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Equivariant covers for hyperbolic groups
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We prove an equivariant version of the fact that word-hyperbolic groups have finite
asymptotic dimension. This is important in connection with our forthcoming proof of
the Farrell–Jones conjecture for K�.RG/ for every word-hyperbolic group G and
every coefficient ring R .

20F65, 20F67; 37D40, 57M07

1 Introduction

The asymptotic dimension of a metric space X was introduced by Gromov in [11, p 29].
It can be defined as the smallest number N such that for every ˛ > 0 there exists an
open cover U of X with the following properties:

� dimU �N ;

� The Lebesgue number of U is at least ˛ , ie, for every x 2 X there is U 2 U
such that x˛ � U , where x˛ is the open ball of radius ˛ around x ;

� The members of U have uniformly bounded diameters.

Recall that a cover U is of dimension � N if every x 2 X is contained in no more
then N C 1 members of U . The asymptotic dimension of a finitely generated group
is its asymptotic dimension as a metric space with respect to any word metric. An
important result of Yu [19] asserts that the Novikov conjecture holds for groups of finite
asymptotic dimension. This can be viewed as an injectivity result for the assembly
map in L–theory (after inverting 2). Further injectivity results for assembly maps
for groups with finite asymptotic dimension can be found in Bartels [1], Carlsson and
Goldfarb [6] and Bartels and Rosenthal [4]. On the other hand no surjectivity statement
of assembly maps is known for all groups of finite asymptotic dimension and this is
very much related to the absence of any equivariance condition for the cover U as
above.
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Definition 1.1 Let G be a group and Z be a G–space. Let F be a collection of
subgroups of G . An open cover U of Z is called an F –cover if the following two
conditions are satisfied.

(i) For g 2G and U 2 U we have either g.U /D U or g.U /\U D∅;

(ii) For g 2G and U 2 U we have g.U / 2 U ;

(iii) For U 2 U the subgroup GU WD fg 2G j g.U /D U g is a member of F .

Let G be a word-hyperbolic group. Fix a set of generators S . Let dG be the word
metric on G with respect to S . Let X be a hyperbolic complex with an isometric
G–action in the sense of Mineyev [14]; see Section 6.1. Let @X be the Gromov
boundary of X . (This boundary can be described as a quotient of the set of geodesic
rays in X , where two such rays are identified if they are asymptotic [5, III.H.3].)
Let xX WD X [ @X be the compactification of X [5, III.H.3]). Let VCyc denote the
collection of virtually cyclic subgroups of G , that is of subgroups that have a cyclic
subgroup of finite index. The following is our main result and should be thought of
as an equivariant version of the (much easier) fact that hyperbolic groups have finite
asymptotic dimension [11, p 31; 17].

Theorem 1.2 Let G be word-hyperbolic and let X be a hyperbolic complex. Suppose
that there is a simplicial proper cocompact G–action on X . Equip G � xX with the
diagonal G–action. Then there exists a natural number N D N.G; xX / depending
only on G and xX such that the following holds: For every ˛ > 0 there exists an open
VCyc–cover U of G � xX satisfying

(i) dim.U/�N ;

(ii) For g0 2G and c 2 xX there exists U 2 U such that g˛
0
�fcg �U , where g˛

0
is

the open ball with center g0 and radius ˛ with respect to the word metric dG ;

(iii) GnU is finite.

This result plays an important role in our proof of the Farrell–Jones conjecture for
K�.RG/ for every word-hyperbolic group G and every coefficient ring R [3].

The conclusion of Theorem 1.2 is formally similar to the definition of finite asymptotic
dimension discussed above. The price we have to pay for the equivariance of the cover
U is the space xX . For the application it will be very important that xX is compact. (If
we replace xX by a finite dimensional G –C W –complex all whose isotropy groups lie
in VCyc, then the conclusion follows easily from the fact that G has finite asymptotic
dimension.) The members of U are only large in the G –coordinate; in the xX –coordinate
they may be very small. Similar covers have been used in a slightly different situation
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where xX is replaced by a probability space with a measure preserving action of G ;
compare Gromov [12, p 300] and Sauer [18]. It would be interesting to know if there
is a version of Theorem 1.2 in this situation.

It seems reasonable to hope that the class of groups G for which there is a compact
G –space xX such that the conclusion of Theorem 1.2 holds is bigger than the class of
hyperbolic groups.

The proof of Theorem 1.2 is quite involved and uses a generalization of techniques
used and developed by Farrell–Jones in [7]. Firstly, we study flows on metric spaces
and prove the existence of long and thin covers; see Theorem 1.4. This generalizes
the long and thin cells from [7, Proposition 7.2]. Secondly, we use a variant FS.X / of
Mineyev’s half open symmetric join �̀ xX [14]. This space is a substitute for the sphere
bundle of a negatively curved manifold and is equipped with a flow �� (corresponding
to the geodesic flow on the sphere bundle). In Theorem 1.5 we improve upon Mineyev’s
flow estimate [14, Theorem 57 on page 468]. The required cover is then produced by
pulling back a long and thin cover of FS.X / by the composition of the flow �� for
large � with an embedding G� xX ! FS.X /. A more detailed discussion follows in
Sections 1.1 and 1.2.

1.1 Long thin covers

The existence of long thin covers will be proven in the following situation.

Convention 1.3 Let

� G be a discrete group;
� X be a metrizable topological space with a proper cocompact G –action on X ;
� ˆW X �R!X be a flow.

Assume that the following conditions are satisfied:

� ˆ is G –equivariant;
� The number of closed orbits, which are not stationary and whose period is � C ,

of the flow induced on GnX is finite for every C > 0;
� X �X R is locally connected (notation explained below);
� If we put

kG WD supfjH j jH �G subgroup with finite order jH jg;

dX WD dim.X �X R/;

then kG <1 and dX <1.
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Recall that a G –action is proper if for every x 2X there exists an open neighborhood
U such that the set fg 2G jU \gU 6D∅g is finite. Recall that X is locally connected
if for each x 2X and each open neighborhood U of x we can find a connected open
neighborhood U 0 of x with U 0 � U . A G–space X is called cocompact if GnX

is compact. The dimension of a collection of subsets fUi j i 2 Ig is � d , if every
point is contained in at most d C 1 members of the Ui . The covering dimension of a
space X is � d if every open covering has an open refinement whose dimension is
less or equal to d . One may replace the covering dimension dX of X �X R appearing
above by the supremum of the covering dimensions of compact subsets of X �X R .
Recall that an equivariant flow ˆW R�X ! X is a continuous R–action, such that
ˆ� .gx/ D gˆ� .x/ holds for all g 2 G , � 2 R and x 2 X . We denote by X R the
R–fixed point set, ie, the set of points x 2X for which ˆ� .x/D x for all � 2R. The
period of a closed orbit of ˆ which is not stationary is the smallest number � > 0 such
that ˆ� .x/D x holds for all x in this orbit.

The following is our main result in this situation.

Theorem 1.4 There exists a natural number N depending only on kG , dX and the
action of G on an arbitrary small neighborhood of X R such that for every ˛ > 0 there
is an VCyc–cover U of X with the following two properties:

(i) dimU �N ;

(ii) For every x 2X there exists U 2 U such that

ˆŒ�˛;˛�.x/ WD fˆ� .x/ j � 2 Œ�˛; ˛�g � U I

(iii) GnU is finite.

The main difference between Theorem 1.4 and [7, Proposition 7.2] is that we deal with
metric spaces rather than manifolds. This requires a different type of general position
argument (compare Section 3) and forces us to work with open covers rather than cell
structures. While cell structures of a manifold are automatically finite dimensional, in
our situation more care is needed to establish the bound on the dimension of U and
our bound is much larger then the dimension of the metric space X . Finally, we deal
with an honest proper action and do not require a torsion free subgroup of finite index,
as is used in [8].

The proof of Theorem 1.4 will be given in Section 5 and depends on Sections 2, 3 and 4.
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1.2 The flow space

Let G be a hyperbolic group. Fix a set of generators S . Let dG be the word metric
on G with respect to S . Let X be a hyperbolic complex and xX D X [ @X be its
compactification as before. Assume that G acts isometrically on X . In Section 6 we
introduce the metric space .FS.X /; dFS/. This space is equipped with an isometric
G –action and a G –equivariant flow �� .

Our main flow estimate is the following.

Theorem 1.5 There exists a continuous G –equivariant (with respect to the diagonal
G –action on the source) map j W G� xX ! FS.X / such that for every ˛ > 0 there exists
a number ˇ D ˇ.˛/ such that the following holds:

If g; h 2G with dG.g; h/� ˛ and c 2 xX then there is �0 2R with j�0j � ˇ such that
for all � 2R

dFS.��j .g; c/; ��C�0
j .h; c//� f˛.�/:

Here f˛W R! Œ0;1/ is a function that depends only on ˛ and has the property that
lim�!1 f˛.�/D 0.

An important ingredient of the proof of this result is Theorem 7.1 which is an improve-
ment of Mineyev’s [14, Theorem 57 on page 468]. The main differences are that we
consider points not necessary on the same horosphere, and that we consider the action
of the flow �� and not translation by length. In addition, Mineyev’s estimate is in terms
of a pseudo-metric, not in terms of the metric dFS .

In order to apply Theorem 1.4 to FS.X / we need further properties of the flow space
and G .

Proposition 1.6

(i) The order of finite subgroups in G is bounded.

(ii) FS.X /�FS.X /R is locally connected and has finite covering dimension.

(iii) If the action of G on X is cocompact and proper, then action of G on FS.X / is
also cocompact and proper.

(iv) If the action of G on X is cocompact and proper, then the number of closed
orbits, which are not stationary and whose period is � C , of the flow induced on
GnFS.X / is finite for every C > 0.

The proof of Theorem 1.5 will be given in Section 8 and depends only on Sections 6
and 7. The proof of Proposition 1.6 will be given in Section 9 and depends only on
Sections 2 and 6.
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1.3 Construction of the cover

Using the results from Sections 1.1 and 1.2 we can now give the proof of Theorem
1.2. During this proof we will use the following notation: if A is a subset of a metric
space Z and ı > 0, then Aı denotes the set of all points z 2Z for which d.z;A/ < ı ;
compare Definition 3.1.

Proof Consider any ˛ > 0. Let ˇ D ˇ.˛/ be the number appearing in Theorem 1.5.
It follows from Proposition 1.6 that Theorem 1.4 can be applied to FS.X /. Thus there
is a number N (independent of ˛ ) such that there exists an VCyc–cover V of FS.X /
of dimension no more than N with the following property: For every � 2 FS.X / there
exists V� 2 V such that

�Œ�2ˇ;2ˇ�.�/D f�� .�/ j � 2 Œ�2ˇ; 2ˇ�g � V� :

Since �Œ�2ˇ;2ˇ�.�/ is compact, V� is open and �Œ�2ˇ;2ˇ�.�/� V� , we can find ı� > 0

(depending on � and ˇ , V� ) such that�
�Œ�2ˇ;2ˇ�.�/

�ı�
� V� :

Because G acts by isometries, we can arrange that ı� D ıg� holds for all g 2 G .
In particular we get g � .�Œ�2ˇ;2ˇ�.�//

ı� D .�Œ�2ˇ;2ˇ�.g�//
ıg� . For � 2 FS.X / pick

�� > 0 such that
0< eˇ�� < ı�=2:

Again we arrange that �g� D �� holds for all g 2G . Obviously the collectionn�
�Œ�ˇ;ˇ�.�/

���
j � 2 FS.X /

o
is an open covering of FS.X /. Since G acts cocompactly, we can find finitely many
points �i for i D 0; 1; 2; : : : ; I for some positive natural number I such that the
G –cofinite collectionn�

�Œ�ˇ;ˇ�.g�i/
��g�i j g 2G; i 2 f0; 1; 2 : : : ; Ig

o
is an open covering of FS.X /. Consider � 2 FS.X /. Then we can find i D i.�/ 2

f0; 1; 2 : : : ; Ig and gD g.�/ 2G such that � 2
�
�Œ�ˇ;ˇ�.g�i/

��g�i . In particular, there
is � 2 Œ�ˇ; ˇ� such that dFS.�; �� .g�i// < �g�i

. Let

ı WDminfı�i
=2 j i D 0; 1; 2 : : : ; Ig:

Consider � 2
�
�Œ�ˇ;ˇ�.�/

�ı . Choose � 2 Œ�ˇ; ˇ� satisfying dFS.�; �� .�// < ı . In the
following estimate we will use Lemma 7.2. (In this lemma the more careful notation
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dFS;x0
is used for dFS .)

dFS.�; ��C� .g�i//� dFS.�; �� .�//C dFS.�� .�/; ��C� .g�i//

< ıC ej� j � dFS.�; �� .g�i//

< ıC eˇ � �g�i

< ıg�i

Since � C � 2 Œ�2ˇ; 2ˇ�, this implies�
�Œ�ˇ;ˇ�.�/

�ı
�
�
�Œ�2ˇ;2ˇ�.g�i/

�ıg�i � Vg�i
:

Thus we have found ı > 0 such that for every � 2 FS.X / there exists V� 2 V such that�
�Œ�ˇ;ˇ�.�/

�ı
� V� :(1.7)

We will construct the desired open covering U of G � xX by pulling back V with the
composition

G � xX
j
�! FS.X /

��
�! FS.X /

for an appropriate real number � , where j is the map from Theorem 1.5. Obviously
U has for every choice of � all the desired properties except for the property that there
exists U.g0;c/ 2 U such that g˛

0
� fcg � U.g0;c/ for every c 2 xX and every g0 2G .

We conclude from Theorem 1.5 for � 2R and the function f˛ appearing in Theorem
1.5

�� ı j .g; c/ 2
�
�Œ�ˇ;ˇ�.�� ı j .g0; c//

�f˛.�/
for all c 2 xX and all g 2G with dG.g0;g/ < ˛ . By Theorem 1.5 there is � such that
f˛.�/ < ı . For such a choice of � we conclude from (1.7) that

�� ı j .g; c/ 2
�
�Œ�ˇ;ˇ�.�� ı j .g0; c//

�ı
� V��ıj.g0;c/

for all c 2 xX and all g 2G with dG.g;g0/ < ˛ . This finishes the proof of Theorem
1.2.
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2 Boxes

Convention 2.1 Throughout this section we consider

� a discrete group G ;

� a metrizable topological space X ;

� a proper cocompact G –action on X ;

� a G –equivariant flow ˆW X �R!X such that X �X R is locally connected.

2.1 Basics about boxes

In this subsection we introduce and study the notion of a box.

Definition 2.2 Let B be a subset of a G –space. Define a subgroup of G by

GB WD fg 2G j gB D Bg;

where gB WD fgb j b 2 Bg.

A subset B of a topological G–space is called an F –subset for a collection F of
subgroups of G , if GB belongs to F and for all g 2 G we have the implication
gB \B 6D∅ ) B D gB .

Notice that gB D B does not imply that gb D b holds for all b 2 B . We denote by
F in the collection of finite subgroups.

Definition 2.3 A box B is a subset B �X with the following properties:

(i) B is a compact F in–subset;

(ii) There exists a real number l D lB > 0, called the length of the box B , with the
property that for every x 2B there exists real numbers a�.x/� 0� aC.x/ and
�.x/ > 0 satisfying

l D aC.x/� a�.x/I

ˆ� .x/ 2 B for � 2 Œa�.x/; aC.x/�I

ˆ� .x/ 62 B for � 2 .a�.x/� �.x/; a�.x//[ .aC.x/; aC.x/C �.x//:

Definition 2.4 Let B �X be a box. Then the following data are associated to it:

� The length lB > 0;

� Let GB �G be the finite subgroup fg 2G j gB D Bg;
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� We denote by Bı the (topological) interior and by @B the (topological) boundary
of B �X ;

� Let SB �B be the set of points fx 2B j a�.x/CaC.x/D 0g. We call SB the
central slice of B ;

� Let @˙B be the set of points fx 2B j a˙.x/D 0g D f�a˙.x/
.x/ j x 2 SBg. We

call @�B the bottom and @CB the top of B . Define the open bottom and open
top @˙Bı WD f�a˙.x/

.x/ j x 2 SB \Bıg;

� Let �BW B ! SB be the retraction onto the central slice which sends x to
ˆ.aC.x/Ca�.x//=2.x/.

Remark 2.5 A box does not intersect X R but may intersect a closed orbit. A box
does never contain a closed orbit. It may happen that a nonclosed orbit meets the
central slice infinitely many times, but whenever it meets the central slice it has to leave
the box before it comes back to the central slice. We do not require that the central
slice is connected. We have for x 2 B , � 2 Œa�.x/; aC.x/� that ˆ� .x/ 2 B and

a�.ˆ� .x//D a�.x/� � I

aC.ˆ� .x//D aC.x/� �:

Lemma 2.6 Let B �X be a box of length l D lB . Then the following holds:

(i) We get for g 2GB and x 2X

a�.gx/D a�.x/I

aC.gx/D aC.x/:

The bottom @�B , the open bottom @�Bı , the top @CB , the open top @CDı , the
central slice SB and the interior Bı are F in–subsets of G and satisfy (unless
they are empty)

GB DGBı DG@�B DG@�Bı DG@CB DG@CBı DGSB
I

(ii) The maps
a˙W B!R; x 7! a˙.x/

are continuous;

(iii) The maps

�W SB � Œ�l=2; l=2�
Š
�! B; .x; �/ 7!ˆ� .x/

and ��1
W B

Š
�! SB � Œ�l=2; l=2�; x 7!

�
ˆa�.x/CaC.x/

2

.x/; l=2� aC.x/

�

Geometry & Topology, Volume 12 (2008)
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are to one another inverse GB –homeomorphisms, where GB D GSB
acts on

SB � Œ�l=2; l=2� by g � .s; t/D .gs; t/.
We have

Bı D � ..SB \Bı/� .�l=2; l=2// I

@B D � ..SB \ @B/� Œ�l=2; l=2�[ .SB � f�l=2; l=2g// I

@˙B D � .SB � f˙l=2g/ I

@˙Bı D � ..SB \Bı/� f˙l=2g/ I

(iv) The space SB \Bı is locally connected;

(v) There exists �B > 0 depending only on B such that the numbers �.x/ appearing
in Definition 2.3 can be chosen so that �.x/� �B holds for all x 2 B .

Proof (i) For x 2B and g 2GB we have ˆ� .x/ 2B, g �ˆ� .x/Dˆ� .gx/ 2B .
This implies a˙.gx/Da˙.x/ for x 2B and g 2GB . We conclude from the definition
of the bottom @�B , the open bottom @�Bı , the top @CB , the open top @CBı , the
central slice SB and the interior Bı that these sets are GB invariant and contained
in the F in–subset B . Hence they are themselves F in–subsets of X and satisfy
GB DGBı DG@�B DG@CB DGSB

if nonempty.

(ii) Consider x 2B and � > 0 with � < �.x/, where �.x/ is the number appearing
in Definition 2.3. The points ˆa˙.x/˙�

.x/ lie outside B . Since B is compact and
X is a Hausdorff space, we can find an open neighborhood V˙ of ˆa˙.x/˙�

.x/

such that V˙ does not meet B . Put U˙ D .ˆa˙.x/˙�
/�1.V˙/. Then x 2 U˙ and

ˆa˙.x/˙�
.u/ does not lie in B for u 2 U˙ . This implies aC.u/ < aC.x/C � for

u 2 UC \ B and a�.x/ � � < a�.u/ for u 2 U� \ B . Put U D U� \ UC \ B .
Then U � B is an open neighborhood of x in B such that a�.x/� � < a�.u/ and
aC.u/ < aC.x/C � holds for u 2 U . Since aC.u/� a�.u/ D l for all u 2 U , we
conclude a˙.u/ 2 .a˙.x/� �; a˙.x/C �/ for all u 2 U . Hence a˙ is continuous.

(iii) The maps � and ��1 are continuous since ˆ and by assertion (ii) the maps aC
and a� are continuous. One easily checks that they are inverse to one another.

Since the flow is compatible with the G –action and GB DGSB
, the map � is GSB

D

GB –equivariant.

Next we prove

�
��

SB \Bı
�
� .�l=2; l=2/

�
� BıI(2.7)

� ..SB \ @B/� Œ�l=2; l=2�[ .SB � f�l=2; l=2g// � @B:(2.8)

Consider .x; �/ 2 .SB \ Bı/ � .�l=2; l=2/. Since a� and aC are continuous by
assertion (ii) and a�.x/D�l=2 and aC.x/D l=2, we can find an open neighborhood

Geometry & Topology, Volume 12 (2008)
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U � Bı of x such that � 2 .a�.u/; aC.u// holds for all u 2 U . Hence ˆ� .U / is
contained in B . Since ˆ� .U / is an open subset of X , we have ˆ� .U /� Bı . Since
�.x; �/Dˆ� .x/ lies in ˆ� .U /, the inclusion (2.7) is proven.

Consider x 2 SB . Let U � X be an open neighborhood of ˆl=2.x/. Since R!
X; � 7!ˆ� .x/ is a continuous map, there is an � with 0<�< l=2 such that ˆ� .x/2U

holds for � 2 .l=2� �; l=2C �/. Since fˆ� .x/ j � 2 .l=2� �; l=2/g is contained in
B and fˆ� .x/ j � 2 .l=2; l=2C �/g is contained in X �B , the open neighborhood
U of ˆl=2.x/ intersects both B and X �B . This shows ˆl=2.x/D �.x; l=2/ 2 @B .
Analogously one proves ˆ�l=2.x/D �.x;�l=2/ 2 @B .

Consider x 2 SB\@B and � 2 .�l=2; l=2/. We want to show �.x; �/ 2 @B . Suppose
the converse. Since �.x; �/Dˆ� .x/ belongs to B , there must be an open neighborhood
U of ˆ� .x/ such that U � B . Since the functions a� and aC are continuous by
assertion (ii) and a�.x/ D �l=2 < �� < aC.x/ D l=2, we can arrange by making
U smaller that �� 2 .a�.u/; aC.u// holds for all u 2 U . Hence ˆ�� .U / is an open
subset of X which is contained in B and contains x . This contradicts x 2 @B . This
finishes the proof of (2.8). Now assertion (iii) follows from (2.7) and (2.8).

(iv) Since Bı is an open subset of the locally connected space X �X R , it is itself
locally connected. Because of assertion (iii) the space SB \ Bı � .�l=2; l=2/ is
locally connected. Since the projection SB \Bı� .�l=2; l=2/! SB \Bı is an open
continuous map and the image of a connected set under a continuous maps is again
connected, SB \Bı is locally connected.

(v) Suppose that such �B does not exists. Then we can find a sequence .xn/n�0 of
elements in B and a sequence .�n/n�0>0 of positive real numbers with limn!1 �nD0

such that one of the following holds for n� 0:

(a) ˆa�.xn/��n
.xn/ 2 B and ˆa�.xn/�� .xn/ 62 B for � 2 .0; �n/

(b) ˆaC.xn/C�n
.xn/ 2 B and ˆaC.xn/C� .xn/ 62 B for � 2 .0; �n/

By passing to a subsequence we can arrange that xn converges to some point x 2 B

and (a) holds for all n � 0 or (b) holds for all n � 0. We only treat the case (a),
where ˆa�.xn/��n

.xn/ 2 B and ˆa�.xn/�� .xn/ 62 B for � 2 .0; �n/ holds for all
n� 0, the proof in the other case (b) is analogous. Put yn Dˆa�.xn/��n

.xn/. Then
yn 2 @CB for all n � 0 since yn 2 B and ˆ� .yn/ D ˆa�.xn/��nC� .xn/ 62 B holds
for � 2 .0; �n/. We conclude limn!1 a�.xn/ D a�.x/ from assertion (ii). Hence
limn!1 yn D ˆa�.x/.x/. Since yn 2 @CB for n � 0, we have limn!1 yn 2 @CB .
This contradicts ˆa�.x/.x/ 2 @�B since lB > 0.

We mention that in general SB itself is not locally connected.
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Remark 2.9 It is a little bit surprising that the function a˙ is continuous as stated in
Lemma 2.6 (ii) since there seem to be no link between different flow lines entering the
box. The point here is that we require the box to be compact. If G is trivial and we
consider the flow �� .x;y/D .xC �;y/ on R2 , the subset of R2 given by

B WD f.x;y/ j x;y 2 Œ�1; 1�;y 6D 0g[ f.x; 0/ j x 2 Œ0; 2�g

satisfies all the requirements of a box of length 2 except for compactness and the
functions a˙ are not continuous at .0; 0/.

Definition 2.10 Consider a box B of length lB . Let V � SB be a nonempty closed
F in–subset of the GSB

–space SB and a; b real numbers with �lB=2� a< b � lB=2.
Define a new box of length b� a by

B.V I a; b/ WD ˆŒa;b�.V / WD fˆ� .v/ j v 2 V; � 2 Œa; b�g:

If aD�v=2 and b D v=2 for some v 2 Œ0; w� we abbreviate

B.V I v/ WD B.V I �v=2; v=2/:

If aD�lB=2 and b D lB=2, we abbreviate

B.V / WD B.V I �lB=2; lB=2/;

and call B.V / the restriction of B to V .

We have to show that B.V I a; b/ is again a box. Since V is a closed subset of the
compact set SA , it is compact. Hence V � Œa; b� is compact. We conclude that
B.V; a; b/ as the image of a compact set under the continuous map ˆW X �R!X is
compact. From Lemma 2.6 we get GBDGSB

and the GB –equivariant homeomorphism

�BW SB � Œ�lB=2; lB=2�
Š
�! B; .x; �/ 7!ˆ� .x/:

The subset V of the GB –space SB is a F in–subset. Hence B.V I a; b/D�B.V �Œa; b�/

is a F in–subset of the GB –space B . Since B is a F in–subset of the G–space X ,
B.V I a; b/ is a F in–subset of the G–space X . Consider x 2 B.V I a; b/. We can
write it as xDˆ� .v/ for v 2SB and � 2 Œa; b�. Put a�.x/D a�� and aC.x/D b�� .
Let �.x/ for x 2B be the number appearing in the Definition 2.3 of a box for B . Now
one easily checks that the collections a˙.x/ and �.x/ have the desired properties of
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Definition 2.3 for B.V I a; b/. This shows that B.V I a; b/ is a box. We have

@�B.V I a; b/Dˆa.V /I

@CB.V I a; b/Dˆb.V /I

@�B.V I a; b/ı Dˆa.V \Bı/I

@CB.V I a; b/Dˆb.V \Bı/I

SB.V Ia;b/ DˆaCb
2

.V /:

In particular B.V I v/ is a box of length v with central slice V and B.V / is box of
length lB with central slice V .

2.2 Constructing boxes

Lemma 2.11 For every x 2X �X R there exists a nonequivariant box whose interior
contains x .

The following proof is a variation of an argument used in [16, Theorem 1.2.7].

Proof of Lemma 2.11 Because the G–action on the metrizable space X is proper
and cocompact X is locally compact; compare [13, Theorem 1.38 on page 27]. Let
˛ > 0 with ˆ˛.x/ ¤ x . Let W˙ be a closed neighborhood of ˆ˙˛.x/ that does
not contain x . By continuity there exist compact neighborhoods U 0 � U of x and
� > 0 such that ˆŒ˙˛��;˙˛C��U �W˙ and ˆŒ��;��U 0 � U and U is disjoint from
W� [WC . Let f W X ! Œ0;1/ be a continuous function with f .y/D 1 for y 2 U

and f .y/D 0 for y 2W�[WC . Define  W U !R by

 .y/D ln
�Z ˛

�˛

f .ˆ� .y//e
��d�

�
:

(The logarithm makes sense because the integrant is nonnegative, continuous, and
positive for � D 0.) Let y 2 U 0 . If s 2 Œ˙˛ � �;˙˛ C �� then ˆs.y/ 2 W˙ and
therefore f .ˆs.y//D 0. Using this we compute for ı 2 Œ��; ��

 .ˆı.y//D ln
�Z ˛

�˛

f .ˆ�Cı.y//e
��d�

�
D ln

 Z ˛Cı

�˛Cı

f .ˆ� .y//e
��Cıd�

!

D ln

 
eı
Z ˛Cı

�˛Cı

f .ˆ� .y//e
��d�

!
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D ıC ln
�Z ˛

�˛

f .ˆ� .y//e
��d�

�
D ıC .y/:

Define S WD U 0\ �1. .x//. Then B WD fˆ� .s/ j s 2 S; � 2 Œ��=2; �=2�g is a box
whose interior contains x .

Definition 2.12 Let C be a box of length lC . Let

�C W SC � Œ�lC =2; lC =2�! C; .x; �/ 7!ˆ� .x/

be the homeomorphism appearing in Lemma 2.6 (iii).

Consider a subset S � C . It is called transversal to the flow with respect to C if
��1

C
.S/\fxg � Œ�lC =2; lC =2� consists of at most one point for every x 2 SC .

Lemma 2.13 Let C be box of length lC . Let B be a box with B � C . Then we can
find for every x 2 SB a closed neighborhood U � SB of x satisfying

(i) U is a Gx –invariant F in–subset of the GB –space SB ;

(ii) U is transversal to the flow with respect to C .

Proof Let �SB
W SB! Œ�lC =2; lC =2� be the continuous function given by the restric-

tion to SB of the composite of the projection SC�Œ�lC =2; lC =2�! Œ�lC =2; lC =2� and
��1

C
. Let U1�SB be a closed neighborhood of x 2SB such that j�SB

.u/��SB
.x/j<

lB=2 holds for u 2 U1 . Choose a closed neighborhood U2 � SB of x such that
gU2 \U2 6D ∅) g 2 Gx holds for g 2 GB . Put U D

T
g2Gx

g.U1 \U2/. This
is a closed neighborhood of x in SB which is Gx –invariant, a F in–subset of the
GB –space SB and satisfies j�SB

.u/� �SB
.x/j � lB=2 for u 2 U .

It remains to show that U is transversal to the flow with respect to C . Suppose the
converse. So we can find u0;u1 2 U , v 2 SC and �0; �1 such that u0 D ˆ�0

.v/,
u1 D ˆ�1

.v/ and �0 6D �1 . Note that �0 D �SB
.u0/ and �1 D �SB

.u1/. Since
B is a box of length lB , we can find for i D 0; 1 real numbers �i > 0 such that
ˆŒ�lB=2;lB=2�.ui/�B and ˆ� .ui/ 62B for � 2 .�lB=2��i ;�lB=2/[.lB=2; lB=2C�i/.
This implies j�1��0j> lB . But by the definition of U , j�1��0jDj�SB

.u1/��SB
.u0/j�

j�SB
.u1/� �SB

.x/jC j�SB
.x/� �SB

.u0/j � lB . This is the required contradiction.

Next we show for x 2X that the existence of nonequivariant box containing x in its
interior already implies the existence of an equivariant box containing x in its interior.
The basic idea of proof is an averaging process in the time direction of the flow applied
to the central slice of a nonequivariant box.
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Lemma 2.14 Suppose for the point x 2X that there is a nonequivariant box whose
interior contains x .

Then there exists a box B in the sense of Definition 2.3 satisfying

(i) GB DGSB
DGx ;

(ii) x 2 SB \Bı ;

(iii) SB is connected.

Proof Let C be a nonequivariant box, ie a box in the sense of Definition 2.3 in the
case, where the group G is trivial, such that x 2 C ı . Let l D lC be the length of C .
Since the G –action on X is proper by assumption and X is metrizable, we can find a
closed neighborhood U of x such that U is a F in–subset of X with GU DGx . We
can assume without loss of generality that x 2 SC \C ı and C � U holds and for
every � 2 Œ�l;�l=2�[ Œl=2; l � and s 2 SC we have ˆ� .s/ … C ı , otherwise replace C

by an appropriate restriction. Let SC be the central slice of C . Let

�W SC � Œ�l=2; l=2�! C; .s; �/ 7!ˆ� .s/

be the homeomorphism of Lemma 2.6 (iii). Since SC is compact, C ı � X is open,
Gx is finite and X is metrizable, we can find a compact neighborhood S0 � SC \C ı

of x 2 SC \C ı such that gS0 � C ı holds for all g 2Gx . Define

S1 D

\
g2Gx

S0\�C .�
�1.gS0//;

where �C W SC � Œ�l=2; l=2�! SC is the projection. Then S1 � S0 is a compact
neighborhood of x in S0 . By construction there exists for every g 2Gx and s 2 S1

precisely one element �g.s/ 2 .�l=2; l=2/ such that ˆ�g.s/.s/ 2 gS0 . The function
�g.s/ is continuous in s and has image in .�l=2 C ı; l=2 � ı/ for some ı with
0< ı < l=2, since it is the restriction to S1 of the continuous function with a compact
source

�gW S0! .�l=2; l=2/; s 7! ��C ı�
�1.g�1s/:

Define the continuous function

� W S1! .�l=2; l=2/; s 7!
1

jGxj
�

X
g2Gx

�g.s/:

Put S2 D
˚
ˆ�.s/.s/ j s 2 S1

	
:
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Next we show that S2 � C is Gx –invariant. Consider g0 2 Gx and u 2 S2 . Write
uDˆ�.s/.s/ for appropriate s 2 S1 . Let s0 2 S0 be the element uniquely determined
by ˆ�

.g0/�1 .s/.s/D .g
0/�1s0 . Then we get for g 2Gx

ˆ�g.s/��.g0/�1 .s/.s
0/ D ˆ�g.s/ıˆ��.g0/�1 .s/.s

0/ D ˆ�g.s/.g
0s/Dg0ˆ�g.s/.s/2g0gS0:

Since g0gS0�C ı and �g.s/ and �.g0/�1.s/ belong to .�l=2; l=2/ and hence �g.s/�

�.g0/�1.s/ 2 .�l; l/ we conclude �g.s/� �.g0/�1.s/ 2 .�l=2; l=2/. Hence s0 2 S1 and
�g0g.s

0/D �g.s/��.g0/�1.s/. Since this implies �.s0/D �.s/��.g0/�1.s/, we conclude

g0 �u D g0 �ˆ�.s/.s/ D ˆ�.s/.g
0s/ D ˆ�.s0/C�

.g0/�1 .s/.g
0s/

D ˆ�.s0/

�
g0 �ˆ�

.g0/�1 .s/.s/
�
D ˆ�.s0/

�
g0 � .g0/�1s0

�
D ˆ�.s0/s

0
2 S2:

Since S1 � SC \C ı is compact, S2 is a compact Gx –invariant subset of C ı with
x 2 S2 . Let S3 be the component of S2 which contains x . Then S3 is a connected
closed subset of S2 . Since gS3 \S3 contains x for g 2 Gx , the subset S3 is Gx –
invariant. Thus S3 � C ı is a compact connected Gx –invariant subspace containing x .

We can find ı with 0< ı < l=2 such that B � C ı holds for B WDˆŒ�ı=2;ı=2�.S3/.

Next we show that B is a box of length ı . Since S3 is Gx –invariant and the flow ˆ

commutes with the G –action the subset B �X is Gx –invariant. Recall that B � C

holds and C is a F in–subset of X with GC DGx . Hence B is a compact F in–subset
of X . Consider y 2 B . There is precisely one element s 2 S3 and � 2 Œ�ı=2; ı=2�
satisfying y Dˆ� .s/ since SC and hence S3 is transversal to the flow with respect to
C . Put a�.y/D�ı=2� � , aC.y/D ı=2� � , ��.y/D �C.y/D l=2. Then

ı D aC.y/� a�.y/I

ˆ� .y/ 2 B for � 2 Œa�.y/; aC.y/�I

ˆ� .y/ 62 B for � 2 .a�.y/� �.y/; a�.y//[ .aC.y/; aC.y/C �.y//:

Hence B is a box with connected central slice SB D S3 . We have x 2 S3 . The
projection �C W C!SC induces a homeomorphism S2!S1 and maps the component
S3 of S2 to a component S 0

1
of S1 . Since S1 is an open neighborhood of x in the

space SC \C ı which is locally connected by Lemma 2.6 (iv), the component S 0
1

is a
neighborhood of x in the space SC \C ı . Since � is continuous we conclude from
Lemma 2.6 (iii) that x lies in the interior of B .

Definition 2.15 For x 2X define its G –period

perG
ˆ.x/ D inff� j � > 0; 9 g 2G with ˆ� .x/D gxg 2 Œ0;1�;
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where the infimum over the empty set is defined to be 1. If L� X is an orbit of the
flow ˆ, define its G –period by

perG
ˆ.L/ WD perG

ˆ.x/

for any choice of x 2X with LDˆR.x/.

For r � 0 put

X>r WD fx 2X j perG
ˆ.x/ > rgI

X�r WD fx 2X j perG
ˆ.x/� rg:

Consider x 2X . Then the G –period perG
ˆ
.x/ vanishes if and only if x 2X R . We have

perG
ˆ
.x/D1 if and only if the orbit through x is not periodic and gˆR.x/\ˆR.x/D

∅ holds for all g ¤ 1, or, equivalently, the orbit through Gx in the quotient space
GnX with respect to the induced flow is not periodic. If 0< perG

ˆ
.x/ <1, then the

properness of the G –action implies the existence of g 2G such that ˆperG
ˆ
.x/.x/Dgx

and perG
ˆ
.x/ is the period of the periodic orbit through Gx in the quotient space GnX

with respect to the induced flow.

Next we show for a point x that we can find an equivariant box around a given compact
part of the flow line, where the compact part is as long as the G–orbit length allows.
The idea of proof is to take an equivariant box which contains x in its interior, making
its central slice very small by restriction and then prolonging the box along the flow
line though x .

Lemma 2.16 Suppose for the point x 2X that there is a nonequivariant box whose
interior contains x . Consider a real number l with 0< l < perG

ˆ
.x/.

Then we can find a box C which satisfies

� lC D l ;

� GC DGx ;

� x 2 SC \C ı ;

� SC is connected.

Proof From Lemma 2.14 we conclude the existence of a box B in the sense of
Definition 2.3 which satisfies GB DGx , SB is connected and x 2 SB \Bı . Let lB
be the length of B . From Lemma 2.6 (v) we obtain a number �B > 0 such that for
every y 2 SB and � 2 .�lB=2� �B;�lB=2/[ .lB=2; lB=2C �B/ the element ˆ� .y/
does not belong to B . We can arrange by restricting B and diminishing �B that lB < l

and l C �B < perG
ˆ
.x/ holds.
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Next we show

ˆŒ�l=2;l=2�.x/\gˆŒ�l=2;l=2�.x/ 6D∅) g 2Gx :

Namely, consider y2ˆŒ�l=2;l=2�.x/\gˆŒ�l=2;l=2�.x/. Then yDˆ� .x/Dgˆ� .x/ for
appropriate �; � 2 Œ�l=2; l=2�. This implies ˆ��� .x/Dgx and j��� j � l < perG

ˆ
.x/.

We conclude � � � D 0 and hence g 2Gx .

Since the G–action on X is proper, we can find a closed neighborhood V 1
x � X

of x such that ˆŒ�l=2;l=2�.V
1

x / \ gˆŒ�l=2;l=2�.V
1

x / 6D ∅ ) g 2 Gx holds. From
l C �B < perG

ˆ
.x/ we conclude that

ˆŒ�l=2ClB;l=2�.x/\ˆŒ�l=2��B;�l=2�.x/D∅I
ˆŒ�l=2;l=2�lB �.x/\ˆŒl=2;l=2C�B �.x/D∅:

Since ˆ is continuous and Œ�l=2C lB; l=2�, Œ�l=2� �B;�l=2�, Œ�l=2; l=2� lB � and
Œl=2; l=2C �B � are compact, we can find a closed neighborhood V 2

x �X of x such
that

ˆŒ�l=2ClB;l=2�.V
2

x /\ˆŒ�l=2��B;�l=2�.V
2

x /D∅I

ˆŒ�l=2;l=2�lB �.V
2

x /\ˆŒl=2;l=2C�B �.V
2

x /D∅:

Put Vx D

\
g2Gx

g �
�
V 1

x \V 2
x

�
:

Then Vx �X is a closed Gx –invariant neighborhood of x with the properties

� ˆŒ�l=2;l=2�.Vx/ is a F in–subset of the G –space X ;

� GˆŒ�l=2;l=2�.Vx/ DGx ;

� ˆŒ�l=2ClB;l=2�.Vx/\ˆŒ�l=2��B;�l=2�.Vx/ D ∅;

� ˆŒ�l=2;l=2�lB �.Vx/\ˆŒl=2;l=2C�B �.Vx/ D ∅.

Let V ıx �X�X R be the interior of Vx . Let T be the component of SB\Bı\V ıx that
contains x . Since SB\Bı is locally connected by Lemma 2.6 (iv) and SB\Bı\V ıx
is an open subset of SB \Bı , the component T is an open subset of SB \Bı\V ıx
and hence of SB . Let xT be the closure of T in SB . This is a closed connected
Gx –invariant neighborhood of x 2 SB which is contained in Vx . Since SB is a
F in–subset of X with GSB

DGx , xT is a F in–subset of SB and we can consider the
restriction B. xT /. We can assume without loss of generality that the central slice SB is
a Gx –invariant connected subset of Vx , otherwise replace B by the restriction B. xT /.

We define C WDˆŒ�l=2;l=2�.SB/.
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Next we show that C is a box of length l . Since C � ˆŒ�l=2;l=2�.Vx/ and C is
Gx –invariant, C is a compact F in–subset of the G–space X . Consider y 2 C .
We can write it as y D ˆ�y .s/ for �y 2 Œ�l=2; l=2� and s 2 SB . Put a�.y/ D

�l=2� �y and aC.y/ D l=2� �y . Obviously l D aC.y/� a�.y/ and ˆ� .y/ 2 C

for � 2 Œa�.y/; aC.y/�. It remains to show that ˆ� 0.y/ 62 C holds for � 0 2 .a�.y/�
�B; a�.y//[ .aC.y/; aC.y/C �B/. This is equivalent to showing that ˆ� 0.s/ 62 C

holds for � 0 2 .�l=2� �B;�l=2/[ .l=2; l=2C �B/. Since s 2 SB � Vx , we have

ˆŒ�l=2ClB;l=2�.SB/\ˆŒ�l=2��B;�l=2�.s/D∅I
ˆŒ�l=2;l=2�lB �.SB/\ˆŒl=2;l=2C�B �.s/D∅:

The main property of �B is

ˆŒ�lB=2;lB=2�.SB/\ˆ.�lB=2��B;�lB=2/[.lB=2;lB=2C�B/.s/D∅:

Applying ˆ.lB�l/=2 respectively ˆ.l�lB/=2 we obtain

ˆŒ�l=2;�l=2ClB �.SB/\ˆ.�l=2��B;�l=2/.s/D∅I
ˆŒl=2�lB;l=2�.SB/\ˆ.l=2;l=2C�B/.s/D∅:

We conclude

ˆŒ�l=2;l=2�.SB/\ˆ.�l=2��B;�l=2/[.l=2;l=2C�B/.s/ D ∅:

Hence C is a box of length l . By construction SC DSB is connected, GC DGSC
DGx

and x 2 SB \Bı and hence x 2 SC \C ı .

Lemma 2.17 Consider real numbers a; b; c > 0 satisfying c > aC 2b . Let K be a
cocompact G –invariant subset of X>aC2bC2c .

Then there exist a G –set ƒ and for every � 2ƒ boxes A� � B� � C� such that:

(i) ƒ is G –cofinite;

(ii) We have

lA� D aI

lB� D aC 2bI

lC� D aC 2bC 2cI

(iii) SC� is connected;

(iv) We have SA� � SB� � SC� ;

(v) A� � Bı
�

and B� � C ı
�

;

(vi) K �
S
�2ƒAı

�
;
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(vii) gA� DAg� , gB� D Bg� and gC� D Cg� for g 2G ;

(viii) If B�\B�0 ¤∅, then B� � C ı
�0

and SB� is transversal to the flow with respect
to C�0 .

Proof Lemma 2.16 implies that we can find for every x 2X>aC2bC2c a box Cx of
length aC2bC2c such that x 2SCx

\C ıx and GCx
DGx holds and SCx

is connected.
Since Gx is finite, we can find a Gx –invariant closed neighborhood Tx of x in SCx

such that Tx � SCx
\C ıx holds. We can arrange that gCx D Cgx and gTx D Tgx

holds for g 2G and x 2X>aC2bC2c . Obviously K �
S

x2K Cx.TxI a/
ı , where we

use the notation from Definition 2.10. Since K is cocompact and G –invariant, we can
find a cofinite G –subset I �K satisfying

K �
[
x2I

Cx.TxI a/
ı:(2.18)

Fix x 2 I . Consider y 2 Tx . Since the G–action is proper, g �Cz.Tz/D Cgz.Tgz/

holds for z 2 I and g 2G and Cx.fygI aC 2b/ and Cz.TzI aC 2b/ are compact, we
can find a closed Gy –invariant neighborhood Vy � Tx of y such that for all z 2 I

Cx.fygI aC 2b/\Cz.TzI aC 2b/D∅ ) Cx.Vy I aC 2b/\Cz.TzI aC 2b/D∅:

For y 2 Tx we define

Iy D fz 2 I j Cx.fygI aC 2b/\C ız 6D∅g:

Since the set G –set I is cofinite, Cx.fygI aC2b/ and Cz are compact and the G –action
on X is proper, the set Iy is finite. From aC2b< c and lCz

DaC2bC2c we conclude
for z 2 Iy that Cx.fygI aC 2b/ D ˆŒ�a=2�b;a=2Cb�.y/ is contained in C ız . Since
Cx.fygI aC2b/ is compact, we can find for z2Iy a closed Gy –invariant neighborhood
Uy.z/�Tx of y such that Cx.Uy.z/I aC2b/DˆŒ�a=2�b;a=2Cb�.Uy.z// is contained
in C ız . Because of Lemma 2.13 applied to Cx.Uy.z/I aC 2b/� Cz we can assume
without loss of generality that Uy.z/ is transversal to the flow with respect to Cz for
every z 2 Iy .

Put Uy WD Vy \
T

z2Iy
Uy.z/. Then Uy � Tx is a Gy –invariant closed neighborhood

of y such that

Cx.Uy I aC 2b/� C ız if z 2 Iy I(2.19)
Uy is transversal to the flow with respect to Cz for z 2 Iy I(2.20)
Cx.Uy I aC 2b/\Cz.TzI aC 2b/D∅(2.21)

if z 2 I and Cx.fygI aC 2b/\Cz.TzI aC 2b/D∅:
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Choose a Gy –invariant closed neighborhood Wy �Tx of y such that Wy �U ıy . Obvi-
ously TxD

S
y2Tx

W ıy . Since Tx is compact, we can find y.x/1;y.x/2; : : : ;y.x/n.x/
in Tx such that Tx D

Sn.x/
iD1

Wy.x/i . We can arrange Wgy D gWy , n.x/ D n.gx/

and y.gx/i D gy.x/i for g 2 G since Cx is a F in–subset of X with GCx
D Gx .

Obviously

Cx.TxI a/
ı
D

n.x/[
iD1

Cx.Wy.x/i I a/
ı:(2.22)

Define ƒD fyi.x/ j x 2 I; i 2 f1; 2; : : : ; n.x/gg :

This is a cofinite G –set. Define for �D yi.x/ in ƒ

C� D CxI

B� D Cx.Uyi .x/I aC 2b/I

A� D Cx.Wyi .x/I a/:

It remains to check that this collection of boxes has the desired properties. This is
obvious for assertions (i), (ii), (iii), (iv) and (vii). Assertion (v) follows from Wy �U ıy
and Uy � SCx

\C ıx . Assertion (vi) follows from (2.18) and (2.22).

Finally we prove assertion (viii). Suppose that B�\B�0 6D∅. Write �D yi.x/ and
�0Dyi0.x

0/. Since B�DCx.Uyi .x/I aC2b/ and B�0�Cx0.Tx0 I aC2b/, we conclude
that Cx.Uyi .x/I aC 2b/\Cx0.Tx0 I aC 2b/ 6D∅. By (2.21) we have x0 2 Iyi .x/ . We
conclude from (2.19)

B� D Cx.Uyi .x/I aC 2b/� C ıx0 D C ı�0 :

The central slice SB� D Uyi .x/ is transversal to the flow with respect to C�0 by (2.20).
This finishes the proof of Lemma 2.17.

3 General position in metric spaces

Definition 3.1 Let Z be a metric space, A�Z and ı > 0. Then we define the sets

Aı D fx 2Z j 9 a 2A such that d.x; a/ < ıg;

A�ı D fx 2A j d.x;Z �A/ > ıg:

For x 2Z , we will abbreviate xı D fxgı .

Notice that Aı and A�ı are open. The following Propositions 3.2 and 3.3 are the main
results of this section which is entirely devoted to their proof.

Geometry & Topology, Volume 12 (2008)



1820 Arthur Bartels, Wolfgang Lück and Holger Reich

Proposition 3.2 Let Z be a compact metrizable space of covering dimension n with
an action of a finite group F . Let U be a finite collection of open F in–subsets such
that gU 2 U for g 2 F , U 2 U . Suppose that we are given for each U 2 U an open
subset U 00 � U satisfying U 00 � U . Put mD .nC 1/ � jF j.

Then for each U 2 U we can find an open subset U 0 �Z such that:

(i) U 00 � U 00 � U 0 � U 0 � U ;

(ii) If U0 � U has more than m elements, then\
U2U0

@U 0 D∅I

(iii) .gU /0 D g.U 0/ for g 2 F , U 2 U .

Proposition 3.3 Let Z be a compact metric space of covering dimension n with an
action of a finite group F by isometries. Let Y � Z be an open locally connected
F –invariant subset. Let U be a finite collection of open subsets such that gU 2 U for
g 2F , U 2 U and xU � Y for U 2 U holds. Assume that there is k such that for every
subset U0 � U with more than k elements we have\

U2U0

@U D∅:

Let ı > 0. Put mD .nC 1/ � jF j, l D kjF j.

Then there are finite collections Vj , j D 0; : : : ;m of open subsets of Z , such that:

(i) V D V0[ � � � [Vm is an open cover of Z ;

(ii) diam.V / < ı for every V 2 V ;

(iii) For V 2 V there are at most l different sets U 2 U such that U and V intersect,
but U does not contain V ;

(iv) For fixed j and V0 2 Vj we have V0 \V 6D 0 for at most 2jC1 � 2 different
sets V 2 V0[ � � � [Vj ;

(v) For fixed j and V0;V1 2 Vj we have either V0 D V1 or V0\V1 D∅;

(vi) Each V i is F –invariant, ie, gV 2 V i for g 2 F , V 2 V i ;

(vii) V D xV ı for V 2 V .

In order to prove these two propositions we will compare the metric space Z to the
nerve of a suitable open cover of Z . The results will be first proven for simplicial
complexes and then be pulled back to Z using the map from the next remark.
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Remark 3.4 Let Z be a metric space and U be a locally finite open cover of Z .
Denote by N .U/ the simplicial complex given by the nerve of U . Then

(3.5) z 7!
X
U2U

�
d.z;Z �U /P

V 2U d.z;Z �V /

�
ŒU �

defines a map fU W Z!N .U/, where ŒU � denotes the vertex of N .U/ that corresponds
to U 2 U . If a group G acts by isometries on Z and on the cover U (ie, gU 2 U for
g 2G , U 2 U ) then fU is equivariant for the induced action on N .U/.

Lemma 3.6 Let f W Y ! Z be a continuous map between metric spaces. Assume
that Y is compact. Let U be an open subset of Z and ˇ > 0. Then there exists ˛ > 0

such that
.f �1.U //�ˇ � f �1.U�˛/:

Proof We proceed by contradiction and assume that for every n 2N there is xn 2 Y

such that

xn 2 f
�1.U /�ˇ;(3.7)

xn 62 f
�1.U�1=n/:(3.8)

By compactness of Y , we may assume xn! x as n!1. We derive from (3.8) that
there is zn 2Z �U such that d.zn; f .xn//� 2=n. Then zn! f .x/ as n!1 and
thus f .x/ 62 U . On the other hand (3.7) implies that f ..xn/

ˇ/� U . Since x 2 .xn/
ˇ

for sufficiently large n we have f .x/ 2 U . This is the desired contradiction.

In the sequel interior of a simplex means simplicial interior, ie, the simplex with all its
proper faces removed.

Lemma 3.9 Let Z be a simplicial complex and let Z.n/ be the n–th barycentric
subdivision of Z , n � 1. Let � be a simplex of Z.n/ . Let � , � be simplices of Z

such that both the interior of � and the interior of � intersect �. Then � � � or � � � .

Proof Let �0 be a simplex of the first barycentric subdivision Z0DZ.1/ of Z which
contains �. Then both the interior of � and the interior � intersect �0 . Thus it suffices
to prove the claim for the first barycentric subdivision.

Now a d –simplex �0 of the first barycentric subdivision Z0 of Z is given by a
sequence �0; �1; : : : ; �d such that each �i is a simplex of Z and �i�1 is a proper face
of �i for i D 1; 2; : : : ; d . This is the simplex in the barycentric subdivision whose
vertices are the barycenters of �0; �1; : : : ; �d . Then the simplices of Z whose interior
intersect �0 are precisely the �i .
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Recall that the open star of a vertex e of a simplicial complex Z is defined to be the
set of all points z 2 Z whose carrier simplex has v as an vertex. Equivalently, one
obtains the star of v by taking the union of all simplices � which have v as vertex and
then deleting those faces of these simplices � which do not have v as a vertex. We will
denote it by star.v/. The set of open stars of vertices of Z is an open covering of Z .

Let � be a simplex of Z . Define star0.�/ to be the star in the first barycentric
subdivision Z0 of the vertex in Z0 given by � .

Proof of Proposition 3.3 Since U is finite and @U closed for U 2U , the assumptions
on U imply that we can find for every z 2Z an open neighborhood Wz of z such that
for all z 2Z the following holds.

� diam.Wz/ < ı=jF j;

� Wz intersects the boundary of at most k sets in U ;

� If Wz intersects xU for some U 2 U , then Wz � Y .

Since the covering dimension of Z is n by assumption and Z is compact, we can choose
a finite open refinement W of the open cover fWz j z 2 Zg such that dim.W/ � n.
Let WF be the collection of subsets of Z which consists of the components of subsets
of the form

S
g2F gW for W 2W with W � Y and subsets of the form gW for

g 2 F and W 2W with W 6� Y . Since Y is a locally connected open subset of
Z , the above components are open subsets of Z . Thus the elements in the finite set
WF are open subsets. Hence WF is a finite open covering of Z . Since dim.W/� n

every orbit of F in Z meets at most .nC 1/ � jF j members of W . We conclude
dim.WF / � m D .nC 1/ � jF j. Obviously gV 2WF holds if V 2WF . If V is a
component of

S
g2F gW for some W 2W , we can find elements g1;g2; : : : ;gr in

F such that V is contained in
Sr

iD1 giW and .
Si

jD1 gj W /\giC1W 6D∅ holds for
i D 1; 2; : : : ; .r � 1/. One shows by induction over i D 1; 2 : : : ; r that the diameter ofSi

jD1 gj W is less or equal to the sum of the diameters of the sets g1W , g2W ,. . . ,
gi �W . Hence the diameter of any element V of WF is bounded by ı .

Consider U 2U and an element V 2WF such that V intersects U but is not contained
in U . By construction V is a component of

S
g2F gW for some W 2W with W �Y .

Since V is connected we must have V \ @U 6D ∅. Hence there exists g 2 F with
gW \@U 6D∅, or, equivalently, with W \g�1@U 6D∅. Since each set Wz intersects
the boundary of at most k sets in U and g�1U 2 U , there are at most l D jF j � k

elements U 2 U satisfying W \ g�1@U 6D ∅ for some g 2 F . Hence for every
V 2WF there are at most l elements U 2 U such that V intersects U but is not
contained in U .
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Consider the map f D fWF
W Z!N .WF / from Remark 3.4. Put for j D 0; 1; : : : ;m

X j
D fstar0.�/ j � 2N .WF /; dim.�/D j g:

Then X D X 0[X 1[ : : :[Xm is an open cover of N .WF /.

Let � and � be simplices in Z with star0.�/\ star0.�/ 6D ∅. Let � be the carrier
simplex in Z0 of some point in star0.�/\ star0.�/. Then the two vertices of Z0 given
by � and � belong to �. Hence the barycenters of � and � belong to �. In particular
the interior of � and the interior of � intersect �. We conclude from Lemma 3.9 that
� � � or � � � holds. This implies that the elements in X j are pairwise disjoint and
every V 2 X j intersects at most 2jC1� 2 elements in fX 0[X 1[ : : :[X j g since a
j –simplex has 2jC1� 2 proper faces.

If the simplex � in N .WF / is given by the subset fV0;V1; : : : ;VDg � WF , then
f �1.star0.�// is contained in V0 \V1 \ : : :\VD , since star0.�/ is contained in the
intersection of the stars in N .WF / of the vertices of � and for V 2N .WF / we have
f �1.star.V //�V . Hence for every X 2X there exists W 2WF with f �1.X /�W .
Put

yVj
D ff �1

WF
.X / jX 2 X j

g:

Then yVj has the following properties:

� yV D yV0[ � � � [ yVm is an open cover of Z consisting of finitely many elements.

� diam yV < ı for every yV 2 yV ;

� For yV 2 yV there are at most l different sets U 2 U such that U and yV intersect,
but U does not contain yV ;

� For fixed j , every yV0 2
yVj intersects at most 2jC1 � 2 different sets yV 2

yV0[ � � � [ yVj ;

� For fixed j and yV0; yV1 2
yVj we have either yV0 D

yV1 or yV0\
yV1 D∅;

� Each yV i is F –invariant, ie, g yV 2 yV i for g 2 F , yV 2 yV i .

For � > 0 define
Vj
D

n�
. yV /��

�ı
j yV 2 yVj

o
:

Then Vj has properties (ii), (iii), (iv), (v), (vi) and (vii) since
�
. yV /��

�ı
� yV for

yV 2 Vj 0 and we have xT D xT ı for any open subset T of a topological space. Since Z

is compact, we can choose � so small that also property (i) is satisfied. This finishes
the proof of Proposition 3.3.
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Proposition 3.10 Let Z be a simplicial complex and let Z.m/ be the m–th barycentric
subdivision of Z , m � 1. Let B be a subcomplex of Z . Let B0 be the union of all
simplices of Z.m/ that are contained in the interior of B . Let ˇ be a simplex of Z and
let � be a simplex of Z.m/ that is contained in the intersection of the boundary of B0

with ˇ . Then dim.�/ < dim.ˇ/.

We recall that the topological interior and boundary of a subcomplex of a simplicial
complex can be described combinatorial as follows: the interior is the union of all open
simplices (simplices with all proper faces removed) that are contained in the subcomplex;
its boundary is the union of all simplices that are contained in the subcomplex and are
in a addition a face of simplex not contained in the subcomplex.

Proof of Proposition 3.10 By the definition of B0 there exists a simplex � of Z.m/

such that � � �, but � is not contained in the interior of B . Thus there exists a
simplex ˛ of Z that is contained in the boundary of B and intersects �. By passing
to a face of ˛ , we can arrange that ˛ is contained in the boundary of B and the interior
of ˛ intersects �. Since � is contained in ˇ , we can find a face ˇ0 of ˇ such that �
intersects the interior of ˇ0 . Hence the interior of the simplex ˇ0 �Z intersects �.
Lemma 3.9 implies ˛ � ˇ0 or ˇ0 � ˛ . In the second case, � � ˇ0 � ˛ . But � has
to be disjoint from ˛ , because ˛ lies on the boundary of B , while � is contained in
the interior of B . We conclude ˛ � ˇ0 and hence ˛ � ˇ . Therefore, � D ˇ\� is a
simplex of Z.m/ , that contains the simplex � as a face and intersects ˛ . Since � and
˛ are disjoint, � is a proper face of � . This implies dim.�/ < dim.�/� dim.ˇ/.

Proof of Proposition 3.2 The strategy is first to prove a simplicial version and then
use the map appearing in Remark 3.4 to handle the general case of a metric space.

Since we assume that Z is metrizable and F is finite, we can choose a metric dZ on
Z which is F –invariant. Since Z and hence each U 00 is compact and the collection
U is finite, we can find ı > 0 such that U 00 � U�ı holds for U 2 U . Hence we can
assume in the sequel without loss of generality that U 00 D U�ı .

So we start with the special case where Z is in addition a simplicial complex, each
U 2 U is the interior of a subcomplex of Z and F acts simplicially on Z . Let
fU1; : : : ;Ur g � U contain exactly one element from every F –orbit in the F –set U .
Pick m � 0 such that the simplices of the m–th barycentric subdivision Z.m/ of Z

have diameter < ı . For i D 1; 2; : : : ; r let Z.mCi/ be the .mC i/–th barycentric
subdivision of Z and let Ai be the union of all those simplices of Z.mCi/ which
are contained in Ui . Then Ai is the largest subcomplex of Z.mCi/ that is contained
in Ui . Since each simplex of Z.mCi/ has diameter < ı , we get U�ıi � Ai � Ui .
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Define U 0i to be the interior of Ai . For U 2 U define U 0 D gU 0i for any choice of
g 2 F and i 2 f1; 2; : : : ; rg satisfying U D gUi . One easily checks that i is uniquely
determined by U and the choice of g 2 F does not matter in the definition of U 0

since each U is by assumption a F in–subset. Obviously (i) and (iii) are satisfied for
U 0 D fU 0 j U 2 Ug.

Next we prove (ii) but with m replaced by nD dim.Z/. Consider a subset U0�U with
jU0j D k . Notice that

T
U2U0

@U 0 is a subcomplex of Z.mCa/ for some a since the
intersection of a subcomplex of Z.nCa/ with a subcomplex of Z.nCb/ is a subcomplex
of Z.nCb/ if a� b . It suffices to show dim

�T
U2U0

@U 0
�
� n� k since this implies

(3.11)
\

U2U0

@U 0 D∅ if U0 contains more than n elements:

Choose i1; i2; : : : ; ik in f1; 2; : : : ; rg and g1;g2; : : : ;gk in F with the property that
U0 consists of the mutually different elements g1Ui1

, g2Ui2
, : : : ; gkUik

and i1 �

i2 � : : : � ik holds. If for some j 2 f1; 2; : : : ; .r � 1/g we have ij D ijC1 , then
gj Uij 6DgjC1UijC1

implies already gj Uij\gjC1UijC1
D∅ and the claim is obviously

true. Hence we can assume without loss of generality i1 < i2 < : : : < ik . Next we
show by induction for j D 1; 2; : : : ; k that

dim

0@ j\
lD1

@gil
U 0il

1A� n� j:

The induction beginning is obvious since the dimension of the boundary of a simplicial
complex is smaller than the dimension of the simplicial complex itself. The induction
step from j � 1 to j is done as follows. By induction hypothesis the dimension of the
simplicial subcomplex

Tj�1

lD1
@gil

U 0il
of Z.nCij�1/ is less or equal to .n�j C1/. Let

� be a simplex of the subcomplex
Tj

lD1
@gil

U 0il
of Z.nCij / . We can find a simplex

ˇ in
Tj�1

lD1
@gil

U 0il
such that � is contained in ˇ . Recall that by assumption Uj is

the interior of a subcomplex Bj of Z.nCij�1/ . Proposition 3.10 applied to the case
mD ij � ij�1 and B D gj Bj and � and ˇ as above implies

dim.�/ < dim.ˇ/� n� j C 1

since in the notation of Proposition 3.10 we have B0D gj U 0ij . Hence dim.�/� n�j .
This finishes the proof of Proposition 3.2 in the special case where Z is a simplicial
complex, each U 2 U is the interior of a subcomplex of Z and F acts simplicially
on Z .

In the general case we start with an open cover V of Z such that each V 2 V has
diameter < � D ı=3 and dim.V/� n. Let VF be the cover of Z whose members are
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the open sets of the form gV with V 2 V and g 2 F . Then VF is an open cover of
Z whose members have diameter < � and we have gV 2 VF for V 2 VF and g 2 F .
Analogously as in Proposition 3.3 one shows that dim.VF /�m.

For U 2 U let VU D fV 2 VF j V � U g and consider N .VU / as a subcomplex of
N .VF / (this is the subcomplex spanned by the vertices ŒV � with V 2 VU ) and denote
by yU the interior of N .VU /. Consider the map f D fVF

W Z!N .VF / from Remark
3.4. If x 2 f �1.N .VU // and x 2 V , V 2 VF then by the construction of f , V 2 VU .
Therefore

f �1. yU /� f �1.N .VU //� U:

Let x 2U�� . If x 2 V with V 2 VF then V 2 VU , because the diameter of V is < � .
Therefore f .x/ 2 N .VU /. If f .x/ lies on the boundary of N .VU /, then there are
V 2 VU , V 0 2 VF �VU such that x 2 V and V \V 0 ¤∅. In particular this implies
x 62 U�2� . We have thus shown that

(3.12) U�2�
� f �1. yU /� U:

Equip N .VF / with a metric such that the action of F is by isometries. By Lemma 3.6
there is ˛ such that

(3.13) .f �1. yU //�� � f �1. yU�˛/

for all U 2 U . By the special case treated in the first part of this proof for each yU
there is yU 0 such that

yU�˛ � yU�˛ � yU 0 � yU 0 � yU ;

.g yU /0 D g. yU 0/ for g 2 F and\
U2U0

@ yU 0 D∅ if U0 contains more than m elements:

(See (3.11) and recall that dim.VF /�m.) Finally set U 0Df �1. yU 0/ for U 2U . Since
@f �1.U /� f �1.@U / and taking preimages preserves inclusions and intersections (ii)
and (iii) are satisfied. Moreover, by (3.12) and (3.13)

U�ı D U�3�
� .f �1. yU //�� � f �1. yU�˛/� f �1. yU 0/� f �1. yU /� U

and therefore (i) is also satisfied.

4 Covering X> by long boxes

Throughout this Section we will assume that we are in the situation of Convention
1.3. In particular kG is the maximum over the orders of finite subgroups of G and
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dX is the dimension of X �X R . Both kG and dX are finite. Also recall the notation
X>r introduced in Definition 2.15. This section is entirely devoted to the proof of the
following

Proposition 4.1 There exists a natural number M DM.kG ; dX / depending only on
kG and dX which has the following property:

For every ˛; � 2R with 0< � < ˛ there exists  D  .˛; �;M / > 0 such that for every
cocompact G –invariant subset K of X> , there is a collection D of boxes satisfying:

(4.2) K �
S

D2D ˆ.��;�/.D
ı/;

(4.3) For every x 2X which lies on the open bottom or open top of a box in D , the
set ˆŒ�˛;���[Œ�;˛�.x/ does not intersect the open bottom or the open top of a box
in D ;

(4.4) For any x 2 X there is no box D 2 D such that ˆŒ0;˛�.x/ intersects both the
open bottom and open top of D ;

(4.5) The dimension of the collection fDı j D 2 Dg is less or equal to M , ie the
intersection of .M C 2/ pairwise distinct elements is always empty;

(4.6) For g 2G , D 2D we have gD 2D ;

(4.7) There is a finite subset D0 � D such that for every D 2 D there exists g 2 G

with gD 2D0 ;

(4.8) ˆŒ�˛��;˛C��.D/ is a F in–subset of X for all D 2D .

The idea of the proof is very roughly as follows. Conditions (4.2) and (4.3) require
the boxes to be very long, but we have still the freedom to make the boxes very thin.
Proposition 3.2 applied to the transversal directions will be important to arrange the
boxes during the construction to be in general position. This will allow the application
of Proposition 3.3, where property (iii) will be crucial in order control how many boxes
from previous steps of the construction interfere at each step in the construction.

4.1 Preliminaries and the basic induction structure

We begin with fixing some numbers and collection of boxes. Define numbers

m WD kG � .dX C 1/I

M WD .kG/
2
� .dX C 1/C 2mC1

I

a WD �=2I

b WD 4M � .˛C 2�/C 3.˛C �/I

c WD aC 2.bC �/C 1C �I

 WD aC 2bC 2c:

Geometry & Topology, Volume 12 (2008)



1828 Arthur Bartels, Wolfgang Lück and Holger Reich

Notice that m and M depend only on kG and dX and all the other numbers depend
only on ˛ , � and M . (The reader may wonder why we picked a small, we are after all
looking for long boxes. But for our construction it is only important that b and c are
large and in the proof of Lemma 4.49 (iii) our choice of a small a will be convenient.)

Let A��B��C� for �2ƒ be three collection of boxes as in the assertion of Lemma
2.17, where we use a as defined above and replace b by bC � , and c by c � � . Then
we replace B� by the restriction B�.aC 2b/. The resulting collections satisfy:

� ƒ is G –cofinite;

� lA D a, lB D aC 2b and lC D aC 2bC 2c ;

� SC� is connected;

� SA� � SB� � SC� ;

� A� � Bı
�

and B� � C ı
�

;

� K �
S
�2ƒAı

�
;

� gA� DAg� , gB� D Bg� and gC� D Cg� for g 2G and � 2ƒ;

� If B� \B�0 ¤ ∅, then �Œ��;��.B�/ � C ı
�0

and SB� is transversal to the flow
with respect to C�0 .

Next we discuss the main strategy of the proof. We will construct the desired collection
D inductively over larger and larger parts of K . The boxes C� will be used to control
the group action, ie, they will allow us to restrict attention to the finite group GC� .
The boxes B� will be used to control properties (4.2) and (4.3). The boxes A� will
be used to control which part of K is already covered. We will need to sharpen the
induction assumptions. We introduce a minor but useful variation of (4.2) as follows.

Definition 4.9 A collection of boxes is ı–overlong for 0 � ı < � if for every x 2

X which lies on the open bottom or open top of a box in this collection, the set
ˆŒ�˛�ı;��Cı�[Œ��ı;˛Cı�.x/ does not intersect the open bottom or the open top of any
box in this collection.

The assertion (4.2) is then that D is 0–overlong. Clearly, ı–overlong for some 0� ı<�

implies 0–overlong.

Definition 4.10 We say that a box D is not huge if for every � 2 ƒ such that D

intersects B� we have �Œ��;��.D/� C ı
�

and SD is transversal to the flow with respect
to C� .
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Every box which is obtained from one of the boxes B� by restriction is automatically
not huge.

Definition 4.11 We say a collection E of boxes is a ı–good box cover of a subset S

of X if it has the following properties:
� E is ı–overlong;
� Every box in E is not huge;
� Assertions (4.3), (4.4), (4.5), (4.6) and (4.7) hold for E in place of D ;
� S �

S
E2E ˆ.��;�/.E

ı/.

To prove Proposition 4.1 we will construct a 0–good box cover of K . Let N be the
number of G –orbits of ƒ.

Put

(4.12) ır D
N � r

N C 1
� � for r D 0; 1; : : : ;N:

Clearly,

� >
N

N C 1
� D ı0 > � � �> ır > ırC1 > � � �> ıN D 0:

We will show inductively for r D 0; 1; 2; : : : ;N that for any subset „�ƒ consisting
of r G–orbits there exists a ır –good box cover of K„ WD

S
�2„A� . The induction

beginning r D 0 is trivial, take D D ∅. The induction step from r to r C 1 is
summarized in the next lemma.

Lemma 4.13 (Induction step : r to r C 1) Let „ � ƒ consist of r G–orbits and
assume that D is a ır –good box cover of K„ D

S
�2„A� . Let � 2 ƒ �„ and

„0 WDG�[„. Then there is a ırC1 –good box cover D0 of K„0 D
S
�2„0 A� .

Clearly Lemma 4.13 implies Proposition 4.1. The proof of Lemma 4.13 will occupy
the remainder of Section 4.

4.2 Boxes in C ı

�

Before we explain the construction of D0 , we have to introduce some notation and to
rearrange D as follows. In the sequel everything will take place in the interior of the
box C� . Recall for the sequel the GC� –homeomorphism

�C� W SC� � Œ�a=2� b� c; a=2C bC c�! C�; .x; �/ 7! ˆ� .x/

from Lemma 2.6 (iii). Let �C� W C�!SC� ;x 7!ˆ.aC.x/Ca�.x//=2.x/ be the retraction
onto the central slice. Closures and interiors of subsets of SC� are always understood
with respect to SC� .
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Definition 4.14 Let E � C ı
�

be a box such that SE is transversal to the flow with
respect to C� .

Define an open subset of SC� \C ı
�

by

UE WD �C�.SE \Eı/D �C�.E
ı/:

Define the continuous GE –invariant map

�E W �C�.SE/! Œ�lC =2; lC =2�

to be the composite of the inverse of �C� jSE
W SE

Š
�! �C�.SE/, the inverse of �C�

restricted to SE and the projection SC� � Œ�lC =2; lC =2�! Œ�lC =2; lC =2�.

For a subset T � SC� define a subset of SE by

�E.T / WD �
�1
C�
.T /\SE :

Lemma 4.15 Let E;E0 � C ı
�

be boxes such that SE and SE0 are transversal to the
flow with respect to C� . Then:

(i) If gE\E0 6D∅ for some g 2G , then g 2GC� . In particular GE is a subgroup
of GC� ;

(ii) The map �E is uniquely characterized by

�C�.x/D .�C�.x/; �E ı�C�.x//

for x 2 SE ;

(iii) If T � SC� is a closed F in–subset of the GE –space SC� , then �E.T / is
a closed F in–subset of the GE –space SE and the restriction E.�E.T // is
defined;

(iv) Let U �SC� be an open F in–subset of the GE –space SC� with xU ��C�.SE/

and U D xU ı . Then

E.�E. xU //DˆŒ�lE=2;lE=2�.�E. xU //I

E.�E. xU //
ı
Dˆ.�lE=2;lE=2/.�E.U //I

UE.�E. xU //
D U:

Proof (i) Suppose gE \E0 6D∅. Since then gC�\C� 6D∅, we get g 2GC� .

(ii) This follows from the definitions.

(iii) This is obvious since �C� is GE –equivariant.
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(iv) We conclude E.�E. xU // D ˆŒ�lE=2;lE=2�.�E. xU // from the definition of the
restriction. The set ˆ.�lE=2;lE=2/.�E.U // is mapped under the homeomorphism �C�

to the set f.u; t/ j u 2 U; jt � �E.u/j< lC =2g. Since �E is continuous and U is open
in SC� , this set and hence ˆ.�lE=2;lE=2/.�E.U //� C ı

�
are open. This implies

ˆ.�lE=2;lE=2/.�E.U //�E.�E. xU //
ı
I

�E.U /� �E. xU /\E.�E. xU //
ı:

If we apply �C� to the latter inclusion, we conclude

U � xU \�C�.E.�E. xU //
ı/� xU ı D U:

This implies �E.U /D �E. xU /\E.�E. xU //
ı and UE.�E. xU // D U . Lemma 2.6 (iii)

implies ˆ.�lE=2;lE=2/.�E.U //DE.�E. xU //
ı .

4.3 Rearranging the data of the induction beginning

Let D be the collection of boxes, from the hypothesis of Lemma 4.13 (with respect to
„�ƒ and � 2ƒ�„).

Definition 4.16 Put

D� WD fD 2D jD\B� ¤∅gI
U.D�/ WD fUD jD 2D�g:

Since the G –action on X is proper and B� is compact, property (4.6) implies that D�
is finite. We will consider the GC� sets

GC� �D� D fgD jD 2D�;g 2GC�gI

GC� �U.D�/D fgUD jD 2D�;g 2GC�g D fUE jE 2GC� �D�g:

Since every D 2D� is not huge, the set D is contained in C ı
�

and SD is transversal to
the flow with respect to C� . Both these properties also hold for every D 2GC� �D� .

We use Proposition 3.2 to diminish the elements in D slightly in order to obtain a
general position property for D . At this point it is important, that we arranged the
central slice SC� to be connected.

We main goal of this subsection will be the proof of the following lemma.
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Lemma 4.17 We can assume without loss of generality that D has the following
general position properties:\

U2U0

@U D∅ when U0 �GC� �U.D�/ fulfills jU0j>mD kG � .dX C 1/I(4.18)

If D, D0 2GC� �D� and UD D UD0 then D DD0.(4.19)

The proof of Lemma 4.17 will use the following lemma, that we will prove first.

Lemma 4.20 There exists collections fVD jD 2GC� �D�g and fWD jD 2GC� �D�g
of open subsets of SC� satisfying:

(i) For D 2GC� �D� the sets WD ;WD , VD and VD are GD –invariant subsets of
the GD –space UD ;

(ii) We have WD �WD � VD � VD � UD for D 2GC� �D� ;

(iii) We have WD D .WD/
ı and VD D .VD/

ı for D 2GC� �D� ;

(iv) WgD D gWD and VgD D gVD holds for g 2GC� and D 2GC� �D� ;

(v) K„ �
S

D2D
D 62G�D�

ˆ.��;�/.D
ı/ [

S
g2G

S
D2D� g �ˆ.��;�/

�
D.�D.WD//

ı
�
;

(vi) If VD D VE for D;E 2GC� �D� , then D DE ;

(vii) If for D;E 2 GC� �D� the intersection VD \VE contains both WD and WE ,
then VD D VE .

Proof Choose a metric d on SC� which is GC� –invariant. Consider D 2GC� �D� .
Put

VD.n/D
�
U
�1=n
D

�ı
:

Notice for the sequel that for an open subset Y of a topological space we have xY D xY ı

and Y � xY ı but in general Y 6D xY ı . Hence VD.n/ is a GD –invariant open subset
of SC� with VD.n/ D

�
VD.n/

�ı . We get for D 2 GC� � D� and g 2 GC� that
VD.n/� VD.nC1/�UD , UD D

S
n�1 VD.n/ and gVD.n/D VgD.n/ holds. Denote

for D 2GC� �D� and n� 1 the restriction by

Dn D D
�
�D.VD.n//; lD � 1=n

�
:

Lemma 4.15 (iv) and Lemma 2.6 (iii) imply Dı D
S

n�1 Dın and Dn � Dı
nC1

for
n� 1.

Put K0„ WDK„�

�
K„\

[
D2D

D 62G�D�

ˆ.��;�/.D
ı/

�
:

Geometry & Topology, Volume 12 (2008)



Equivariant covers for hyperbolic groups 1833

Since K„ �
S

D2D ˆ.��;�/.D
ı/ by assumption, we have

K0„ �
[

D2G�D�

ˆ.��;�/.D
ı/I(4.21)

K„ �K0„[
[

D2D
D 62G�D�

ˆ.��;�/.D
ı/:(4.22)

Since each D 2 D is not huge, ˆŒ��;��.D/ is contained in C ı
�

for D 2 D� . Since
gC�\C� 6D∅) g 2GC� , we get from (4.21)

K0„\C� �
[

D2GC�
�D�

ˆ.��;�/.D
ı/I(4.23)

K0„ D
[
g2G

g �
�
K0„\C�

�
:(4.24)

Since K0
„

is closed, K0
„
\C� is compact. Because DıD

S
n�1 Dın and Dın �Dı

nC1
,

(4.23) implies that there exists a natural number N with

K0„\C� �
[

D2GC�
�D�

ˆ.��;�/.D
ı
N /:

Since DN �D
�
�D.VD.N /

�
we conclude

K0„\C� �
[

D2GC�
�D�

ˆ.��;�/
�
D
�
�D.VD.N /

�ı�
:

We conclude from (4.24)

K0„ �
[
g2G

[
D2D�

g �ˆ.��;�/
�
D
�
�D.VD.N /

�ı�
:

We conclude from (4.22)

K„ �

[
D2D

D 62G�D�

ˆ.��;�/.D
ı/ [

[
g2G

[
D2D�

g �ˆ.��;�/
�
D.�D.VD.N ///ı

�
:

So for every choice of natural numbers fnD jD 2GC� �D�g satisfying nD �N and
ngD D nD for g 2 GC� and D 2 GC� �D� the collection fVD.nD/ jD 2 GC� �D�g
has the following properties:

� VD.nD/ is a GD –invariant subset of the GD –space VD ;

� VD.nD/D
�
VD.nD/

�ı ;
� We have VD.nD/� VD.nD/� UD for D 2GC� �D� ;
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� VgD.ngD/D gVD.nD/ holds for g 2GC� and D 2GC� �D� ;

� K„ �
S

D2D
D 62G�D�

ˆ.��;�/.D
ı/[

S
g2G

S
D2D� g�ˆ.��;�/

�
D.�D.VD.nD///

ı
�
.

Next we show that for some choice of numbers fnD jD 2GC� �D�g satisfying nD �N

and ngD D nD for g 2GC� and D 2GC� �D� the collection fVD.nD/ jD 2GC� �D�g
also has property (vi). We can write GC� �D� as the disjoint union

GC� �D� D C1q C2q : : :q Cr

of its GC� –orbits. We show by induction that we can find numbers n1; n2; : : : ; nr with
nk �N such that if we set nD D nk for D 2 Ck the collection fVD D VD.nD/ jD 2

C1[C2[� � �[Ckg satisfies property (vi). The induction beginning k D 1 is trivial, the
induction step from k � 1 to k is done as follows. For given D 2 Ck choose n0 with
VD.n0/¤∅. Since SC� is connected, the nonempty closed subset VD.n/ and the open
subset VD.nC 1/¤ SC� cannot agree for n� n0 . In particular VD.n/� VD.nC 1/

for all n � n0 and since C1 [ C2 [ � � � [ Ck�1 is a finite set we can find a number
nk such that VD.nk/¤ VE.nE/ for E 2 C1 [ C2 [ � � � [ Ck�1 . By invariance under
the GC� –action the same statement holds for all D 2 Ck with this nk . If we have
D , gD 2 Ck with g 2 GC� then since �C� from Lemma 2.6 (iii) is GC� –invariant
and the action on the interval trivial and D is a F in–set, UD D gUD already implies
D D gD . Therefore property (vi) holds for C1 [ C2 [ � � � [ Ck . We have therefore
verified property (vi) for the collection VD D VD.nD/ with D 2GC�D� .

In order to achieve property (vii) we repeat this construction replacing the collection of
boxes GC�D� with the collection of boxes

˚
D
�
�D.VD.n0//

�
jD 2GC� �D�

	
. Namely,

put

WD.n/ D
�
V
�1=n

D

�ı
:

Lemma 4.15 (iv) implies UD.�D.VD.n// D VD.n/. Thus we get open subsets WD.n/�

VD and a natural number N 0 such that for every choice of natural numbers fnD jD 2

GC� �D�g satisfying nD � N 0 and ngD D nD for g 2 GC� and D 2 GC� �D� the
collection fWD.nD/ jD 2GC� �D�g has the following properties:

� WD.nD/ is a GD –invariant subset of the GD –space VD ;

� WD.nD/D
�
WD.nD/

�ı ;
� We have WD.nD/�WD.nD/� VD for D 2GC� �D� ;

� WgD.ngD/D gWD.nD/ holds for g 2G� and D 2GC� �D� ;

� K„ �
S

D2D
D 62G�D�

ˆ.��;�/.D
ı/[

S
g2G

S
D2D� g�ˆ.��;�/

�
D
�
�D.WD.nD//

�ı�.
Geometry & Topology, Volume 12 (2008)



Equivariant covers for hyperbolic groups 1835

Consider D;E2C with VD 6DVE . Since VDD
S

n�1 WD.n/ and VED
S

n�1 WE.n/

holds, we can find N 0.D;E/ such that VD \VE does not contain both WD.n/ and
WE.n/ for n�N 0.D;E/. Define N 00 to be the maximum over the numbers N 0.D;E/

for D;E 2GC� �D� with VD 6D VE and N 0 . Put WD DWD.N
00/ for D 2GC� �D� .

Then the collections fVD j D 2 GC� �D�g and fWD j D 2 GC� �D�g have all the
desired properties. This finishes the proof of Lemma 4.20.

Now we can prove Lemma 4.17.

Proof In the sequel we will use the collections fVD jD 2GC� �D�g and fWD jD 2

GC� �D�g appearing in Lemma 4.20. We apply Proposition 3.2 in the case, where the
space Z is SC� , the finite group F is GC� , the collection U is fVD jD 2GC� �D�g
and we use the subsets WD � VD . Since SC� �X is closed, we have dim.SC�/� dX .
So from Proposition 3.2 we obtain for every D 2GC� �D� an open subset V 00

D
� SC�

such that the following holds:

� WD � V 00
D
� VD ;

� If U0 � fV
00

D
jD 2GC� �D�g has more than mD kG � .dX C 1/ elements, then\

U 002U0

@U 00 D∅I

� .VgD/
00 D .gVD/

00 D g.V 00
D
/ for g 2GC� and D 2GC� �D� .

Now define V 0D D V 00
D

ı
:

Since V 00
D

is open, we conclude V 0
D
D V 0

D

ı
. Recall that VD D VD

ı
and WD DWD

ı
.

Notice that V 00
D

is not necessarily V 0
D

. Since V 00
D

is open, we get V 00
D
� V 0

D
and hence

V 00
D
\ @V 0

D
D∅. We have

@V 0D � V 0
D
D V 00

D

ı
D V 00

D
:

Hence @V 0
D
� @V 00

D
. Thus we have constructed for every D 2GC� �D� an open subset

V 0
D
� SC� such that the following holds

� WD � V 0
D
� VD ;

� If V0 � fV
0

D
jD 2 GC� �U.D�/g has more than mD kG � .dX C 1/ elements,

then \
V 02U0

@V 0 D∅I

� .VgD/
0 D .gVD/

0 D g.V 0
D
/ for g 2GC� and D 2GC� �U.D�/;
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� V 0
D

ı
D V 0

D
.

We use next restriction of boxes to diminish some of the boxes in D as follows. Consider
D 2D . Suppose there exists g0 2G and D0 2GC� �D� with DD g0D0 . Then define
yD D g0D0

�
�D0

.V 0
D0
/
�
. We have to check that this is well-defined. Suppose we have

gi 2 G and Di 2 GC� �D� with D D giDi for i D 0; 1. We have D1 D g�1
1

g0D0 .
This implies g�1

1
g0 2GC� (see Lemma 4.15 (i)) and hence g�1

1
g0UD0

D UD1
. We

conclude g�1
1

g0.VD0
/0 D .VD1

/0 and hence g�1
1

g0D0

�
�D0

.V 0
D0
/
�
DD1

�
�D1

.V 0
D1
/
�
.

If there does not exist g0 2G and D0 2D� with D D g0D0 , we put yD DD . Define
a new collection of boxes

yDD f yD jD 2Dg:

Next we want to show that yD is a ır –good box cover of K„ D
S
�2„A� . Since

WD � V 0
D

for D 2D� , we conclude from property (v) appearing in Lemma 4.20

K„ �

[
yD2 yD

ˆ.��;�/. yD
ı/:

One easily checks that the other required properties of a ır –good box cover do pass
from D to yD since elements in yD are obtained from those in D by restriction in a
G –equivariant way.

We conclude GC� �U. yD�/ � fV 0D jD 2GC� �D�g from Lemma 4.15 (iv). (We re-
mark that D\B�¤∅ does not necessarily imply yD\B�¤∅ and the above inclusion
may be a strict inclusion.) By construction yD satisfies (4.18).

Suppose for yD; yD0 2 GC� �
yD� that U yD D U yD0 . By construction U yD D V 0

D
and

U yD D V 0
D0

. We conclude V 0
D
D V 0

D0
and hence both WD and WD0 are contained in

VD \ VD0 . Properties (vi) and (vii) appearing in Lemma 4.20 imply D D D0 . We
conclude that yD satisfies (4.19). This finishes the proof of Lemma 4.17.

Now we have finished our arrangement of D and can now construct the desired new
collection D0 out of D as demanded in Lemma 4.13.

4.4 Carrying out the induction step

Recall that we defined numbers m, M , a, b and c in the beginning of Section 4.1.
Recall also that N is the number of G –orbits of ƒ and that � is given in Proposition 4.1.
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In the sequel we will abbreviate

a˙ D˙lA�=2I

b˙ D˙lB�=2I

c˙ D˙lC�=2:

aC� a� D aIWe have

bC� aC D a�� b� D bI

cC� bC D b�� c� D c:

Put

(4.25) � WD
�

.N C 1/.mC 1/
and � WD

�

5
:

We will use the GC� –homeomorphism

�C� W SC� � Œc�; cC�! C�; .x; �/ 7! ˆ� .x/(4.26)

from Lemma 2.6 (iii) as an identification. Note that A� D SA� � Œa�; aC�, B� D

SB� � Œb�; bC� and Bı
�
D
�
SB� \Bı

�
� .b�; bC/ under this identification. Note that

for g 2GC� we have g � .x; t/D .gx; t/, by Lemma 2.6 (iii).

Choose a GC� –invariant metric dSC�
on SC� . Consider D 2 D� . Recall that D �

C� and that the retraction �C� W C�! SC� induces a GD –homeomorphism SD !

�C�.SD/. We have introduced the continuous GD –invariant map

�D W �C�.SD/! Œc�; cC�

in Definition 4.14. It is uniquely characterized by �C�.x/D .�C�.x/; �D ı�C�.x//

for x 2 SD . Since �D is continuous and �C�.SD/ is compact, we can find ıD > 0

such that

j�D.x/� �D.y/j � � for x;y 2 �C�.SD/ with dSC�
.x;y/ < ıD :(4.27)

Because D� is finite we can set

ı WD min fıD jD 2D�g :(4.28)

Then ı > 0.

In the sequel interiors and closures of subsets of SC� are to be understood with
respect to SC� . One easily checks with this convention that Lemma 2.6 (iii) implies
Sı

B�
D Bı\SB� since B� � C ı

�
.

Next we want to apply Proposition 3.3 to the locally connected compact metric space
Z WD SC� with the obvious isometric F WD GB� –action (note that F � GC� by
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Lemma 4.15 (i)), the F DGB� –invariant open subset Y WD SC� \C ı
�

which is locally
connected by Lemma 2.6 (iv), the collection of sets U WD U.D�/ and the number ı > 0

in (4.28). Note that for D 2 D� we have by definition D \B� ¤ ∅ and therefore
D�C ı

�
since D is not huge. Therefore UD � �C�.D/� SC� \C ı

�
D Y for D 2D� .

In the notation just introduced this means xU � Y for U 2 U . Thus we can indeed
apply Proposition 3.3 in this situation. By intersecting the resulting open covering with
Sı

B�
D SB� \Bı , we obtain a collection V D V0[V1[ � � � [Vm of open subsets of

Sı
B�

which has the following properties:

V is a open covering of SıB� consisting of finitely many elements;(4.29)

For every V 2 V there are at most k2
G � .dX C 1/ different U 2 U.D�/(4.30)

such that U \V ¤∅ and V 6� U ;

For fixed j and V0 2 Vj we have V0\V ¤∅ for at most 2jC1
� 2< 2mC1(4.31)

different subsets V 2 V0
[ � � � [Vj�1;

For fixed j and V0;V1 2 Vj we have either V0 D V1 or V0\V1 D∅;(4.32)

Each V i is GB�–invariant, ie, gV 2 V i if g 2GB� , V 2 V i ;(4.33)

For V 2 V its closure xV is a F in–subset of SB� with respect to the GB�–(4.34)
action;

We have xV ı D V for V 2 V;(4.35)
For every V 2 V the diameter of V is bounded by ı;(4.36)

Vj
\Vk

D∅ if j ¤ k.(4.37)

Properties (4.29), (4.30), (4.31), (4.32), (4.33) and (4.36) are direct consequences of
Proposition 3.3. Property (4.34) follows from properties (4.32) and (4.33). Prop-
erty (4.37) can be achieved by replacing Vj by a subset of Vj if necessary.

Since for every subset Y � SC� with xY ı D Y we have�
Y \Sı

B�

�ı
�
�
xY \SB�

�ı
D xY ı\SıB� D Y \SıB� �

�
Y \Sı

B�

�ı
and hence

�
Y \Sı

B�

�ı
D Y \Sı

B�
, property (4.35) holds. We mention that because of

(4.34) we can consider for V 2 V the restriction B�. xV / and property (4.35) ensures

SB�. xV /
D xV I

Sı
B�. xV /

D SB�. xV /
\Bı

�
D V:

The collection D0 we are seeking will be of the form D[fgB�. SW I a
W
� ; a

W
C / jW 2

W;g 2Gg, where W � V . In order to find suitable W � V and aW
˙

we proceed by a
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subinduction over nD�1; : : : ;m. Using (4.12) and (4.25) we set

ır;n WD ır � .nC 1/ �� for nD�1; 0; 1; : : : ;m:

ır D ır;�1 > ır;0 > � � �> ır;n�1 > ır;n > � � �> ır;m D ırC1Clearly

and ır;n�1� ır;n D �. For j D 0; : : : ;m let

K
.j/

�
WD

[
V 2V0[���[Vj

V � Œa�; aC�:

(Recall that we use (4.26) to identify K
.j/

�
with a subset of C� .) The induction step

from .n� 1/ to n is formulated in the following lemma.

Lemma 4.38 (Induction step : n�1 to n) Assume that we have for j D 0; : : : ; n�1

subsets Wj � Vj and numbers faW
˙
j W 2Wj g satisfying b� � aW

� < aW
C � bC

such that the collection of boxes Dn�1 DD[fgDW jW 2W0[� � �[Wn�1;g 2Gg

is a ır;n�1 –good box cover of K„ [GK
.n�1/

�
, where DW WD B�. SW I a

W
� ; a

W
C / for

W 2W0[ � � � [Wn�1 .

Then there is a subset Wn � Vn and numbers aW
˙
2R with b� � aW

� < aW
C � bC for

W 2Wn such that Dn DDn�1[fgDW jW 2Wn;g 2Gg is a ır;n –good box cover
of K„[GK

.n/

�
, where DW D B�. SW I a

W
� ; a

W
C / for W 2Wn .

Since (4.29) implies SA� � Sı
B�
D
S

V 2V V we get A� �
S

V 2V V � Œa�; aC�. We
conclude K„0 �K„[GK

.m/

�
. (K„0 was defined in Lemma 4.13.) Hence D0 DDm

is the desired ırC1 –good box cover of K„0 . Therefore Lemma 4.13 follows from
Lemma 4.38.

The proof of Lemma 4.38 will occupy the remainder of Section 4.

Definition 4.39 Let Wn be the set of all W 2 Vn for which

W � Œa�; aC� 6�
[

D2Dn�1

ˆ.��;�/.D
ı/:

Lemma 4.40 Let V 2V and let @˙D be the top or bottom of a box D 2D� . Consider
t 2 .c�; cC/. Suppose that @˙D\ .V �ftg/¤∅. Then

@˙D\ .V � Œc�; cC�/� V � .t � �; t C �/:

Proof Consider v 2 V with .v; t/ 2 @˙D . Then .v; t� lD=2/ 2SD . Hence �D.v/D
t � lD=2, where �D is the function introduced in Definition 4.14. Consider w 2 V

and s 2 Œc�; cC� with .w; s/ 2 @˙D . Then s� lD=2 D �D.w/. From (4.27), (4.28)

Geometry & Topology, Volume 12 (2008)



1840 Arthur Bartels, Wolfgang Lück and Holger Reich

and (4.36) we conclude j�D.v/� �D.w/j < � and hence jt � sj < �. This implies
@˙D\ .V � Œc�; cC�/� V � .t � �; t C �/.

Recall that for D 2D� we have D � C ı
�

and we have associated to such D an open
subset UD D �C�.SD \Dı/D �C�.D

ı/ of SC� .

Definition 4.41 For W 2Wn define

DW WD fD 2Dn�1
jDı\W �.b�; bC/¤∅gI

Dgood
W
WD fD 2DW jW � UDgI

Dbad
W WD fD 2DW jW \UD ¤∅;W 6� UDgI

J
good;˙
W

WD ft 2 .b�; bC/ j 9D 2Dgood
W
j @˙Dı\W �ftg ¤∅gI

J
bad;˙
W

WD ft 2 .b�; bC/ j 9D 2Dbad
W j @˙Dı\W �ftg ¤∅gI

J
good
W
WD ft 2 .b�; bC/ j 9D 2Dgood

W
jDı\W �ftg ¤∅gI

J @W WD J
good;�
W

[J
good;C
W

[J
bad;�
W

[J
bad;C
W

:

Since D 2DW implies W \UD ¤∅, we have DW DD
good
W
[Dbad

W
. The reason for

the names of Dgood
W

and Dbad
W

is this. In the construction of DW for W 2Wn we will
be able to allow top and bottom of DW to be very close to top or bottom of a box in
Dgood

W
(compare Lemma 4.43) but will have to make sure that top and bottom of DW

will be far away from top and bottom of every box in Dbad
W

. Thus, both for choosing
aW
� and aW

C there will be two cases: either we find a suitable top (for aW
� ) respectively

bottom (for aW
C ) of a box in Dgood

W
to put W �faW

� g close by, or all boxes from Dgood
W

are far away and we will only have to worry about the boxes from Dbad
W

. The crucial
point will then be, that the number of members of Dbad

W
is uniformly bounded, see

Lemma 4.42.

Note that for g 2GB� we have J
good;˙
W

D J
good;˙
gW

, J
bad;˙
W

D J
bad;˙
gW

, J
good
W
D J

good
gW

and J @
W
D J @

gW
, because g acts trivially on the second factor of C� D SC��Œc�; cC�.

Lemma 4.42 We have

jDbad
W j �M D .kG/

2
� .dX C 1/C 2mC1:

Proof We conclude from the definitions, Lemma 4.15 (iv) and (4.35)

Dn�1
DD[fgDW

jW 2W0
[ � � � [Wn�1;g 2GgI

DW
D B�. SW I a

W
� ; a

W
C / D

SW � ŒaW
� ; a

W
C � for W 2W0

[ � � � [Wn;

UDW DW for W 2W0
[ � � � [Wn:
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Recall that gB�\B� 6D∅) g 2GB� holds. Hence we get

Dbad
W D

n
D 2D jDı\W � .b�; bC/ 6D∅;W \UD 6D∅;W 6� UD

o
[

n
gDW 0

jW 0 2W0
[ � � � [Wn�1;g 2G;�

gDW 0
�ı
\W � .b�; bC/ 6D∅;W \UgDW 0 6D∅;W 6� UgDW 0

o
D

n
D 2D jDı\W � .b�; bC/ 6D∅;W \UD 6D∅;W 6� UD

o
[

n
gDW 0

jW 0 2W0
[ � � � [Wn�1;g 2GB� ;W \gW 0 6D∅;W 6� gW 0

o
�

n
D 2D� jW \UD 6D∅;W 6� UD

o
[

n
gDW 0

jW 0 2W0
[ � � � [Wn�1;g 2GB� ;W \gW 0 6D∅;W 6� gW 0

o
:

We have gDW 0 D DgW 0 and DW 0 D DW 00 , W 0 D W 00 . Hence we conclude
using (4.19), (4.30), (4.31) and (4.37) that

jDbad
W j � jfD 2D� jW \UD 6D∅;W 6� UDgj

C

ˇ̌̌n
gDW 0

jW 0 2W0
[ � � � [Wn�1;g 2GB� ;W \gW 0 6D∅;W 6� gW 0

oˇ̌̌
D jfUD 2 U.D�/ jW \UD 6D∅;W 6� UDgj

C

ˇ̌̌n
gW 0 jW 0 2W0

[ � � � [Wn�1;g 2GB� ;W \gW 0 6D∅;W 6� gW 0
oˇ̌̌

� jfUD 2 U.D�/ jW \UD 6D∅;W 6� UDgj

C

ˇ̌̌n
V j V 2 V0

[ � � � [Vn�1;W \V 6D∅;W 6� V
oˇ̌̌

� k2
G � .dX C 1/C 2mC1

DM:

This finishes the proof of Lemma 4.42.

Lemma 4.43 Let W 2Wn . If t0 2 J
good;�
W

[J
good;C
W

and t1 2 J @
W

, then

jt0� t1j 62 Œ�� ır;n�1C �; ˛C ır;n�1� ��:

Proof There are D0 2D
good
W

, D1 2DW , �0 , �1 2 f�;Cg and w0 , w1 2W such that
.w0; t0/ 2 @�0

Dı
0

and .w1; t1/ 2 @�1
Dı

1
. By definition of Dgood

W
we have W � UD0

and D0 � C ı
�

. Therefore there is � 2R such that ˆ� .w1; t1/D .w1; t1C �/ 2 @�0
Dı

0

and t1C� 2 .c�; cC/. We conclude from Lemma 4.40 that jt0�.t1C�/j<�. Because
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Dn�1 satisfies the induction assumption, we know that DW �Dn�1 is ır;n�1 –overlong.
Therefore

j� j 62 Œ�� ır;n�1; ˛C ır;n�1�:

This implies our result, because jjt0� t1j � j� jj � j.t0� t1/� � j< �.

Definition 4.44 For W 2Wn let

RW
� WD sup

�
.b�C˛C �; a�/\J

good;C
W

�
[fb�C˛C �gI

RW
C WD inf

�
.aC; bC�˛� �/\J

good;�
W

�
[fbC�˛� �g:

Lemma 4.45 Let W 2Wn . We have:

(i) .RW
� ;R

W
C /\J

good
W
D∅;

(ii) RW
� C˛C ır;nC 2� <RW

C .

Proof We first show that

(4.46) Œa�� �=2C �; aCC �=2� ��\J
good
W
D∅:

We proceed by contradiction. If (4.46) fails then there are t0 2 Œa���=2C�; aCC�=2�

��, w0 2W and a box D 2 Dgood
W

such that .w0; t0/ 2Dı . We have W � UD . For
every w 2W there exist unique real numbers �˙.w/ such that .w; �˙.w// 2 @˙Dı .
From Lemma 4.40 we conclude

�˙.w/ 2 .�˙.w0/� �; �˙.w0/C �/ for w 2W:

We have ��.w0/� t0� �C.w0/. From aC�a�D �=2 we conclude t0�aCC�=2��D

a�C �� � and t0 � a�� �=2C �D aC� �C �. We estimate

��.w/� � < ��.w0/C �� � � t0C �� � � a�I

�C.w/C � > �C.w0/� �C � � t0� �C � � aC:

This implies W �Œa�; aC� � ˆ.��;�/D
ı which contradicts the definition of Wn in

Definition 4.39. This proves (4.46).

We give now the proof of (i). Assume that there is D 2 Dgood
W

, t0 2 .R
W
� ;R

W
C / and

w0 2W such that .w0; t0/ 2Dı . Because �D �=5< �=5< �=2 we conclude from
(4.46) that either t0 < a� or t0 > aC . We treat the first case, in the second case
there is an analogous argument. There is �C � 0 such that .w0; t0C �C/ 2 @CDı . If
t0C�C> a� , then .w0; a�/2Dı , that is, a� 2J

good
W

. Since this contradicts (4.46) we
conclude t0C�C�a� . Clearly t0C�C 2J

good;C
W

and b�C˛C��RW
� < t0� t0C�C .

But this contradicts the construction of RW
� in Definition 4.44. This proves (i).
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Next we prove (ii). First we treat the case RW
� D b�C ˛C � . Since 2� D 2�=5 <

2�=5< � , ır;n < � and 2˛C 3� < b D a�� b� we conclude

RW
� C˛Cır;nC2� D b�C2˛C�Cır;nC2� < b�C2˛C3� < b�Cb D a� �RW

C :

The case RW
C D bC�˛� � can be treated similarly. Therefore we may assume now

RW
� ¤b�C˛C� and RW

C ¤bC�˛�� . From the construction of RW
˙

we conclude then
that there are t˙ 2 J

good;�
W

, such that RW
� � � < t� �RW

� and RW
C � tC <RW

C C �.
Clearly t� �RW

� � a� < aC �RW
C � tC . Thus tC� t� > 0. By Lemma 4.43

tC� t� 62 Œ�� ır;n�1C �; ˛C ır;n�1� ��:

On the other hand (4.46) implies t� < a� � �=2C � and tC > aCC �=2� �. Using
aC � a� D �=2, 2�D 2�=5 < 2�=5 < �=2 and ır;n�1 � �D ır;nC�� � > ır;n � 0

we estimate

tC � t� > .aCC �=2� �/� .a� � �=2C �/ D 3�=2� 2� > � > �� ır;n�1C �:

Therefore tC� t� > ˛C ır;n�1� �D ˛C ır;nC�� �. This implies t�C˛C ır;n <

tCC ���. Using this and 5�D � we compute

RW
� C˛C ır;nC 2� < t�C˛C ır;nC 3�

< tC��C 4� < RW
C ��C 5� D RW

C :

We can now give the construction of aW
˙

for W 2Wn . If RW
� > b�C˛C � then we

set aW
� WDRW

� C �. Otherwise RW
� D b�C ˛C � and we will use the fact that we

arranged b D a�� b� to be very large. It follows from Lemmas 4.42 and 4.45 (i) and
a� � RW

C that J @
W
\ ŒRW

� ; a�� is contained in the union of 2M intervals of length
2�. Using ır;nC � < ır;nC�D ır;n�1 < � we estimate

a�� .b�C˛C �/ D b� .˛C �/ D 4M.˛C 2�/C 2.˛C �/

> .2M C 1/.2˛C 2�/ > .2M C 1/.2˛C 2�C 2ır;n/:

If from an interval I of length strictly larger than L, we take out 2M or less intervals,
each of which has length less than or equal to l , then the remaining set contains an
interval of length zl WD .L� 2M l/=.2M C 1/. The center of such an interval, will
have distance zl=2 from all points in the 2M intervals and from the boundary of I .
Therefore we find aW

� 2 Œ.b�C˛C �/C .˛C ır;n/; a�� .˛C ır;n/� such that

(4.47) jaW
� � t j> ˛C ır;n for all t 2 J @W :

This finishes the construction of aW
� . To construct aW

C we proceed similarly. If
RW
C < bC�˛�� then we set aW

C WDRW
C ��. Otherwise RW

C D bC�˛�� and there
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is aW
C 2 ŒaCC .˛C ır;n/; .bC�˛C �/� .˛C ır;n/� such that

(4.48) jaW
C � t j> ˛C ır;n for all t 2 J @W :

This finishes the construction of aW
C . We can arrange that aW

˙
D a

gW
˙

for g 2GB� .

For W 2Wn let now DW WD B�. SW I a
W
� ; a

W
C /D

SW �ŒaW
� ; a

W
C �.

Lemma 4.49 Let W 2Wn .

(i) ˆ.�˛��;˛C�/.D
W /� B� ;

(ii) If x lies in the open bottom or open top of DW then

ˆŒ�˛�ır;n;��Cır;n�[Œ��ır;n;˛Cır;n�.x/

does not intersect the open bottom or top of a box D 2Dn�1 ;

(iii) lDW D aW
C � aW

� > ˛C ır;n ;

(iv) W �Œa�; aC��ˆ.��;�/.D
W /ı ;

(v) jfD 2Dn�1 jDı\ .DW /ı ¤∅gj �M .

Proof (i) By construction b�C˛C � < aW
� < aW

C < bC�˛� � and (4.34) implies
SW � SB� .

(ii) We consider the open bottom first. Let w 2 W and x D .w; aW
� /. By (i)

ˆŒ�˛�ır;n;��Cır;n�[Œ��ır;n;˛Cır;n�.x/ is contained in B� and can therefore only inter-
sect boxes from DW . The claim follows thus if jaW

� � t j 62 Œ�� ır;n; ˛C ır;n� for all
t 2 J @

W
. If RW

� D b�C ˛C � then (4.47) holds and implies our claim. Otherwise
aW
� DRW

� C � and there is t0 2 J
good;C
W

\ ŒRW
� � �;R

W
� � by the construction of RW

�

in Definition 4.44. Now Lemma 4.43 implies our claim since ır;n�1 � ır;n D � >

3�=5D 3�. The open top can be treated completely analogously.

(iii) Clearly aW
C � aW

� is the length of DW . By construction aW
� � a�C � < aC

and aW
C � aC� � > a� since aC� a� D aD �=2> �=5D �. If RW

� D b�C˛C � ,
then by construction aW

� � a�� .˛C ır;n/ and our claim follows. Similarly the claim
follows if RW

C D bC�˛� � . Thus we are left with the case aW
˙
DRW

˙
� � and the

claim follows from Lemma 4.45 (ii).

(iv) As noted above the construction of aW
˙

implies that aW
� ���a� and aW

C C��aC .
The claim follows therefore from � < � .

(v) Because .DW /ı �W �.b�; bC/,

fD 2Dn�1
jDı\ .DW /ı ¤∅g D fD 2DW jD

ı
\ .DW /ı ¤∅g:
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By construction RW
� < aW

� < aW
C < RW

C . Thus Lemma 4.45 (i) and Lemma 4.42
imply

jfD 2DW jD
ı
\ .DW /ı ¤∅gj D jfD 2Dbad

W jD
ı
\ .DW /ı ¤∅gj �M:

We now define
Dn
WDDn�1

[fgDW
jW 2Wn;g 2Gg:

It remains to check that Dn is a ır;n –good box cover of K„ [GK
.n/

�
. Recall the

induction hypothesis that Dn�1 is a ır;n�1 –good box cover of K„[GK
.n�1/

�
.

We begin with showing that Dn is ır;n –overlong. So we have to show for every
x 2 X which lies on the open bottom or open top of a box D1 in Dn , that the set
ˆŒ�˛�ır;n;��Cır;n�[Œ��ır;n;˛Cır;n�.x/ does not intersect the open bottom or the open
top of any box D2 in Dn .

If D1 and D2 lie in Dn�1 , this follows from the induction hypothesis.

Suppose that D1 62 Dn�1 and D2 2 Dn�1 . Then we can assume without loss of
generality that D1 DDW for some W 2Wn since Dn�1 is G –invariant. The claim
follows then from Lemma 4.49 (ii).

The case D1 2Dn�1 and D2 …Dn�1 is treated analogously.

If D1 DD2 and D1 62Dn�1 , then the claim follows from Lemma 4.49 (i) and (iii).

If D1 6DD2 and D1;D2 62Dn�1 , the claim follows from (4.32) and Lemma 4.49 (i)
since B� is a F in–subset of X . Hence Dn is ır;n –overlong.

We conclude from Lemma 4.49 (i) and (iii) that Dn satisfies (4.3).

We derive the inclusion K„[GK
.n/

�
�
S

D2Dnˆ.��;�/.D
ı/ from Definition 4.39 and

Lemma 4.49 (iv). (The set K
.n/

�
was defined before Lemma 4.38.)

By (4.32) the DW are mutually disjoint. Therefore Lemma 4.49 (v) implies that (4.4)
holds for Dn .

It is clear that (4.5) and (4.6) hold for Dn .

Next we prove property (4.7). Because of the induction hypothesis it suffices to prove the
assertion for the boxes gDW for g2G and W 2Wn , where DW D B�. SW I a

W
� ; a

W
C /.

From Lemma 4.49 (i) we conclude ˆŒ�˛��;˛C��.DW /�B�.W /. Since SW is a F in–
subset of SB� with respect to the GB� –action by (4.34) and B is a F in–subset of the
G –space X , ˆŒ�˛��;˛C��.DW / is a F in–subset of the G –space X .
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Finally we show that elements in D.n/ are not huge. For g 2G and W 2Wn the box
gDW can be obtained by restriction from Bg� and is therefore not huge; compare
Definition 4.10 and the subsequent comment.

We have shown that Dn is the required ır;n –good box cover of K„ [GK
.n/

�
. This

finishes the proof of Lemma 4.38.

As was noted before, Proposition 4.1 follows from Lemma 4.13 which follows from
Lemma 4.38. The proof of Proposition 4.1 is therefore now completed.

5 Construction of long VCyc–covers of X

At the end of this section we will give the proof of Theorem 1.4. Throughout this
section we will work in the situation of Convention 1.3. In order to construct the long
and thin cover of X we need to discuss covers of X R and X� �X R .

Lemma 5.1 There exists a collection UX R of open F in–subsets of X such that
GnUX R is finite, X R �

S
U2U

XR
U and dim.UX R/ <1.

Proof Because the action of G on X is proper there is for x 2 X R an open F in–
neighborhood Wx of x . Because the action of G on X is cocompact and X R is
closed, there is a finite subset ƒ � X R such that X R �

S
g2G

S
�2ƒ gW� . Let

UX R D fgW� j g 2G; � 2ƒg. Because the W� are F in–sets we have gW� ¤W�)

gW�\W� D∅. Therefore dim.UX R/� jƒj � 1.

Lemma 5.2 Fix  > 0. Let L� be the set of orbits L D ˆR.x/ in X whose G–
period satisfies 0< perG

ˆ
.L/�  . Then there exists a collection U D fUL jL 2L� g

of open VCyc–subsets UL of the G–space X such that L � UL for L 2 L and
dimU D 0.

Proof By assumption we can find finitely many pairwise distinct elements L1 , L2 ,
: : :, Lr in L� such that L� DG �fL1;L2; : : : ;Lr g. We can arrange that Lj Dg�Lk

for some g 2G implies j D k . Since the GLj –action on Lj is proper and cocompact
and Lj is homeomorphic to R or S1 , the group GLj is virtually cyclic. (A group
that acts cocompact and properly on R has two ends and is therefore virtually cyclic
[5, Theorem I.8.32(2)].) We can choose compact subsets Kj �Lj with Lj DGLj �Kj

and GnGLj closed.

Since GnX is compact and GnGLj \GnGLk ¤∅) j D k holds, we can find open
subsets V 0

1
;V 0

2
; : : : ;V 0r in GnX such that GnGLj � V 0j and V 0j \V 0

k
6D∅) j D k
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holds. Let Vj be the preimage of V 0j under the projection X !GnX . Then Vj is a
G –invariant open neighborhood of Lj and Vj \Vk 6D∅) j D k .

Fix j 2 f1; 2; : : : rg. Since the G –action on X is proper, we can find an open neigh-
borhood W 0j of Kj and a finite subset S �G such that W 0j \gW 0j ¤∅) g 2 S . Let
S0 � S be the subset consisting of those elements g 2 S for which Kj \gKj D∅.
Since Kj is compact, we can find for s 2 S0 an open neighborhood W 00s of Kj such
that W 00s \ sW 00s D ∅. Put U 0j WD W 0j \

T
s2S0

W 00s . Then U 0j is an open neighbor-
hood of Kj such that U 0j \ gU 0j 6D ∅ implies Kj \ gKj ¤ ∅. Put Uj D GLj �U

0
j .

Then Uj is a GLj –invariant open subset containing Lj D GLjKj . Next we prove
gUj \Uj 6D∅) g 2GLj . Suppose for g 2G that gUj \Uj 6D∅. Then we can find
g0;g1 2GLj such that gg0U 0j \g1Uj 6D∅. This implies g�1

1
gg0Kj \Kj 6D∅. We

conclude g�1
1

gg0Lj\Lj 6D∅ and hence g�1
1

gg2LjDLj . This shows g�1
1

gg02GLj

and thus g 2 GLj . Hence Uj is an open VCyc–subset of the G–space X such that
GUj DGLj and Lj � Uj .

Define for any element L 2 L�

UL D g � .Vj \Uj / for g 2G with LD gLj :

This is independent of the choice of g and j and UL is a VCyc–subset of the G–
space X with GUL

DGL since .Vj \Uj / is a VCyc–subset of the G –space X with
GVj\Uj DGLj . We have by construction

UL1
\UL2

6D∅)L1 DL2:

Finally we can give the proof of Theorem 1.4.

Proof Let ˛ > 0 be given. Choose � such that 0< � < ˛ . Let M DM.kG ; dX / and
 D  .4˛; �;M / > 0 be as in Proposition 4.1.

Let UX R be the collection of open F in–sets from Lemma 5.1 and U be the collection
of open VCyc–sets from Lemma 5.2. Note that dim.UX R [U /D dim.UX R/C 1 is
finite and does not depend on ˛ , but only on an arbitrarily small neighborhood of X R

as a G –space.

Put S D fx 2X j 9U 2 U [UX R such that ˆŒ�˛;˛�.x/� U g:

Note that S is G–invariant, because U and UX R are. Consider x 2 S . Choose
Ux 2 U [UX R with ˆŒ�˛;˛�.x/� U . Since fxg�Œ�˛; ˛� is compact and contained
in ˆ�1.Ux/, we can find an open neighborhood Vx of x such that Vx � Œ�˛; ˛� �

ˆ�1.Ux/. This implies Vx � S . Hence S is an open G –invariant subset of X which
contains X� .
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Let K be the closure of the complement of S in X . Since GnX is compact K �X

is a cocompact G–invariant subset which does not meet X� . Hence we can apply
Proposition 4.1 to K with respect to 4˛ instead of ˛ and � with 0 < � < ˛ . Recall
that M DM.kG ; dX / and  D  .M; 4˛; �/ are the numbers appearing in Proposition
4.1. So we get a collection of boxes D with the properties described in Proposition 4.1.
Put

UK D fˆ.�˛��;C˛C�/D
ı
jD 2Dg:

Then for x 2K there is U 2 UK such that ˆŒ�˛;˛�.x/� U and every element in UK

is an open F in–subset of X .

Next we show dim.UK / � 2M C 1. Consider pairwise disjoint elements D1 , D2 ,
: : :, D2MC3 of D . We have to show that

T2MC3
kD1 ˆ.�˛��;˛C�/.D

ı
k
/D∅: Suppose

the contrary, ie, there exist x 2 X such that x 2 ˆ.�˛��;˛C�/.D
ı
k
/ holds for k D

1; 2; : : : ; .2M C 3/. Obviously x 2ˆ.�˛��;˛C�/.D
ı
k
/ implies that ˆ2˛.x/ 2Dı

k
or

ˆ�2˛.x/ 2Dı
k

since � < ˛ and for every y 2X the set ˆŒ0;4˛�.y/ can not intersect
both the open bottom and the open top of Dk . Hence we can find .M C 2/ pairwise
distinct elements k1; k2; : : : ; kMC2 � f1; 2; : : : ; 2M C 3g such that ˆ2˛.x/ 2 Dıkj
holds for j D1; 2; : : : ;MC2 or that ˆ�2˛.x/2Dı

kj
holds for j D1; 2; : : : ;MC2. In

both cases we get a contradiction to dim.fDı jD 2Dg/�M . This shows dim.UK /�

2M C 1. Note that this bound depends only on kG and dX and is independent of ˛ .
Because

dim.UK [U [UX R/ � dim.UK /C dim.U [UX R/C 1

this implies that the dimension of

U WD UK [U [UX R

is bounded by a number that depends only on kG , dX and the G –action on an arbitrary
small neighborhood of X R . Thus U is the required VCyc–cover of X . This finishes
the proof of Theorem 1.4.

Remark 5.3 In Convention 1.3 we assumed that the number of closed orbits, which
are not stationary and whose period is � C , of the flow induced on GnX is finite
for every C > 0. This assumption can be replace with the following less restrictive
assumption.

There is a number N such that for every  > 0 there is a G–invariant
collection U of open VCyc–subsets of X such that for each x 2 X�
there is U 2 U such that ˆŒ�; � � U , dim.U/�N and GnU is finite.

The proof of Theorem 1.4 given above clearly also works under this less restrictive
assumption. This might be useful in nonpositively curved situations.
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6 Mineyev’s flow space

6.1 Hyperbolic complexes, double difference and Gromov product

We collect some basic concepts such as hyperbolic complexes, double difference and
Gromov product which are all taken from the paper by Mineyev [14] and which we
will need for our purposes.

A simplicial complex is called uniformly locally finite if there exists a number N such
that any element in the 0–skeleton X0 occurs as vertex of at most N simplices.

Let X be a simplicial complex. Given any metric d on its 0–skeleton, one can extend
it to a metric zd on X as follows. Given points uk for k D 1; 2 in X , we can find
vertices xk Œ0�, xk Œ1�, xk Œnk � such that uk belongs to the simplex with vertices xk Œ0�,
xk Œ1�, : : :, xk Œnk �. There are unique numbers ˛k Œ0�, ˛k Œ1�, : : :, ˛k Œnk � in Œ0; 1� withPnk

ikD0
˛k Œik �D 1 such that uk is given by

Pnk

ikD0
˛k Œik � �xk Œnk �. Then define

zd.u1;u2/ D

n1X
i1D0

n2X
i2D0

˛1Œi1� �˛2Œi2� � d.x1Œi1�;x2Œi2�/:

This is a well-defined metric extending d such that each simplex with the metric
induced by zd is homeomorphic to the standard simplex.

Given a connected simplicial complex, define a metric d0 on its 0–skeleton by defining
d0.x;y/ as the minimum of the numbers n� 0 such that there is a sequence of vertices
x D x0 , x1 , : : :, xn D y with the property that xi and xiC1 are joint by an edge for
i D 0; 1; : : : ; n� 1. The word metric dword on a connected simplicial complex X is
the metric zd0 .

A metric complex .X; d/ is a connected uniformly locally finite simplicial complex
X equipped with its word metric d D dword . A hyperbolic complex X is a metric
complex .X; d/ such that .X; d/ is ı–hyperbolic in the sense of Gromov for some
ı > 0 (see Gromov [10] and Bridson, Haefliger and Buch [5, Definition III.H.1.1]).
Let @X be the boundary and xX DX [ @X be the compactification of the hyperbolic
complex X in the sense of Gromov [10; 5, III.H.3].

Mineyev [14, 6.1] constructs for a hyperbolic metric complex .X; d/ a new metric
yD with certain properties (see [14, Lemma 2.7 on page 449 and Theorem 32 on page

446]). For instance yD is quasi-isometric to the word metric dword . For a simplicial map
f W X!X the following conditions are equivalent: (i) f is a simplicial automorphism,
(ii) f is a simplicial automorphism preserving the word metric dword , (iii) f is a
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simplicial automorphism preserving the metric yD . Define for a; a0; b; b0 2 X the
double difference to be the real number

ha; a0jb; b0i WD
1

2
�

�
yD.a; b/C yD.a0; b0/� yD.a0; b/� yD.a; b0/

�
:(6.1)

Recall that the Gromov product for a; b; c 2X is defined to be the positive real number

hajbic WD
1

2
�

�
yD.a; c/C yD.b; c/� yD.a; b/

�
:(6.2)

Define the subset

S. xX / �
˚
.a; a0; b; b0/ 2 xX � xX � xX � xX

	
D xX 4

to consist of those quadruples .a; a0; b; b0/ satisfying

a; b 2 @X ) a 6D bI

a; b0 2 @X ) a0 6D bI

a0; b 2 @X ) a 6D b0I

a0; b0 2 @X ) a0 6D b0:

Let T . xX / WD f.a; b; c/ j xX � xX � xX j c 2 @X ) .a 6D c and b 6D c/g:

We equip S. xX / � xX 4 and T . xX / � xX 3 with the subspace topology. The following
result is a special case of [14, Theorem 35 on page 448 and Theorem 36 on page 452].
(We only need and want to consider the case where the double difference takes values
in R.)

Theorem 6.3 (Mineyev) Let .X; d/ be a hyperbolic complex. Then the double differ-
ence of (6.1) extends to a continuous function invariant under simplicial automorphisms
of X

h�;�j�;�iW S. xX /!R

satisfying

(i) ha; a0jb; b0i D hb; b0ja; a0i;

(ii) ha; a0jb; b0i D �ha0; ajb; b0i D �ha; a0jb0; bi;

(iii) ha; ajb; b0i D ha; a0jb; bi D 0;

(iv) ha; a0jb; b0iC ha0; a00jb; b0i D ha; a00jb; b0i;

(v) ha; bjc;xiC hc; ajb;xiC hb; cja;xi D 0;
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The Gromov product of (6.2) extends to a continuous function invariant under simplicial
automorphisms of X

h�j�i�W T . xX /! Œ0;1�

satisfying

(i) hajbic D1 , .c 2 @X / or .a; b 2 @X and aD b/;

(ii) ha; bjx;yi D hbjxia� hbjyia for a 2X and .a; b;x;y/ 2 S. xX /.

We will often use the rules appearing in Theorem 6.3 tacitly.

Another important ingredient will be the following result due to Mineyev [14, Proposi-
tion 38 on page 453].

Proposition 6.4 (Mineyev) Let .X; d/ be a hyperbolic complex. Then there exist
constants �2 .e�1; 1/ and T 2 Œ0;1/ depending only on X such that for all a; b; c;u2
xX satisfying

.a; c;u; b/ 2 S. xX /I

.b; c;u; a/ 2 S. xX /I

maxfha; cju; bi; hb; cju; aig � T;

.u; c; a; b/ 2 S. xX /Iwe have

jhu; cja; bij � �maxfha;cju;bi;hb;cju;aig:

6.2 Two auxiliary functions

In the sequel we will use the following two functions for ˛; ˇ 2 xR WDR
`
f�1;1g

with ˛ � ˇ .

�Œ˛;ˇ�W xR! Œ˛; ˇ�(6.5)

‚Œ˛;ˇ�W xR! Œ˛; ˇ�(6.6)

which are defined by

�Œ˛;ˇ�.t/ WD

8<:
˛ if �1� t � ˛I

t if ˛ � t � ˇI

ˇ if ˇ � t �1;

‚Œ˛;ˇ�.t/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�1 if �1D t D ˛;

˛C et�˛=2� et�ˇ=2 if �1� t � ˛;�1< ˛ <1I

t C e˛�t=2� et�ˇ=2 if ˛ � t � ˇ;�1< t <1I

ˇC e˛�t=2� eˇ�t=2 if ˇ � t �1;�1< ˇ <1I

1 if t D ˇ D1:
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Here and in the sequel we use the convention that for r; s 2R the expressions r C s ,
r � s and er are defined as usual and furthermore

r C1D1C r D1 for r 2RI
r �1D�1C r D�1 for r 2RI
e�1 D 0I

e1 D1I

j˙1j D1:

The function ‚Œ˛;ˇ� agrees with the function denoted by � 0Œ˛; ˇI �� in Mineyev [14,
Section 1.6]. We equip xR with the topology uniquely determined by the properties that
R� xR is an open subset, the subspace topology on R� xR is the standard topology
and a fundamental system for open neighborhoods of 1 is f.R;1/[f1g jR 2Rg
and of �1 is f.�1;R/[f�1g jR 2Rg.

The elementary proof of the following basic properties of ‚Œ˛;ˇ� is left to the reader.

Lemma 6.7 Suppose that ˛ < ˇ . Then:

(i) We have for t 2R

‚Œ˛;ˇ�.t/ D

Z 1
�1

�Œ˛;ˇ�.t C s/

2 � ejsj
ds D �Œ˛;ˇ�.t/C e�j˛�t j=2� e�jˇ�t j=2I

(ii) The restriction of ‚Œ˛;ˇ� to R is a homeomorphism R
Š
�! .˛; ˇ/ which is a

C 1 –function. Its first derivative is the continuous function

t 2R 7!

8<:
et�˛=2� et�ˇ=2 if �1< t � ˛I

1� e˛�t=2� et�ˇ=2 if ˛ � t � ˇI

�e˛�t=2C eˇ�t=2 if ˇ � t <1I

(iii) The function ‚Œ˛;ˇ� is strictly monotone increasing. The function �Œ˛;ˇ� is
monotone increasing;

(iv) The function ‚Œ˛;ˇ� is nonexpanding, ie, j‚Œ˛;ˇ�.t/�‚Œ˛;ˇ�.s/j � jt � sj for
t; s 2 xR. The same is true for �Œ˛;ˇ� ;

(v) The map ‚Œ˛;ˇ�W xR! Œ˛; ˇ� is a homeomorphism;

(vi) We have for t 2 xR and s 2R

�Œ˛Cs;ˇCs�.t C s/D �Œ˛;ˇ�.t/C sI

‚Œ˛Cs;ˇCs�.t C s/D‚Œ˛;ˇ�.t/C sI
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(vii) Consider ˛0; ˛1; ˇ0; ˇ1 2
xR such that ˛i � ˇi for i D 0; 1, .˛0D�1, ˛1D

�1/ and .ˇ0 D1, ˇ1 D1/ holds. Put

C WD

8̂̂<̂
:̂

maxfj˛1�˛0j; jˇ1�ˇ0jg if ˛0; ˛1; ˇ0; ˇ1 2RI
j˛1�˛0j if ˛0; ˛1;2R; ˇ0 D ˇ1 D1I

jˇ1�ˇ0j if ˛0 D ˛1 D�1; ˇ0; ˇ1;2RI
0 if ˛0 D ˛1 D�1; ˇ0 D ˇ1 D1:

Then we get for all t 2R thatˇ̌
�Œ˛1;ˇ1�.t/� �Œ˛0;ˇ0�.t/

ˇ̌
� C Iˇ̌

‚Œ˛1;ˇ1�.t/�‚Œ˛0;ˇ0�.t/
ˇ̌
� C I

(viii) If ˛ � t , then

‚Œ˛;ˇ�.t/�‚Œ�1;ˇ�.t/ D e˛�t=2:

If ˇ � t , then
‚Œ˛;1�.t/�‚Œ˛;ˇ�.t/ D et�ˇ=2I

(ix) Consider ˛; ˇ 2 xR with �1< ˛ < ˇ and t 2R.
If ‚Œ˛;ˇ�.t/ � .˛Cˇ/=2, then

t �minfˇ;‚Œ˛;ˇ�.t/C 1=2g:

If ‚Œ˛;ˇ�.t/ � .˛Cˇ/=2, then

t �maxf˛;‚Œ˛;ˇ�.t/� 1=2g:

6.3 The construction of the flow space

Let .X; d/ be a hyperbolic complex. We want to define the associated flow space, ie
a metric space FS.X / together with a flow, following Mineyev [14]. (It is the same
as the half open symmetric join �̀ xX constructed by Mineyev [14, Section 8.3].) The
underlying set is

(6.8) FS.X / WD
˚
.a; b; t/ 2 xX � xX � xR j .a 2 @X ) t 6D �1/

and .b 2 @X ) t 6D 1/ and .a; b 2 @X ) a 6D b/g =�;

where we identify .a; b;�1/ � .a; b0;�1/, .a; b;1/ � .a0; b;1/, and .a; a; t/ �
.a; a; t 0/. In the sequel we will denote for .a; b; t/ 2 xX � xX � xR which satisfies
a 2 @X ) t 6D �1, b 2 @X ) t 6D1 and a; b 2 @X ) a 6D b its class in FSX again
by .a; b; t/.
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From now on we fix a base point x0 2X . The metric on FS.X / will depend on this
choice.

Define the map

lx0
W X �FS.X / ! R(6.9)

.u; .a; b; t// 7! hajbiuC
ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� ha; bju;x0i

ˇ̌
:

It is easy to check that it is compatible with the equivalence relation appearing in the
definition of FS.X /.

Definition 6.10 Define a pseudometric on FS.X /

d�FS;x0
D d�FS.X /;x0

W FS.X /�FS.X /!R;

.a; b; t/; .c; d; s/ 7! sup
u2X

ˇ̌
lx0
.u; .a; b; t//� lx0

.u; .c; d; s//
ˇ̌
:

Recall that a pseudometric satisfies the same axioms as a metric except that the condition
d.x;y/D 0) xD y is dropped. The proof that this definition makes sense and yields
a pseudometric d�FS;x0

is given in Mineyev [14, Theorem 44 on page 459].

Lemma 6.11 The inclusion X ! FS.X /;x 7! .x;x; 0/ is an isometric embedding
with respect to the metric yD on X and the pseudometric d�FS;x0

on FS.X /.

Proof We compute for u 2X and x 2X and t 2 xR

lx0
.u; .x;x; t//D hxjxiuC

ˇ̌
�Œ�hxjx0ix ;hx;x0ix �.t/� hx;xju;x0i

ˇ̌
D yD.x;u/C

ˇ̌
�Œ0;0�.t/� 0

ˇ̌
D yD.u;x/:

Consider a; b 2X . Since by the triangle inequality j yD.u; a/� yD.u; b/j � yD.a; b/ and
j yD.b; a/� yD.b; b/j D yD.a; b/ holds, we conclude

d�FS;x0
..a; a; t/; .b; b; s//D sup

u2X

ˇ̌
lx0
.u; .a; a; t//� lx0

.u; .b; b; s//
ˇ̌

D sup
u2X

j yD.u; a/� yD.u; b/j

D yD.a; b/:

The canonical R–action on xR

�W R� xR; .�; t/ 7! �� .t/(6.12)
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is defined by �� .t/D tC� , if t 2R, �� .�1/D�1 and �� .1/D1. This R–action
on xR together with the trivial R–action on xX � xX yields an action of R on xX � xX � xR
which in turn induces an R–action

�W R�FS.X /! FS.X /; .�; .a; b; t// 7! .a; b; �� .t//:(6.13)

For a; b 2 xX we define the line .a; b/FS.X / to be the set of points f.a; b; t/ j t 2 Rg.
Obviously .a; b/FS.X / is a transitive free R–set if a¤ b .

Next we construct the desired metric from the pseudometric above.

Definition 6.14 Define a metric on FS.X /

dFS.X /;x0
W FS.X /�FS.X /!R;

.a; b; t/; .c; d; s/ 7!

Z
R

d�FS;x0
.�� .a; b; t/; �� .c; d; s//

2 � ej� j
d�:

Obviously dFS;x0
inherits from d�FS;x0

the properties of a pseudometric. The proof that
dFS;x0

is a metric can be found in [14, Theorem 14 on page 426 and Theorem 45 on
page 459].

Lemma 6.15 The inclusion X ! FS.X / is an isometric embedding with respect to
the metric yD on X and the metric dFS;x0

on FS.X /.

Proof We compute for u 2X and x 2X and t 2 xR using Lemma 6.11.

dFS;x0
..a; a; t/; .b; b; s//D

Z
R

d�FS;x0
.�� .a; a; t/; �� .b; b; s//

2 � ej� j
d�

D

Z
R

d�FS;x0
..a; a; t C �/; .b; b; sC �//

2 � ej� j
d�

D

Z
R

yD.a; b/

2 � ej� j
d�

D yD.a; b/ �

Z
R

1

2 � ej� j
d�

D yD.a; b/:

In the sequel we will consider X as a subspace of FS.X / by the isometric embedding
appearing in Lemma 6.15.
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Let f W X ! X be an isometry, ie a bijection respecting the word metric d on X .
It extends uniquely to a homeomorphism xf W xX ! xX and induces an isometry with
respect to the metric dFS.X /;x0

FS.f /W FS.X /! FS.X /; .a; b; t/ 7! . xf .a/; xf .b/; t Cha; bjx0; f
�1.x0/i:

(Already d�FS;x0
is invariant under this map by a straight-forward calculation that uses

Lemma 6.7 (vi).) We have FS.g ıf /D FS.g/ ıFS.f / and FS.id/D id. In particular
a G –action on X by isometries with respect to the word metric extends to a G –action
on FS.X / by isometries with respect to the metric dFS.X /;x0

.

Next we compute the pseudometric d�FS and the metric dFS on a line.

Lemma 6.16 We get for .a; b; t/; .a; b; s/ 2 FS.X / and a given base point x0 2X

d�FS;x0
..a; b; t/; .a; b; s//D

ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� �Œ�hbjx0ia;hajx0ib �.s/

ˇ̌
I

dFS;x0
..a; b; t/; .a; b; s//D

ˇ̌
‚Œ�hbjx0ia;hajx0ib �.t/�‚Œ�hbjx0ia;hajx0ib �.s/

ˇ̌
:

Proof We have

d�FS;x0
..a; b; t/; .a; b; s//

D sup
u2X

ˇ̌
lx0
.u; .a; b; t//� lx0

.u; .a; b; s//
ˇ̌

D sup
u2X

ˇ̌�
hajbiuC

ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� ha; bju;x0i

ˇ̌�
�
�
hajbiuC

ˇ̌
�Œ�hbjx0ia;hajx0ib �.s/� ha; bju;x0i

ˇ̌�ˇ̌
D sup

u2X

ˇ̌ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� ha; bju;x0i

ˇ̌
�
ˇ̌
�Œ�hbjx0ia;hajx0ib �.s/� ha; bju;x0i

ˇ̌ˇ̌
:

We conclude from the triangle inequalityˇ̌ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� ha; bju;x0i

ˇ̌
�
ˇ̌
�Œ�hbjx0ia;hajx0ib �.s/� ha; bju;x0i

ˇ̌ˇ̌
�
ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� ha; bju;x0i �

�
�Œ�hbjx0ia;hajx0ib �.s/� ha; bju;x0i

�ˇ̌
�
ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� �Œ�hbjx0ia;hajx0ib �.s/

ˇ̌
;

and we get for uD aˇ̌ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� ha; bja;x0i

ˇ̌
�
ˇ̌
�Œ�hbjx0ia;hajx0ib �.s/� ha; bja;x0i

ˇ̌ˇ̌
D
ˇ̌ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� .�hbjx0ia/

ˇ̌
�
ˇ̌
�Œ�hbjx0ia;hajx0ib �.s/� .�hbjx0ia/

ˇ̌ˇ̌
D
ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� �Œ�hbjx0ia;hajx0ib �.s/

ˇ̌
:

This implies

d�FS;x0
..a; b; t/; .a; b; s//D

ˇ̌
�Œ�hbjx0ia;hajx0ib �.t/� �Œ�hbjx0ia;hajx0ib �.s/

ˇ̌
:
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We prove the claim for dFS;x0
only in the case t � s , the case t � s is analogous. Then

tC� � sC� holds for all � 2R. Since both �Œ�hbjx0ia;hajx0ib � and ‚Œ�hbjx0ia;hajx0ib �

are monotone increasing, we conclude for all � 2R,

�Œ�hbjx0ia;hajx0ib �.t C �/� �Œ�hbjx0ia;hajx0ib �.sC �/

D
ˇ̌
�Œ�hbjx0ia;hajx0ib �.t C �/� �Œ�hbjx0ia;hajx0ib �.sC �/

ˇ̌
I

‚Œ�hbjx0ia;hajx0ib �.t C �/�‚Œ�hbjx0ia;hajx0ib �.sC �/

D
ˇ̌
‚Œ�hbjx0ia;hajx0ib �.t C �/�‚Œ�hbjx0ia;hajx0ib �.sC �/

ˇ̌
:

Now we get

dFS;x0
..a; b; t/; .a; b; s//

D

Z
R

d�FS;x0
.�� ..a; b; t//; �� .a; b; s//

2 � ej� j
d�

D

Z
R

d�FS;x0
..a; b; t C �//; .a; b; sC �//

2 � ej� j
d�

D

Z
R

ˇ̌
�Œ�hbjx0ia;hajx0ib �.t C �/� �Œ�hbjx0ia;hajx0ib �.sC �/

ˇ̌
2 � ej� j

d�

D

Z
R

�Œ�hbjx0ia;hajx0ib �.t C �/� �Œ�hbjx0ia;hajx0ib �.sC �/

2 � ej� j
d�

D

Z
R

�Œ�hbjx0ia;hajx0ib �.t C �/

2 � ej� j
d� �

Z
R

�Œ�hbjx0ia;hajx0ib �.sC �/

2 � ej� j
d�

D‚Œ�hbjx0ia;hajx0ib �.t/�‚Œ�hbjx0ia;hajx0ib �.s/

D
ˇ̌
‚Œ�hbjx0ia;hajx0ib �.t/�‚Œ�hbjx0ia;hajx0ib �.s/

ˇ̌
:

This finishes the proof of Lemma 6.16.

Remark 6.17 We have fixed a base point x0 2X . For a different base point x1 2X

there is a canonical isometry .FS.X /; dFS;x0
/! .FS.X /; dFS;x1

/ defined by .a; b; t/ 7!
.a; b; t Cha; bjx0;x1i/. (Of course this isometry appeared already when we defined
FS.f / for an isometry f W X ! X .) Using these isometries and a colimit over all
choices of base points it is possible to give a canonical construction of the metric space
FS.X / without choosing a base point. However, then we do no longer have canonical
coordinates in FS.X /, ie to make sense out of .a; b; t/ 2 FS.X / we would still need
to pick a base point. Since the base-point free formulation is not directly relevant for
our applications, we do not give any details here.

Remark 6.18 As pointed out before, FS.X / and �̀ xX agree as topological spaces. But
it should be noted that the construction of the metric dFS;x0

on FS.X / differs slightly
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from the metric d� constructed by Mineyev on �̀ xX . The definitions of lx0
in (6.9) and

of l.u;x/ in [14, Definition 10 on page 422] do not quite agree. There Mineyev uses
a different parametrization to the effect that his formula translates to replacing � by
‚ in (6.9). (The point ŒŒa; bI s��x0

2 �̀ xX corresponds to .a; b; ‚Œ�hbjx0ia;hajx0ib �.s//

in our parametrization, because ŒŒa; bI s��0x0
D ŒŒa; bI‚Œ�hbjx0ia;hajx0ib �.s/��x0

is used in
[14, Section 2.3] to identify the models ı�X and x0

ı�X .) However, this difference is not
important. All results of [14] that we will use are also valid with this minor variation.
Moreover we remark that since j�Œ�hbjx0ia;hajx0ib �.t/�‚Œ�hbjx0ia;hajx0ib �.t/j�1 for all
t 2R, it is easy to check that the identification of FS.X / and � xX is a quasi-isometry
with respect to dFS;x0

and d� .

7 Flow estimates

In this section we prove the main exponential flow estimate for FS.X /. Recall that we
have fixed a base point x0 2X .

Theorem 7.1 (Exponential flow estimate) Let � 2 .e�1; 1/ and T 2 Œ0;1/ be the
constants depending only on X which appear in Proposition 6.4. Consider a; b; c 2 xX

such that a; c 2 @X ) a 6D c and b; c 2 @X ) b 6D c holds. Let t; s; � 2R. Put

�0 D t � s� ha; bjc;x0iI

N D 2C
2

�T � .� ln.�//
:

Then we get

dFS;x0
.�� .a; c; t/; ��C�0

.b; c; s// �
N

1� ln.�/2
��.t�ha;cjb;x0i/ ��� :

For the sphere bundle of the universal cover of a strictly negatively curved manifold
estimates as above are classical results and have been used in algebraic K–theory by
Farrell and Jones [7]. Compare also the work of Bartels, Farrell, Jones and Reich [2,
Proposition 14.2]. There only c 2 @X is considered and �0 is chosen to ensure that
�� .a; c; t/ and ��C�0

.b; c; s/ both lie on the same horosphere around c .

As mentioned in the introduction, the proof of Theorem 7.1 is strongly based on ideas
due to Mineyev [14, Theorem 57 on page 468].

We also will use the following basic flow estimate.

Lemma 7.2 We get for .a; b; t/; .c; d; s/ 2 FS.X / and � 2R,

dFS;x0
.�� .a; b; t/; �� .c; d; s// � ej� j � dFS;x0

..a; b; t/; .c; d; s//:
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Proof We compute

dFS;x0
.�� .a; b; t/; �� .c; d; s//

D

Z
R

d�FS;x0
.�� .�� .a; b; t//; �� .�� .c; d; s///

2 � ej� j
d�

D

Z
R

d�FS;x0
.��C� .a; b; t/; ��C� .c; d; s//

2 � ej� j
d�

D

Z
R

d�FS;x0
.�� .a; b; t/; �� .c; d; s//

2 � ej��� j
d�

�

Z
R

d�FS;x0
.�� .a; b; t/; �� .c; d; s//

2 � ej� j�j� j
d�

� ej� j �

Z
R

d�FS;x0
.�� .a; b; t/; �� .c; d; s//

2 � ej� j
d�

D ej� j � dFS;x0
..a; b; t/; .c; d; s//:

We record the following result due to Mineyev[14, Proposition 48 on page 460].

Theorem 7.3 The map�
xX � xX ��. xX /

�
�R

Š
�! FS.X /�X; ..a; b/; t/ 7! .a; b; t/

is a homeomorphism, where �. xX /� xX � xX is the diagonal.

7.1 Flow estimates for the pseudo metric

The goal of this subsection is to prove the version of Theorem 7.1 for the pseudometric
d�FS;x0

.

Theorem 7.4 Let � 2 .e�1; 1/ and T 2 Œ0;1/ be the constants depending only on X

which appear in Proposition 6.4. Consider a; b; c 2 xX such that a; c 2 @X ) a 6D c

and b; c 2 @X ) b 6D c holds. Let t; s; � 2R. Put

�0 D t � s� ha; bjc;x0iI

N D 2C
2

�T � .� ln.�//
:

Then we get

(7.5) d�FS;x0
.�� .a; c; t/; ��C�0

.b; c; s// � N ��tC��ha;cjb;x0i:
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Its proof needs some preparations and is then done in several steps.

We begin with the trivial case aD b .

Lemma 7.6 Consider the situation appearing in Theorem 7.4. If a D b then (7.5)
holds.

Proof Since

�0 D t � s� ha; bjc;x0i D t � s� ha; ajc;x0i D t � s;

we get for all � 2R

�� .a; c; t/ D .a; c; t C �/D .b; c; sC � C �0/ D ��C�0
.b; c; s/

and hence
d�FS;x0

.�� .a; c; t/; ��C�0
.b; c; s// D 0:

So we can make in the sequel the additional assumption that a 6D b . This has the
advantage that the expressions ha; cjb;x0i, hb; cja;x0i, ha; cju; bi and hb; cju; ai for
u 2X which will appear below are well defined elements in R.

Lemma 7.7 Define �; �0; a; b; c;x0 as in Theorem 7.4. Suppose that a; b 2 @X )

a 6D b . Then:

(i) We have

hajx0ic � ha; cjb;x0i D hbjx0ic � hb; cja;x0i D hajbic I

t C � � ha; cjb;x0i D sC � C �0� hb; cja;x0iI

hajx0ic � .t C �/D hbjx0ic � .sC � C �0/I

�hcjx0ia� ha; cjb;x0i D �hcjbiaI

�hcjx0ib � hb; cja;x0i D �hcjaibI

maxfha; cju; bi; hb; cju; aig � hajx0ic � ha; cjb;x0i for u 2X I

(ii) If t C � � �hcjx0iaI

sC � C �0 � �hcjx0ib;

then �Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i

D �Œ�hcjx0ib;hbjx0ic �.sC �0C �/� hb; cja;x0iI
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(iii) If we assume

t C � � �hcjx0iaI

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i<maxfha; cju; bi; hb; cju; aig;

then �Œ�hcjx0ia;hajx0ic �.t C �/D t C �:

Proof (i) Notice for the sequel that haja0ic D1 if c 2 @X . Hence the first equality,
the third equality and the last inequality are true for trivial reasons if c 2 @X .

We compute for c 2X

hajx0ic � ha; cjb;x0i D hajx0ic Chc; ajb;x0i

D hajx0ic C .hajbic � hajx0ic/

D hajbic ;

and analogously

hbjx0ic � hb; cja;x0i D hbjaic D hajbic :

This proves the first equation.

The second follows from

sC � C �0�hb; cja;x0i

D sC � C t � s� ha; bjc;x0i � hb; cja;x0i

D � C t � ha; bjc;x0i � hb; cja;x0i � hc; ajb;x0iC hc; ajb;x0i

D � C t � ha; cjb;x0i:

The third equation is a direct consequence of the first two if c 2X , and hence true for
all c 2 xX .

The proof of the fourth and fifth equation is analogous to the one of the first one.

Since for c 2X

ha; cju; bi D hc; ajb;ui D hajbic � hajuic � hajbic

hb; cju; ai D hc; bja;ui D hbjaic � hbjuic � hbjaic D hajbicand

holds, the last inequality follows from the first equality.

(ii) We begin with the case t C � � hajx0ic . Then we get from the third equation of
assertion (i) that also sC � C �0 � hbjx0ic holds. We conclude from the definitions
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and the first equation of assertion (i)

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i D hajx0ic � ha; cjb;x0i

D hbjx0ic � hb; cja;x0i

D �Œ�hcjx0ib;hbjx0ic �.sC �0C �/� hb; cja;x0i:

Next we treat the case t C � � hajx0ic . Then we get from the third equation of
assertion (i) that also sC�C�0�hbjx0ic holds. Since by assumption tC� ��hcjx0ia

and sC � C �0 � �hcjx0ib holds, we conclude from the definitions and the second
equation of assertion (i)

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i D t C � � ha; cjb;x0i

D sC � C �0� hb; cja;x0i

D �Œ�hcjx0ib;hbjx0ic �.sC �0C �/� hb; cja;x0i:

(iii) Since the inequality in assertion (i) implies

�Œ�hcjx0ia;hajx0ic �.t C �/ <maxfha; cju; bi; hb; cju; aigC ha; cjb;x0i

� hajx0ic ;

we get t C � < hajx0ic . Since we assume �hcjx0ia � t C � , we conclude

�Œ�hcjx0ia;hajx0ic �.t C �/D t C �:

This finishes the proof of Lemma 7.7.

The elementary proof of the next lemma is left to the reader.

Lemma 7.8 Consider numbers � 2 .e�1; 1/ and T 2 Œ0;1/. Put

N WD 2C
2

�T � .� ln.�//
:

Then we get
2 � N I

2 � .T � vC�v/ � N ��v for all v � T I

vCN ��v�w � N ���w for 0� v � w:

Lemma 7.9 Consider the situation appearing in Theorem 7.4. Suppose that a; b 2

@X ) a 6D b . Suppose that

t C � � �hcjx0iaI

sC � C �0 � �hcjx0ib:
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Then we get for all u 2Xˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
D
ˇ̌
hu; cja; biC

ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � ha; cju; bi

ˇ̌
�
ˇ̌
�Œ�hcjx0ia;ha;x0ic �.t C �/� ha; cjb;x0i � hb; cju; ai

ˇ̌ˇ̌
:

Proof We computeˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
D
ˇ̌
lx0
.u; .a; c; t C �//� lx0

.u; .b; c; sC � C �0//
ˇ̌

D
ˇ̌
hajciuC

ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cju;x0i

ˇ̌
� hbjciu

�
ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC �0C �/� hb; cju;x0i

ˇ̌ˇ̌
D jhcjaiu� hcjbiu

C
ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0iC ha; cjb;x0i � ha; cju;x0i

ˇ̌
�
ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC �0C �/� hb; cja;x0iC hb; cja;x0i � hb; cju;x0i

ˇ̌ˇ̌
D
ˇ̌
hu; cja; biC

ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � ha; cju; bi

ˇ̌
�
ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC �0C �/� hb; cja;x0i � hb; cju; ai

ˇ̌ˇ̌
:

Since we get from Lemma 7.7 (ii)

�Œ�hcjx0ia;hajx0ic �.tC �/�ha; cjb;x0i D �Œ�hcjx0ib;hbjx0ic �.sC �0C �/�hb; cja;x0i:

Lemma 7.9 follows.

Lemma 7.10 Consider the situation appearing in Theorem 7.4. Suppose that a; b 2

@X ) a 6D b . Suppose that

t C � � �hcjx0iaI

sC � C �0 � �hcjx0ib;

and �Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � maxfha; cju; bi; hb; cju; aig:

Then we get for all u 2Xˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
D 0:
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Proof We computeˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � ha; cju; bi

ˇ̌
�
ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � hb; cju; ai

ˇ̌
D
�
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � ha; cju; bi

�
�
�
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � hb; cju; ai

�
D�ha; cju; biC hb; cju; ai:

This implies together with Lemma 7.9

jlx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//j

D jhu; cja; bi � ha; cju; biC hb; cju; aij

D jhb; ajc;uiC ha; cjb;uiC hc; bja;uij

D 0:

Lemma 7.11 Consider the situation appearing in Theorem 7.4. Suppose that a; b 2

@X ) a 6D b . Suppose that

t C � � �hcjx0iaI

sC � C �0 � �hcjx0ib;

and that

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i<maxfha; cju; bi; hb; cju; aigI

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � T:

Then we get for all u 2Xˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
� 2 ��tC��ha;cjb;x0i:

Proof We get from Lemma 7.9

jlx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//j

D
ˇ̌
hu; cja; biC

ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � ha; cju; bi

ˇ̌
�
ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � hb; cju; ai

ˇ̌ˇ̌
� jhu; cja; bijC

ˇ̌�
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � ha; cju; bi

�
�
�
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � hb; cju; ai

�ˇ̌
D jhu; cja; bijC j�ha; cju; biC hb; cju; aij

D jhu; cja; bijC jhc; aju; biC ha;ujc; bij
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D jhu; cja; bijC jhu; cja; bij

D 2 � jhu; cja; bij :

Our assumptions imply maxfha; cju; bi; hb; cju; ag � T . We conclude from Proposi-
tion 6.4

jhu; cja; bij � �maxfha;cju;bi;hb;cju;aig:

Thus we get using Lemma 7.7 (iii)ˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
� 2 ��maxfha;cju;bi;hb;cju;aig

� 2 ���Œ�hcjx0ia;hajx0ic �
.tC�/�ha;cjb;x0i

D 2 ��tC��ha;cjb;x0i:

Lemma 7.12 Consider the situation appearing in Theorem 7.4. Suppose that a; b 2

@X ) a 6D b . Suppose that

t C � � �hcjx0iaI

sC � C �0 � �hcjx0ib;

and that

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i<maxfha; cju; bi; hb; cju; aigI

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i< T:

Then we get for all u 2Xˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
� N ��tC��ha;cjb;x0i:

Proof Since �Œ�hcjx0ia;hajx0ic � is monotone increasing and by Lemma 7.7 (i) and by
assumption

�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i<min fmaxfha; cju; bi; hb; cju; aig;T g I

maxfha; cju; bi; hb; cju; aig � hajx0ic � ha; cjb;x0i;

holds, we can choose � 0 2R satisfying

�Œ�hcjx0ia;hajx0ic �.t C �
0/� ha; cjb;x0i Dmin fmaxfha; cju; bi; hb; cju; aig;T g I

� � � 0:

In particular we have

t C � 0 � �hcjx0iaI

sC � 0C �0 � �hcjx0ib:
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Hence Lemma 7.10 and Lemma 7.11 implyˇ̌
lx0
.u; �� 0.a; c; t//� lx0

.u; �� 0C�0
.b; c; s//

ˇ̌
� 2 ��tC� 0�ha;cjb;x0i(7.13)

� 2 ��tC��ha;cjb;x0i:

We compute

jlx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//j(7.14)

D
ˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; �� 0.a; c; t//

C lx0
.u; �� 0.a; c; t//� lx0

.u; �� 0C�0
.b; c; s//

C lx0
.u; �� 0C�0

.b; c; s//� lx0
.u; ��C�0

.b; c; s//
ˇ̌

�
ˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; �� 0.a; c; t//
ˇ̌

C
ˇ̌
lx0
.u; �� 0.a; c; t//� lx0

.u; �� 0C�0
.b; c; s//

ˇ̌
C
ˇ̌
lx0
.u; �� 0C�0

.b; c; s//� lx0
.u; ��C�0

.b; c; s//
ˇ̌
:

We estimate using Lemma 7.7 (iii)

jlx0
.u; �� .a; c; t//� lx0

.u; �� 0.a; c; t//j(7.15)

D
ˇ̌�
hajciuC

ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cju;x0i

ˇ̌�
�
�
hajciuC

ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �

0/� ha; cju;x0i
ˇ̌�ˇ̌

D
ˇ̌ ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cju;x0i

ˇ̌
�
ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �

0/� ha; cju;x0i
ˇ̌ ˇ̌

�
ˇ̌
�Œ�hcjx0ia;hajx0ic �.t C �/� �Œ�hcjx0ia;hajx0ic �.t C �

0/
ˇ̌

D
ˇ̌ �
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i

�
�
�
�Œ�hcjx0ia;hajx0ic �.t C �

0/� ha; cjb;x0i
� ˇ̌

D
ˇ̌ �
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i

�
�min fmaxfha; cju; bi; hb; cju; aig;T g

ˇ̌
Dmin fmaxfha; cju; bi; hb; cju; aig;T g

�
�
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i

�
Dmin fmaxfha; cju; bi; hb; cju; aig;T g� .t C � � ha; cjb;x0i/

� T � .t C � � ha; cjb;x0i/:
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Analogously we get using Lemma 7.7 (ii)ˇ̌
lx0
.u; ��C�0

.b; c; s//� lx0
.u; �� 0C�0

.b; c; s//
ˇ̌

(7.16)
D
ˇ̌�
hbjciuC

ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC � C �0/� hb; cju;x0i

ˇ̌�
�
�
hbjciuC

ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC �

0
C �0/� hb; cju;x0i

ˇ̌�ˇ̌
D
ˇ̌ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC � C �0/� hb; cju;x0i

ˇ̌
�
ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC �

0
C �0/� hb; cju;x0i

ˇ̌ˇ̌
�
ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC � C �0/� �Œ�hcjx0ib;hbjx0ic �.sC �

0
C �0/

ˇ̌
D
ˇ̌�
�Œ�hcjx0ib;hbjx0ic �.sC � C �0/� hb; cja;x0i

�
�
�
�Œ�hcjx0ib;hb;x0ic �.sC �

0
C �0/� hb; cja;x0i

�ˇ̌
D
ˇ̌�
�Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i

�
�
�
�Œ�hcjx0ia;hajx0ic �.t C �

0/� ha; cjb;x0i
�ˇ̌

� T � .t C � � ha; cjb;x0i/:

Lemma 7.7 (iii) implies

t C � � ha; cjb;x0i D �Œ�hcjx0ia;hajx0ic �.t C �/� ha; cjb;x0i � T:

Hence we conclude from Lemma 7.8 for v D t C � � ha; cjb;x0i

2 �
�
T � .t C � � ha; cjb;x0i/C�

tC��ha;cjb;x0i
�
�N ��tC��ha;cjb;x0i:(7.17)

Combining (7.13), (7.14), (7.15), (7.16) and (7.17) yieldsˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
� 2 �

�
T � .t C � � ha; cjb;x0i/C�

tC��ha;cjb;x0i
�

�N ��tC��ha;cjb;x0i:

Lemma 7.18 Consider the situation appearing in Theorem 7.4. Suppose that a; b 2

@X ) a 6D b . Suppose that

t C � � �hcjx0iaI

sC � C �0 � �hcjx0ib:

Then (7.5) holds.

Geometry & Topology, Volume 12 (2008)



1868 Arthur Bartels, Wolfgang Lück and Holger Reich

Proof This follows from Lemma 7.10, Lemma 7.11 (note that 2�N by Lemma 7.8)
and Lemma 7.12 since by definition

d�FS;x0
.�� .a; c; t/;��C�0

.b; c; s//

D sup
u2X

ˇ̌
lx0
.u; �� .a; c; t//� lx0

.u; ��C�0
.b; c; s//

ˇ̌
:

Lemma 7.19 Consider the situation appearing in Theorem 7.4. Suppose that a; b 2

@X ) a 6D b . Suppose that at least one of the following inequalities is true:

t C � � �hcjx0iaI

sC � C �0 � �hcjx0ib:

Then (7.5) holds.

Proof Put � 00 WDmaxf�hcjx0ia� t;�hcjx0ib � s� �0g:

Since by assumption � � �hcjx0ia � t or � � �hcjx0ib � s � �0 holds, we must
have

� � � 00:

We estimate

d�FS;x0
.�� .a; c; t/; ��C�0

.b; c; s//(7.20)

D d�FS;x0
..a; c; t C �/; .b; c; sC � C �0//

� d�FS;x0
..a; c; t C �/; .a; c; t C � 00//

C d�FS;x0
..a; c; t C � 00/; .b; c; sC � 00C �0//

C d�FS;x0
..b; c; sC � 00C �0/; .b; c; sC � C �0//:

t C � 00 � �hcjx0iaISince

sC � 00C �0 � �hcjx0ib;

holds by definition of � 00 , we get from Lemma 7.18

d�FS;x0
..a; c; t C � 00/; .b; c; sC � 00C �0//�N ��tC� 00�ha;cjb;x0i:(7.21)

Next we want to show

d�FS;x0
..a; c; t C �/; .a; c; t C � 00//(7.22)

Cd�FS;x0
..b; c; sC � 00C �0/; .b; c; sC � C �0// � � 00� �:

Geometry & Topology, Volume 12 (2008)



Equivariant covers for hyperbolic groups 1869

Inspecting the definition of � 00 we see that we have to consider two cases, namely,

t C � 00 D�hcjx0ia and sC �0C �
00
� �hcjx0ib;

t C � 00 � �hcjx0ia and sC �0C �
00
D�hcjx0ib:and

We only treat the first one, the second is completely analogous. From t C � � t C

� 00 D �hcjx0ia we conclude �Œ�hcjx0ia;hajx0ic �.t C �/ D �Œ�hcjx0ib;hbjx0ic �.t C �
00/.

Lemma 6.16 implies

d�FS;x0
..a; c; t C �/; .a; c; t C � 00//D 0:

We conclude from Lemma 6.16

d�FS;x0
..b; c; sC � 00C �0/; .b; c; sC � C �0//

D
ˇ̌
�Œ�hcjx0ib;hbjx0ic �.sC �

00
C �0/� �Œ�hcjx0ib;hbjx0ic �.sC � C �0/

ˇ̌
�
ˇ̌
.sC � 00C �0/� .sC � C �0/

ˇ̌
D � 00� �:

This finishes the proof of (7.22).

If we combine (7.20), (7.21) and (7.22), we get

d�FS;x0
.�� .a; c; t/; ��C�0

.b; c; s//� � 00� � CN ��tC� 00�ha;cjb;x0i:(7.23)

We estimate

�hcjx0ia� t � hcjbia� hcjx0ia� t D ha; cjb;x0i � t;

and for b 2X

�hcjx0ib � s� �0

D�hcjx0ib � t Cha; bjc;x0i

D ha; cjb;x0i � t � ha; cjb;x0iC ha; bjc;x0i � hcjx0ib

D ha; cjb;x0i � t Chc; ajb;x0iC ha; bjc;x0iC hb; cja;x0i � hb; cja;x0i � hcjx0ib

D ha; cjb;x0i � t � hb; cja;x0i � hcjx0ib

D ha; cjb;x0i � t � hcjaib

� ha; cjb;x0i � t:

This inequality holds for b 2 @X for trivial reasons. The last two inequalities imply

� 00 � ha; cjb;x0i � t

and hence 0 � � 00� � � � .t C � � ha; cjb;x0i/ :
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Lemma 7.8 applied to v D � 00� � and w D� .t C � � ha; cjb;x0i/ yields

� 00� � CN ��tC� 00�ha;cjb;x0i �N ��tC��ha;cjb;x0i:(7.24)

If we combine (7.23), (7.24), we get the desired inequality

d�FS;x0
.�� .a; c; t/; ��C�0

.b; c; s//�N ��tC��ha;cjb;x0i:

Now Theorem 7.4 follows from Lemma 7.6, Lemma 7.18 and Lemma 7.19.

7.2 Flow estimates for the metric

Next we prove Theorem 7.1.

Proof We estimate using e �� > 1, 0< e�1 �� < 1 and Theorem 7.4

dFS;x0
.�� .a; c; t/; ��C�0

.b; c; s//

D

Z 1
�1

d�FS;x0

�
�� .�� .a; c; t//; �� .��C�0

.b; c; s//
�

2 � ej� j
d�

D

Z 1
�1

d�FS

�
��C� ..a; c; t//; ��C�C�0

..b; c; s//
�

2 � ej� j
d�

�

Z 1
�1

N ��tC�C��ha;cjb;x0i

2 � ej� j
d�

D

Z 0

�1

N ��tC�C��ha;cjb;x0i

2 � ej� j
d� C

Z 1
0

N ��tC�C��ha;cjb;x0i

2 � ej� j
d�:

D

Z 0

�1

N ��tC�C��ha;cjb;x0i

2 � e��
d� C

Z 1
0

N ��tC�C��ha;cjb;x0i

2 � e�
d�:

D
N

2
��tC��ha;cjb;x0i �

 Z 0

�1

.e ��/� d� C

Z 1
0

.e�1
��/� d�

!

D
N

2
��tC��ha;cjb;x0i �

 �
.e ��/�

ln.e ��/

�0

�1

C

"
.e�1 ��/�

ln.e�1 ��/

#1
0

!

D
N

2
��tC��ha;cjb;x0i �

�
1

ln.e ��/
C

1

� ln.e�1 ��/

�
D

N

2
��tC��ha;cjb;x0i �

�
1

1C ln.�/
C

1

1� ln.�/

�
D

N

1� ln.�/2
��.t�ha;cjb;x0i/ ��� :
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8 The flow estimates for the map �

Let X be a hyperbolic complex and x0 2X be a base point. We define a map

�x0
W X � xX ! FS.X /(8.1)

by �x0
.a; c/ WD8̂̂<̂

:̂
�
a; c; ‚�1

Œ�hcjx0ia;hajx0ic �

�
minf2; yD.a; c/=2g� hcjx0ia

��
c 2X and a 6D cI�

a; c; ‚�1
Œ�hcjx0ia;1�

.2� hcjx0ia/
�

c 2 @X I

c D .c; c; 0/ if aD c:

We remind the reader that for a, c2X we have aD .a; a; 0/D .a; a;�1/D .a; c;�1/

in FS.X /.

Remark 8.2 Because of Lemma 6.16 the point �x0
.a; c/ is c if a D c , is the

unique point on the line .a; c/FS.X / whose distance with respect to dFS;x0
from a is

minf2; yD.a; c/=2g if c 2X and a 6D c , and is the unique point on the line .a; c/FS.X /
whose distance with respect to dFS;x0

from a is 2 if c 2 @X .

Lemma 8.3 Consider a; b 2X and c 2 xX with a 6D c and t 2R. Suppose

dFS;x0
..a; c; t/; .a; a; 0// D

�
minf2; yD.a; c/=2g c 2X I

2 c 2 @X:

Then � yD.a; b/ � t � ha; cjb;x0i � 5=2:

Proof Note that .a; a; 0/ D .a; c;�1/ 2 FS.X /. We conclude from Lemma 6.16,
Lemma 7.7 (i) and Lemma 6.7 (vi)

‚Œ�hcjbia;hajbic �.t � ha; cjb;x0i/(8.4)
D‚Œ�hcjx0ia�ha;cjb;x0i;hajx0ic�ha;cjb;x0i�.t � ha; cjb;x0i/

D‚Œ�hcjx0ia;hajx0ic �.t/� ha; cjb;x0i

D‚Œ�hcjx0ia;hajx0ic �.t/� .�hcjx0ia/C .�hcjx0ia/� ha; cjb;x0i

D‚Œ�hcjx0ia;hajx0ic �.t/� .�hcjx0ia/� hcjbia

D dFS;x0
..a; c; t/; .a; a; 0//� hcjbia:

If c 2X , we get by assumption

dFS;x0
..a; c; t/; .a; a; 0// �

yD.a; c/

2
D
hajbic � .�hcjbia/

2
;
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and hence

dFS;x0
..a; c; t/; .a; a; 0//� hcjbia �

hajbic C .�hcjbia/

2
:

This inequality is true for c 2 @X for trivial reasons. Hence we get from (8.4)

‚Œ�hcjbia;hajbic �.t � ha; cjb;x0i/ �
�hcjbiaChajbic

2
:

Lemma 6.7 (ix) together with (8.4) implies

t � ha; cjb;x0i � ‚Œ�hcjbia;hajbic �.t � ha; cjb;x0i/C 1=2

D dFS;x0
..a; c; t/; .a; a; 0//� hcjbiaC 1=2

� dFS;x0
..a; c; t/; .a; a; 0//C 1=2

� 2C 1=2

D 5=2:

Thus we have proven the upper bound t �ha; cjb;x0i � 5=2. It remains to show the
lower bound � yD.a; b/ � t � ha; cjb;x0i.

We conclude from the assumptions that

dFS;x0
..a; c; t/; .a; a; 0// D

yD.a; c/

2
D
hajbic � .�hcjbia/

2
and c 2X

or dFS;x0
..a; c; t/; .a; a; 0// D 2

holds. We begin with the first case. Then

dFS;x0
..a; c; t/; .a; a; 0//� hcjbia �

hajbic C .�hcjbia/

2
:

Lemma 6.7 (ix) together with (8.4) implies

t � ha; cjb;x0i � �hcjbia � � yD.a; b/:

Finally we treat the second case. Then (8.4) implies

‚Œ�hcjbia;hajbic �.t � ha; cjb;x0i/ � 2� hcjbia:

Since for u� �hcjbia we have

‚Œ�hcjbia;hajbic �.u/ D �hcjbiaC eu�.�hcjbia/=2� eu�hajbic=2 < 2� hcjbia;

we conclude
t � ha; cjb;x0i � �hcjbia � � yD.a; b/:

This finishes the proof of Lemma 8.3.
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Lemma 8.5 The map �x0
W X � xX ! FS.X / from (8.1) is continuous. It is Isom.X /–

equivariant with respect to the diagonal Isom.X /–action on the source. For x 2 X the
map �x0

.x;�/W xX ! FS.X /; y 7! �x0
.x;y/ is injective.

Proof We only prove continuity, the other claims are straight-forward to check using
Remark 8.2. Recall that X and FS.X / are metric spaces. By [5, Exercise III.H.3.18(4)]
the space xX is metrizable. Hence it suffices to check continuity for sequences. Con-
sider sequences .an/n�0 in X and .cn/n�0 in xX and points a 2 X and c 2 xX

such that limn!1 an D a in X and limn!1 cn D c in xX hold. We have to show
limn!1 �x0

.an; cn/D �x0
.a; c/ in FS.X /.

Suppose that aD c . Then we can assume cn 2X and yD.an; cn/=2< 2 for n� 0 and
limn!1

yD.an; cn/D 0. This implies by the construction of �x0
that

lim
n!1

dFS;x0
.an; �x0

.an; cn//D lim
n!1

dFS;x0
.an; cn/=2 D 0

and hence
lim

n!1
�x0
.an; cn/D lim

n!1
an D aD c D �x0

.a; c/:

Hence we can assume without loss of generality that a 6D c and an 6D cn for all n� 0

holds.

For n � 0 put ˛n D �hcnjx0ian
and ˇn D hanjx0icn

. Put ˛ D �hcjx0ia and ˇ D
hajx0ic . Then the continuity of the Gromov product (see Theorem 6.3) implies

lim
n!1

˛n D ˛I

lim
n!1

ˇn D ˇ:

Define tn to be the real number satisfying

(8.6) ‚Œ˛n;ˇn�.tn/ D min
n
2; yD.an; cn/=2

o
� hcnjx0ian

cn 2X I

‚Œ˛n;ˇn�.tn/ D 2� hcnjx0ian
cn 2 @X:

Define t to be the real number satisfying

(8.7) ‚Œ˛;ˇ�.t/ D minf2; yD.a; c/=2g� hcjx0ia c 2X I

‚Œ˛;ˇ�.t/ D 2� hcjx0ia c 2 @X:

Then �x0
.an; cn/ D .an; cn; tn/ and �x0

.a; c/ D .a; c; t/. Because of Theorem 7.3 it
suffices to show that limn!1 tnD t holds. From Lemma 8.3 applied in the case bDx0

we conclude � yD.an;x0/� tn � 5=2 and � yD.a;x0/� t � 5=2. Hence we can assume
without loss of generality for all n� 0

� yD.a;x0/� 1� tn; t � 5=2:
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We conclude from the Mean Value Theorem for some number � 2 Œ0; 1�

‚Œ˛;ˇ�.tn/�‚Œ˛;ˇ�.t/ D ‚0Œ˛;ˇ�.� � tnC .1� �/t/ � .tn� t/:

Choose a constant C > 0 such that ‚0
Œ˛;ˇ�

.s/�C�1 holds for s 2 Œ� yD.a;x0/�1; 5=2�.
Since � � tnC .1� �/t lies in Œ� yD.a;x0/� 1; 5=2�, we conclude for all n� 0

jtn� t j � C � j‚Œ˛;ˇ�.tn/�‚Œ˛;ˇ�.t/j:

We get from the triangle inequality

j‚Œ˛;ˇ�.tn/�‚Œ˛;ˇ�.t/j � j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.tn/jC j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.t/j

and hence

jtn� t j � C �
�
j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.tn/jC j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.t/j

�
:(8.8)

Since an; a 2 X , we have �1 < ˛n and �1 < ˛ . We have ˇ <1 if and only if
c 2X and ˇn <1 if and only if cn 2X . If ˇ D1, we can assume without loss of
generality 5=2� ˇn and hence tn � ˇn for all n� 0. We conclude

j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.tn/j � maxfj˛n�˛j; jˇn�ˇjg ˇn; ˇ <1I

j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.tn/j � j˛n�˛j ˇn D ˇ D1I

j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.tn/j � j˛n�˛jC etn�ˇn ˇn <1; ˇ D1:

from Lemma 6.7 (vii) and (viii) and (the triangle inequality in the last case). Since
tn � 5=2, limn!1 ˛n D ˛ and limn!1 ˇn D ˇ , we conclude

lim
n!1

j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.tn/j D 0:

Since yD and the Gromov product are continuous, we get using (8.6) and (8.7)

lim
n!1

j‚Œ˛n;ˇn�.tn/�‚Œ˛;ˇ�.t/j D 0:

Now (8.8) implies limn!1 tn D t . This finishes the proof of Lemma 8.5.

Theorem 8.9 (Flow estimate for �) Let �2 .e�1; 1/ and T 2 Œ0;1/ be the constants
depending only on X which appear in Proposition 6.4. Consider a; b 2 X and c 2 xX .
Put

N D 2C
2

�T � .� ln.�//
:

Then there exists a real number �0 such that

j�0j � 2 � yD.a; b/C 5
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and for all � 2R

dFS;x0
.�� �x0

.a; c/; ��C�0
�x0
.b; c// �

N

1� ln.�/2
���

yD.a;b/
��� :

Proof Put

t WD

8̂<̂
:
�
‚Œ�hcjx0ia;hajx0ic �

��1
�

minf2; yD.a; c/=2g� hcjx0ia

�
if c 2X and a 6D cI�

‚Œ�hcjx0ia;1�

��1
.2� hcjx0ia/ if c 2 @X I

ha; cjb;x0i D 0 if aD cI

s WD

8̂<̂
:
�
‚Œ�hcjx0ib;hbjx0ic �

��1
�

minf2; yD.b; c/=2g� hcjx0ib

�
if c 2X and b 6D cI�

‚Œ�hcjx0ib;1�

��1
.2� hcjx0ib/ if c 2 @X I

hb; cja;x0i D 0 if b D c:

Put �0 D t � s� ha; bjc;x0i:

We have by definition

�x0
.a; c/D .a; c; t/I

�x0
.b; c/D .b; c; s/I

�0 D t � s� ha; bjc;x0i D .t � ha; cjb;x0i/� .s� hb; cja;x0i/:

We conclude from Theorem 7.1

dFS;x0
.�� �x0

.a; c/; ��C�0
�x0
.b; c// �

N

1� ln.�/2
��.t�ha;cjb;x0i/ ��� :

We have dFS;x0
..a; c; t/; .a; a; 0// D

�
minf2; yD.a; c/=2g c 2X I

2 c 2 @X:

and dFS;x0
..b; c; s/; .b; b; 0// D

�
minf2; yD.b; c/=2g c 2X I

2 c 2 @X:

We conclude from Lemma 8.3 and the definition of t and s respectively that

� yD.a; b/ � t � ha; cjb;x0i � 5=2I

� yD.a; b/ � s� hb; cja;x0i � 5=2;

holds. This finishes the proof of Theorem 8.9.

We can now prove the flow estimate from the introduction.
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Proof of Theorem 1.5 Define j W G� xX ! FS.X / by j .g; c/ WD �x0
.gx0; c/. It

follows from Lemma 8.5 that j is continuous and G –equivariant with respect to the
diagonal G –action on the source. Let C WDmaxf yD.x0; sx0/ j s 2 Sg where S is the
generating set S of G used to define the word metric dG on G . Then

yD.gx0; hx0/� CdG.g; h/ 8 g; h 2G:

Let ˛ > 0 be given. Let � 2 .e�1; 1/ and T 2 Œ0;1/ be the constants depending only
on X which appear in Proposition 6.4. Let N be the number defined in Theorem 8.9.
Define

ˇ.˛/ WD 2C˛C 5I

f˛.�/ WD
N

1� ln.�/2
���C˛

��� :

It follows from Theorem 8.9 that ˇ.˛/ and f˛ satisfy the assertion of Theorem 1.5.

9 Further properties of the flow space

Theorem 9.1 Let X be a hyperbolic complex with base point x0 2X . Suppose that
G acts on X by simplicial automorphisms such that every isotropy group is finite.
Then:

(i) The metric space .FS.X /; dFS;x0
.X // is proper;

(ii) The induced G –action on the flow space .FS.X /; dFS;x0
/ is proper;

(iii) If G acts cocompactly on X , then G acts cocompactly on FS.X /.

A G –space Y is called proper if for every y 2 Y there exists an open neighborhood U

such that the set fg2G jg �U \U 6D∅g is finite. Proper implies that all isotropy groups
are finite. The converse is not true in general but is true if Y is a G–C W –complex
[13, Theorem 1.23 on page 18]. If .Y; dY / is a metric space and G acts by isometries,
the G–action is proper if and only if for every y 2 Y there exists an � such that the
set fg 2G j g �B�.y/\B�.y/ 6D∅g is finite, where B�.y/D fz 2 Y j dY .y; z/ < �g.
A metric space .Y; dY / is called proper if and only if B�.y/D fz 2 Y j dY .y; z/� �g

is compact for all y 2 Y and � � 0.

The elementary proof of the next result is left to the reader.

Lemma 9.2 Let .Y; dY / be a proper metric space. Let G act on Y by isometries.
Then the G–action on Y is proper if and only if for every C > 0 and y 2 Y the set
fg j dY .g �y;y/� C g is finite.
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Now we are ready to prove Theorem 9.1.

Proof (i) This is proven in [14, Proposition 54, page 464].

(ii) Mineyev [14, page 457] constructs a map

‰W FS.X /!X

such that there exists constants K1 and K2 depending only on X such that for all
v;w 2 FS.X / and g 2G we have

jdFS;x0
.v; w/� yD.‰.v/;‰.w//j �K1I

yD.‰.g � v/;g �‰.v//�K2:

Compare also [14, Proposition 43 on page 458].

We conclude for v 2 FS.X / and g 2G

yD.g �‰.v/;‰.v//

� yD.‰.g � v/;‰.v//C yD.‰.g � v/;g �‰.v//

D dFS;x0
.g � v; v/� dFS;x0

.g � v; v/C yD.‰.g � v/;‰.v//C yD.‰.g � v/;g �‰.v//

� dFS;x0
.g � v; v/C

ˇ̌̌
dFS;x0

.g � v; v/� yD.‰.g � v/;‰.v//
ˇ̌̌
C yD.‰.g � v/;g �‰.v//

� dFS;x0
.g � v; v/CK1CK2:

There exist real numbers A � 1 and B � 0 depending only on X such that for all
x1;x2 2X we have

A�1 yD.x1;x2/�B � d.x1;x2/ � A � yD.x1;x2/CB

where d is the word metric; compare the beginning of Section 6.1. Hence we get

d.g �‰.v/;‰.v//�A � yD.g �‰.v/;‰.v//CB

�A �
�
dFS;x0

.g � v; v/CK1CK2

�
CB:

Consider v 2 FS.X / and C � 0. Since G acts properly on X and .X; d/ is a proper
metric space, Lemma 9.2 implies that the set

fg 2G j d.g �‰.v/;‰.v//�A � .C CK1CK2/CBg

is finite. Since this set contains
˚
g 2G j dFS;x0

.g � v; v/� C
	

, also the latter set is
finite. Hence the G –action on .FS.X /; dFS;x0

/ is proper by Lemma 9.2.

(iii) Since G acts simplicially and cocompactly on X , we can find a compact subset
C �X such that G �C DX . Consider D D fx 2 FS.X / j yD.‰.x/;C /�K2g. Since
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C is compact, its diameter diam.C / is finite. Since for y; z 2D we get

dFS;x0
.y; z/� yD.‰.y/; ‰.z//CK1 � diam.C /C 2K2CK1

the set D has finite diameter. Since FS.X / is proper as a metric space by assertion (i),
the closure of D is a compact subset of FS.X /. Next we show G �DDFS.X /. Consider
x 2 FS.X /. Choose g 2G such that g�1‰.x/ 2C . From yD.‰.g�1x/;g�1‰.x//�

K2 we conclude g�1x 2D . This implies x 2 g �D �G �D . Hence xD is a compact
subset of FS.X / with G � xDDFS . Therefore G acts on FS cocompactly. This finishes
the proof of Theorem 9.1.

The following facts are well-known. We include a proof for the convenience of the
reader.

Lemma 9.3 Let X be a ı–hyperbolic complex in the sense of Section 6.1. Let xX be
the compactification of X in the sense of Gromov. Then

(i) xX is locally connected;

(ii) xX has finite covering dimension.

Proof We start by reviewing the topology of xX following [5, p 429]. Recall that X .1/

denotes the 1–skeleton of X . A generalized ray cW I!X .1/ is a geodesic with respect
to the word metric dword , where I D Œ0;R� for R� 0 or I D Œ0;1/. In the later case
c will be called a geodesic ray. If I D Œ0;R� it is convenient to write c.t/ D c.R/

for t � r . Two geodesic rays c , c0 are called equivalent if there is C > 0 such that
dword.c.t/; c

0.t// < C for all t 2 Œ0;1/. @X D @X .1/ is the set of all equivalence
classes of such geodesic rays. For a geodesic ray c we denote by c.1/ the point in
@X determined by c . Fix a base point x0 2X .0/ and k > 2ı . Every point in @X can
be written as c.1/ where c is a geodesic ray starting at x0 [5, Lemma 3.1 on page
427]. For a geodesic ray c starting at x0 and n 2N let V

.1/
n .c/ denote the set of all

c0.1/ where c0 is a generalized ray starting at x0 with dword.c.n/; c
0.n// < k . (Such

a generalized ray may end in X .) Let Vn.c/ be the union of V
.1/

n .c/ with the smallest
subcomplex of X containing V

.1/
n .c/\X . The topology on xX D X [ @X is now

defined as follows: a U � xX is open if and only if the following two conditions hold:

� U \X is open in X .

� If c is a geodesic ray starting at x0 and c.1/ 2 U then there is n 2 N such
that Vn.c/� U .
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We now prove (i). Obviously X is locally connected as it is a C W –complex. It suffices
to show for every x 2 @X D xX �X that there is a (not necessarily open) connected
neighborhood (see [15, Exercise 10 on page 163]). But this follows because the Vn.c/

from above are connected.

Next we prove (ii). Let D 2 N be the maximal number of points in X .0/ that are
contained in a ball of radius kC 2ı . This is a finite number because X is uniformly
locally finite. Because X has finite covering dimension and @X is compact, it suffices
to show the following: For every finite collection U of open subsets of xX that covers
@X there is an .D� 1/–dimensional refinement of U that still covers @X .

We will need the following observation: Let c , c0 be two geodesics starting at x0 . Let
x be the endpoint of c and x0 be the endpoint of c0 . If N is such that d.c.N /;x/ >

d.x;x0/C ı , then d.c.N /; c0.N //� 2ı . This is an easy application of the condition
that all geodesic triangles in X .1/ are ı–thin.

For N 2N consider the set SN of all c.N / where c is a geodesic ray in X .1/ starting
at x0 . This is a finite subset of X .0/ because X is locally finite. For every x 2 SN

pick a geodesic ray cx starting at x0 such that cx.N /D x . Denote by B the close
ball of radius nC ı around x0 . Let Ux WD .VN .cx//

ı � B . Then the collection
UN WD fUx j x 2 SN g covers @X . Let z 2 xX �B and choose x 2 SN such that x lies
on a geodesic from x0 to z . Using the above observation it is not hard to show that for
every x0 2 SN with z 2 Ux0 we have d.x;x0/ < kC 2ı . Therefore the dimension of
UN is bounded by D� 1.

It remains to show that for sufficiently large N , the collection UN will be a refinement
of the given collection U . Let R> kC 3ı , R 2N . By the definition of the topology
of @X and because @X is compact, there are M1; : : : ;Mn 2 N and geodesic rays
c1; : : : ; cn starting at x0 such that

� @X � VM1CR.c1/[ � � � [VMnCR.cn/;

� for every i D 1; : : : ; n there is U 2 U such that VMi
.ci/� U .

Let M WD maxfM1; : : : ;Mng. Two applications of the above observation give the
following: If c is a geodesic ray starting at x0 such that c.1/ 2 VMiCR.ci/, then
VMC2R.c/� VMi

.ci/. Thus UMC2R is a refinement of U .

We can now check the additional properties stated in Section 1.2.

Proof of Proposition 1.6 (i) This follows from [5, Theorem 3.2 on page 459].
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(ii) By Lemma 9.3 xX has finite covering dimension and is locally connected. It
follows therefore from Theorem 7.3 that FS.X /�FS.X /R D FS.X /�X is locally
connected and has finite covering dimension.

(iii) This follows from Theorem 9.1.

(iv) For g 2G its translation length on .FS.X /; dFS.X /;x0
/ is defined as

l.g/ WD lim
n!1

dFS;x0
.gn.a; b; t/; .a; b; t//=n:

By the triangle inequality this definition does not depend on the choice of .a; b; t/ 2
FS.X /. In particular, it depends only on the conjugacy class of g . Since the iso-
metric G–action on FS.X / is cocompact and proper, .G; dG/ is quasi-isometric to
.FS; dFS;x0

/. Thus, there are constants A� 1, B > 0 such that

A � l.g/CB � �.g/ WD lim
n!1

dG.g
n; 1G/:

(�.g/ is the translation length of g on .G; dG/.) By [5, Proposition 3.15 on page 465]
for fixed C > 0 the number of conjugacy classes whose translation length on .G; dG/

is no more than C is finite. We conclude that the same holds for the translation length
on .FS.X /; dFS;x0

/.

Fix C > 0. Let L be the set of all orbits L of the flow �� on FS.X / with 0 <

perG
�
.L/ � C , see Definition 2.15. Every L 2 L is a line .aL; bL/FS.X / with aL ,

bL 2
xX . For L 2 L there is gL 2G such that

gL � .aL; bL; t/D .aL; bL; t C perG
� .L//

for .aL; bL; t/ 2L. In particular gL � aL D aL , gL � bL D bL . If aL 2X or bL 2X ,
then gL has finite order because the action of G on X is proper. But this would imply
perG

�
.L/D 0. Therefore aL , bL 2 @X . By Lemma 6.16 l.gL/D perG

�
.L/�C . Recall

that @X Š @G , because X is quasi-isometric to G [5, Theorem 3.9 on page 430].
Because every g 2G has at most 2 fixed points on @G [9, 20.- Corollaire on page 149]
the map L 7! gL is injective. Because there are only finitely many conjugacy classes
of translation length � C this means that GnL is finite. This is what we needed to
prove.
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on the 1981 French original, With appendices by M Katz, P Pansu and S Semmes,
Translated from the French by S M Bates

[13] W Lück, Transformation groups and algebraic K–theory, Lecture Notes in Math.
1408, Springer, Berlin (1989) MR1027600Mathematica Gottingensis

[14] I Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005) 403–482
MR2140987

[15] J R Munkres, Topology: a first course, Prentice-Hall, Englewood Cliffs, N.J. (1975)
MR0464128

[16] R S Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of
Math. .2/ 73 (1961) 295–323 MR0126506

[17] J Roe, Hyperbolic groups have finite asymptotic dimension, Proc. Amer. Math. Soc.
133 (2005) 2489–2490 MR2146189

[18] R Sauer, Amenable covers, volume and L2 –Betti numbers of aspherical manifolds
arXiv:math.AT/0605627

Geometry & Topology, Volume 12 (2008)



1882 Arthur Bartels, Wolfgang Lück and Holger Reich

[19] G Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of
Math. .2/ 147 (1998) 325–355 MR1626745

AB, WL: Westfälische Wilhelms-Universität Münster, Mathematisches Institut
Einsteinstr. 62, D-48149 Münster, Germany

HR: Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut
Universitätsstr. 1, D-40225 Düsseldorf, Germany

a.bartels@uni-muenster.de, lueck@math.uni-muenster.de,
reich@math.uni-duesseldorf.de

http://www.math.uni-muenster.de/u/bartelsa/bartels, http://
www.math.uni-muenster.de/u/lueck, http://reh.math.uni-duesseldorf.de/
%7Ereich/

Proposed: Martin Bridson Received: 28 September 2006
Seconded: Steve Ferry, Ralph Cohen Accepted: 7 February 2008

Geometry & Topology, Volume 12 (2008)


