce this factor:

ZŒK.Z1/�˝RY
ZŒK.Z2;N /�

1˝…Z2- ZŒK.Z1/�˝RY
ZŒK.Z2/�

.�/

Z
h

K.Z1/˚K.Z2;N /

H 1.Y /

i
D

?

- Z
h

K.Z1/˚K.Z2/

H 1.Y /

i
D

?

Z
h

K.Z1/˚K.W /˚K.V2/

H 1.Y /˚H 1.N /

i
D

?
…Z - Z

…Z

?

Indeed, it follows that …Z D …Z ı .1˝…Z2
/ (after identifying the groups in the

column on the left). Thus (15) becomes:

ˆX ;s.1/D…Z ı .1˝…Z2
/ � h��1

ıF�Z1
.‚�/; F�W ıF�V2

.‚�/i

D…Zh�
�1
ıF�Z1

.‚�/; …Z2
ıF�W ıF�V2

.‚�/i

D…Zh�
�1
ıF�Z1

.‚�/; F�Z2
.‚�/i;

after possibly translating by an element of RY . This verifies the “constant coefficient”
of (12). For the general statement, suppose t D ıh 2K.X;Y /. Then since sC t D s

when restricted to V2 we can follow the same steps as above (and using the second
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part of Theorem 2.9) to see

ˆX ;sCt .1/D h�
�1
ıF�V1;sCt .‚

�/; F�V2;s
.‚/i

D h��1
ıF�V1;sCt .‚

�/; F�V2;s
.‚�/i

D h��1
ı…V1

ıF�W ;s ı e�h
�F�Z1;s

.‚�/; F�V2;s
.‚�/i

D…ZŒe
�h
� h��1

ıF�Z1;s
.‚�/;F�Z2;s

.‚�/i�

where we can use the same representatives for ŒF�
Zi ;s

� as before. Since the action of
RY on ZŒK.X;Y /� is via the coboundary, this last expression is exactly the coefficient
of eıh D et in h��1 ıF�

Z1;s
.‚�/; F�

Z2;s
.‚�/i, completing the proof of Theorem 7.6.

8 Perturbed Heegaard Floer invariants

The utility of Theorem 7.6 is limited in many practical circumstances by the restriction
on bC.Zi/. In particular, if one wishes to split a 4–manifold along the boundary of a
tubular neighborhood of a surface of square 0, it is not obvious whether the assumptions
of that theorem are satisfied. In this section we show how to remedy this circumstance by
making use of Heegaard Floer homology “perturbed” by a 2–dimensional cohomology
class � 2H 2.Y IR/. (A version of this theory was mentioned briefly in [12]; here we
give a rather fuller treatment.)

8.1 Definitions and basic properties

Definition 8.1 Fix a closed oriented 3–manifold Y and a class � 2H 2.Y IR/. The
Novikov ring associated to .Y; �/ is the ring RY;� �ZH 1.Y IZ/ of Z–valued functions
on H 1.Y IZ/ defined by the condition that f 2RY;� if and only if for each N 2 Z,
the set supp.f /\fa 2H 1.Y /jha[ �; ŒY �i<N g is finite.

More concretely, we can think of RY;� as the collection of formal series

RY;� D

� X
g2H 1.Y IZ/

ag �g j ag 2 Z

�

subject to the condition that for each N 2 Z the set of g 2H 1.Y / with ag nonzero
and hg[ �; ŒY �i<N is finite.

The multiplication on RY;� is the usual convolution product; note that in the case
�D 0 we have RY;� DZŒH 1.Y /�. Clearly, RY;� DRY;c� for any positive constant c .
Furthermore, RY;� depends on the orientation of Y in the sense that R�Y;� DRY;�� .
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The above is an instance of a general construction: given an abelian group G and a
homomorphism �W G ! R, we can form an associated Novikov ring N .G; �/ as a
subset of ZG . Namely,

N .G; �/D
�X

g2G

ag �g j ag 2 Z

�
;

with the condition that for each N 2Z the set of g 2G with ag nonzero and �.g/<N

is finite. We now pause to remark on the functoriality of this construction.

Suppose .G; �/ and .H; �/ are two groups with homomorphisms to R, and f W G!H

is a group homomorphism. There are two ways in which one might wish to associate a
homomorphism between N .G; �/ and N .H; �/. First is a “pushforward”

yf�W N .G; �/!N .H; �/

yf�

�X
g2G

ag �g

�
D

X
g2G

ag �f .g/D
X
h2H

bh � h;defined by

where bh is the sum of all ag for g 2 f �1.h/. For the above to make sense we must
have that each collection fg 2 f �1.h/ j ag ¤ 0g is finite, and for the above to define
an element of N .H; �/ we need the set fh j h 2 im .f /; �.h/ < N g to be finite for
each N . It is easy to see that both of these properties are satisfied if whenever S �H

is a subset on which � is bounded, the function � is bounded on f �1.S/, which in
turn is true if �D � ı f . In this situation, the expression above gives a well-defined
function yf� , which is easily seen to be a ring homomorphism.

On the other hand we can define a “pullback” map

yf �W N .H; �/!N .G; �/

yf �
� X

h2H

bh � h

�
D

X
g2G

bf .g/ �g:by

The expression above defines an element of N .G; �/ if the set fg j bf .g/¤0 and �.g/<
N g is finite for each N . This will happen if whenever � is bounded on a subset S �G

we have that � is bounded on f .S/, and additionally, ker.f / is finite. In particular,
if �D � ıf and f is injective, yf � is a well-defined function. In general, yf � is not
a ring homomorphism. However, we can regard N .H; �/ as a module over N .G; �/
using the homomorphism yf� constructed above, and then one can check that yf � is a
homomorphism of N .G; �/–modules.
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To summarize:

Lemma 8.2 Suppose G and H are abelian groups and �W G!R and �W H !R are
additive homomorphisms. Let f W G!H be a homomorphism with the property that
�D � ıf . Then there is a well-defined homomorphism

yf�W N .G; �/!N .H; �/

of Novikov rings.

If in addition f is injective, then there is a well-defined pullback or “restriction” map

yf �W N .H; �/!N .G; �/;

which is a homomorphism of N .G; �/–modules.

It is easy to see that the above constructions are functorial with respect to compositions
of homomorphisms. Furthermore, if f is injective then clearly yf � ı yf� D idN .G;�/ ,
so in this case yf � is surjective and yf� is injective.

We can now recite the definition of twisted-coefficient Heegaard Floer homology using
the Novikov ring RY;� in place of RY .

Definition 8.3 Let .Y; s/ be a closed oriented spinc 3–manifold, and let �2H 2.Y IR/.
Endow RY;� with the s–grading defined by (5). Let .†; ˛; ˇ ; z/ be a marked Heegaard
diagram for Y , and choose an additive assignment A for the diagram. The �–perturbed
Heegaard Floer complex is the free RY;�–module CF1.Y; sIRY;�/ generated by pairs
Œx; i � where x 2 T˛ \ Tˇ is an intersection point with sz.x/ D s, equipped with the
relative Z grading defined in (6).

The boundary operator is given as in Definition 2.3, where eA.�/ is interpreted as an
element of RY;� .

If .†; ˛; ˇ ; z/ is strongly s–admissible, in the sense of [12, Definition 4.10], then the
definition above obviously yields the Heegaard Floer complex for the unperturbed theory
with coefficients in the RY –module RY;� , ie, the complex CFı.Y; sIRY /˝RY

RY;� .

In fact, the perturbed complex can be defined with relaxed admissibility hypotheses:
if � is generic in the sense that the induced map H 1.Y IZ/! R is injective, weak
admissibility suffices to define HF1.Y; sIRY;�/ and HF�.Y; sIRY;�/, while no
admissibility conditions are necessary to define HFC.Y; sIRY;�/ or bHF .Y; sIRY;�/.
However, we have no need for this generality, and the observation in the previous
paragraph suffices to show that the perturbed Heegaard Floer homology is a topological
invariant of .Y; s; �/.
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Note that if M is a (graded) module for RY , we can obtain a module for RY;� by
tensor product: M� �M ˝RY

RY;� . Thus we can consider perturbed Heegaard Floer
homology with coefficients in the “completed” module M� , namely the homology of
the complex CF.Y; sIRY;�/˝RY;�

M� (of course, since any module for RY;� is also
a module for RY , we see trivially that any RY;� module is obtained in this way).

Calculation of perturbed Floer homology is facilitated by the following.

Lemma 8.4 For any � 2H 2.Y IR/, the ring RY;� is flat as an RY –module.

Proof Let K denote the kernel of the homomorphism H 1.Y IZ/ ! R given by
x 7! hx[�; ŒY �i; note that K is a direct summand of H 1.Y IZ/. Let rk.K/D k . The
ring RY can be identified with a Laurent polynomial ring in variables fx1; : : : ;xbg,
b D b1.Y /, and we can choose the generators xi such that hxi [ �; ŒY �i D 0 for
i D 1; : : : ; k , while hxi [ �; ŒY �i > 0 for i > k . The Novikov ring RY;� can be
constructed as follows. First let Z� denote the (“partial”) power series ring obtained
by completing the ring Z D ZŒx1; : : : ;xb � with respect to the ideal generated by
xkC1; : : : ;xb . Then if V denotes the multiplicative subset generated by the variables
x1; : : : ;xb , we have that RY;� D V �1Z� . It is a standard fact that Z� is flat over
Z (see, eg, [1, Theorem 7.2]), and it follows easily that RY;� D V �1Z� is flat over
RY D V �1Z .

Definition 8.5 Let Y be a closed oriented 3–manifold, s 2 Spinc.Y /, and � 2

H 2.Y IR/. We say � is generic for s if ker.c1.s// 6� ker.�/. That is to say, � is
generic for s if there exists a class x 2H 1.Y / such that

�[x ¤ 0 but c1.s/[x D 0:

Observe that if c1.s/ is torsion and � is nonzero then � is automatically generic for
s, while if b1.Y /D 1 and c1.s/ is nontorsion, then a generic class � for s does not
exist. Once b1.Y / > 1, however, any class �2H 2.Y IR/ that is “generic” in the sense
that h�[ �; ŒY �iW H 1.Y IZ/! R is injective, is automatically generic for any spinc

structure s.

In Seiberg–Witten theory, once b1.Y / > 0 it is possible to “perturb away” reducible
solutions to the Seiberg–Witten equations on Y . The following can be seen as an
analog of that statement in Heegaard Floer theory.

Corollary 8.6 If � 2H 2.Y IR/ is generic for a spinc structure s on Y , then

HF1.Y; sIRY;�/D 0;
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and therefore HF1.Y; sIM/D 0 for any RY;�–module M. In particular, under this
assumption, for any RY –module M with completion M� DM ˝RY

RY;� we have
isomorphisms

HF˙.Y; sIM�/DHF˙red.Y; sIM�/ŠHF˙red.Y; sIM /˝RY
RY;�:

Proof By the previous lemma, HF1.Y; sIRY;�/ Š HF1.Y; sIRY / ˝RY
RY;� .

Oszváth and Szabó showed [11, Theorem 10.12, Remark 10.13] that for any 3–manifold
Y , the fully-twisted Floer homology satisfies

HF1.Y; sIRY /Š ZŒU;U�1�

where an element x 2H 1.Y IZ/ having hc1.s/[x; ŒY �i D 2k acts as multiplication
by U k . Take x to be as in the definition of generic above, so that k D 0. Without loss
of generality we can assume that h�[ x; ŒY �i > 0, so that the element 1� x has an
inverse

P
n�0 xn in RY;� . But then 1�x is a unit that acts as 0 on HF1.Y; sIRY;�/,

meaning the latter module must vanish. The remaining statements follow easily from
the flatness of RY;� .

As noted above, it is not always possible to guarantee the existence of a generic
perturbation (namely when b1.Y /� 1). Of more concern for our purposes, a similar
situation arises when considering cobordisms W W Y1! Y2 , where perturbations and
spinc structures on Yi are taken to be induced from W . Here if b2.W / D 1, for
example, then any class � induced from W must be a multiple of the Chern class
of a spinc structure on Y2 induced from W , and again we cannot arrange genericity
regardless of the value of b1.Y /.

To deal with this situation we make a further completion of Heegaard Floer homology,
this time with respect to U .

Definition 8.7 Let ZŒŒU �� denote the ring of integer power series in U . The U –
completed Heegaard Floer groups for .Y; s; �/ in a module M are defined by

HFı� .Y; sIM/DHFı.Y; sIM/˝ZŒU �ZŒŒU ��:

Thus the perturbed, completed Floer homology HFı�.Y;sIM/ is a module for RY;sŒŒU ��.
Observe that since the action of U is nilpotent on elements of HFC , this completion
has no effect on the latter group:

HFC� .Y; sIM/DHFC.Y; sIM/:
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There is a natural map HFı.Y; sIM/!HFı� .Y; sIM/ that is typically (when � is
generic for s, for example) an injection. We will often implicitly make use of this
homomorphism when extending previous results to the U –completed setting.

The definition is most useful when the uncompleted group HFı.Y; sIM/ carries a
relative Z grading (not a cyclic grading). We will generally be interested in coefficient
modules M that arise from cobordisms S3! Y , and in light of Proposition 3.5 we
will therefore be in the Z–graded case.

Corollary 8.8 Let .Y; s/ be a closed spinc 3–manifold and � 2 H 2.Y IR/ a fixed
class. If c1.s/ is torsion, assume that �¤ 0. Then

HF1� .Y; sIM�/D 0

for any RY;� module M� .

The other conclusions of Corollary 8.6 of course follow as well for the U –completed
Floer homology perturbed by a compatible class �. Note that if c1.s/ is nontorsion,
then it suffices to take �D 0.

Proof It suffices to show the vanishing with coefficients in RY;� ; if c1.s/ is torsion
then a nonzero � is necessarily generic for s so that Corollary 8.6 applies. Otherwise,
we can find t 2H 1.Y / such that hc1.s/[ t; ŒY �i D �2k with k > 0; then as before t

acts as multiplication by U�k on HF1.Y; sIRY /. Hence the element 1� tU k acts
as 0, but the former is a unit in the completed ring RY;�ŒŒU ��.

We now wish to extend perturbed Heegaard Floer theory to cobordism-induced homo-
morphisms. To do so, we again follow the program from the unperturbed case; we
need only make sure that the coefficient modules respect the algebraic nature of the
Novikov rings.

Definition 8.9 Let W W Y1 ! Y2 be an oriented cobordism between 3–manifolds
Yi , and fix � 2H 2.W IR/ with restrictions �i D �jYi

. Let K.W; �/ be the Novikov
completion of ZŒK.W /� with respect to �, where as usual K.W /D im .H 1.@W IZ/!
H 2.W; @W IZ//. Concretely, K.W; �/ is the ring of formal series

K.W; �/D

� X
g2K.W /

ag �g j ag 2 Z

�
subject to the condition that for each N 2 Z the set of g 2K.W / with ag nonzero
and hg[ �; ŒW; @W �i<N is finite. Then K.W; �/ is a module for both R�Y1;�1

and
RY2;�2

.
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If M is a (graded) module for RY1;�1
, the module M.W; �/ for RY2;�2

induced by
.W; �/ is defined by

M.W; �/D SM˝R�Y1;�1
K.W; �/:

The module structure of K.W; �/ over R�Y1;�1
and RY2;�2

is induced by the maps
ıW H 1.Yi/! H 2.W; @W /, as usual. The fact that these maps induce well-defined
homomorphisms between Novikov rings relies on Lemma 8.2, together with the fact
that �i is the restriction of �. Note that K.W; �/ can be given an integer grading
depending on a choice of spinc structure just as in Proposition 3.5.

For the conjugate module appearing in the last statement of the definition, observe that
the map x 7! �x in H 1.Y / induces a conjugation map RY;�!R�Y;� . Thus SM,
defined to be the same graded group as M with conjugate module structure, makes
sense as a graded R�Y;�–module.

It is now straightforward to define a homomorphism

FıW ;�;sW HFı� .Y1; s1;M/!HFı� .Y2; s2;M.W; �//

associated to a spinc cobordism .W; s/ with chosen perturbation � (or similar maps
between the groups without the “�”), by making the usual formal construction for
1– and 3–handles, and using Definition 2.6 for the 2–handles, where eAW . / is
considered to lie in K.W; �/. The proof that the result of this construction is a chain
map whose induced map in homology is an invariant of W (up to a sign and the action
of H 1.Y1IZ/˚H 1.Y2IZ/) is identical to the proof in the unperturbed case in [15].
Alternatively, one can deduce this fact from the corresponding fact in the unperturbed
theory using Lemma 8.4.

Similarly, there is a composition law for perturbed cobordism maps that follows
from the usual one given in Theorem 2.9. Indeed, suppose we are given a cobordism
W W Y1!Y2 and a module M for RY , along with a class �2H 2.W IR/. Write MD
M˝RY1

RY1;� for the Novikov completion of M (we do not distinguish in the notation
between � and its restrictions to Y1 , Y2 ); then M can also be considered as an RY1

–
module. As such, we obtain an induced RY2

–module M.W /D SM˝R�Y1
ZŒK.W /�.

It is not hard to see that the RY2;�–module induced by .W; �/ is then

(16) M.W; �/DM.W /˝RY2
RY2;� DR�Y1;�˝R�Y1

M.W /˝RY2
RY2;�
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and we have a commutative diagram (with or without �’s)

(17)

HF�.Y1;M/
FW- HF�.Y2;M.W //

�˝1- HF�.Y2;M.W //˝RY2
RY2;�

FW ;�

HF�.Y2;M.W; �//
?-

where the vertical arrow is an isomorphism according to Lemma 8.4. Combining this
observation with the original composition law gives the desired result for perturbed
Floer homology.

All of the algebraic constructions earlier introduced for twisted coefficients go through
with only minor modifications in the perturbed setup. The action of H1.Y IZ/=tors on
HFı� .Y; sIM/ for M an RY;�–module is defined just as before, as is the extension
of cobordism-induced maps to incorporate this action. Likewise the previous definition
applies to give a pairing

HFC� .Y; sIM/˝RY;�
HF�� .�Y; sIN /!M˝RY;�

N

for any RY;�–module M and R�Y;�–module N (and similarly without �’s).

8.2 Conjugation and orientation reversal

The perturbed versions of the results of Section 6 are straightforward generalizations,
with the caveat that conjugation RY;s!RY;xs extends to the setting of Novikov rings
only at the cost of reversing the sign of �. Indeed, if r 2 RY;s;� , we can consider
the conjugate xr to lie either in R�Y;s;� or in RY;xs;�� . Hence if M is a module for
RY;s;� , we can think of SM as a module either for R�Y;s;� or for RY;xs;�� .

Theorem 8.10 If .Y; s/ is a closed spinc 3–manifold with class � 2H 2.Y IR/, and
M is a module for RY;� , then we have an isomorphism of RY;�–modules

HFı� .Y; sIM/ŠHFı� .Y;xs;
SM/

preserving relative gradings, where SM is considered as a module for RY;xs;�� . In
particular,

HFı� .Y; sIRY;s;�/ŠHFı� .Y;xs;RY;s;�/ŠHFı� .Y;xs;RY;xs;��/:

Thus in the perturbed case, there is a natural equivalence between Floer homology for
spinc structure s perturbed by a form �, and the homology for xs perturbed by ��.
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Theorem 8.11 For .Y; s/ a closed oriented spinc 3–manifold with class �2H 2.Y IR/,
and M a module for RY;� , there is an isomorphism

HF˙� .Y; sIM/ŠHF��.�Y; sI SM/;

of relatively graded RY;s;�–modules, where SM is a module for R�Y;s;� .

As usual, there are obvious analogues of each of these results before taking U –
completions.

8.3 Perturbed 4–manifold invariants

We are now in a position to define invariants for closed 4–manifolds using perturbed
Floer homology. If .Z; s/ is a spinc 4–manifold with boundary Y and �2H 2.ZIR/,
we define the perturbed relative invariant for .Z; s; �/ to be the map

‰Z;s;�W A.Z/!HF�� .Y; sIK.Z; �//

given by ‰Z;s;�.U
n˝!/D ŒF�Z;s;�.U

n �‚�˝!/�, where the brackets indicate the
equivalence class under the action of K.Z/ as before. Here K.Z; �/ is the RY;�–
module induced by Z , thought of as a cobordism S3! Y ; in other words K.Z; �/ is
the Novikov completion of ZŒker.H 2.Z;Y /!H 2.Z//� with respect to �.

Definition 8.12 Let X be a closed 4–manifold and � 2 H 2.X IR/. An oriented
3–dimensional embedded submanifold Y �X is an allowable cut for � if Y separates
X into two components, X DZ1[Y Z2 with @Z1 D Y D�@Z2 , and at least one of
the following conditions are satisfied:

(1) �jY ¤ 0.
(2) bC.Zi/� 1 for i D 1; 2.

Observe that if property (1) of the definition holds, then it follows from Corollary 8.6
that the induced map F1

Z;s;� is trivial in perturbed, U –completed Floer homology for
any spinc structure on X . (Indeed, if the restriction of c1.s/ to Y is a nontorsion class
then we need not even assume (1), but of course in this case one can always find a class
� satisfying (1), namely the image in real cohomology of c1.s/. To avoid complicating
the statements of results to follow, we ignore this point.)

On the other hand, if W W Y1!Y2 is a cobordism with bC.W />0 and �2H 2.W IR/,
then since the unperturbed map in HF1 induced by W is trivial, the same is true
for the map perturbed by �, whether � vanishes on @W or not. Hence the perturbed
relative invariant ‰Z;s;� , for a component of X arising from a cut allowable for �,
takes values in the reduced Floer homology in both cases, and the following makes
sense.
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Definition 8.13 Let X be a closed oriented 4–manifold and s a spinc structure on
X . For a pair .Y; �/ consisting of an element �2H 2.X IR/ and a cut X DZ1[Y Z2

of X that is allowable for �, the perturbed Ozsváth–Szabó invariant of X associated
to .Y; �; s/ is the linear map OX ;Y;�;sW A.X /!K.X;Y; �/ defined by

OX ;Y;�;s.˛/D h�
�1‰Z1;s;�.˛1/; ‰Z2;s;�.˛2/i;

up to sign and multiplication by an element of K.X;Y /. Here ˛ is the image of
˛1˝˛2 under the natural map A.Z1/˝A.Z2/!A.X /.

In this definition, we set

K.X;Y; �/DK.Z1; �/˝RY;�
K.Z2; �/:

This can be identified with the Novikov completion of the RY –module ZŒK.X;Y /�
with respect to � as in Lemma 2.7. That is to say, K.X;Y; �/DZŒK.X;Y /�˝RY

RY;� .
Note that OX ;Y;�;s depends on the orientation of Y in the sense that OX ;Y;�;s D

OX ;�Y;�;s . Indeed, it is easy to see that the two are related by the action of the obvious
antihomomorphism K.Z1; �/˝ K.Z2; �/ ! K.Z2; �/˝ K.Z1; �/, which in turn
corresponds to the conjugation homomorphism K.X;Y; �/!K.X;�Y; �/.

We will see that when bC.X /� 2, the definition above recovers the ordinary Ozsváth–
Szabó invariants in the sense of Theorem 7.6: that is, OX ;Y;�;s lies in ZŒK.X;Y /�, and
the coefficients of this group ring element are the Ozsváth–Szabó invariants of X in
the various spinc structures that have given restrictions to Z1 and Z2 . The utility of
this definition is that we no longer need to assume that bC.Zi/� 1 or even that F�

Zi ;s

takes values in the reduced Floer homology, so long as �jY ¤ 0.

It should be noted, however, that the existence of a 3–manifold Y separating X and
a class � 2 H 2.X;R/ restricting nontrivially to Y implies that X is indefinite; in
particular bC.X /� 1.

Lemma 8.14 Suppose X is a 4–manifold with bC.X /� 2, Y a submanifold splitting
X into components Z1 and Z2 with bC.Zi/ � 1 (or more generally satisfying the
hypotheses of Theorem 7.6), and � 2H 2.X IR/ a perturbing class on X . Then for any
spinc structure s on X , OX ;Y;�;s takes values in ZŒK.X;Y /��K.X;Y; �/, and

OX ;Y;�;s D

X
t2K.X ;Y /

ˆX ;sCt � e
t

up to multiplication by ˙1 and an element of K.X;Y /.
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Proof We have a commutative diagram

(18)

HF�.S3/ - HF�red.Y;ZŒK.Z1/�/

HF�.S3/

D

?
- HF�� .Y;K.Z1; �//

i�

?

where the upper arrow is the unperturbed, twisted-coefficient homomorphism induced
by .Z1; s/, and the lower arrow uses the perturbation �jZ1

. Here i� is the natural
map induced by the homomorphism ZŒK.Z1/�!K.Z1; �/ of a ring to its Novikov
completion; commutativity of the diagram is obvious from the definition of cobordism-
induced maps. We have a similar diagram for Z2 with Y replaced by �Y .

Likewise, there is a diagram:

(19)

HF�red.Y;ZŒK.Z1/�/˝RY
HF�red.�Y;ZŒK.Z2/�/

h��1.�/;�i- ZŒK.X;Y /�

HF�� .Y;K.Z1; �//˝RY;�
HF�� .�Y;K.Z2; �//

i�˝i�

?
h��1.�/;�i- K.X;Y; �/

j

?

If �jY D 0, then the maps i� and j are the identity maps: indeed, it follows from
(16) that K.Zi ; �/D ZŒK.Zi/� and K.X;Y; �/D ZŒK.X;Y /�. Thus in this case, the
lemma is just a restatement of Theorem 7.6.

Assume that �jY ¤0. We claim that the map j W ZŒK.X;Y /�!ZŒK.X;Y /�˝RY
RY;�

is injective, and this combined with Theorem 7.6 clearly implies the lemma. To see the
injectivity, observe that since � is induced from the 4–manifold X , we have a diagram

H 1.Y IZ/
ı - K.X;Y /

R
�

h�
[
�;Œ

X
�ih�

[
�;ŒY
�i -

with ı surjective (recall that K.X;Y / is identified with a subgroup of H 2.X /; cf
Remark 2.8). From this it follows that the Novikov completion of ZŒK.X;Y /� as
an RY –module is the same as its Novikov completion N .K.X;Y /; �/ as a ring
with respect to the function h� [ �; ŒX �i. It is straightforward to see that the map
ZŒG�!N .G; �/ from a group ring to its Novikov completion is injective.
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Remark 8.15 The injectivity of j W ZŒK.X;Y /� ! ZŒK.X;Y /� ˝RY
RY;� from

ZŒK.X;Y /� to its (module) completion is not automatic, as can be seen in the case of
a cut Y that is admissible in the sense of Ozsváth and Szabó: in this case K.X;Y / is
trivial, ZŒK.X;Y /�Š Z, and Z˝RY

RY;� D 0 if �¤ 0.

To handle cases where not both sides of the cut Y have nonvanishing bC , we consider
the dependence of OX ;Y;�;s on Y . For our present purposes, it suffices to assume that
we are given a closed 4–manifold X with two disjoint cuts Y1 and Y2 , and both cuts
are allowable for a class � 2H 2.X IR/. Assume also that the orientations on Y1 and
Y2 are compatible, in the sense that in the decomposition X DZ1[Y1

Z2[Y2
Z3 , we

have @Z1 D Y1 , @Z2 D�Y1 tY2 , and @Z3 D�Y2 . We consider the Ozsváth–Szabó
invariants OX ;Y1;�;s and OX ;Y2;�;s , and for simplicity we calculate in particular their
values on ˛ D 1 2A.X / (which we omit from the notation in the following).

According to the composition law, we can find representatives for the maps involved
such that

OX ;Y1;�;s D h�
�1‰Z1;�; ‰Z2[Z3;�i

D h��1F�Z1;�
.‚�/;F�Z2[Z3;�

.‚�/i

D 1˝…h��1F�Z1;�
.‚�/; F�Z2;�

ıF�Z3;�
.‚�/i:(20)

Similarly,

(21) OX ;Y2;�;s D…˝ 1h��1F�Z2;�
ıF�Z1;�

.‚�/; F�Z3;�
.‚�/i:

Thus, we can consider the quantity

zO WD h��1F�Z1;�
.‚�/;F�Z2;�

ıF�Z3;�
.‚�/i D h��1F�Z2;�

ıF�Z1;�
.‚�/;F�Z3;�

.‚�/i;

where the second equality uses duality and the analog of Lemma 7.9 in the perturbed
case. Here we also note that the pairings above take values in

K.Z1; �/˝RY1;�
K.Z2[Z3;Y2; �/ and K.Z1[Z2;Y1; �/˝RY2;�

K.Z3; �/;

which are mutually isomorphic to the Novikov completion of

Z

�
K.Z1/˚K.Z2/˚K.Z3/

H 1.Y1/˚H 1.Y2/

�
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with respect to (the linear function on K.Z1/˚K.Z2/˚K.Z3/ induced by) �. Just
as in Lemma 2.7, there is an isomorphism

K.Z1/˚K.Z2/˚K.Z3/

H 1.Y1/˚H 1.Y2/

Š kerŒ�1˚ �2˚ �3W H
2.X /!H 2.Z1/˚H 2.Z2/˚H 2.Z3/�;

where �i is the restriction H 2.X / ! H 2.Zi/. We denote the above group by
K.X IY1;Y2/ and the Novikov completion of ZŒK.X IY1;Y2/� with respect to � by
K.X IY1;Y2; �/; this is a module for RY1;� and RY2;� via the coboundary map
H 1.Y1/˚H 1.Y2/! H 2.X / in the Mayer–Vietoris sequence arising from the de-
composition X D .Z1 t Z3/ [Y1tY2

Z2 . For this to make sense with the above
identifications, we adopt the convention that in this situation the map H 1.Y2/!H 2.X /

is signed oppositely from the one that arises when considering the single cut along Y2 ;
this is to account for the conjugate modules appearing above.

To understand the situation more concretely, consider the diagram:

H 2.X /
�1˚�23 - H 2.Z1/˚H 2.Z2[Z3/

H 2.Z1/˚H 2.Z2/˚H 2.Z3/

1˚�2˚�3

?

The kernel of the composition of the two maps is K.X IY1;Y2/, while the kernel of the
horizontal map �1˚�23 is K.X;Y1/: this shows K.X;Y1/�K.X IY1;Y2/ (and there
is a corresponding diagram showing K.X;Y2/�K.X IY1;Y2/). On the other hand, the
kernel of the composition is the preimage under �1˚�23 of the kernel of 1˚�2˚�3 .
The latter is clearly the image im .ıW H 1.Y2/!H 2.Z2[Z3//. Let S�K.X IY1;Y2/

be a complete set of coset representatives for K.X;Y1/ � K.X IY1;Y2/. Thus we
can think of S as a collection of lifts to H 2.X / of the members of the image of
H 1.Y2/!H 2.Z2[Z3/ that lie in the range of �23 . In particular, for a given s 2 S
the spinc structure sC s has the same restrictions to Z1 , Z2 and Z3 as does s, but
the restriction to Z2[Z3 differs from that of s.

Now, according to (20) and (21), the invariants OX ;Y1;�;s and OX ;Y2;�;s are the images
of zO under the homomorphisms 1˝… and …˝ 1, respectively. The projections …
are the restriction homomorphisms (in the sense of Lemma 8.2) associated to inclusions
K.Z1 [Z2/! K.Z1 [Z2;Y1/ (cf the discussion before Theorem 2.9). It is not
hard to see that under the identifications above, 1˝… is a restriction homomorphism
associated to the inclusion K.X;Y1/!K.X IY1;Y2/. When thinking of 1˝… in
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this way, we will write it as …1W K.X IY1;Y2; �/!K.X;Y1; �/; and similarly write
…˝ 1 as …2W K.X IY1;Y2; �/!K.X;Y2; �/.

Suppose we are given a spinc structure s and an element s 2S . We can write s as a lifteıh of an element ıh 2 im .ıW H 1.Y2/!H 2.Z2[Z3//, and according to Theorem
2.9 and the sign convention on the coboundary operator mentioned previously, we have

OX ;Y1;�;sCs D h�
�1F�Z1;�;s

.‚�/; F�Z2[Z3;�;s�ıh
.‚�/i

D 1˝…h��1F�Z1;�;s
.‚�/; F�Z2;�;s

ı eh
�F�Z3;�;s

.‚�/i

D…1h�
�1F�Z2;�;s

ıF�Z1;�;s
.‚�/; eh

�F�Z3;�;s
.‚�/i

D…1.e
�h
� zO/

where we can use the same representatives for the maps involved as in (20).

The above can be interpreted as follows. The “two-cut invariant” zO is an integer-
valued function on the group K.X IY1;Y2/, whose values on each coset K.X;Y1/C s

are equal to the values of the one-cut invariant OX ;Y1;�;sCs . Indeed, (20) indicates
that the restriction of zO to the subgroup K.X;Y1/ is equal to OX ;Y1;�;s , while the
above calculation indicates that after translating zO by �h and restricting, we obtain
OX ;Y1;�;sCs . Thus, with appropriate choices of representatives,

zOD
X
s2S

s �OX ;Y1;�;sCs;

thinking of both sides as members of the Novikov ring K.X IY1;Y2/.

An entirely analogous discussion holds for the one-cut invariant arising from Y2 , which
yields the following.

Lemma 8.16 Suppose X is given with two disjoint cuts Y1 and Y2 that are allow-
able for a class � 2 H 2.X IR/, and whose orientations are compatible. Then for a
spinc structure s on X , OX ;Y1;�;s and OX ;Y2;�;s contain the same information in the
following sense.

Let K.X IY1;Y2/ be as above, and let S1 and S2 be complete sets of coset repre-
sentatives for K.X;Y1/ and K.X;Y2/ respectively in K.X IY1;Y2/. Then there are
choices of representatives for the invariants OX ;Yi ;�;sCsi

(for si 2 Si ) such thatX
s12S1

s1 �OX ;Y1;�;sCs1
D

X
s22S2

s2 �OX ;Y2;�;sCs2
:

as members of K.X IY1;Y2/.
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This implies, for example, that the collection of values (coefficients) taken by OX ;Y1;�;s

for various s ranging through the collection fs0Ck j k 2K.X IY1;Y2/g is the same as
that of OX ;Y2;�;s , though of course the above also means that the identification between
the coefficients can be made to be equivariant with respect to the affine structure on
K.X IY1;Y2/.

Finally we obtain the following, which is a restatement of Theorem 1.6 from the
introduction. It should be seen as a generalization of Theorem 7.6 that allows us to
calculate Ozsváth–Szabó invariants using essentially any cut Y , if we can find an
appropriate perturbation.

Theorem 8.17 Let X be a closed oriented 4–manifold with bC.X /� 2, and Y �X

a connected submanifold determining a decomposition X D Z1 [Y Z2 , where Zi

are 4–manifolds with boundary. Fix a class � 2 H 2.X IR/, and assume that Y is
an allowable cut for �. If bC.Z1/ and bC.Z2/ are not both 0, then for any spinc

structure s on X and element ˛ 2A.X /,X
t2K.X ;Y /

ˆX ;sCt .˛/ � e
t
DOX ;Y;�;s.˛/D h�

�1‰Z1;�;s.˛1/; ‰Z2;�;s.˛2/i

up to sign and multiplication by an element of K.X;Y /, where ˛1˝˛2 7! ˛ as before.
If bC.Z1/D bC.Z2/D 0 then the same is true after possibly replacing � by another
class z�, where z�jZi

D �jZi
for i D 1; 2.

Proof If both bC.Z1/ � 1 and bC.Z2/ � 1 then this follows from Lemma 8.14.
Assume, therefore, that bC.Z1/D 0. We wish to find a cut Y 0 for X such that (1) Y 0

is disjoint from Y , and (2) in the decomposition X DZ0
1
[Y 0Z

0
2

, we have bC.Z0i/� 1

for i D 1; 2.

To find Y 0 , first consider the restriction �jY . Since Y is allowable for � and bC.Z1/D

0, we must have �jY ¤ 0 2H 2.Y IR/. Hence we can find a surface †� Y such thatR
† � ¤ 0, and since � is defined on X , we infer Œ†� is nonvanishing in H2.X IZ/.

Clearly †:†D 0. Let S be an embedded surface in X intersecting † transversely in
a single point; then fŒ†�; ŒS �g determine a direct summand of the intersection matrix of
X having one positive and one negative eigenvalue. Let N be a tubular neighborhood
of S in X ; then Y separates N into two components N1[N2 , with Ni �Zi . Let
zZ1 be obtained by adding a collar Y � Œ0; �� � Z2 to Z1 , and set Z0

1
D zZ1 [N2 .

Thus Y 0 D @Z0
1

is obtained by pushing Y slightly into Z2 and attaching the boundary
of N2 .

Since †[S�Z0
1

we see bC.Z0
1
/D1; on the other hand, the complement Z0

2
DX nZ0

1

has bC.Z0
2
/D bC.Z2/. There are several cases to distinguish.

Geometry & Topology, Volume 12 (2008)



1614 Stanislav Jabuka and Thomas E Mark

Case 1 (bC.Z0
2
/� 1) Here we are done, by Lemma 8.14 and Lemma 8.16. Indeed,

Lemma 8.14 shows that the invariants calculated from Y 0 are the Ozsváth–Szabó
invariants, while Lemma 8.16 implies that the invariants calculated from Y , taken
over all spinc structures, can be made to correspond in an equivariant way to those
calculated from Y 0 .

Case 2 (bC.Z0
2
/ D 0, but �jY 0 ¤ 0) Then Y 0 is still an allowable cut for � and

disjoint from Y , so Lemma 8.16 applies. We can now run the construction above
with Z0

2
playing the role of Z1 ; the result is a new cut Y 00 , disjoint from Y 0 , with

bC.Z00i /� 1 for i D 1; 2. Lemma 8.16 implies that the invariants calculated from Y ,
Y 0 , and Y 00 agree, while Lemma 8.14 shows that the invariants calculated from Y 00

are the Ozsváth–Szabó invariants.

Case 3 (bC.Z0
2
/D 0 and �jY 0 D 0) Let z�D �C PDX Œ†�, where PDX Œ†� denotes

the image in real cohomology of the Poincaré dual of Œ†� in H 2.X IR/. Then it is easy
to see that z�jY 0 ¤ 0, so that Y 0 is an allowable cut for z�. Note that since the classes
z� and � differ by an element in the image of ıW H 1.Y IR/!H 2.X IR/, they agree
on Z1 and Z2 . Running the preceding proof with z� in place of � we end in case 2
above, hence the conclusion of the theorem holds with the modified perturbation.

Note that in case 3 of the proof, it works just as well to take z�D �C� PDX Œ†�, where �
is an arbitrary nonzero real number. Thus Theorem 8.17 could be rephrased to say that
when bC.X / � 2, the perturbed Ozsváth–Szabó invariants are equal to the ordinary
Ozsváth–Szabó invariants when calculated with respect to a cut Y that is allowable for
a “generic” class � 2H 2.X IR/.

The preceding results provide sufficient understanding of the dependence of OX ;Y�;s

on Y for our purposes. We do not study the dependence of the perturbed invariants on
� here.

9 Heegaard Floer homology of a surface times a circle

From the general considerations of the preceding sections, we turn now to the problem
mentioned in the introduction of determining the behavior of Ozsváth–Szabó invariants
under fiber sum. Since a fiber sum along surfaces with trivial normal bundle is obtained
by gluing two manifolds together along the product of the summing surface † with a
circle, and the relative invariants of the pieces take values in the Floer homology of the
latter manifold, we will need a fairly detailed understanding of that Floer homology.

This section is devoted to the calculation of the perturbed Heegaard Floer homology
groups of †�S1 , for a particular choice of perturbation �. Indeed, our choice of � is
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induced by the cobordism †g �D2�D4 . The main input for this computation comes
from [3] where we developed most of the technical tools required. We start this section
by elucidating the new phenomena associated with working with twisted coefficients
in surgery exact sequences.

9.1 Exact sequences with twisted coefficients

Let K be a nullhomologous knot in a 3–manifold Y . Following typical notation in the
subject, we write Y` D Y`.K/ for the 3–manifold obtained by `–framed surgery on
K . As described in [11], there are exact sequences relating HFC (or bHF ) of the two
triples of three 3–manifolds (Y0 , Y , Y�n ) and (Y0 , Yn ,Y ) with n> 0 but otherwise
arbitrary:

� � �
G
�!HFC.Y0; Œsk �/

H
�!HFC.Y; s/

F
�!HFC.Y�n; sk/

G
�! � � �

� � �
G
�!HFC.Y0; Œsk �/

H
�!HFC.Yn; sk/

F
�!HFC.Y; s/

G
�! � � �(22)

By abuse of notation we have labeled the maps appearing in the two sequences by the
same letters although they are of course different functions. The map F W HFC.Y; s/!

HFC.Y�n; sk/ will be of special interest below and we proceed by first providing
more details concerning its definition as well as explaining the notation from (22).

Let W�n be the cobordism from Y to Y�n obtained by attaching a �n–framed
2–handle to Y � Œ0; 1� along K � f1g. Let � � Y be a Seifert surface of K and
let S � W�n be the surface obtained by capping off � � f1g with the core of the
attaching 2–handle. Given a spinc –structure s 2 Spinc.Y / let sk 2 Spinc.Y�n/ be the
spinc –structure on Y�n which is spinc –cobordant to s via .W�n; rk;0/ where rk;` 2

Spinc.W�n/ is uniquely determined by rk;`jY D s, hc1.rk;`/; ŒS �i D 2k � .2`� 1/n

and k 2 f0; 1; :::; n�1g.1 By Œsk � we denote the preimage Q�1
˙
.sk/ of a surjective map

Q˙W Spinc.Y0/! Spinc.Y˙n/ defined in [11, Theorem 9.19] whose details need not
concern us save the fact that when n� 0 this preimage includes at most a single spinc –
structure whose Floer homology HFC.Y0; t/ is nontrivial. By writing HFC.Y0; Œsk �/

we mean the direct sum of HFC.Y0; t/ over all spinc –structures t 2 Œsk �.

The map F from (22) is a sum

(23) F D
X
`2Z

F`; where F`W HFC.Y; s/!HFC.Y�n; sk/

is the homomorphism induced by .W�n; rk;`/.

1Every spinc –structure r 2 Spinc.W�n/ with rjY D s and rjY�n
D sk is of the form rD rk;` for

some ` 2 Z .

Geometry & Topology, Volume 12 (2008)



1616 Stanislav Jabuka and Thomas E Mark

Recall that when c1.s/ is torsion both HFC.Y; s/ and HFC.Y�n; sk/ come equipped
with an absolute Q–grading egr lifting the relative Z–grading gr (cf [15; 9]). With
respect to the absolute grading egr the degrees of the maps F` on homogeneous elements
are

(24) deg F` D
1

4

 
1�

.2k � .2`� 1/n/2

n

!

This function attains its maximum at `D 1
2
�

k
n

, though of course ` is constrained to
be an integer. When k ¤ 0 there is therefore a unique value of ` corresponding to
the maximal degree shift, while for k D 0 the maximum is attained for both `D 0; 1

(granted that n> 1).

To state the version of the sequence for twisted coefficients we first introduce some more
notation. Write W0W Y ! Y0 for the surgery cobordism; then it is a simple matter to
calculate that K.W /�H 2.W; @W IZ/ is infinite cyclic, generated by the Poincaré dual
of the capped-off Seifert surface S0�W0 . The group ring ZŒK.W /� is then isomorphic
to the ring L.t/ of Laurent polynomials in a single variable t , with RY0

–module
structure induced by the natural homomorphism H 1.Y0/!K.W /DH 1.Y0/=H

1.W /.
With the choice of Seifert surface � fixed, we can think of ZŒK.W /� D L.t/ more
concretely as follows. Let y� � Y0 be the surface obtained by capping off � with the
surgery disk, and take t D PD.Œy��/ 2H 1.Y0IZ/. Then let L.t/DZŒt; t�1� be the ring
of Laurent polynomials in t ; equivalently L.t/ is the group ring on the subgroup of
H 1.Y0/ generated by t . There is a natural homomorphism ZŒH 1.Y0/�!L.t/ induced
by the map ˛ 7! h˛; ŒK�i�t , or in multiplicative notation ˛ 7! t h˛;ŒK �i , corresponding to
the map RY0

! ZŒK.W /� above. (Here ŒK� indicates the homology class in H1.Y0/

coming from the core of the surgery torus.) Observe that if t 2 Spinc.Y0/ is a spinc

structure whose Chern class is dual to a multiple of Œy�� then as in Proposition 3.5, L.t/

is naturally a graded module for RY0;t with grt.t/D�hc1.t/[ t; ŒY0�i.

More generally, suppose s 2 Spinc.Y / is a spinc structure on the original 3–manifold,
and M is a graded module for RY;s . Then the surgery cobordism Y ! Y0 , equipped
with some spinc structure, induces a graded module SM ˝RY;s

ZŒK.W /� for RY0;t that
we denote by M Œt˙1�, where H 1.Y / acts trivially on L.t/.

With this understood, the next theorem is a slight generalization of Theorem 9.21 from
Section 9.6 in [11]. Indeed, the proof of that theorem goes through verbatim with only
notational modifications to yield:
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Theorem 9.1 Let Y be a three manifold, K a nullhomologous knot in Y and M

an RY –module. Then for any n> 0 there are long exact sequences of RY0
˝ZŒU �–

modules for the Heegaard Floer homology groups with twisted coefficients:

� � �
G
�!HFC.Y0; Œsk �IM Œt˙1�/

H
�!HFC.Y; sIM /Œt˙1�

F
�!HFC.Y�n; sk IM /Œt˙1�

G
�! � � �

� � �
G
�!HFC.Y0; Œsk �IM Œt˙1�/

H
�!HFC.Yn; sIM /Œt˙1�

F
�!HFC.Y; sk IM /Œt˙1�

G
�! � � �

The analogous sequences for bHF are also exact.

We shall refer to the above sequences as the negative n and positive n surgery sequences
respectively. As in (22) we abuse notation by labelling the maps in both sequences by
the same letters. It is worthwhile to single out a case of special interest later on, namely
the choice of M D Z with trivial RY –module structure. In this case the negative n

sequence becomes

(25) � � �
G
�!HFC.Y0; Œsk �IL.t//

H
�!HFC.Y; s/Œt˙1�

F
�!HFC.Y�n; sk/Œt

˙1�
G
�! � � �

The fact that the Novikov ring RY0;� is flat over RY0
implies the following, by tensor

product of (25) with RY0;� .

Corollary 9.2 Suppose �0 2H 2.W0IR/ is given, and the image � of �0 under the
map H 2.W0IR/!H 2.Y0IR/ satisfies h�[ t; ŒY0�i> 0. Then for any n> 0 there is
a long exact sequence

� � �
G
�!HFC.Y0; Œsk �IL.t//

H˝1
�! HFC.Y; s/Œt˙1�˝RY0

RY0;�

F˝1
�! HFC.Y�n; sk/Œt

˙1�˝RY0
RY0;�

G˝1
�! � � � ;

where L.t/ denotes the ring of Laurent series in t .

Indeed, it is not hard to see using Lemma 8.2 that the map H 1.Y0/!K.W0/ induces
a homomorphism of Novikov rings RY0;�!K.W0; �/ under the hypotheses above,
and that in fact K.W0; �/Š L.t/.

There is a straightforward relationship between the exact sequences (22) and (25).
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Proposition 9.3 Let K be a nullhomologous knot in Y and let F W HFC.Y; s/!

HFC.Y�n; sk/ and F W HFC.Y; s/Œt˙1�!HFC.Y�n; sk/Œt
˙1� be the maps appear-

ing in the exact sequences (22) and (25) respectively. Let Fi be the components of F

as in (23). Then

F D
X
`2Z

F`˝ t`

up to sign and overall multiplication by a power of t .

Moreover, when s is torsion and for a given fixed number d0 2Q, the only nonzero
terms in the restriction of F to HFC

�d0
.Y; s/ are those for which `D 0 or 1, for any

sufficiently large n.

Proof The homomorphisms in both sequences are defined by counts of holomorphic
triangles in appropriate Heegaard triple-diagrams, and the stated relationship between
F and F follows from elementary considerations in these diagrams. Indeed, in notation
from [11] (also [16]), the map in the twisted sequence can be written as

F .Œx; i �/D
X

 2�2.x;‚;y/

#M. /Œy; i � nz. /� � t
n . /;

where the sum is over homotopy classes of triangles  in a diagram .†; ˛; ˇ ;  ; z/

describing the natural cobordism Y ! Y�n . In this situation we are using twisted
coefficients on Y�n constructed by fixing a reference point � lying on the surgery circle
g , such that the boundary operator in the twisted chain complex for Y�n records
(in the power of t ) the intersection of the  –component of a holomorphic disk with
the subvariety V D 1 � � � � � g�1 � f�g � T � Symg.†/. (This formal device
induces trivially twisted coefficients on Y�n .) In the formula above, the power n . /

is similarly the intersection of the  –component of the boundary of  with V .

The first claim of the proposition amounts to the fact that the power of t appearing
above determines and is determined by the value hc1.sz. //;H.P/i, where H.P/ is
the 2–dimensional homology class of the triply periodic domain P corresponding to
the generator of the 2–dimensional homology of the surgery cobordism. This in turn
follows easily from inspection of the Heegaard triple itself, together with the expression
for hc1.sz. //;H.P/i in terms of data on the Heegaard diagram obtained by Ozsváth
and Szabó (Proposition 6.3 of [15]).

To see the remaining claim, recall that the homomorphism F` (corresponding to the
spinc structure on the cobordism with hc1.rk;`/; ŒS �i D 2k� .2`�1/n) induces a shift
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in degree given by (24). In particular we have

deg F` � deg F0 D 2k`� `.`� 1/n

deg F` � deg F1 D 2k.`� 1/� `.`� 1/n;

and so for `¤ 0; 1, the degree shift of F` can be made arbitrarily large by choosing n

large. The result follows since the grading of HFC is bounded below.

As an example, let us consider the Floer homology of the 3–torus T 3 , in the torsion
spinc structure. We can realize T 3 as the result of 0–surgery on each component of
the Borromean rings (Figure 1 below), and if we take K to be one component of that
link, then T 3 D Y0.K/ where Y D #2S1 �S2 . It is well-known that

HFC.#2S1
�S2; s/Šƒ�H 1.#2S1

�S2
IZ/˝ T�1;

where Tn is the ZŒU �–module ZŒU;U�1�=U �ZŒU �, graded so that the homogeneous
factor of lowest degree is in dimension n. It can also be shown that for sufficiently
large n there is an isomorphism

HFC
d
.Y�n; s0/Š

�
Z˚Z d � �

0 d < �

where � D 1
4
.1�n/ (this follows from results in [10], cf also the discussion in the next

subsection).

Hence the surgery sequence (25) appears as:

HFC.#2S1 �S2; s/Œt˙1� HFC.Y�n; s0/Œt
˙1� HFC.T 3; s0;L.t//

Z2Œt˙1� Z2Œt˙1� Z2

Z2Œt˙1� Z2Œt˙1� Z2

Z2Œt˙1� Z2Œt˙1� Z2˚ZŒt˙1�

ZŒt˙1� 0 0

Here we have arranged the columns “typewriter style,” so that the top-degree com-
ponents of the homomorphisms between the groups map horizontally, with the map
T 3 ! Y�n moving to the next row of the array. Strictly, the groups along the row
second from the bottom appear in degrees 0, � , and �1

2
, respectively. Furthermore,

we have chosen n large enough that only F0 and F1 are relevant for the displayed
portion of the sequence (which continues upward indefinitely, repeating the top row
above). The structure of the Floer homology of T 3 in large degrees can be deduced
from the universal coefficients spectral sequence, or by using the description of F0 and
F1 given in the following subsection. The U –equivariance of the sequence together
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with some easy homological algebra then shows that HFC
�1=2

.T 3/ has the indicated
form. Finally, we point out for future reference that the map

HFC
�1=2

.T 3; s0IL.t//!HFC
�1
.#2S1

�S2; s/Œt˙1�

appearing above is induced by the surgery cobordism equipped with the torsion spinc

structure, and corresponds to the projection Z2˚L.t/!L.t/.

9.2 A surface cross a circle: partially twisted coefficients

In this section we apply the general discussion from the previous section to the case of
Y D #2g.S1 �S2/ and K DKg D #gB.0; 0/ with B.m; n/ defined in Figure 1.

m n

B.m; n/

Figure 1: The knot B.m; n/�L.m; 1/#L.n; 1/ with m; n 2 Z . (Note that
L.0; 1/ is just S1 �S2 .)

Let �1 be the genus-1 Seifert surface for K1 obtained from the obvious disk bounded
by B.0; 0/ in Figure 1 by adding a handle where one of the other two components of
the Borromean rings intersects that disk. Let � D �g D \

g�1 be the choice of Seifert
surface for Kg . It is then not hard to see that Y0 D †g � S1 and t becomes the
Poincaré dual of Œ†g�. For the rest of this subsection and the next, we assume g � 2.

Let s be the unique torsion spinc structure on Y . Since HFC is nonzero only for a
finite set of spinc –structures, when n� 0 there is only one spinc structure in the set
Œsk � having nontrivial HFC , namely the unique spinc –structure sk 2 Spinc.†g �S1/

with c1.sk/D 2k PD.ŒS1�/. We shall take as perturbation the class

�D PD.ŒS1�/;
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which is easily seen to be the restriction of a class on the surgery cobordism W0W Y!Y0 .

With these choices of Y;K; � the maps F0;F1W HFC.Y; s/! HFC.Y�n; sk/ ap-
pearing in Proposition 9.3 have been made completely explicit by the results from [3;
10]. Before proceeding we describe these maps.

Let us use the shorthand ƒk and ƒ� to denote ƒkH 1.†gIZ/ and ƒ�H 1.†gIZ/
respectively. The reader familiar with knot Floer homology [10; 18] may recall that
ƒgCj is just the knot Floer homology 1HFK .#gB.0; 0/; j /, which is the homology
of the associated graded complex arising from a filtration on the Heegaard Floer chain
groups bCF . Such a filtration is induced by any nullhomologous knot K in a 3–manifold
Y ; here we specialize to the case K D #gB.0; 0/. In fact, K induces a filtration on
all the Heegaard Floer chain complexes, in particular on CF1 ; the filtration level j

of a generator Œx; i � for CF1 can be calculated directly from a Heegaard diagram
for Y (suitably adapted to K ), and is recorded in the notation Œx; i; j �. The function
Œx; i; j � 7! iCj gives rise to another filtration on CF1 , and thence a spectral sequence
converging to HF1.Y / whose E1 term is 1HFK .Y;K/˝ZŒU;U�1� (cf [10]). It is
this object that is currently under consideration in the case K D #gB.0; 0/; in the case
at hand (ie, K D #gB.0; 0/, with integral coefficients in all Floer homology), there are
no further differentials in any of the spectral sequences.

We place the ZŒU �–module ƒ�˝ZŒU;U�1� in a 2–dimensional coordinate system
by assigning ƒk˝U ` the coordinates .�`; k�g�`/ (see Figure 2 below). We equip
the coordinate plane with a Q–grading egrW Z2!Q by setting

(26) egr.i; j /D i C j:

In this description, the action of U can be thought of as translation by .�1;�1/ (see
again Figure 2); as usual it decreases grading by two. Following [10], we shall write

H fcondition on .i; j /g

to denote the various ZŒU � submodules and quotient modules of ƒ� ˝ ZŒU;U�1�

obtained as a direct sum over all the terms in the coordinate system which reside
at coordinates .i; j / subject to the stated conditions. For example H fi < 0g is the
submodule ƒ�˝ .U �ZŒU �/ and H fi � 0g is the quotient module ƒ�˝ T , where
T DZŒU;U�1�=U �ZŒU �. For 0� d � g�1 we define the ZŒU �–module X.g; d/ as

X.g; d/D

dM
iD0

�
ƒi
˝Z

T
U i�d�1 �ZŒU�1�

�
:

While our definition of X.g; d/ differs slightly from that used by Ozsváth and Szabó
in [10], it is not hard to see that they agree up to an isomorphism of relatively graded
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ƒ5˝U�1

ƒ5˝U

X.3; 2/
U 4

i i

jj

Figure 2: A visual representation of ƒ�˝ZŒU;U�1� in the case of g D 3 .
The dot at coordinate .x;y/ represents the group ƒg�xCy˝U�x , two exam-
ples are indicated. The action of U ` in this description of ƒ�˝ZŒU;U�1�

is simply translation by .�`;�`/ . The direct sum of the groups represented
by the dots in the shaded triangle is X.3; 2/ .

ZŒU �–modules. In fact, as was noted in [10], X.g; d/ is isomorphic as a relatively
graded group to the homology of Symd .†g/, the d –fold symmetric power of a genus
g surface. Indeed, the action of U on X.g; d/ corresponds to the cap product with
the Poincaré dual of pt �Symd�1.†g/ on H�.Symd .†g//.

In the notation above, X.g; d/ is isomorphic to

(27) X.g; d/ŠH fi � 0 and j < d C 1�gg

as a ZŒU �–module; see Figure 2 for a visual representation. We shall refer to this
identification as the standard embedding of X.g; d/ into ƒ�˝ZŒU;U�1�. We shall
encounter “nonstandard embeddings” of X.g; d/ as well; see Theorem 9.4 below.

It was shown in [10, Section 9] (as an instance of a general result on the relationship
between the knot Floer homology of K and the Floer homology of surgeries along
K ) that for Y D #2gS1 � S2 and K D #gB.0; 0/ as above, and n� 0, there are
ƒ�H1.†gIZ/˝ZŒU �–module isomorphisms

(28) HFC.Y; s/ŠH fi � 0g and HFC.Y�n; sk/ŠH fi � 0 and j � kg

where the action of ƒ�H1.†gIZ/Šƒ�H1.Y IZ/ on ƒk ˝U ` is given by

(29)  \ .˛˝U `/D �˛˝U `
C .PD. /^˛/˝U `C1
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for  2 H1.†gIZ/ and ˛ 2 ƒk . Here � is contraction with  and PD. / is the
Poincaré dual of  taken on †g . By virtue of (27) this action induces an action on
X.g; d/. We shall refer to (29) as the standard action, and use the cap product notation
\ to distinguish it from actions of first homology on Floer homology that need not be
“standard” (we use the “dot” notation for the latter: h:� for h 2H1 , � 2HFı ).

To describe the maps F0;F1W H fi � 0g ! H fi � 0 and j � kg (under the identifi-
cations (28)) we need a bit more notation. Let e1; : : : ; e2g be a symplectic basis for
H1.†gIZ/ and set ! D e1 ^ e2C � � � C e2g�1 ^ e2g 2 ƒ

2H1.†gIZ/. For a given
ˇ 2ƒ1 define ˇ†W ƒk !ƒk�1 as contraction associated to ! , ie

ˇ†.˛1 ^ :::^˛k/D

kX
`D1

.�1/`!.˛`; ˇ/ ˛1 ^ :::^ y̨` ^ ::^˛k

where !.˛`; ˇ/ refers to the natural pairing ƒ2H1.†g/˝ƒ
2H 1.†g/ ! Z. The

contraction † defined this way extends readily to a contraction †W ƒm˝ƒk!ƒk�m

given by .ˇ1^ :::^ˇm/†.˛1^ :::^˛k/D ˇ1†.ˇ2†.:::.ˇm†.˛1^ :::^˛k/::://. Let
z?W ƒk !ƒ2g�k be the “Hodge–Lefschetz star operator” associated to ! and defined
as

z?˛ D
1

g!
˛†!g

where we have by abuse of notation used ! to also denote e1^e2C :::Ce2g�1^e2g 2

ƒ2 , which is the dual of the symplectic form ! from earlier. Here ei 2H 1.†gIZ/,
iD1; :::; 2g is the dual basis (with respect to the Kronecker pairing) of ei 2H1.†gIZ/,
ie ei.ej /D ıij . Let

�k W H fi � 0g ! H fi � 0 and j � kg

�i�0 W ƒ
�˝ZŒU;U�1� ! H fi � 0g

�j�0 W ƒ
�˝ZŒU;U�1� ! H fj � 0g

be the natural projection maps and let J W H fi � 0g !H fj � 0g be the map

J.xU `/D �j�0

�
.�1/kCg�1 exp.2!U /† .z?x/U gC`�k

�
when x 2ƒk ;

where we omit the tensor product signs and, by convention, contraction with U n is
taken to mean multiplication by U�n . This map was studied in detail in [3]; see Figure
3 for a pictorial explanation of J .

The results from [3] show that F0;F1W H fi � 0g!H fi � 0 and j � kg are given by

F0 D

�
�k I k � 0

�k ı .U
�k J / I k > 0

and F1 D

�
�k ı .U

�k J / I k � 0

�k I k > 0:
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Figure 3: A visual explanation of the map J W H fi � 0g !H fj � 0g (with
gD 3), which is perhaps best understood as a perturbation of the star operator
z? . The latter maps an element at coordinate .x;y/ to an element at coordinate
.y;x/ . The action of exp.2!U /† � , thought of as a formal sum, then “smears
out” such an element along the line with slope �1 and passing through .y;x/ ,
in such a way that the only nonzero terms are those lying to the right and
below .y;x/ . Thus, for example when g D 3 , an element at coordinate
.0; 3/ is mapped by J to an element at coordinate .3; 0/ while an element
at coordinate .5; 3/ is mapped to a sum of terms living at coordinates .5; 3/ ,
.4; 4/ and .3; 5/ .

With all these preliminaries out of the way and with our notation in place, we now
turn to the actual calculations of the twisted Heegaard Floer groups of †g �S1 . The
adjunction inequality implies that for any spinc –structure s on †g �S1 which is not
among the sk , the associated Heegaard Floer groups HFC.†g�S1; sIM / vanish (for
any coefficient module M ); the same is true for sD sk when jkj � g . The remaining
spinc –structures sk with jkj � g� 1 give rise to nontrivial Heegaard Floer groups as
the next theorem explains.

Theorem 9.4 Fix an integer k with jkj � g�1. If k ¤ 0 choose ƒ to be either L.t/

or L.t/ and if k D 0 choose ƒD L.t/. Then the Heegaard Floer homology groups
HFC.†g �S1; sk Iƒ/ are isomorphic to

HFC.†g �S1; sk Iƒ/ŠX.g; d/˝ƒ with d D g� 1� jkj

as ZŒH 1.†g�S1IZ/�˝ZZŒU �–modules. The action of ƒ�H1.†gIZ/�ƒ�H1.†g�

S1IZ/ on X.g; d/ is induced by the standard action (29) under the nonstandard
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embedding of X.g; d/ into ƒ�H 1.†gIZ/˝ZŒU;U�1�˝ƒ given by

x 7! xC��jkj

�X
`�1

.�t U jkjJ /` x

�
:

Proof The proof of the theorem follows slightly different arguments depending on
whether k ¤ 0 or k D 0. We first address the former.

Case of k ¤ 0 For concreteness let us assume k < 0. Choose ƒ D L.t/ for now
and consider the negative surgery exact sequence in twisted coefficients (25). By
Proposition 9.3 the map F equals F0C tF1 after restricting to HFC�d0

.Y / for suitably
large d0 , once n is chosen sufficiently large (which we assume tacitly throughout).
It follows from the degree shift formula (24) that deg F0 D deg F1 � 2k and thus
deg F0 > deg F1 when k < 0. From the description of F0 and F1 above, F0 is clearly
surjective. Since deg F1 < deg F0 we see that F is also surjective. Moreover, we
claim that the kernel of F is generated by elements of the form

ker .F /D
�
xC�k

�X
`�1

.�t U�kJ /` x

�ˇ̌̌̌
x 2H fi � 0 and j < kg

�

Indeed, suppose �D �0C�1C� � � is in ker.F /, where �j are the homogeneous terms in
order of decreasing degree. Then certainly �02ker .F0/Dker .�k/DH fi �0 and j <

kg. On the other hand, if x 2 H fi � 0 and j < kg , we can “build” an element of
ker .F / from x by observing that F0.x/D 0, while tF1.x/D t�k.U

�kJ.x//. Thus
replacing x by x � t�k.U

�kJ.x//, we obtain an element still annihilated by F0 ,
whose image under tF1 is .�t.U�kJ //2x . Continuing in this way, and using that
since k < 0 the action of U�k is nilpotent on any element of ƒ�˝ZŒU;U�1�, we
eventually find an element killed by F0 C tF1 D F . This gives the identification
above, and then projection onto the homogeneous term of highest degree establishes
the isomorphism ker F Š X.g; d/ with d D g� 1� jkj. Since the sequence (25) is
equivariant with respect to the H1.†gIZ/–action, the proposition (for the case k < 0

and ƒDL.t/) follows. The results with ƒD L.t/ follows from the result for L.t/

by tensoring with RY0;� and using the flatness of RY0;� (cf Corollary 9.2). The case
of k > 0 can be proved analogously, or by appeal to conjugation invariance (Theorem
8.10).

We note that the argument above shows that F is surjective, and that if � 2 ker .F /
then the largest degree of a homogeneous term in � is bounded above (by g�2�2jkj),
independent of n. Thus the restriction of F to HFC�d0

above is permissible.
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Case of k D 0 Consider once more the sequence (25) and again note that upon
restriction to a given grading we may take F D F0C tF1 . The key difference from
the case of k ¤ 0 is that the degrees of F0 and F1 are now equal.

We begin by showing that F is again surjective: for a given y 2H fi � 0 and j � 0g

let xy 2H fi � 0g˝ƒ� be xy D �i�0.
P
`�0.�tJ /`y/. Then

F .xy/D�0.idCtJ /

�
�i�0

X
`�0

.�tJ /`y

�
D�0.idCtJ /

�X
`�0

.�tJ /`y

�
D�0.y/Dy:

This shows F0C tF1 is surjective; the remaining terms in F have strictly lower degree,
hence F is also surjective.

To determine the kernel of F pick a kernel element � D �0C�1tC�2t2C ::: 2 ker .F /.
Such an element � is then subject to the infinite system of equations (coming from the
requirement .F0C tF1/.�/D 0/:

�0.�0/D 0

�0.�1CJ.�0//D 0

:::(30)

�0.�k CJ.�k�1//D 0

:::

The equation �0.�0/ D 0 implies �0 2 H fi � 0 and j < 0g. The second equation
determines the H fi�0 and j �0g–component of �1 uniquely but imposes no condition
on the H fi � 0 and j < 0g–component of �1 . The same holds true for all �k , k � 1:

� The H fi � 0 and j � 0g-component of �k is determined by �k�1 .

� The H fi � 0 and j < 0g-component of �k can be chosen arbitrarily.

In particular, as before there is an a priori upper bound on the degree of a kernel
element and therefore it suffices to assume that F D F0C tF1 .

This immediately shows that the kernel of the map F is isomorphic (but not equal!) to
H fi � 0 and j < 0g ˝ L.t/. As the above system shows, the isomorphism from
H fi � 0 and j < 0g ˝ L.t/ to ker .F / � H fi � 0g ˝ L.t/ is given by the L.t/–
equivariant map

� 7! �C�0

�X
`�1

.�tJ /`�

�
:
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Remark 9.5 Consider the embedding X.g; d/ ,!ƒ�H 1.†gIZ/˝ZŒU;U�1�˝ƒ

from Theorem 9.4:

x 7! x��k

�
tU�kJx� .tU�kJ /2xC .tU�kJ /3x� :::

�
It follows from this expression that the induced action by H1.†g/ on X.g; d/ is
standard in the lowest power of t but typically has nonzero “correction terms” involving
higher powers of t . However, when 3jkj> g� 2 then all of the terms .tU�kJ /` for
`� 1 lie in the kernel of �k showing that in that range the ƒ�H1.†gIZ/–action has
no correction terms. This was already observed by Ozsváth–Szabó [10, Theorem 9.3]
in the case of Z coefficients (see also [3]).

Remark 9.6 The isomorphism HFC.†g�S1; sk Iƒ/ŠX.g; d/˝ƒ from Theorem
9.4 does not extend to the case of k D 0 and ƒD L.t/. With k D 0 and ƒD L.t/

the infinite system (30) becomes a finite system which terminates with the equation
�0.J.�m//D 0 for some choice of m 2N . This equation breaks the symmetry of the
system and imposes additional constraints not satisfied by all elements of the form
�0

P
`�0.�tJ /`x with x 2X.g;g� 1/˝L.t/.

Remark 9.7 From the proof of the theorem, the homomorphism F W HFC.Y; sIƒ/!

HFC.Y�n; sk Iƒ/ is surjective in all cases, so that HFC.† � S1; sk Iƒ/ can be
thought of as a submodule of HFC.Y; sIƒ/ D H fi � 0g ˝ƒ. The latter carries
a grading with respect to which t 2 ƒ (D L.t/ or L.t/) carries degree 0, so we
can use this to impose a similar grading on HFC.† � S1; sk Iƒ/ D X.g; d/˝ƒ.
Equivalently, we grade the latter group by lifting the natural grading on X.g; d/,
induced by the standard embedding. This grading lifts the relative cyclic grading
obtained by forgetting the grading on RY0

in the definition of twisted-coefficient Floer
homology, and has the property, for example, that homogeneous summands are RY0

–
submodules. However, it is no longer the case that the action by H1.Y0/ decreases
degree by 1, or is even homogeneous. We will refer to this alternative grading as the
height in HFC.†�S1; sk Iƒ/.

In the next section we will have occasion to consider the relative Ozsváth–Szabó
invariant of the 4–manifold †�D2 , for which the following result is central.

Theorem 9.8 Consider the cobordism W from †g�S1 to S3 obtained by removing
a small 4–ball from †g �D2 . For jkj � g � 1 let rk 2 Spinc.W / be the unique
spinc –structure on W which restricts to sk on †g �S1 . If k D 0 let ƒD L.t/ and if
k ¤ 0 choose ƒ to be either L.t/ or L.t/. Then the component of

Fk D FW ;rk
W HFC.†g �S1; sk Iƒ/!HFC.S3/˝ƒ
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mapping into the lowest-degree part HFC
0
.S3/˝ƒ is given by projection onto the

summand of lowest height, corresponding to H f.0;�g/g˝ƒŠƒ0H 1.†/˝U 0˝ƒ�

X.g; d/˝ƒ.

Proof We decompose the cobordism W as W DW0[W1[ :::[W2g where W0 is
the cobordism from †g �S1 to Y D #2g.S1 �S2/ obtained by attaching a 0-framed
2–handle to the latter along the knot Kg . The orientation on W0 is the one that induces
the orientations @W0D�.†g�S1/tY on its boundary components. The cobordisms
Wi , i D 1; :::; 2g are obtained by the obvious 3–handle additions corresponding to the
2g 1–handles of Y .

As explained in Section 2.2, the map Fk can be calculated by separately calculating
the contribution from each of the maps FWi

induced by Wi (the spinc –structure on
Wi is the restriction of rk jWi

which we omit from the notation for simplicity).

The map FW0
is just the map H from the sequence (25); it maps HFC.†g�S1; sk Iƒ/

isomorphically onto the kernel of F . This kernel was explicitly identified in the proof of
Theorem 9.4 and equals the image of the embedding of H fi � 0 and j <�jkjg˝ƒ,!

ƒ�˝ZŒU�1�˝ƒ given by

x 7! xC�k

�X
`�1

.�tU�kJ /`x

�
Under the identification of HFC.†g �S1; sk Iƒ/ with H fi � 0 and j < �jkjg˝ƒ

(Theorem 9.4 and (27)), this embedding precisely corresponds to the map FW0
.

It is a simple matter to see that the homomorphism in Floer homology induced by the
composition of 3–handle cobordisms #2gS1�S2!S3 is given by projection onto the
lowest-degree factor (and shifting degree up by g ). The result follows from the above
description of the image of HFC.†�S1; sk Iƒ/ in HFC.#2gS1 �S2/: indeed, the
only elements of HFC.†g �S1; sk Iƒ/ having any component in the lowest-degree
part of HFC.#2gS1 �S2/ are those in lowest height.

9.3 A surface cross a circle: universally twisted coefficients

It will be useful to have a small amount of information on the Floer homology of
†�S1 with “universal” coefficients, ie, coefficients in the group ring R†�S1 . Strictly,
the material in this section is not necessary for the fiber sum theorems to follow, but we
find it conceptually helpful to understand the Floer groups in which relative invariants
take values. The result we need, Theorem 9.12 below, states that the Floer homology
HFC.† � S1; s˙.g�1/IR†�S1/ is a free module of rank 1, ie, it is isomorphic to
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R†�S1 . This statement is in fact a consequence of work of Ozsváth and Szabó [14],
who show essentially that if Y is a 3–manifold that fibers over the circle with fiber
genus > 1, then there is an admissible Heegaard diagram for Y containing just a
single generator corresponding to the “extremal” spinc structure. We give a different
argument here based on knot Floer homology in the universally twisted case, which is
useful in other situations (eg [6]).

Continuing our notation from the last section, let Y be the manifold Y D #2g.S1�S2/.
An easy application of Theorem 9.1 (for surgery on the unknot in S3 and with nD 1)
and the connected sum formula for HFC and bHF (cf [11]) yields

bHF .#2g.S1
�S2/; s0IRY /Š Z.�g/ and HFC.#2g.S1

�S2/; s0IRY /Š T�g

where Tn D ZŒU;U�1�=U �ZŒU � as before, graded such that the summand of lowest
degree lies in degree n. For all spinc –structures s¤ s0 , HFC.#2g.S1 �S2/; sIRY /

and bHF .#2g.S1 �S2/; sIRY / are zero, so we shall drop the spinc –structure from
our notation. Also, we shall drop the 3–manifold from our notation for the knot Floer
homology groups whenever there is not risk of confusion.

Lemma 9.9 Let g� 1, set Y D #2g.S1�S2/ and let Kg be the nullhomologous knot
Kg D #gB.0; 0/ � Y . Then for j 2 f�g; : : : ;gg, the twisted knot Floer homology
1HFK.Kg; j IRY / is a free module over RY having rank

�
2g

gCj

�
and supported in

degree j , and is zero for all other values of j .

The proof of this lemma relies on a filtered version of Theorem 9.1.

Theorem 9.10 (Ozsváth–Szabó [10]) Let K;L�Z be two nullhomologous knots
with linking number 0. Let K0 , K1 and K�1 be the knots in Z0.L/, Z1.L/ and
Z�1.L/ induced by K where Z`.L/ is the result of `–framed surgery on L. Then
for any s 2 Spinc.Z/ and any RZ –module M there are exact sequences of RZ0.L/–
modules: for each j 2 Z.

� � � ! 1HFK.K; s; j IM /Œt˙1�! 1HFK.K0; Œsk �; j IM Œt˙1�/

! 1HFK.K1; sk ; j IM /Œt˙1�! � � �

� � � ! 1HFK.K; s; j IM /Œt˙1�! 1HFK.K�1; Œsk �; j IM Œt˙1�/

! 1HFK.K0; sk ; j IM /Œt˙1�! � � �

Proof of Lemma 9.9 Lemma 9.9 follows from repeated applications of Theorem 9.10
to various triples of knots; our proof is a straightforward adaptation of the Z–coefficient
proof first obtained by Ozsváth and Szabó in [10]. We first consider the case of g D 1.
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The three knots B.1; 1/!B.0; 1/!B.1; 1/ fit into the positive n surgery sequence
from Theorem 9.10. It is easy to see that B.1; 1/ is the unknot in S3 while B.1; 1/

is the right-handed trefoil. Thus

1HFK.B.1; 1/; j /Š

�
Z.0/ .j D 0/

0 .j ¤ 0/

1HFK.B.1; 1/; j /Š

8̂̂<̂
:̂

Z.0/ .j D 1/

Z.�1/ .j D 0/

Z.�2/ .j D�1/

0 .j ¤ 0;˙1/

and

where a subscript .n/ indicates that the corresponding module is supported in degree n.

Using these in the surgery sequence leads to

1HFK .B.0; 1/; j IRS1�S2/Š

8̂̂̂<̂
ˆ̂:
.RS1�S2/. 3

2/
.j D 1/

.R2
S1�S2/. 1

2/
.j D 0/

.RS1�S2/.� 1
2/
.j D�1/

0 .j ¤ 0;˙1/:

In a similar vein using the negative n surgery sequence from Theorem 9.10 for the
triple B.1;�1/ ! B.�1;�1/ ! B.0;�1/ (and observing that B.�1;�1/ is the
left-handed trefoil) leads to

1HFK .B.0;�1/; j IRS1�S2/Š

8̂̂̂<̂
ˆ̂:
.RS1�S2/. 1

2/
.j D 1/

.R2
S1�S2/.� 1

2/
.j D 0/

.RS1�S2/.� 3
2/
.j D�1/

0 .j ¤ 0;˙1/:

For our next set of surgery sequences note that B.0;1/ is the unknot in S1 �S2 and
therefore

1HFK .B.0;1/; j IRS1�S2/Š

(
Z.� 1

2/
.j D 0/

0 .j ¤ 0/

where Z is the trivial RS1�S2 –module. Using the negative n surgery sequence on the
triple B.0;1/! B.0;�1/! B.0; 0/ for j D 0 shows that

1HFK .�1/.B.0; 0/; 0IR#2.S1�S2//D 0:

The positive n surgery sequence for the triple B.0;1/ ! B.0; 0/ ! B.0; 1/ for
j D˙1 leads to

1HFK.B.0; 0/; j IR#2.S1�S2//Š .R#2.S1�S2//.j/ .j D˙1/
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while j D 0 yields the sequence

0! 1HFK .0/.B.0; 0/; 0IR#2.S1�S2//! .R2
#2.S1�S2/

/.� 1
2/
! .RS1�S2/.� 1

2/
! 0:

Let s1; s2 be two generators of H 1.#2.S1 �S2/IZ/, then we can write the above as

0! 1HFK .0/.B.0; 0/; 0IR#2.S1�S2//!L.s1; s2/
2

.� 1
2/

f
!L.s2/.� 1

2/
! 0;

where L.s1; s2/ is the ring of Laurent polynomials in s1 and s2 .

Notice that since s1 acts trivially on the factor L.s2/ above, f factors through a
quotient module:

L.s1; s2/
2 f - L.s2/

L.s1;s2/
2

.s1�1/�L.s1;s2/2
ŠL.s2/

2

�

?

zf

-

Here � is the map which sends a pair of polynomials .p.s1; s2/; q.s1; s2//2L.s1; s2/
2

to .p.1; s2/; q.1; s2// 2 L.s2/
2 . Consider zf as a homomorphism between L.s2/

modules. Since zf surjects onto the free module L.s2/, there is a splitting of the
domain of zf as L.s2/

2 Š ker . zf /˚L.s2/, as an L.s2/–module (and incidentally,
ker . zf /ŠL.s2/). Let a and b be L.s2/–module generators for the two factors in this
splitting; then under the standard decomposition of L.s2/

2 we have that aD .a1; a2/

and b D .b1; b2/, where ai , bi are Laurent polynomials in s2 . There is a canonical
lift of a and b to za; zb 2 L.s1; s2/

2 , by considering ai and bi to be polynomials in
both s1 and s2 . Since a and b generate L.s2/

2 as an L.s2/ module, it is easy to see
that za and zb generate L.s1; s2/

2 as an L.s1; s2/ module.

Put another way, we have arranged the splitting L.s1; s2/
2 ŠL.s1; s2/za˚L.s1; s2/zb

in such a way that f appears as the map .p.s1; s2/za; q.s1; s2/zb/ 7! q.1; s2/. Therefore

ker .f /DL.s1; s2/˚ .s1� 1/L.s1; s2/ŠL.s1; s2/
2
Š .R#2S1�S2/2;

completing the proof of Lemma 9.9 when g D 1. The case of g > 1 follows from this
and the connected sum formula for knot Floer homology [10].

The results of Lemma 9.9 can be rewritten in a more concise way as follows: let M be
the free R–module of rank 2g (with R still denoting RY DR#2gS1�S2 ). Then for
j D�g; : : : ;g we have 1HFK .Kg; j IR/Šƒ

gCj M supported entirely in grading j .

Recall that there is a spectral sequence associated to the knot filtration, whose E1

term is 1HFK .Kg; j IR/, and whose E1 term is bHF .#2g.S1 �S2/IR/Š Z.�g/ .
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Since the grading of any term in 1HFK.Kg; j IR/ equals j , it follows that this spectral
sequence collapses at the E2 stage, in particular the only nonzero differentials in the
spectral sequence are those on the E1 level:

@vW ƒ
`C1M !ƒ`M `D 0; : : : ; 2g� 1:

In particular, we infer that the chain complex

(31) 0!ƒ2gM
@v
!ƒ2g�1M

@v
! � � �

@v
!ƒ1M

@v
!ƒ0M ! 0

which appears at the E1 stage of the spectral sequence has homology equal to
bHF .#2gS1 �S2IR/D Z.�g/ . In other words, the complex above is a (minimal) free
resolution of Z in the category of R–modules, which we will be a useful observation
for us momentarily.

As before, knowledge of the knot Floer homology of Kg allows calculation of the
Floer homology of large integer surgeries along Kg . We will need only the following
result; the twisted Floer homology of circle bundles is studied in greater depth in [6].

Lemma 9.11 Fix g�2 and n�0. There is an isomorphism of RYn
˝ZŒU �–modules

HFC.Yn; s˙.g�1/IRYn
/ŠRYn

˚ T�g�� ;

where � D .n� .2g� 2� n/2/=.4n/, and RYn
is supported in degree g� 2� � (with

trivial action by U ).

Observe that there is an identification H 1.YnIZ/DH 1.Y IZ/, so that RYn
DRY .

Proof By conjugation symmetry, we may consider only the case of sg�1 . We have

HFC.Yn; sg�1IRYn
/ŠH fi � 0 or j � g� 1g:

To calculate this homology, we use the filtration induced by iC j as before to obtain a
spectral sequence with E1 term 1HFK .#2gB.0; 0/;RY /˝ZŒU;U�1� (or, the portion
of this group lying in the region fi � 0 or j � g� 1g). From the work above, we can
express this as E1

i;j D ƒ
gCj�iM ˝U�i , and for dimensional reasons only the d1

differential can be nontrivial in the spectral sequence. Since d1 splits as horizontal and
vertical parts as before, we can consider E1 as a double complex and use a second
spectral sequence to calculate its homology. Specifically: we use the spectral sequence
that arises from the filtration of E1 by the subcomplexes fi � i0g.

The first stage in this secondary spectral sequence calculates the homology of the
vertical differential. In each column i D c with c � 0, we see a shifted copy of the
complex (31) above, thus the homology of such a column is Z supported in degree
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c � g . The only other nonzero column is i D �1, which contains the single term
ƒ2gM ŠRY in degree g�2 (and hence is equal to its homology). Further differentials
in the secondary spectral sequence must be trivial: the only possible differential would
map Z into ƒ2gM , but there are no nontrivial RY –module maps of the torsion
module Z into the free module ƒ2gM . Hence the lemma follows, recalling that the
identification of HFC.Yn; sg�1/ with H fi � 0 or j � g� 1g shifts degree by � .

Theorem 9.12 Let g�2. The Floer homology of Y0D†g�S1 in the spinc structure
t˙.g�1/ characterized by c1.t˙.g�1//D˙.2g�2/PDŒS1� is given as an RY0

–module
by

HFC.Y0; t˙.g�1/IRY0
/ŠRY0

;

with trivial action by U .

Proof As usual, we consider tg�1 only. We consider the surgery sequence for large
positive surgeries, which gives rise to an exact triangle:

HFC.Yn; sg�1;RY /Œt
˙1�

F - HFC.Y; s;RY /Œt
˙1�

HFC.Y0; tg�1;RY0
/

�

�

Here we have chosen n large enough that tg�1 is the only spinc structure in the
equivalence class Œsg�1� having nontrivial Floer homology, and of course s is the
torsion spinc structure on Y D #2gS1 �S2 .

The highest-degree component of F is the t –linear extension of the natural projec-
tion H fi � 0 or j � g � 1g ! H fi � 0g, which is an isomorphism in all degrees
d � g � 1 � � , with � as in the preceding lemma. It follows that F itself is an
isomorphism in those degrees. By U –equivariance, we have that F restricts to the
factor T�g�� �HFC.Yn; sg�1IRY / as an isomorphism onto T�gDHFC.Y; sIRY /,
whence HFC.Y0; tg�1IRY0

/Š ker .F /. We claim that ker .F /ŠRY Œt
˙1�ŠRY0

.

To see this it suffices to find the kernel of F restricted to some bounded range of
degrees, where we know F can be identified with F0C tF1 (continuing notation from
previously). Furthermore, results of Ozsváth and Szabó [16] show that F1 is identified
(up to chain isomorphism) with the projection

H fi � 0 or j � g� 1g !H fj � g� 1g;
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and in particular is surjective in all high degrees. Then U –equivariance of maps induced
by cobordisms implies F1 (and also F0 ) must vanish on HFCred.Yn; sg�1;RY /Œt

˙1�D

RY Œt
˙1�, since Y has no reduced Floer homology.

10 Product formulae

We can now piece together the ingredients of the preceding sections to deduce the
results stated in the introduction. The conceptual plan is reasonably straightforward: if
X DM1#†M2 is a fiber sum as in the introduction, then the Ozsváth–Szabó invariants
for X are given by a pairing between relative invariants for Zi DMi n .†�D2/, after
perturbing by a class � 2H 2.X IR/ that restricts nontrivially to †�S1 , according to
Theorem 8.17.

To determine the relative invariants ‰Zi ;� of the pieces and obtain a formula for
OSX in terms of OSMi

, we observe that the Ozsváth–Szabó invariants of the Mi

are themselves determined by the pairing between ‰Zi ;� and the relative invariant of
†�D2 , again using the perturbed version of Floer theory since, even if bC.Zi/>0, we
have bC.†�D2/D 0 and Theorem 7.6 need not apply. Hence we need to understand
the perturbed relative invariant ‰†�D2;� , as well as the relevant pairing on Floer
homology.

Now, it is easy to see that the coefficient module for †�S1 induced by †�D2 (with
a 4–ball removed) is ZŒK.†�D2/�DL.t/, where t 2H 1.†�S1IZ/ is a generator
Poincaré dual to †�pt. There is little choice in the perturbation � on †�D2 ; namely
we take � to be (a positive multiple of the) Poincaré dual to the relative class pt�D2 ,
which has ht [ �; Œ†�S1�i D 1. Thus the Novikov completion of L.t/ with respect
to � is the ring L.t/ of Laurent series in t .

Assuming Œ†� to be (rationally) nontrivial in M1 and M2 , we can extend � to Mi ,
and consider the relative invariants of the complements Zi . In particular, if K.Zi ; �/

is the module for R†�S1;� induced by .Zi ; �/, we are interested in the pairing

HF�� .†�S1; sIK.Zi ; �//˝HF�� .�†�S1; sIL.t//!K.Mi ; †�S1; �/

�1˝ �2 7! h�
�1.�1/; �2i

between the perturbed Floer homologies. In fact, more specifically we are interested in
the homomorphism HF�� .†�S1; sIK.Zi ; �//!K.Mi ; †�S1; �/ induced by the
pairing above when �2 is equal to ‰†�D2;� , the relative invariant for †�D2 .

Now, it is a simple exercise to see that K.Mi ; † � S1/ is cyclic, generated by the
Poincaré dual of Œ†� in H 2.Mi/. Since † is assumed to represent a nontorsion class
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in each of M1 and M2 , then, we have K.Mi ; †�S1; �/Š L.t/. There is a natural
surjection

(32) �W K.Zi/Š
H 1.†�S1/

H 1.Zi/
!

H 1.†�S1/

H 1.Zi/CH 1.†�D2/
ŠK.Mi ; †�S1/;

inducing a surjection �W K.Zi ; �/!L.t/ (cf Lemma 8.2), and a commutative diagram

(33)

HF�� .†�S1IK.Zi ; �//
h��1.�/;‰

†�D2;�
i
- K.Mi ; †�S1; �/Š L.t/

HF�� .†�S1IL.t//

��

?
h��1.�/;‰

†�D2;�
i

- L.t/

id

?

(cf Lemma 7.7 and Lemma 7.8). We will see that the arrow on the bottom of this diagram
is determined essentially uniquely by algebraic considerations. Hence, determining the
pairing mentioned above is equivalent to understanding the change-of-coefficient map
�� , and the relative invariant ‰†�D2;� .

Naturally, we cannot hope to do better than determining these objects up to a unit
in L.t/. Since units abound in a power series ring, this is not necessarily sufficient.
However, we know that all the algebra we must use in the context of Novikov rings is
induced from corresponding algebra over ordinary group rings: that is, the perturbed
case is an obvious Novikov completion of the unperturbed case. Since L.t/ has many
fewer units than L.t/, this is a useful observation: we work initially in twisted, but
unperturbed, coefficients.

10.1 Relative invariants in case g D 1

Let M be a closed 4–manifold with bC.M / � 1 containing a smoothly embedded
torus T ,! M with trivial normal bundle. We assume that ŒT � is an element of
infinite order in H2.M /. Write T �D2 for a tubular neighborhood of T , and let
Z DM n .T �D2/ be the complement of this neighborhood. We wish to understand
the relationship between the Ozsváth–Szabó invariants of M and the relative invariant
of Z . If bC.M / D 1, we will be interested in the invariant OM;T�S1;� , where
� 2H 2.M IR/ is a class that restricts to T �D2 as a nonzero multiple of the Poincaré
dual of the relative class Œpt�D2�.
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Recall the following result of Ozsváth and Szabó.

Theorem 10.1 (Ozsváth–Szabó [9, Proposition 8.5]) The twisted Heegaard Floer
homology HFC.T 3; sIRT 3/ is trivial unless s is equal to the unique spinc structure
s0 with c1.s0/D 0. In this case, there is an isomorphism

HFC.T 3; s0IRT 3/D T1=2˚ ker."/;

where T1=2 is the ZŒU �–module ZŒU;U�1�=U �ZŒU �, graded so that its homogeneous
summand of least degree lies in dimension 1=2, and

"W RT 3 D ZŒH 1.T 3/�! Z

is the augmentation homomorphism that maps each element of H 1.T 3/ to 1. In the
above, ker."/ lies in degree �1=2.

In particular, the reduced Floer homology HFCred.T
3; s0IRT 3/ in the fully-twisted

case is equal to ker."/, lying entirely in degree �1=2.

Proposition 10.2 Let Z D M n .T � D2/ be the complement of an essentially
embedded torus in a 4–manifold as above, and let K.Z/Dker.H 2.Z; @Z/!H 2.Z//

as usual, so that K.Z/ Š H 1.T 3/=H 1.Z/. Then HFC
k
.T 3; s0IZŒK.Z/�/ D 0 if

k < �1=2, and there is an isomorphism

HFC
�1=2

.T 3; s0IZŒK.Z/�/Š ker."/˝R
T 3

ZŒK.Z/�:

The change-of-coefficient map ��W HFC.T 3; s0IZŒK.Z/�/!HFC.T 3; s0IL.t// is
given by the natural map

id˝ �W ker."/˝R
T 3

ZŒK.Z/�! ker."/˝R
T 3

L.t/

Proof For an RT 3 –module M , there is a “first quadrant” universal coefficients
spectral sequence converging to HFC.T 3; s0IM /, which has E2 term equal to
Tor j .HFCi .T

3IRT 3/;M /. In particular, the group in lowest total degree in the
E2 term is

Tor 0.HFC
�1=2

.T 3
IRT 3/;M /DHFC

�1=2
.T 3
IRT 3/˝M D ker."/˝M:

From the structure of the differentials in the spectral sequence this group must survive
as the lowest-degree part of E1 , which proves the first statement.

If �W M ! M 0 is a module homomorphism then we get a corresponding map of
spectral sequences, for which the map on the E2 term is id˝ � on the j D 0 row.
The second statement of the theorem follows as before, since we consider only the
bottom-degree groups.
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Note that although the fully-twisted Floer homology for T 3 in dimension �1=2 is
precisely equal to the reduced Floer homology, the same is not true in other coefficient
systems (indeed, with untwisted coefficients, the reduced Floer homology is trivial).
For example, in Section 9.1 we found that there is an isomorphism

HFC
�1=2

.T 3; s0IL.t//D ker."/˝L.t/D Z˚Z˚L.t/;

and in this decomposition only the L.t/ factor lies in the reduced Floer homology.
However, there is a natural projection HFC! HFCred for any 3–manifold and any
coefficient module. When we apply �� we often implicitly compose with this projection
without including it in the notation, and hope this will not cause confusion; note that
this problem disappears when we pass to perturbed Floer homology.

In the special case K.Z/DH 1.T 3/ (equivalently, the restriction H 1.Z/!H 1.T 3/

is trivial), we can identify the change-of-coefficient map (in reduced Floer homology)
with the surjection

H W ker."/!L.t/

a.r; s; t/ 7!
a.1; 1; t/

t � 1
:

Indeed, thinking of ZŒK.Z/� D RT 3 as the ring of Laurent polynomials in three
variables r; s; t , we have that ker."/ is the ideal generated by the three elements r � 1,
s�1, and t �1. In particular, if a.r; s; t/ 2 ker."/, then a.1; 1; t/ is divisible by t �1;
the given map is uniquely determined up to units in RT 3 .

With this understanding of the change of coefficients in the unperturbed case, we
can now introduce a perturbation �. As before, we choose any � 2H 2.M IR/ such
that the restriction of � to T 2 � D2 is Poincaré dual to pt � D2 . To understand
the relative invariant ‰T 2�D2;� , observe first that HFC.T 3; sIM/ is trivial for any
RT 3 –module M unless s D s0 , the unique spinc structure with c1.s0/ D 0. Thus
from now on we consider only spinc structures on M that restrict to s0 on T 3 , which
means also that c1.s/jT 2�D2 D 0. It is straightforward to see that in the fully-twisted
case, HFC.T 3; s0IRT 3;�/ŠRT 3;� , using Lemma 8.4 and Theorem 10.1.

Consider the complement ZDM n .T 2�D2/ as a cobordism S3! T 3 by removing
a 4–ball (we still use the symbol Z for this cobordism). In this situation the diagram
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(17) becomes

HF�.S3/
F�

Z- HF�.T 3IZŒK.Z/�/

HF�� .T
3IK.Z; �//;

i�

?

F �
Z
;�

-

where i� is the homomorphism induced by the natural map i W ZŒK.Z/�!K.Z; �/.
If K.Z/DH 1.T 3/ (eg, if the complement of T in M is simply connected), then in
the lowest nontrivial degree, i� is a map ker."/!RT 3 . This is induced by the natural
homomorphisms

HF�.T 3
IRT 3/!HF�.T 3

IRT 3/˝RT 3;�

!HF�.T 3
IRT 3 ˝RT 3;�/!HF�� .T

3
IRT 3;�/

Œx� ��������������! Œx�˝ 1

�����������������������������! Œx˝ 1�

so we can think of i� as the homomorphism mapping a Laurent polynomial a.r; s; t/ 2

ker."/ into the Laurent series ring RT 3;� by the natural inclusion.

Continuing to assume that K.Z/DH 1.T 3/, we consider the diagram

(34)

HFC
�1=2

.T 3IRT 3/ - L.t/

HFC
�1=2

.T 3IRT 3;�/

i�

?
- L.t/

?

HFC
�1=2

.T 3IL.t//

��

? h�;
‰ T

2 �
D

2 ;�
i

-

where the upper arrow is a 7! ha;F�
T 2�D2.‚

�/i, and the middle arrow is b 7!

hb; ‰T 2�D2;�i. In the unperturbed case, we have

ha;F�
T 2�D2.‚

�/i D h��.a/;F
�

T 2�D2.‚
�/i D hFC

T 2�D2.��.a//;‚
�
i

where �� is the projection to L.t/ coefficients. We know that in L.t/ coefficients,
FC

T 2�D2 induces a surjection to L.t/ (see the discussion at the end of Section 9.1).
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It follows from (the unperturbed analog of) (33) and Proposition 10.2 that the upper
arrow in (34) is given by

a 7! ha;F�
T 2�D2.‚

�/i DH.a/;

where H W ker."/!L.t/ is the homomorphism introduced above.

On the other hand, if we think of a 2 ker."/ as a Laurent polynomial a.r; s; t/

then i�.a/ D a. The coefficient-change map ��W HFC.T 3IRT 3;�/ Š RT 3;� !

HFC.T 3IL.t// Š L.t/ is necessarily the reduction b.r; s; t/ 7! b.1; 1; t/, so that
��.i�.a//D a.1; 1; t/.

Thus, ‰T 2�D2;�.1/ is a generator of HF�
�1=2

.T 3IL.t//, satisfying the property that
for a.r; s; t/ 2 ker."/,

ha; ‰T 2�D2;�.1/i DH.a/D
a.1; 1; t/

t � 1
;

up to a unit in L.t/. Identifying HF˙
�1=2

.T 3IL.t//D L.t/, the diagonal arrow in the
preceding diagram can be taken to be multiplication by ‰T 2�D2;�.1/. We conclude:

Proposition 10.3 The relative invariant ‰T 2�D2;� can be identified with the map
A.T 2 �D2/!HF�.T 3; s0IL.t//Š L.t/ whose value on the element 1 is

(35) ‰T 2�D2;�.1/D
1

t � 1

up to multiplication by ˙tn , and which vanishes on elements of A.T 2�D2/ having
nonzero degree.

Let M be a closed 4–manifold containing an embedded torus T with trivial normal
bundle, and � 2H 2.M IR/ a class with

R
T � > 0. Let s be a spinc structure on M ,

and write Z DM n .T �D2/. If hc1.s/; ŒT �i ¤ 0, then the relative invariant ‰Z;�;s

and the closed invariant OM;T�S1;�;s both vanish.

If hc1.s/; ŒT �i D 0, then the relative invariant ‰Z;�;s takes values in the Novikov ring
K.Z; �/. Furthermore, the value of the perturbed Ozsváth–Szabó invariant on a class
˛1˝˛2 with ˛1 2A.Z/, ˛2 2A.T 2 �D2/, is given up to multiplication by ˙tn by

OM;T 3;�;s.˛1˝˛2/D h�
�1‰Z;�;s.˛1/; ‰T 2�D2;�;s.˛2/i

D

8<:
1

t � 1
�.‰Z;�;s.˛1// if ˛2 D 1

0 otherwise,

where � is the natural map K.Z; �/ ! L.t/ induced by the projection K.Z/ !

K.M;T 3/Š Z.
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Note that since � is defined on all of M , the fact that the induced homomorphism � is
well-defined follows from Lemma 8.2.

Proof First, observe that since the Floer homology HF�� .T
3; s0IM/ is supported

entirely in degree �1=2 for any RT 3;�–module M, the elements of A.T 2 �D2/

having nonzero degree must act trivially. Thus, only ‰T 2�D2;�.1/ can be nontrivial.

If H 1.Z/!H 1.T 3/ is trivial, then K.Z; �/DRT 3;� and the result follows from the
preceding discussion. In the general case, observe that since HF�� .T

3; s0IRT 3;�/Š

RT 3;� is free over RT 3;� , we have

HF�� .T
3; s0IK.Z; �//ŠRT 3;�˝RT 3;�

K.Z; �/DK.Z; �/:

Thus the last statement of the proposition follows from (35) and (34).

10.2 Relative invariants in case g > 1

We follow an outline similar to the previous subsection; as before, we begin with
twisted but unperturbed coefficients.

Let † ,!M be an embedded surface of square 0 and genus g and s 2 Spinc.M / a
spinc structure. We have seen that unless c1.s/j†�S1 is Poincaré dual to 2kŒpt�S1�

with jkj�g�1, the Floer homology HFC.†�S1; sIN /D0 for any R†�S1 –module
N (and similarly after perturbation), forcing OM;†�S1;�;s D 0 for such s. Thus we
suppose that the restriction of s has the indicated form; we write sk for the spinc

structure on †�S1 with c1.sk/D 2k PDŒS1�.

The following is an easy consequence of Theorem 9.12, together with the universal
coefficients spectral sequence.

Lemma 10.4 Let N be a module for R†�S1 . Then when jkj D g� 1, we have an
isomorphism

HFCred.†�S1; sk IN /DHFC.†�S1; sk IN /DN:

If Z DM n .†�D2/ is the complement of a surface representing a class of infinite
order in H2.M IZ/, then the homomorphism

��W HFCred.†�S1; sk IZŒK.Z/�/!HFCred.†�S1; sk IL.t//

is equal to the projection �W ZŒK.Z/�! ZŒK.M; †�S1/�DL.t/.
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Applying a perturbation �2H 2.M IR/ restricting as a positive multiple of the Poincaré
dual of Œpt�D2� on †�D2 as before, we obtain the following, which describes the
relative invariant of †�D2 for general k , and gives the analog of Proposition 10.3 in
higher genus for jkj D g� 1.

Proposition 10.5 For the spinc structure sk on †�D2 with c1.sk/ Poincaré dual to
2kŒpt�D2�, the relative invariant ‰†�D2;�;sk

is a linear map

A.†�D2/!HF�� .†�S1; sk IL.t//

whose value ‰†�D2;�;sk
.1/ lies in the summand of maximal height (cf Remark 9.7).

Furthermore, there is a natural identification HF�� top.†�S1; sk IL.t//Š L.t/ such
that

(36) ‰†�D2;�;sk
.1/D 1

up to multiplication by ˙tn . More generally, if ˛ 2A.†�D2/ then ‰†�D2;�;sk
.˛/D

˛:1, where the right hand side makes use of the action of ƒ�H1.†�S1IZ/˝ZŒU �
on HF�� .†�S1; sk IL.t//.

Let ZW S3!†�S1 be a cobordism and � 2H 2.ZIR/ a class restricting to †�S1

as a positive multiple of the Poincaré dual of pt �S1 . Let s be a spinc structure on Z

restricting to the spinc structure sk on †�S1 , where jkj D g�1. Then ‰Z;�;s takes
values in the Novikov ring K.Z; �/.

Finally, let M be the closed manifold obtained by gluing †�D2 to Z , and filling in
the other boundary component of Z by a 4–ball. Extend � across †�D2 and B4 to
give a class � 2H 2.M IR/. For a spinc structure s with c1.s/j†�D2 Poincaré dual to
˙.2g� 2/Œpt�D2�, the value of the perturbed Ozsváth–Szabó invariant OM;†�S1;�;s

on ˛1˝˛2 2A.Z/˝A.T 2 �D2/ is given by

OM;†�S1;�;s.˛1˝˛2/D h�
�1‰Z;�;s.˛1/; ‰†�D2;�;s.˛2/i

D

�
�.‰Z;�;s.˛1// if ˛2 D 1

0 otherwise,

where � is the natural map K.Z; �/ ! L.t/ induced by the projection K.Z/ !

K.M; †�S1/Š Z.

Proof We have seen that the homomorphism FC†�D2;sk
W HFC.†�D2; sk IL.t//!

HFC.S3IL.t// can be identified with the projection of X.g; d/˝ L.t/ onto the
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summand having minimal height. Combining this with the preceding lemmas, we have
that for x 2HFC.†�S1; sk IK.Z; �//,

hx;F�†�D2;�;sk
.‚�/iD hFC†�D2;�;sk

.x/;‚�iD

�
�.x/ if �.x/ has minimal height
0 otherwise,

The analog of diagram (34) with †�S1 in place of T 3 implies that ‰†�D2;�;sk
.1/D

F�†�D2;�;sk
.‚�/ is a class pairing with x to give �.x/ when the latter has minimal

height, and 0 otherwise. It is not hard to see that the pairing between HFC and
HF� can be nontrivial only on elements of complementary height, and we have seen
(Theorem 9.4) that the summands in minimal and maximal height in the Floer homology
are HFCbot.†�S1; sk IL.t//Š L.t/ and HF�top.†�S1; sk IL.t//Š L.t/. Hence the
L.t/–valued pairing between these groups must be given by multiplication of Laurent
series (up to a unit in L.t/, since the pairing is induced from the unperturbed situation).
The above can therefore be interpreted as the statement that ‰†�D2;�;sk

.1/D 1.

Since A.†� S1/! A.†�D2/ is surjective, the statement ‰†�D2;�;sk
.˛/ D ˛:1

holds by the naturality of cobordism-induced homomorphisms under the action of H1 .

The remaining statements follow from the preceding lemma, together with (36).

The expression of the relative invariant ‰Z;�;s where c1.s/j†�S1 D PD.2kŒpt�S1�/

with jkj< g�1 is somewhat more complicated; in principle it may take as a value any
element of the Floer homology HF�� .†�S1; sk IK.Z; �//, which in the case at hand
is not a cyclic module. However, it is still possible to express the relative invariant for
Z (after applying �) in terms of the absolute invariants for M . To do so, we make
use of the structure of the Floer homology of †�S1 deduced previously.

First, recall that the graded group X.g; d/ is equipped with a “standard” action of
ƒ�H1.†/˝ZŒU �. In fact, suppose Bg;d D fˇg �X.g; d/ is a basis for X.g; d/ as a
free abelian group, with each ˇ a homogeneous element. Then it is easy to see that
there is a uniquely determined collection of elements f žg �ƒ�H1.†/˝ZŒU � (lying
in degrees � 2d ) with the property that ž\ˇ0 D ıˇˇ0 � 1 for ˇ; ˇ0 2 Bg;d , where \
is the standard action, ıˇ is the Kronecker delta, and 1 denotes a fixed generator in
lowest degree for X.g; d/.

We have seen in Theorem 9.4 that there is an isomorphism HF�� .†�S1; sk IL.t//Š
X.g; d/˝ L.t/, and furthermore that the action of ƒ�H1.† � S1/˝ZŒU � agrees
with the L.t/–linear extension of the standard action to leading order in t (and that
the class pt�S1 acts trivially). Suppose first that k ¤ 0, so that the variable t carries
a nonzero degree. The pairing h�; �i between HFC� and HF�� is nontrivial only on
elements of complementary height, and is induced from the untwisted pairing since
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in our situation the twisting is trivial. Writing „ for the generator in maximal height
given by ‰†�D2;�;sk

.1/, it follows for dimensional reasons that if the degree of ž is
equal to the height of x 2X.g; d/, then

h��1. ž:x/;„i D h��1. ž\x/;„i

(identifying x with x˝ 1 2 X.g; d/˝L.t/ D HF�.†� S1; sk IL.t//). Indeed, it
follows from Theorem 9.4 and Remark 9.5 that we can write

ž:x D ž\xC
X
n�1

tnk�n. ž;x/

for some elements �n. ž;x/2X.g; d/. Since ž:x is homogeneous (with respect to the
Z grading in which t carries degree �2k ), we infer that the �n. ž;x/ lie in degrees of
X.g; d/ other than that of ž\x . That is, these elements carry different height from
ž\x , and hence pair trivially with „.

On the other hand, if k D 0 then corrections to the H1 action ž:x appear in the same
height as ž\ x . Since the action is standard to leading order in t , however, we can
say that for basis elements ˇ;  as previously the action satisfies ž: D ıˇ uˇ.t/ � 1,
where uˇ 2 L.t/ is monic (in the sense that the coefficient of the lowest power of t is
1, cf Remark 9.5) and hence a unit in L.t/ (here we observe that if ž \  D 0 then
also ž: D 0). When k D 0, then, the above becomes

h��1. ž:x/;„i D uˇh�
�1. ž\x/;„i:

Now suppose � is an element of a given height in HF�� .†�S1; sk IL.t//. Then fixing
the basis Bg;d D fˇg as previously, we can express � in terms of fˇg by

� D

8̂̂̂<̂
ˆ̂:
X
ˇ

h��1. ž:�/;„i �ˇ if k ¤ 0

X
ˇ

h��1. ž:�/;„i �u�1
ˇ ˇ if k D 0;

where the sum is over basis elements ˇ having the degree equal to the height of � , and
we have chosen the lowest-height generator 1 for X.g; d/ such that h��1.1/;„i D 1.

Applying this idea to the case � D �.‰Z;�;s.˛1// leads to the following.

Proposition 10.6 Let M be a closed 4–manifold containing an embedded surface †
of genus g > 1 and trivial normal bundle, and � 2H 2.M IR/ a class with

R
† � > 0.

Write Z DM n .†�D2/, and let s be a spinc structure on M restricting to sk on
†�S1 .
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If 0 < jkj < g � 1, then for an element ˛ 2 A.Z/, the reduced relative invariant
�.‰Z;�;s.˛// is given in terms of a basis fˇg for HF�� .†�S1; sk IL.t// by

�.‰Z;�;s.˛//D
X
ˇ

OM;†�S1;�;s.˛˝
ž/ �ˇ;

where f žg � A.† �D2/ are elements dual in the above sense to the basis fˇg. If
k D 0, then

�.‰Z;�;s.˛//D
X
ˇ

OM;†�S1;�;s.˛˝
ž/ �u�1

ˇ ˇ;

where uˇ 2 L.t/ are units depending only on the basis fˇg.

In the expressions above, ˛˝ ž is shorthand for the image of that element under the
natural map A.Z/˝A.†�D2/!A.M /.

Proof When k ¤ 0, we expand �.‰Z;�;s.˛// in the basis ˇ as indicated previously:

�.‰Z;�;s.˛//D
X
ˇ

h��1. ž:�.‰Z;�;s.˛///; „i �ˇ

D

X
ˇ

.�1/deg. ž/
h��1.�.‰Z;�;s.˛///; ž:„i �ˇ

D

X
ˇ

.�1/deg. ž/
h��1.�.‰Z;�;s.˛///; ‰†�D2;�;sk

. ž/i �ˇ

D

X
ˇ

OM;†�S1;�;s.˛˝
ž/ �ˇ;

up to an overall sign and translation by a power of t , where we sum only over those
ˇ whose degree is equal to the height of �.‰Z;�;s.˛//. The case k D 0 is identical
except for the introduction of the elements u�1

ˇ
.

10.3 Fiber sum formulas

A minor technicality in deducing the formulae in the introduction is the presence of the
orientation-reversing gluing map in the fiber sum construction. We will have occasion
to refer to the map in Floer homology induced by this diffeomorphism, so we make a
few basic observations.

First, if f W Y ! Y 0 is an orientation-preserving diffeomorphism between 3–manifolds,
we can construct the mapping cylinder Cf D .Y � Œ0; 1�/[f .Y

0�f1g/ in the usual way,
which we can view as a smooth cobordism Y ! Y 0 of oriented manifolds. The action
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of f on Floer homology is by definition the homomorphism Fı
Cf

in Floer homology
induced by Cf . We will normally write this action as f� .

It is easy to see from basic properties of the cobordism maps that if h 2H1.Y / then
for x 2HFı.Y / we have f�.h:x/D f�.h/:f�.x/. In twisted coefficients, there is an
isomorphism f�D .f

�1/�W ZŒH 1.Y IZ/�!ZŒH 1.Y 0IZ/�, and for ˛ 2ZŒH 1.Y IZ/�
we have f�.˛x/D f�.˛/f�.x/. A similar statement holds in the perturbed case, if Y

is equipped with a class �1 2H 2.Y IR/ and we take �2 D .f
�1/��1 .

In the case of a fiber sum, we are given two closed 4–manifolds M1 , M2 with
embedded surfaces †1 , †2 of genus g and square 0. Write Zi DMi n .†i �D2/,
so that @Zi D †� S1 . Then we choose an orientation-preserving diffeomorphism
between †1 and †2 , extending it to †i �S1 by conjugation in the S1 factor. The
result is an orientation-reversing diffeomorphism f W @Z2! @Z1 , and the fiber sum
is defined to be X D Z1 [f Z2 . To make the gluing f more explicit, replace Z2

by W2 D Z2 [id Cf . Then X D Z1 [id W2 , and the relative invariants of W2 and
Z2 are related by ‰W2

D f�‰Z2
, according to the composition law. Thus both ‰Z1

and ‰Z2
naturally take values in HF�� .†�S1/ (with appropriate coefficients), while

‰W2
takes values in HF�� .�†�S1/.

Note that in certain situations, the above observations are sufficient to determine the
action of f� . For example, if the genus of † is 1, then the reduced part of HF�.†�

S1IL.t// is isomorphic to L.t/, where t is Poincaré dual to the torus †. Since the
action of f in cohomology reverses the sign of the latter class, linearity of the induced
map in Floer homology forces f�W HF�red.†�S1IL.t//!HF�red.�†�S1IL.t// to
be the conjugation map L.t/!L.t/, up to multiplication by ˙tn . Hence, the same
conclusion follows in perturbed Floer homology, using a class �2H 2.†�S1IR/ fixed
by f � , eg, the Poincaré dual to ŒS1�. A similar conclusion holds when considering
the action of the gluing map in higher genus, if we restrict attention to the highest (or
lowest) nontrivial heights in the perturbed Floer homology.

The fiber sum formula in the genus 1 case is as follows.

Theorem 10.7 Let X DM1#T1DT2
M2 be the fiber sum of two 4–manifolds M1 ,

M2 along tori T1 , T2 of square 0. Assume that there exist classes �i 2H 2.Mi IR/,
i D 1; 2, such that the restrictions of �i to Ti �S1 �Mi correspond under the gluing
diffeomorphism f W T2�S1!T1�S1 , and assume that

R
Ti
�i > 0. Let �2H 2.X IR/

be a class whose restrictions to Zi DMi n.Ti�D2/ agree with those of �i , and choose
spinc structures si 2 Spinc.Mi/, s2 Spinc.X / whose restrictions correspond similarly.
Then for any ˛2A.X /, the image of ˛1˝˛2 under the map A.Z1/˝A.Z2/!A.X /,
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we have

�.OX ;T�S1;�;s.˛//D .t
1=2
� t�1=2/2OM1;T1�S1;�1;s1

.˛1/ �OM2;T2�S1;�2;s2
.˛2/

up to multiplication by ˙tn .

Note that the closed invariants OMi ;Ti�S1;�i ;si
each take values in L.t/, where t is

the appropriate generator of K.Mi ;Ti �S1/, and the multiplication takes place in that
Laurent series ring.

Proof By definition,

OX ;T�S1;�;s.˛/D h�
�1.‰Z1;�1;s1

.˛1//; ‰W2;�2;s2
.˛2/i;

where W2 DZ2[Cf as in the remarks above. Applying � to each side, we see

�.OX ;T�S1;�;s.˛//D h�
�1�.‰Z1;�1;s1

.˛1//; f��.‰Z2;�2;s2
.˛2//i:

Since f��.‰Z2;�2;s2
.˛2//D �.‰Z2;�2;s2

.˛2//, the theorem follows quickly from this,
Proposition 10.3, and antilinearity of h�; �i. Observe that the pairing in Floer homology
of T �S1 can only be multiplication, up to ˙tn , since the modules are cyclic.

The higher-genus case is similarly easy, after some preparatory remarks. Recall that
given a (homogeneous) basis fˇig for X.g; d/, we obtain a “dual” collection f žig of
elements of A.†/D ƒ�H1.†/˝ZŒU �. This dual basis is defined by the condition
that ži \ ǰ D ıij , where \ is the standard action of A.†/ on X.g; d/. The dual
basis satisfies h��1. žj :ˇi/;„i D ıij ui , where „ is the usual topmost generator of
HF�.�† � S1; sk IL.t//, žj :ˇi denotes the action of A.†/ on Floer homology,
and ui is a unit in L.t/ that equals 1 unless k D 0. Furthermore, the basis f žig is
unique if we specify that it is contained in the subgroup zX .g; d/D

Ld
iD0ƒ

iH1.†/˝

ZŒU �=U d�iC1 �A.†/.

If f žig is the “Kronecker dual” basis, we can find a “Poincaré dual” basis fˇıi g for
X.g; d/, namely ˇıi D ži \ .1˝U�d /, where we think of 1˝U�d as a topmost
generator for the Floer homology X.g; d/˝L.t/DHF�� .†�S1; sk IL.t//. We could
also say that ˇıi is the leading order part (in t ) of ži :„, except that in our conventions,
„ is a generator for HF�� .�†�S1; sk IL.t//.

Associated to the basis fˇıi g, of course, there is a dual f žıi g, generating a subset of
A.†/. This set satisfies žıi \ˇ

ı
j D
žı

i \
ž
j \ .1˝U�d /D ıij .

With these conventions in mind, we have the following.
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Theorem 10.8 Let X DM1#†1D†2
M2 be the fiber sum of two 4–manifolds M1 ,

M2 along surfaces †1 , †2 of genus g and square 0. Let �1 , �2 , � be 2–dimensional
cohomology classes satisfying conditions analogous to those in the previous theorem,
and choose spinc structures s1 , s2 , and s restricting compatibly as before. If the Chern
classes of each spinc structure restrict to † � S1 as a class other than 2k PDŒS1�

with jkj � g� 1 then the Ozsváth–Szabó invariants of all manifolds involved vanish.
Otherwise, writing f for the gluing map †2 �S1!†1 �S1 , we have

�.OX ;†�S1;�;s.˛//

D

X
ˇ

OM1;†1�S1;�1;s1
.˛1˝

ž/ �OM2;†2�S1;�2;s2
.˛2˝f

�1
� . žı// �uˇ

up to multiplication by ˙tn . Here fˇg is a basis for HF�� .†�S1; sk IL.t// associated
to a basis for X.g; d/, d D g � 1� jkj, and f žg and f žıg are the dual elements of
A.†/ described above. The elements uˇ 2 L.t/ are units that are equal to 1 unless
k D 0.

Proof As in the previous theorem,

�.OX ;†�S1;�;s.˛//D h�
�1�.‰Z1;�1;s1

.˛1//; f��.‰Z2;�2;s2
.˛2//i:

Applying Proposition 10.5, this is�
��1

X
i

OM1;†1�S1;�1;s1
.˛1˝

ž
i/ �ˇi ; f�

X
j

OM2;†2�S1;�2;s2
.˛2˝ zj / � j

�
for bases fˇig and fj g whose relationship will be determined momentarily. As before,
f� is conjugate-linear in L.t/ and the pairing is also conjugate-linear in the second
variable. Hence the above is equal toX

i;j

OM1;†1�S1;�1;s1
.˛1˝

ž
i/OM2;†2�S1;�2;s2

.˛2˝ zj /h�
�1.ˇi/; f�.j /i:

Choose the basis fj g by setting j D f
�1
� .ˇıj /; from this it is easy to see that

h��1.ˇi/; f�.j /i D ıij uˇi
, and zj D f �1

� . žıj /. The result follows immediately.

Suppose now that each of M1 , M2 , and X have bC � 2, so that Theorem 8.17 applies
to identify the perturbed invariants O with the usual Ozsváth–Szabó invariants ˆ.
Assume also that s 2 Spinc.X / restricts to a nonzero multiple of PDŒS1�, ie, k ¤ 0

in the theorem above. The coefficient change � sums the coefficients of OX ;†�S1
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corresponding to spinc structures differing by rim tori, so since k ¤ 0, Theorem 10.8
translates to the equationX

n

ˆRim
X ;sCnt .˛/ tn

D

X
ˇ;n1;n2

ˆM1;sCn1t1
.˛˝ ž/ˆM2;s2Cn2t2

.˛2˝f
�1
� . žı// tn1Cn2 ;

where ti is Poincaré dual to the class of †i in Mi , and t is simultaneously the dual of
† in X and the formal variable in L.t/. The above holds after possibly a multiplication
by a power of t ; thus equating coefficients yields the formula

ˆRim
X ;s .˛/D

X
ˇ

n1Cn2Dn0

ˆM1;sCn1t1
.˛˝ ž/ˆM2;s2Cn2t2

.˛2˝f
�1
� . žı//

for some fixed integer n0 .

Now, if f žg is a basis of homogeneous elements, it is not hard to see that f žıg are
likewise homogeneous of complementary degree. Specifically, if deg. ž/ D m in
zX .g; d/ � A.†/ then deg. žı/ D 2d �m (as usual, d D g � 1� jkj). Thus in the

above formula, we have

deg.˛1˝
ž/C deg.˛2˝f

�1
� . žı//D deg.˛/C 2g� 2� 2jkj:

On the other hand, if a spinc 4–manifold .N; r/ has ˆN;r.�/ ¤ 0 for � 2 A.N /

then we must have deg.�/D d.r/. Substituting this in the above and using �.X /D
�.M1/C �.M2/ and e.X /D e.M1/C e.M2/C 4g� 4 gives

(37) c2
1.s/D c2

1.s1C n1t1/C c2
1.s2C n2t2/C 8jkj:

When k D 0, of course, changing si by multiples of ti does not affect the self-
intersection so that (37) holds in that case as well.

This observation motivates the following “patching” construction producing elements
of H 2.X IZ/ (modulo rim tori) from certain pairs of elements in H 2.Mi IZ/. We find
it easiest to describe this construction in homology rather than cohomology; the coho-
mological version is obtained by Poincaré duality. Suppose, then, that x1 2H2.M1/

and x2 2H2.M2/ are integral homology classes, represented by embedded surfaces
also denoted x1 , x2 , and assume that xi :†i D m for i D 1; 2. Let �W H2.Mi/!

H2.Zi ; @Zi/ denote the composition of the natural map H2.Mi/!H2.Mi ; †i�D2/

followed by the excision isomorphism of the latter group with H2.Zi ; @Zi/ where
Zi DMi n int.†i �D2/. Consider the long exact sequence for X DZ1[@ Z2 :

� � � !H2.†�S1/!H2.X /!H2.Z1; @Z1/˚H2.Z2; @Z2/!H1.†�S1/! � � �
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The condition on xi :†i and the fact that the �.xi/ are restrictions of classes on the
closed manifolds Mi imply that there exists a lift x 2 H2.X / of .�.x1/; �.x2//,
uniquely determined up to the image of H2.†�S1/.

Choose the surfaces xi to intersect †i �D2 in a collection of normal disks; at the
expense of increasing the genus of the xi we may assume that there are exactly jmj
such disks. Then removing †i �D2 from each of M1 , M2 and gluing we can obtain
a smooth surface representing the lifted class x . It is clear that x has x:†Dm, and
furthermore by using pushoffs of the xi that are disjoint from the normal disks in
†i �D2 we see that the self-intersection of x satisfies x2 D x2

1
Cx2

2
.

Now let x1 �x2 D xC 2"†, where " is the sign of m. Then the self-intersection of
x1 �x2 is

.x1 �x2/
2
D x2

1 Cx2
2 C 4jmj;

and moreover the class x1 � x2 is determined by this condition up to addition of
elements of H2.†�S1/=Œ†�, in other words, up to rim tori.

The multiplication in Theorem 1.1 is the Poincaré dual of this patching construction;
the proof of that theorem is immediate from Theorem 10.8 and the remarks leading to
(37). Theorem 1.4 follows similarly from Theorem 10.7.

11 Manifolds of simple type

Corollary 1.2 is an easy consequence of the fiber sum formula. Indeed, if M1 and M2

have simple type, then the only contributions to the right hand side of (1) are those
in which ˛1 , ˛2 , ˇ and ˇı have degree zero. Hence ˛ D ˛1˝˛2 also has degree 0,
showing that �.OX ;s.˛//D 0 unless deg.˛/D 0, which is the first statement of the
corollary. Furthermore, since ˇ and ˇı have complementary degree in zX .g; d/, their
degrees can both be 0 only if jkj D g� 1, which gives (2).

In the case of a 4–manifold containing a torus of square 0, we have the following
analog of a result of Morgan, Mrowka and Szabó [7] in Seiberg–Witten theory. Recall
that a 4–manifold X containing a surface † is said to have A.†/–simple type if
all Ozsváth–Szabó invariants of X vanish on elements of A.X / lying in the ideal
generated by U and H1.†/.

Proposition 11.1 Suppose X is a closed 4–manifold with bC.X / � 2 containing
a torus T � X of self-intersection 0 representing a class of infinite order in H2.X /.
Then X has A.T /–simple type.
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Proof By Theorem 8.17 we can write

OX ;T 3;�;s.˛/D h�
�1‰Z;�;s.˛1/; ‰T 2�D2;�;s.˛2/i;

for suitable perturbation �, and we may assume that sjT 2�D2 D s0 , the torsion spinc

structure. If ˛ D ˛0 � ˛T is in the ideal generated by A.T /, where ˛0 2 A.X / and
˛T 2 A.T /, then we can take ˛1 D ˛0 and ˛2 D ˛T . But ‰T 2�D2;�;s0

.˛T / D

˛T :‰T 2�D2;�;s0
.1/, and the relative invariant ‰T 2�D2;�;s0

.1/ lies in the only nontriv-
ial degree of HF�.T 3; s0IL.t//. Hence if deg˛T >0 we have ˛T :‰T 2�D2;�;s0

.1/D

0 and the result follows.

Note that the proof applies also to 4–manifolds with bC.X / D 1, if we consider
only the perturbed invariant OX ;T 3;�;s relative to the decomposition of X along the
boundary of a tubular neighborhood of the torus.
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[11] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and
applications, Ann. of Math. .2/ 159 (2004) 1159–1245 MR2113020

Geometry & Topology, Volume 12 (2008)



Product formulae for Ozsváth–Szabó 4–manifold invariants 1651
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