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Quantum characteristic classes and the Hofer metric

YASHA SAVELYEV

Given a closed monotone symplectic manifold M , we define certain characteristic
cohomology classes of the free loop space LHam.M; !/ with values in QH�.M / ,
and their S1 equivariant version. These classes generalize the Seidel representa-
tion and satisfy versions of the axioms for Chern classes. In particular there is a
Whitney sum formula, which gives rise to a graded ring homomorphism from the
ring H�.�Ham.M; !/;Q/ , with its Pontryagin product to QH2nC�.M / with its
quantum product. As an application we prove an extension to higher dimensional
geometry of the loop space LHam.M; !/ of a theorem of McDuff and Slimowitz on
minimality in the Hofer metric of a semifree Hamiltonian circle action.

53D45; 53D35, 22E67

1 Introduction

The topology and geometry of the group Ham.M; !/ of Hamiltonian symplectomorph-
isms of a symplectic manifold M has been intensely studied by numerous authors.
This is an infinite-dimensional manifold with a remarkable bi-invariant Finsler metric
induced by the Hofer norm. It is of foundational importance in symplectic geometry
and Hamiltonian mechanics. As of now the deepest insights into the topology and Hofer
geometry of Ham.M; !/ come from Gromov–Witten invariants and related quantum
and Floer homology constructions. Still, rather little general information is known.

We define some general invariants, which will be used to study Ham.M; !/. The Hofer
geometry will serve a unifying role, and ultimately is what allows us to compute the
invariants in some cases. These computations can in turn be used to get Hofer geometric
and topological information. What follows is a rapid review of Hofer geometry.

1.1 Hofer geometry and Seidel representation

Given a smooth function Ht W M !R, 0� t � 1, there is an associated time dependent
Hamiltonian vector field Xt , 0� t � 1, defined by

!.Xt ; �/D dHt .�/:
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The vector field Xt generates a path t , 0 � t � 1, in Diff.M; !/. Given such a
path t , its endpoint 1 is called a Hamiltonian symplectomorphism. The space of
Hamiltonian symplectomorphisms forms a group, denoted by Ham.M; !/.

In particular the path t above lies in Ham.M; !/. It is well known that any path ftg

in Ham.M; !/ with 0 D id arises in this way (is generated by Ht W M !R). Given
such a path ftg, the Hofer length L.t / is defined by

L.t / WD

Z 1

0

max.H 
t /�min.H 

t / dt;

where H

t is a generating function for the path �1

0
t ; 0� t � 1. The Hofer distance

�.�;  / is defined by taking the infimum of the Hofer length of paths from � to  . It
is a deep theorem that the resulting metric is nondegenerate (see Hofer [5] and Lolonde
and McDuff [10]). This gives Ham.M; !/ the structure of a Finsler manifold. We will
be more concerned with a related measure of the path

LC.t / WD

Z 1

0

max.H 
t /;

where H

t is in addition normalized by the conditionZ

M

H t D 0:

Let  W S1 ! Ham.M; !/ be a subgroup with generating Hamiltonian H . Let
Fmax;Fmin denote the maximum and minimum level sets of H (these are fixed by
 ). We say that  is semifree at Fmax , respectively Fmin , if all the nonzero weights
of the linearized action of  on the normal bundles to Fmax , respectively Fmin , are
�1, respectively C1. To define these weights we take an S1 equivariant orientation
preserving identification of the normal bundle to Fmax at x 2Fmax with Cm , for some
m, which splits into  invariant 1–complex-dimensional subspaces Nki

, on which 
is acting by

(1) v 7! e�2�iki�v:

These ki are then defined to the weights of the circle action  . Here is one theorem
that does give some general information about topology and geometry of Ham.M; !/.

Theorem 1.1 (McDuff–Slimowitz–Tolman [18; 19]) Let  be a Hamiltonian circle
action on a symplectic manifold M , which is semifree at Fmax and Fmin . Then  is
length-minimizing in its homotopy class for the Hofer metric on Ham.M; !/.
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One of the motivating applications of this thesis is an extension of this theorem to the
higher-dimensional geometry of Ham.M; !/. The starting point for this is the Seidel
representation defined in [24]. This is a homomorphism

(2) S W �1.Ham.M; !//!QH�2n.M /;

where QH�
2n
.M / denotes the group of multiplicative units of degree 2n in quan-

tum homology QH�.M /, and 2n is the dimension of M . This representation of
�1.Ham.M; !// is a powerful tool in understanding the symplectic geometry of the
manifold .M; !/, of Hamiltonian fibrations X� over S2 associated to loops f�tg in
Ham.M; !/, as well as the Hofer geometry and topology of the group Ham.M; !/. In
particular, Theorem 1.1 can be proved using the Seidel representation as is essentially
done by McDuff and Tolman [19].

There is a completely natural extension of Seidel representation to certain cohomology
classes of the associated loop spaces of Ham.M; !/.

1.2 Quantum characteristic classes

Consider the free loop space LHam.M; !/, which we will abbreviate by LHam. We
construct natural bundles

zpW U !LHam and pW U S1

!Q� .LHam�S1/=S1:

The fiber over a loop  is modelled by a Hamiltonian fibration � W X ! S2 , with
fiber M , associated to the loop  as follows:

(3) X D .M �D2
0/[ .M �D2

1/=�

where the equivalence relation � is: .x; 1; �/0 � .� .x/; 1; �/1 . Here D2
0

and D2
1

are two names for the unit disk D2 �C and .r; 2��/ are polar coordinates on D .

Let pW P!B be a bundle obtained by pullback of either zpW U!LHam or pW U S1

!

Q, where B is a closed oriented smooth manifold. The bundle P comes with a natural
deformation class of families of symplectic forms f�bg on the fibers fXbg. We will
define characteristic classes

c
q

k
.P / 2H k.B;QH�.M //;

by counting the number of fiber-wise or vertical J –holomorphic curves passing through
certain natural homology classes in P . Here k is the degree of the class and the
superscript q stands for quantum to distinguish it from the Chern classes ck .
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Remark 1.2 Recall that the top Chern class of a complex vector bundle is its Euler
class, whose Poincare dual is represented by the self intersection of the zero section. The
classes c

q

k
.P / are also in a sense described by the self intersection of a natural homology

class in P , playing the role of the zero section, except that the classical intersection is
always empty and instead one keeps track of “instanton (or quantum) corrections” to
this self-intersection, coming from the presence of vertical J –holomorphic spheres.
This is the motivation for the name quantum characteristic class (cf Vafa [26]).

Remark 1.3 Michael Hutchings discovered maps

(4) �k.Ham.M; !//! Endk�1.QH�.M //;

where Endk�1.QH�.M // denotes the additive group of endomorphisms of the quan-
tum homology of degree k � 1. These maps generalize the Seidel representation. In
fact his project is much more extensive [6; 7]. Hutchings defines (4) as a kind of a
“family” or “higher” continuation map in Floer homology. Dusa McDuff [13] suggested
the following approach to these maps. Glue together M � .CPk

nB/ with M � xB ,
where B is an open 2k dimensional ball, by using a map f W S2k�1! Ham.M; !/

as a clutching map. We get a certain Hamiltonian fibration with fiber M over CPk

and may presumably define a parametrized variant of the Seidel representation which
takes into account the natural family of holomorphic curves in CPk . We are motivated
by this idea but our approach is slightly more abstract, which also leads to a close
relationship with the Hofer metric. We expect that our invariants will coincide with
Hutchings’ for cycles in the loop space �Ham.M; !/ induced by homotopy classes in
�k.Ham.M; !// (cf Example 2.8 and also Theorem 1.15).

Definition 1.4 Given fibrations Pf1
;Pf2

over B , induced by maps

f1; f2W B!LHam.M; !/

we define their sum Pf1
˚Pf2

to be Pf2�f1
, where f2 �f1W B!LHam.M; !/ is the

pointwise product of the maps f1; f2 induced by the topological group structure of
LHam.M; !/.

We’ll show in Section 7 that these fibrations have a natural structure group F and that
LHam.M; !/ is the classifying space of this structure group. Let PB;M denote the
group of isomorphism classes of fibrations p W P !B with structure group F (ie the
group of homotopy classes of maps f W B!LHam).

We may now state the axioms satisfied by our characteristic classes. For simplicity we
assume here that the base B is connected.
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Definition 1.5 Quantum characteristic classes are a sequence of functions

c
q

k
W PB;M !H k.B;QH�.M //;

satisfying the following axioms:

Axiom 1 (Partial normalization) c
q
0
.P /D S.Œ �/ if the fiber of pW P ! B is mod-

elled on X , where S is the Seidel representation. Further if P is trivial then c
q

k
.P /D0

for k > 0.

Axiom 2 (Functoriality) If gW B1! B2 is smooth, then

g�.c
q

k
.P2//D c

q

k
.g�.P2//:

Axiom 3 (Whitney sum formula) If P D P1˚P2 , then

cq.P /D cq.P1/[ cq.P2/;

where [ is the cup product of cohomology classes with coefficients in the quantum
homology ring QH�.M / and cq.P / is the total characteristic class

(5) cq.P /D c
q
0
.P /C : : :C cq

m.P /;

where m is the dimension of B . (In practice, we mainly deal with the identity com-
ponent of LHam. In this case c

q
0
.P / D S.Œ �/ is the identity ŒM � in the quantum

homology ring and so we get an expression in (5) analogous to the total Chern class.)

Theorem 1.6 If .M; !/ is a closed monotone symplectic manifold, then there exist
natural nontrivial quantum characteristic classes

c
q

k
W PB;M !H k.B;QH�.M //:

We define these classes in Section 3 and prove in Section 4 there that they satisfy
Axioms 1, 2 and 3.

Remark 1.7 Throughout we work with the class of monotone symplectic manifolds
.M; !/, ie those satisfying

Œ!�D const � c1.M /;

for a const> 0. This condition insures that the relevant evaluation maps are pseudocy-
cles. It is likely that this condition can be removed in the definition of QC classes by
using methods of the virtual moduli cycle. However a few properties of QC classes
may potentially require monotonicity, notably Theorem 1.15.
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Remark 1.8 We make no claim for uniqueness of these classes, as there are not
enough axioms here. We are missing something like a normalization axiom (see for
example Milnor and Stasheff [21]). It would be interesting to know if one can find a
suitable substitute.

1.3 Generalized Seidel representation

For the following discussion we consider the based loop space �Ham.M; !/. This
is a topological group with product induced by the product in Ham.M; !/, there is
an induced product on homology, the Pontryagin product, giving H�.�Ham.M; !//

the structure of a ring. Let f W B!LHam be a map from a smooth oriented closed
k –manifold, and Pf the induced fibration. Define

‰.B; f /� c
q

k
.Pf /.B/ 2QH2nCk.M /:

We will show that this induces a map

‰W H�.�Ham.M; !/;Q/!QH2nC�.M /:

The Whitney sum formula (Axiom 3) will imply that ‰ is a graded ring homomorphism.

Theorem 1.9 Let .M; !/ be a closed, monotone symplectic manifold of dimension
2n. There is a natural graded ring homomorphism

‰W H�.�Ham.M; !/;Q/!QH�C2n.M /;

where the product on the right is the quantum product.

In Section 3 and Section 4 we will describe these constructions and results in detail
and give some computations and applications.

1.4 Applications from Section 5

Given a map

f W B!LHam or f W B!QD .LHam.M; !/�S1/=S1;

where B is as before, we call

LC.f /�max
b2B

LC.b/;

the positive max-length measure of f , where b is either the loop f .b/2LHam or the
S1 equivariant loop f .b/2Q. More precisely, in the second case let qW LHam�S1!
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Q denote the S1 quotient map. Then f .b/D q.b; sb/ for some .b; sb/ and any two
choices are related by an action of S1 and hence the corresponding loops b have the
same length.

We define the virtual index of a one parameter subgroup  W S1! Ham.M; !/ by

I. /D
X

1�i�n
ki��1

2.jki j � 1/;

where ki are the weights of  at the max level set Fmax of H (see (1)).

We shall see in Section 2.3 that a map yf W Y ! Ham.M; !/; where qW Y ! B is a
principal S1 bundle induces a cycle f W B!Q.

Theorem 1.10 Let .M; !/ be a compact monotone symplectic manifold and let
yf W Y ! Ham.M; !/ be equivariant with respect to a right action by  W S1 !

Ham.M; !/ on Ham.M; !/, such that I. /D dim B and e1=2 dim B ¤ 0 (or dim B D

0) where e is the Euler class of the S1 bundle Y ! B . Then the induced cycle
f W B!Q is essential, ie doesn’t vanish in the oriented bordism group BordI. /.Q/,
and moreover it minimizes the positive max-length measure in its bordism class.

Remark 1.11 In [25] Ustilovsky gives a formula for the Hessian, ie the “second
variation formula” for the Hofer length functional and its positive and negative variants.
We might try to define the index of a Hofer geodesic  to be the dimension of the
maximum subspace of the tangent space to  (in LHam) on which the corresponding
Hessian for the positive Hofer length functional is negative definite. This index could
well be infinite as we are working on the loop space of the infinite dimensional space
Ham.M; !/. However, Theorem 1.10 suggests that at least for the geodesic coming
from a circle action that satisfies hypotheses of the theorem the index must be finite.
The heuristic argument for this, as well as for necessity of the virtual index condition of
the theorem, is the following. Up to the action of S1 , all the loops in the image f .B/
are of the form yf .y/ ı  for y 2 Y , by our assumption that yf W Y ! Ham.M; !/ is
S1 equivariant. Since the Hofer metric is bi-invariant all these loops have the same
index as  . Moreover, we should get a certain vector bundle over the image f .B/
whose fiber over the equivariant loop f .b/, b 2B , is “the” maximum negative definite
subspace of the tangent space to f .b/, with respect to the corresponding Hessian.
This is slightly wrong as there is no way to canonically pick out this negative definite
subspace. However, we can fix such a subspace of the tangent space at  and then
use the fact that all the other loops are translates of  of the form yf .y/ ı  up to the
action of S1 to construct this bundle locally and glue to get a global bundle. Let’s
call this ND bundle. If the rank of this ND bundle, given by the index, is bigger than
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dim B we can push the zero section off of itself and then “exponentiate” to produce
a deformation of the cycle f W B ! Q which reduces the max length measure; an
apparent contradiction. On the other hand if the index is equal to dim B , then there
is an obstruction to reducing the max length measure by such a local move coming
from the Euler class of the ND bundle. Lastly, if the index is strictly less than dim B

there is still an obstruction coming from the Euler class but it is no longer in the top
cohomology of B . Therefore while the cycle f W B!Q may minimize the max-length
measure locally and maybe even in its homotopy class it, it may be unreasonable to
hope that it is minimizing in the entire bordism class.

Remark 1.12 This heuristic argument suggests that a necessary condition for min-
imality of f W B ! Q above is that the index is equal to dim B . This condition is
local; on the other hand the conclusion of Theorem 1.10 is global. Nevertheless, to
prove it we compute the “leading order” contribution to the top quantum characteristic
class of the associated bundle pW Pf ! B , in terms of the Euler class of a vector
bundle analogous to the ND bundle above. A bit more precisely, this bundle will be an
obstruction bundle for a certain moduli space of holomorphic curves (cf Section 5.1).

These remarks motivate the questions.

Question 1.13 Is the index of  as defined above finite? Do the index of  and the
virtual index of  coincide? We will say a bit on this topic in a planned sequel [23].

Example 1.14 (for Theorem 1.10) Consider the Lie group homomorphism yf W S3!

Ham.CPn; !/, given by

s �.Œz0; z1; : : : ; zn�/D Œs.z0; z1/; : : : ; zn� for all s2S3
DSU.2/; Œz0; : : : ; zn�2CPn:

We can form an S1 bundle hW S3 ! S2 by taking the quotient of SU.2/ by the
right action of the diagonal S1 subgroup � 7! .ei� ; e�i� /. If we take  W S1 !

Ham.CPn; !/ to be the subgroup

ei�
� Œz0; z1; : : : ; zn�D Œe

i�z0; e
�i�z1; z2; ; : : : ; zn�;

acting on Ham.CPn; !/ on the right then the map yf is S1 equivariant for the two
actions. The weights of  at the maximum maxD Œ1; 0; 0; : : :� of the generating function
H are �2;�1;�1; : : : and so I. /D 2. Thus, by Theorem 1.10 the associated cycle

fhW S
2
!Q

is essential and minimizes the max-length measure in its bordism class.
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But there is another cycle we can assign to yf . This is the cycle

f W S2
!�Ham.M; !/

obtained from yf W S3 ! Ham.CPn; !/ by slicing S3 into a bouquet of circles (cf
Example 2.8). One can show that this cycle is essential by more elementary methods
(cf Kedra–McDuff [9] and Reznikov [22]), but these arguments do not show that it
minimizes the max-length measure.

The only non trivial characteristic class of Pf is c
q
2
.Pf /. Computing this directly is

difficult, but we may use the following theorem proved in Section 5.3.

Theorem 1.15 Let .M; !/ be a spherically monotone, compact symplectic manifold,
yf W S2kC1! Ham.M; !/ a smooth map, and

fhW CPk
!Q; f W S2k

!�Ham.M; !/

obtained from yf as in Example 2.8. Then the only possibly nontrivial characteristic
classes of Pfh

and Pf in degree other than 0 are the top characteristic classes c
q

2k
.Pfh

/,
c

q

2k
.Pf / and

(6) ‰.fh;CPk/D‰.f;S2k/ 2QH2nC2k.M /:

Note that cq.Pfh
/ and cq.Pf / are computed via PGW invariants of two topologically

very different fibrations, as f and fh are not even homologous in Q. So there is
no obvious apriori reason for (6) to hold. Using this as well as Proposition 5.3 and
Example 5.4 we deduce that for our f W S2!�Ham.M; !/,

‰.S2; f /D Œ� pt�˝ q�mmax tHmax C lower t –order terms 2QH2nC2.CPn/;

where mmaxD
P

i ki D�2� .n�1/ is the sum of the weights at the max and Hmax is
the maximum of H . Using the above and Proposition 5.1 we can deduce the following.

Corollary 1.16 The above map f W S2 ! �Ham.M; !/ is minimal in its rational
homology class for the max-length measure.

Remark 1.17 The crucial part of the above calculation is that

yf W SU.2/! Ham.CPn; !/

is S1 –equivariant in an appropriate way, and so we may apply Theorem 1.10. One
may try to extend the calculation by taking

yf W SU.n/! Ham.CPn�1; !/;
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and consider some associated cycle fhW SU.n/=S1!Q. However, the nonvanishing
condition on the Euler class in Theorem 1.10, e1=2.dim SU.n/�1/ ¤ 0 will never be
satisfied because of the topology of the group SU.n/, according to McDuff [13]. There
may of course be other examples, possibly not even coming from Lie group actions.

1.5 Some questions

Question 1.18 Does f W S2 ! �Ham.M; !/ remain minimal under the iterated
Pontryagin product, with respect to the max-length measure, ie is

f k
W .S2/k !�Ham.M; !/

minimal in its homology class?

A computation using Theorem 1.9 shows that the lower bounds coming from charac-
teristic classes (Proposition 5.1) would grow to infinity but it is not clear if they stay
sharp.

The following theorem is a slight reformulation of McDuff–Slimowitz [18].

Theorem 1.19 Let  W S1!Ham.M; !/ be a Hamiltonian circle action generated by
a Morse Hamiltonian H . Suppose  is a local minimum of the Hofer length functional.
Then it is a global minimum in its homotopy class.

Proof (sketch) It is well known that the max, min level sets of a Hamiltonian circle
action are connected. Thus, since H is Morse there is a unique max and min. Consider
the following theorem.

Theorem 1.20 (McDuff–Lalonde [11]) Let Ht , t 2 Œ0; 1� be a Hamiltonian defined
on any symplectic manifold M , and  D �t the corresponding isotopy. Assume that
each fixed extremum of Ht is isolated among the set of fixed extrema. If  is a stable
geodesic (ie a local minimum of the length functional) there exist at least one fixed
minimum p and one fixed maximum P at which the differential of the isotopy has no
non constant closed trajectory in time less than 1.

In our case this says that when  is a local minimum of the Hofer length functional and
is generated by a Morse Hamiltonian the linearized flow at max and min corresponding
to  has no nonconstant periodic orbits with period less than 1. This condition is
called semifree at max and min. On the other hand this puts us in position to apply the
following theorem.
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Theorem 1.21 (McDuff–Tolman [19]) Let  be a Hamiltonian circle action with
semifree maximal fixed point set and generating function H . Then there are classes
aB 2H�.M / such that:

S. /D ŒFmax�˝ q�mmax tHmax C

X
B2H S

2
j!.B/>0

aB˝ q�mmax�c1.B/tHmax�!B

Here S is the Seidel representation of (2), Hmax denotes the maximum value of H

and Fmax denotes the max level set. This expression implies that the positive Hofer
length of the loop  is bounded below by Hmax (cf Proposition 5.1). Reversing  and
applying the same theorem, we similarly get that the negative Hofer length of  is
bounded below by �Hmin . Together this implies the Hofer length of  is bounded
below by Hmax�Hmin .

Question 1.22 Can the condition on H being Morse in Theorem 1.19 be dropped or
relaxed?

We can think of Theorem 1.19 and Theorem 1.10 as local to global rigidity type of
phenomena in Ham.M; !/. One may wonder to what extent this can be extended. One
question which motivated this paper is the following.

Question 1.23 Let G be a closed k –dimensional Lie group and hW G!Ham.M; !/

a Lie group homomorphism (perhaps with finite kernel). Suppose h is a local minimum
for a “natural volume functional” induced by the Hofer metric on Ham.M; !/. Is h

necessarily a global minimum in its homotopy class? Homology class?

There are a few natural notions of volume in a Finsler manifold; one that is often used
is the Hausdorff k –measure but it may not be the easiest to work with. We refer the
reader to Álvarez and Thompson [1] for a discussion of these notions.
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2 Preliminaries and setup

In this section we describe constructions of certain natural fibrations, and of Parametric
Gromov–Witten invariants defined on the total spaces of these fibrations.

Let Q be the Borel S1 quotient of LHam, Q D .LHam � S1/=S1 , where the
action of S1 on S1 is by multiplication by ei� , for � 2 S1 and on LHam by
.� �  /.�/D  .� C �/. Let q denote the quotient map

(7) qW LHam�S1!Q:

2.1 Fibrations over LHam and Q

There is a natural fibration over LHam:

zpW U !LHam

where

(8) U DLHam�M �D2
0 [LHam�M �D2

1=�

and the equivalence relation � is: .;x; 1; �/0 � .; � .x/; 1; �/1 . Here, .r; 2��/
are polar coordinates on D2 , and � denotes the element of the loop  at time � . The
orientation on M �D2

0
is taken to be the natural positive orientation and on M �D2

1

is taken to be negative. There is a natural S1 action on U

� � .;x; r; �/0;1 D .� � ;x; r; � � �/0;1

where � 2 S
1

and .� � /� D �C� , ie the standard S1 action on the loop space. It can
be quickly checked that this is well defined under the equivalence relation �. Thus, the
diagonal action � of S1 on LHam�S1 lifts to a diagonal action z� on the product
fibration

zp� idW U �S1!LHam�S1:

This gives a quotient bundle

pW U S1

D .U �S1/=S1
!Q:

The fiber Xq.;s/ of U S1

over q.; s/ (see (7)) is the total space of the Hamiltonian
bundle X (cf (3)). We recall for the reader:

Definition 2.1 A Hamiltonian bundle is a bundle with symplectic fiber, whose tran-
sition maps are Hamiltonian. A Hamiltonian bundle map is a bundle map which
preserves the Hamiltonian bundle structure.
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Remark 2.2 We show in Section 7 that the structure group of zp W U !LHam over
the component containing the loop  may be reduced to the group F of Hamiltonian
bundle maps of the fiber X , which are identity over D2

0
and a neighborhood of

0 2 D2
1 . A very similar description holds for the structure group of pW U S1

!Q,
in particular it consists of certain Hamiltonian bundle maps. The groups F are
isomorphic for all  and we just refer to the groups as F . As already mentioned in
the Introduction and proved in Section 7, the space LHam is the classifying space
for F . (More precisely, the component of the loop  in LHam is the classifying
space for F .) We call a fiber bundle pW P ! B , with fiber having the structure
of a Hamiltonian fibration � W X ! S2 and structure group F an F –fibration. The
structure group of the bundle pulled back from pW U S1

!Q is also determined in
Section 7 and it also consists of special Hamiltonian bundle maps. We will call both
types of bundles simply by F –fibration, where there can be no confusion.

2.2 Families of symplectic forms on an F –fibration

Let pW P ! B be an F –fibration, in the sense of above remark. Fix an area form ˛

on the base S2 of � W X ! S2 once and for all. Since the fibers M are canonically
oriented as symplectic manifolds and since the transition maps of � W X ! S2 are
Hamiltonian and hence preserve that orientation, this induces an orientation � on the
fibers X of P , which is again preserved by the structure group F of the bundle P .
Thus, since B is oriented P inherits a well defined orientation.

Definition 2.3 Let � W X ! S2 be a Hamiltonian fibration with fiber .M; !/. We say
that a symplectic form � on X is !–compatible if it extends ! on the fibers.

Let A consist of all !–compatible symplectic forms � on X inducing the orientation
� (note, the cohomology class of � is not fixed). Since F acts on A, we have the
associated bundle kW KP ! B with fiber A.

Definition 2.4 Let pW P ! B be an F –fibration. A family of symplectic structures
f�bg on P is called admissible if it is a section of KP .

Lemma 2.5 The space of admissible families f�bg on pW P ! B is connected and
nonempty.

Proof We show that the fiber A of the bundle K is at least weakly contractible, ie
has vanishing homotopy groups. It will follow from obstruction theory that the space
of sections is connected and nonempty.
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Let hW Sk !A be a continuous map. We denote h.s/ by �s . Let �0 2A. The path

�t;s D t�0C .1� t/�s; t 2 I D Œ0; 1�

may not lie in A, as �t;s may be degenerate for some t , so we will need to compensate.
For t , s2I�Sk , let Hort;s denote the horizontal subbundle of TX with respect to �t;s ,
ie Hort;s is the symplectic orthogonal to the vertical tangent bundle of � W X ! S2 .

Let �h
t;s denote the horizontal part of �t;s , ie �h

t;s is zero on the vertical subbundle
of TX and coincides with �t;s on Hort;s . Then

�h
t;s D ft;s ��

�.˛/, where ft;sW X !R is smooth.

Recall that ˛ is the fixed area form on S2 . Set

C D j inf
t;s2I�Sk

.inf
X
ft;s/jC 1

and define

�.t/D

8̂<̂
:

0 if t 2 Œ0; 1=3�I

3.t � 1=3/ if t 2 Œ1=3; 2=3�I

1 if t 2 Œ2=3; 1�I

�.t/D

8̂<̂
:

3t if t 2 Œ0; 1=3�I

1 if t 2 Œ1=3; 2=3�I

�3.t � 2=3/C 1 if t 2 Œ2=3; 1�:

Consider the following homotopy of the map h:

F.t; s/D �.t/�C .1��.t//�sC �.t/C�
�.˛/:

Then F.1;x/ is the constant map to �0 and F.0;x/D h.x/. Since that �s and �
induce the same orientation on X , f0;s; f1;s > 0. Using this, it is clear that the form
F.t;x/ is nondegenerate on X for every t;x , and so F.t;x/ is a map into A. Thus,
all the homotopy groups of A vanish.

This discussion shows that we may choose an admissible family f�bg on P and
moreover any two such families are deformation equivalent. We will now construct a
special family that will be crucial in applications to the Hofer metric. As the first step
we define a family of symplectic forms f��1 g on LHam�M �D2

1 :

��1 .x; r; �/D !C d
�
�.r/H



�
.�1

0 x/
�
^ d� �max

x
H


�
.x/d�^ d� � � � 2rdr ^ d�;
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for an � > 0. (Recall that M �D2
1 has the negative orientation.) Here, H



�
is the

generating Hamiltonian for �1.0/ ı  , normalized so thatZ
M

H


�
!n
D 0

for all � , and �W Œ0; 1�! Œ0; 1� is a smooth function satisfying

0� �0.r/

�.r/D

(
1 if 1� ı � r � 1;

r2 if r � 1� 2ı;
and

for a small ı > 0. The last 2 terms are needed to make the sum nondegenerate. The
following geometric notion will be important to us for tying Hofer geometry with
geometry of holomorphic curves.

Definition 2.6 The area of a Hamiltonian fibration � W X ! S2 or � W X ! D2 ,
together with an !–compatible symplectic form � is defined by:

area.X; �/D Vol.X; �/=Vol.M; !/D

R
X �nC1

.nC 1/
R

M !n
:

The area of ��1 on M �D2
1 is constructed to be LC. /C � .

By definition of �, .x; �/0 7! .� .x/; �/1 . Thus,

@

@�
7! .0/�.XH �


/C

@

@�
;

@

@x
7! .� /�

� @
@x

�
and

@

@r
7! �

@

@r
:

It follows that the gluing relation � pulls back the form ��1 to the form

��0
 D !C � � 2rdr ^ d�;

on the neighborhood of the boundary M � @D2
0

, which extends to the form ��0
 on

M �D2
0

with area � . Then f�� g on U is given by gluing

.LHam�M �D2
0 ;
��0
 /[ .LHam�M �D2

1;
��1 /=� :

The area of each fiber is

area.X ;�� /DLC. /C 2�:

We pull back the family f�� g on U to a family f��.;s/g on U �S1 via projection
to U . The S1 action z� does not act by a symplectomorphism from the fiber X.;s/ to
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the fiber X.� �;� �s/ . We can fix this problem by averaging. Define a family f��S1

.;s/
g on

U �S1 by ��S1

.;s/ D
1

2�

Z
S1

z�.�/���.� �;� �s/ d�:

On .LHam�S1/�M �D2
1 this form is

��S1

.;s/ D ! �max
x

H


�
.x/d�^ d� � � � 2rdr ^ d�

C
1

2�

Z
S1

�
d.�.r/H



�
. .�/�1x//^ d�

�
d�:

It follows that each ��S1

.;s/
is symplectic and

area.X.;s/;��S1

;s/DLC. /C 2�

as before. Thus, the family ��S1

.;s/
on U �S1 passes down to a family f�bg on the

quotient bundle pW U S1

!Q with

(9) areaf�bg DLC. /C 2�:

2.3 Equivariant cycles in LHam

Let B be oriented compact and smooth. Up to homotopy, every cycle f W B ! Q

arises as follows. Let gW Y ! B be a smooth principal S1 bundle. And let yf W Y !
Ham.M; !/ be a map. Define

oW Y !LY

to be the map which sends x 2 Y to the loop x , x.�/D x � � , also let f 0W LY !

LHam be the map induced by yf W Y ! Ham.M; !/. Set zf D f 0 ı o, then

(10) zf W Y !LHam

is S1 equivariant. Let cW Y ! S1 be an S1 equivariant map. (The S1 equivariant
homotopy class of this map is uniquely determined.) Consider the product map

zf � cW Y !LHam�S1:

This is again an S1 equivariant map under the diagonal S1 action and so induces a
map on the quotients f W B!Q, whose homotopy class is independent of the choice
of the classifying map c .

Definition 2.7 We will call f W B ! Q smooth, if it comes from a smooth map
yf W Y ! Ham.M; !/.
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Clearly any map f W B!Q can be perturbed to be smooth.

Example 2.8 Let’s apply the above construction to a map yf W S2kC1! Ham.M; !/.
We can associate to it two cycles in Q, by slicing S2kC1 by circles in two different ways.
The first cycle, fhW CPk

!Q is obtained from the Hopf fibration hW S2kC1!CPk .
The second f W S2k !Q is obtained from the trivial fibration prW S2k �S1! S2k

and the composition yf2 D
yf ı t W S2k �S1! Ham.M; !/, where

t W S2k
�S1

! S2kC1

is any fixed degree 1 map. The maps f and fh are not homologous since any such
homology would project to a homology in CP1 , for the classifying maps of the
bundles prW S2k �S1! S2k and hW S2kC1!CPk .

Remark 2.9 Given a smooth map f W B!Q the pullback bundle pf W Pf ! B by
f of the bundle pW U S1

!Q can be given the following tautological reformulation,
which will be useful to us. The map f comes from a smooth map yf W Y !Ham.M; !/

for a certain smooth oriented principal S1 bundle gW Y ! B . This induces a map
zf W Y !LHam, where zf is as in (10). Consider the pullback bundle

(11) p zf W P zf ! Y

by zf of the bundle zpW U !LHam. In other words

P zf D .Y �M �D2
0/[ .Y �M �D2

1/=�

where .y;x; 1; �/0 is equivalent to .y; zft;� .x/; 1; �/1 . This is a smooth bundle with
the pullback of the S1 –action z� on U given by

(12) � 0 � .y;x; r; �/0;1 D .�
0
�y;x; r; � � � 0/0;1:

The quotient by the S1 action on this bundle is the bundle pf W Pf !B . Thus, when
f W B!Q is smooth the bundle pf W Pf !B and the family ff �.�b/g of symplectic
forms on this bundle are smooth.

2.4 Natural embeddings into an F –fibration

Now, let f W B ! Q be as usual, zf W Y ! LHam the associated S1 –equivariant
map (cf (10)) and consider the associated fibration P zf (cf (11)). There are natural
embeddings

zI0;1 W Y �M ! Y �M �D2
0;1;
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given by including into the fiber over 0 2D2
0;1

and thus induced embeddings

zI0;1W Y �M ! P zf :

These maps are S1 equivariant under the action of z� (cf (12)) and hence there are
induced embeddings I0;1W B �M ! Pf , which be used later.

A special case If we consider Q as LHam bundle over CP1 , there is a natural
map i�W H�.LHam/!H S1

� .LHam/ induced by inclusion of the fiber. Given a cycle
f 0W B ! LHam, the bundle Pf induced by the cycle f D i ı f 0W B ! Q can be
easily seen to be isomorphic to the pullback by zf of the bundle U over LHam, ie

Pf ' .B �M �D2
0/[ .B �M �D2

1/=�

where for .b;x; �/0 in the boundary of B �M �D2
0

, .b;x; �/0 � .b; f 0b;� .x/; �/1 ,
and the embeddings

(13) Iz W B �M ! Pf ;

defined above are now defined for all z 2 S2 . (This embedding is only well defined up
to isotopy for z in the equator @D2

0;1
2 S2 .)

The following subsection essentially sets up for Section 5.1 and its reading may be
postponed until then. On the other hand, it may help to clarify the above constructions.

2.5 Example of an F –fibration

Suppose now we have a map yf W Y ! Ham.M; !/; where qW Y ! B is an oriented
principal S1 bundle. Suppose further that the map yf is S1 equivariant with respect to
the S1 action on Y and S1 action on Ham.M; !/ corresponding to the right action
by a subgroup  W S1! Ham.M; !/ on Ham.M; !/. Let us understand the fibration
Pf for the induced map

f W B!Q:

First, we can identify X with S3 �S1 M , where S1 acts diagonally on S3 �M by

e2�i�
� .z1; z2Ix/D .e

�2�i�z1; e
�2�i�z2I  .e

2� i� /x/;

using complex coordinates on S3 . To see this, write Œz1; z2Ix� for the equivalence
class of the point .z1=r; z2=r Ix/ 2 S3 �M , where r is the norm of .z1; z2/. We
identify D0 �M with fŒ1; zIx� W jzj � 1;x 2 M g naturally and D1 �M with
fŒz; 1Ix� W jzj � 1;x 2M g via the orientation reversing reflection. The gluing map is
then

Œ1; e2�i�
Ix�� Œe�2�i� ; 1I  .e2�i� /x�;
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consistent with the previous definition. There is an S1 action ˇ on X given by

(14) e2�i� 0
� Œz1; z2Ix�D Œz1; e

2�i� 0z2Ix�:

Lemma 2.10 The bundle pf W Pf !B is isomorphic to the bundle hW Y �S1 X!B ,
where S1 is acting by ˇ on X .

Proof Let zf W Y !LHam be as above (see (10)) so�
zf .y/D yf .y/ ı 

�
W S1
! Ham.M; !/:

P zf D Y �M �D2
0 [Y �M �D2

1=�We have

.y;x; 1; �/0 � .y; yf .y/ ı � .x/; 1; �/1:where

In coordinates we have

M �D2
0 [Y �M �D2

1=�

where .y;x; 1; �/0 � .y; � .x/; 1; �/1 . There is a map kW P zf ! Y �X defined as
follows:

k.y;x; r; �/1 D .y; yf .y/
�1.x/; r; �/1

k.y;x; r; �/0 D .y;x; r; �/0:

This is a well defined bundle map, as is shown by the following diagram:

.y;x; �/0
� //

k

��

.y; 
y

�
.x/; �/1

k
��

.y;x; �/0
� // .y; � .x/D yf .y/

�1 ı 
y

�
.x/; �/1

We have the S1 action on Y �X given by

� 0 � .y;x; r; �/0 D .y � �
0;x; r; � � � 0/0(15)

� 0 � .y;x; r; �/1 D .y � �
0; �1.� 0/x; r; � � � 0/1:(16)

It is now not hard to check that the map k is S1 equivariant with respect to the action
z� (cf (12)) and the action given in (15)–(16). Finally, we conclude that

Pf ' Y �S1 X :
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2.5.1 An admissible family of symplectic forms on Pf Suppose Pf is as in Lemma
2.10. Using this lemma we can put an admissible family f�bg on pW Pf ! B , b 2 B

and a compatible family of almost complex structures fJbg as follows. Let ˛ be the
standard contact form on the unit sphere S3 , normalized so that d˛ D h�� , where
hW S3 ! S2 is the Hopf map and � is a standard area form on S2 with area 1. If
H W M !R denotes the normalized Hamiltonian generating  , the closed 2–form

! � .max H C �/d˛C d.H˛/

on S3 �M descends to a form z! on S3 �S1 M , which is symplectic for an � > 0.
Let J be any S1 –invariant almost complex structure on M and J0 the standard
S1 invariant complex structure on C2 . Then J � J0 is also S1 –invariant, and its
restriction to S3 preserves the contact planes ker˛ . It is not hard to see that J �J0

descends to an almost complex structure zJ on the quotient X which coincides with
J on the fibers M . By construction, if J is compatible with ! , then zJ is compatible
with z! . The form z! and the complex structure zJ are invariant under the S1 action
ˇ on X and therefore give rise to a family f�bg and a compatible family fJbg on
Pf D Y �S1 X .

2.6 PGW invariants of an F –fibration

Let pW P ! B be an F –fibration.

Definition 2.11 We call a family fJbg of fiberwise f�bg–compatible complex struc-
tures � –compatible if � W .Xb;Jb/! .S2; j / is holomorphic for each b and each Jb

preserves the �b –orthogonal subspaces of TXb , for some admissible family f�bg

on P .

Let fJbg be a � –compatible family of almost complex structures. Consider the
following moduli space

M�0.P;A; fJbg/D fpairs .u; b/g;

where

� b 2 Bk .

� u is a Jb –holomorphic, simple curve uW .S2; j /!Xb � P representing class
A 2 j�.H

sect
2
.X // � H2.P /, where H sect

2
.X / are section classes and j� is

induced by inclusion of fiber. (The subspace j�.H
sect
2
.X // is unambiguous,

since the structure group F preserves section classes of X .)
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An element of the above moduli space will be called loosely a fiber holomorphic
curve. For details of the following discussion see for example McDuff and Sala-
mon [17, Sections 6.7, 8.4] or Buse [2]. Given an element .u; b/ of the moduli space
M�

0
.P;A; fJbg/ there is the associated real linear Cauchy–Riemann operator

Du;b W
˚
� 2�0.S2;u�TP / j dp.�/� const

	
!�0;1.S2;u�TXb/

of index 2n C k C 2c1.A/, where c1 is the vertical Chern class of the fibration
pW P !B . A � –compatible family fJbg is called regular for A, if the operator Du;b

is surjective for every tuple .u; b/, where u 2M�
0
.P;A; fJbg/. The set of regular

� –compatible families for A will be denoted by Jreg.A/ and the set of all families by
J . From now on regular family fJbg always refers to a � –compatible regular family.

Lemma 2.12 (1) If fJbg 2 Jreg.A/ then M�.P;AI fJbg/ is a smooth manifold of
dimension

dimM�.P;AI fJbg/D 2nC kC 2c1.A/:

(2) The set Jreg.A/ is of the second category in J .

Suppose now we have an oriented smooth cobordism C between B1;B2 . Let PC be a
symplectic fibration over C . We denote by Pi the restriction of PC over Bi . Suppose
we have regular families fJ i

b
g on Pi . Let fJ C

b
g be family on PC restricting to fJ i

b
g

on Pi . We then have the corresponding moduli space

M�.PC ;AI fJ
C
b g/:

We again say that fJ C
b
g is regular if the associated Cauchy–Riemann operator is

surjective. The space of regular families fJ C
b
g will be denoted by Jreg.AI fJ

1
b
g; fJ 2

b
g/,

and the space of all families by J .AI fJ 1
b
g; fJ 2

b
g/.

Lemma 2.13 (1) If fJ C
b
g is regular M�.PC ;AI fJ

C
b
g/ is a smooth oriented man-

ifold with boundary

@M�.PC ;AI fJ
C
b g/DM.P2;A; fJ

1
b g/�M

�.P1;A; fJ
2
b g/:

(2) The set Jreg.AI fJ
1
b
g; fJ 2

b
g/ is of the second category in J .AI fJ 1

b
g; fJ 2

b
g/.

Let M�
0;l
.P;A; fJbg/D

˚
equivalence classes of tuples .u; z1 : : : zl/

	
;

where u 2M�.P;AI fJbg/ and z1; : : : ; zl are pairwise distinct points in S2 . The
equivalence relation is .u; z1; ::; zl/� .u

0; z0
1
; : : : ; z0

l
/ if there exists � 2 PSL.2;C/

s.t. u0 ı� D u and �.zi/D z0i .
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For a regular family fJbg, this is a manifold of dimension

(17) 2nC kC 2c1.A/C 2l � 6;

where k is the dimension of the base B . Consider the evaluation map

evWM�0;l.P;AI fJbg/! P l :

Similarly, we have evaluation maps evC WM�.PC ;AI fJ
C
b
g/! PC . For these maps

to represent pseudocycles we need some conditions on M .

Proposition 2.14 Let .M; !/ be spherically monotone. Then the maps ev and evC

above are pseudocycles for generic regular � –compatible families fJbg and fJ C
b
g.

Proof Since we only consider curves which lie in the fibers of pW P!B , any bubbles
must lie in the fiber. Next note that a stable map into .Xb;Jb/, representing a section
class of � W Xb! S2 must consist of a principal part which is a section, together with
“bubbles” which lie in the fibers M of � W Xb ! S2 ; see McDuff [14, Lemma 2.9].
By assumption that M is monotone, these bubbles must have positive Chern number.
Using this, one can show that for a generic � –compatible family the evaluation map is
a pseudocycle by standard arguments in McDuff and Salamon [17, Chapter 6].

2.7 Definition of PGW invariants

Under the assumptions of Proposition 2.14, we define parametric Gromov–Witten
invariants by

PGWP
0;l.a1; : : : ; al IA/D Œev� � .a1 � : : :� al/;

where � denotes intersection pairing in P l and a1; : : : ; al 2H�.P /.

2.8 Quantum homology

The flavor of quantum homology we use is the following. Let ƒ WDƒunivŒq; q�1� be
the ring of Laurent polynomials in a variable q of degree 2 with coefficients in the
universal Novikov ring. Thus, its elements are polynomials in q of the form

(18)
X

�2R; l2Z

��;l � q
l t� #f��;l ¤ 0j� � cg<1 for all c 2R;

where ��;l 2Q. Set

QH�.M /DQH�.M Iƒ/DH�.M /˝Zƒ:
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We define a valuation �W QH�.M /!R as follows:

�
�X

A

bA � q
lA t�A

�
WD sup

bA¤0

�A;

where A is an abstract index.

Recall that the quantum intersection product on QH�.M / is defined as follows. For
a; b 2H�.M /

a�M b D
X

A2H S
2
.M /

.a�M b/A˝ q�c1.A/t�!.A/;

where .a�M b/A 2HiCj�2nC2c1.A/.M / is defined by the duality

.a�M b/A � c DGW M
0;3.a; b; cIA/; for all c 2H�.M /:

The product is then extended by linearity to all of QH�.M /. This product can be
shown to be associative (see McDuff and Salamon [17, Chapter 11, Section 1] for
details) and gives QH�.M / the structure of a graded commutative ring with unit ŒM �.

3 Definition of QC classes

Let X as before be a Hamiltonian fibration: � W X ! S2 with monotone fiber M , and
pW P !B be a smooth F –fibration with fiber X , classified by a map into LHam, cf
Remark 2.2. The following is a important ingredient in the definition of QC classes
and plays the role of the 2 dimensional cohomology class of the curvature form in
Chern–Weyl theory. Let MHam denote the universal M bundle over BHam.M; !/.
There is a unique class Œ�� 2H 2.MHam/ called the coupling class such that

i�.Œ��/D Œ!�;

Z
M

Œ��nC1
D 0 2H 2.BHam.M; !//

where i W M ! MHam is the inclusion of fiber, and the integral above denotes the
integration along the fiber (see Kȩdra and McDuff [9, Section3]). Note from (8) that the
total space P of the bundle pW P ! B has another submersive projection to B �S2

and the resulting bundle M ,! P ! B �S2 is clearly Hamiltonian, ie the transition
maps are fiberwise Hamiltonian symplectomorphisms.

Definition 3.1 We denote by C 2H 2.P /, the pullback of the class Œ�� above, by the
classifying map of the natural Hamiltonian fibration

M ,! P ! B �S2:
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Set QH B
� .M /DH�.B �M /˝ƒ:

Definition 3.2 We define the total quantum characteristic class of pW P ! B by

cq.P /D
X

A2j�.H
sect
2
.X //

bA˝ q�cvert.A/t�C.A/ 2QH B
� .M /:

In this formula,

� H sect
2
.X / denotes the section homology classes of � W X!S2 as in Section 2.6.

� The map j�W H
sect
2
.X /!H2.Pf / is induced by inclusion of fiber.

� The coefficient bA 2H�.B �M / is the transverse intersection of

ev WM0;1.P;AI fJbg/! P

with I0.B �M / (see (13)). More formally, bA is defined by duality

bA �B�M c D Œev� �P I0�.c/;

for c 2H�.B �M /.

The above definition works essentially without change for an F –fibration classified by
a map into Q.

Remark 3.3 To deduce that the condition (18) on the coefficients is satisfied we need
to show that there are only finitely many homology classes A 2H2.P / which have
representatives with area less then c for every c > 0 (for a fixed Riemannian metric on
the compact manifold P ). For then in particular there are only finitely many homology
classes represented by vertical fJbg–holomorphic curves with

E.A/D�b.A/D C.A/C��.˛b/.A/� c

for every c > 0, which would imply the finiteness condition. To prove the former
intuitive statement, one can use geometric measure theory and compactness theorem
for spaces of integral currents with uniformly bounded mass norm (cf Federer [4]).

Notation 3.4 Let us from now on shorten notation by setting

q�cvert.A/t�C.A/ � eA;

where it presents no confusion.
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For a regular family fJbg, M�0;1.P;A; fJbg/ is a smooth manifold of dimension

.2nC 2/CmC 2c1.A/� 4D .2nC 2/CmC 2cvert.A/;

where mD dim B (cf (17)). It follows that

(19) deg bA D 2nCmC 2cvert.A/:

In particular, a class A contributes only if 2cvert.A/� 0.

Every element e D
P

j�.A/
bA ˝ eA 2 QH B

� .M / defines a linear functional on
H�.B/ (where Hk.B/DHk.B;Z/= Tor) with values in QH�.M / defined as follows.
If a 2Hk.B/, then e.a/ 2QH�.M / is given by

(20) e.a/D
X
A

X
i

�
bA � .a˝ e�i /

�
ei ˝ eA;

where feig is a basis for H�.M /, fe�i g a dual basis for H�.M / with respect to the
intersection pairing and � is the intersection pairing on H�.B �M /.

Remark 3.5 Let us check the degree of e.a/. We have that bA � .a˝ e�i / is nonzero
when

2nCmC 2cvert.A/C deg aC 2n� deg ei D 2nCm

so we get deg ei D 2nC deg aC 2cvert.A/ and

(21) deg e.a/D deg ei � 2cvert.A/D 2nC deg a:

Definition 3.6 We define the k –th quantum characteristic class

c
q

k
.P / 2 Hom.Hk.B/;QH�.M //DH k.B;QH�.M //;

to be the restriction of the functional cq.P / to Hk.B/.

In these terms, the functional cq.P / is just the sum

cq.P /D c
q
0
.P /C c

q
1
.P /C : : :C cq

m.P /;

where m is the dimension of B . When  is contractible, Axiom 1 implies that
c

q
0
.P /.pt/ D ŒM � is the multiplicative identity in the quantum homology ring. The

analogous expression for Chern classes is called the total Chern class. Interestingly, in
our “quantum” setting the total class has a nice geometric interpretation and this plays
a role in proving the corresponding “Whitney sum formula” in Section 4.4.
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Example 3.7 A loop  W S1!Ham.M; !/ can be viewed as a map f W pt!LHam.
The corresponding fibration Pf over pt has fiber X and

cq.Pf /D
X

j�.A/

bA˝ q�cvert.A/t�z!.A/ 2QH2n.M /;

since H�.pt�M /'H�.M / and (21) implies that the degree of the element cq.Pf /

is 2n. In these terms, the Seidel element corresponding to  is defined to be

S. /D cq.Pf /:

This element depends only on the homotopy class of  , and Seidel [24] proved that
this defines a homomorphism S W �1.Ham.M; !//!QH2n.M /.

Recall from the introduction that for a smooth k –cycle f W B!Q,

‰.B; f /� c
q

k
.Pf /.ŒB�/:

Lemma 3.8 The characteristic classes c
q

k
.P / of pW P ! B are independent of

the choice of the admissible family f�bg, and moreover ‰.B1; f1/ D ‰.B2; f2/

if f1W B1!Q is oriented cobordant to f2W B2!Q, in particular ‰ is well defined
map on H�.�Ham.M; !/;Q/.

Proof To prove that c
q

k
.P / are independent of the choice of the admissible family

f�bg note that by Lemma 2.5 any two such families are smoothly homotopy equivalent.
The homotopy f�t

b
g gives an admissible family of forms on pW P � I ! I at which

point we may apply Lemma 2.13 and Proposition 2.14.

To prove the second statement consider a smooth oriented cobordism F W C ! Q

between .B1; f1/ and .B2; f2/. The proof is just a simple consequence of Lemma
2.13. The construction in Section 2.1 yields an F –fibration PF over C restricting to
the F –fibrations Pi over Bi . Moreover, for c 2H�.M / the class I0.ŒC �˝ c/ in PF

restricts to the corresponding classes I0.ŒBi �˝ c/ in Pi , cf (13). Let

‰.Bi ; fi/D
X
A

bi
A˝ eA

be the corresponding elements in QH�.M /. We need to show that b1
A
D b2

A
. Consider

the intersection numbers

bi
A �M c � Œevi

A� �P I0.ŒBi �˝ c/;

where evi
A

are the evaluation maps

evi
AWM0;1.Pi ;A; fJ

i
bg/! Pi
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for regular families fJ i
b
g. Let

evF
A WM0;1.PF ;A; fJ

C
b g/! PF

be the evaluation map with fJ C
b
g a regular family restricting to fJ i

b
g on Pi . When

the dimension of c is such that the intersection numbers above are nonzero, Lemma
2.13, and Proposition 2.14 imply that evF

A
\I.ŒC �˝c/ is a one-dimensional cobordism

between the oriented 0–dimensional manifolds ev1
A
\I0.B1˝c/, ev2

A
\I0.B2˝c/,

assuming things are perturbed to be transverse. Thus, the intersection numbers
ev1

A
�I0.B1˝ c/, ev2

A
�I0.B2˝ c/ coincide.

To conclude that ‰ is well defined on H�.�Ham.M; !/;Q/ we may use Theorem
6.1, which implies that the rational homology of �Ham.M; !/ is generated by cycles
f W B! X , where B is a closed oriented smooth k –manifold (in fact a product of
spheres). Moreover, Theorem 6.1 implies that the relations in the rational homology
of �Ham.M; !/ are generated by maps of smooth cobordisms (actually cylindrical
cobordisms).

4 Verification of axioms

Proposition 4.1 Let pW P !B be an F –fibration and f W C !B a smooth k –cycle
representing a 2H�.B/. Then

c
q

k
.P /.a/D‰.f �P /� c

q

k
.f �P .ŒC �//:

Proof Let fJbg be a regular family for A curves in P . We have maps

M�
0;1
.P;AI fJbg/

ev // P

p

��
C

f // B

Perturb f W C ! B to be transverse to the pseudocycle

p ı evWM�0;1.P;A; fJbg/! B;
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and consider the commutative diagram

Z
pr1 //

pr2

��

M�
0;1
.P;A; fJbg/

ev
��

f �.P /

��

// P

p

��
C

f // B

where Z is the pullback of the diagram. By the transversality above Z is a smooth
manifold and can be tautologically identified with M�

0;1
.P 0;A; fJ 0

b
g/, where p0W P 0!

C is the pullback bundle f �.P / over C and fJ 0
b
g D ff �.Jb/g. Moreover, the

evaluation map ev0WM�
0;1
.P 0;A; fJ 0

b
g/!P 0 is just the map pr2 and is a pseudocycle

since ev is a pseudocycle. The dimension of this pseudocycle is

dimŒev�C k �mD .2nCmC 2c1.A/� 2/C k �mD 2nC kC 2c1.A/� 2;

where m is the dimension of B and the expected dimension of M�
0;1
.P 0;A; fJ 0

b
g/.

Thus, evWM�
0;1
.P 0;A; fJ 0

b
g/! P 0 is a pseudocycle of the correct dimension.

We show that the family fJ 0
b
g is regular. The linearized Cauchy-Riemann operator for

b in the intersection of p ı ev with f has the form:

Du;b W�
0
B �

˚
� 2�0.S2;u�TP /jp�.�/� const

	
!�0;1.S2;u�TXb/:

By the regularity assumption on fJbg this operator is onto. Moreover, by regularity we
have

p�.ker Du;b/D p� ı ev�.TuM0;1.P;Jb//:

Thus, by the transversality assumption we must have that

(22) p�W ker Du;b! TbB=f�.T C /jb

is onto. Denote by DC
u;b

the restriction of the operator Du;b to the subspace

�0
C �

˚
� 2�0.S2;u�TP jp�.�/� const 2 f�.T C /jb/

	
:

To show that fJ 0
b
g is regular we must show that DC

u;b
is also onto. Let zv 2�0

B
. By

(22) there exists zvk 2 ker Du;b and vC 2 f�.T C /jb , s.t.

p�.zv/D p�.zvk/C vC :

Therefore, we get that zv� zvk 2�
0
C

, and so Du;b.zv/DDC
u;b
.zv� zvk/. Since Du;b is

onto, it follows that DC
u;b

is also onto and so fJ 0
b
g is regular.
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By definition,

c
q

k
.P /.a/D

X
A

X
i

bA � .a˝ e�i /ei ˝ eA;

c
q

k
.P 0/.ŒC �/D

X
A

X
i

b0A � .ŒC �˝ e�i /ei ˝ eA:

To finish the proof, we note that by the above discussion

bA �B�M .a˝ ei/� Œev� �P I0�.a˝ ei/

D Œev0� �P 0 I0�.ŒC �˝ ei/

� Œb0A� �C�M .ŒC �˝ ei/:

4.1 Verification of Axiom 1

To prove the first statement just apply Proposition 4.1 to i W pt! B . To prove the
second statement note that if P 'X �B then we can take a constant family of regular
compatible almost complex structures fJ regg and this family is clearly parametrically
regular. It follows that the total characteristic class is

cq.P /D
X
A

.B˝ b0A/˝ eA;

where b0
A

is the transverse intersection of ev WM0;1.X;A;J
reg/! X with the fiber

M0 �X over 0. As a functional on H�.B/, cq.P /.a/D 0 unless deg.a/D 0.

4.2 Verification of Axiom 2

If f W C ! B represents a 2Hk.B1/ as before, then

g�c
q

k
.P2/.f�ŒC �/D c

q

k
.P2/.g�f�ŒC �/D‰.f

�g�P2/;

where the last equality holds by Proposition 4.1, and

c
q

k
.g�P2/.f�ŒC �/D‰.f

�g�P2/;

again by Proposition 4.1.

4.3 Proof of Theorem 1.9 assuming Axiom 3

Definition 4.2 The Pontryagin product

f1 ?f2W B1 �B2!�Ham.M; !/
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of two maps f1; f2W B1;B2!�Ham.M; !/ is defined by

f1 ?f2.b1; b2; �/D f2.b2; �/ ıf1.b1; �/:

(The order is indeed reversed.)

Proof For i D 1; 2, let fi W Bi!LHam be as before. Let ki be the dimension of Bi .
Consider the maps

zfi W B1 �B2!�Ham.M; !/; zfi D fi ı pri for i D 1; 2;

where pri W B1 �B2! Bi are the component projections. Clearly,

Pf1?f2
' P zf1

˚P zf2
� Pef2 �

ef1

(see Definition 1.4). By Axiom 2 and Axiom 3,

‰.B1 �B2; f1 ?f2/� c
q

k1Ck2
.Pf1?f2

/.B1 �B2/

D

X
iCjDk1Ck2

pr�1.c
q
i .Pf1

//[ pr�2.c
q
j .Pf2

//.B1 �B2/

D pr�1.c
q

k1
.Pf1

//[ pr�2.c
q

k2
.Pf2

//.B1 �B2/

D c
q

k1
.Pf1

/.B1/� c
q

k2
.Pf2

/.B2/

D‰.B1; f1/�‰.B2; f2/:

Remark 4.3 Under the Pontryagin product, the group ring of �1.Ham.M; !// over
Q is H0.�Ham.M; !/;Q/. The restriction of ‰ to degree zero,

‰0
W H0.�Ham.M; !/;Q/!QH2n.M /;

is a ring homomorphism

S D‰0
W QŒ�1.Ham.M; !//�!QH2n.M /;

in view of (2). Thus, Theorem 1.9 is an extension of the Seidel homomorphism S to
the entire Pontryagin ring H�.�Ham.M; !/;Q/.

4.4 Verification of Axiom 3

In this subsection we prove that the classes c
q

k
satisfy Axiom 3. To this end we will

need a splitting formula for PGW invariants arising from the connected sum operation
on two F –fibrations. To help clarify the picture we first explain why P1˚P2 is the
connected sum of P1;P2 in an appropriate way.
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Definition 4.4 Let P1;P2 be two F –fibrations classified by f 1; f 2W B! LHam.
Define

P1#P2 � .B �M �D2
0/[ .B �M �S1

� I/[ .B �M �D2
1/=�

where the equivalence relation is

.b;x; 1; �/0 � .b; f
1

b;� .x/; �; 0/ 2 B �M �S1
� I

.b;x; 1; �/1 � .b; .f
2

b;� /
�1.x/; �; 1/ 2 B �M �S1

� I:

It is then not hard to construct a natural isomorphism between P1˚P2 and P1#P2 .
Given classes A and B in j�H

sect
2
.X1/�H2.P1/ respectively j�H

sect
2
.X2/�H2.P2/,

there is a natural section class A#B in H2.P1#P2/. To define this class one represents
A and B by sections coinciding in the fiber over 1 for X 1

b
and the fiber over 0 for

X 2
b

respectively, (this can be made more precise using the definition above). It can be
directly checked that the class A#B is independent of choices and satisfies

cvert.A#B/D cvert.A/C cvert.B/ and CP1#P2
.A#B/D CP1

.A/C CP2
.B/:

Given a2H�.B�M /, we will denote the class .IP
z /�.a/2H�.P / by a for shorthand

and similarly for P1;P2 .

Theorem 4.5 Let P1;P2 be two F –fibrations classified by f 1; f 2W B ! LHam,
P D P1 ˚P2 their connected sum, A 2 H2.P1/;B 2 H2.P2/ as in Definition 1.5.
Then for all a1; : : : ; ak 2H�.B �M /, and any integer 0� l � k ,

PGWP
0;k.a1; : : : ; ak IC /

D

X
i

A1#B1DC

PGWP2

0;lC1
.a1; : : : ; al ; ei IA1/

�PGWP1

0;k�lC1
.e�i ; alC1; : : : ; ak IA2/;

where feig is a basis for H�.B �M /, fe�i g is the dual basis.

Proof Set KDB�M . Suppose we have two J –holomorphic curves u1;u2 into Pf 1

and Pf 2 in class A1;A2 intersecting in K , (where we identify K with its embedding
in Pf 1 by I1 and in Pf 2 by I0 ), then u1;u2 lie in the respective fibers X 1

b
and

X 2
b

over the same point b 2 B . We can then glue them to get a curve in the fiber
X 1

b
#X 2

b
'Xf 2.b/ �f 1.b/ over b of the fibration P1˚P2 by exactly same argument as

in Section 11.4 of [17].

One then shows that for generic families fJ 1
b
g, fJ 2

b
g the moduli spaces

M�.Pf 1 ;A1I fJ
1
b g/ and M�.Pf 2 ;A2I fJ

2
b g/
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are regular and the evaluation map

M�.Pf 1 ;A1I fJ
1
b g/�M

�.Pf 2 ;A2I fJ
2
b g/!K �K

which takes .u1;u2/ 7! .u1
1.0/;u

2
0
.0// is transverse to the diagonal. The rest of

the proof is exactly the same as the proof of the corresponding splitting statement in
Chapter 10 of [17].

Remark 4.6 Note that since all holomorphic curves of P1;P2;P1#P2 come from sec-
tion classes (of the fiber X 1;X 2;X 1#X 2 respectively) they are necessarily transverse
to the divisor K and intersect it in a single point. This formula is then “essentially”
a special case of the formula given by Ionel and Parker [8] for general symplectic
sums along a codimension 2 submanifold; see also Li and Ruan [12] for a different
approach. The main difference in our case is that we don’t have global symplectic
forms on P1;P2;P1#P2 but rather families of forms.

In what follows we think of H�.B;QH�.M // as the space of linear functionals on
H�.B/ with values in QH�.M /. In particular an element in H�.B;QH�.M // can be
of mixed degree. Thus, by the Kunneth formula and Poincare duality H�.B;QH�.M //

is naturally identified with QH B
� .M / via (20). To avoid confusion for an element a 2

QH B
� .M / we will write PD.a/ when we think of it as an element of H�.B;QH�.M //.

Considering the following elements a; b 2H�.B �M /�QH B
� .M /

aD
X

i

ai ˝mi ; a0 D
X

j

a0j ˝m0j ; ai ; a
0
i 2H�.B/;mi ;m

0
j 2H�.M /;

PD.a/[PD.a0/D PD
�X

i;j

.ai \ a0j /˝mi �m0j

�
;then

where � is the homology quantum product. We will need the following simple Lemma.

Lemma 4.7 If Ptr D B � .M �S2/ and a; b as above, then

PD.a/[PD.b/D PD
�X

A

�
PD.a/[PD.b/

�
A

eA
2QH B

� .M /
�
;

.PD.a/[PD.b//A D
X
k;l

PGWPtr
0;3
.a; a0; ek;l IA/e

�
k;l ;

where fek;l D bk ˝ elg is a basis for H�.B �M /.
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Proof Let fJ regg be the constant family of regular complex structures on Ptr compat-
ible with a constant admissible family f�g. Then the family fJ regg is itself parametri-
cally regular. We haveX

k;l

PGWPtr
0;3
.a; b; ek;l IA/e

�
k;l D

X
k;l

X
i;j

PGWPtr
0;3
.ai ˝mi ; a

0
j ˝m0j ; ek;l IA/e

�
k;l :

As oriented manifolds,

M�0;3.Ptr;AIJ
reg/' B �M�0;3.tr;AI fJ

reg
g/:

Moreover the diagram

B �M�
0;3
.M �S2;A;J reg/

evtr
//

��

P3
tr ' B3 � .M �S2/3

��
B

diag // B3

commutes. Hence, ŒevPtr � D Œdiag� ˝ ŒevM�S2

� as a cycle in B3 � .M � S2/3

with the orientation pulled back from the orientation on tr3 via the identification
tr3 ' B3 � .M �S2/3 , where evtr and evM�S2

are the evaluation maps from
M�

0;3
.tr;A; fJ regg/ and M�

0;3
.M �S2;A;J reg/, respectively.

Therefore,X
k;l

PGW�tr
0;3
.ai ˝mi ; a

0
j ˝m0j ; ek;l IA/e

�
k;l

D

X
k;l

�
Œevtr� � .ai ˝ a0j ˝ bk/˝ .mi ˝m0j ˝ el/

�
.bk ˝ el/

�

D

X
k;l

Œdiag�˝ ŒevM�S2

� � .ai ˝ a0j ˝ bk/˝ .mi ˝m0j ˝ el/.bk ˝ el/
�

D

X
k

..ai \ a0j / � bk/b
�
k ˝

X
l

GW M�S2

0;3 .mi ;mj ; el IA/e
�
l

D .ai \ a0j /˝
X

l

GW M�S2

0;3 .mi ;mj ; el IA/e
�
l ;

where we used that Œdiag� � ai ˝ a0j ˝ bk D .ai \ a0j / � bk . Summing over all A 2

H sect
2
.M �S2/ we get the desired equality.

Given an F –fibration P , define mP W H�.B �M /!QH B
� .M / by

(23) mP .a/D
X
A;i

PGWP
0;2.a; ei IA/e

�
i ˝ eA;
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where ei are as in Theorem 4.5, and extend by linearity to all of QH B
� .M /.

Lemma 4.8 If P D P1˚P2 then

mP
DmP1 ımP2 :

Proof By (23),

mP1 ımP2.a/D
X
C

X
i;A#BDC

PGWP2

0;2
.a; ei IA/ �PGWP1

0;2
.e�i ; ej IB/e

�
j ˝ eC

D

X
i;C

PGWP
0;2.a; ej ;C /e

�
j ˝ eC

DmP .a/;

where we used Theorem 4.5 for the second equality.

Lemma 4.9 For an F –fibration P ,

PD.mP .a//D PD.cq.P //[PD.a/:

Proof It suffices to prove this for a simple class a 2QH B
� .M /. Using Theorem 4.5

with P2 D P and P1 D trD B � .M �S2/ we get:

PD.mP .a//D PD
�X

j ;C

PGWP
0;2.a; ej IC /e

�
j ˝ eC

�
D PD

� X
i;j ;A#BDC

PGWP
0;1.ei IA/ �PGWPtr

0;3
.e�i ; a; ej IB/e

�
j ˝ eC

�
D

X
i;A#BDC

PGWP
0;1.ei IA/ �

�
PD.e�i /[PD.a/

�
B
˝ eC

D PD.cq.P //[PD.a/;

where we used Lemma 4.7 for the next to last equality.

4.5 Verification of Axiom 3

Using the above lemmas we get,

PD.cq.P //D PD.mP .B �M //D PD.mP1 ımP2.B �M //

D PD.cq.P1//[PD.cq.P2//:
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5 QC classes and the Hofer geometry

Let pW Pf !B be a smooth F –fibration. We explain here how cq.Pf / gives rise to
lower bounds for the positive max-length measure LC.f /D maxb2B LC.fb/; this
will be used later in this section. We will assume that the family f�bg on Pf has been
chosen so that condition (9) is satisfied. Let f W B!Q be a general smooth cycle.
Define a valuation

�W QH�.M /;QH B
� .M /!R by �

�X
A

bA � t
�AqlA

�
WD sup

bA¤0

�A;

and bA is in H�.M / or H�.B �M /. Our next proposition is a direct generalization
of Seidel’s (see McDuff [15]).

Proposition 5.1 We have

(24) �.cq.Pf //� min
.B;f /2ŒH �

�
max
b2B

LC.b/
�
;

where ŒH � represents the homotopy class of maps f W B!Q and b is the loop f .b/
(this is defined up to an action of S1 ). Moreover,

(25) �.‰.B; f //� min
.B;f /2ŒH �

�
max
b2B

LC.b/
�
;

where ŒH � now denotes the bordism class of maps f W B!Q.

Proof Let
cq.P /D

X
A

bA˝ q�cvert.A/t�C.A/:

If bA¤ 0 in H�.B�M / then there is a Jb –holomorphic curve uW .S2; j /!Xb �Pf
in class A 2H S

2
.Pf /. On the other hand Œ�b �D CC��.Œ˛b �/, for some area form ˛

on S2 , where Œ�b � is the cohomology class of �b in H 2.Xb/. Since �b tames Jb ,
we get

0< Œ�b �.A/D
�
CC��.˛b/

�
.A/D C.A/C area.p�1.b/;�b/:

Therefore,

(26) �C.A/ < area.p�1.b/;�b/DLC.b/C 2� �max
b2B

LC.b/C 2�

for all A. Passing to the limit in A and � we get �.cq.Pf // � maxb2B LC.b/.
Since the left hand side of (26) depends only on the homotopy class of f , we get the
inequality (24). Inequality (25) follows by the same argument and Lemma 3.8.
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5.1 Calculation for some symmetric F –fibrations

Let qW Y !B be a principal S1 –bundle and yf W Y !Ham.M; !/ an S1 –equivariant
map with respect to the right action of some subgroup  W S1 ! Ham.M; !/ on
Ham.M; !/. Recall from Section 2.5 that we have an induced cycle f W B ! Q,
and an induced fibration pW Pf ! B . In this section, we give an expression for the
“leading-order term” contribution to the total quantum characteristic class cq.Pf / and
give a proof of Theorem 1.10. This extends the calculation for S1 actions in [19,
Theorem 1.10].

By Lemma 2.10, Pf can be identified with hW Y �S1 X !B . The bundle Y �S1 X
comes with an admissible family f�bg and a compatible family fJbg constructed
in Section 2.5.1. To understand the behavior of fiber holomorphic curves in Pf , we
need to first understand zJ holomorphic curves in X , where zJ is the almost complex
structure described in Section 2.5.1. Each fixed point x of the S1 –action  gives rise
to a zJ –holomorphic section of X defined by

�x D S3
�S1 fxg �X :

Denote by Fmax the maximal fixed point set of the Hamiltonian S1 –action  on M ,
ie the maximal set of the generating Hamiltonian H of  . Let �max 2H2.X / denote
the homology class of the section �x for x 2 Fmax . For each x 2 Fmax we have a zJ
holomorphic �max –class curve. An important observation due to Seidel is that these
are the only zJ –holomorphic curves in that homology class (cf [19, Lemma 3.1]); and
so the moduli space of these unparametrized curves is identified with Fmax . Since
the S1 –action ˇ (see (14)) on X maps each section �x to itself, it follows that the
unparametrized moduli space M�

0;0
.Pf ; �maxI fJbg/ can be identified with B �Fmax .

In particular it is a compact manifold. Let E be the obstruction bundle over this moduli
space. The fiber of E at .b;x/ 2 B �Fmax is the cokernel of the operator

Du;bW
˚
� 2�0.S2;u�TPf /jdpf .�/� const

	
!�0;1.S2;u�TXb/;

where uW S2!Xb parametrizes the section �x�Xb . We write Dvert
u;b

for the restriction
of Du;b to �0.S2;u�TXb/.

Lemma 5.2 coker Dvert
u;b
' coker Du;b .

Proof Since the map

pf ı evWM�0;1.Pf ; �maxI fJbg/! B

is a submersion, the homomorphism

dpf W ker Du;b! TbB
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is onto. It easily follows that Dvert
u;b

and Du;b have the same image.

Thus, the fiber Eb of the obstruction bundle E is coker Dvert
u;b

. The fundamental class
of M�

0;0
.Pf ; �maxI fJ

reg
b
g/ is identified with PDB�Fmax e.E/; see [17, Chapter 7.2].

We thus have the following direct generalization of [19, Theorem 1.9].

Proposition 5.3 Let f W B!Q and the obstruction bundle E be as above. Then

cq.Pf /D PDB�Fmax e.E/˝ q�mmax tHmax

C

X
A2H S

2
.M /j!.A/>0

b�maxCA
˝ q�mmax�c1.A/ tHmax�!.A/;

where mmax D cvert.�x/D
P

i ki and Hmax is the maximum value of the normalized
Hamiltonian generating  .

Proof Since the evaluation map evWM�
0;1
.Pf ; �max; fJbg/! Pf intersects I0.B �

M / transversally at B �Fmax , it can be readily deduced from the above discussion
that the class corresponding to the transverse intersection of

evreg
WM�0;1.Pf ; �max; fJregg/! Pf

with I0.B �M / is PDB�F e.E/ 2H�.B �M /.

By [19, Lemma 3.1] there are no contributions from sections �maxCA with !.A/ < 0;
this also follows from the argument in the proof of Theorem 1.15.

To understand the obstruction bundle E , we need to understand cokernel of the lin-
earized Cauchy-Riemann operator

Dvert
u;b W �

0.S2;u�TXb/!�0;1.S2;u�TXb/;

where u W S2!Xb parametrizes the section �x 2Xb , x 2 Fmax as before.

The complex normal bundle N.�x/ of �x inside TXb can be identified with the bundle

.TxM;Jx/�S1 S3
! S2

and so splits into a sum of complex line bundles

(27)
nM

iD1

Lki
;
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where the degree of Lki
is ki . In other words each S1 invariant summand Vi 'C of

TxM , on which S1 is acting by v 7! e�2�iki�v , gives rise to the summand Lki
of

N.�x/. Thus,

TXbj�x
D

� nM
iD1

Lki

�
˚L2 �L;

where L2 is the tangent bundle to �x . Since x 2 Fmax , ki � 0 for all z .

By proof of [19, Lemma 3.2] the operator Dvert
ux ;b

is complex linear and is the Dolbeault
operator x@ on TX j�x

, with respect to a holomorphic structure for which the splitting
(27) is holomorphic. Thus, the cokernel of Dvert

ux ;b
is H

0;1
x@
.S2;L/' .H

1;0
x@
.S2;L�//� .

The latter can be identified with .H 0.S2;L�˝Kx//
� , where Kx D T �.�x/ denotes

the canonical bundle of �x .

Set Eb;x;i DH 0.S2;L�ki
˝Kx/:

This latter space can be identified with the space of degree ni ��ki �2 homogeneous
polynomials in X;Y , where X;Y denote the homogeneous coordinates on CP1 . Thus,
a section in H 0.S2;L�ki

˝Kx/ is completely determined by its holomorphic ni –jet
over 0 2D2

0
� S2 . Therefore,

Eb;x;i'

M
0�j�ni

Hom
�
.T0�x/

˝j ;Kxj0˝L�ki
j0

�
'

M
0�j�ni

.Kxj
˝j
0
/˝.Kxj0˝L�ki

j0/

The cokernel Eb;x of Dvert
ux ;b

is then

Eb;x D

M
i

E�b;x;i ;

whose real dimension is the virtual index of  , defined by

I. /D
X

1�i�n
ki��1

2.�ki � 1/:

Let �K be the bundle Y �S1 C and set K D pr�
1
�K , where pr1W B �Fmax! B , and

pr2W B �Fmax! Fmax are the projections.

Then K is the bundle over B �Fmax whose fiber over .x; b/D T0�x DKxj
�
0

, where
Kx D T ��x � Xb (cf (14), (15)). We also have natural bundles Li over B �Fmax

coming from the bundles Lki
above.
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Note that e.Lj / and e.K/ are algebraically independent in the cohomology ring of
B �M . The Euler class of E is given by

e.E/D
Y

i

Y
0�j�ni

..j C 1/e.K/C e.Li//:

D

Y
i

.ni C 1/! e
P

i .niC1/.K/C mixed terms:
(28)

We can thus rewrite (28), using that ni D�ki � 2, as

e.E/D
X

0�p�I. /=2

ep.K/[ ap;

where ap are in H I. /=2�p.B � Fmax/, consisting of sums of products of classes
e.Li/ with some coefficients.

Example 5.4 Let yf W S3! Ham.CPn; !/,  W S1! Ham.CPn; !/ and the associ-
ated map

fhW S
2
!QD .LHam.CPn; !/�S1/=S1

be as in Example 1.14. Then Fmax D max D Œ1; 0; : : : ; 0�, M�
0;1
.Pfh

; �maxI fJbg/ is
identified with S2 and the obstruction bundle E is identified with the complex line
bundle associated to the Hopf bundle hW S3! S2 , whose homological Euler class is
Œ� pt� 2H0.S

2/. Thus, by Proposition 5.3

cq.Pfh
/D .Œ� pt�˝ Œpt�/˝ q�mmax tHmax C lower t –order terms:

Theorem 5.5 Let yf W Y ! Ham.M; !/ be as above and B D Y=S1 . Every nonzero
term

ep.K/[ ap 2H�.B �Fmax/

in the expansion for e.E/ gives rise to a nontrivial characteristic class c
q
2p
.Pf /. More-

over, it gives rise to cycles f W C !Q, minimizing the positive max-length measure in
their bordism class.

Proof If e is the Euler class of qW Y !B , then since K is isomorphic to pr�
1
.Y �S1

C/ it follows that the Poincare dual of ep.K/[ ap is of the form

PDB.e/˝PDFmax.apjŒpt��Fmax/ 2H�.B �M /;

where PD.e/ 2 H�.B/ and .apjŒpt��Fmax/
� is thought of as a class in H�.M / via

inclusion of Fmax into M . Since the generating function H of  is necessarily a
perfect Morse–Bott function (see McDuff and Salamon [16]) the inclusion of Fmax

into M can be shown to be injective on homology. The first part of the theorem is then
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immediate from our assumption, the definition of the characteristic classes c
q

k
.Pf /,

and Proposition 5.3. We prove the second statement. For some a 2H2p.B/ we have
that 0¤ c

q
2p
.Pf /.a/. By Proposition 4.1

c
q
2p
.Pf /.a/D‰.f ıg;C /;

where gW C !B is a smooth map representing the rational homology class of a. Thus,
the cycle f ıgW C !Q is essential in the bordism group by Lemma 3.8. Let us see
that it minimizes the max-length measure. By Proposition 5.3, �.‰.f ıg;C //DHmax .
On the other LC.f ı g/DHmax , since all the loops in the image Im.f / �Q have
positive Hofer length Hmax . By Proposition 5.1 f ıg minimizes the measure LC.f /

in its bordism class.

5.2 Proof of Theorem 1.10

Since e.�K/ D e ¤ 0, the p D I=2 term in the expansion of e.E/ is nonzero. By
Theorem 5.5, the cycle f W B!Q is essential and minimizes the measure LC.f / in
its bordism class.

5.3 Proof of Theorem 1.15

Consider the fibration hW S2kC1 ! CPk . Homotop yf W S2kC1 ! Ham.M; !/, so
that it takes the set h�1.Dc/ to id, where D�CPk is an open ball. The new map will
still be denoted by yf . Let qW CPk

! S2k be the quotient map, squashing CPk
�D

to s0 2 S2k . There is an induced quotient map

qjB � idW .h�1. xD/' xD �S1/! S2k
�S1:

yf
�
.q � id/�1.s0 �S1/

�
D yf .h�1.@ xD//D id;Since

there is then an induced map

zf W S2k
�S1

! Ham.M; !/

and the associated map
f2W S

2k
!LHam:

We will show now that cq.Pfh
/D cq.Pf2

/. On the other hand, we show in Lemma
5.7 below that f is homotopy equivalent to f2 .

The restriction of Pfh
to D is the pullback by q of the fibration Pf2

over S2k . By
(19), a section class A 2H S

2
.X / contributes to cq.Pf / only if cvert.A/� 0; moreover,

if cvert.A/D 0, the class A only contributes to the degree zero class c
q
0
.A/ and so is

not relevant to us. When cvert.A/ < 0, the monotonicity of M implies that �C.A/ > 0
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in this case, because X ' M � S2 (since f and fh map into components of Q

corresponding to contractible loops in Ham.M; !/ by construction). Put an admissible
family f�bg on Pf2

as in Section 2.2, so that the area of the fiber Xb over b 2 S2k is

LC.f .b//C 2�

with � < �C.A/. Let fJbg be a compatible regular family. The proof of Proposition
5.1 implies that the area of each fiber of pW Pf2

! S2k is at least �C.A/ whenever
there is a fJbg–holomorphic A–curve in that fiber. Thus, no element of the moduli
space M�

0
.Pf2

;AI fJbg/ lies in the fiber over s0 , since the area of �s0
is 2� .

Pullback by q the families f�bg; fJbg to Pfh
over xD . The restriction of fq��bg over

@ xD is by construction the constant family restricting to a split symplectic form, ie
!C��.˛/, with area 2� on each fiber, since �s0

has that property.

Since yf is the constant map to id on Dc , the family fq��bg over xD can be extended
to a family f��bg on Pfh

such that the area of each fiber X over Dc is 2� . To see this
note that the fibers of Pfh

jDc
can be identified with the product M �S2 , up to an action

of S1 which rotates the base S2 and fixes M . Since the constant family fq��bg over
@ xD restricts to a split form on the fibers X 'M �S2 , which is invariant under this
S1 action, there is an extension f��bg of fq��bg to Dc . Pick any extension f zJbg of
fq�.Jb/g which is compatible with f��bg. By the above discussion, there are no f zJbg–
holomorphic A–curves over Dc . Thus, f zJbg is regular, since it is regular for curves
over D as it is a pullback of a regular family fJbg there. Moreover, q pushes forward
the moduli space M�

0;1
.Pfh

;AI f zJbg/ to the moduli space M�
0;1
.Pf2

;A; fJbg/ ie the
diagram

M�
0;1
.Pfh

;AI feJbg
u 7!zqıu//

��

M�
0;1
.Pf2

;AI fJbg/

��

CPk // S2k

commutes, where zq is a lift of q which is defined on Pfh
jD .

By definition,

cq.Pf2
/D

X
A

bA˝ eA
2QH S2k

� .M /;

cq.Pfh
/D

X
A

b0A˝ eA
2QH CPk

� .M /;

where bA is the transverse intersection of

evWM�0;1.Pfh
;A; f zJbg/! Pfh
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with I0.CPk
�M /; and b0

A
is the transverse intersection of

evWM�0;1.Pf2
;A; fJbg/! Pf2

with I0.S
2k �M /. Since the above moduli spaces lie over contractible subsets of

CPk and S2k

bA D Œpt�˝ bM
A 2H�.S

2k
�M /

b0
M
A D Œpt�˝ b0

M
A 2H�.CPk

�M /;

for some bA; b
0
A 2H�.M /. The above discussion implies that bM

A
D b0

M
A . Thus the

two total classes are the same. To conclude that the only nonvanishing classes of the
two fibrations are in the top dimension note that Œpt�˝bM

A
has a nontrivial intersection

pairing with c˝ b 2H�.S
2k �M / only if c D ŒS2k � 2H�.S

2k/ and use definition
of the classes.

Remark 5.6 This proof makes extensive use of monotonicity. It is not obvious to me
if this theorem is true in a situation where one must use methods of the virtual moduli
cycle.

Lemma 5.7 The maps f and f2 above are freely homotopy equivalent.

Proof The map f is induced from a composition of maps of pairs

.D2k
�S1; @D2k

�S1/
t
�! .S2kC1; pt/

yf
�! .Ham.M; !/; id/:

On the other hand, f2 is the induced map from the composition of maps of pairs

.D2k
�S1; @D2k

�S1/
i
�! .S2kC1; h�1.Dc//

yf
�! .Ham.M; !/; id/:

Clearly, we can homotop yf through maps of pairs to a map yf 0W .S2kC1;Oc/ !

.Ham.M; !/; id/, where O � h�1.D/ is an open ball which does not contain Œpt�.
Then f is homotopic to a map induced from the composition

.D2k
�S1; @D2k

�S1/
i
�! .S2kC1;Oc/

yf 0

�! .Ham.M; !/; id/;

and f2 is induced from

.D2k
�S1; @D2k

�S1/
t
�! .S2kC1;Oc/

yf 0

�! .Ham.M; !/; id/:

Thus, we just need to show that i is homotopic via maps of pairs to t . To see this one
can use degree.
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6 The Hopf algebra structure of H�.LHam; Q/

This section is mostly an excursion, which studies the relationship of the homomorphism
‰ with the Pontryagin ring structure of H�.LHam;Q/. It may be interesting to the
reader in order to get an idea of how the use of S1 –symmetry in the previous section
relates to the bigger picture of QC classes.

The Milnor–Moore theorem states that a connected co-commutative Hopf algebra A

over a field of characteristic zero is generated by its primitive elements. A primitive
element is an element a 2A such that its coproduct is 1˝ aC a˝ 1. More precisely
it says that A is isomorphic as a Hopf algebra to the universal enveloping algebra
U.P .A//, where P .A/ denotes the associated Lie algebra of its primitive elements.
In other words the only relations in U.P .A// are the ones of the form

a˝ b� .�1/pqb˝ aD ab� .�1/pqba;

where the product on the right is the product in the Hopf algebra. When A is the
rational Hopf algebra of an H –space, Cartan–Serre theorem states that the Lie algebra
of primitive elements consists of spherical classes. In fact, we have the following.

Theorem 6.1 (Milnor–Moore [20], Cartan–Serre [3]) Let X be a connected H –
space. Denote by ��.X;Q/�H�.X;Q/ the Lie subalgebra of the associated algebra
of the ring, generated by the image of the Hurewitz map hW ��.X /!H�.X;Q/ and
denote by U.��.X;Q// the universal enveloping algebra of ��.X;Q/. Then

H�.X;Q/' U.��.X;Q//;

as rings (in fact as Hopf algebras).

For Œ � 2 �1.Ham.M; !/; id/, let LŒ � �LHam denote the component containing the
loop  . As a space

LŒ � D�Œ � Ham.M; !/�Ham.M; !/;

where �Œ � Ham.M; !/ denotes the  –component of the based loop space at id.
Hence,

��.X
Œ �/' ��.Ham.M; !//˚��.�

Œ � Ham.M; !//:

Combining this with Theorem 6.1 (LŒ � is not a connected H –space naturally but is
homeomorphic to one), we get

H�.L
Œ �;Q/' U.��.Ham.M; !/;Q//˝U.��.�Œ � Ham.M; !//;Q//
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as rings. By Lemma 6.2 below, ‰ vanishes on

H�.Ham.M; !/;Q/' U .��.Ham.M; !/;Q//

for �> 0. On the other hand ‰.H0.Ham.M; !/;Q/ is generated over Q by ŒM �, the
multiplicative identity element; see Remark 4.3.

If one is to extend ‰ to a map

‰W H�.LHam;Q/!QH�C2n.M /;

which can likely be done using pseudocycles, the above discussion together with
Theorem 1.9 shows that ‰ would only be interesting on

H�.�Ham.M; !/;Q/D
M


U.��.�Œ � Ham.M; !//�H�.LHam;Q/;

a direct sum over Œ � of free graded commutative algebras on ��.�Ham.M; !//. At
the same time, working on the free loop space allows us to pass to the S1 equivariant
setting, using which we were able to do computations in Section 5.

Define i Œ �W Ham.M; !/ ! L to be the inclusion which takes an element � 2
Ham.M; !/ to the loop � ı  .

Lemma 6.2 If k > 0, ‰.f /D 0 for f W Bk ! i Œ �.Ham.M; !//, where .

Proof This follows from the fact that for a map

f W Bk
! i .Ham.M; !//�L

f .b/D �b ı ; where �b 2 Ham.M; !/;

the fibration Pf is isomorphic to a trivial F –fibration by an isomorphism which is a
Hamiltonian bundle map on each fiber, and so the relevant invariants vanish by Axiom 1.
Let cŒ � be the constant map f W B!LŒ � to the loop  . We trivialize Pf as follows:

Pf D .B �M �D2/0[f .B �M �D2/1
tr
�! PcŒ � D .B �M �D2/00[cŒ � .B �M �D2/01;

tr.b;x; z/0 WD .b;x; z/00 and tr.b;x; z/1 WD .b; ��1
b .x/; z/01;

where �b 2 Ham.M; !/ is as above. This map is easily seen to be well defined.
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7 Structure group of F –fibrations

This section is concerned with the structure groups of the fibrations zpW U !LHam
and pW U S1

! Q, which is indirectly used for the proof of Lemma 2.5. Another,
perhaps more pertinent goal here is to prove that zpW U !LHam is universal for its
structure group.

Proposition 7.1 The structure group of pW U ! LHam over the component of the
loop  can be reduced to the group F of Hamiltonian bundle maps of X which are
identity over D2

0
and over a small neighborhood of 0 2D2

1 in coordinates of (3).

This proposition follows immediately from Lemma 7.4 proved later in this section. For
 W S1! Ham.M; !/ let Œ � denote its equivalence class in �1.Ham.M; !/; id/.

Proposition 7.2 Let QŒ � denote a connected component of Q. The structure group of
pW U Œ �!QŒ � may be reduced to the group of Hamiltonian bundle maps of � W X!
S2 , which sit over rotations the base S2 , with the axis of rotation corresponding to
0 2D2

0
; 0 2D2

1 . Moreover, elements of this group act as id�rot on M �D2
0
� X

and by identity on the fiber over 0 2D2
1 .

The proof will be given after some preliminaries. To make the discussion more transpar-
ent we work with connections, which to us will be just smooth or continuous functors.
In fact, there is a natural such connection on zpW U !LHam.

7.1 The path groupoid

A topological category is a small category in which the set of all objects and the set of
all morphisms are topologized, so that the source and target maps and all structure maps
are continuous. Let pW P ! B be a bundle with fiber X , where B is a topological
group. Let C.B/ be a topological groupoid whose objects are the points of B . The
morphisms from a to b are defined to be

C.a; b/D P .a; b/;

the space of continuous paths from a to b , ie maps mW Œ0; 1�!B s.t. m.0/D a and
m.1/D b . The composition law

C.a; b/� C.b; c/! C.a; c/

is defined as follows. Let ma;bW Œ0; 1� ! B be a path with endpoints a; b and
mb;c W Œ0; 1� ! B be a path with endpoints b; c . Then mb;c ıma;bW Œ0; 1� ! B is
defined by

mb;c ıma;b.t/Dmb;c.t/ � .mb;c.0//
�1
�ma;b.t/:
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This path clearly has endpoints a; c and is continuous. This is essentially the only
natural way to define a composition law for paths in a topological group. The topology
on the set of morphisms ie the free path space of B is taken to be the compact open
topology.

7.2 The category D.P; B; p/

We also define a topological category D.P;B;p/, whose space of objects is home-
omorphic to B with elements: manifolds Xb D p�1.b/ for b 2 B . The space of
morphisms from Xa to Xb is defined to be

D.Xa;Xb/D Homeo.Xa;Xb/;

the space of homeomorphisms from Xa to Xb . The composition law is just the
composition of homeomorphisms.

7.2.1 Topology on the space of morphisms of D.P;B;p/ For each b 2 B , let
Ub �B be an open set with a trivialization �bW Ub�X!p�1.Ub/. Let now a; b 2B .
Any morphism whose source is the fiber Xu1

with u1 2 Ua and target Xu2
with

u2 2 Ub can be identified via the trivializations �a; �b with a homeomorphism from
X to X . Thus, the set of such morphisms is identified with Ua�Ub �Homeo.X;X /,
which we will denote by D.Ua;Ub/. It has a natural topology, where the topology on
Homeo.X;X / is the compact-open topology. The basis for a topology on the set of all
morphism then consists of open sets in D.Ua;Ub/ for all a; b 2B . Clearly, a different
choice of trivializations gives rise to equivalent topologies.

7.3 Connections

Definition 7.3 Let pW P ! B be as above. An abstract connection is defined to be a
continuous functor F from the category C.B/ to D.P;B;p/.

The map F.m/W p�1.m0/! p�1.m1/ will be called the parallel transport map. The
name of the connection is the name of the corresponding functor (eg F ). The word
abstract in abstract connection will often be dropped. We may define the holonomy
group of an abstract connection exactly the same way as for usual smooth connections
on G –bundles, using the parallel transport maps.

Lemma 7.4 The structure group of pW P ! B over a connected component can be
reduced to the holonomy group Hol.F / of the connection F on this component.
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Proof Let fUig be a cover of B by contractible open sets and Hi W Ui � I ! B

be a free homotopy, which at time 0 is the constant map to b0 and at time 1 is the
inclusion map of Ui . Then parallel translating by F , along the paths of the homotopy
hi;x.t/DHi.x; t/, gives a trivialization tri W Ui �X ! p�1.Ui/. The transition map
trij W Ui

T
Uj �X ! Ui

T
Uj �X is by construction and functoriality of F given by

parallel translation by F along the loops h�1
j ;x ı hi;x . Here ı is the multiplication in

the groupoid C.B/.

7.4 A connection FU on pW U !LHam

The space LHam is a topological group and we may take the topological groupoid
C.LHam/ defined as above, except that we take the morphisms in the groupoid to be
smooth in the sense below.

Definition 7.5 We define a map mW Œ0; 1�!LHam to be smooth if it is locally constant
at the endpoints and the associated map zmW Œ0; 1��S1! Ham.M; !/ is smooth.

The groupoid C.LHam/ is topologized as a subspace of continuous maps with its
compact open topology.

The parallel transport map Let mW I ! LHam be a path. We define the map
FU .m/D tm from the fiber Xm0

over m.0/Dm0 , to the fiber Xm1
over m.1/Dm1

as follows. We have

Xm0
DM �D2

0 [m0
M �D2

1;

Xm1
DM �D2

0 [m1
M �D2

1

If r; � are polar coordinates on D2 , then

tm.x; r; �/0 D .x; r; �/0 and tm.x; r; �/1 D .mr;� ım�1
0;� .x/; r; �/;

where mr;� denotes the element of the loop mr Dm.r/ at time � .

This is well defined under the gluing since the diagram

.x; 1; �/0
� //

tm

��

.m0;� .x/; 1; �/1

tm

��

.x; 1; �/0
� //

�
m1;� ım�1

0;�
ım0;� .x/Dm1;� .x/; 1; �

�
1

commutes. We leave it to the reader to verify that this gives a continuous functor
FU W C.LHam/!D.U;LHam;p/, which assigns to  2LHam the fiber X and to
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a morphism mW I ! LHam from 0 to 1 the map tmW X0
! X1

. We denote by
LHam the component of the loop  in LHam.

Lemma 7.6 The group Hol.FU / is isomorphic to the group C.;  / of automorphisms
of the object  in C.LHam/.

Proof By construction of the connection FU , the natural surjective holonomy map
holW AutC. /! Hol.F / has no kernel.

Let E denote the space of all smooth paths in LHam based at  (see Definition 7.5).
This is a contractible space with a free continuous action of the group AutC. / acting
by left multiplication using the topological groupoid structure of C.LHam/. Moreover,
this action fixes the fibers of the projection kW E!LHam given by evaluating at the
endpoint and is transitive on the fibers. It follows that kW E!LHam is the universal
AutC. /–bundle. In other words

BAutC. /D B Hol.FU /DLHam :

In fact, we have the following:

Proposition 7.7 The bundle zpW U !LHam is the associated bundle to the universal
principal AutC. /–bundle kW E!LHam .

Proof This follows from the proof of Lemma 7.4. The details are left to the reader.

7.5 Proof of Proposition 7.2

Recall that the bundle pW U S1

!Q is the quotient by the S1 action z� of the bundle
p� idW U �S1!LHam�S1 (cf Section 2.1). Let Vi be a contractible open set in
Q and

gi W Vi �S1
!LHam�S1

a local trivialization of the principal S1 bundle hW LHam�S1!Q . Let Hi be a
free homotopy of the map gi W Vi � 0!LHam�S1 to the constant map to .0; s0/.
As before, the connection F then induces a map

ti W Vi �X0
! p�1.gi.Ui � 0//;

by parallel translating along the paths of the homotopy Hi . The transition maps tij
have the form:

tij .u;x/D .u; t
�1
j ı z�.�ij /

�1
ı ti.x//
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where �ij comes from the transition maps gij W Vi\Vj�S1!Vi\Vj�S1 , gij .u; �/D

.u; � C �ij /. By construction, this is a Hamiltonian bundle map of � W X ! S2 to
itself which sits over the rotation by �ij of the base and fixes the fibers over 0 and
infinity.
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