
Geometry & Topology 12 (2008) 2009–2045 2009

On boundary value problems for Einstein metrics

MICHAEL T ANDERSON

On any given compact manifold M nC1 with boundary @M , it is proved that the
moduli space E of Einstein metrics on M , if non-empty, is a smooth, infinite
dimensional Banach manifold, at least when �1.M; @M / D 0 . Thus, the Einstein
moduli space is unobstructed. The usual Dirichlet and Neumann boundary maps to
data on @M are smooth, but not Fredholm. Instead, one has natural mixed boundary-
value problems which give Fredholm boundary maps.

These results also hold for manifolds with compact boundary which have a finite
number of locally asymptotically flat ends, as well as for the Einstein equations
coupled to many other fields.

58J05, 58J32; 53C25

1 Introduction

Let M DM nC1 be a compact .nC 1/–dimensional manifold with boundary @M ,
n � 2. In this paper, we consider the structure of the space of Einstein metrics on
.M; @M /, ie metrics g on xM DM [ @M satisfying the Einstein equations

(1–1) Ricg D �g:

Here � is a fixed constant, equal to s
nC1

, where s is the scalar curvature. It is natural to
consider boundary value problems for the equations (1–1). For example, the Dirichlet
problem asks: given a (smooth) Riemannian metric  on @M , determine whether there
exists a Riemannian metric g on xM , which satisfies the Einstein equations (1–1) with
the boundary condition

(1–2) gjT .@M / D :

Although there has been a great deal of interest in such existence (and uniqueness)
questions on compact manifolds without boundary, very little in the way of general
results or a general theory are known, cf Besse [5] and LeBrun–Wang [13] for surveys.
Similarly, this question has been extensively studied for complete metrics on non-
compact manifolds, particularly in the asymptotically Euclidean, flat and asymptotically
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hyperbolic settings. However, Einstein metrics on manifolds with boundary, which are
in a sense intermediate between the compact and complete, non-compact cases, have
not been studied in much detail in the literature.

To describe the results, for a given � 2R, let E D Em;˛
�

.M / be the moduli space of
Einstein metrics on M , satisfying (1–1), which are C m;˛ smooth up to @M ; here
m� 3 and ˛ 2 .0; 1/. By definition, E is the space of all such metrics satisfying (1–1),
modulo the action of the group D1 D DmC1;˛

1
of C mC1;˛ diffeomorphisms of M

equal to the identity on @M .

The first main result of the paper is the following theorem.

Theorem 1.1 Suppose �1.M; @M /D 0. Then for any � 2R, the moduli space E , if
non-empty, is an infinite dimensional C1 smooth Banach manifold.

Theorem 1.1 also holds in the C1 context: the space E1 of C1 Einstein metrics on
M is a smooth Fréchet manifold.

The topological condition �1.M; @M / D 0 means that @M is connected, and the
inclusion map �W @M !M induces a surjection

�1.@M /! �1.M /! 0:

It is an open question whether Theorem 1.1 holds without this topological condition.
The method of proof, via the implicit function theorem, fails without it, cf Remark 2.7.
On the other hand, Theorem 1.1 holds at least for generic Einstein metrics, without the
�1 condition, if @M is connected.

A consequence of the proof of Theorem 1.1 is that the moduli space E is “unobstructed”,
in that any infinitesimal Einstein deformation h of .M;g/ is tangent to curve in E , ie
all infinitesimal deformations may be integrated to curves. This is in strong contrast to
the situation on compact manifolds without boundary, where a well-known result of
Koiso [12] gives examples where the Einstein moduli space is obstructed, cf also [5].

Theorem 1.1 does not involve the specification of any boundary values of the metric
g . Boundary values are given by natural boundary maps to the space of symmetric
bilinear forms S2.@M / on @M . For the Dirichlet problem, one has the C1 smooth
Dirichlet boundary map

(1–3) …D W Em;˛
!Metm;˛.@M /; …D Œg�D  D gjT .@M /;

where Metm;˛.@M / is the Banach space of C m;˛ metrics on @M . However, …D

does not have good local properties, in that …D is never Fredholm. For instance,
when m <1, D… always has an infinite dimensional cokernel, so that the variety
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B D….Em;˛/ has infinite codimension in Metm;˛.@M /. This is a consequence of the
scalar or Hamiltonian constraint on the boundary metric  induced by the Einstein
metric .M;g/:

(1–4) jAj2�H 2
C s � .n� 1/�D 0:

Here A is the second fundamental form of @M in .M;g/, H D tr A is the mean
curvature and s is the scalar curvature of .@M;  /. For g 2 Em;˛ , one has A;H 2

S
m�1;˛
2

.@M /, so that (1–4) gives s 2C m�1;˛.@M /. However, a generic C m;˛ metric
 on @M has scalar curvature s in C m�2;˛ ; in fact the space of C m;˛ metrics  on
@M for which s 2 C m�1;˛.@M / is of infinite codimension. Of course the simplest
instance of this relation is Gauss’ Theorema Egregium, KD 1

2
s D det A, for surfaces

in R3 .

Similarly, there are situations where the linearization D… has infinite dimensional
kernel; for example this is the case whenever the second fundamental form A of @M
in M vanishes on an open set in @M . These remarks show that the Dirichlet problem
for the Einstein equations is not a well-posed elliptic boundary value problem. The
discussion above also holds for the natural Neumann boundary map, taking g 2 E to
its second fundamental form A on @M .

These failures of the Fredholm property above are closely related to the fact that Einstein
metrics are invariant under the full diffeomorphism group D of xM , which is much
larger than the restricted group D1 . It is also closely related to loss-of-derivative issues
in the isometric embedding of manifolds in RN , cf Nash [17] and Nirenberg [18].

On the other hand, there are Fredholm boundary maps of mixed (Dirichlet–Neumann)
type. There are several classes of these, but perhaps the most natural is given by the
following result. Let Cm;˛.@M / be the space of pointwise conformal classes of C m;˛

metrics on @M , with Œ � denoting the conformal class of  .

Theorem 1.2 The boundary map

(1–5) e…D W Em;˛
! Cm;˛.@M /�C m�1;˛.@M /;e…D.g/D .Œ �;H /;

is C1 smooth and Fredholm, of Fredholm index 0.

In particular, the image eB D e…D.Em;˛/ is a variety of finite codimension in
Cm;˛.@M / � C m�1;˛.@M /. It is an interesting open problem to relate this image
with the image of the usual (non-Fredholm) Dirichlet boundary map (1–3). Thus, one
may fix the conformal class Œ � and vary the mean curvature H . It would be interesting
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to understand the resulting space of metrics eB \ Œ � within Œ � that are obtained in this
way.

The results above generalize easily to “exterior” boundary value problems. In this
context, .M;g/ is then a complete, non-compact manifold, with a compact (interior)
boundary. Such Einstein metrics necessarily have non-positive scalar curvature, and the
simplest asymptotic behaviors are asymptotically (locally) hyperbolic, when s < 0, and
asymptotically (locally) Euclidean or flat. The former case has been extensively studied
elsewhere, (cf the author’s [2] for example), in the case @M D∅, so we concentrate
here on the asymptotically flat case.

Suppose then M is a manifold with a compact non-empty boundary @M and a finite
collection of asymptotically locally flat ends; such ends are metrically asymptotic to a
flat metric on the space .Rm�T nC1�m/=� , where T k is the k –torus, 3�m� nC1

and � is a finite group of Euclidean isometries.

Theorem 1.3 The results above, ie Theorem 1.1 and Theorem 1.2, hold for the moduli
space E of Ricci-flat, locally asymptotically flat metrics on M .

A more precise statement of Theorem 1.3, in particular regarding the assumptions on
the asymptotic behavior of the metrics, is given in Section 4, cf Theorem 4.2.

The results above also hold for the Einstein equations coupled to other fields, for
example scalar fields, sigma models (harmonic maps), etc. These are discussed in
detail in Section 5. In fact the method of proof is quite general and should apply to
many geometric variational problems.

Theorem 1.1 and Theorem 1.2 show that one has reasonably good local behavior
associated with the moduli space E of Einstein metrics on M . It is then of basic
interest to understand more global issues associated with E ; for example, under what
conditions is the boundary map e…D in (1–5) proper? We hope to address some of
these questions in the future.

I would like to thank the referee for several constructive comments leading to im-
provements in the paper. This work was partially supported by NSF Grant DMS
0604735.

2 The moduli space E

Theorem 1.1 is proved via application of the implicit function theorem, (ie the regular
value theorem). To do this, one needs to choose suitable function spaces and make
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a choice of gauge in order to break the diffeomorphism invariance of the Einstein
equations. As function space, we consider the Banach space

(2–1) Met.M /DMetm;˛.M /

of metrics on M which are C m;˛ smooth up to @M . Here m is any fixed integer with
m � 2 and ˛ 2 .0; 1/. In the following, the smoothness index .m; ˛/ will often be
suppressed from the notation unless it is important to indicate it. Let

(2–2) ED E.M /

be the space of Einstein metrics on M ,

(2–3) Ricg D �g;

viewed as a subset of Met.M /, for any fixed � 2 R. The Einstein operator E is a
(C1 ) smooth map

(2–4) EW Met.M /! S2.M /;

E.g/D Ricg ��g;

or more precisely EW Metm;˛.M /! S
m�2;˛
2

.M /, where S
m�2;˛
2

.M / is the space
of C m�2;˛ symmetric bilinear forms on M . Thus

EDE�1.0/:

Let eg 2 E be a fixed but arbitrary background Einstein metric. A number of different
gauge choices have been used to study the Einstein equations (2–3) near eg . For the
purposes of this work, the simplest and most natural choice is the Bianchi-gauged
Einstein operator, given by

(2–5) ˆeg W Met.M /! S2.M /;

ˆeg .g/D Ricg ��gC ı�gˇeg .g/;
where .ı�X /.A;B/D 1

2
.hrAX;BiChrBX;Ai/ and ıX D� tr ı�X is the divergence

and ˇeg .g/D ıeg gC 1
2
d treg g is the Bianchi operator with respect to eg . Although

ˆeg is defined for all g 2Met.M /, we will only consider it acting on g near eg .

Clearly g is Einstein if ˆeg .g/D 0 and ˇeg .g/D 0, so that g is in the Bianchi-free
gauge with respect to eg . Using standard formulas for the linearization of the Ricci and
scalar curvatures, cf [5] for instance, one finds that the linearization of ˆ at eg D g is
given by

(2–6) L.h/D 2.Dˆeg /g.h/DD�Dh� 2Rh
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where the covariant derivatives and curvature are taken with respect to g . Similarly,
the linearization E0 DLE of the Einstein operator E is given by

(2–7) 2LE.h/DL.h/� 2ı�ˇ.h/:

Note that the operator L is formally self-adjoint. While L is elliptic, LE is not; this
is the reason for choosing a gauge. The zero-set of ˆeg near eg ,

(2–8) Z D fg Wˆeg D 0g;

consists of metrics g 2Met.M / satisfying the Ricci soliton equation

Ricg ��gC ı�gˇeg .g/D 0:

One needs to choose boundary conditions on @M to obtain a well-defined elliptic
boundary value problem for the operator ˆ on M . This will be done in detail in
Section 3. For now, given eg , consider simply the Banach space

(2–9) MetC .M /DMetm;˛
C

.M /D fg 2Metm;˛.M / W ˇeg .g/D 0 on @M g:

Clearly the map
ˆW MetC .M /! S2.M /;

is C1 smooth.

Let ZC be the space of metrics g 2MetC .M / satisfying ˆeg .g/D 0, and let

(2–10) EC �ZC

be the subset of Einstein metrics g , Ricg D �g in ZC . To justify the use of ˆ, one
needs to show that the opposite inclusion to (2–10) holds, so that EC DZC . Let �k;˛

1

be the space of C k;˛ vector fields on M which vanish on @M . One then has

V D ˇeg .g/ 2 �m�1;˛
1

;

and wants to show that ı�V D 0. (Here and below we identify vector fields and
1–forms via the metric g ). This will require several Lemmas, which will also be of
importance later.

Lemma 2.1 For g in Metm;˛.M /, one has

(2–11) Tg Metm�2;˛.M /' S
m�2;˛
2

.M /D Ker ı˚ Im ı�;

where ı� acts on �m�1;˛
1

.
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Proof Given h 2 S
m�2;˛
2

.M /, consider the equation ıı�X D ıh 2 C m�3;˛ . If
X D 0 at @M , this has a unique solution X with X 2 �

m�1;˛
1

, by elliptic regularity
(Gilbarg–Trudinger [8] and Morrey [16]). Setting � D h� ı�X gives the splitting
(2–11).

Lemma 2.2 For eg 2 Em;˛ and g in Metm;˛ close to eg , one has

(2–12) Tg Metm�2;˛.M /' S
m�2;˛
2

.M /D Kerˇ˚ Im ı�:

Proof By the same argument as in Lemma 2.1, it suffices to prove that the operator
ˇı�W �

m�1;˛
1

!�1 is an isomorphism, where �1 is the space of C m�3;˛ 1–forms on
M . Since this is an open condition, it suffices to prove this when g D eg is Einstein.
A standard Weitzenbock formula gives

2ˇı�X DD�DX �Ric.X /DD�DX ��X:

Hence, if � � 0, ˇı� is a positive operator and it follows easily that ˇı� is an
isomorphism, (as in the proof of Lemma 2.1).

When � > 0, this requires some further work. First, note that ˇ itself is surjective. To
see this, suppose Y is a 1–form (or vector field) orthogonal to Imˇ . Then

(2–13) 0D

Z
M

hˇ.h/;Y i D

Z
M

hh; ˇ�Y i �

Z
@M

Œh.N;Y /� 1
2

tr hhY;N i�:

Since h is arbitrary, this implies ˇ�Y D ı�Y C 1
2
ıYg D 0, and hence, by taking the

trace of this equation, ı�Y D 0. The boundary term also vanishes, which implies
Y D 0 at @M . Thus, Y is a Killing field vanishing on @M , and hence Y D 0, which
proves the claim.

To prove that ˇı� is surjective, it then suffices to show that for any h 2 S
m�2;˛
2

.M /,
there exists X such that ˇı�.X /D ˇ.h/. Via (2–11), write hD kCı�Y with ık D 0.
Then ˇ.h/D 1

2
d tr kCˇı�.Y /. This shows that it suffices to prove ˇı� is surjective

onto exact 1–forms df .

Thus, suppose there exists f such that df ? Imˇı� D Im.D�D��I/. Arguing just
as in (2–13), it follows that d�f ��.df /D 0 on M , with boundary condition df D 0

at @M . Hence, �f C �f D const , with f D const and N.f /D 0 at @M . It then
follows from unique continuation for Laplace-type operators that f D const on M ,
and hence ˇı� is surjective.

To see that ˇı� DD�D��I is injective, the family D�D� t�I for t 2 Œ0; 1�, with
boundary condition X D 0 on @M , is a curve of elliptic boundary value problems.
Since the index is 0 when t D 0, it follows that the index is also 0 when t D 1, ie ˇı�

has index 0 on �1 , which proves the injectivity. This completes the proof.
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Corollary 2.3 Any metric g 2ZC near eg is necessarily Einstein, with Ricg D �g ,
and in Bianchi gauge with respect to eg , ie

(2–14) ˇeg .g/D 0:

Proof Since g 2ZC , one has ˆ.g/D 0, ie

Ricg ��gC ı�gˇeg .g/D 0:

The Bianchi identity ˇg.Ricg/D 0 implies

ˇg.ı
�
g.V //D 0;

where V D ˇeg .g/. By the constraint (2–9), the vector field V vanishes on @M , so

that V 2 �
m�1;˛
1

. It then follows from Lemma 2.2 that

(2–15) ı�V D 0;

so that g is Einstein. To prove the second statement, (2–15) implies that V is a Killing
field on .M;g/ with V D 0 at @M by (2–9). It is then standard that V D 0 on M so
that (2–14) holds.

By linearizing, the same proof shows that the infinitesimal version of Corollary 2.3
holds. Thus, if k is an infinitesimal deformation of g 2 ZC , ie k 2 Ker Dˆ and if
ˇeg .g/D 0, (for example eg D g ), then k is an infinitesimal Einstein deformation, ie
the variation of g in the direction k preserves (2–3) to first order and ˇ.k/D 0. The
proof is left to the reader.

As mentioned above, Theorem 1.1 is proved via the implicit function theorem in Banach
spaces. To set the stage for this, the natural or geometric Cauchy data for the Einstein
equations (2–3) on M at @M consist of the pair .;A/. If k is an infinitesimal
Einstein deformation of .M;g/, so that LE.k/D 0, then the induced variation of the
Cauchy data on @M is given by

kT and .A0k/
T ;

where A0
k
D

1
2
.LN g/0 is the variation of A in the direction k , given by

(2–16) 2A0k DrN kC 2A ı k � 2ı�.k.N /T /� ı�.k00N /;

where we have used the formula LN k DrN kC 2A ı k .

It is proved in Anderson–Herzlich [3] that an Einstein metric g is uniquely determined
in a neighborhood of @M , up to isometry, by the Cauchy data .;A/. This also holds,
with the same proof, for the linearized Einstein equations and this linearized unique
continuation result will be needed in the proof of Theorem 1.1.
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Proposition 2.4 (Anderson–Herzlich [3]) Given any .M;g/ 2 E D Em;˛ , m � 3,
let k be any infinitesimal Einstein deformation of g such that

(2–17) kT
D 0 and .A0k/

T
D 0;

at @M . Then there exists a C mC1;˛ vector field Z , defined in a neighborhood of V of
@M , with Z D 0 on @M , such that on V ,

(2–18) k D ı�Z:

We note that the boundary conditions (2–17) are invariant under infinitesimal gauge
transformations k! kC ı�Z , with Z D 0 on @M . The following result is the main
part of the proof of Theorem 1.1.

Proposition 2.5 Suppose �1.M; @M /D 0. Then at any eg 2 Em;˛ , m� 3, the map
ˆDˆeg is a submersion on Metm;˛

C
.M /. Thus, the linearized operator LD 2Dˆ:

(2–19) LW Teg MetC .M /! S2.M /

is surjective, and the kernel of L splits in Teg MetC .M /.

Proof The operator L is elliptic on Teg MetC .M /, and so Fredholm. (More precisely,
one can augment the constraint (2–9) with further boundary conditions to obtain an
elliptic boundary value problem; this is discussed in detail in Section 3.)

In particular, Im.L/ is closed and has a closed complement in S2.M /. If L is not
surjective, then there exists a non-zero k 2 Teg Met.M /D S2.M / such that, for all
h 2 Teg MetC .M /,

(2–20)
Z

M

hL.h/; kidVeg D 0:

The idea of the proof is to show that (2–20) implies k is an infinitesimal Einstein
deformation, so LE.k/D0, (in transverse-traceless gauge), and satisfying the boundary
conditions (2–17), so that the unique continuation property in Proposition 2.4 applies.
Once this is established, the proof follows by a simple global argument, using the
condition on �1 . In the following, we set eg D g and drop the volume forms from the
notation; N denotes the unit outward normal at @M .

To begin, integrating (2–20) by parts, one obtains

(2–21) 0D

Z
M

hL.h/; ki D

Z
M

hh;L.k/iC

Z
@M

D.h; k/;

Geometry & Topology, Volume 12 (2008)



2018 Michael T Anderson

where the boundary pairing D.h; k/ has the form

(2–22) D.h; k/D hh;rN ki � hk;rN hi:

Since h is arbitrary in the interior, the bulk integral and the boundary integral on the
right in (2–21) vanish separately, and hence

(2–23) L.k/D 0:

Next, observe that (2–20) implies that

(2–24) ık D 0 on M;

so that k is in divergence-free gauge on M . To see this, (2–7) implies that L.ı�X /D

ı�Y; where Y D 2ˇı�X . Then

0D

Z
M

hL.ı�X /; ki D

Z
M

hY; ıkiC

Z
@M

k.Y;N /:

For hD ı�X , the Bianchi constraint (2–9) gives exactly Y D 0 at @M . By Lemma
2.2, Y is arbitrary in the interior of M , which thus gives (2–24).

The boundary integral in (2–21) vanishes for all h 2 Tg MetC .M /, ie all h satisfying
the linearized constraint (2–9). Written out in tangential and normal components, this
requires

.rN h/.N /T D ıT hT
�˛.h.N //C 1

2
dT tr h;(2–25)

N.h00/D ı
T .h.N /T /� h00H ChA; hiC 1

2
N.tr h/;(2–26)

where ˛.h.N //DA.h.N //CHh.N /T , h00Dh.N;N / and N.h00/D.rN h/.N;N /.

We first use various test-forms h to obtain restrictions on k at @M . Thus, suppose
first hD 0 at @M . The constraints (2–25)–(2–26) then require that

.rN h/.N /T D 0 and N.h00/D hrN h;  i;

where we have used the fact that tr h D h00C tr h. For all such h, (2–21)–(2–22)
gives Z

@M

hrN h; ki D 0;

and hence Z
@M

N.h00/k00C
1
n
hrN h;  ih; kiC h.rN h/T0 ; k

T
0 i D 0;
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where kT
0

is the trace-free part of kT . This implies that

(2–27) kT
D �; and k00 D�

1
n
t rk D��;

for some function � .

Next, set hT D h00D 0 with h.N /T chosen arbitrarily, and similarly rN hD 0 except
for the two relations .rN h/.N /T D�˛.h.N /T / and N.tr h/D�2ıT .h.N /T /. The
constraints are then satisfied and via (2–27), one hasZ

@M

hrN h; ki D �2

Z
@M

h˛.h.N //; k.N /T i � 2 n�1
nC1

�ıT .h.N /T /;

while Z
@M

hrN k; hi D 2

Z
@M

hh.N /T ; .rN k/.N /T i:

Now by (2–24) one has, (as in (2–25)),

.rN k/.N;T /D�.rei
k/.ei ;T /

D�ei.k.ei ;T //C k.rei
ei ;T /C k.ei ;rei

T /

D�hd�;T i � h˛.k.N //;T i;

so that

(2–28) .rN k/.N /T D�dT � �˛.k.N //:

Note that ˛ is symmetric: h˛.h.N //; k.N /iD h˛.k.N //; h.N /i. It then follows from
the two equations above and the divergence theorem that

(2–29) � D const :

We note that, analogous to (2–26), (2–24) together with (2–27) gives

(2–30) N.k00/D ı
T .k.N /T /� k00H Chk;Ai D ıT .k.N /T /C 2H�:

Next, suppose hD 0 except for h00 , which is chosen arbitrarily, and similarly rN hD 0

except for the component rN h.N /T . Then (2–25) and (2–26) require

N.h00/D�Hh00;

.rN h/.N /T D 1
2
dT h00:
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This gives Z
@M

hrN h; ki D 2

Z
@M

h.rN h/T ; k.N /T i � h00k00H

D

Z
@M

hdT h00; k.N /T i � h00k00H

D

Z
@M

h00ı
T .k.N /T /� h00k00H;

while Z
@M

hh;rN ki D

Z
@M

h00N.k00/:

Hence

(2–31) N.k00/D ı
T .k.N /T /� k00H:

Via (2–30) and (2–27), this implies that

(2–32) H� D 0;

so that � � 0 unless H � 0.

Finally, set hT D f  , h00 D �
n�2

2
f with the rest of h set to 0. Then setting

N.h00/D nfH with the rest of rN h set to 0 solves the constraints (2–25)–(2–26),
and (2–21)–(2–22) together with (2–27) and (2–32) then gives, since f is arbitrary,

hrN k;  i D n�2
2

N.k00/;

or equivalently

(2–33) N.tr k/D n
2
N.k00/:

We now analyse the boundary term in (2–21) in general, using the information obtained
above. Thus, expand the inner products in (2–33) into tangential, mixed and normal
components. Using (2–27), one has hrN h; kiD 2h.rN h/.N /T ; k.N /T i, since the 00
and trace components cancel by (2–26) and (2–29). Using the constraint (2–25), together
with the fact that, modulo divergence terms, hıT hT ; k.N /T i D hhT ; .ıT /�k.N /T i D

hhT ; ı�.k.N /T /i, one hasZ
@M

hrN h; ki D

Z
@M

2hhT ; ı�.k.N /T /iC ıT .k.N /T / tr h� 2h˛.h.N //; k.N /i

D

Z
@M

2hhT ; ı�.k.N /T /iC ıT .k.N /T /hhT ;  iC ıT .k.N /T /h00

� 2h˛.h.N //; k.N /i:
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On the other hand, hrN k; hiD h.rN k/T ; hT iC2hrN k.N /T ; h.N /T iCN.k00/h00 .
The middle term is computed in (2–28) and using (2–29), one hasZ

hrN k; hi D h.rN k/T ; hT
iCN.k00/h00� 2h˛.k.N //; h.N /i:

Now take the difference of these terms. Recall that ˛ is symmetric and from (2–16),
.rN k/T �2ı�k.N /T D 2.A0

k
/T �2AıkCk00A. Using also (2–31) and (2–32) then

gives

(2–34)
Z
@M

h2.A0k/
T
� ıT .k.N /T / � 3�A; hT

i D 0:

Since hT may be chosen arbitrarily consistent with the constraints, it follows that the
integrand is 0. Taking the  –trace, using (2–32), this gives

N.tr k/�N.k00/� .n� 2/ıT .k.N /T /D 0;

which via (2–31) and (2–33) implies that

(2–35) N.tr k/DN.k00/D 0:

Finally, we claim that

(2–36) tr k D .n� 1/� D 0:

To see this, the trace of (2–23) gives

� tr kC
s

nC 1
tr k D 0:

Since tr k D .n�1/�D const and N.tr k/D 0 on @M , a standard unique continuation
principle for the Laplacian implies that tr k D c on M . However, integrating the
equation above over M and using (2–35) implies tr k has mean value 0 on M , which
gives (2–36).

The results above thus imply that

(2–37) kT
D 0; .A0k/

T
D 0; on @M:

In addition, k is an infinitesimal Einstein deformation, since ˇ.k/ D 0 and (2–23)
holds. By the unique continuation property, (Proposition 2.4), one thus has

(2–38) k D ı�Z;

in a neighborhood U of @M , with Z D 0 at @M . In the Lemma below, it will be
shown, via the topological condition �1.M; @M / D 0, that Z extends to a (global)
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vector field on M and (2–38) holds on all of M . Since k is divergence-free by (2–24),
one then has

ıı�Z D 0;

globally on M , with Z D 0 on @M . Pairing this with Z and integrating over M , it
follows from the divergence theorem that ı�Z D 0 on M , and hence k D 0. Thus the
Lemma below will complete the proof of surjectivity.

Lemma 2.6 If �1.M; @M /D 0 and (2–38) holds in a neighborhood U of @M , then
there is a unique extension of the vector field Z to M , also denoted Z , such that
(2–38) holds on M .

Proof This result is an infinitesimal version of a well-known result on extension
of isometries: namely, if M and M 0 are complete, connected and simply connected
analytic Riemannian manifolds, then every isometry between connected open sets of M

and M 0 extends uniquely to an isometry between M and M 0 , cf Kobayashi–Nomizu
[11, Corollary 6.4].

In the current context, given the Einstein metric g on M , let g0t D gC tk , so that
for t small, g0t is a curve of global metrics on M . Since g is analytic in harmonic or
geodesic normal coordinates in the interior of M , so is the variation k , (by elliptic
regularity), and hence g0t is an analytic metric on M , for each t small; g0t is also
analytic in t . The vector field Z is defined and analytic in the region U �M , and the
main issue is to extend Z to a larger region. We do this via an analytic continuation
argument following [11].

Thus, let �t be the flow of Z defined in U , (or more precisely in U 0 �U for t small),
and let gt D �

�
t g , so that gt is an analytic curve of metrics in U . By construction

and (2–38), in U one has

(2–39) g0t D gt CO.t2/:

This estimate also holds for derivatives of gt and g0t in local coordinates.

Now choose any p 2 U near the inner boundary of U and consider the family of
g–geodesics through p and strictly within U . Working within U , the map �t sends
this family to the family of gt –geodesics through pt D�t .p/. Thus �t commutes with
the exponential maps of the respective metrics, and so is determined by the derivative
mapping .�t /� taking X 2 TpM to X 0 D .�t /�X 2 Tpt

M . On the other hand, by
(2–39), the (global) g0t –geodesics based at pt agree to second order in t with the
family of gt –geodesics through pt .

In a full geodesically convex neighborhood W of p which extends past U , one then
has a local analytic map �0t defined, as above, by sending the g–geodesic with tangent
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vector X to the g0t –geodesic with tangent vector .�t /�X . Now take the derivative of
this curve �0t of mappings with respect to t at t D 0. This uniquely defines a vector
field Z in U [W , which, by construction, agrees with the original vector field Z

in U \W . This extension is analytic and hence (2–38) remains valid on U [W , ie
one has a local analytic continuation of Z preserving (2–38). This process may be
repeated a finite number of times until all of M is covered. The topological condition
�1.M; @M /D0 guarantees the path independence of these local analytic continuations;
we refer to [11] for further details if needed. This completes the proof.

Having proved surjectivity, it is now essentially standard or formal that the kernel of
Dˆg splits, ie it admits a closed complement in Tg MetC . In more detail, it suffices
to find a bounded linear projection P mapping Tg MetC .M / onto Ker.Dˆg/. To do
this, let Met0C .M / �MetC .M / be the subspace of metrics g such that gjT .@M / Deg jT .@M /D e . Choose a fixed smooth extension operator taking metrics  on T .@M /

into MetC .M /, and let Met1C .M / be the resulting space of metrics, so that

MetC .M /DMet0C .M /˚Met1C .M /:

Let T and T 0,T 1 denote the corresponding tangent spaces at eg and LiDDˆjT i W T i!

S2.M /, for i D 1; 2. Then

(2–40) Ker Dˆg D f.h;g P / 2 T 0
˚T 1

WL0.h/CL1.g P /D 0g:

The operator L is elliptic, so that L0 is Fredholm on T 0 . The image Im.L0/ thus has
a finite dimensional complement S , S2.M /D Im.L0/˚S . By (2–40), Im.L1/ �

Im.L0/ and so Im L1 � Ker.�SL1/, where �S is orthogonal projection onto S .
By the nondegeneracy property (2–20), L1 maps onto S and hence Im�SL1 D S .
Viewing S as a subspace of T , under the natural isomorphism T ' S2.M /, this gives
T D Im.�SL1/˚Ker.�SL1/, ie Ker.�SL1/ splits, and so there is a bounded linear
projection P1 onto Ker.�SL1/. The mapping LC�S is invertible and

P .h;g P /D ..L
0
C�S /

�1.�L1P1.g P /C�Sh/;P1g P /

gives required bounded linear projection onto Ker Dˆg . This completes the proof.

Remark 2.7 There exist at least some examples of Einstein metrics .M;g/ having
non-zero solutions of (2–20), so that L on Tg MetC .M / is not surjective in general;
(of course such metrics must violate the condition �1.M; @M / D 0). As a simple
example, let M D I �T n , I D Œ0; 1�, and let g be a flat product metric on M . Let x˛

denote standard coordinates on M , with x0D t parameterizing I . Then the symmetric
form

(2–41) k D dt � dx˛ D ı�.trx˛/;

Geometry & Topology, Volume 12 (2008)



2024 Michael T Anderson

is a divergence-free deformation of the flat metric satisfying (2–20), at least when
˛ > 0. Note that this solution is pure gauge, k D ı�Y , with Y D trx˛ vanishing at
one boundary component but not at the other.

On the other hand, the condition on �1 in Proposition 2.5 and Theorem 1.1 is used
only to extend the locally defined solution Z in (2–38) to a globally defined vector
field on M with Z D 0 on @M . For example, Z in (2–38) is unique modulo local
Killing fields. Hence if .M;g/ has no local Killing fields, (which is the case for
generic metrics), then Proposition 2.5, and Theorem 1.1, hold near g , provided @M is
connected.

Corollary 2.8 Under the assumptions of Proposition 2.5, if E is non-empty, then the
local spaces EC are infinite dimensional C1 Banach manifolds, with

(2–42) Teg EC D Ker.Dˆeg /eg :
Proof This is an immediate consequence Corollary 2.3, Proposition 2.5 and the
implicit function theorem, (regular value theorem), in Banach spaces.

By Corollary 2.3, Einstein metrics in EC satisfy the Bianchi gauge condition

(2–43) ˇeg .g/D 0:

We need to show that (2–43) is actually a well-defined gauge condition. Let D1 D

DmC1;˛
1

.M / be the group of C mC1;˛ diffeomorphisms of M which equal the identity
on @M . The action of D1 on E is continuous and also free, since any isometry �
of a metric inducing the identity on @M must itself be the identity. However, the
action of D1 is not a priori smooth. Namely, as before let �1 D �

mC1;˛
1

denote the
space of C mC1;˛ vector fields X on xM with X D 0 on @M , so that �1 represents
the tangent space of D1 at the identity. For X 2 �1 and g 2 Metm;˛.M /, one has
ı�X D 1

2
LX g 2 S

m�1;˛
2

.M /, but ı�X … S
m;˛
2

.M /, so that there is a loss of one
derivative.

For the same reasons, at a general metric g 2Metm;˛ , the splitting (2–12) does not hold
when .m� 2/ is replaced by m. However, for Einstein metrics, this loss of regularity
can be restored.

Lemma 2.9 For g 2 Em;˛ , the splittings (2–11) and (2–12) hold, and for any X 2

�
mC1;˛
1

, ı�X 2 S
m;˛
2

.M /.
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Proof By the proofs of (2–11) and (2–12), it suffices to prove the second statement.
Since Einstein metrics are C1 smooth, (in fact real-analytic), in harmonic coordinates
in the interior, LX g is C m;˛ smooth in the interior of M . To see that LX g is C m;˛

smooth up to @M , recall that in suitable boundary harmonic coordinates, one has

�gg˛ˇCQ˛ˇ.g; @g/D�2 Ric˛ˇ D�2�g˛ˇ;

cf Anderson et al [4] for the analysis of boundary regularity of Einstein metrics. Ap-
plying X to this equation and commuting derivatives gives an equation for �gX.g˛ˇ/

with 0 boundary values, (since X.g/D 0 on @M ), and with right-hand side in C m�2;˛ .
Elliptic boundary regularity results then imply that X.g˛ˇ/ 2 C m;˛ . From this, it is
easy to see that LX g is C m;˛ smooth up to @M .

Next we pass from the infinitesimal splitting to its local version.

Lemma 2.10 Given any eg 2 Em;˛ and g 2 Metm;˛.M / nearby eg , there exists a
unique diffeomorphism � 2DmC1;˛

1
, close to the identity, such that

(2–44) ˇeg .��g/D 0:

In particular, ��g 2Metm;˛
C

.M /.

Proof Given Lemma 2.9, this can be derived from the slice theorem of Ebin [6], but
we give a direct and simpler argument here. (Note that the Lemma does not assert the
existence of a smooth slice). Let eg 2 E and consider the map F W D1 �MetC .M /!

Met.M / given by F.�;g/D ��g . The proof of Lemma 2.9 above shows that F is
C1 smooth at eg ; F is linear in g and smooth in the direction of D1 at eg and hence
smooth at eg .

Now suppose g 2Met.M / is close to eg . The linearization of F at .Id;eg/ is the map
.X; h/! ı�X C h. By Lemma 2.9, given any h, there exists a unique vector field
X 2 �

mC1;˛
1

such that on .M;eg/, ˇ.ı�X C h/D 0, or

ˇı�X D�ˇ.h/;

with respect to eg . Hence, for g sufficiently close to eg , there is a vector field X such
that

jˇeg .gC ı�eg X /j � ˇeg .g/:
It then follows from the inverse function theorem that there exists a unique diffeomor-
phism � 2D1 close to the identity such that (2–44) holds.
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Lemma 2.10 implies that if g 2 E is an Einstein metric near eg , then g is isometric,
by a unique diffeomorphism in D1 , to an Einstein metric in EC . Hence (2–43) is a
well-defined gauge condition and the spaces EC are local slices for the action of D1

on E.

We are now in position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 The space E D Em;˛.M / � Metm;˛.M / of all Einstein
metrics on M is invariant under the action of the group D1 DDmC1;˛

1
. The moduli

space E D Em;˛.M / of C m;˛ Einstein metrics on M is the quotient

E D E=D1:

Two metrics g1 and g2 in E are equivalent if there exists � 2D1 , such that ��g1Dg2 .

The local spaces EC are smooth Banach manifolds and depend smoothly on the
background metric eg , since the gauge condition (2–43) varies smoothly with eg . As
noted above, the action of D1 on E is free and by Lemma 2.9, the action is smooth.
Hence the global space E is a smooth Banach manifold, as is the quotient E . The local
slices EC represent local coordinate patches for E .

It also follows immediately from the proof above that the spaces E1 and E1 D
E1=D1 of C1 Einstein metrics on M are smooth Fréchet manifolds.

3 Elliptic boundary problems for the Einstein equations

In this section, we consider elliptic boundary value problems for the Einstein equations.
We begin with the Dirichlet boundary value problem. A metric g on M induces
naturally a boundary metric

(3–1)  D gT
D gjT .@M /

on @M . One also has a normal part gN � gjN.@M / of the metric g at @M . In local
coordinates .x0;x1; : : : ;xn/ for @M in M with x0 D 0 on @M , these are the g0˛

components of g˛ˇ , with 0 � ˛ � n. Observe that the normal part of g is a gauge
term, in the sense that it transforms as a 1–form under the action of diffeomorphisms
of M equal to the identity on @M .

Given the work in Section 2 and the relation (2–7) between LE with L, the most
obvious boundary conditions to impose for the Dirichlet problem are:

gjT .@M / D  on @M; and(3–2)

ˇeg.g/D 0 on @M:(3–3)

Geometry & Topology, Volume 12 (2008)



On boundary value problems for Einstein metrics 2027

Here  is an arbitrary Riemannian metric on @M , close to e in Metm;˛.@M /. Note
this is a formally determined set of boundary conditions; the Dirichlet condition (3–2)
gives 1

2
n.nC 1/ equations, while the Neumann-type boundary condition (3–3) gives

nC1 equations. In sum, this gives 1
2
.nC1/.nC2/ equations, which equals the number

of components of the variable g on M .

However, the operator ˆ with the boundary conditions (3–2)–(3–3) does not form a
well-defined elliptic boundary value problem. Geometrically, the reason for this is as
follows. Metrics g satisfying ˆ.g/D 0 with the boundary condition (3–3) are Einstein,
(cf Corollary 2.3), and so satisfy the Einstein constraint equations on @M . These are
given by

jAj2�H 2
C s � .n� 1/�D .Ricg ��g/.N;N /D 0;(3–4)

ı.A�H /D Ric.N; �/D 0:(3–5)

The scalar or Hamiltonian constraint (3–5) imposes a constraint on the regularity of
the boundary metric  not captured by (3–2)–(3–3). Thus, if the boundary conditions
(3–2)–(3–3) gave an elliptic system, (3–4) would hold for a space of boundary metrics
 of finite codimension in Metm;˛.@M /, which, as discussed in the introduction, is
impossible.

The discussion above implies there is no natural elliptic boundary value problem
for the Einstein equations, associated with Dirichlet boundary values. To obtain an
elliptic problem, one needs to add either gauge-dependent terms or terms depending on
the extrinsic geometry of @M in .M;g/. To maintain a determined boundary value
problem, one then has to subtract part of the intrinsic Dirichlet boundary data on @M .

There are several ways to carry this out in practice, but we will concentrate on the
following situations. Let B be a C m;˛ positive definite symmetric bilinear form on
@M . In place of prescribing the boundary metric gT on @M , only gT modulo B will
be prescribed. Thus, let � be the projection

� W Metm;˛.@M /!Metm;˛.@M /=B; �. /D Œ �B D Œ CfB�B:

We allow here B to depend on  . For instance, if B D  , then Œ �B D Œ � is the
conformal class of  .

The simplest gauge-dependent term one can add to (3–3) is the equation g. eN ; eN /D

00 , where eN is the unit normal with respect to eg , while the simplest extrinsic
geometric scalar is H , the mean curvature of @M in .M;g/.
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Proposition 3.1 The Bianchi-gauged Einstein operator ˆ with boundary conditions
either

(3–6) ˇeg .g/D 0; ŒgT �B D Œ �B; g. eN ; eN /D 00 at @M;

or

(3–7) ˇeg .g/D 0; ŒgT �B D Œ �B; Hg D h at @M;

is an elliptic boundary value problem of Fredholm index 0.

Proof The proof is essentially a standard computation, following ideas initially intro-
duced by Nash [17] in the isometric embedding problem, cf also Hamilton [9]. We
will follow the method used by Schlenker in [19].

It suffices to show that the leading order part of the linearized operators forms an elliptic
system. The leading order symbol of LDDˆ is given by

(3–8) �.L/D�j�j2I;

where I is the N �N identity matrix, with N D .nC 2/.nC 1/=2 the dimension
of the space of symmetric bilinear forms on RnC1 . In the following, the subscript 0
represents the direction normal to @M in M , and Latin indices run from 1 to n. The
positive roots of (3–8) are i j�j, with multiplicity N .

Writing � D .z; �i/, the symbols of the leading order terms in the boundary operators
are given by:

�2izh0k � 2i
X

�j hjk C i�k tr hD 0;

�2izh00� 2i
X

�kh0k C iz tr hD 0;

hT
D . 0/T mod B;

h00 D ! or ;H 0h D !;

where h is an N �N matrix. Then ellipticity requires that the operator defined by the
boundary symbols above has trivial kernel when z is set to the root i j�j. Carrying this
out then gives the system

2j�jh0k � 2i
X

�j hjk C i�k tr hD 0;(3–9)

2j�jh00� 2i
X

�kh0k � j�j tr hD 0;(3–10)

hkl D �bkkıkl ;(3–11)

h00 D 0 or ;H 0h D 0;(3–12)
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where without loss of generality we assume B is diagonal, with entries bkk , and � is
an undetermined function.

Multiplying (3–9) by i�k and summing gives

2j�ji
X

�kh0k D 2i2�2
khkk � i2�2

k tr h:

Substituting (3–10) on the term on the left above then gives

2j�j2h00� j�j
2 tr hD�2

X
�2

khkk Cj�j
2 tr h;

so that
j�j2h00� j�j

2 tr hD�
X

�2
khkk D��hB.�/; �i:

Using the fact that
P

hkk D tr h� h00 , this is equivalent to

�hB.�/; �i D �j�j2 tr B:

Since B is assumed to be positive definite, it follows that � D 0 and hence hT D 0.

If the first boundary condition h00 D 0 in (3–12) is used, then tr h D 0, and hence
via (3–9), h0k D 0. This gives h D 0, as required. If instead one uses the second
condition H 0 D 0 in (3–12), a simple computation shows that to leading order, H 0

h
D

trT .rN h� 2ı�.h.N /T //, which has symbol iz
P

hkk � 2i�kh0k . Setting this to 0
at the root z D i j�j gives X

.j�jhkk C 2i�kh0k/D 0:

Since hT D 0, this gives
P
�kh0k D 0, which, via (3–10) gives h00 D 0 and hence

hD 0 as before.

To prove the operator ˆ with boundary values (3–6) or (3–7) is Fredholm of index 0,
we deform the boundary data through elliptic boundary values to self-adjoint boundary
data, which clearly has index 0. The result then follows from the homotopy invariance
of the index.

The boundary conditions (3–6) for the linearized operator L may be continuously
deformed to the data

(3–13) hT
D 0; rN h.N; �/D 0;

preserving ellipticity. This is proved in [19], (with only very minor differences in the
details), and so we refer to [19] for further detail as needed. It is also easy to see via
(2–21)–(2–22) that the boundary data (3–13) are self-adjoint for the operator L.
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Instead, we provide more detail for the boundary values (3–7). We claim that the
boundary data (3–7) can be deformed, preserving ellipticity, to the boundary data

(3–14) hT
0 D 0; N.tr hT /D 0; and rN h.N; �/D 0;

where hT
0

is the trace-free part of hT . To see this, first the deformation Bt D .1�

t/BC t from the positive form B to  , (t 2 Œ0; 1�), clearly preserves ellipticity, and
so we may assume B D  . Next deform ˇ to ˇt as

ˇt .h/D�rN h.N; �/� .1� t/rei
h.ei ; �/C

1
2
.1� t/d tr h;

with t 2 Œ0; 1�, and similarly

H 0t .h/D trT .rN h� 2.1� t/ı�.h.N /T //;

where we have ignored the lower order terms in H 0 . The boundary data (3–9)–(3–12)
are then replaced by

2j�jh0k � 2i.1� t/
X

�j hjk C i.1� t/�k tr hD 0;(3–15)

2j�jh00� 2i.1� t/
X

�kh0k � .1� t/j�j tr hD 0;(3–16)

hkl D �ıkl ;(3–17)

�j�j
X

hkk � 2i.1� t/�kh0k D 0:(3–18)

Now multiply (3–15) by .1� t/i�k and use (3–17) to obtain

(3–19) 2i.1� t/j�j
X
j�kh0k D�2.1� t/2�j�j2Cn.1� t/2�j�j2C.1� t/2j�j2h00:

By (3–17)–(3–18), the left side above equals �nj�j2� , so that

(3–20) �nj�j2� D .n� 2/.1� t/2�j�j2C .1� t/2j�j2h00:

Next substituting 2i.1� t/
P
�kh0k D�nj�j� in (3–16) gives

�n� D .1C t/h00� n.1� t/�;

so that h00 D�nt�=.1C t/. Substituting this into (3–20) gives

.n� 2/.1� t/2� D�n�C
t.1� t/2

1C t
n�;

which is easily seen to give � D 0, so that hT D 0. Via (3–18), this implies .1�
t/�kh0k D 0, which, when substituted in (3–16) implies that h00 D 0. From (3–15)
one then also obtains h0k D 0, and hence hD 0, as required. This proves the claim
above, and hence the index of ˆ with boundary data (3–7) is the same as that with
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boundary data (3–14). Again via (2–21)–(2–22), it is easily seen by inspection that L

is self-adjoint with the boundary data (3–14), which completes the proof.

Next we consider some applications of Proposition 3.1. Probably the most natural
choice for the form B is just BD gT , so that for  D gT , Œ �B D Œ � is the conformal
class of  . This leads to Theorem 1.2.

Proof of Theorem 1.2 Let Cm;˛.@M / be the space of pointwise conformally equiv-
alent C m;˛ metrics on @M . Proposition 3.1 and elliptic boundary regularity, cf
Agmon–Douglis–Nirenberg [1] and Morrey [16], implies that the map

(3–21) ‰W Metm;˛
C

.M /! S
m�2;˛
2

.M /� Cm;˛.@M /�C m�1;˛.@M /;

‰.g/D .ˆeg .g/; ŒgT �; H /;

is a smooth Fredholm map of index 0 for g near eg . Hence, the associated boundary
map

(3–22) e…D W E
m;˛
C

.M /! Cm;˛.@M /�C m�1;˛.@M /;

e…D.g/D .Œg
T �; H /;

is also smooth and Fredholm, of Fredholm index 0 for g near eg . The proof of Theorem
1.2 then follows from Lemma 2.10, just as in the proof of Theorem 1.1.

Note that for g 2 Em;˛ , the scalar constraint (3–4) implies that the scalar curvature of
the boundary metric  D gT 2Metm;˛.@M / is in C m�1;˛ . This is consistent with the
fact that only the conformal class of the boundary metric gT is prescribed in (3–22).

Next, consider the example where B equals the second fundamental form A of the met-
ric g2Em;˛

C
and assume @M is strictly convex for .M;g/. One has A2S

m�1;˛
2

.@M /,
so that the quotient Metm;˛.@M /=A is not well-defined. To remedy this, let eA DeA.g; "/ 2 S1

2
.@M / be a C1 smooth approximation to ADA.g/, "–close to A in

C m�1;˛ . As above, the boundary map

(3–23) e… eA W Em;˛
C

.M /!Metm;˛.@M /= eA �C m�1;˛.@M /;

e…D.g/D .Œg
T � eA ; H /;

is C1 smooth and Fredholm, of Fredholm index 0 for g near eg . In particular, the
linearized map has finite dimensional kernel and cokernel. This leads to the following
result, closely related to a result of Schlenker [19].
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Proposition 3.2 Suppose @M is strictly convex in .M;g/. Then near g , the space
of boundary values BD…D.E1/ of C1 Einstein metrics on M , if non-empty, is a
variety of finite codimension in Met1.@M /.

Proof It suffices to prove the result at the linearized level. First, note that the Fredholm
property of the boundary map (3–23) also holds when mD1. Observe also that the
full diffeomorphism group D1 acts on E1 , (but not on the slice E1

C
).

Suppose then h 2 Im D… � S1
2
.@M /. The projection S1

2
.@M /! S1

2
.@M /= eA

sends Im D… onto a subspace of finite codimension. On the other hand, regarding
the fiber of this projection, for f 2 C1 , one has fAD ı�.fN / 2 S1

2
.@M /, so that

hC fA 2 Im D…, for any such f and any h 2 Im D…. It follows that Im D… is
"–dense in a subspace of finite codimension in S1

2
.@M /. One may then let eA DeA."/!A in C1 , and the result follows.

We point out that natural analogs of Proposition 3.1, Proposition 3.2 and the discussion
above also for Neumann boundary value problems, (replacing  by A). The details of
this are left to the interested reader.

4 Extension to complete, noncompact metrics

In this section, we consider extensions of Theorem 1.1 and Theorem 1.2 to complete
open manifolds with compact boundary. Of course this is only relevant in the case
�� 0, since Einstein metrics of positive Ricci curvature have a bound on their diameter.

Let M be an open manifold with compact boundary, in the sense that M has a
compact (interior) boundary @M , together with a collection of non-compact ends. A
priori, at this stage M could have an infinite number of ends, and/or ends of infinite
topological type. As in Section 2, we assume �1.M; @M /D 0, so that in particular
@M is connected.

Let g0 be an Einstein metric on M which is C m;˛ up to @M , m� 2, and which is
complete away from @M . Choose also a fixed, locally finite atlas in which the metric
g0 is locally in C m;˛ up to @M .

The metric g0 determines the asymptotic behavior of the space of metrics to be
considered. To describe this, on .M;g0/, let

(4–1) v.r/D vol S.r/;

where S.r/ is the geodesic r –sphere about @M , ie

S.r/D fx 2 .M;g0/ W dist.x; @M /D rg:
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Choose positive constants, a; b > 0 and let Met0.M /DMetm;˛
g0;a;b

.M / be the space
of C m;˛ metrics on M , (in the given atlas), such that, for r large,

jg�g0j.r/D sup
x2S.r/

jg�g0j.x/� r�a;(4–2)

jr
kgj.r/D sup

x2S.r/

jr
kgj.x/� r�.aCb/;(4–3)

for k D 1; 2 and for any g1;g2 2Met0.M /,

(4–4) jg1�g0j � jrg2j.r/Cjrg1j � jr
2g2j.r/� ".r/v.r/

�1;

where ".r/! 0 as r !1; the norms and covariant derivatives are taken with respect
to g0 .

These decay conditions at infinity are quite weak. Consider for example the situation
where g0 is Euclidean, or more generally flat in the sense that g0 is the flat metric
on Rm � T n�mC1 , where T n�mC1 is a flat .n �mC 1/ torus and m � 3. Then
v.r/D crm�1 and the conditions (4–2)–(4–4) are satisfied if

(4–5) 2aC b >m� 1:

The usual notion of an asymptotically flat metric g requires g to decay at the rate of the
Green’s function, jg�g0j DO.r�.m�2// in this case, while jrkgj DO.r�.m�2Ck//.
The condition (4–5) is clearly much weaker than this requirement.

Now given g0 , define the spaces MetC , ZC and EC �ZC as subspaces of Met0.M /

exactly as in (2–9)–(2–10). Further, let

(4–6) E�Met0.M /;

be the space of all Einstein metrics in Met0.M /.

Next, regarding the gauge groups for these spaces, let D be the group of C mC1;˛

diffeomorphisms � of M which satisfy decay conditions analogous to (4–2)–(4–4), ie
taking the supremum over x 2 S.r/,

j� � Id j.r/� r�a;(4–7)

jr
k.� � Id/j.r/� r�.aCb/;(4–8)

for k D 1; 2 and for any �1; �2 2D ,

(4–9) j�1� Id j � jr.�2� Id/j.r/Cjr.�1� Id/j � jr2.�2� Id/j.r/� ".r/v.r/�1:

Then D acts on Met0.M /. Let D1 �D be the subgroup of diffeomorphisms equal to
the identity on @M . Let �1 denote the corresponding space of vector fields on M .

Geometry & Topology, Volume 12 (2008)



2034 Michael T Anderson

The proofs of Theorems 1.1–1.2 in this context are identical to the proofs when M is
compact, provided two issues are addressed. First, in the integration by parts arguments
used in several places in the proof of Proposition 2.5 and the lemmas preceding it, one
needs all boundary terms taken over S.r/ to decay to 0 as r!1. Second, one needs
to choose function spaces and boundary conditions at infinity for which the operators
L and ˇı� are Fredholm.

Thus, consider closed subspaces MetF .M /�MetC .M /, DF �D1 , and the associated
SF .M /� S2.M / and �F .M /� �1 , which are compatible in the sense that DF acts
on MetF .M /. One may then consider the quotient spaces MetF .M /=DF and in
particular

(4–10) EF D EF=DF ;

where EF � E is the subspace of Einstein metrics in MetF .M /.

Proposition 4.1 Let MetF .M / � MetC .M / and DF � D1 be compatible closed
subspaces on which the operators LjTg MetF .M / and ˇı�j�F

are Fredholm.

Then Theorems 1.1–1.2 hold on MetF .M /, ie the space E D EF .M / is either empty or
an infinite dimensional smooth Banach manifold, (or Fréchet manifold when mD1),
on which the boundary map (1–5) satisfies the conclusions of Theorem 1.2.

Proof By straightforward inspection, the decay conditions (4–2)–(4–4) and (4–7)–
(4–9) insure that the first condition above regarding the decay of the boundary terms
at S.r/ holds. These boundary terms arise in (2–11), (2–13) and in (2–21), via the
divergence theorem.

Given that L and ˇı� is Fredholm, the proofs of Theorems 1.1–1.2 then carry over
without change to the current situation.

For an arbitrary complete Einstein metric .M;g0/, there is no general theory to
determine whether natural elliptic operators are Fredholm on suitable function spaces.
A detailed analysis in the case of “fibered boundary” metrics has been carried out
by Mazzeo and Melrose, cf [15]. For simplicity, we restrict here to the situation of
asymptotically flat metrics.

Thus, let gf l be a complete flat metric on the manifold N DRm�T nC1�m=� , where
� is a finite group of isometries. Let .x;y/ be standard coordinates for Rm and
T nC1�m and let r D jxj. Define

C
m;˛
ı

.N /D fuD r�ıf W f 2 C
m;˛
0

.N /g;
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where C
m;˛
0

is the space of functions f such that .1Cr2/jˇj=2@
ˇ
xf 2C 0;˛; @

ˇ
yf 2C 0;˛ ,

where jˇj �m, and C 0;˛ is the usual space of C ˛ Holder continuous functions on N .

Let M be a manifold with compact boundary @M , having a finite number of ends,
each diffeomorphic to some N above, (not necessarily fixed). Given a choice of flat
metric gf l on each end, let Metı.M / be the space of locally C m;˛ metrics g on M

such that the components of .g�gf l/ in the .x;y/ coordinates are in C
m;˛
ı

.N /. One
defines the group of C mC1;˛ diffeomorphisms D1;ı and associated vector fields �1;ı

in the same way.

By [15], the Laplace-type operators L and ıı� are Fredholm as maps Metm;˛
ı

.M /!

S
m�2;˛
2;ı

.M / and �mC1;˛
1;ı

! �
m�1;˛
1;ı

provided m� 3 and

(4–11) 0< ı <m� 2:

Choosing then aD ı and b D ıC 1 in (4–2)–(4–3) and (4–7)–(4–8) shows that (4–4)
and (4–9) hold provided

(4–12)
m� 2

2
< ı <m� 2:

We now set MetF .M / D Metm;˛
ı

.M /, for ı satisfying (4–12) and let DF be the
corresponding space of C mC1;˛ diffeomorphisms. Let E D EF . Then combining the
results above with the rest of the proof of Theorem 1.1 proves the following more
precise version of Theorem 1.3.

Theorem 4.2 For �1.M; @M /D 0, the space E of Ricci-flat, locally asymptotically
flat metrics on M , satisfying the decay conditions (4–12), if non-empty, is an infinite
dimensional smooth Banach manifold, (Fréchet if mD1). Further, the boundary map
(1–5) satisfies the conclusions of Theorem 1.2.

Note that Einstein metrics g 2 E will often satisfy stronger decay conditions than
(4–12). The Einstein equations imply that the metrics decay to the flat metric on the
order of O.r�.m�2//; this will not be discussed further here however.

5 Matter fields

In this section, we consider Theorems 1.1–1.3 for the Einstein equations coupled to
other (matter) fields � . Typical examples of such fields, which arise naturally in physics
are:

� Scalar fields, uW M !R.
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� � –models, 'W .M;g/! .X; �/, where .X; �/ is a Riemannian manifold.

� Gauge fields A, ie connection 1–forms on principal bundles over M .

� p–form fields ! .

We assume that there is an action or Lagrangian LD L.g; �/, of the form

(5–1) LD LEH CLm;

where LEH is the Einstein-Hilbert Lagrangian with integrand .s�2ƒ/dV and where
the matter Lagrangian Lm involves the fields � up to first order, with coupling to the
metric g also involving at most the first derivatives of g . We also assume that L is
analytic in .g; �/ and is diffeomorphism invariant, in that for any f 2D1 ,

(5–2) L.f �g; f ��/D L.g; �/:

The variation of L with respect to g , @L
@g

gives the Euler-Lagrange equations for g :

(5–3) �E1.g; �/D Ricg �
s

2
gCƒg�T D 0;

where T is the stress-energy tensor of the fields � , ie the variation of Lm with respect
to g , cf Hawking–Ellis [10] for instance. The stress-energy T is first order in g and
� and the Bianchi identity implies the conservation property

(5–4) ıT D 0:

Similarly, the variation of Lm with respect to the fields � gives the Euler-Lagrange
equations for � , written schematically as

(5–5) E2.g; �/DE2
g.�/D 0:

We assume E2
g.�/ can be written in the form of a second order elliptic system for

� , with coefficients depending on g up to first order. Typically, the operator E2
g will

be a diagonal or uncoupled system of Laplace-type operators at leading order. For
simplicity, we do not discuss Dirac-type operators, although it can be expected that
similar results hold in this case. Note that by (5–2), the coupled field equations (5–3)
and (5–5) are invariant under the action of D1 .

For example, the Lagrangian for a scalar field with potential V is given by

(5–6) Lm D�

Z
M

Œ1
2
jduj2CV .u/�dVg;
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where V W R! R. An important special case is the free massive scalar field, where
V .u/Dm2u2 . The field equation (5–5) for u is then

(5–7) �guD V 0.u/;

with stress-energy tensor given by

(5–8) T D 1
2
Œdu � du� .1

2
jduj2CV .u//g�:

For a gauge field or connection 1–form � D d C A, the usual Lagrangian is the
Yang-Mills action

(5–9) Lm D�
1
2

Z
M

jF j2dVg;

where F D dAA� dAC 1
2
ŒA;A� is the curvature of A. The field equations are the

Yang-Mills equations, (or Maxwell equations in the case of a U.1/ bundle):

(5–10) dAF D ıAF D 0;

with stress-energy tensor

(5–11) T D F �F � 1
2
jF j2g;

where .F �F /�� D hF�˛;F�ˇig˛ˇ .

To match with the work in Section 2, we pass from (5–3) to the equivalent equations

(5–12) Ricg ��g�T0 D 0;

where T0 D T � tr T
nC1

g is the trace-free part of T . The conservation law (5–4) then
translates to

(5–13) ˇ.eT /D 0:

We begin with a detailed discussion of the case of the Einstein equations coupled to a
scalar field uW M !R with potential V .u/, where V W R!R is an arbitrary smooth
function; as will be seen below, the treatment of other fields is very similar.

The full Lagrangian is given by

(5–14) L.g;u/D
Z

M

Œ.s� 2ƒ/� 1
2
jduj2�V .u/�dVg;

which gives the field equations

(5–15) Ricg ��g D T0 D
1
2
.du � du� 1

n�1
Vg/; �uD V 0.u/;
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when the variations of .g;u/ are of compact support in M . As in the proof of Theorem
1.1, where the boundary data for the metric g were not fixed in advance, it is useful
here not to fix boundary values for the scalar field u. Thus, instead of (5–14), we
consider the Lagrangian

(5–16) L.g;u/D
Z

M

Œ.s� 2ƒ/C 1
2
u�u�V .u/�dV:

Of course, the Lagrangians (5–14) and (5–16) differ just by boundary terms.

The Lagrangian is a map Metm;˛.M / � C k;ˇ.M / ! R, and we assume k � 2,
ˇ 2 .0; 1/. The differential (or variation) dL is then a map
(5–17)

dLD .L1;L2/ WMetm;˛.M /�C k;ˇ.M /! T �.Metm�2;˛.M /�C k�2;ˇ.M //;

where

(5–18) dL1
.g;u/.h; v/D�hRicg ��g� eT .g;u/; hidV;

represents the variation with respect to g and

(5–19) dL2
.g;u/.h; v/D .

1
2
.v�uCu�v/�V 0.u/ � v/dV;

represents the variation with respect to u. The “new” stress-energy tensor yT for (5–16)
is given by yT D 1

2
Œu�0uC .1

2
u�u�V .u//g�, where �0u is the metric variation of

the Laplacian, given by

(5–20) �0u.h/D�hD2u; hiC hdu; ˇ.h/i;

where ˇ is the Bianchi operator ˇ.h/D ıhC 1
2
d.tr h/. Using (5–20), it is easily seen

that yT D T , for T as in (5–8), modulo boundary terms, and so we continue to use
(5–8). In particular, for variations of compact support, one obtains the Euler–Lagrange
equations (5–15).

Let ED E.M;g;u/ denote the space of all solutions of the equation dLD 0, for L
as in (5–16), ie the space of solutions to the Einstein equations coupled to the scalar
field u. This space is invariant under the diffeomorphism group D1 , acting on both
.g;u/ by pullback.

As in Section 2, one needs to choose a gauge to break the diffeomorphism invariance;
(the scalar field has no internal symmetry group, so there is no need of an extra gauge
for u). Thus, analogous to the discussion in Section 2, given a background metriceg 2 E, define

(5–21) ˆDˆeg W Met.M /�C k;ˇ.M /! T �.Met.M /�C k�2;ˇ.M //I
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ˆ.g;u/D Œ.Ricg ��g� eT .g;u/C ı�ˇeg .g//dV;�.1
2
.��uCu��/�V 0.u/�/dV �:

(For convenience, we have switched the signs in comparison with (5–18)–(5–19)). As
before, MetC .M /DMetm;˛

C
.M / is defined to be the space of C m;˛ metrics satisfying

the Bianchi constraint (2–9), and we set

ZC Dˆ
�1.0/�MetC .M /�C m;˛.M /:

Corollary 2.3 also holds as before, so that

(5–22) ZC D EC ;

(for any boundary conditions on u). Given this, the main task is to verify that the
analog of Proposition 2.5 holds.

Proposition 5.1 Proposition 2.5 holds for the map ˆ in (5–21), ie Dˆ is surjective.

Proof Consider the derivative of ˆ at g D eg :

DˆD .Dˆ1;Dˆ2/W T .Met.M /�C m;˛.M //! T .T �.Met.M /�C m�2;˛.M ///:

This is a block matrix of the form

(5–23) HD

0B@
@ˆ1

@g
@ˆ1

@u

@ˆ2

@g
@ˆ2

@u

1CA :
The matrix H is essentially the same as the second variation of the Lagrangian (5–16);
they agree modulo the gauge term ı�ˇeg .g/. A straightforward computation, using
the fact that .g;u/ 2 E, gives:

@ˆ1

@g
.h/D eL.h/DL.h/CS.h/;(5–24)

@ˆ1

@u
.v/D�du � dvC 1

2
V 0.u/vg;(5–25)

@ˆ2

@g
.h/D�1

2
.��0uCu�0�/� Œ1

4
.��uCu��/� 1

2
V 0.u/�� tr h(5–26)

@ˆ2

@u
.v/D�1

2
.��vC v��/CV 00.u/v�;(5–27)

where L is the Bianchi-gauged linearized Einstein operator (2–6) and S.h/ is an
algebraic operator of the form

S.h/D 1
2

tr hdu � du� 1
2
V .u/h� 1

2
tr hV .u/g:
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Now if there exists .k; w/? Im.Dˆ/, then

(5–28)
Z

M

hDˆ.h; v/; .k; w/idV D 0;

for all .h; v/ with h 2 T .Met.M /�C k;ˇ.M //. As in the proof of Proposition 2.5,
one integrates the expressions (5–24)–(5–27) by parts. For (5–24), one obtains, as in
(2–21),

(5–29)
Z

M

hL.h/; kiC hS.h/; ki D

Z
M

hL.k/; hiC hS.k/; hiC

Z
@M

D.h; k/;

where D is given by (2–22). For (5–25):

Œ�du � dvCV 0.u/ � v/g�.k/D

Z
M

�hdu � dv; kiC 1
2
V 0.u/ � v tr k D

(5–30)
Z

M

vŒ�ı.k.du//C 1
2
V 0.u/ tr k��

Z
@M

vk.du;N /:

Next for (5–26):

� Œ1
2
.��0uCu�0�/C 1

4
.��uCu��/� 1

2
V 0.u/�/ tr h�.w/

D�

Z
M

1
2
.w�0uCu�0w/C 1

4
.w�uCu�w/� 1

2
V 0.u/w/ tr h

andZ
M

w�0uD

Z
M

�whD2u; hiCwhdu; ˇ.h/i

D

Z
M

hdu � dwC 1
2
ı.wdu/g; hi �

Z
@M

wh.du;N /� 1
2

tr hwN.u/:

Interchanging u and w then gives

w �
@ˆ2

@g
.h/D�

Z
M

hdu � dwC 1
4
ı.duw/gC 1

4
.w�uCu�w/g(5–31)

�
1
2
V 0.u/w/g; hiC 1

2

Z
@M

h.duw;N /� 1
2

tr hN.uw/:

Finally, for (5–27),

�Œ1
2
.��vC v��/�V 00.u/v��.w/D�1

2

Z
M

.w�vC v�w� 2V 00.u/vw/

D�

Z
M

v.�w�V 00.u/w/� 1
2

Z
@M

wN.v/� vN.w/:(5–32)

Geometry & Topology, Volume 12 (2008)



On boundary value problems for Einstein metrics 2041

Now, supposing (5–28) holds, since v is arbitrary, by adding the bulk terms in (5–30)
and (5–32) one obtains

(5–33) �w�V 00.u/ �wC ı.k.du//� 1
2
V 0.u/ tr k D 0;

on .M;g/; this is the equation for the variation w of the scalar field u. Adding the
boundary terms in (5–30) and (5–32) gives

(5–34)
Z
@M

wN.v/� vŒN.w/� 2k.du;N /�D 0:

The boundary values of v are arbitrary, so that both v and N.v/ can be prescribed
arbitrarily at @M . Hence (5–34) implies that

(5–35) w D 0 and N.w/� 2k.du;N /D 0;

at @M .

Next, since h is arbitrary in the interior, adding the bulk terms in (5–29) and (5–31)
gives

(5–36) L.k/CS.k/�du �dw� 1
4
ı.duw/g� 1

4
.w�u�u�w/gC 1

2
V 0.u/wgD 0:

This is the equation for the variation k of the metric g . At @M , adding the boundary
terms in (5–29) and (5–31) gives

D.h; k/C 1
2
Œh.duw;N /� 1

2
tr hN.uw/�D 0:

Since w D 0 at @M , one thus has

(5–37) D.h; k/C 1
2
uN.w/Œh.N;N /� 1

2
tr h�D 0:

Now the same arguments as in (2–21)–(2–37) carry over to this situation essentially
unchanged. The proof of (2–24) follows in the same way as before, via the diffeo-
morphism invariance of E. It follows then from (5–35) and (5–37) that the geometric
Cauchy data vanish at @M , ie

(5–38) kT
D .A0k/

T
D 0; and w DN.w/D 0; at @M:

By (5–33) and (5–36), the pair .k; w/ satisfy the coupled system of equations:

L.k/CS.k/� du � dw� 1
4
ı.duw/g� 1

4
.w�u�u�w/gC 1

2
V 0.u/wg D 0;

(5–39)

�w�V 00.u/ �wC ı.k.du//� 1
2
V 0.u/ tr k D 0:(5–40)
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Here, .g;u/ are fixed, and viewed as (smooth) coefficients, while .k; w/ are the
unknowns. The equations (5–39)–(5–40) express the fact that .k; w/ 2 T Z . Since k

is transverse-traceless so that ˇ.k/D 0, the pair .k; w/ satisfy the linearized Einstein
equations coupled to a scalar field.

The unique continuation property, Proposition 2.4, also holds for these linearized
Einstein equations, since the scalar field u modifies the Einstein equations only at first
order. Given the vanishing of the geometric Cauchy data in (5–38), the proof that

(5–41) k D w D 0 on M;

proceeds just as before. This proves the surjectivity of Dˆ, and the proof that the
kernel splits is again the same.

Let E D Em;˛
�;V

.g;u/ be the moduli space of Einstein metrics g coupled to a scalar
field u with potential V on .M; @M /. As before, one has a natural Dirichlet boundary
map …D , giving Dirichlet boundary values to u, or its mixed version e…D as in (1–5).
Given Proposition 5.1 and the remarks above, the rest of the work in Section 2 and
Section 3 carries over unchanged, and proves the following.

Corollary 5.2 Suppose �1.M; @M / D 0. Then the space E of solutions to the
Einstein equations coupled to a scalar field with potential V , if non-empty, is an infinite
dimensional smooth Banach manifold, (Fréchet when mD1), for which the boundary
map e…D is smooth and Fredholm of index 0, ie Theorem 1.1 and Theorem 1.2 hold.

Similarly, Corollary 5.2 holds in the same way, for scalar fields in the space C
k;ˇ

ı
with

ı satisfying (4–12), ie in the asymptotically flat context.

Next consider the situation of the Einstein equations coupled to a nonlinear � –model. In
this case the field � is a smooth function uW .M;g/! .X; �/, with matter Lagrangian

(5–42) Lm D�

Z
M

Œ1
2
jduj2CV .u/�dVg;

where jduj2 D �.du.ei/; du.ei//, for a local orthonormal basis ei of .M;g/; du is
the derivative map of u, and V W X !R the potential function.

The analysis in this case is essentially the same as that of a single scalar field discussed
above. Probably the simplest way to see this is to isometrically embed .X; �/, via the
Nash embedding theorem, into a large Euclidean space RN . Then uW .M;g/! .X; �/

is a vector-valued function uD fuigW .M;g/!RN , 1� i �N , with the constraint
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that Im u�X �RN . The metric � on X is then just the restriction of the Euclidean
dot-product metric to TX .

The � –model field equations for the Lagrangian (5–42) are

(5–43) �T uD V 0.u/D u�.rV /;

where �T is the projection of the Laplacian �D�.M;g/ , acting on the components
ui of u, onto TX . If S denotes the second fundamental form of X in RN , then
(5–43) is equivalent to the system

(5–44) �uD S.du; du/CV 0.u/:

The stress-energy tensor T has exactly the same form as in (5–8), where du �du is the
symmetric bilinear form on M given by taking the Euclidean dot product of the vector
uD fuig.

Given this, it is now straightforward to see that all the computations carried out in
the case of a single scalar field u carry over without significant change to the present
constrained, vector-valued field u to give the following.

Corollary 5.3 If �1.M; @M /D 0, then the space E of solutions to the Einstein equa-
tions coupled to a � –model uW M ! .X; �/, if non-empty, is an infinite dimensional
smooth Banach manifold, for which the boundary map e…D is smooth and Fredholm,
of index 0.

Again, the analog of Theorem 4.2 also holds in this context.

Finally consider the Einstein equations coupled to gauge fields, ie connections !
on principal bundles P over M with compact semi-simple structure group G with
bi-invariant metric. The simplest coupled Lagrangian is

(5–45) LD
Z

M

.s� 2ƒ/dVg �
1
2

Z
M

jF j2dVg;

with field equations

(5–46) Ric��g�T0 D 0; ı!F D 0;

where T is given by (5–11) and T0 is the trace-free part.

Let A.P /DAk;ˇ.P / denote the space of connections on P which are C k;ˇ smooth
up to @M , with k � 2, ˇ 2 .0; 1/. Given any fixed connection !0 2 A.P /, any
! 2A.P / has the form ! D !0CA, where A is a 1–form on P with values in the
Lie algebra L.G/. Let EDE.g;A/ be the space of all solutions to the field equations
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(5–46), ie the space of all solutions of the Einstein equations coupled to the gauge
field A. The Lagrangian (5–45) and the field equations (5–46) are invariant under the
diffeomorphisms D1 of M , as well as gauge transformations of P , again equal to the
identity on @M . We expect the natural analogs of Theorem 1.1 and Theorem 1.2, (and
Theorem 4.2), hold in this context as well, by the same methods. However, this will
not be discussed here in detail, cf Marini [14] for some discussion along these lines.

Remark 5.4 Although the focus of this work has been on Einstein metrics, the main
results also apply to other field equations, with the background manifold and metric
.M;g/ arbitrary, (not necessarily Einstein), but fixed. Thus for example, the proof
of Corollary 5.2 shows that the space of solutions to the scalar field equation (5–7)
with fixed .M;g/ is an infinite dimensional smooth Banach manifold, (if non-empty),
with Dirichlet and Neumann boundary maps Fredholm of index 0. This follows just by
considering the piece @ˆ2=@u in H in (5–23). Thus, one may set k D 0 following
(5–38) and argue as before. Of course in the case the potential V .u/ is linear, the space
of solutions of (5–7) is a linear space.

Similarly, the space of harmonic maps uW .M;g/! .X; �/ with fixed data .M;g/

and .X; �/ also satisfies the conclusions of Theorem 1.1 and Theorem 1.2. This has
previously been known, cf Eells–Lemaire [7], only in the case of “non-degenerate”
harmonic maps.

References
[1] S Agmon, A Douglis, L Nirenberg, Estimates near the boundary for solutions of

elliptic partial differential equations satisfying general boundary conditions. I and II,
Comm. Pure Appl. Math. 12 and 17 (1964) 623–727 and 35–92

[2] M Anderson, Geometric aspects of the AdS/CFT correspondence, from: “AdS/CFT
correspondence: Einstein metrics and their conformal boundaries”, IRMA Lect. Math.
Theor. Phys. 8, Eur. Math. Soc., Zürich (2005) 1–31 MR2160865
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