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Geodesible contact structures on 3–manifolds

PATRICK MASSOT

In this paper, we study and almost completely classify contact structures on closed 3–
manifolds which are totally geodesic for some Riemannian metric. Due to previously
known results, this amounts to classifying contact structures on Seifert manifolds
which are transverse to the fibers. Actually, we obtain the complete classification
of contact structures with negative (maximal) twisting number (which includes the
transverse ones) on Seifert manifolds whose base is not a sphere, as well as partial
results in the spherical case.

57M50; 57R17

Introduction

A geodesible plane field on a manifold is a plane field � which is totally geodesic for
some Riemannian metric g , which means that every geodesic of g that is somewhere
tangent to � is everywhere tangent to � . If such a plane field is integrable then (locally)
its leaves are totally geodesic submanifolds for g and this class of foliations has been
much studied. Following a suggestion of É Ghys, we investigate here, by contrast,
geodesible contact structures on 3–manifolds. The basic example of a totally geodesic
contact structure is the standard contact structure on the sphere which, by definition, is
the plane field orthogonal to the Hopf fibers for the canonical Riemannian metric. The
goal of this paper is to give an almost complete classification of geodesible contact
structures on closed 3–manifolds.

The existence of a geodesible plane field is a strong constraint on the topology of
the underlying manifold. In dimension 3 for instance, a theorem due to Y Carrière
shows that, up to diffeomorphism, a closed manifold equipped with a coorientable
geodesible plane field is either a Seifert manifold with a plane field transverse to its
fibers or a torus bundle over the circle which has linear monodromy A 2 SL2.Z/
satisfying tr.A/ > 2 and is endowed with a plane field transverse to the foliation
spanned by an eigendirection of A (which is the strong stable or unstable foliation
of the Anosov flow given by A); see Section 1. On torus bundles, contact structures
are completely classified by E Giroux and K Honda in [16; 23]. This classification
implies that a geodesible contact structure exists if and only if tr.A/ > 2 (as for any
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coorientable plane field) and that, in this case, it is unique up to isotopy. On Seifert
manifolds, in contrast, the situation is much more delicate: currently there is no general
classification of tight contact structures and our main task will be to classify those
which are transverse to the fibers—since these are the geodesible ones, up to isotopy.
In order to state the results, we define now the twisting number of a contact structure
on a Seifert manifold.

Let V be a Seifert 3–manifold and K � V a regular fiber, that is, a fiber admitting
a trivialized neighborhood D2 �S1 � f0g �S1 DK in which all circles f�g �S1 are
also Seifert fibers. Then K has a canonical (homotopy class of) normal framing given
by this splitting. Now let � be a contact structure on V and L a Legendrian curve
smoothly isotopic to K . Given a smooth isotopy ' taking K to L, let t.L; '/ be
the difference between the contact framing of L and the image by ' of the canonical
framing of K . Then define the twisting number of L by t.L/ D sup' t.L; '/ and
the twisting number of � to be the supremum of the twisting numbers t.L/ for all
Legendrian curves isotopic to regular fibers. One can prove that overtwisted contact
structures have infinite twisting number.

Theorem A (Section 4 and Section 6) Let V be a closed Seifert 3–manifold. A
contact structure � on V is isotopic to a transverse one if and only if it is universally
tight and has negative twisting number. On the other hand, any transverse contact
structure � on V is symplectically fillable.

It turns out that, when it exists, the (unique) geodesible contact structure on a torus
bundle is also universally tight and symplectically fillable. Hence geodesibility is
(apparently the first example of) a compatibility condition between a Riemannian
metric and a contact structure which implies tightness (and symplectic fillability).

Note here that all our Seifert manifolds are oriented with oriented fibers, and that all
contact structures we consider are positive for this orientation and (co) oriented unless
explicitly stated otherwise.

The next step is to determine which Seifert manifolds admit transverse contact struc-
tures. For this we need a concrete description of Seifert manifolds. Start with a
compact oriented surface R of genus g with r C 1 boundary components, take
R � S1 with the product orientation and attach r C 1 solid tori W0; : : : ;Wr to its
boundary, in order to get a closed manifold. The gluing is prescribed by integers
b; .˛1; ˇ1/; : : : ; .˛r ; ˇr / as follows: a meridian disk of Wi is attached to a curve
whose homology class is �˛i Œ@iR�C ˇi ŒS1�, 0 � i � r , where .˛0; ˇ0/ D .1; b/,
1� ˇi <˛i for i > 0 and @iR is the i –th boundary component of R with the induced
orientation (see Section 1.3). The Seifert invariants of the resulting manifold are, by
definition, .g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //.
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Theorem B (Section 5) Let V be a Seifert manifold with invariants

.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //

and let n be a positive integer. The following properties are equivalent:

(i) V carries a transverse contact structure whose twisting number is at least �n;

(ii) V carries a contact structure whose twisting number is negative and is at least
�n;

(iii) there exist integers x0; : : : ;xr such that
P

xi D 2�2g and .xi�1/=n<ˇi=˛i

for 0� i � r , with ˛0 D 1 and ˇ0 D b .

Using the equivalence of (i) and (iii), one can recover the following criterion:

Corollary A Seifert manifold with invariants

.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //

carries a transverse contact structure if and only if one of the following conditions
holds:

� �b� r � 2g� 2;

� g D 0, r � 2 and �b�
P
ˇi=˛i < 0;

� g D 0, r � 3, �b� r D�1 and there exist relatively prime integers 0< a<m

and a reordering of the pairs .˛i ; ˇi/, 1� i � r , such that:

ˇ1

˛1

>
m� a

m
;

ˇ2

˛2

>
a

m
; and

ˇi

˛i
>

m� 1

m
8i � 3:

This corollary was first proved for circle bundles (r D 0) by E Giroux in [17] and
A Sato and T Tsuboi in [39]. Then the case of general Seifert manifolds was treated
by K Honda in [21] (almost) and by P Lisca and G Matić in [29]. The proof in [21] is
direct and relies on subtle results on circle diffeomorphisms established in Eisenbud,
Hirsch and Neumann [6], Jankins and Neumann [25; 26] and Naimi [34]. The proof in
[29] combines the Eliashberg–Thurston perturbation theorem with the more analytical
adjunction inequality in symplectic geometry. In the case gD 0, r D 3 and b D�2, a
topological proof of Theorem B by P Ghiggini appeared in [11] while this paper was in
preparation.

The main tool in our work is a set of normal forms which we now describe. Take a
Seifert manifold V D .R� S1/[W0[ � � � [Wr and fix a complex structure J on R
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which defines the orientation of R. For each nonsingular 1–form � on R, the Pfaff
equation

cos.n�/ �C sin.n�/ � ıJ D 0

defines a contact structure on R� S1 and any contact structure � on V which extends
this one will be denoted by

� D �.�; n; �0; : : : ; �r / where �i D �jWi
; 0� i � r :

If, in addition, the integer �n is equal to the twisting number t.�/ then we say that �
is in normal form.

The starting point of our study is the observation that any contact structure on V with
negative twisting number is isotopic to one which is in normal form. In particular, the
integers xi in condition (iii) of the existence criterion are the indices of � along the
boundary components of R. The collection of these indices is called the multi-index
of the normal form.

Normal forms and their multi-indices will be our main tools to classify contact structures
with negative twisting numbers. The following theorem determines the possible negative
twisting numbers for a contact structure on a given Seifert manifold provided the base
surface has positive genus.

Theorem C (Section 7) Let V be a Seifert manifold with invariants

.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //; g > 0;

and let �D�.�; n; �0; : : : ; �r/ be a contact structure on V with multi-index .x0; : : : ;xr/.
Then � is in normal form—that is, t.�/ D �n—if and only if, for 0 � i � n, the
following conditions hold:

� the contact structure �i D �jWi
is tight;

� .xi�1/=n<ˇi=˛i and the triangle in R2 with vertices .0; 0/, .˛i ; ˇi/, .n;xi�1/

does not contain any integer point whose abscissa is less than n except possibly
its vertices—here again, ˛0 D 1 and ˇ0 D b .

Note that the second condition is automatically fulfilled when nD 1 and can be also
expressed in arithmetic terms using the continued fraction expansions of the ˇi=˛i ’s;
see Section 3.3. When gD 0, t.�/D�n implies the above conditions but the converse
is not known.

To classify contact structures with negative twisting number on a given Seifert manifold,
it remains to understand when two contact structures in normal form with the same
twisting number are isotopic. Here two cases appear which require different approaches.
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Recall that a tight contact structure � on a solid torus W whose boundary is � –convex
has a relative Euler class in H 2.W; @W /: it is the obstruction to extending inside W

a nonsingular vector field on @W which is tangent to �j@W —tightness implies the
existence of such a vector field.

Theorem D (Section 8) Let V be a Seifert manifold with invariants

.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //

and assume that �b� r < 2g� 2.

Every contact structure on V with twisting number �1 has a normal form whose
multi-index is .2� 2g� r; 1; : : : ; 1/ and has a Stein filling whose underlying smooth
manifold depends only on V .

Two contact structures �.�; 1; �0; : : : ; �r / and �.�0; 1; � 0
0
; : : : ; � 0r / in normal form with

the above multi-index are isotopic if and only if each �i has the same relative Euler
class as � 0i .

Among all isotopy classes of contact structures with twisting number �1, exactly two
contain transverse contact structures—and only one if we consider nonoriented contact
structures.

In the g D 0 case, tight contact structures on these manifolds were classified by H Wu
in [43] (using a similar strategy to distinguish isotopy classes). The case of circle
bundles (r D 0) was also previously treated by E Giroux in [17] but without the precise
counting of isotopy classes and by K Honda in [23] but with some gap in this counting.
To prove here the second part of the theorem, we use a result of P Lisca and G Matić [28]:
the contact structures are distinguished by the first Chern classes of their Stein fillings.

In the next theorem, we denote by dxe the smallest integer which is not less than
x . We also call R–class of a contact structure in normal form �.�; n; �0; : : : ; �r / the
homotopy class of � among nonsingular 1–forms on R.

Theorem E (Section 8) Let V be a Seifert manifold with invariants

.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //; g > 0;

let n be a positive integer and assume that �b� r D 2g� 2 or n> 1.

Every contact structure on V with twisting number �n has a normal form and any such
normal form has multi-index .nb; dnˇ1=˛1e; : : : ; dnˇr=˛re/.
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Two contact structures �.�; n; �0; : : : ; �r / and �.�0; n; � 0
0
; : : : ; � 0r / in normal form are

isotopic if and only if they have the same R–class and each �i has the same relative
Euler class as � 0i .

Among all isotopy classes of contact structures with twisting number �n and a fixed
R–class, exactly one if nˇi � 1 mod ˛i for all i and two otherwise contain trans-
verse contact structures—and only one in all cases if we consider nonoriented contact
structures.

The case of circle bundles (r D 0) was treated by E Giroux and K Honda in [17; 23].
On the other hand, in the case g D 1 and r D 1, tight contact structures on V were
classified by P Ghiggini in [13] but without the twisting number computation and
without determining which contact structures are universally tight or transverse.

A key step in the proof of the above theorem is to show that, given a contact structure
with twisting number �n under our hypotheses, two Legendrian curves which are
smoothly isotopic to the regular fibers and have twisting number �n are Legendrian
isotopic. An analogous statement was obtained by J Etnyre and K Honda in [10] for
Seifert structures on S3 —but the result was a corollary of the classification—and by
P Ghiggini in [14] for Seifert structures on T 3 .

According to our existence criterion, the two theorems above classify all contact
structures with negative twisting number on any Seifert manifold whose base is a
surface of positive genus.

Throughout the paper, we assume the reader is familiar with the theory of �–convex
surfaces developed by E Giroux in [15] but we will briefly recall in Section 2 and
Section 3 the results we need about the classification of tight contact structures on toric
annuli and solid tori.

Acknowledgements We warmly thank Emmanuel Giroux for suggesting the topic of
this paper, for many interesting discussions and for his constant encouragement. We
also thank Ko Honda and Paolo Ghiggini for interesting discussions related to this
paper and the referee for pointing out several small inaccuracies and helping improve
the exposition. This work was partially supported by the ANR Symplexe.

1 Geodesible plane fields

Totally geodesic contact structures were considered by R Lutz and T Hangan for constant
curvature Riemannian metrics in [20] and by R Lutz alone with extra relations between
a contact structure and a arbitrary metric in [31]. Here by contrast we consider contact
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structures which are totally geodesic for some arbitrary Riemannian metric with no
extra condition. Besides the theory of �–convex surfaces—which was not available to
Lutz—what makes this generality possible is the relation between geodesible plane
fields and a certain class of 1–dimensional foliations. This relation gives the following
topological characterization due to Y Carrière [3].

Proposition 1.1 A coorientable plane field � on a closed orientable 3–manifold V is
geodesible if and only if the pair .V; �/ is isomorphic to one of the following:

� a Seifert manifold endowed with a plane field transverse to its fibers;

� a hyperbolic torus bundle T 3
A

with monodromy A—where A 2 SL2.Z/ and
tr.A/ > 2—equipped with a plane field transverse to the foliation spanned by
one of the eigendirections of A.

Given a geodesible plane field � this relation also explains how the metrics g such
that � is totally geodesic for g look like. In the last subsection we define our notation
about Seifert manifolds.

1.1 Totally geodesic plane fields and Riemannian foliations

Throughout this section, F will be a 1–dimensional foliation on a 3–manifold and F

the corresponding line field.

Definition 1.2 A codimension 2 foliation is Riemannian if it admits transverse disks
equipped with Riemannian metrics such that each leaf meets at least one disk and
holonomy maps are isometries.

This definition and the following proposition essentially go back to Reinhart [37]. They
can be generalized to arbitrary dimensions and codimensions.

Proposition 1.3 A plane field on a 3–manifold is geodesible if and only if it is
transverse to some 1–dimensional Riemannian foliation.

Proof First suppose that a plane field � on a 3–manifold M is transverse to a
Riemannian foliation F. We equip � with the Riemannian metric g pulled back from
the transverse disks by holonomy and then extend this metric to TM such that � is
orthogonal to F and F is given an arbitrary metric. We now show that � is totally
geodesic for g .

It is sufficient to prove that for every .x; v/ 2 � there exists a small curve 
 tangent to
� , distance minimizing and satisfying 
 .0/D x and 
 0.0/D v . Let T be a transverse
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disk intersecting the leaf through x and � the projection from a neighborhood of x

to T along the leaves. Let x
 be a small geodesic in T starting at �.x/ with velocity
vector ��v and 
 be the unique lift of x
 to M which is tangent to � and set y D 
 .t/

for some small t . For every curve ˛ with ˛.0/D x and ˛.t/D y we denote by ˛0
�

the orthogonal projection of ˛0 onto � . The curve 
 is not longer than ˛ becauseZ
j˛0j �

Z
j˛0� j D

Z
j.� ı˛/0j D l.� ı˛/� l.x
 /D

Z
jx
 0j D

Z
j
 0j

where l is the length function on T and we used that ��W � ! T T is isometric by
construction and x
 is (locally) minimizing.

Conversely, suppose that � is totally geodesic for some metric g . We show that �?

integrates to a Riemannian foliation F.

We take any system of transverse disks for F intersecting all leaves. Each point x on a
leaf intersecting a transverse disk T at a point y defines a metric on TyT by pushing
gj� using the infinitesimal holonomy. We have to show that this metric is independent
of x on a given leaf. It is sufficient to prove that if x and x0 are on the same plaque L

then the infinitesimal holonomy is an isometry from �x to �x0 .

The geodesics orthogonal to the plaques are tangent to � so all the nearby plaques
are contained in tubes around L according to the (generalized) Gauss lemma. This
implies that F can be locally parametrized by a flow which preserves the tubes and
the fibration in disks of a tubular neighborhood of L. This flow then preserves the
distance to L and so the infinitesimal holonomy from �x to �x0 is an isometry.

1.2 The Carrière classification

If a 1–dimensional foliation is directed by a Killing vector field for some Riemannian
metric g then the induced metrics on a suitable system of transverse disks intersecting
all leaves are invariant by holonomy so this foliation is Riemannian. Such a foliation is
called isometric.

Example 1.4 Any foliation given by a locally free action of S1 is Riemannian since
any Riemannian metric can be averaged to give an invariant metric.

This gives a canonical Riemannian foliation on every Seifert manifold where the leaves
are the fibers. Amongst such manifolds, lens spaces (including S3 and S2 �S1 ) also
have deformed versions of the preceding example which are still isometric foliations:

Geometry & Topology, Volume 12 (2008)



Geodesible contact structures on 3–manifolds 1737

Example 1.5 We view S3 sitting in C2 as

S3
D
˚
.z1; z2/ 2C2

I jz1j
2
Cjz2j

2
D 1

	
:

For every pair .�; �/ of real numbers there is a flow �t .z1; z2/ D .e
i�tz1; e

i�tz2/

which defines a Riemannian foliation. If � is a rational multiple of � then we get
an example of the preceding type. The lens space Lp;q is the quotient of S3 by
.z1; z2/ 7! .e2i�=pz1; e

2i�q=pz2/ and �t clearly induces a Riemannian foliation on
the quotient. These foliations are always C1 close to a Seifert foliation.

The deformed example on S2 �S1 is:

Example 1.6 Let f be a rotation of S2 with irrational angle. The foliation of S2�R
by f�g �R induces an isometric foliation of

S2 �R

.x; t/� .f .x/; t C 1/
' S2

�S1

which is C1–close to a Seifert fibration.

The following examples are more exotic since they are not isometric foliations.

Example 1.7 For every matrix A 2 SL2.Z/, if tr.A/ > 2 then A has two positive
eigenvalues �; 1=�. The eigendirection corresponding to � defines a foliation on
T 2�R which induces a 1–dimensional Riemannian foliation on T 3

A
; see [3]. Remark

that if tr.A/ < �2 then one gets a nonorientable foliation so we are not interested in
this case because we only consider coorientable contact structures.

Proof of Proposition 1.1 According to Proposition 1.3, a plane field is geodesible
if and only if it is transverse to a Riemannian foliation. According to Carrière’s
classification in [3], any closed oriented 3–manifold equipped with a 1–dimensional
Riemannian foliation is diffeomorphic to one of the following:

� the torus T 3 with a linear foliation;

� a lens space with a foliation of Example 1.5;

� the product S2 �S1 with a foliation of Example 1.6;

� a Seifert manifold with its fibration (see Example 1.4);

� a torus bundle T 3
A

, tr.A/ > 2, with the foliation of Example 1.7.

Because transversality is an open condition, a plane field is transverse to one of the first
three types of foliations if and only if it is transverse to a foliation of the fourth type.
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1.3 Seifert manifolds

We recall the definitions of Seifert manifolds and their invariants to fix conventions
for notation and orientations. We then consider two classes of examples: the Seifert
structures of S3 and the bundles of cooriented contact elements of 2–dimensional
orbifolds.

Conventions for Seifert invariants vary greatly from papers to papers. For instance,
here we use the same one as P Lisca and G Matić in [29] but H Wu uses a different
one in [43]. To go from one convention to another it suffices to use the normalization
1� ˇi <˛i and the fact that the rational and integer Euler numbers—denoted by e and
e0 respectively in the following—are the same with any convention. In particular, ˇi=˛i

in one convention can become 1�ˇi=˛i in another one but this can be checked using
e and e0 . In the notation M.r1; : : : ; rk/ used for instance in [43], e D

P
ri . A useful

exercise in conversion is to compare the conventions in the discussion following the
proof of Theorem C at the end of Section 7 to the conventions in the cited papers.

Let B be a closed oriented 2–orbifold of genus g with r elliptic points f1; : : : ; fr

of order ˛1; : : : ; ˛r and no other exceptional point. Let f0 be a regular point of B

and D0; : : : ;Dr be pairwise disjoint closed disks such that fi is in Di for every i .
Denote by R the smooth surface B n

S
VDi . In the following, boundary components

of R will always be oriented as boundary components of the Di ’s.

Let V 0 be R� S1 , fix an orientation for the S1 factor and use the product orientation
on V 0 . The first homology group of the boundary components of V 0 have a basis
.Si ;Fi/ where Si is the homology class of @Di �f�g and Fi is the homology class of
f�g �S1 (S stands for section and F for fiber). We orient these boundary components
by imposing the intersection number Si �Fi DC1.

The Seifert manifold V with invariants .g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr // is, by definition,
the manifold obtained by filling each boundary torus of V 0 with a solid torus Wi which
has a meridian whose homology class is Mi D ˛iSi C ˇiFi with .˛0; ˇ0/ D .1; b/

and 0< ˇi < ˛i for i > 0.

Each solid torus Wi is identified with W .˛i ; ˇi/ where W .˛; ˇ/ is the quotient of
R=Z�R=Z� Œ0; 1� by the relation .x;y; t/ � .x0;y0; t 0/ if ˛.y0 � y/ D ˇ.x0 � x/

and t D t 0 D 0. The solid torus W .˛; ˇ/ is foliated by the images of the circles
f�g �R=Z� f�g. This foliation is called the standard Seifert fibration on W .˛; ˇ/.

These foliations inside the Wi ’s extend the foliation of V 0 by S1 to a foliation of V such
that B is the orbit space. The leaves of this foliation are called the fibers of V . Smooth
points of B are called regular fibers whereas elliptic points are called exceptional fibers.
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A closed subset of a Seifert manifold is said to be vertical if it is isotopic to a union of
regular fibers.

The rational Euler number of V is e.V /D�
Pr

iD0 ˇi=˛i and the integer Euler number
is e0.V /D�b� r .

Example 1.8 (Seifert structures on S3 ) Let .L0;L1/ be two fibers of the Hopf
fibration. One can see S3 as a quotient of T 2� Œ0; 1� such that the projection map p is
a diffeomorphism from T 2� .0; 1/ to S3 n .L0[L1/ and collapses T0 to L0 and T1

to L1 —where we set Tt D T 2 � ftg. For each point x 2L0 (resp. x 2L1 ) p�1.x/

is a circle fptg �R=Z� T0 (resp. R=Z� fptg � T1 ). Any foliation of T 2 � .0; 1/

by circles not homologous to the above circles project to a foliation of S3 n .L0[L1/

which, together with L0 and L1 gives a Seifert structure on S3 . These are the only
Seifert structure on S3 ; see eg Scott [41].

Example 1.9 (Cooriented contact elements bundles) Seifert manifolds are the total
spaces of circle bundles over 2–orbifolds in the sense of Thurston. One type of such
bundles is especially interesting for us, the cooriented contact elements bundle ST �B

of an orbifold B where we orient the fibers unlike the natural orientation. It has Seifert
invariants

.g; 2� 2g� r; .˛1; 1/; : : : ; .˛r ; 1//

and rational Euler number e.ST �B/D��.B/where the orbifold Euler number of B is

�.B/D �.R/C

rX
iD0

1

˛i
D 2� 2g� r C

rX
iD1

1

˛i
:

As in the special case of smooth surfaces, ST �B carries a canonical (positive) contact
structure denoted by �B .

2 Contact structures on toric annuli

Here we recall some facts about tight contact structures on toric annuli which are
needed in this text. All the results here are contained in Giroux [16] or follow directly
from results therein (see also Honda [22] for a different approach to these questions).
The main source of variations lies in boundary conditions since those most frequently
used in [16] are not convenient for our purposes.

In the following, each time we consider a torus bundle, the fiber of a point t will be
denoted by Tt and T will denote a torus.
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A suspension � on a torus T —that is, a nonsingular foliation admitting a simple closed
curve intersecting all leaves transversely—determines a line D.�/ in H1.T;R/ called
the asymptotic direction of � and defined in [40]: the real cycles ŒLt �=t where Lt is
an orbit of length t closed by a minimizing geodesic segment have a common limit
up to sign in H1.T;R/ when t goes to infinity and the line D.�/ spanned by this
limit is independent of the starting point and Riemannian metric. If � is linear then
D.�/ is the direction of � and if � has a periodic orbit then D.�/ is generated by
its homology class for any orientation. We say that D.�/ is rational if it contains a
nonzero point of H1.T;Z/.

If � is a (positive) contact structure on T � I —where I is an interval—such that each
�Tt is a suspension then the function�

I ! P .H1.T;R//'R=�Z
t 7! D.�Tt /

�
is nonincreasing for the orientation of H1.T;R/ inherited from the orientation of T

via the intersection form.

Remark 2.1 If there exists t such that D.�Tt / is not rational or �Tt is conjugated
to the suspension of a rotation then t 7!D.�Tt / is nonconstant.

When a �–convex torus T in a contact manifold has a Legendrian fibration over the
circle then we say that this fibration is a ruling of T or that T is ruled by this fibration.
In this case �T has smooth singularity circles and D.�T / is defined to be the line in
H1.T / spanned by the homology class of a singularity circle with any orientation.

The characteristic foliation of a torus is said to be admissible if it is linear or ruled with
two circles of singularities or a suspension divided by two curves.

Tight contact structures on toric annuli, solid tori, lens spaces and torus bundles with
admissible boundary are made of contact structures printing suspensions on each torus
and orbit flips which we now define (an explicit model is given in [16, Section 1.F]).

Definition 2.2 A contact structure � on T � Œ0; 1� has an orbit flip with homology
class ˙d if all the �Tt are divided by 2k circles with total homology class ˙2d when
they are all given the same orientation, �Tt is a suspension with 2k periodic orbits for
every t ¤ 1=2, �T1=2 is ruled and the periodic orbits of �T0 and �T1 have opposite
orientations.

Note that, in general, the homology class of an orbit flip is defined up to sign but in our
study of contact structures on Seifert manifolds one of the two possible classes will
intersect the fiber class positively and we will call it the homology class of the orbit
flip.
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Definition 2.3 A contact structure on T � Œ0; 1� is in normal form with flip locus
f˙d1; : : : ;˙dng if �T0 and �T1 are admissible foliations and if there exists a sequence
t1 < � � �< tn 2 .0; 1/ such that:

� �jT�.0;t1/ and �jT�.tn;1/ print a suspension on each Tt ;
� for every i , �jT�.ti ;tiC1/ prints a suspension on each Tt with nonconstant

asymptotic direction;
� for every i there exists a neighborhood J of ti such that �jT�J has an orbit flip

with homology class ˙di .

The following definitions are useful to describe the links between tight contact structures
on toric annuli and the geometry of H1.T;R/, its integral lattice H1.T;Z/ and the
intersection form on them.

Definition 2.4 Let �0 and �1 be admissible foliations on T . The Giroux cone
C.�0; �1/ of .�0; �1/ is the cone without vertex bordered on the left by D.�0/ and on
the right by D.�1/. The boundary lines—deprived of 0—are in the cone if and only if
the corresponding foliations have a dividing set.

Let E be in each connected component of C the convex hull of C.�0; �1/\H1.T;Z/.
An edge of a part of a lattice is a maximal subset of aligned points. The Giroux
polygon P.�0; �1/ of .�0; �1/ is the set of integral homology classes which belong to
a finite length edge of @E—or is the intersection of two infinite edges—ordered by the
intersection form from right to left. We denote by @P the (possibly empty) set of its
extremal points.

If � is a contact structure on T � Œ0; 1� we also define C.�/D C.�T0; �T1/ and similarly
for P . See Figure 1 for an example where �0 has no dividing set.

These cones naturally have two connected components and everything is symmetric
with respect to the origin but in the context of Seifert manifolds we will always consider
the component made of homology classes intersecting the fiber class positively and
call this component the Giroux cone.

The following lemma is a special case of [16, Lemma 3.34] and can also be proved
by exhibiting an annulus transverse to the Tt ’s and not satisfying the Giroux criterion
[17, Theorem 4.5 a)]. We call a element of H1.T;Z/ simple if it has a simple curve
representative or, equivalently, if it is not a multiple of an other homology class.

Lemma 2.5 If a contact structure on a toric annulus has an orbit flip whose homology
class is nonsimple and not on the boundary of the corresponding Giroux cone then it is
overtwisted.
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D.�0/

D.�1/

H1.T;Z/ P @E nP

Figure 1: A Giroux cone and its polygon

For all contact structures printing admissible foliations on the boundary there is a
well defined relative Euler class once �0 is oriented since such an orientation fixes a
(co)orientation for any (positive) contact structure printing �0 on T0 . We denote by
Tight0.�0; �1/ the set of tight contact structures with zero torsion printing �0 and �1

on the boundary components. In the following, a @–isotopy is an isotopy relative to
the boundary.

Theorem 2.6 (E Giroux [16]) Let �0 and �1 be admissible foliations on T with �0

oriented and P WD P.�0; �1/.

a) Every contact structure in Tight0.�0; �1/ is @–isotopic to a contact structure in
normal form whose flip locus is in P .

b) A contact structure in normal form on T � Œ0; 1� which prints �0 on T0 and �1

on T1 is tight if and only if its flip locus is contained in P . It is universally tight
if and only if its flip locus is contained in @P .

c) If D.�0/¤D.�1/ then two contact structures in Tight0.�0; �1/ are @–isotopic
if and only if they have the same relative Euler class.

d) If two contact structures on T � Œ0; 1� print on each Tt suspensions whose
asymptotic directions do not cover the whole projective line and if they coincide
on the boundary then they are @–isotopic.
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e) Any tight contact structure with �–convex boundary on T � Œ0; 1� is isotopic to
a contact structure with T1=3 (resp. T2=3 ) divided by two curves parallel to the
dividing set of T0 (resp. T1 ).

In the preceding theorem, the correspondence with [16] is: a) and b) are in Proposi-
tion 1.8, c) is in Theorem 1.5, d) is Theorem 3.3 and e) follows from Proposition 3.22.

If a contact structure on T � Œ0; 1� is in normal form on T � Œ0; 1=2� and T � Œ1=2; 1�

with flip loci R and R0 then the flexibility lemma and Theorem 2.6 d) can be used to
prove that � has a normal form with flip locus .R[R0/ n .R\R0/ so Theorem 2.6 b)
can be used to get gluing results. This strategy is used in Section 3.2.

Finite covers We now turn to finite covering maps between toric annuli. If � is such
a map and d is a homology class represented by a finite collection C of embedded
oriented circles in T then ��1.C / is a finite collection of oriented embedded circles
whose total homology class will be denoted by ��d .

If � is a contact structure in normal form on T � Œ0; 1� with flip locus f˙d1; : : : ;˙dng

and � is a finite covering map preserving the product structure of T � Œ0; 1� then ���
has orbit flips with homology classes ˙��d1; : : : ;˙�

�dn so we can use Lemma 2.5
to detect overtwisted covers.

This fact is used in Section 6 but we can already give a general corollary: using
Theorem 2.6 and Lemma 2.5 we answer the question of [23, page 97]. Given a virtually
overtwisted contact structure � on T 2�Œ0; 1� with each boundary component divided by
two curves, Honda asks which covering spaces R2=.mZ�nZ/� Œ0; 1� are overtwisted.
Denote by �.m; n/ the lifted contact structure. We now explain how to compute n0;m0

such that �.m; n/ is overtwisted whenever n� n0 and m�m0 . This will leave a finite
number of �.m; n/ which have to be analyzed directly, using Theorem 2.6 b).

The crucial point is that H1.T
2/ has a preferred basis and a Euclidean structure in

addition to its lattice and intersection form. According to Theorem 2.6 a) and b), �
is isotopic to a contact structure in normal form whose flip locus contains a class
d 2P n@P . Let Lh and Lv be affine lines containing d and directed by the two basis
vectors.

Here we assume that @C has no component parallel to the axes (the special case we
neglect can be dealt with using the same methods). One can then check that there exist
a2 @C\Lh and b 2 @C\Lv such that the line .ab/ divides H1.T

2;R/ into two open
half-planes, one containing 0 and the other one containing d . Let lh (resp. lv ) be the
distance between d and a (resp. b ) and set n0 D b1= lhcC 1 and m0 D b1= lvcC 1.
If n� n0 and m�m0 then the lifted Giroux cone contains integer points a0 2 ��Œad �
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and b0 2 ��Œbd � proving that ��d is neither on the Giroux polygon of �.m; n/ nor on
the boundary of its Giroux cone so that �.m; n/ is overtwisted according to Lemma
2.5.

3 Contact structures on solid tori

In this section we explain how the results of the previous section extend to results
on solid tori (here again, everything comes from [16]) and gather some results about
contact structures with negative twisting number on solid tori which directly use the
classification of tight contact structures.

3.1 Classification results

Let W be an oriented solid torus with a meridian class M 2H.@W /, � be an oriented
admissible foliation on @W and denote by Tight.�/ the set of tight contact structures
on W printing � on the boundary. We see W as S1[ .T � .0; 1�/ which is a quotient
of T � Œ0; 1�. A contact structure on W which is transverse to S1 can be lifted to
T � Œ0; 1� and is said to be in normal form if this lift z� is in normal form. Using this
construction z� prints on T0 a linear foliation �M whose direction is spanned by M in
H1.@W /. The flip locus of � is then defined as the flip locus of z� . We denote by LM

the set of integer homology classes in C whose intersection with M is ˙1.

Theorem 3.1 (E Giroux [16, Lemma 4.2]) Let W be a solid torus, � an oriented
admissible foliation on @W , �M a linear foliation coming from meridian disks and P
the Giroux polygon P.�M ; �/.

a) Every � 2 Tight.�/ is @–isotopic to a contact structure in normal form whose
flip locus is in P .

b) A contact structure � in normal form on W and printing � on the boundary is
tight if and only if its flip locus is contained in P [LM . It is universally tight if
and only if its flip locus is contained in @P [LM .

c) Two contact structures in Tight.�/ are @–isotopic if and only if they have the
same relative Euler class.

Corollary 3.2 Let W be a solid torus, � an oriented admissible foliation on @W and
� 2 Tight.�/. Denote by �M a linear foliation on @W spanned by meridian disks.
There exists a boundary-parallel torus divided by two curves with homology class
d 2H1.@W;Z/ if and only of d is a simple class in C.�M ; �/.
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When � is an admissible foliation with dividing curves, there is only a finite number
of @–isotopy classes of tight contact structures in Tight.�/ which can be computed
using the above theorem.

Corollary 3.3 With the same notation as above, if � is a � –convex admissible foliation
then P has a finite number of edges e1; : : : ; ek and

Card
�
Tight.�/

�
D

kY
iD1

Card.ei/:

For example, in Figure 1 with �0D�M and �1D� , we have six tight contact structures.
Note that the Card.ei/ in the preceding corollary can be computed using the continued
fraction expansion of the slope of D.�/ in a suitable basis of H1.T;R/; see [16,
Section 1.G].

We now apply this classification to Seifert fibered solid tori:

Lemma 3.4 Let W DW .˛; ˇ/ be a solid torus with a standard Seifert fibration (see
Section 1.3) and denote by M a meridian class in H1.@W /. Let � be a contact structure
on W such that �@W is ruled by vertical curves with two dividing circles. Let d be
the homology class of these circles oriented such that d �M > 0.

Such a � is universally tight if and only if it is @–isotopic to a transverse contact
structure in the interior of W .

If d �M D 1 then there is only one @–isotopy class of tight contact structures which
coincide with � on @W . This class contains universally tight contact structures tangent
to the fibers as well as contact structures positively and negatively transverse (in the
interior of W ).

If d �M > 1 then there are exactly two @–isotopy classes of universally tight contact
structures which coincide with � on @W . They contain contact structures either
positively or negatively transverse but not both and no tangent contact structure.

Proof A contact structure in normal form is isotopic through contact structures in
normal form to a transverse contact structure if and only if its flip locus is empty.
This potentially leaves two isotopy classes of contact structures � 0 depending on the
orientation of the suspensions � 0Tt near the boundary. Theorem 3.1 c) and a Euler
class computation give one or two isotopy classes depending on the intersection number
d �M as announced.
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Since any tangent contact structure can be perturbed into a positively or negatively
transverse contact structure in the interior of W , it remains only to prove that, when
d �M D 1, there is a tangent contact structure which coincides with � on @W .

Let .S;F / be a base of H1.@W / such that F is the fiber class and M D ˛S CˇF .
Because d �M D 1, we can write d as nS C qF with nˇ� q˛ D 1 so that W .˛; ˇ/

can be seen as �
D2
�R

�ı�
.z; t/� .e2i�n=˛z; t C 1/

�
because the meridian in the above model has intersection ˛ and �ˇ respectively with
the fibers induced by the R factor and the section induced by s 7!

�
e�2i�qs;�ˇs

�
.

The map �
W .˛; ˇ/ ! W .˛; 1/' ST �D

.z; t/ 7! .z; nt/

�
where D is the base of W is a n–fold fibered covering map. Seen as a covering map
from W to ST �D , it can be chosen to extend the one over @D associated to � by (the
oriented version of) [17, Proposition 3.3]—which is stated in a slightly generalized
form as Proposition 8.9 below. The pullback of the canonical contact structure of
ST �D by this covering map coincides with � on @W and is tangent to the fibers.

3.2 A gluing lemma

Lemma 3.5 Let W .˛; ˇ/ D T 2 � Œ0; 1�= � be a solid torus with a standard Seifert
fibration and � a contact structure on W such that T1=2 and T1 are divided by two
curves intersecting each fiber only once and the fiber class is not in the Giroux cone of
� . If �jT 2�Œ0;1=2�=� and �jT 2�Œ1=2;1�=� are tight then � is tight.

Proof We set �1 D �jT 2�Œ0;1=2�=� , �2 D �jT 2�Œ1=2;1�=� and we denote by P , P1 and
P2 the Giroux polygons associated to � , �1 and �2 .

According to Theorems 3.1 a) and 2.6 a), we can assume that �1 and �2 are in normal
form and that their flip loci are contained in P1 and P2 respectively. The crucial fact
we have to prove is that P DP1[P2 because of the assumption on the dividing curves;
see Figure 2. This will implies that � has a normal form whose flip locus is in P and
so is tight according to Theorem 3.1 b).

Denote by F and M the fiber and meridian classes oriented such that M � F > 0

and denote by d and d 0 the homology classes of each dividing curve of T1=2 and T1

respectively, oriented such that their intersection with F is C1. We now concentrate
without further notice on the connected component of the Giroux cone of � which
is contained in the half-plane H D fh �F > 0g and the polygons inside it. Because
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d �F D d 0 �F D 1 and d 0 � d � 0, there exists k � 0 such that d D d 0C kF and, for
every x 2H , the signed area of the triangle d 0xd is

.x� d 0/ � .d � d 0/D .x� d 0/ � kF D k.x �F � 1/� 0:

This proves that P2 D Œd
0; d � and that Œd 0; d �� P .

In particular, d is in P and this is exactly what is needed in order to get P DP1[P2 .
Indeed, if we denote by E , E1 and E2 the convex hulls of the integer points of
the corresponding cones, what we want is E D E1 [E2 so we need to prove that
E0 WD E1 [E2 is already convex. Denote by � the half-line from 0 containing d .
Since E1 and E2 are convex, we only have to check that, for every x 2 E1 and
y 2E2 , the point z WD Œx;y�\� is in E0 . Since d is in P , E\�DE0\� and, by
convexity of E , z 2E so we are done.

F

M

S

d

d 0

Figure 2: Giroux polygons for the gluing lemma

3.3 Local twisting number calculation

We first recall some arithmetic. If x is a real number and a> 0 and b are relatively
prime integers then we say that b=a is a best lower approximation for x if it is maximum
among rational numbers smaller than x whose denominator is not larger than a. The
best lower approximations of x can be read from its continued fraction expansion:

x D Œa0I a1; : : : � WD a0C
1

a1C
1

:::
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for a unique sequence of integers ai such that ai > 0 for i > 0 and the last nonzero
ai , i > 0 (if it exists), is greater than 1.

The convergent of order k of x is Œa0I a1; : : : ; ak � and the intermediate fractions of
order k , k � 2 of x are the Œa0; a1; : : : ; ak�1; a� with 1� a< ak .

The best lower approximations of x are exactly the convergents and intermediate
fractions of even order of x with the possible exception of x itself.

Proposition 3.6 Let W be a solid torus with a standard Seifert fibration. Suppose
.S;F / is a basis of H1.@W;Z/ such that F is the homology class of the fiber and
the meridian circles in @W —oriented such that they intersect F positively—have
homology class M D ˛S CˇF with 1� ˇ < ˛ if ˛ > 1.

If � is a tight contact structure on W such that @W is divided by curves which can be
oriented to have total homology class d D 2nSC2.x�1/F , n> 0 then the following
statements are equivalent:

� t.�/D�n;

� .x � 1/=n< ˇ=˛ and the triangle in R2 with vertices .0; 0/, .˛; ˇ/, .n;x � 1/

does not contain any integer point whose abscissa is less than n except possibly
its vertices—in particular d=2 is simple;

� either nD 1 and x� 1< ˇ=˛ or the following conditions hold:
(i) x D dnˇ=˛e;

(ii) nˇ � 1 mod ˛ or .x� 1/=n is a best lower approximation of ˇ=˛ .

Proof Let C denote the Giroux cone of � in H1.@W;R/.

According to Theorem 2.6 e), Corollary 3.2 and the flexibility lemma, t.�/D�n if
and only if C does not contain any point kS C lF with k < n—in particular d=2 is
simple. This proves the equivalence of the first two points. In addition, the second part
of the second point is clearly always satisfied when n D 1 so we now suppose that
n> 1 and we explain the equivalence of the second and third conditions.

Suppose that the second condition is satisfied. Set q D dnˇ=˛e � 1 so that q is the
greatest integer which is smaller than nˇ=˛ .

Recall that, according to Pick’s formula [36] (see eg Aigner and Ziegler [1] for a proof
in English), any polygon with integer vertices in R2 has area

nintC
1

2
nbd� 1
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where nint is the number of interior integer points and nbd is the number of boundary
integer points.

The point with abscissa n which is the closest to the left boundary of C is .n; q/
by definition. Also the triangle with vertices .0; 0/, .n; q/ and .n; q � 1/ has area
n=2 > 1=2 so it contains integer points in addition to its vertices by Pick’s formula.
Such points necessarily have abscissa less than n so they cannot be in C . This implies
that C cannot contain .n; q� 1/; see the left-hand side of Figure 3. We conclude that
the right boundary of C is generated by .n; q/.

M D .˛; ˇ/

.n; q/

.n; q� 1/

n

M .n; q/

n

Figure 3: Computing the multi-index using Pick’s formula

If n� ˛ then the triangle with vertices .0; 0/, .˛; ˇ/ and .n; q/ is inside C except for
the edge from .0; 0/ to .˛; ˇ/ which does not contain any integer point but its vertices;
see the right-hand side of Figure 3. The area of this triangle is .nˇ � q˛/=2 so that
according to Pick’s formula we have nˇ� q˛ D 1 so nˇ � 1 mod ˛ .

In particular we get that if ˛>1 then n¤˛ and ˛−nˇ so qDbnˇ=˛c and xDdnˇ=˛e.

If n < ˛ then the condition above on integer points in C is exactly the best lower
approximation condition.

The fact that the third condition implies the second one is analogous.

4 Characterization of transverse contact structures

In this section we describe geodesible contact structures on torus bundles and we prove
Theorem A from the introduction except for the statement that universally tight contact
structures with negative twisting number on Seifert manifolds are isotopic to transverse
ones which is deferred to Section 6.
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4.1 Torus bundles

Proposition 4.1 Let A be a matrix in SL2.Z/ with tr.A/ > 2.

A contact structure on T 3
A

is isotopic to one which is transverse to the foliation of
Example 1.7 if and only if it is universally tight and has zero torsion. There is exactly
one isotopy class of such contact structures on T 3

A
.

Every geodesible contact structure on T 3
A

is symplectically fillable.

This classification is a direct consequence of the previously known classification results
contained in [16] (see also [22]) which we will recall. The fillability comes from the
classification and a theorem by F Ding and H Geiges.

For any function � W R!R, the Pfaff equation

cos �.t/dx1C sin �.t/dx2 D 0

defines a contact structure on T 3
A

if and only if � 0 < 0 and

A�.cos �.t C 1/dx1C sin �.t C 1/dx2/^ .cos �.t/dx1C sin �.t/dx2/D 0:

This contact structure is denoted by �.�/. The following proposition explains the
special role of these �.�/. It is proved in [16, Corollary 3.8] for the first part and the
second part is obtained from the proof of [16, Lemma 3.2].

Proposition 4.2 Let A be a matrix in SL2.Z/ with tr.A/ > 2. On T 3
A

, any contact
structure whose lift z� to T 2�R prints a suspension on each Tt is isotopic to some �.�/.

If
S

t2Œ0;1�D.
z�Tt / is not the whole projective line then �.1/� �.0/ > �2� .

The theory of normal forms explained in Section 2 can also be used to study tight contact
structures on torus bundles over the circle. In this text we only need to consider the case
of universally tight contact structures on torus bundles with hyperbolic monodromies.
The following theorem comes from [16, Theorem 1.3] and its proof in Section 4.D.

Theorem 4.3 Let A be a matrix in SL2.Z/ with tr.A/ > 2.

a) A contact structure on T 3
A

is universally tight if and only if it is isotopic to some
�.�/.

b) If � is conjugated to �.�/ then Tor.�/Dmax
�
N \

�
0; �.0/��.1/

2�

��
.

c) Two universally tight contact structures on T 3
A

are isotopic if and only if they
have the same torsion.
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Proof of Proposition 4.1 Let � be a contact structure transverse to the foliation FA

of Example 1.7. Because each Tt is foliated by FA , each �Tt is a suspension and the
same is true for the lift z� of � to T 2 �R.

Also
S

t2Œ0;1�D.
z�Tt / is not the whole projective line because z� is transverse to

a fixed direction. According to Proposition 4.2, � is isotopic to some �.�/ with
�.1/��.0/ >�2� so it is universally tight and has zero torsion according to Theorem
4.3.

Conversely one can construct a function � such that �.�/ is transverse to FA and all
universally tight contact structures with zero torsion on T 3

A
are isotopic to this �.�/

according to Theorem 4.3.

The symplectic filling is constructed in [5, Theorem 1].

4.2 Symplectic fillings for transverse contact structures

Given any Seifert manifold V there is a symplectic manifold .W; !/ such that @W DV

(as oriented manifolds) and ker! on V is tangent to the fibers. This symplectic
manifold is a (weak convex) filling of .V; �/ for any transverse contact structure �
on V .

The existence of .W; !/ can be deduced from [32, Theorem 2.1]—as observed in
[29]—or, more elementarily, from the main theorem of [35]. Indeed, if .B; !B/ is a
symplectic orbifold with isolated cyclic singularities and V ! B is a circle bundle
over B (in the sense of Thurston [42]) then one can consider the associated disk
bundle D! B where each fiber is equipped with (a quotient of) the symplectic form
d.1

2
r2d�/. Following the construction explained eg in [33][Theorem 6.3] we get a

symplectic orbifold which can be resolved using [35] to get the desired filling. If B is
a 2–orbifold like in our case then the resolution is completely explicit.

4.3 Universal tightness

Proposition 4.4 If .V; �/ is a Seifert manifold with a transverse contact structure then
its universal cover .�V ; z�/ is R3 or S3 with its standard tight contact structure.

Proof The universal cover �V of V is either R3 D R2 �R or S2 �R or S3 where
the Seifert structure lifts to the foliation by R in the first two cases and S3 can have
any of its Seifert structures (see Example 1.8).

Here �V cannot be S2�R since V would be covered by S2�S1 which has no transverse
contact structure. This fact is contained in Theorem B but there is a direct argument.
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Indeed, S2 �S1 is the quotient of R=Z�R=Z� Œ0; 1� by .x;y; t/� .x0;y; t/ when
t D 0 or 1 which is foliated by f�g �R=Z� f�g. If � is a transverse contact structure
then it can be lifted to a contact structure z� which prints a suspension on each torus Tt .
The foliations z�T0 and z�T1 are conjugated to the suspension of the same rotation so
the asymptotic direction of z�Tt in H1.T

2;R/DR�R is not constant according to
Remark 2.1 and goes from R�f0g to itself. This contradicts the fact that it never is
f0g �R which is the fiber direction.

If �V is R3 then .V; �/ is covered by R2 � S1 equipped with a contact structure
transverse to the S1 factor. So we can decompose R3 as R2 �R so that the lifted
contact structure z� is transverse to the R factor and invariant under integral translations
in this direction. According to [17, Section 2.B.c], z� is tight (this is proved using
explicit contact embedding of any ball inside the standard R3 where the Bennequin
theorem [2] is available). According to a theorem of Y Eliashberg [8], z� is the standard
contact structure on R3 .

Suppose now that �V is S3 . We have to prove that any transverse contact structure �
on S3 is isotopic to the standard contact structure on S3 , which is tight according to
the Bennequin theorem.

Let pW T 2 � Œ0; 1�! S3 be the projection introduced in Example 1.8 and y� the lifted
contact structure on T 2 � Œ0; 1�. Up to an isotopy of � among transverse contact
structures, we can assume that � coincides with the standard contact structure �0 of S3

in a neighborhood of L0[L1 . According to Theorem 2.6 d) applied to y� and p��0 ,
� is isotopic to the standard contact structure of S3 .

4.4 Twisting number

Proposition 4.5 Transverse contact structures on Seifert manifolds have negative
twisting numbers.

Proof Let V be a Seifert manifold and � a transverse contact structure on V . We first
remark that a contact structure which is covered by a contact structure with negative
twisting number has negative twisting number. Indeed, suppose �V ! V is a k –fold
fibered covering map, y� is lifted from � , f is a regular fiber in V and yf the lifted
regular fiber of �V . For every isotopy bringing f to a � –Legendrian curve L in V there
is a lifted isotopy which brings yf to a y� –Legendrian curve �L in �V and t.�L/D kt.L/

so if L has nonnegative twisting number then so has �L. Note that in general t.y�/ can
nonetheless be higher than t.�/ because of Legendrian curves which are not lifted from
curves in V so Theorem C cannot be deduced from the circle bundle case and indeed
exhibits a much richer behavior in the general case.
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If the base orbifold B of V is covered by a smooth surface then V is covered by a circle
bundle �V and we conclude using the preliminary remark and [17, Proposition 2.4c]. If
B is not covered by a smooth surface then V is a lens space whose universal cover is
S3 . If this universal cover is a circle bundle then we can use Giroux’s result again but
in general S3 will have one or two exceptional fibers; see Example 1.8. According to
Proposition 4.4 the lifted contact structure coincides with the standard contact structure
on S3 . Regular fibers of S3 are then positive torus knots and we can conclude using
Bennequin’s inequality. Indeed, if the regular fibers are .p; q/ torus knots then the
Seifert framing and the fibration framing differ by pq (this is the linking number of two
disjoint .p; q/ torus knots contained in the same torus) and the Seifert genus of a .p; q/
torus knot is easily seen to be at most .p�1/.q�1/=2 (this is actually the exact Seifert
genus); see eg Rolfsen [38, Chapter 5]. Bennequin’s inequality applied to any vertical
Legendrian curve L then gives t.L/D tb.L/�pq � 2g� 1�pq � �p� q < 0:

Remark 4.6 If V is a Seifert manifold such that there exists an isotopy relative to
a regular fiber which does not preserve the canonical framing of this fiber then every
contact structure has infinite twisting number. Because of the above proposition we are
not interested in those Seifert manifolds in this paper so we can safely forget about the
isotopy when we consider vertical curves and still have a canonical framing.

In some papers, the twisting number is defined to be zero whenever it is nonnegative.
This discrepancy has no impact in the present paper since we will study almost ex-
clusively negative twisting numbers and we stick to the definition of E Giroux in [17]
because of the following lemma.

Lemma 4.7 Overtwisted contact structures on Seifert manifolds have infinite twisting
number.

This is [17, Proposition 2.4.b] which was written in the context of circle bundles but
the statement and proof are the same (take the connected sum of a vertical Legendrian
curve and a Legendrian unknot with positive Thurston–Bennequin invariant near an
overtwisted disk to increase twisting number arbitrarily).

This lemma tells us that in order to prove that a contact structure � is tight, it is sufficient
to prove that t.�/ < 0. Also the original proof of Bennequin’s theorem that the standard
contact structure on S3 is tight consists in proving that any Legendrian unknot has
nonpositive Thurston–Bennequin invariant and this is completely equivalent to the fact
that this contact structure has negative twisting number for the circle bundle structure
of S3 . However there exist tight (and even universally tight) contact structures on circle
bundles with zero twisting number; see [17].
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5 Existence criterion on Seifert manifolds

In this section we prove Theorem B and its corollary from the introduction.

5.1 Arithmetic criteria

We first explain how the corollary stated in the introduction as well as the following
one are deduced from Theorem B.

Corollary 5.1 Let V be a Seifert manifold. The following statements are equivalent:

� V has a transverse contact structure � with t.�/D�1;
� V has a contact structure � with t.�/D�1;
� e0.V /� 2g� 2.

In order to get concise statements, we recall a definition coming from [26] and [34]:
a tuple .
1; : : : ; 
r / 2 .Q\ .0; 1//

r is realizable if r � 3 and if there exist relatively
prime integers 0 < a < m such that—possibly after reordering the tuple—we have

1 < a=m, 
2 < .m�a/=m and 
i < 1=m for every i � 3. If V is a Seifert manifold
we set �.V /D .1�ˇ1=˛1; : : : ; 1�ˇr=˛r /.

Using the equivalence of (i) and (iii) in Theorem B we only have to prove the following
purely arithmetic fact:

Proposition 5.2 Let g and r be nonnegative integers, b an integer and

.˛1; ˇ1/; : : : ; .˛r ; ˇr /

pairs of integers such that 1 � ˇi < ˛i for every i . We set e D �b �
P
ˇi=˛i and

e0 D�b� r . The following statements are equivalent:

(a) There exist a positive integer n and integers x0; : : : ;xr such that

.x0� 1/=n< b; .xi � 1/=n< ˇi=˛i for i > 0 and
X

xi D 2� 2gI

(b) One of the following holds:
(i) e0 � 2g� 2;

(ii) g D 0, r � 2 and e < 0;
(iii) g D 0, r � 3, e0 D�1 and .1�ˇ1=˛1; : : : ; 1�ˇr=˛r / is realizable.

In addition, (a) is true with nD 1 if and only if e0 � 2g� 2.

Proof Remark first that if (a) is true then x0 � nb and xi � n for every i � 1. Also
2� 2g D

P
xi so 2� 2g � n.bC r/D�ne0 so that ne0 � 2g� 2.
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Nonzero genus case Suppose g > 0. If (a) is true then the above remark gives
e0 � .2g� 2/=n� 2g� 2.

Conversely if (b) is true then e0 � 2g � 2 and we can choose n D 1, x0 � b and
x1; : : :xr � 1 such that

P
xi D 2� 2g .

Zero genus case We now consider the case g D 0. The same argument as above
shows (a) is true with nD 1 if and only if e0 � 2g� 2D�2.

Suppose that (a) is true with n> 1. The preliminary remark gives us e0 � .2g� 2/=n

which is negative so e0 � �1 because e0 is an integer.

If e0 � �2 then we conclude using the first remark. Suppose now that e0 D �1, so
that b D 1� r .

If r D 0 then b D 1 so e D�b < 0. If r 2 f1; 2g

2D

rX
iD0

xi < nbC

rX
iD1

�
nˇi

˛i
C 1

�
D�neC r

so e < .r � 2/=n� 0 and e < 0.

Conversely if e < 0 then b � 1� r and if r D 0 then we can choose nD 2, x0 D 2,
if r D 1 then e < 0 implies the existence of n such that e < �1=n and we choose
x0 D nb and x1 D 2�x0 . If r D 2 then e < 0 means �b�ˇ2=˛2 < ˇ1=˛1 so there
exist positive k and n such that �b�ˇ2=˛2 < k=n<ˇ1=˛1 and we choose x0D nb ,
x1 D kC 1 and x2 D 2�x0�x1 .

The only remaining case is g D 0, e0 D�1 and r � 3. If (b) is true then we choose
nDm, x0 Dm.1� r/, x1 Dm� aC 1, x2 D aC 1 and xi Dm for every i � 3.

Conversely if (a) is true then x0 � nb and we can replace x0 by nb and x1 by
x1 � .nb � x0/ without losing anything so we can assume that x0 D nb . We claim
that xi � 2 for every positive i . Indeed if this is not true then

2D
X
i�0

xi < nbC 2C n.r � 1/D 2

which is absurd. So xi � 2 and we conclude using the following lemma.

Lemma 5.3 If r � 3, n � 2 and 2 � x1 � � � � � xr � n are integers such thatP
xi D 2C n.r � 1/ then there exist relatively prime integers 0< a<m such that

x1� 1

n
�

m� a

m
;

x2� 1

n
�

a

m
; 8i � 3;

xi � 1

n
�

m� 1

m
:

Geometry & Topology, Volume 12 (2008)



1756 Patrick Massot

Proof First remark that we do not have to care about a and m being relatively prime
because we can always divide them by their greatest common divisor while retaining
their relations to the xi .

Set k D x1Cx2� 2� n. The integer k is nonnegative because

x1Cx2 D 2C n.r � 1/�

rX
iD3

xi � 2C n.r � 1/� n.r � 2/D 2C n

(we replaced the xi by n in the sum).

Set l D n�x3 . By assumption l is nonnegative and it is not larger than k since

2C n.r � 1/D
X

xi D 2C nC kC n� l C
X
i�4

xi � 2C nC kC n� l C n.r � 3/:

Since the xi form a nondecreasing sequence, we only need to show that there exist a and
m meeting the conditions related to x1 and x2 and such that .n�l�1/=n� .m�1/=m.
The latter condition is equivalent to m� n=.l C 1/. Put mD bn=.l C 1/c. We know
m� 2 because x1 � n so x2 � 2C k and n� l D x3 � x2 so n� l � 2C k � 2C l

so n=.l C 1/ � 2. We only need to check the existence of 0 < a < m meeting the
conditions related to x1 and x2 .

In the Euclidean plane R2 we consider points AD .n;x1� 1/, B D .n;�.x2� 1//,
H D .n; 0/ and H 0 D .m; 0/ (see Figure 4).

Denote by A0 (resp. B0 ) the intersection point between the line x D m and the
line .OA/ (resp. .OB/). According to the intercept theorem the segment ŒA0B0� has
length .nCk/m=n�m therefore it contains a segment ŒA00B00� with length m whose
extremities have integer coordinates. Let m � a be the ordinate of A00 so that the
ordinate of B00 is �a. The integer a is such that .x1 � 1/=n � .m � a/=m and
.x2 � 1/=n � a=m and we have a > 0 because if a D 0 then x1 � nC 1, which is
absurd.

Using the Eliashberg–Thurston perturbation theorem in [9] we can recover the following
result about foliations:

Corollary 5.4 [6; 25; 26; 34] A Seifert manifold V with a C 2 transverse foliation
satisfies one of the following conditions:

� e0.V /� 2g� 2 and e0.�V /� 2g� 2;
� g D 0 and e.V /D e.�V /D 0;
� g D 0, e0.V /D�1 and �.V / is realizable;
� g D 0, e0.�V /D�1 and �.�V / is realizable.
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A

H

B

A0

A00

H 0

B00

B0

Figure 4: Intercept theorem and realizability

5.2 Normal forms

Let R be a compact orientable surface of genus g with r C 1 boundary components
and J be a complex structure on R defining its orientation. The Seifert manifold V

with invariants
.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //

is the union of R�S1 and r C 1 solid tori W0; : : : ;Wr ; see Section 1.3.

Recall from the introduction that a contact structure � on V is in normal form if
its restriction to R� S1 has an equation cos.n�/�C sin.n�/� ı J where � is some
nonsingular 1–form on R and nD�t.�/. Such a � is denoted by �.�; n; �0; : : : ; �r /
where �i D �jWi

. Also, the multi-index of this contact structure is the collection of the
indices of � along the boundary components of R.

Proposition 5.5 Every contact structure having negative twisting number on a Seifert
manifold V D .R� S1/[W0 [ � � � [Wr is isotopic to a contact structure in normal
form.

This proposition follows from ideas in [17] which we briefly recall. The following
lemma is a consequence of the flexibility lemma:

Lemma 5.6 Let � be a contact structure having negative twisting number on a Seifert
manifold. Any �–convex vertical torus which contains a maximally twisting vertical
Legendrian curve is isotopic through �–convex surfaces to a torus ruled by maximally
twisting vertical Legendrian curves. Any �–convex annulus whose boundary consists
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of two vertical Legendrian curves with maximal twisting number is divided by curves
going from one boundary component to the other one and is @–isotopic through �–
convex surfaces to an annulus ruled by maximally twisting vertical Legendrian curves.

Using this lemma as in [17, Lemma 2.8] one proves that any contact structure having
negative twisting number �n is isotopic to a contact structure such that every fiber in
R� S1 is Legendrian with twisting number �n. These contact structures over R� S1

are all pulled back from �R on ST �R by fibered covering maps as explained by (the
oriented version of) [17, Proposition 3.3] (which is stated in a slightly generalized
form as Proposition 8.9 below). These covering maps can be deformed to get a contact
structure in normal form.

5.3 Criterion

Proof of Theorem B According to Proposition 4.5, transverse contact structures have
negative twisting number so .i/) .ii/.

We now prove that .ii/) .iii/. Let � D �.�; n; �0; : : : ; �r / be a contact structure
in normal form in the isotopy class of � given by (ii) and Proposition 5.5 and let
.x0; : : : ;xr / be its multi-index. Since normal forms are completely explicit, we easily
see that each �@Wi is divided by curves whose total homology class (when they are all
oriented to intersect positively Fi ) is 2nSi C 2.xi � 1/Fi .

According to the Poincaré–Hopf theorem applied to �,
P

xi D 2� 2g , and according
to Proposition 3.6, .xi � 1/=n< ˇi=˛i .

We now prove that .iii/ ) .i/. Since
P

xi D 2 � 2g , there exists a nonsingular
1–form � on R whose indices along the boundary components @Di of R are the
xi ’s. The corresponding contact structure cos.n�/�C sin.n�/� ıJ on R� S1 can be
extended by contact structures �i inside each Wi which are positively transverse, first
in a neighborhood of @Wi using the flexibility lemma and then explicitly by a contact
structure printing suspensions on concentric tori around the central fiber of Wi because
.xi � 1/=n< ˇi=˛i so the asymptotic directions of these suspensions can go from the
half-line spanned by Mi to the one spanned by nSi C .xi � 1/Fi without crossing
the fiber direction. We then push slightly the resulting contact structure on V using a
Legendrian vector field which is orthogonal to the fibers over R and zero inside the
Wi ’s and then use a small isotopy near @R� S1 to get a transverse contact structure � .
Of course t.�/� �n and t.�/ < 0 according to Proposition 4.5.
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6 Universally tight normal forms

In this section we end the proof of Theorem A from the introduction with the following
proposition:

Proposition 6.1 Let V D .R� S1/[W0[ � � � [Wr be a Seifert manifold. A contact
structure � D �.�; n; �0; : : : ; �r / in normal form on V is universally tight if and only if
it can be cooriented such that each �i is @–isotopic to a positively transverse contact
structure.

Proof We have already explained in the proof of Theorem B that if all the �i ’s are
positively transverse then � is isotopic to a (positively) transverse contact structure
hence universally tight according to Proposition 4.4.

Conversely, suppose that � is universally tight. According to Proposition 3.6, all the
�i@Wi are divided by two circles whose homology class—when they are oriented to
intersect the fibers positively—will be denoted by di .

According to Lemma 3.4, there are two things to check. The first step is to prove that all
the �i ’s are universally tight and this implies that they are all @–isotopic to transverse
contact structures. Then if di �Mi D 1 for every i there is nothing more to prove since
all the �i ’s are isotopic to positively transverse contact structures. Else if there is some
i0 such that di0

�Mi0
> 1 then we can coorient � such that �i0

is positively transverse
and the second step is to prove that for every j such that �j is negatively transverse
we have dj �Mj D 1.

In the following we will use normal forms of contact structures on toric annuli and
solid tori from Section 2 and Section 3. There should not be any confusion with normal
forms defined in the introduction since they do not live on the same manifolds. For
each i we put �i in normal form using Theorem 3.1 a) and then, according to Theorem
3.1 b) �i is universally tight if and only if every d in its flip locus satisfies either
d �Mi D 1 or d D di .

Let .�V ; z�/ be the universal cover of .V; �/ and � the covering map. According to
Theorem B, �V is S3 or R3 —this can be seen using .ii/) .iii/ and the fact that a
Seifert manifold is covered by S2 �R if and only if its base is spherical and e D 0 or
using .ii/) .i/ and Proposition 4.4. We will explain in detail the case where �V D S3

with no exceptional fiber—which the subtlest—and indicate briefly how to deal with
the other cases.

Preliminary observations If a Seifert manifold Y is the union of tubular neighbor-
hoods of two fibers K and K0 then it can be seen as a quotient of a toric annulus
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T �Œ0; 1�—where T0 projects to K and T1 to K0—and if Y has some contact structure
� with negative twisting number then there are meridian classes M and M 0 coming
from K and K0 in H1.T / such that M 0 �M , M 0 �F and M �F are positive. If � is
transverse to K and K0 then it can be lifted to a contact structure y� on T � Œ0; 1�. If
Y is S3 then M 0 �M D 1 and the Giroux polygon of y� is fM 0CM g so every d in
the flip locus of a normal form of y� satisfies M 0 � d D 1 or d �M D 1.

First case Suppose first that �V D S3 with no exceptional fiber.

For the first step we fix some i and we consider a connected component �W of ��1.Wi/.
The complement �W 0 of �W in S3 is also a solid torus and we are in the situation of
the preliminary observations.

For every d in the flip locus of �i , y� has an orbit flip with homology class ��d so
��d is simple according to Lemma 2.5 and z�j �W is in normal form and then we put y�
in normal form using Theorem 2.6 a).

According to Proposition 3.6, the triangle with vertices 0;Mi ; di doesn’t contain any
integer point d 62 f0;Mig with d �F < di �F . In particular such a d cannot be in the
triangle � with vertices 0;F; di because the triangle with vertices 0;F; d would then
be included in � so it would have area d �F=2 smaller than the area di �F=2 of �.
So for every d ¤ di in the flip locus of �i , d 62 � and ��d 62 ���—because �� is
linear. The point is that the latter triangle contains all the integer points a such that
M 0 �aD 1, ��di �a> 0 and a �F > 0 so M 0 ���d > 1 and ��d �M D 1. This implies
that d �Mi D 1 and �i is universally tight.

For the second step, let �W be a connected component of ��1.Wi0
/ and N be a toric

annulus around �W containing one connected component of ��1.Wj / and no other
connected component of a ��1.Wi/. The torus @ �W is divided by curves with total
homology class 2��di0

and the other component of @N is divided by curves with total
homology class 2d 00 such that d 00� ��di0

D kF because these two tori are ruled by
Legendrian fibers with the same twisting number and k � 0 because d 00 � ��di0

� 0.
Because of the additivity property of the indices of � along curves, dj �Mj D 1 if and
only if k D 0.

We isotop z� in N such that it is negatively transverse in the interior of N . The contact
structure z� j �W [N is then in normal form with flip locus f��di0

g. The complement of�W [N in S3 is a solid torus �W 00 , again the situation of the preliminary observations.
We put z� j �W 00 in normal form and then y� is in normal form and—because ��di0

�M >1—
we get M 00 ���di0

D1. So we have 0<M 00 �d 00DM 00 ���di0
CkM 00 �F D1CkM 00 �F

hence �1< k � 0 so k D 0.
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Second case If �V is S3 with at least one exceptional fiber then V is a Lens space. We
see V as W [N [W 0 where all pieces are fibered, W and W 0 contain at most one
exceptional fiber each, W0 �N and N intersects no other Wi . We are in the situation
of the preliminary observations and we denote by 2d and 2d 0 the total homology
classes of the dividing sets of @N seen in H1.T / and oriented such that d �F > 0 and
d 0 �F > 0.

For the first step we can use the same argument as above except when i D 0. If n> 1

then according to Proposition 3.6 and Lemma 3.4 �0 is universally tight (and isotopic
to a tangent contact structure). If n D 1 then the Giroux polygon of �jN is Œd; d 0�
and is included in the Giroux polygon of y� . But, still because of the Giroux polygon
associated to S3 in the preliminary observations, y� is universally tight so �jN cannot
have an orbit flip in the interior of its polygon so it is universally tight and so is �0
because any cover of W0 is contained in a cover of N .

For the second step we can directly use that every yd in the flip locus of y� satisfies
M 0 � yd D 1 or yd �M D 1 and that �0 is isotopic to a tangent contact structure if and
only if d D d 0 .

Third case If �V D R3 then all the Wi ’s are covered by some D2 �R � R3 so all
the �i ’s are universally tight.

The second step is analogous to the first case but we only go to a cover by R2 � S1

and use that all fibered tori in it have universally tight lifted contact structures. Using
that the analogous of z� j �W [N is universally tight we directly get that ��di0

D d 00 .

Note that in the R3 case we don’t need �.�; n; �0; : : : ; �r / to have twisting number
�n to get the result.

7 Maximal twisting number calculations

In this section we prove Theorem C from the introduction. We also note the following
corollary of Theorem C and of the proof of (iii)) (i) in Theorem B which makes
more precise the equivalence of (i) and (ii) in Theorem B.

Corollary 7.1 Let n be a positive integer. A Seifert manifold whose base is not a
sphere has a contact structure � with t.�/D�n if and only if it has a transverse contact
structure � 0 with t.� 0/D�n.

In this section and the following one, we will use frequently the idea of topological
discretization which was first used in contact geometry in [4]. Recall that, for a surface
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F , the pinched product F �@ Œ0; 1� is obtained from F � Œ0; 1� by collapsing fxg� Œ0; 1�
for every x 2 @F . Two embedded surfaces in a 3–manifold are said to be parallel
if they bound a pinched product. Let F be embedded in V and ' be an isotopy of
V relative to @F . Any time t 2 Œ0; 1� has a neighborhood J such that 'jJ moves all
connected components of F in disjoint pinched products. Using this remark, one can
show that ' is homotopic to a concatenation of isotopies 'i which are relative to @F
and to all connected components of the image of F under the preceding 'j but one
denoted by Fi and 'i

0
.Fi/ and 'i

1
.Fi/ bound a pinched product.

If V carries a contact structure � then we can assume that all the intermediate surfaces
arising in the preceding process are � –convex using the genericity of � –convex surfaces.

This discretization process will be called topological discretization to avoid confusion
with the more elaborate contact discretization first used systematically in [24] which
goes further by imposing—using [18, Lemma 15]—pinched products which are as
simple as possible from a contact point of view.

Lemma 7.2 Let V be a Seifert manifold with base an orbifold disk and W1; : : : ;Wr

be fibered solid tori such that V n .W1[ � � � [Wr / contains only regular fibers. If � is
a contact structure which is tangent to the fibers outside the Wi ’s with twisting number
�n and t.�jWi

/D�n for every i then t.�/D�n (in particular � is tight).

Proof Let A1; : : : ;Ar be fibered annuli with boundary in @V such that

V n .A1[ � � � [Ar /DW 00 [ � � � [W 0r

where Wi �W 0i for every i � 1.

A1

A2
A3

N

W

Figure 5: Computing t.�/ over an orbifold disk

Let L0 be a fiber in W 0
0

, L a vertical Legendrian curve and ' a @–isotopy such that
LD '1.L0/.

Using topological discretization, there exists a sequence of annuli A
j
i , 0� j �K such

that:
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� for every i , A0
i DAi , AK

i D '1.Ai/;

� for every j the A
j
i ’s are disjoint �–convex annuli;

� for every j there exists ij such that A
jC1
i DA

j
i for all i ¤ ij ;

� A
j
ij

and A
jC1
ij

bound a pinched product.

At each step j we equip V with a Seifert fibration @–isotopic to the original one such
that all the A

j
i are fibered.

We now prove by induction on j that for every j the complement of the A
j
i doesn’t

contain any vertical Legendrian curve with t > �n and each A
j
i is divided by 2n

curves going from one boundary component to the other one. This will prove the
lemma since L is in the complement of the AK

i .

This statement is true at the initial step by assumption. Let’s assume that it holds at
step j , set ADA

j
ij

, A0 DA
jC1
ij

and let N be the pinched product they bound. The
annulus A0 is contained either in the solid torus that A splits from V or in the solid
torus obtained from V by removing all the solid tori split from V by the A

j
i . Let’s

denote this solid torus containing A0 by W and denote by W 0 �W the complement
of N in W .

By the induction hypothesis, the dividing set of A consists of 2n curves going from
one boundary component to the other one. Since A0 is contained in W we know
by induction hypothesis that it does not contain any vertical Legendrian curve with
twisting number greater than �n and since @A0 D @A, Lemma 5.6 guarantees that the
dividing set of A0 consists of 2n curves going from one boundary component of A to
the other one.

If n> 1 then according to Proposition 3.6 the dividing set of W 0 is isotopic to that of
W and the classification of tight contact structures on solid tori proves that there is a
@–isotopy which brings A to A0 through �–convex surfaces so nothing changes.

If n D 1 then according to Proposition 3.6 we only have to prove that � restricted
to all connected components of the complement of the A

jC1
i ’s is tight. All of these

components but one are contained in solid tori which are known to be tight by the
induction hypothesis. The last component is in the union of a tight solid torus and
a tight toric annulus whose boundary components are divided by two curves with
homology classes d D S C kF and d 0 D S C k 0F respectively so this component is
tight according to Lemma 3.5.

Proof of Theorem C Let L be a vertical Legendrian curve in V . There exists a finite
cover of the base B coming from a cover of the underlying topological surface which
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induces a fibered covering �V ! V such L can be lifted to a Legendrian curve �L
which is contained in a Seifert manifold with boundary �V 0 over an orbifold disk and�L is @–isotopic to a regular fiber. Using Lemma 7.2 we get t.L/D t.�L/� �n.

We end this part with some remarks about the genus zero case. The theorem above can
be extended easily to spherical bases when there is less than three exceptional fibers
or when each Wi has a unique tight contact structure; see Section 8.3. Concerning
small Seifert manifolds with three exceptional fibers which are the subjects of many
recent papers, there are three cases: when e0.V / � 0 then according to Theorem B
there exist no contact structure with negative twisting number. When e0.V /��3 then
condition (iii) of Theorem B can be met only when nD 1 and [43] (or Theorem D)
combined with [44] proves that the theorem is true in this case. The remaining cases
e0.V /2 f�2;�1g are much more difficult, very few results are known especially when
there are contact structures with different negative twisting numbers.

As an example of what we can still get using our techniques, let’s consider the Brieskorn
homology sphere V D�†.2; 3; 6k � 1/ which has a Seifert structure with invariants
.0;�2; .2; 1/; .3; 2/; .6k � 1; 5k � 1// and has been studied for instance in [28]. Our
results prove that for every contact structure � on V , if t.�/ < 0 then

t.�/ 2 f�.6l C 5/; 0� l � k � 2g:

There is exactly one isotopy class of contact structures with t D�.6.k � 2/C 5/, its
elements are universally tight and isotopic to a tangent contact structure; see Section
8.3. Theorem B gives at least one transverse contact structure with t � �5 and �5 is
the maximal possible negative twisting number so there is at least one isotopy class
of universally tight contact structures with t D �5. If the hypothesis g > 0 can be
removed from Theorem C and Theorem E then the predicted number of isotopy classes
of tight contact structures with t D �.6l C 5/ is k � l � 1 with two consisting of
universally tight contact structures when t > �.6.k � 2/C 5/. In any cases this is an
upper bound on the number of such isotopy classes.

Using Eliashberg–Gompf surgery [7; 19] and the slice Thurston–Bennequin inequality
[28, Corollary 4.2] it can be proved that the predicted number is correct for t D�5 and
that they are all Stein fillable and distinguished by their Stein fillings (I thank Paolo Lisca
for a very instructive conversation which led to this result). A similar phenomenon
occurs in a paper by J Kim [27] where it is shown that the Seifert manifolds with
invariants .0;�2; .2; 1/; .3; 2/; .6k�1; 6k�3//, k � 2 have 3k�5 isotopy classes of
tight contact structures. Using the above arguments, we can show that all these contact
structures have twisting number �5, as expected using the results of the present paper.
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In this case the fact that t D�5 is the only possible twisting number seems to be what
makes the classification feasible using such techniques.

It seems that there is no known counterexample to the following statement: if a Stein
fillable contact structure on a Seifert manifold V has twisting number t0 < 0 then there
is no contact structure on V with twisting number t0 < t < 0. This can be checked
for instance on Lens spaces and on T 3 and we can note that, according to P Ghiggini
in [12], “Stein” cannot be replaced by “strongly” in the above sentence.

8 Classification

8.1 Flexible case

In this subsection we prove Theorem D from the introduction.

This result was announced by K Honda for circle bundles (r D 0) in [23] but proved
using the incorrect claim that these contact structures can always be distinguished by
their homotopy classes as oriented plane fields. Indeed, when V has a contact structure
which is tangent to the fibers (ie when there exists n such that ne.V /D��.B/; see
Giroux [17] or Theorem 8.7) there is only one homotopy class of (oriented) plane
fields transverse to the fibers because the tangent contact structure is isotopic to contact
structures transverse to the fibers with either orientation. If �n<�1 and B has genus
at least two then e < 2g� 2. The mistake in [23] arose from overlooking the fact that
fibers of V have finite order in H1.V;Z/ when e ¤ 0.

Lemma 8.1 Let V be a Seifert manifold with e0.V / < 2g�2. Two contact structures
on V with twisting number �1 always have normal forms with multi-index

.2� 2g� r; 1; : : : ; 1/

and the same R–class.

Proof We first prove that any such contact structure � has a normal form with multi-
index .2� 2g� r; 1; : : : ; 1/. Let � 0 be a normal form of � (obtained using Proposition
5.5). According to Proposition 3.6, the multi-index of � 0 satisfies xi � 1 for every i � 1.
So, according to Corollary 3.2 and the flexibility lemma, for every i � 1, Wi contains
a torus Ti parallel to the boundary, ruled by vertical Legendrian curves with twisting
number �1 and divided by two curves whose homology class is Si . Consider a vertical
Legendrian curve L0 outside the Wi ’s with t.L0/D�1 and, for each i , a �–convex
annulus Ai such that @Ai is the union of L0 and a vertical Legendrian curve on Ti .
According to Lemma 5.6, these annuli are isotopic—relative to L0 and the Ti ’s—to
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annuli intersecting only along L0 and ruled by vertical Legendrian curves with twisting
number �1. One can then follow the proof of the existence of normal forms to get a
normal form with xi D 1 for every i � 1. According to the Poincaré–Hopf theorem,
this normal form has x0 D 2� 2g� r .

The proof that if � and � 0 are in normal form with this multi-index then � has a normal
form with 1–form homotopic to that of � 0 is exactly as in [17, Lemma 3.8] using the
fact that x0 < b so that d0 DM0C .x0� b� 1/F0 with x0� b� 1� �2.

Note that neither the above lemma nor Theorem D claims that every normal form with
twisting number �1 has the given multi-index—this would be false—but only that
there is a normal form with this multi-index in every isotopy class of � with t.�/D�1.
This contrasts with Theorem E where the multi-index is fixed by the Seifert invariants
and the twisting number.

Proof of Theorem D The preceding lemma proves that the number of contact struc-
tures on V with t D�1 is at most the number of contact structures one can obtain by
fixing a tangent contact structure over R with multi-index .2� 2g� r; 1; : : : ; 1/ and
extending it by a tight contact structure �i in each Wi . The proof that this upper bound
is the exact count follows a well-known strategy—see eg Ghiggini [13] or Wu [43]—so
we only indicate the steps.

We use the Eliashberg–Gompf construction of Stein fillable contact structures [7; 19] to
construct the right number of diffeomorphic Stein fillings of V with different first Chern
classes. The induced contact structures are nonisotopic according to [28, Corollary 4.2].
If � is one of them then the Gompf diagram shows that t.�/ � �1, and t.�/ < 0

according to the slice Thurston–Bennequin inequality [28, Theorem 3.4] so t.�/D�1.

The count of transverse contact structures follows from this, Proposition 6.1 and Lemma
3.4 using d0 �M0 > 1. Suppose that � and � 0 are in normal form with t D�1, isotopic
to transverse contact structures and coincide on R � S1 but are not isotopic. The
rotation of angle � on R�S1 pushes � to �� 0 and normal forms in the Wi ’s show that
it can be extended to a diffeomorphism of V still isotopic to the identity and pushing
� to �� 0 .

8.2 Rigid case

In this subsection we prove Theorem E from the introduction.

Proposition 8.2 Let n be a positive integer and V be a Seifert manifold whose base
has genus g . If e0 D 2g� 2 or n> 1 then every contact structure �.�; n; �0; : : : ; �r /
with t.�i/� �n for every i has multi-index .nb; dnˇ1=˛1e; : : : ; dnˇr=˛re/.
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Proof If n> 1 then the proposition follows directly from Proposition 3.6. If nD 1

then we need the additional remark that the multi-index .x0; : : : ;xr / of � satisfies
x0 � 1 < b and xi � 1 < ˇi=˛i if i > 0 so x0 � b and xi � 1 if i > 0 but alsoP

xi D 2� 2g and 2� 2g D bC r by hypothesis so all the above inequalities are
equalities.

The following proposition will be proved later in this subsection. It is the only point
where we need g to be positive. A proof in the gD 0 case would lead to the extension
of Theorem E to g D 0.

Proposition 8.3 Let n be a positive integer and V a Seifert manifold whose base has
genus g > 0. Assume that n> 1 or e0.V /D 2g�2. Let � be a contact structure on V

with t.�/D�n. If L0 and L1 are vertical Legendrian curves with t.L0/D t.L1/D�n

then every isotopy Lt between L0 and L1 is homotopic to a Legendrian isotopy.

We will also use the following flexibility lemma which is a special case of the general
flexibility lemma for families [18, Lemma 7].

Lemma 8.4 Let F be a closed surface in a contact 3–manifold .V; �/. Suppose �F
is divided by a multi-curve � and ' is an isotopy such that 't .F / is divided by 't .�/

for every t . If �.'1.F // D '1.�F / then ' is homotopic to an isotopy  such that
�. t .F //D  t .�F / for every t .

Proof of Theorem E If two contact structures � , � 0 in normal forms with t D �n

have the same R–class then � 0 is isotopic through contact structures in normal form
to � 00 with the same Euler classes as � 0 and �00 D �. Because of Proposition 3.6,
each characteristic foliation of a @Wi is divided by two curves so � 00 is isotopic to �
according to Theorem 3.1 c).

Conversely, let � and � 0 be contact structures in normal form on V with twisting
number �n and suppose there is an isotopy � pushing � 0 on � . We will simplify �
in three steps. We make it relative to a fiber L0 2R in step one, to a system of tori
intersecting along L0 with a regular neighborhood isotopic to R� S1 in step two and
to the @Wi ’s in step three.

Step 1 According to Proposition 8.2, we can assume—up to an isotopy of � 0 among
contact structures in normal form preserving its R–class and the Euler classes of the
� 0i ’s—that � 0

j@Wi
D �j@Wi

for every i .

Let L0 be a fiber in R. The fiber L0 and its image L1 by �1 are � –Legendrian with
maximal twisting number so we can apply Proposition 8.3 and the Legendrian isotopy
we get is induced by an isotopy  such that  1 D �1 .
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Since  t .L0/ is � –Legendrian for all t , there exists an isotopy � preserving � which
coincides with  on L0 for all time. Denote by x� the isotopy given by ��1

t ı t . This
isotopy pushes � 0 on � , is relative to L0 , and we have

� x�1.@Wi/D ��1.@Wi/D �1.�
0@Wi/D �1.�@Wi/D x�1.�@Wi/:

Step 2 Let T1; : : : ;T2gCr be fibered tori in R�S1 intersecting along L0 such that
a regular neighborhood of T1[ � � � [T2gCr is isotopic to R�S1 .

We now prove that x� is homotopic to an isotopy which moves the Ti ’s through �–
convex surfaces. The key is Proposition 8.2 which gives the multi-index independently
of the normal form.

Using topological discretization, it is sufficient to prove that if x� is relative to all the
Ti ’s but one denoted by T and if T 0 WD x�1.T / bounds a pinched product N with T

then x� is homotopic to an isotopy which, in addition, moves T through �–convex
surfaces. Using the flexibility lemma and Lemma 5.6 we can assume that T 0 is ruled
by vertical Legendrian curves with twisting number �n.

The complement of T1[ � � � [T2gCr is the union of r C 1 solid tori. Let W be the
one that contains T 0 and set W 0 DW nN . The solid tori W and W 0 are nested and
they have isotopic dividing sets according to Proposition 8.2. The classification of tight
contact structures on solid tori then implies that x� is homotopic to an isotopy moving
T through convex surfaces.

This already proves that � is homotopic to �0 . Moreover, because � x�1.Ti/D x�1.�
0Ti/

the tori x�1.Ti/ are ruled by �–Legendrian curves so, using Lemma 8.4, we get an
isotopy ' homotopic to x� and such that �'t .Ti/D 't .�Ti/ for all t and every i .

Step 3 At all times, there is a regular neighborhood of
S
't .Ti/ foliated by vertical

Legendrian curves so ' is homotopic to z such that z t .@Wi/ is ruled by vertical
curves for all t and every i . Using Lemma 8.4, we get an isotopy x homotopic to z 
such that

� x t .@Wi/D x t .�@Wi/

for all t and every i .

Let x� be an isotopy preserving � which coincides with x on every @Wi , and denote
by z� the isotopy given by z� t D

x��1
t ı

x t . This isotopy pushes � 0 on � and is relative
to the @Wi ’s so that each �i is isotopic to the corresponding � 0i so they have the same
relative Euler class.

The count of transverse contact structures goes as in the proof of Theorem D using
Proposition 6.1, Lemma 3.4 and Proposition 3.6. There is only one isotopy class of
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transverse contact structure in each R–class if and only if di �Mi D 1 for every i and
then this isotopy class contains a tangent contact structure; see Section 8.3.

Uniqueness of the maximally twisting vertical curve In this paragraph we prove
Proposition 8.3. As a first approach to this proposition, one can try to consider a vertical
�–convex torus containing L0 , discretize the isotopy and prove that all bifurcations
can be eliminated. However this can not be straightforward since one can always have
bifurcations increasing the number of dividing curves by folding inside an invariant
neighborhood and it is difficult to prove that a sequence of folding and unfolding can
be unraveled. Here we use Ghiggini’s trick introduced in [13, Proposition 5.4] and
consider two tori intersecting along L0 , discretize the motion of one of them while
constructing an isotopy of the second one through �–convex surfaces. Here again,
everything is based on the fact that the involved Giroux cones contain only one integer
point having the right intersection with the fiber class.

Lemma 8.5 Let V be a Seifert manifold and � be a contact structure with negative
twisting number t.�/D�n. Let T and F be transverse vertical � –convex tori such that
T \F is a Legendrian vertical curve which intersects the dividing set of T efficiently.
If n > 1 or e0.V / D 2g � 2 then every isotopy relative to T which sends F to a
�–convex torus F 0 is homotopic to an isotopy relative to T and moving F through
�–convex surfaces.

Proof Up to a change of Seifert structure by isotopy, we can assume that T is fibered.
Let �n0 be the maximal twisting number of Legendrian curves isotopic to the regular
fibers relative to T . Using topological discretization and the flexibility lemma, we can
assume that F contains a vertical Legendrian curve L with t.L/D�n0 and that F

and F 0 bound a pinched product N intersecting T only along T \F . Let † and †0

be �–convex tori bounding regular neighborhoods of T [F and T [N respectively,
chosen so that they both contain a vertical Legendrian curve L0 with t.L0/D�n0 .

Claim the tori † and †0 have isotopic dividing sets with total homology class
2n0S � 2F .

Using this claim we can cut V along †0 , keep the regular neighborhood of T [N and
fill it with a solid torus W with meridian class S and a tight contact structure—there
is no choice here, up to isotopy—to get a contact manifold V 0 diffeomorphic to T 3 .
Cutting V 0 along T we get a toric annulus with a tight contact structure having the
same dividing set on both boundary components. Using [16, Theorem 4.5] we see that
F and F 0 are isotopic through convex surfaces in V 0 relative to T [W so relative to
the boundary and the lemma is proved.
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We now prove the claim. By maximality of �n0 , we know that † and †0 have dividing
sets with total homology classes 2n0S C 2kF and 2n0S C 2k 0F respectively. We will
first prove that k D k 0 and then that k D�1. We consider two cases:

If n0 > 1 then Corollary 3.2 and Pick’s formula prove that k ¤ k 0 contradicts the
maximality of �n0 as in the proof of Proposition 3.6.

If n0 D 1 then nD 1 and the proof is a variation of the proof of Proposition 8.2. We
can construct a tori system based at L0 —and not intersecting † and †0 anywhere
else—which is ruled by vertical Legendrian curves with twisting number �1. We
equip V with a Seifert structure isotopic to the original one so that our tori system is
fibered. The tori † and †0 intersect the corresponding W0 solid torus along annuli
with common boundaries. Using Proposition 8.2 we know that the Giroux cone of
W0 contains only one integer point with abscissa 1 so that we can conclude using the
classification of tight contact structures on solid tori like in the proof of Theorem E.

So in both cases we proved that k 0D k . It remains to prove that kD�1. It is sufficient
to construct a curve with homology class S which intersects only twice the dividing
set of † with the correct orientations. We know that the dividing set of T is made
of curves traversing T n .T \F / and that 2n0 dividing curves of F n .T \F / are
traversing. Our curve is constructed so that it intersects the dividing curves only in the
rounding regions. It starts just below (for the fibers orientation) one of the traversing
curves C of F , follows it then traverse T without intersecting its dividing set then
traverse back F below C and traverse back T before closing up. There are two
intersection points with the dividing set of † and the orientation is correct because all
traversing curves in the two copies of F n .T \F / are oriented in the same way and
because of the edge-rounding lemma [22, Lemma 3.11].

Proof of Proposition 8.3 Let � be an isotopy such that Lt D �t .L0/. Let T and
F be �–convex vertical tori intersecting transversely along L0 . Up to a modification
of � relative to L0 we can assume that T 0 WD �1.T / and F 0 WD �1.F / are also �–
convex. By maximality of t.L0/ (resp. t.L1/) and the flexibility lemma, L0 (resp. L1 )
intersects efficiently the dividing sets of T and F (resp. T 0 and F 0 ).

By topological discretization, � is homotopic to a concatenation of isotopies moving T

through a sequence T DT0;T1; : : : ;TN DT 0 of � –convex tori such that Ti and TiC1

bound a product. Also, using the flexibility lemma at each step, we can assume that
every Ti contains a vertical Legendrian curve Ci intersecting efficiently the dividing
set of Ti , C0 DL0 and CN DL1 .

We now prove by induction that, for every i , there exists a torus Fi intersecting Ti

along Ci which is isotopic to F through �–convex surfaces. For the initial step we
take F0 to be F .
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Once Fi has been constructed we consider a torus FiC1 which is isotopic to Fi relative
to Ti and intersects TiC1 along CiC1 . According to Lemma 8.5, FiC1 is isotopic to
Fi through �–convex surfaces.

We apply Lemma 8.5 one last time to get an isotopy between FN and F 0 and the
proposition is proved.

Remark 8.6 About Legendrian knots:

� Lemma 8.5 can also be used to prove that any vertical Legendrian curve is
a stabilization of one with maximal twisting number so we have a complete
classification of vertical Legendrian knots under the hypotheses of Theorem E.

� When t.�/ D �1 and e0 D 2g � 2, Theorem D can be used to prove that if
t.L0/D t.L1/D�1 then there exists a contactomorphism which sends L0 to L1

and is isotopic to the identity—although possibly not through contactomorphisms.
If one could prove the existence of a Legendrian isotopy bringing L0 to L1 then
it would be possible to prove Theorem D in the spirit of the proof of Theorem C
(without using Seiberg–Witten theory).

8.3 Tangent contact structures

Among transverse contact structures on a Seifert manifold are those which are isotopic
to tangent contact structures such as the standard contact structure on S3 . Conversely,
any tangent contact structure can be perturbed by a C1–small isotopy to be positively
or negatively transverse. The following theorem explain their special role among
contact structures with negative twisting number. It is a direct consequence of the
previous results.

Theorem 8.7 Let V be a Seifert manifold with invariants

.g; b; .˛1; ˇ1/; : : : ; .˛r ; ˇr //

and n be a positive integer. The following conditions are equivalent:

(1) ne.V /D��.B/ and nˇi � 1 mod ˛i for all i ;

(2) V carries a tangent contact structure with twisting number �n.

In addition, if (1) (or (2)) is satisfied then every contact structure on V with twisting
number �n is isotopic to a tangent one.

Also, if V carries a contact structure with twisting number �n and n>max.˛i/ then
(1) and (2) are satisfied and this contact structure is isotopic to a tangent one.
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Proof Suppose that V has a tangent contact structure � and t.�/D�n. Up to isotopy
among tangent contact structures, this � is in normal form and, according to Lemma
3.4, the multi-index .x0; : : : ;xr / of � satisfies 1D di �Mi D nˇi �˛i.xi � 1/ so that
nˇi � 1 mod ˛i for every i . Also

ne.V /D�

rX
iD0

nˇi

˛i
D�

rX
iD0

�
1

˛i
C .xi � 1/

�

D�

 
rX

iD0

xi � .r C 1/C

rX
iD0

1

˛i

!
D��.B/:

Conversely if these conditions are met and � is in normal form we consider two cases.
If n> 1 then Proposition 3.6 and Lemma 3.4 show that each �i is isotopic to a tangent
contact structure. If nD 1 then ˇi D 1 for every i � 1 because ˇi � 1 mod ˛i and
this combines with e.V /D��.B/ to give �b D 2g� 2C r so e0.V /D 2g� 2 and
according to Proposition 8.2 we can apply again Lemma 3.4.

Note that this proof of .1/) .2/ gives also the second assertion.

The last assertion of the theorem follows from Proposition 3.6 and Lemma 3.4.

These contact structures are classified up to isotopy by Theorem E since, according to
the preceding theorem, if � is of tangent type and t.�/D�1 then e.V /D��.B/ and
ˇi D 1 for every i � 1 so e0.V /D 2g� 2.

It is plausible that the isotopy classes containing tangent contact structures are exactly
the ones containing both positively and negatively transverse contact structures. This
would follow from the fact that a positively transverse contact structure has a normal
form with positively transverse �i ’s but this is not what Propositions 5.5 and 6.1 give us.

Tangent contact structures also have the virtue that their twisting number is easy
to compute: it is given by the twisting number of regular fibers; see Giroux [17,
Lemma 3.6] which—using a cover by a circle bundle—only leaves the case of certain
Lens spaces which can be dealt with in the spirit of the proof of Proposition 6.1.
This remark and the fact expressed in the above theorem that all contact structures
with sufficiently low twisting number �n on a given Seifert manifold must satisfy
ne.V /D��.B/ can be used to get a list of eight Seifert manifolds—with �.B/D 0—
which are exactly the Seifert manifolds having an infinite family of contact structures
with distinct negative twisting numbers. They are the cooriented contact elements
bundles of the parabolic orbifolds with either orientation (for T 2 and the pillowcase
the two orientations give the same Seifert manifold).
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A better understanding of tangent contact structures and an alternative proof of the
equivalence of (1) and (2) in the previous theorem come from the two following
statements which can be proved exactly as in the circle bundle case using equivariance
of all the constructions. The second one is a slight generalization of [17, Proposition 3.3]
which actually was first discussed by R Lutz in [30].

Lemma 8.8 Let B be a 2–dimensional orbifold. The cooriented contact elements
bundle ST �B has a canonical contact structure �B which is tangent to the fibers with
twisting number �1 and is invariant under any fibered diffeomorphism lifted from B .

Proposition 8.9 Let V be a Seifert manifold with base B . The map which associates
to each covering map �W V ! ST �B fibered over the identity the contact structure
���B is a bijection onto the space of tangent contact structures.
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107, Soc. Math. France, Paris (1983) 189–200 MR753135

[21] K Honda, Confoliations transverse to vector fields, preprint available at
http://almaak.usc.edu/~khonda/research.html (1998)

[22] K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000)
309–368 MR1786111

[23] K Honda, On the classification of tight contact structures. II, J. Differential Geom. 55
(2000) 83–143 MR1849027

[24] K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435–478
MR1940409

[25] M Jankins, W Neumann, Homomorphisms of Fuchsian groups to PSL.2;R/ , Com-
ment. Math. Helv. 60 (1985) 480–495 MR814153

[26] M Jankins, W Neumann, Rotation numbers of products of circle homeomorphisms,
Math. Ann. 271 (1985) 381–400 MR787188

[27] J Kim, Tight contact structures of certain Seifert fibered 3–manifolds with e0 D�1 ,
Pacific J. Math. 221 (2005) 109–122 MR2194147

Geometry & Topology, Volume 12 (2008)



Geodesible contact structures on 3–manifolds 1775
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