Geometry & Topology 12 (2008) 1653—1699 1653

The asymptotic geometry of right-angled Artin groups, I

MLADEN BESTVINA
BRUCE KLEINER
MICHAH SAGEEV

We study atomic right-angled Artin groups — those whose defining graph has no
cycles of length < 4, and no separating vertices, separating edges, or separating
vertex stars. We show that these groups are not quasi-isometrically rigid, but that an
intermediate form of rigidity does hold. We deduce from this that two atomic groups
are quasi-isometric iff they are isomorphic.

20F65, 20F69; 20F67, 05C25

1 Introduction

1.1 Background

We recall that to every finite simplicial graph I', one may associate a presentation
with one generator for each vertex of I" and one commutation relation [g, g’] = 1 for
every pair of adjacent vertices g, g’ € I'. The resulting group is the right-angled Artin
group (RAAG) defined by T' and will be denoted G(I") (we will often shorten this to
G when the defining graph I' is understood). This class of groups contains the free
group F, whose defining graph has k vertices and no edges, and is closed under
taking products; in particular it contains Zk and Fi. x Fj. Every RAAG G(T) has
a canonical Eilenberg—MacLane space K (I") which is a nonpositively curved cube
complex (called the Salvetti complex by Charney [6]); when G is 2—dimensional K (I")
is homeomorphic to the presentation complex. We let K(I") denote the universal cover
of K(T').

RAAGs have been studied by many authors. The solution to the isomorphism problem
has the strongest form: if G(I') = G(I'') then T =~ I"’ (see Droms [11] and Kim
et al [20]). Servatius [26] conjectured a finite generating set for Aut(G(I')) and his
conjecture was proved by Laurence [22]. The group G(I') is commensurable with
a suitable right-angled Coxeter group by Davis and Januszkiewicz [10]. There is an
analog of Outer space in the case when I' is connected and triangle-free; see Charney,
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Crisp and Vogtmann [7]. For a nice introduction to and more information about RAAGs
see Charney’s survey [6].

Our focus is on quasi-isometric rigidity properties of right-angled Artin groups. Some
special cases have been treated earlier:

e The free group G = F} . Here the standard complex K(I") is a tree of valence 2k .
Quasi-isometries are not rigid — there are quasi-isometries which are not at bounded
distance from isometries — but nonetheless any finitely generated group quasi-isometric
to a free group acts geometrically on some tree (see Stallings [27], Dunwoody [12] and
Gromov [15, 1.C1]) and is commensurable to a free group by Karass, Pietrowski and
Solitar [19]. Furthermore, any quasiaction G’ ~, K is quasi-isometrically conjugate to
an isometric action on a tree; see Mosher, Sageev and Whyte [24] and Section 2.

o G = Fj x F;. The model space K is a product of simplicial trees; as with free
groups, quasi-isometries are not rigid. However, by Mosher, Sageev and Whyte [24],
Kapovich, Kleiner and Leeb [17], Ahlin [1] and Kleiner and Leeb [21], quasiactions
are quasi-isometrically conjugate to isometric actions on some product of trees. It is a
standard fact that there are groups quasi-isometric to G which are not commensurable
to it (see Wise [28] and Burger and Mozes [5] for examples that are non—residually
finite, or simple, respectively).

e G = Zk. The model space is R¥, which is not quasi-isometrically rigid. In general,
quasiactions are not quasi-isometrically conjugate to isometric actions, although this is
the case for discrete cobounded quasiactions (see Gromov [13] and Bass [2]), ie any
group quasi-isometric to Z¥ is commensurable to it.

e G(I') where I' is a tree of diameter at least 3. Behrstock and Neumann [3] showed
that any two such Artin groups are quasi-isometric. Using work of Kapovich and Leeb
[18], they also showed that a finitely generated group G is quasi-isometric to such an
Artin group iff it is commensurable to one.

1.2 Statement of results

Our first result is that quasi-isometries of 2—dimensional RAAGs preserve flats (recall
that a flat is a subset isometric to R? with the usual metric):

Theorem 1.1 Let I', ' be finite, triangle-free graphs, and let K = K(T'), K'= K(I"').
Then there is a constant D = D(L, A) such that if ¢: K —> K’ is an (L, A)—quasi-
isometry and F C K is a flat, then there is a flat F' C K’ such that the Hausdorff
distance satisfies

Hd(¢(F), F') < D.
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The remaining results in this paper concern a special class of RAAGs:

Definition 1.2 A finite simplicial graph I' is atomic if:

(1) T is connected and has no vertex of valence < 2.
(2) T contains no cycles of length < 5.

(3) T has no separating closed vertex stars.
A RAAG is atomic if its defining graph is atomic.

The pentagon is the simplest example of an atomic graph. Our main results and
most of the issues in the proofs are well illustrated by the pentagon case. Conditions
(1)—(3) above exclude some of the known phenomena from the examples above. For
instance, Condition (2) rules out abelian subgroups of rank greater than 2 and subgroups
isomorphic to Fj x F; where min(k, /) > 1. Condition (3) prevents G(I') from splitting
in an obvious way over a subgroup with a nontrivial center; such a splitting would lead
to a large automorphism group.

Remark 1.3 The main result of Laurence [22] implies that the outer automorphism
group of an atomic RAAG is generated by the symmetries of I' and inversions of
generators. It also implies that an arbitrary simplicial graph I" with no cycles of length
< 5 is atomic iff G(I') has finite outer automorphism group.

The following example shows that Condition (3) is necessary in order for a RAAG to
be determined up to isomorphism by its quasi-isometry class.

Example 1.4 Let I" be any connected graph with no triangles and choose a vertex
vel.Let f: G(I') - Z, be the homomorphism that sends v to 1 € Z, and sends
all other generators to 0 € Z,. Then G’ = ker(f') is a RAAG whose defining graph
I’ can be obtained from I" by doubling along the closed star of v € I'. Concretely,
when T is the pentagon, G and G’ are commensurable but not isomorphic. Thus the
atomic property for RAAGs is not a commensurability invariant (in particular, it is not
quasi-isometry invariant). See Section 11 for more discussion.

Until further notice, I' will denote a fixed atomic graph, G = G(I'), K = K(I') and
K = K(T'), and V = V(K) will denote the vertex set of K. Whenever I'” appears, it
will also be an atomic graph, and the associated objects will be denoted by primes.

Before stating our main rigidity theorem we need another definition:
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Definition 1.5 A standard circle (respectively standard torus) is a circle (respectively
torus) in K associated with a vertex (respectively edge) in I'. A standard geodesic
(respectively standard flat) is a geodesic y C K (respectively flat ¥ C K ) which
covers a standard circle (respectively torus).

Note that if p € K is a vertex, then the standard geodesics passing through p are in 1-1
correspondence with vertices in 1", and the standard flats are in 1-1 correspondence with
edges of I'. As a consequence, the defining graph I' is isomorphic to the associated
incidence pattern.

Theorem 1.6 (Rigidity, first version) Suppose ¢: K — K’ is an (L, A)—quasi-
isometry. Then there is a unique bijection ¥: V — V' of vertex sets with the following
properties:

(1) d(.¢|,) <D=D(L,A).
(2) (Preservation of standard flats) Any two vertices v{, v, € V lying in a standard
flat F C K are mapped by V¥ to a pair of vertices lying in a standard flat F' C K’ .

(3) (Preservation of standard geodesics) Any two vertices vy, vy € V lying in a
standard geodesic y C K are mapped by  to a pair of vertices lying on a
standard geodesic y' C K'.

This theorem is proved, in the language of flat spaces, as Theorem 8.10. An immediate
corollary is:

Corollary 1.7 Atomic RAAGs are quasi-isometric iff they are isomorphic.

This follows from Theorem 1.6 because the pattern of standard geodesics and standard
flats passing through a vertex p € V' determines the defining graph, and by the theorem,
it is preserved by quasi-isometries.

Theorem 1.6 has two further corollaries, which may also be deduced from [22]:
Corollary 1.8 (Mostow-type rigidity) Every isomorphism G — G’ between atomic

RAAG:ES is induced by a unique isometry K — K', where we identify G and G’ with
subsets of Isom(K), Isom(K").

Corollary 1.9 Every homotopy equivalence K (F_) — K(T') is homotopic to a unique
isometry; equivalently, the homomorphism Isom(K) — Out(G) is an isomorphism. In
particular, there is an extension

l— H— Out(G) — Aut(I') — 1
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where Aut(I") denotes the automorphism group of the graph I', and H consists of
automorphisms that send each generator g to g¥'. Thus H is isomorphic to ZY ,
where V' is the number of vertices in T".

To complement the rigidity theorem, we construct examples showing that K is not
quasi-isometrically rigid, and that the failure of rigidity cannot be accounted for by the
automorphism group, or even the commensurator:

Theorem 1.10 Let Comm(G) denote the commensurator of G. Then both of the
canonical homomorphisms

Aut(G) - Comm(G), Comm(G) — QI(G)

are injective and have infinite index images.

The proof is in Section 11.

Every atomic RAAG is commensurable to groups which do not admit a geometric
action on its associated CAT(0) complex; see Remark 11.1 for more discussion. In
Example 1.4 the obvious involution of G’ cannot be realized by an isometric involution
on K. Nonetheless, there is a form of rigidity for quasiactions of atomic RAAGs,
which will appear in a forthcoming paper:

Theorem 1.11 If H r% K is a quasiaction of a group on the standard complex K for
an atomic RAAG, then p is quasiconjugate to an isometric action H ~ X, where X is
a CAT(0) 2—complex.

In fact, the 2—complex X is closely related to K.
The following remains open:
Question 1.12 If G is an atomic RAAG and H is a finitely generated group quasi-

isometric to G, are H and G commensurable? Does H admit a finite index subgroup
which acts isometrically on K ?

1.3 Discussion of the proofs

The proof of Theorem 1.6 bears some resemblance to proof of quasi-isometric rigidity
for higher rank symmetric spaces. One may view both proofs as proceeding in two
steps. In the first step one shows that quasi-isometries map top dimensional flats to
top dimensional flats, up to finite Hausdorff distance; in the second step one uses the
asymptotic incidence of standard flats to deduce that the quasi-isometry has a special
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form. In both proofs, the implementation of the first step proceeds via a structure
theorem for top dimensional quasiflats, but the methods are rather different. The
arguments used in the second step are completely different, although in both cases
they are ultimately combinatorial in nature; in the symmetric space case one relies on
Tits’ theorem on building automorphisms, while our proof requires the development
and analysis of a new combinatorial object. Another significant difference is that
quasi-isometric rigidity is false in our case, and so the rigidity statement itself is more
subtle.

The proof of Theorem 1.1 goes roughly as follows. We begin by invoking our result
from [4] which says that, modulo a bounded subset, every quasiflat in X is at finite
Hausdorff distance from a finite union of quarter-planes. Here a quarter-plane is a
subcomplex isometric to a Euclidean quadrant, and the Hausdorff distance is controlled
by the quasifiat constants. The pattern of asymptotic incidence of quarter-planes can
be encoded in the quarter-plane complex, which is a 1-complex analogous to the
Tits boundary of a Euclidean building or higher rank symmetric space. Flats in K
correspond to minimal length cycles in the quarter-plane complex. Using the fact
that the image of a quasiflat under a quasi-isometry is a quasiflat, one argues that
quasi-isometries induce isomorphisms between quarter-plane complexes. Hence they
carry minimal length cycles to minimal length cycles and flats to flats (up to controlled
Hausdorff distance).

The outline of the proof of Theorem 1.6 goes as follows.

Step 1 ¢ maps standard flats in K to within uniformly bounded Hausdorff distance
of standard flats in K'.

Theorem 1.1 and standard CAT(0) geometry imply that ¢ maps maximal product
subcomplexes to within controlled Hausdorff distance of maximal product subcom-
plexes. Because ' is atomic, every standard flat is the intersection of two maximal
product subcomplexes. Since maximal product subcomplexes are preserved, their
coarse intersections are also preserved, and this leads to preservation of standard flats.

Before proceeding further we introduce an auxiliary object, the flat space F = F (I"),
which is a locally infinite CAT(0) 2—complex associated with I". This complex
coincides with the modified Deligne complex of Charney and Davis [8] (see also
Davis [9] and Harlander and Meinert [16]); we are giving it a different name since we
expect that the appropriate analog in other rigid situations will not coincide with the
modified Deligne complex. Start with the discrete set F©, namely the collection of
standard flats in K. Join two of these points by an edge iff the corresponding flats
intersect in a standard geodesic; this defines the 1—dimensional subset FD of F. It
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is convenient to think of F(® and F(!) as the 0— and 1—skeleton of F even though
formally this is rarely the case.

To specify the rest of IF, we recall that the standard flats passing through a vertex
p € K correspond bijectively to the edges in I'. Using this correspondence, for each
p € K we cone off the corresponding subcomplex of F!) to obtain the 2—complex .
With an appropriately chosen metric (see Section 5), this becomes a CAT(0) complex.
We use the notation [F(p) to denote the subcomplex of IF corresponding to the flats
passing through p € K. It is easy to see that Theorem 1.6 is equivalent to saying that
quasi-isometries K — K’ induce isometries between flat spaces:

Theorem 1.13 (Rigidity, second version) There is a constant D = D(L, A) with the
following property. If ¢: K — K’ is an (L, A)—quasi-isometry, then there is a unique
isometry ¢«: F — ' such that for each vertex F € F, the image of F under ¢ has
Hausdorff distance at most D from ¢ (F) € F’.

We now switch to proving Theorem 1.13. Step 1 produces a bijection ¢g: F© — F'(©
between 0-skeleta.

Step 2 The bijection ¢ extends to an isomorphism ¢y F — F’.

We know that if two distinct standard flats Fy, F, € F () intersect in a standard geodesic,
then ¢o(F1) and ¢o(F,) intersect coarsely in a geodesic, ie for some D; = D{(L, A),
the intersection Np, (¢o(F1)) N Np, (¢o(F?2)) is at controlled Hausdorff distance from
a standard geodesic in K’. The property of intersecting coarsely in a geodesic defines
a relation on the collection of standard flats which is quasi-isometry invariant. The
remainder of the argument establishes the following:

Theorem 1.14 Any bijection ¥ ) 5 F7©) which preserves the relation of intersecting
coarsely in a geodesic is the restriction of an isometry F — ',

This boils down to showing that if p € K, then there is a point p’ € K’ such that all the
flats passing through p are mapped by ¢ to flats passing through p’. To establish this
we exploit taut cycles, which are special class of cycles in the 1-skeleton of flat space;
in the pentagon case these are just the 5—cycles. The heart of the proof is Theorem 7.1,
that the map ¢ carries the vertices of a taut cycle to the vertices of a taut cycle. The
proof of this theorem is based on small cancellation theory. Due to the abundance of
taut cycles and their manner of overlap, one deduces from this that the flats in F(p)
are mapped by ¢q to F(p’) for some p’ € K’ (see Section 8).
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1.4 Organization of the paper

In Section 2 we discuss some background material on RAAGs, CAT(0) spaces and cube
complexes. Section 3 and Section 4 develop the geometry of quasiflats, culminating
in the proof of Theorem 1.1. Sections 5, 6 and 7 build toward the proof that (the
standard flats corresponding to) the vertices of a taut cycle in F are mapped by a
quasi-isometry to (the standard flats corresponding to) the vertices of a taut cycle (cf
Theorem 7.1). This is proved by studying cycles in F® | and certain disk fillings of
them; the argument is developed in Sections 6 and 7. Section 8 promotes taut cycle
rigidity (Theorem 7.1) to full F—rigidity (Theorem 1.13). Sections 9, 10 and 11 work
out various implications of [ -rigidity.

Acknowledgements Bestvina is supported by NSF grant DMS-0502441. Kleiner is
supported by NSF Grant DMS-0505610 and DMS-0701515. Sageev is supported by
ISF #580/07.

2 Preliminaries

2.1 The structure of the model space K(TI')

We begin by introducing some notation and terminology connected with RAAGs.

Let T be a finite simplicial graph. If T’ contains no triangles, denote by K (I") the
presentation complex for G(I'). Thus K (") has one vertex, one oriented edge for
every vertex of I', and one 2—cell, glued in a commutator fashion, for every edge of
I'. The closed 2—cells are tori. More generally, one may define K(I") for arbitrary T
by adding higher dimensional cells (tori), one k—cell for every complete subgraph of
I" on k vertices. Then K(T") is a nonpositively curved complex. The universal cover
is a CAT(0) cube complex denoted K(T"). We will often use the notation K or K,
suppressing the graph I', when there is no risk of confusion.

We label the edges of K and K by vertices of I', and the squares by edges of I'.
More generally, each k—dimensional cubical face of K or K is labelled by a k —tuple
of vertices in I', or equivalently, by a face of the flag complex of I'. If Y C K is
a subcomplex, we define the label of Y to be the collection I'y of faces of the flag
complex of I' arising as labels of faces of Y. In this paper we will be concerned
primarily with 2—dimensional complexes, when the flag complex of I" is I itself.

Recall that a full subgraph of T is a subgraph I'" C T" such that two vertices v, w € T/
span an edge in I"" iff they span an edge in T". (This is closely related to the notion of
the induced subgraph of a set of vertices of I'.)
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If I'" C T is a full subgraph, then there is a canonical embedding K (I'') — K(T'),
which is locally convex and locally isometric. We call the image of such an embedding
a standard subcomplex of K , or simply a standard subcomplex. The inverse image of a
standard subcomplex under the universal covering K — K is a disjoint union of convex
subcomplexes, each of which is isometric to K(I'"); we also refer to these as standard
subcomplexes. A standard product subcomplex is a standard subcomplex associated
with a full subgraph I'" C T" which decomposes as a nontrivial join. A standard flat is a
standard subcomplex F C K which is isometric to R?, ie it is associated with a single
edge in I'. A standard geodesic is a standard subcomplex y C K associated with a
single vertex in I'. If V' C I is a set of vertices in I, then the orthogonal complement
of V is the set of vertices w € I' which are adjacent to every element of V':

Vi:={weTl|dw,v)=1foreveryve V}.

Thus the join V o V1 is a (bipartite) subgraph of I'. Note that the subgroup generated
by V1 lies in the centralizer of the subgroup generated by V.

A singular geodesic is a geodesic y C K contained in the 1—skeleton of K. Note that
standard geodesics are singular, but singular geodesics need not be standard. (As an
example, consider the case when I is a finite set, and K is a bouquet of circles, and
K is a tree. Then every geodesic is singular, and standard geodesics are those which
project to a single circle.) Singular rays are defined similarly. A quarter-plane is a
2—dimensional subcomplex of K isometric to a Euclidean quadrant.

For the remainder of this section, we will assume that I" is triangle-free, ie dim K < 2.

Lemma 2.1 Two standard flats F, F' C K lie in the parallel set P(y) of some
geodesic y iff the intersection N, (F) N N, (F’) is unbounded for all sufficiently large
r € (0,00).

Proof Clearly, if F U F’ C P(y) then N,(F) N N,(F’) contains y when r >
max(d(F,y),d(F',y)).

By a standard argument, since the respective stabilizers in G of F and F’ act cocom-
pactly on F and F’, the stabilizer in G of C := N, (F) N N, (F’) acts cocompactly
on C. Therefore, if the convex set C is unbounded, it contains a complete geodesic ¥,
and we have F U F' C P(y). O

Note that the label I'g of a quarter-plane o x § = E C K is a bipartite graph which is
the join I'y 0 I'g.
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Lemma 2.2 Suppose C C K is a convex 2—dimensional subcomplex which splits
(abstractly) as a nontrivial product of trees C = T x T, ; here T; may be finite, and
have no branch points. Then C is contained in a standard product subcomplex.

Proof C is a square complex, and isomorphic to a product. Since opposite edges of
a square have the same label, the edge labelling of C descends to edge labellings of
T; and T,. Note if for i € {1,2}, a; is an edge label appearing in 7T;, then there is a
corresponding square in C = T x T, and hence the corresponding vertices of I" are
joined by an edge. Therefore C defines a complete bipartite subgraph IV C T'. If we
choose a vertex v € C and let P be the copy of K1 passing through v, then clearly
C C P, since C is connected and projects to K. |

Lemma 2.3 Suppose C, C’ are convex subsets of a CAT(0) space X, and let A :=
d(C,C") (here d(C,C’) denote the minimum distance). Then:

(1) The sets
Y:={xeC|d(x,C')=A},
Y :={xelC'|dx,C)=A}
are convex.

(2) The nearest point map r: X — C maps Y’ isometrically onto Y ; similarly, the
nearest point map r’: X — C' maps Y isometrically onto Y.

I
(3) Y and Y’ cobound a convex subset Z 2y x [0, A].

(4) Ifin addition X is a locally finite CAT(0) complex with cocompact isometry
group, and C, C’ are subcomplexes, then the sets Y and Y’ are nonempty, and
there is a constant A > 0 such that if p € C, p’ € C', and if d(p,Y) > 1,
d(p',Y')>1 then

(2.4 d(p.C"Y=A+A4d(p.Y), d(p'.C)=A+Ad(p'.Y").

Furthermore, the constant A depends only on A and X (but not on C and C').

Proof Assertions (1)—(3) are standard CAT(0) facts, so we only prove assertion (4).

Suppose {px} C C, {p; } C C’ are sequences such that d(py, p; ) — A. After passing
to a subsequence if necessary, we may find a sequence {gz} C Isom(X) such that the
sequences of pairs

(gk(C). gk pi)- (k(C"). gk Py)
converge in the pointed Hausdorff topology to pairs (Ceo, Poo), (Cl, PLo)- Since there
are only finitely many subcomplexes of X which are contained in a given bounded

Geometry € Topology, Volume 12 (2008)



RAAG rigidity 1663

set, we will have poo € gx(C), pl, € gk (C’) for sufficiently large k. Therefore
g,:l (pso) € C, g;l(pgo) € C’, and the distance A is realized. This shows that the
sets Y7 and Y, are nonempty.

We now prove the first estimate in (2.4); the second one has a similar proof. Observe that
a convergence argument as above implies that there is a constant 4 > 0 such thatif x € C
and d(x,Y)=1,then d(x,C’)> A+ A.If pe C\ N{(Y), then d¢- (the distance
from C’) equals A at r(p) and at least A + A at the point x := pr(p) NS (p), 1);
here p r(p) denotes the geodesic segment with endpoints p and r(p). Since dc is
convex, this implies (2.4). O

Remark 2.5 Note that the convex sets Y and Y’ in 4 of Lemma 2.3 need not be
subcomplexes.

Corollary 2.6 Suppose o, o are asymptotic singular rays in K. Then there are
singular rays 8 C o, B’ C o’ which bound a flat half-strip subcomplex, and hence have
the same labels.

Proof By passing to subrays, may assume that @ and o’ are subcomplexes.

Applying Lemma 2.3 to « and «’, one finds that the distance between « and o is
attained on singular subrays 8 C «, 8’ C ', which bound a convex subset Z isometric
to B x [0, Al.

If A =0 then 8 = B’ and we are done, so suppose A > 0. We may assume also that the
initial point p of the ray S is a vertex of K. We claim that Z is a subcomplex of K.
To see this, let p’ € B’ be the initial point of the ray ', and consider the segment pp’.
Note that there must be a square .S C Z with vertex at p, whose boundary contains
the initial part of pp’. Repeating this reasoning, it follows that every point x € pp’ is
contained in a square lying in Z . Further repetition shows that Z is a union of squares,
and hence is a subcomplex.

The corollary now follows from Lemma 2.2. |

Definition 2.7 Suppose o C K is a singular ray, and [«] denotes its asymptote class.

The label of [«] is the collection [, of labels determined by the asymptote class of «:
Doy i= N {Tw | & € [a]}.

By Corollary 2.6, every o’ € [«] has a subray o” C &’ such that Ty» =T,y If E C K
is a quarter-plane, the label of [ E] is the intersection

F[E] = ﬂ {FE/ | E/ S [E]},
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where the two quarter-planes are equivalent if they have a quarter-plane in common;
see Lemma 3.1.

Lemma 2.8 Suppose P, P’ C K are standard product complexes (in particular,
dim P =dim P’ =2). If P C N,(P’) for some r € (0,00), then P C P’.

Proof The distance function dps is a bounded convex function on P. Since geodesic
segments in P are extendible in P, it follows that dpr must be constant on P; set
A:=dp/(P). By astandard CAT(0) fact, if f: K —> P’ is the nearest point retraction,
then P and r(P) cobound a subset isometric to P x [0, A]. Since dim P = dim K,
we must have A =0, and so P C P’. m]

2.2 Cube complexes and hyperplanes

We recall basic terminology and facts about CAT(0) cubical complexes. For more
details, see the paper [25] by the third author.

A cubical complex is a combinatorial cell complex whose closed cells are Euclidean
n—dimensional cubes [0, 1]* of various dimensions such that the link of each vertex is
a simplicial complex (no 1-gons or 2—gons). A theorem of Gromov [14] then tells
us that a simply connected cubical complex is CAT(0) if and only if the link of each
vertex is a flag complex.

Since an n—cube is a product of n unit intervals, each n—cube comes equipped with
n natural projection maps to the unit interval. A hypercube is the preimage of {%}
under one of these projections; each n—cube contains n hypercubes. A hyperplane
in a CAT(0) cube complex X is a connected subspace intersecting each cube in a
hypercube or the empty set. Hyperplanes are said to cross if they intersect nontrivially;
otherwise they are said to be disjoint.

Here are some basic facts about hyperplanes in CAT(0) cube complexes which we will
use throughout our arguments.
e Each hyperplane is embedded (ie it intersects a given cube in a single hypercube).

e Each hyperplane is a track [12], and hence separates the complex into precisely
two components, called half-spaces.

e If{H,...., Hy}is acollection of pairwise crossing hyperplanes, then (|, Hy #2.
e Each hyperplane is itself a CAT(0) cube complex.
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3 Quarter-planes

In this section, we define a complex using the quarter-planes in K and their asymptotic
incidence. This object is analogous to the complex at infinity that one has for symmetric
spaces and Euclidean buildings, and corresponds to part of the Tits boundary. The main
result is Theorem 3.10, which implies that quasi-isometries between 2—dimensional
RAAG complexes preserve flats.

Unless otherwise indicated, in this section I' will be a triangle-free defining graph and
K will be the associated CAT(0) complex.

Lemma 3.1 Suppose E =a xf and E' = a’ x 8/ are quarter-planes in K . Then one
of the following holds:

(1) (Equivalent) There is a quarter-plane E” C E N E’; hence E” has finite
Hausdorff distance from both E and E’.

(2) (Incident) There are constants A, B € (0, 00) such that after relabelling the
factors of the E and E’ if necessary, a is asymptotic to ' and forevery p € E,
p/ c E/,

(3.2) d(p,E"Y>= A(d(p,a)—B), d(p',E)=A(d(p'.a')—B).

(3) (Divergent) The distance function dg grows linearly on E’, and vice-versa, ie
there are constants A, B € (0, 00) such that forall x € E, y € E’,

3.3) d(x,E')> A(d(x, p)— B), d(y,E)= A(d(y,p")— B).
Proof We apply Lemma 2.3 with C = E and C' = E’, and let A € [0,00), Y C
E, Y CE and Z ~Y x[0, A] >~ Y’ x[0, A] be as in that Lemma.
We claim that one of the following holds:
(a) Y =Y’ is a quarter-plane.
(b) Y (respectively Y) is at finite Hausdorff distance from one of the boundary
rays «, B (respectively o', B).
(¢c) Y, Y’ are bounded.

To see this, first suppose A =0. Then Y =Y’ = E N E’ is a convex subcomplex of
both E and E’. Since K is a square complex, this implies that ¥ and Y’ are product
subcomplexes of E, and the claim follows. If A > 0, then since Z meets Y and Y’
orthogonally, it follows that Y, Y’ are contained in the 1-skeleton. The claim then
follows immediately.

Lemma 2.3 now completes the proof. O
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Henceforth we will use the terms equivalent, incident, and divergent, for the 3 cases in
the lemma above.

Definition 3.4 We define the quarter-plane complex Q as follows. It has one vertex
for each asymptote class of singular geodesic rays, and one edge joining [«] to [B] for
each equivalence class of quarter-planes [« x f8].

Note that this definition is motivated by the complex of chambers at infinity that one
has for symmetric spaces of noncompact type, and also by the Tits boundary.

Lemma 3.5 Suppose E = o x 8 C K is a quarter-plane. Then precisely one of the
following holds:
(1) |Tgy| =T =1. This implies that || = |Tis| = 1, which means that T is
a single edge of I' which forms a connected component of I'. The quarter-plane
E belongs to a unique cycle in Q, namely the 4—cycle QF associated with a
unique flat F' C K labelled by I'ig;.

(2) After relabelling the factors of E, |F[i]| =1, |F[§]| > 1. Then there is a unique
equivalence class [E'] of quarter-planes such that [E’] is incident to [E] at [c].
Furthermore, any cycle ¥ C Q containing [ E] must also contain [E'], and there
is a pair of flats F, F' C K such that the corresponding 4—cycles Qf, Qp C Q

intersect precisely in [E]U[E'].

3) min(|F[f;] , |F[J‘;] ) > 1. Then there is a pair of flats F, F' C K such that the

corresponding 4—cycles QF, Qs satisty Qr N Qp = [E].

Proof Case1l Since Iy C I'; and Iy C T, it follows that |Ti| = |Tyg| = 1.
Setting 1oy = {v}, [ = {w}, we find that v is the unique vertex adjacent to w,
and vice-versa. Let K’ C K be the product subcomplex associated with the edge
vw C I', containing a sub-quarter-plane of E; then K’ is a flat which determines a
cycle ¥y C Q. Note that the valence at each vertex in X¢ is 2, and hence any cycle

Y. C @ which intersects X must coincide with X .

Case2 Let IV C T be the join of Iy and Ijsy = Iy, and let K’ C K be the copy
of K(I'') containing a sub-quarter-plane of E. If E’ is a quarter-plane adjacent to E
along [«], then the asymptotic label of £’ must be contained in I'’, and so after passing
to a sub-quarter-plane of E’ if necessary, we may assume that £/ = o’ x 8/ C K",

where K" is another copy of K(I').

We claim that K” = K’. Otherwise, K’ and K” would be disjoint, and the asymptotic
singular rays «, o’ would contain subrays & C &, @ C o’ such that @ and @’ bound a
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half-strip subcomplex Z C K. Since F[f;] = T'g C I, we have that Z lies in a single
copy of K(I'), which is a contradiction.

Thus E' C K'. But then 8’ C K’ is a ray adjacent to o which is not asymptotic to §;
there is a unique such asymptote class in K’, and this implies that [E’] is unique.

Let I'" C T be the join of I'ys and I'5; D Ty Let K” be the copy of K(I'”) which
contains K. Then K" is a product R x T' where 8 is asymptotic to the R—factor, and
T is a tree of valence > 4 because |['ig| > 1. The remaining assertions follow readily

from this.

Case 3 Let IV C T be the join of Iy and T, and I C T be the join of '
and F[Jﬁ-]. After passing to a sub-quarter-plane of E if necessary, we may assume that
E Cc K'N K", where K’, K” C K are product subcomplexes associated with I'" and
I respectively. Since min(|T;, |T':5|) > 1, there are pairs of flats F}, F, C K’ and
F {’ , Fé/ C K" such that the intersections F { N Fﬁ, F {’ N Fé’ are half-planes whose

intersection is precisely E. O

In the remainder of this section, we will apply results from [4]. We refer the reader to
that paper for the definition and properties of support sets.

Lemma 3.6 Let Q C K be a quasiflat. There is a unique cycle [Eq],...,[Ex] C Q
of quarter-planes in Q, such that the union

Ui E;
has finite Hausdorff distance from Q. We denote this cycle by Qg .
Proof By [4, Section 5], there is a finite collection Eq,..., E; of quarter-planes in

K such that each E; is contained in the support set associated with @, and for some
r € (0,00),

Q C Ny (Uz E; )
Note that this collection of quarter-planes is uniquely determined up to equivalence.
To see this, observe that if £ ;, L E ; is another collection of quarter-planes with

0 c Ny (U; E))

for some r’ € (0, 00), then for each 1 <i <k, there must be a 1 < j </ such that
E ]’ is equivalent to E;; otherwise Lemma 3.1 would imply that there are points in E;
arbitrarily far from the union | J; E}.

We now assume that the quarter-planes Eq, ..., E; represent distinct equivalence
classes.
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Pick 1 < j <k, and consider the quarter-plane E; = xf8;. Suppose «; is incident to
i of the quarter-planes in the collection {Eq,..., E;}, where i # 2. Pick R € (0, 00).
By Lemma 3.1, if we choose x € «; lying sufficiently far out the ray «;, then the ball
B(x, R) will intersect Q in a set which is uniformly quasi-isometric to an R-ball
B(x’, R) lying in an i —pod, where x’ is a singular point of the i —pod. (Recall that
an i —pod is a tree which is a union of i rays emanating from a single vertex.) This

contradicts the fact that Q is a quasiflat. Therefore {E1, ..., E;} determines a union
of cycles in Q. But it can only contain a single cycle, because the support set of QO
has only one end. |

Lemma 3.7 Every cycle ¥ C Q arises from a quasiflat Q C K.

Proof Let the consecutive edges in X be represented by quarter-planes Ey, ..., Ej C
K, where the indices take values in the cyclic group Z; . Let W be the space
obtained from the disjoint union | |; £; by gluing the boundary rays isometrically,
in a cyclic fashion; let E; denote the image of E; in W under the quotient map
7. || Ei — W. With respect to the path metric, W is bi-Lipschitz homeomorphic to
R2, and the quotient map E; — E; is a bi-Lipschitz embedding for each i. Define
¢: W — K by setting ¢(w) = p, where p € | J; E; is a point with 7(p) = w.

Since X is a cycle, consecutive quarter-planes are incident, and this implies that there
is a constant C € (0, co) such that for all w,w’ € W,

d(¢(w), p(w")) <d(w,w") +C.
We claim that there are constants L, A € (0, 00) such that for all w,w’ € W,
d(¢w).¢w") > L™ d(w, w") - A.

If this were false, there would be sequences wy, w;c € W such that d(w, w’) — oo,

and
d(p(wg), p(wy))

0.
dwewp)

By Lemma 3.1, without loss of generality we may assume that for some i € Z; 1,
wy, € Int(E;) and w;c €Int(E;yq) forall k. Let Y C E;, Y' C E; 41 be as in Lemma
3.1, where C = E;, C’ = E;4+1. Then we must have

: max(d(wg, Y), d(wy, Y'"))
lim sup ; —0
k—o00 d(wg, wk)

because of (3.2) or (3.3). But then we may replace wy, w;c with sequences lying in Y
and Y’ respectively, and this yields a contradiction. |
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Definition 3.8 For each quasiflat Q C K, we let Qg C Q denote the corresponding
cycle in Q. We denote by C be the collection of cycles in Q, and by N the poset of
subcomplexes of Q generated by elements of C under finite intersection and union.
Finally, M C N will denote the collection of elements of N~ which are minimal among
those of dimension 1.

We will consider the collection of subsets of X up to Hausdorff equivalence. Two
subsets A4, B C X are Hausdorff equivalent if for some r >0 we have N,(A) D B and
N, (B) D A. The equivalence class of A is denoted [A4]. We define [4]U[B] as [AU B].
It is not hard to check that this is independent of the choice of representatives. Note that
AN B is generally not Hausdorff equivalent to N,(A) N N,(B), so [A]N[B] is not
defined. To remedy this, say that a collection {[A4;]} of Hausdorff equivalence classes is
coherent if for any finite subcollection A4;,,---, A;, thereis ro > 0 such that for every
r > rg the sets Ny(A4;) N---Ny(A;,) and Npy(A4i) N -+ Npy(A;, ) are Hausdorff
equivalent. In this situation define [A4;, ]N---N[A4;,] as [Ny(4;,) N+ N Ny (A4;,)] for
large r. This concept behaves well under finite unions: if each 4;; is written as a
finite union of sets, and the collection of all of these is coherent, then the collection
A, -+, Aj, is coherent as well. The usual associativity and distributivity laws apply,
eg ([A;]U[4i,]) N[Ai] = (A, ] N [Ai]D U ([4i] N [A45]) -

For example, the collection of (the classes of) quarter-planes in X is coherent, by
Lemma 3.5.

Now consider the collection QF of quasiflats in X', modulo Hausdorff equivalence. By
Lemma 3.6 this collection is coherent. Let P be the collection of subsets of X modulo
Hausdorff equivalence obtained by intersecting finite collections of elements of OF .
Every element of P has a representative which is a finite union of quarter-planes and
standard rays, so we have a natural map P — N . This map preserves finite intersections
by Lemma 3.5, and is therefore a bijection. It follows that minimal elements of P
correspond bijectively to minimal elements of N'. After removing elements of P
represented by collections of rays (call those inessential, while the other elements
are essential) and elements of A that are 0—dimensional we obtain an isomorphism
Mp — M between the essential minimal elements of P and 1-dimensional elements
of M.

If /: X — X’ is a quasi-isometry, then f maps quasiflats to quasiflats and induces
a bijection Mp(X) — Mp(X'). This bijection preserves inessential elements, and
therefore there is an induced bijection M(X) — M(X’).

Observe that Lemma 3.5 yields a classification of elements of M, ie a minimal element
of N consists of either 4 edges, 2 edges, or 1 edge, according to the relevant case of
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Lemma 3.5. Moreover, by the next lemma, if ¥ € M, then we may determine how
many quarter-planes it contains by determining the number of elements of M that are
required to complete X to a cycle.

Lemma 3.9 Let E = o x  be a quarter-plane as in Lemma 3.5(2). Then there is
aflat F C K suchthat F =14 xIp, l4 is asymptotic to « in the forward direction,
[ is asymptotic to f in the forward direction, and the quarter-plane ['; x I formed
by the backward directions of 4 and lp also satisfies that there is a unique class of
quarter-planes incident to [[{ x I g] at [[].

Proof Since I‘[f;] = ;5 consists of one label, we may pass to a sub-quarter-plane of
E if necessary so that all labels along B are equal. By Lemma 2.2, E is contained in a
standard product subcomplex T x T,. We may replace T, by a line /g that carries the
label that appears along 8. Now let F = 1[4 x [p for a line /4 that extends o and so
that all labels in 7 appear infinitely often along /. Then |F[J,-§]| > 1 and |F[,L;]| =1,
so the claim follows from Lemma 3.5(2). O

Theorem 3.10 Suppose I', T are finite graphs, T is triangle-free, and K = K(T),
K’ = K(I'') are the associated CAT(0) square complexes. For every L, A € (0, 00)
there is a D € (0, 0o) such thatif f: K — K’ isan (L, A)—quasi-isometry and F C K
is a flat, then T is triangle-free, and

HA(f(F), F') < D

for some flat F' C K.

Proof If I’ contained a triangle, then K’ would contain a 3—flat F. Then F would
contain pairs of 2—flats F’, F”’ which are parallel but lie at arbitrarily large Hausdorff
distance from one another. But applying a quasi-inverse of f to F’, F”, we would
obtain pairs Q’, Q" C K of quasiflats with uniform constants, lying at arbitrarily large
— but finite — Hausdorff distance from one another. This contradicts the fact that Q’
and Q" lie at controlled Hausdorff distance from their support sets. Thus I must be
triangle-free.

Let Q and Q' be the corresponding quarter-plane complexes, C, C’ be the collections
of cycles in Q and Q', and N, N’ be the poset of subcomplexes of Q and Q'
respectively, generated by C, C’ under finite intersection and union. As discussed
above, f induces a poset isomorphism fi: N'— N’ which preserves dimension.
Thus it induces a bijection between M and M’ which also preserves the number of
quarter-planes. If ¥ C Q is a cycle, it is a union of a uniquely determined elements of
M., and these are mapped by fx to the unique elements of M’ which give f,X C Q'.
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If FC K isaflat, then QF € C is a 4—cycle, so Q}(F) is a 4—cycle in Q’. It follows
that the area of the support set S’ associated with f(F) grows asymptotically like
mr?. By [4, Section 3] this implies that S’ is a flat, and hence f(F) is at Hausdorff
distance at most D = D(L, A) from a flat. a

4 Preservation of maximal product subcomplexes

Using Theorem 3.10, in this section we deduce that maximal product complexes are
preserved by quasi-isometries.

Let T" and I"" be triangle-free graphs, and K, K’ be the associated CAT(0) complexes.
Let /: K —> K’ be an (L, A)—quasi-isometry, where dim K < 2.

Lemma 4.1 There is a constant Dy = Do(L, A) € (0, co) with the following property.
Suppose Y C K is a subcomplex isometric to the product of a tripod with R. Then the
singular geodesic y C Y is mapped by [ to within Hausdorff distance at most Dq of
a singular geodesic y’ C K', and f(Y) lies in the Dy-neighborhood of the parallel
set P(y')C K'.

Proof The set Y is a union
Y =F,UF,U Fj3,

where the F;’s are flats intersecting in y. By Theorem 3.10, f(F;) lies at controlled
Hausdorff distance from a unique flat ] C K’, and hence for r = r(L, 4) € (0, 00),
the intersection

W := N, (F{) N N,(F5) N N,(F3)
is quasi-isometric to R. As W is convex, it contains a geodesic y;. Then P(y;)
contains F| U F) U Fj which implies that y; is parallel to a singular geodesic y’,
where the Hausdorff distance Hd(y’, y1) is controlled. |

Theorem 4.2 There is a constant D = D(L, A) € (0,00) such thatif P C K is a
standard product subcomplex, then its image in K’ is contained in the D —neighborhood
of a standard product subcomplex of K'.

Proof The subcomplex P is associated with a subgraph I'" C ", where I/ is a join
I'" = Ao B, where both 4 and B are nonempty.

Casel |A|=|B|=1 and P is a single flat. By Theorem 3.10 we know that f(P)
lies in a neighborhood of controlled thickness around a flat F’ C K’. But every flat in
K’ is contained in a product subcomplex by Lemma 2.2.
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Case2 |A|=1,|B|>1,and P is a parallel set strictly larger than a single flat. Here
P ~T xR, where T is tree of valence at least 4 everywhere. Let y C P be a singular
geodesic of the form pt xR. Then each point p € P lies in a subset ¥ C P isometric
to tripod x R, where y C Y is the singular locus of Y. Applying Lemma 4.1, we
conclude that f(Y) is contained in a controlled neighborhood of the parallel set of a
singular geodesic y’ C K’, where Hd(y’, f(y)) is controlled.

Case3 min(|4|,|B|) > 1, and P is a product where both factors are strictly larger
than a line. Let H, V be the collections of horizontal and vertical singular geodesics in
Y. By applying Lemma 4.1, we see that these map to within controlled distance of
singular geodesics in K’; we let H’, V' be the corresponding sets of singular geodesics.
Since any pair o’ € H', B’ € V' spans a flat plane in K’, their labels must lie in a join
subcomplex of the defining graph I'”. Let A C I'’ (respectively B C I'’) be the set
of vertices of T'” which arise as a label of some o’ € H' (respectively B’ € V'). Then
AU B spans a join subgraph 'y C I'’. The collection of flats 7’ spanned by pairs
o € H', B/ € V', must lie in a single connected component of p~!(K(I'y))) C K’
because if F, F' € F’, then there is a chain of flats

(F=F,,....F,=FYcF

such that F; N F;4 contains a quarter-plane for each 1 <i <k. Thus f(P) liesina
controlled neighborhood of p~!1(K(Ty))). ]

Note that in the situation of Theorem 4.2, the image f(P) need not lie at finite
Hausdorff distance from a standard product subcomplex: consider the case when the
defining graph of K is the star of a single vertex, and P C K is a standard flat. However,
maximal standard product subcomplexes are preserved:

Corollary 4.3 There is a constant D; = Dy(L, A) € (0,00) such thatif P C K isa
maximal standard product subcomplex, then
Hd(f(P), P) <D

for some maximal standard product subcomplex P’ C K'.

Proof Let g: K’ —> K be a quasi-inverse for f, with quasi-isometry constants
controlled by (L, 4).

By Theorem 4.2, we know that f(P) C Np(P’), where P’ C K’ is a standard product
complex; without loss of generality we may suppose that P’ is a maximal standard
product complex. Applying Theorem 4.2 to g, we conclude that g(P") C Np(Py),
where Py C K is a standard product complex. However, this implies that P lies in a
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finite neighborhood of P;; hence P C P; by Lemma 2.8, and by the maximality of
P, we get P = Py. It follows that P’ lies in a controlled neighborhood of P’, and
hence f(P) lies at controlled Hausdorff distance from a maximal standard product
complex in K’. O

Corollary 4.4 The graph T’ has 4—cycles iff T has 4—cycles.

Proof I' has no 4—cycles iff the maximal join subgraphs of I are contained in stars
of vertices iff K contains no maximal product subcomplex quasi-isometric to a product
of two trivalent trees. Thus by Corollary 4.3 the property of having 4—cycles in the
defining graph is a quasi-isometry invariant property of RAAGs, among the class of
RAAGs with triangle-free defining graphs. O

Theorem 4.5 Assume that 'y, ', are connected finite graphs with all vertices of
valence > 1 and no cycles of length < 5. Then there is a constant D, = D,(L, A) €
(0, 00) such that if S1 C K; is a standard flat and f: K1 — K, is an (L, A)—quasi-
isometry, then there exists a standard flat S, C K, such that f(S;) and S, are at
Hausdorftf distance < D, .

In the proof we will need the following lemma. Note that maximal product subcom-
plexes in K1, K, have the form 7" x R for a 4—valent infinite tree 7, and these are
precisely the parallel sets of standard geodesics.

Lemma 4.6 Let P, P’ be two maximal product subcomplexes in K (or K, ). Then
precisely one of the following holds.

() Pp=P.
(2) PN P is a standard flat. Moreover, every standard flat can be represented as the
intersection of two parallel sets.

(3) There is no quarter-plane contained in Hausdorff neighborhoods of both P
and P’.

Proof If S is a standard flat then S = P N P’ where P, P’ are parallel sets of two
perpendicular standard geodesics in S'. Now let P, P’ be two arbitrary parallel sets.
Let A=d(P,P')andlet Y C P and Y’ C P’ be as in Lemma 2.3. If A > 0 then
Y,Y’ are contained in the 1-skeleta of P, P’ so (3) holds. If A =0 then P N P’
contains a vertex, say p € K, and we may assume that P, P’ are parallel sets of
standard geodesics £, £’ through p. The standard geodesics through p are in 1-1
correspondence with the vertices of I'y. Say £, £’ correspond to v, v’. If v = v’ then
P = P’ and (1) holds. If v and v’ are adjacent, then P N P’ is the standard flat that
contains £ and ¢’ (and corresponds to the edge joining v to v’). If v and v’ are not
adjacent then P N P’ = {p} and (3) holds. O
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Proof of Theorem 4.5 Write S| = P N P’ where P, P’ are parallel sets in K. By
Corollary 4.3, f(P) and f(P’) are Hausdorff equivalent to parallel sets Q and Q’.
We must have Q # Q' since P # P’, and the coarse intersection of Q and Q' is a
plane. Lemma 4.6 implies that S, = Q N Q' is a standard flat. By Lemma 2.3, S,
is the coarse intersection between Q and Q’, so it follows that f(S7) and S, are
Hausdorff equivalent. O

5 Flat space

In this section we discuss two more CAT(0) spaces associated with certain RAAGs —
an alternate model space, and flat space. Flat space was introduced by Charney and
Davis [8], where it was called the modified Deligne complex. Davis [9] showed that it
was a right-angled building whose apartments are modelled on the right-angled Coxeter
group W with the same defining graph as the RAAG. In this section we give a more
explicit description of the same object, and discuss some specific features that will be
needed later.

5.1 Defining the exploded torus space and flat space

Let G = G(I') be the right-angled Artin group given by a graph I'. To keep things
simple, in the rest of the paper we will make the following assumption on I":

I" is connected, every vertex has valence > 1, and there are no cycles of
length < 5.

As there are no 3—cycles, the group G is 2—dimensional, and the fact that there are no
4—cycles will guarantee that the “flat space” IF discussed below is well-defined and
Gromov hyperbolic.

Let K = K(I") be the presentation complex for G and let K = K(I") be its universal
cover. Then K is a square complex which is CAT(0) thanks to our assumption that I"
has no 3—cycles. The complex K is the standard space associated to G'.

We will now construct a space X = X(I'), the exploded space, on which G acts freely
and cocompactly. It is somewhat more convenient to describe its quotient X = X (I),
a space whose fundamental group is G . Let I'” denote the first barycentric subdivision
of I'. We define a singular fibration p: X (M 5 T so that:

e The fiber over each vertex of I’ which corresponds to the midpoint of an edge
of I' is a 2—torus

 The fiber over any other point of I/ is a circle.
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The fibration has the following local structure. For any point x € I'” which is not the
midpoint of an edge of I', the local structure is the product structure. That is, there
exists a neighborhood V' of x such that p~!(V) = V x S!. For a midpoint of an edge
of T, the local structure is as follows. Let 4; 2= S x [0,1) and A, =~ ST x [0,1) be
two half open annuli. Let T be a torus with two distinguished simple closed curves
c1 and ¢, meeting at a single point. Let Y be the quotient space of 7' U A U A,
obtained by identifying the boundary curve of A; with ¢; via a homeomorphism. Now
for the midpoint x of an edge in I', there exists a neighborhood V' of x such that
p N (V)=Y,sothat p~!(x) = T and the for any other y € V', p~1(y) = ST x {¢},
a core circle of one of the annuli A4;.

>

Figure 1: Constructing the exploded torus space

Now note that since for any 2-torus, the two curves along which the annuli are
attached meet at a single point, the singular fibration p: X () 5 T has a section
[T/ — XM Let C(I") denote the cone on I'". We now form the identification
space X = (XM U C(I))/f obtained by attaching C(I'") to X along f.

By construction, we have that the fundamental group of X is precisely the right-
angled Artin group G associated to I' (simply choose the cone point 0 of C(I") as the
basepoint and for each vertex v of I' let ¢y be the loop which runs from o to v, along
the edge [0, v], around the circle associated to v, and back along [0, v]. Then one sees
that the loops «, generate the fundamental group and the relations are precisely the
commutator relations dictated by I".)

We let X denote the universal cover of X and let p: X — X denote the covering
map. By XM denote o1 (X(l)). Given a torus 7" in X which is the fiber over the
midpoint of an edge of I, p~!(T') is a union of planes. Such planes are referred to
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as standard flats. For each edge e of I, let A, C X denote the annulus which is
the closure of the union of fibers lying over the interior of e. A component in X of
p 1 (A,) is called a standard strip.

We may obtain K from X by collapsing each annulus to a closed geodesic, and the cone
on I'/ to a point; this defines a surjective piecewise linear map with contractible point
inverses, and hence is a homotopy equivalence. Likewise we get a proper homotopy
equivalence X — K by collapsing the interval factor of each standard strip to a point,
and collapsing each copy of C(I'’) in X to a point.

Let F = F(T") denote the quotient of X obtained by collapsing each standard flat to
a point and each standard strip S = R x [ to an arc by projection onto the /—factor.
We refer to F = IF(I") as the flat space associated to G . All standard flats in X are
represented by points in IF, and we can think of I as obtained from the (discrete) set
of standard flats by connecting the dots in just the right way to obtain a very useful
space (as we shall see).

Denote by F™) C F the image of X1 € X under the quotient map. There is an induced
action of G on IF; let 7: F — F be the quotient map. Thus F can be constructed from
X by collapsing the tori to points and collapsing the annuli to arcs, and therefore F
can be identified with the cone C(I") on I'. We will equip F with the triangulation in
which the base of the cone is the barycentric subdivision I'" and X = C(T") is given
the cone triangulation. Note that the image of F® in F is the base of the cone. We
will also equip I with the triangulation obtained by pulling back via 7: F — F .

There are three types of vertices in [F:
e Vertices of F which are obtained from crushing flats to points are called flat
vertices (in IF these correspond to the subdivision vertices in I'/).

e Vertices of F which are the cone points of copies of C(I") are called cone
vertices.

e The remaining vertices are called singular vertices; these are the vertices which
correspond to the original vertices of T’

An arc joining two flat vertices which consists of two neighboring edges in F is called
an full edge of IF.

The action of G on F is simplicial, the stabilizers of flat vertices are isomorphic to
7 ® 7, the stabilizers of the full edges are infinite cyclic, and F/G =~ C = C(I"). Thus
this action endows G with the structure of a (simple) complex of groups, in which the
underlying complex is C.
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We endow X and F with a polyhedral metric as follows. Each torus fiber is given the
structure of a flat square 2—torus, in which each of the designated curves along which
fiber annuli are attached has length 1. The standard annuli are viewed as quotients of
the unit square with a pair of opposite edges identified. Thus X () has the structure of
locally CAT(0) square complex. Therefore, we just need to metrize the attached cone
C(I'’). Note that each 2—simplex in C(I'’) is of the form (o, m, v), where o is the
cone vertex, m is the midpoint of an edge and v is a vertex of I'. We endow such a
simplex (o, m, v) with the metric of an isosceles right triangle whose legs have length
1, so that the right angle is at the vertex v. It is now easy to check that the space X
satisfies the CAT(0) condition (ie the links have no loops of length less than 277). Note
further that given an edge of I', the cone on I' now consists of precisely two isosceles
right triangles, forming a unit cube, so that in fact, C(I"") has the structure of a locally
CAT(0) square complex.

Consequently, X is a CAT(0) square complex. Since [ is built out of copies of
C(I""), we can similarly endow F with the structure of a CAT(0) square complex (for
a discussion of links see Observation 5.4 below). From now on, we will abuse notation
slightly and refer to C(I") simply as C(T") or simply C.

Theorem 5.1 (No flats in flat space) The flat space F is Gromov hyperbolic.

Proof Fix a small € > 0. Perturb the metric on [ by replacing each Euclidean triangle
(0,m, v) by a triangle with constant curvature —e whose angles are /2 at v, /4 at
m and w/4—¢€/2 at 0. Since " has no cycles of length < 5 it follows that this is a
CAT(—¢) metric on F which is quasi-isometric to the original metric. |

To summarize what we have done so far, we have the following.

Proposition 5.2 The RAAG G acts on F by isometries and the following holds:
(1) C has the structure of a CAT(0) square complex, with each square having two
singular vertices, one flat vertex and one cone vertex.

(2) The quotient space F /G is C. We will denote the quotient map F — C by .
We lift the labeling of the vertices of C (flat, cone, singular) to the vertices of ¥
via .

(3) There is a fundamental domain C CF for the action of G such that 7: C — C
is a homeomorphism. We will identify C = C.

(4) Stabilizers of flat vertices are 7.2

(5) Stabilizers of singular vertices are Z..
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(6) Stabilizers of cone vertices are trivial.
From the point of view of complexes of groups, we can say the following.

Observation 5.3

e C is an ordered simplicial complex (after adding cone-to-flat diagonals in all
squares), with cone vertex initial, and flat vertices terminal (ie the edges are
oriented from cone to singular to flat).

e [F/G, as an orbispace, is C with the trivial label on the cone vertex, Z on the
singular vertices, and 7> on the flat vertices.

Observation 5.4
e Thelink in F of every cone vertex is I.

e The link in F of every flat vertex is Z * Z (the join of two infinite countable sets
of vertices) and the stabilizer 7.2 is acting in the obvious way: (1,0) translates
one Z by 1 and fixes the other Z , and (0, 1) fixes the first Z. and translates the
second by 1. In particular, the complement of the set of all flat vertices in F is
connected.

e The linkin F of every singular vertex v is the join L x Z, where L is the link of
the image vertex in I". The stabilizer Z fixes L and translates Z . The link of v
inFW js L.

Each singular vertex has two natural objects associated with it: the track and the singular
star. We describe these below.

5.2 The singular star associated to a singular vertex

Fix a singular vertex v € IF. Consider its star S in F, By Observation 5.4, S, can
be identified with the star of v in (barycentrically subdivided) I". Thus S, is the union
of all edges with one vertex at v and the other vertex flat. We call S, the singular star
associated to v. Recall that the parallel set P(y) of a geodesic line y in a CAT(0)
space is the union of all geodesic lines parallel to y. The vertex v represents a geodesic
line in X and its parallel set will be denoted by P, .

Observation 5.5 Recall that p: X — [ is the quotient map. Then P, = p~1(Sy).
Conversely, every parallel set in X of a standard line (ie a line in a standard strip) arises
in this way for a suitable singular vertex v. Moreover, the parallel set is the union of
flats and strips that coarsely contain the given standard line. Abstractly, a parallel set in
X is isomorphic to T xR where T is the universal cover of the 1 —complex obtained
from S, by wedging a circle to every vertex other than v.
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The image of a parallel set in X under the quotient map X — [F will be referred to as
a parallel set in IF (even though it is not the union of lines parallel to a fixed line). It is
a subcomplex of F® and the quotient by the stabilizer is Sy .

Observation 5.6 The intersection between C(I') C F and a nontrivial translate of it
is contained in a singular star.

5.3 The track associated to a singular vertex

Again let v € IF be a singular vertex. Let ey, - -+ , ex be the edges that have one endpoint
at v and the other endpoint flat (thus the singular star Sy, is the union of the ¢;’s). Then
C(T") contains k squares that have v as a vertex. These squares can be enumerated

S1,--+, Sk sothat e; is one of the sides of S;, i =1,--- , k. Note that by construction,
these squares share a common edge e that is incident to v and whose other endpoint is
the cone point, so that e is distinct from the edges e, - - , ex . Let 7, be the hyperplane

in C(T") transverse to e; this is well-defined since C(I") is a square complex (see
Section 2.2). This is the track associated to v.

@ )
e

Figure 2: T is the pentagon. Also pictured is the track and the singular star
(pictured in black) corresponding to a singular vertex.

Observation 5.7 Recall that wm: F — C(I") is the quotient map.

e 7 1(zy) is a collection of hyperplanes in IF . Each hyperplane is a convex subset
of F.

e Conversely, any hyperplane in F is a component of 7w~ (z,) for a suitable
singular vertex v.

Also denote by R; the closure of the component of S; — 7, that contains e;. Define
the thickened track associated to v to be

Ry:=R;U---URy.
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Figure 3: T is the tripod. Also pictured is the track and the singular star
corresponding to the central singular vertex

Observation 5.8
e R, is a product neighborhood of Py, thatis, (Ry, Py) = (P, x I, P, x {0}).
* Let Ry, bea component of n:l (RJ,). Theil Ry conteg'ns a unique component
P, of m=1(Py). Moreover, (Ry, Py) = (Py x c(Z), Py x {c}), where ¢(Z) is
the cone on Z with cone point c.

e Under this identification, the pointwise stabilizer 7, of I~’v acts on Ev ~ ﬁvxc(Z)
by fixing a P, and the cone point, and translating the base of the cone.

Lemma 5.9

e Every parallel set in F separates F. The set of complementary components
is acted on freely and transitively by the 7Z subgroup fixing the parallel set
pointwise.

e For any two distinct cone vertices in [F there is a parallel set that separates them.

Proof A parallel set P, C F has a product neighborhood P, x c(Z) as described
in Observation 5.8. It follows from the simple connectivity of IF that the connected
components of I\ P, are in bijective correspondence with the connected components
of (Py xc(Z))\ Py; the latter are in bijective correspondence with the Z subgroup
fixing P, pointwise. For the second assertion, consider the geodesic joining the two
vertices. This geodesic must cross some hyperplane, and hence some component of
some 7 (7y) (see Observation 5.7). The associated parallel set separates between the
two cone vertices (see Observation 5.8). O
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5.4 Coarse distance and parallel sets

We will be interested in paths and loops in F®; these will correspond to sequences of
standard flats in X . There is a straightforward notion of distance between standard
flats. Suppose that F and F’ are standard flats. The flats F and F’ correspond to
two vertices in F . Note that since F™) is a bipartite graph, the usual path distance in
F® between F, F’ is even; let D(F, F’) denote half this path distance in F™) . We
will be interested in a somewhat different notion of distance on F(l), called coarse
distance, which we now describe. We say that the coarse distance between F and F’
is 1, D®(F, F') = 1, if they coarsely intersect in a line, or equivalently, if belong to
the same parallel set (cf Lemma 2.1). We will say that D®°(F, F’) = n, if their exists
a sequence of standard flats F = Fy, ..., F, = F’ such that D*®°(Fj;, F;1+1) = 1 and
n is the smallest number for which there exists such a sequence. Note that this then
defines a metric on the set of flat vertices of F. The reason this metric is natural is
that it is preserved by quasi-isometries: the binary relation on F(® of belonging to the
same parallel set is quasi-isometry invariant, by Lemma 2.1 and Theorem 4.5.

The metric D can be seen directly in ' as follows. Suppose that e and f are two
full edges of F meeting at a flat vertex v. We say that ¢ and f define a legal turn at
v if e and f have cyclic stabilizers with trivial intersection. Otherwise, they have the
same cyclic stabilizer and we say that they define an illegal turn at v. Now suppose that
v and w are two flat vertices of [F. Suppose that « is a full edge path in [ joining v
and w. Then the coarse length of «, length (o) is computed by counting the number
of legal turns along « and adding 1. Thus, the coarse distance between vertices is
simply the minimal coarse length of a path between them.

If a path in F® has no legal turns in it, then in fact all the flat vertices along it
correspond to flats which are all contained in the same parallel set. We call such a path
a stalling path. The union of all stalling paths containing a given singular vertex is
thus a parallel set in I ; it corresponds in X to the union of all flats and strips coarsely
containing a given singular line.

6 Dual disk diagrams

We consider F as a CAT(0) square complex. Let H denote the union of hyperplanes
in F. We call a component of F —H a block. Notice that each block contains a unique
vertex of IF. Suppose that « is a closed full edge path in F(!). Then «: S — F(®)
extends to a map A: D? — F. Now we may make A transverse to the hyperplanes
of F. Thus A = A~ () is a union of embedded arcs and simple closed curves in
D = D?, where each arc and closed curve is a component of the preimage of a single
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hyperplane. As in [25], one may assume that there are in fact no simple closed curves
and that each pair of arcs meets in at most a single point. Since F is a 2—complex,
we may further assume that there are no triangular regions: every collection of three
arcs contains a disjoint pair. The pair (D, .A) is called a dual disk diagram for «.
Sometimes we will abuse notation and just refer to D as the dual disk diagram. In
[25] it is shown that one can get from any diagram to any other through a sequence
of triangular moves. Since there are no triangles, we see that the dual disk diagram is
unique.

A region of D refers to the closure of a component of D — (dD U .A). Note that each
region D is associated to a vertex of X, namely the vertex whose block the region is
mapped to. By a boundary region we mean a region that intersects dD. Regions that
are not boundary regions are called internal regions. The union of all internal regions is
called the core of the diagram. By a corner of D we mean a triangular region bounded
by two arcs of .4 and a subarc of dD. A corner corresponds to « running around the
corner of a square of IF. Since « is a path of full edges, this means that the corner of
the square is a flat vertex and the turn at the vertex is a legal turn.

We now need to discuss some complications which can occur in general disk diagrams,
but which will not appear in our setting, because our boundary map ¢« may be assumed
to be an embedding.

6.1 Spurs

A spur of D consists of a collection of nested arcs, each disjoint from all other arcs,
so that one of the arcs has endpoints on neighboring boundary edges (this arc bounds a
region with no curves or arcs in it) ; see figure below.

In this case, we see that the original full edge path has some backtracking. Since we
will always be dealing with paths that have no backtracking, we can assume that there
are no spurs.

spur
4/p

separating cell

6.2 Separating cells

Suppose that the intersection P N dD of a closed cell P with the boundary of D has
two distinct connected arc components y, 3, so that P separates D. Then the path
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represented by dD is not embedded. To see this, note that since dD is a path of full
edges, ¥ and Y’ must each contain a vertex, and these vertices must map to the same
vertex in IF. Because we will be dealing with embedded paths, we can assume that
there are no separating cells.

The upshot of the above is that if the edge loop is embedded, then the disk diagram
associated to it has no spurs or separating cells. An embedded full edge loop will be
called a cycle.

Recall that there are three types of vertices: singular, flat, and cone vertices. Since each
region of D is mapped to a block, which is uniquely associated to a vertex of [, we
have three types of regions, which we also call singular, flat and cone regions.

Observation 6.1 Every square in F has two diagonally opposite singular vertices, one
cone vertex and one flat vertex.

e —singular vertices

*—cone vertices

e —flat vertices

Below is an example of a dual disk diagram. The yellow cells are the boundary cells
and the remaining cells form the core.

Observation 6.2 Since corners cannot contain singular vertices, all corner regions are
flat regions. Also, all cone regions are interior.

Observation 6.3 Observation 6.1 can be transported to the disk diagram to tell us
what types the regions are; around each intersection point of two arcs in the diagram, we
have two diagonally opposite singular regions, one cone region and one flat region. In
particular, this tells us that (under our standing assumption that our paths are embedded)
the core is always not empty.
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Observation 6.4 If A is an arc of the disk diagram, then by Observation 6.1, we see
that the regions immediately to one side of A alternate singular and cone regions, while
the other side of A alternate singular and flat vertices. The latter sequence of regions
gives us a stalling path in F (| Thus the vertices associated to this sequence of regions
all lie in the same parallel set.

6.3 Existence of 1—shells or 2—shells (by the seashore)

Following McCammond and Wise, we define a boundary region of a disk to be an
i—shell if it has i internal edges. In the example above, the core of the diagram has
four 2—shells. Since the core of the diagram is a C(4)-T(4) complex, we can apply
Greendlinger’s lemma. We give a slightly different statement suited to our needs and
we for the sake of completeness, we include a proof here (for deeper delving into such
results see McCammond and Wise [23]).

Lemma 6.5 Let D be a disk tiled by polygons Py,--- , Py in such a way that every
interior vertex is incident to at least 4 polygons and so that each polygon has at least 4
sides. Then one of the following holds.

(1) k =1 (ie there is one 0—shell).

(2) There are at least two 1—shells.

(3) There is at least one 1—shell and at least two 2—shells.

(4) There are at least four 2—shells.

Proof A corner of P; is an unordered pair of adjacent edges. Thus an n—gon has
n corners (assuming n > 3). We say that a corner of P; is contained in dD if the
interiors of the corresponding two edges do not intersect any other P;’s. Denote by n;
the number of sides of P; and by C; the number of corners of P; contained in dD.

View each P; as a square complex with n; squares so that curvature is concentrated
at one interior vertex. The excess angle at this vertex is (;r/2)n; — 2. Thus the total
interior excess is at least

(/2) ) ni—2km

(it might be larger if there are interior vertices incident to > 4 polygons).

The boundary deficit is 7/2 for each corner, ie at most

(/2 G
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(it might be smaller if there are boundary vertices incident to > 2 polygons). Recall
that Gauss—Bonnet says:

(boundary deficit) — (interior excess) = 27w
Thus (n/2)2C,~—(7r/2)Zni +2kmw > 2x

and hence ZC,- 24+Z(ni—4).

The statement now follows quickly. To each P; assign the score of C; —n; + 4 points.
The inequality says that the sum of all points is > 4. If P; is assigned 4 points, it is
a O—shell. If it is assigned 2 points it is a 1—shell, and if it is assigned 1 point it is
a 2—shell. (An interior triangle would get 1 point but we are assuming there are no
triangles. All other polygons get a nonpositive number of points.) a

Remark 6.6 Suppose that there are precisely two 1-shells and no 2—shells. Then the
polygons can be renumbered so that P; and Py are 1-shells and P; and P; share an
edge iff |i — j| < 1. In other words, the polygons form a ladder.

6.4 Shells, short cuts and taut cycles

A cycle «a is said to have an i —cut if there are flat vertices v, w on « such that the
coarse length of any path along the cycle between v and w is greater than i, but for
which there exists full edge path of length i in F(!) joining v and w. A cycle is said
to be raut if there exists no i —cut with i <2.

Now suppose that D is a disk diagram for @ and let D’ be its core. If D’ is not a
single cell, then by Lemma 6.5, D’ has a 1-shell or a 2—shell. As we see in Figure 7,
we then obtain a 1—cut or a 2—cut for «.

Figure 7: 1—cuts and 2—cuts arising from shells

Thus we obtain the following lemma.
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Lemma 6.7 (Diagrams for taut cycles) Suppose that « is a taut cycle. Then the
diagram for o has a core consisting of a single cell.

7 Rigidity of taut cycles

The aim of this section is to prove the quasi-isometric preservation of taut cycles.
Recall that if ¢: XT — XT is a quasi-isometry, Theorem 4.5 tells us that standard flats
are coarsely preserved by ¢. Since no two standard flats are coarsely equivalent, ¢
induces a bijection ¢y on the flat vertex set of . Moreover, since coarse equivalence
is preserved by quasi-isometries, we have that D is preserved.

Theorem 7.1 (Taut cycle rigidity) Suppose that ¢ and ¢y are as above. Then ¢y
carries taut cycles to taut cycles. In particular, full edges that lie along taut cycles are
carried to full edges.

We first prove a lemma that tells us that “quasi” cuts of length at most 3 actually give
I—cuts or 2—cuts.

Lemma 7.2 (Quasicuts yield cuts) Let @ be a cycle. Suppose that there exist nonad-
Jjacent flat vertices v and w along o, subdividing « into two paths oy and a, . Suppose
further that v and w are joined by a path B so that:

(1) length(B) < 3.

(2) v and w are the only flat vertices of « which lie in .
Then « is not taut.

Proof We give the argument when length (v, w) = 3. When length (v, w) < 3,
the argument is similar and indeed simpler. So we suppose that 8 is broken up by two
flat vertices p and ¢ into three stalling subpaths 1, 8, and B3 as in Figure 8.

We let D denote a dual disk diagram for the loop ¥ = 8 U« . Note that by assumption,
this loop is indeed a cycle. We will apply Lemma 6.5 to D. Now we must consider
some cases.

Case1 pf; and B3 are both longer than 1. Since there are no corners along stalling
sections of B, it follows that D’ is not a single cell so we are in cases 2, 3, or 4 of
Lemma 6.5. Now a shell gives at least two consecutive corners along dD. It follows
that if a shell produces corners along B, it is either a sequence of corners that begins at
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ﬁl{f .
p
B2 o
q
B3

w
Figure 8: A dual disk diagram for a stalling cut

v or w and continues into ¢« or the sequence of corners is simply the pair of corners
at p and ¢ (in this case, 8, is of length 1).

Case 1a There exist 1—shells (case 2 or 3 of Lemma 6.5). Let us suppose we have a
1—shell in D’. Now a 1-shell produces a sequence of corners of length at least three,
so it cannot occur at p and ¢. Also, both of the endpoints of the 1—cut produced by
this shell cannot be along the nonstalling section of D, for otherwise o would not be
taut. Thus, one of the endpoints of the 1—cut must be along the stalling sections
or B3. But since these stalling section can only have a corner at v and w, the 1—cut
provides a 2—cut between v or w and some vertex z in the nonstalling section (see
Figure 9). Thus « is not taut and we are done.

Figure 9: A 1—cut yielding a 2—cut for o

Case 1b There exist no 1-shells (case 4 of Lemma 6.5). In this case there are at least
four 2—shells. Since only two of these can produce corners at the vertices v and w,
and only one can produce corners at p and ¢, we must have a 2—shell which produces
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a 2—cut in the nonstalling section, namely along o . This produces a 2—cut for o and
we are done.

Case 2 Only one of 1, B3 has length 1. Assume without loss of generality that 3
has length 1, and B, is longer. We proceed as in Case 1. If there exist 1-shells, there
are at least two 1—shells or a 1—shell and two 2—shells. It follows that one of them
cannot be along 1 U B,. As before, these shells cannot occur entirely along «;. Thus
we are in the case in which there are only two i —shells, i < 2; that is, we have two
1—shells. One of these must have its first corner at v and we get a 2—cut as in Figure 9.

If we have only 2—shells, then there are 4 of them, and hence one of them must occur
entirely along the o, producing a 2—cut for o1, contradicting the tautness of «.

Case 3 Both 87 and B3 have length 1. Now if D does not have a corner at both v
and w, then we may proceed as before. So suppose that there are corners both at v
and w. We now return to our original loop o = a; U ;. Let v; be the flat vertex
immediately adjacent to v along oy and let v, be the flat vertex immediately adjacent
to v along «,. Let v3 be the vertex along f immediately adjacent to v. We define
w1, wy and ws; similarly as neighboring vertices of w. Now since there is a corner
at v, it follows that the path [v3, v, v1] is nonstalling. Thus, the path [v3, v, v;] is a
stalling path. Similarly, the path [w3, w, w;] is a stalling path. (See Figure 10.)

V2 v U1

w»o w w1
Figure 10: One of the paths of length 2 running through v must be stalling.

We thus let o), be the subarc of , spanned by v, and w;, and let #’ be B U [v, v2]U
[w, w,]. We then consider a dual disk diagram for o,/ U B’ and we are back in Case 1
with o) replaced by ), and § replace by f’. O

Proof of Theorem 7.1 Suppose that vy, .., v, are the flat vertices along a taut cycle

. Let w; = ¢y(v;). We know that D*°(w;, w;11) = 1, so that we can choose a full
edge geodesic B; joining w; to w;+1, such that flat vertices along it lie in the same
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parallelism class. We then join the ;s together to get a closed loop . We claim
that this loop is a cycle. First of all, by construction, the 8;’s are embedded, and at
the w;’s we have turns, so that there is no backtracking. Secondly, if distinct §;’s met
along a vertex which was not one of the endpoints, then we could apply Lemma 7.2
to conclude that « is not taut. So now consider a dual disk diagram D for B and as
usual let D’ denote the core of D. We claim that D’ consists of a single cell.

If D’ has more than one cell, we would then have an arc a in D which separates
D into two regions, each of which contains a 1—shell or 2—shell of D’. Now by
Observation 6.4, there would be a stalling path joining nonadjacent vertices z; and
zp of B. Now if we have z; = w; and z; = wj, for some i, j, then we have that
D*°(v;,vj) =1 and we apply Lemma 7.2 to conclude that « was not taut. Now if
z1,22 €{wi, ..., wy,}, then let w; be a closest such vertex to z; and w; be a closest
such vertex to z. Letting Z’l = d)ﬁ_l (z1) and 2’2 = ¢ﬁ_1(22). We see that the path
y = [vi. z]. 2}, vj] satisfies the conditions of Lemma 7.2. We can apply Lemma 7.2 in
a similar manner when only one of the z;’s is in {wq, ..., wy}.

We thus have that D’ consists of a single cell. This means that in fact the w; define a
closed edge loop B. Now we wish to show that this loop is taut. Suppose not. Then
we have a 1—cut or a 2—cut of 8. Pulling such a cut back via ¢ﬁ_1 gives a quasicut as
in Lemma 7.2 thus implying that « is not taut, a contradiction. |

8 T -rigidity

We next need to argue that if Fy, F, are two standard flats in IF that intersect in a line,
then their images ¢#(F1), ¢p#(F>) intersect in a line as well. A priori, we only know
that they intersect coarsely in a line, ie that they belong to the same parallel set. If there
is a taut cycle that crosses both F; and F, then the fact that ¢u(F1) N¢ps(F7) is a line
follows from taut cycle rigidity. However, there are pairs of flats where there are no
such taut cycles. This is of course the case if the graph contains valence 1 vertices, but
there are no such vertices by our standing assumption on I". For a more subtle failure
see the example below.

8.1 Lemmas about graphs

Definition 8.1 Let y be an embedded cycle in the defining graph I'. An i —shortcut
is an edge-path B in I of length i whose endpoints are in y and whose distance in y
is>1i.

Definition 8.2 A cycle y is tight if it does not admit any 1-shortcuts nor any 2—
shortcuts.
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Remark 8.3 If y is a cycle in I", we can lift it to a cycle 7 in the barycentric
subdivision I'" C F. Then y is tight in T" iff 7 is tautin .

Example 8.4 Let I' be the atomic graph obtained from the 1—skeleton of a dodeca-
hedron by doubling along one of the pentagons representing a face. Then every tight
cycle is contained in one of the two copies of the dodecahedron, so that a pair of edges
that share a common vertex but are not contained in the same dodecahedron give rise
to flats that intersect but are not both crossed by a tight cycle.

Definition 8.5 Let v be a vertex of I and Lk(v) the link of v in I". The Whitehead
graph at v is the graph Wh(v) whose vertex set is Lk(v) and e, ¢/ € Lk(v) (represented
by edges with initial vertex v) are connected by an edge iff there is a tight cycle in T’
that enters v along e and leaves along ¢’.

In the above example, the Whitehead graph at every valence 3 vertex is the complete
graph (ie a triangle), while at the valence 4 vertices it is obtained from the complete
graph by removing an edge (ie it is a square with one diagonal).

Lemma 8.6 Wh(v) is connected iff v is not a cut vertex.

Proof It is clear that Wh(v) is disconnected if v is a cut vertex. For the converse,
suppose Wh(v) is disconnected, and let ey,--- , e, € Lk(v) be the vertices of one
of the components of Wh(v), and let f1,---, f; be all the other vertices of Lk(v).
Suppose v is not a cut vertex. Then there are embedded cycles in I' that enter v along
some e; and leave along some f;. Let C be a shortest such cycle. We claim that C
is tight. To see this, suppose B is an i —shortcut for C for i < 2. Using the fact that
I" has no 4—cycle, it follows that one may replace a subpath of C with § to obtain a
shorter cycle C’ which contains some e; and some Jj- Thus some ¢; is connected to
some f; in Wh(v), a contradiction. a

Lemma 8.7 An atomic graph contains no cut vertices, or separating closed edges.

Proof Let Y C I' be either a vertex or a closed edge, and suppose v € Y is a vertex.
Note that if C C I' \ Y is a connected component, then C cannot be contained in
the closed star of v, because it would then lie in a single edge of I'", which clearly
contradicts the assumption that every vertex has valence at least 2. O

Lemma 8.8 Suppose the edges of an atomic graph I" are colored in three colors, black,
white, and gray, and the following holds:

(1) Any two gray edges share a vertex.
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(2) The edges of any tight cycle are either all black or gray, or they are all white or
gray.

Then the edges of I are either all black or gray, or else they are all white or gray.

Proof Suppose not. Thus there is an edge b colored black, and there is an edge w
colored white. All gray edges have a vertex v in common (by assumption (1) and
because there are no triangles). Let G be the union of all (closed) gray edges. We now
claim that G does not separate I'. Indeed, take x,y € ' — G. If x, y € St(v) then
X, y can be joined by a path missing St(v) and hence missing G. Say x € St(v) — G
If x is a vertex, then it is adjacent to v and it is incident to an edge e different from
[x, v] (since otherwise [x, v] would be a separating edge). Thus x can be joined by a
path in the complement of G to the complement of St(v). If x is not a vertex, then
it is an interior point of some edge [x’, v] and it can again be joined by a path in the
complement of G, first to x” and then to the complement of St(v) as before. Similar
considerations apply to y and our claim is proved.

Now join b and w by a path missing G. Thus all edges along this path are black or
white, and there is a vertex z along this path where color changes from black to white.
Therefore all edges incident to z are black or white and at least one is black and at
least one is white. By Lemma 8.6 there is a tight cycle passing through z and at z
crossing one white and one black edge. But this contradicts our assumption (2). O

Lemma 8.9 Let I', T be graphs with no vertices of valence < 2 and no cycles of
length < 4. Suppose F: E(I') — £(I') is a bijection of the sets of edges of ', T’
such that the following condition holds:

If eq, ey € E(T) share a vertex then F(ey), F(ey) € E(I') share a vertex.
Then there is a graph isomorphism ¢: I' — I'’ that induces F .

Proof Let v be a vertex of I'. Consider the set of all edges ey, -+ ,ex in I' that
contain v. By our assumptions on I', k > 2 and any two of the edges F(ey),--- , F(eg)
share a vertex. Since I'’ has no cycles of length < 4 it follows that there is a unique
vertex w € I'” contained in all F(e;). Define ¢(v) := w. By construction, if v{, vy
span an edge then ¢(v1), ¢(v,) span an edge. Thus ¢: I' — I'/ is a simplicial map.
Reversing the roles of T', T provides a simplicial map ¢': T" — I" and it easy to see
that ¢¢’ and ¢’¢ are identity. O
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8.2 F-rigidity

The following is the main theorem in the paper. It says that the flat space F is a
quasi-isometry invariant of the RAAG G . The notation should be self-explanatory, eg
F; =F().

Theorem 8.10 Let 'y, I'y be two atomic graphs. Let f: G — G, be a quasi-isometry
between the associated RAAGs. Then there is a label-preserving isometry ¢: F1 — F,
between the associated flat spaces such that for each standard flat (ie a flat vertex) v we
have that f(v) is contained in a Hausdorff neighborhood of the flat ¢ (v).

In particular, ¢ takes each cone in Iy isometrically to a cone in F,, and I'y = I';.

Proof By Theorem 4.5 we have a function ¢: IFll’ — IF'Z) defined on the set of flat
vertices and satisfying the statement about the Hausdorff neighborhood. This map is a
bijection. We now extend this map to an isometry.

Step1 Let C(I'y) C F; be the fundamental domain (see Proposition 5.2(2)). We
claim that ¢ takes all flat vertices in I'y C C(I'y) into a translate of the fundamental
domain C(I';) C [F,. By Theorem 7.1 we know that ¢ sends all flat vertices along a
taut cycle in 'y C C(I') into a single cone (and this cone is unique; see Observation
5.6). Since every flat vertex in I'; lies along a taut cycle it suffices to prove that there is
a cone that contains the images of the flat vertices along any taut cycle in 'y C C(I'y).

So suppose this is not true, and that for two different taut cycles in I'; the images
of the flat vertices are contained in different cones C’, C"” C IF,. Choose a parallel
set P C IF, that separates between C’ and C” (see Lemma 5.9) so that we can write
F, =X UX" with C'"C X/, C”" C X” and X' N X" = P. Now color the edges
(ie the flat vertices) of I'; into black, white or gray according to whether they are
mapped into X', X” or X’ N X”. Note that any two gray edges share a vertex (the
corresponding flats coarsely intersect in a line; for edges of I'; this happens only when
the edges share a vertex). Now by Lemma 8.8 we see that all flat vertices in I'; are
mapped to either X’ or to X" contradicting our choices.

Thus, after composing with an element of G,, we may assume that ¢ maps the flat
vertices in C(I"y) to flat vertices in C(I"y). By considering the inverse map, ¢ restricts
to a bijection £(I'1) — £(I'2) between the sets of edges of 'y and I',.

This analysis can be applied to any translate of C(I";). As a result of Step 1, we can
extend ¢ to the cone vertices so that it induces a bijection between the sets of cone
vertices and any adjacent pair of a flat and a cone vertex maps to an adjacent pair.
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Step 2 Now consider ¢ restricted to the “base of the cone”, that is, the map £(I";) —
E(T,). Apply Lemma 8.9 to deduce that ¢ extends to an isomorphism ¢: I'y — I'.
Adjacent edges map to adjacent edges since only in this situation the corresponding
flats coarsely intersect in a line, so the lemma applies.

Step 3 It remains to extend ¢ to the singular vertices. Let v be a singular vertex, say
in C(I'1). Then there is a unique way to define ¢(v) so that ¢ preserves adjacency
with the flat vertices in C(I"y) (this is Step 2). We need to verify that when we regard
v as a vertex in a different cone we obtain the same ¢ (v). There are Z cones that
contain v (see Proposition 5.2) and all these cones also contain all flat vertices adjacent
to v, so the claim follows. O

9 The proofs of Corollaries 1.7, 1.8 and 1.9

Proof of Corollary 1.7 Suppose I and I'' are atomic graphs, and ¢: K — K’ is
a quasi-isometry. Let ¢o: V — V' be the bijection provided by Theorem 1.6. Pick
p € K and let p’ := ¢o(p). Then ¢, establishes a bijection between the standard
geodesics (respectively standard flats) passing through p and the standard geodesics
(respectively standard flats) passing through p’. This induces an isomorphism I' — I"/
of the defining graphs. |

Proof of Corollary 1.8 Let ¥: G — G’ be an isomorphism. Then we obtain an
isometric action G ~, K’, which is discrete and cocompact. Hence by the fundamental
lemma of geometric group theory, there is a G —equivariant quasi-isometry

¢: K— K'.
Let ¢pg: V —> V' be the bijection furnished by Theorem 1.6.
Consider a standard flat ¥ = « x B C K. By Theorem 1.6, there is a standard flat
F' =o' x B’ C K’ such that ¢y maps F NV bijectively to F’ N V', and respects the
product structures. Since ¢q ’ Fny 1s equivariant with respect to the stabilizer of F', it
follows that the induced mappings (¢ NV) — (&'NV’) and (BNV) — (B’ N V') are
also Stab(F)—equivariant. Since Stab(F’) acts transitivelyon a NV, NV, a’' NV,

and B’ NV, the map ¢o| -}, is the restriction of an isometry F — F’. Hence ¢ is
the restriction of an isometry K — K’. a

Proof of Corollary 1.9 Let 1/_f: K—K' be a homotopy equivalence. Then 1} induces
an isomorphism G >~ G’ and we may lift ¥ to a quasi-isometry

V: K— K’
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which is G —equivariant (where we identify G and G’ using the isomorphism above).
By Corollary 1.8 there is a G —equivariant isometry ¢: K — K’ at bounded distance
from v, and this descends to an isometry

¢: K— K’

which is homotopic to 1; O

10 Further implications of Theorem 1.6

At first sight, one might think that the map ¢: V — V' in the conclusion of Theorem
1.6 must be the restriction of an isometry, since it preserves so much structure; however,
this turns out not to be the case. In this section we single out part of the structure of
the bijection ¢y which efficiently distinguishes between quasi-isometries, namely we
associate with each parallel set P C K a bi-Lipschitz homeomorphism of a copy of
the integers. In the next section we will see that any bi-Lipschitz homeomorphism can
arise this way.

Let ¢: K — K’ be a quasi-isometry, where K and K’ are associated with atomic
RAAGsS, and let ¢g: V — V' be the map of Theorem 1.6.

Let P and P’ denote the collections of maximal standard product subcomplexes in
K and K, respectively. Since K and K’ are atomic, each P € P or P’ € P’ is the
parallel set for a standard geodesic. Therefore P splits isometrically as a product of
complexes P =R x T.

Definition 10.1 For each parallel set P € P, we define R p to be the R—factor in the
splitting
P=RxT,

and let Z p to be the set of vertices of R p, equipped with the induced metric.

Lemma 10.2 Forevery P € P thereis a P’ € P’ such that ¢y maps V N P bijectively
to V' N P’, preserving the product structure.

Proof Let y C P be a standard geodesic parallel to the R—factor of P. Then Theorem
1.6 implies that V' Ny is mapped bijectively by ¢o to V' N y’, for some standard
geodesic y’ C K. Since any two geodesics y;, y, obtained this way are parallel, it
follows that ¢o(P N V') is contained in a parallel set. Applying the same reasoning to
the inverse implies that ¢o(V N P) = V' N P’ for some P’ € P’.

Since ¢ preserves standard geodesics, it follows that ¢0‘Vn p breserves product
structure. m|
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By abuse of notation we use ¢ to denote the induced bijection P — P’ given by
Lemma 10.2. By the lemma, for each P € P, we obtain a bijective quasi-isometry
¢zp: Lp — Lg(p)y, where the quasi-isometry constants are controlled by those of ¢.

Lemma 10.3 (1) If ¢ is an isometry, then ¢z,: Zp — Zg(p) is an isometry for
every P eP.

(2) If ¢ is induced by an element of the commensurator Comm(G), then for every
P € P, the map ¢z,: Zp — Zp: is equivariant with respect to cocompact
isometric actions on Z p and Z p: .

Proof Assertion (1) is immediate.

There is an isomorphism «a: H — H' where H C G and H' C G’ are finite index
subgroups, such that ¢: K — K’ is H-equivariant, where H acts freely, cocompactly,
and isometrically on K’ via the isomorphism «. Then ¢o: V — V' is also H-
equivariant. Hence if & € H stabilizes P € P, then it also stabilizes the parallel
set ¢(P) € P’. In other words, the map ¢q restricts to a Stab(P) N H—equivariant
mapping V N P — V' N¢(P). Since Stab(P) N H acts cocompactly on P, assertion
(2) follows. O

11 Quasi-isometric flexibility and the proof of Theorem 1.10
Part 1 The homomorphism Aut(G) — Comm(G) is injective.

Suppose o € Aut(G). By Corollary 1.8 there is an isometry ¢: K — K which induces
«, ie we identify G with a subgroup of Isom(K). If @ € ker(Aut(G) — Comm(G)),
then ¢ commutes with a finite index subgroup of G, and therefore has bounded
displacement,

sup d(¢p, p) < oo.
pPEK

If follows that ¢ maps each standard flat to itself. Since the intersection of the standard
flats passing through a vertex p € K is precisely p, it follows that ¢ fixes every
vertex, and is therefore the identity map.

Part 2 The homomorphism Comm(G) — QI(G) is injective.
Suppose @ € Comm(G). Then « can be represented by an isomorphism f: G; — G,,

where the G;’s are finite index subgroups of G . Therefore there is a quasi-isometry
¢: K — K which is G—equivariant, where we identify G; with G, via f', and use
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the corresponding action on the second copy of K. If @ € ker(Comm(G) — QI(G)),
then ¢ is at bounded distance from the identity. Letting ¢¢: V — V be the bijection
given by Theorem 1.6, we may argue as in the preceding paragraph to conclude that
¢o = idy . It follows that o = id.

Part 3 Aut(G) has infinite index in Comm(G).

Pick a vertex v € I", and a positive integer k. Let «: G — Zj be the homomorphism
which sends the generator v € G to 1 € Zj, and the other generators to 0 € Zj, . Let
Gj C G be the kernel of &, and K, be the k—fold cover of K given by Ky := K/Gy.
One may describe K as follows. Begin with K (Star v), which is a product S x Bj,
where Bj is a bouquet of j—circles, where j is the number of vertices adjacent to
v. To obtain K from K (Starv), one glues on a copy of K(I'y), where I'; C T is
the graph obtained by deleting v and the edges incident to v. To obtain K, one first
passes to the k—fold cyclic cover of K (Starv), and then glues on k—copies of K(I'y).

Let I'; be the graph obtained by taking k copies of I", and gluing them together along
the k copies of Star(v). In fact K(I'y) is homotopy equivalent to Ky ; to see this, map
K to K(Gy) by taking (k — 1) of the copies of [0, 1] x B;j C K} and collapsing them
to copies of B; (by collapsing the interval factors). In particular, Gy is isomorphic to
the RAAG G(@k). Since f‘k is not atomic, this shows that the atomic condition is not
commensurability invariant among RAAGs.

Note that the permutation group Sy of the set Zj acts isometrically on K(I'x) by
permuting the copies of K(I';), and hence we get a homomorphism Sj — Out(Gy) —
Comm(G)/ Inn(G). For each element « € Sy, we may lift the corresponding homotopy
equivalence ¥: Ky — Ky to a quasi-isometry ¢: K — K which preserves a parallel
set P C K covering K (Star v). Moreover, the induced map ¢z,: Zp — Zp will be
equivariant with respect to the action of kZ on Z p by translations, and descends to
the permutation of Z; = Z/kZ corresponding to «.

Now consider the collection C of elements ¢ € Comm(G) obtained this way, as k
varies over the positive integers, and o varies over the permutation group of Zj . If
Aut(G) had finite index in Comm(G), we could finite a finite collection f1,..., f; €C
such that for each ¢ € C there is a ¥ € Isom(K) such that ¢ oYy = f; for some
j €{l,...,i}. This means that Y ~1(P) = fj_l(P) =: P, and that

$zpoVzy Ly —Lp

agrees with (fj)Zp: Zp — Zp. However, by part 1 of Lemma 10.3, ¢z, is an
isometry. This clearly contradicts the fact that ¢ can come from any permutation ¢« of
Zy, for any k.

Geometry € Topology, Volume 12 (2008)



RAAG rigidity 1697

Remark 11.1 Let H denote the group of isometries of K(I'y) covering the permuta-
tion action Sy ~ K(I'y). Then there is a short exact sequence

1 —G(Iy) ~G — H— S, — 1.

Thus H is commensurable with G(I"). However, there is no geometric action of H
on K(I'). This can be deduced by examining the subgroup of H which stabilizes a
parallel set P, and observing that the induced action on Z p is not conjugate to an
isometric action.

Part4 Comm(G) has infinite index in QI(G).

The construction is similar to the proof that [Comm(G) : Aut(G)] = oo.

Pick v € T, and look at the infinite cyclic cover Ko, corresponding to the homo-
morphism G — Z which sends v to 1 and the other generators to 0. Then Koo
can be obtained from R x B; by gluing on infinitely many copies of K(T). Asin
the preceding paragraphs, we may produce homotopy equivalences by “permuting
the copies of K(I';)”. By lifting these homotopy equivalences we may obtain quasi-
isometries ¢: K — K which preserve a parallel set P covering K (Starv), and hence
obtain a bijective quasi-isometry ¢z ,: Zp — Zp. Itis not hard to see that any bijective
quasi-isometry Zp — Z p may be obtained in this way.

If [QI(G) : Comm(G)] were finite, there would only be finitely many possibilities for
the ¢z, ’s up to pre-composition by maps of the form ¥ p, where v comes from an
element of the commensurator. In view of Lemma 10.3, this is clearly not the case.
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