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Connected sums of unstabilized Heegaard splittings are
unstabilized

DAVID BACHMAN

Let M1 and M2 be closed, orientable 3–manifolds. Let Hi denote a Heegaard
surface in Mi . We prove that if H1#H2 comes from stabilizing a lower genus
splitting of M1#M2 then one of H1 or H2 comes from stabilizing a lower genus
splitting. This answers a question of C Gordon [9, Problem 3.91]. We also show that
every unstabilized Heegaard splitting has a unique expression as the connected sum
of Heegaard splittings of prime 3–manifolds.

57N10; 57M27

1 Introduction

Suppose M1 and M2 are closed, orientable 3–manifolds and Hi is a Heegaard surface
in Mi . Then one can form the connected sum H D H1#H2 in the 3–manifold
M DM1#M2 to obtain a new Heegaard surface. If H1 , say, came from stabilizing
some lower genus Heegaard surface in M1 then it immediately follows that H comes
from stabilizing a lower genus Heegaard surface in M . In 1997 C Gordon conjectured
that the converse must also be true (see [9, Problem 3.91]).

Conjecture 1.1 (Gordon’s Conjecture) If H1#H2 is a stabilized Heegaard surface in
M1#M2 then either H1 or H2 is stabilized.

This paper contains a proof of Gordon’s Conjecture (Theorem 10.1). This result has
also been announced by R Qiu [12] (see also Scharlemann’s exposition of Qiu’s proof
[14]). In addition, we prove that the prime decomposition of unstabilized Heegaard
splittings is unique.

Theorem (Theorem 10.2) Let M be a closed, orientable 3–manifold. Let H be
an unstabilized Heegaard splitting of M . Then H has a unique expression as the
connected sum of Heegaard splittings of prime 3–manifolds.
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Both Theorem 10.1 and Theorem 10.2 have algebraic analogues established by R
Weidmann [19]. In Weidmann’s work, the analogue of an unstabilized Heegaard
splitting is a generating set .g1; : : : ;gk/ for a group that is not Nielsen equivalent to
a generating set of the form .g0

1
; : : : ;g0

k�1
; 1/. The analogue of connected sum of

Heegaard splittings is free product of groups.

The surfaces H1 and H2 of Gordon’s conjecture together form a structure called a
generalized Heegaard splitting (GHS). Loosely speaking, H is a GHS if it is a pair
of sets of surfaces, Thick.H / and Thin.H /, such that each element of Thick.H / is
a Heegaard surface for some component of M nThin.H / (see Section 4 for a more
precise definition).

We can transform one GHS into another by a process called weak reduction. This
can be done whenever there are disjoint compressing disks on opposite sides of some
thick surface (see Section 5). So, for example, if some thick surface of a GHS comes
from stabilization or connected sum then there is a weak reduction for the entire GHS.
Definition 5.13 gives a simple complexity for GHSs under which weak reduction
represents a decrease.

A coarser measure of complexity of a GHS is its irreducible genus. Each GHS of a
connected 3–manifold M defines a Heegaard splitting in a unique way. The irreducible
genus is the genus of this Heegaard splitting, minus the number of S2�S1 summands
in a prime decomposition of M . The key fact that we use here is given by Corollary 7.9,
which says that weak reduction of an unstabilized GHS preserves irreducible genus.

Once we can relate GHSs by weak reduction we can start examining an entire Sequence
of GHSs (SOG). This is defined to be a sequence of GHSs fH ig such that for each i

either H iC1 or H i can be obtained from the other by weak reduction. Now, given
fixed GHSs H and H 0 and a SOG which connects them, one can ask if there is a
“more efficient” SOG which connects them. In Section 8 we define several ways to find
such a new SOG. Any SOG obtained by one of these operations is said to have been
obtained by a reduction. If a simpler SOG cannot be found then the given one is said
to be irreducible. Most reductions involve a process of “peak reduction.” That is, we
examine maximal GHSs of a SOG and determine when we can swap the order of weak
reductions in the sequence, trading a maximal GHS for possibly several smaller ones.
An analysis of when one can switch the order of weak reductions in a SOG is done in
Section 6.

Section 8 contains a crucial result about irreducible SOGs. This is given by Lemma 8.9,
which states that the thick surfaces of the maximal GHSs of an irreducible SOG satisfy
one of two combinatorial conditions. These conditions are called strong irreducibility
and criticality. Strongly irreducible Heegaard splittings were introduced by Casson and
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Gordon in [4]. Criticality was introduced by the author in [1], although the definition
given here in Section 3 is considerably simpler. By Lemma 4.7 any GHS whose thick
surfaces are strongly irreducible or critical must be of an irreducible 3–manifold. This
lemma relies on a deep result about the intersections of strongly irreducible and critical
surfaces with essential spheres and disks (Theorem 3.5).

Our proof of Gordon’s Conjecture (Theorem 10.1) begins with the construction of
a SOG fY ign

iD1
as follows (see Figure 18). The Heegaard surfaces H1 and H2 of

the conjecture can be considered to be the thick levels of a single GHS Y 1 of the
manifold M1[M2 . Similarly, H DH1#H2 is the unique thick level of a GHS Y 2

of M D M1#M2 . We can obtain Y 1 from Y 2 by a weak reduction. By way of
contradiction, we can also obtain a GHS Y 3 from Y 2 by destabilizing H . The three
GHSs Y 1;Y 2 and Y 3 can then be used to build a SOG Y. Note that the irreducible
genus of Y 1 is strictly larger than the irreducible genus of Y 3 .

By construction, the GHS Y 2 is the single maximal GHS in Y. As this is a GHS of a
reducible manifold, by Lemma 4.7 and Lemma 8.9 there must be a way to reduce the
entire SOG Y. Reducing as much as possible yields a SOG X in which every element
is a GHS of an irreducible 3–manifold.

Since the irreducible genus of the GHSs of Y was monotonically decreasing, Lemma
8.12 implies that there is a value of k such that the irreducible genus of X l is constant
for l � k and drops from X k to X kC1 . As X 1 is unstabilized, it follows from
Corollary 7.5 that X k is unstabilized as well. (Here is where we use the fact that each
element of X is a GHS of an irreducible manifold.) But this implies that the irreducible
genus of X k can not drop from X k to X kC1 , a contradiction.

The author would like to thank Saul Schleimer for helpful conversations regarding
the proof of Claim 3.10 and the referee for countless extremely helpful suggestions,
including a restructuring of the proof of Lemma 7.2.

2 Definitions

2.1 Essential loops, disks and spheres

A 2–sphere in a 3–manifold which does not bound a 3–ball is called essential. If a
manifold does not contain an essential 2–sphere then it is referred to as irreducible.

A loop on a surface is called essential if it does not bound a disk in the surface. An arc
which is properly embedded in a surface F is essential if it does not cobound, with a
subarc of @F , a subdisk of F .
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Suppose F is a surface embedded in an orientable 3–manifold M , D is a disk in M

and D\F D @D . There is an embedding hW D � I !M such that h.D �f1
2
g/DD

and h.D � I/\F D h.@D � I/. To surger F along D is to remove h.@D � I/ from
F and replace it with h.D � @I/. We denote the result of such a surgery as F=D . If
D and E are disjoint disks that both have boundary on F , then we let F=DE denote
the surface obtained from F by simultaneous surgery along D and E .

If @D is an essential loop on F then D is referred to as a compressing disk for F and
surgery along D is referred to as compression. A surface F is said to be incompressible
if there are no compressing disks for F . A properly embedded disk in a 3–manifold
M is essential if it is a compressing disk for @M .

Now suppose F is a properly embedded surface in a 3–manifold M with boundary and
D is a disk such that @DD˛[ˇ , F\DD˛ is an arc on F and D\@M Dˇ . Then there
is an embedding hW D�I!M such that h.D�f1

2
g/DD , h.D�I/\F D h.˛�I/

and h.D � I/\ @M D h.ˇ � I/. To surger F along D is to remove h.˛ � I/ from
F and replace it with h.D � @I/. If, furthermore, ˛ is an essential arc on F then D

is referred to as a @–compressing disk for F and surgery along D is referred to as @–
compression. A surface F is said to be @–incompressible if there are no @–compressing
disks for F .

If M1 and M2 are oriented n–manifolds (with n� 3) then the connected sum, denoted
M1#M2 , is constructed as follows. First, obtain M �

i by removing the interior of an n–
ball from the interior of Mi . Each M �

i will thus have a new .n� 1/–sphere boundary
component, Si , which will inherit some induced orientation from the orientation of Mi .
The manifold M1#M2 is then obtained by identifying S1 with S2 via an orientation
reversing map. The image of Si in M1#M2 is referred to as the summing sphere. Note
that the summing sphere is essential if and only if neither Mi is an n–sphere.

2.2 Heegaard splittings

Definition 2.1 A compression body is a 3–manifold which can be obtained by starting
with some closed, orientable, connected surface, H , forming the product H � I ,
attaching some number of 2–handles to H �f1g and capping off all resulting 2–sphere
boundary components that are not contained in H � f0g with 3–balls. The boundary
component H �f0g is referred to as @C . The rest of the boundary is referred to as @� .

Definition 2.2 A Heegaard splitting of a 3–manifold M is an expression of M as a
union V[HW , where V and W are compression bodies that intersect in a transversally
oriented surface H D @CV D @CW . If V [H W is a Heegaard splitting of M then
we say H is a Heegaard surface.
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Note The assumption that H is transversally oriented in the above definition will play
an important role. For example, L.p; q/, where q ¤ ˙1 mod p , contains a pair of
non-isotopic Heegaard tori (Bonahon and Otal [3]), but as unoriented surfaces they are
isotopic. In contrast, S3 contains a unique Heegaard torus (Waldhausen [18]), namely
the boundary of a regular neighborhood of an unknotted loop. Hence, we may talk
about the standard genus one Heegaard surface in S3 .

Definition 2.3 Suppose M1 and M2 are 3–manifolds and Hi is a Heegaard surface
in Mi . Recall that the first step in defining the connected sum M1#M2 is to remove
the interior of a ball Bi from Mi , resulting in a new 2–sphere boundary component
Si of the punctured 3–manifold M �

i . If Bi is chosen to meet Hi in a disk then
H�i DHi \M �

i will divide Si into disks Di and D0i . Now the identification of S1

with S2 can be done in two ways; D1 is glued to D2 or to D0
2

. However, only one
such identification makes the transverse orientation of H�

1
compatible with that of H�

2
.

When this identification is used the surface H�
1
[H�

2
is referred to as the connected

sum H1#H2 of H1 and H2 .

Example 2.4 Let H1 and H2 be Heegaard tori in L.p; q/. Let H1 denote H1

with the opposite orientation. Then H1#H2 and H1#H2 are non-isotopic genus two
Heegaard surfaces in L.p; q/#L.p; q/, even as unoriented surfaces (Engmann [6] see
also Birman [2]).

Definition 2.5 A stabilization of a Heegaard surface H is a new Heegaard surface
which is the connected sum of H with the standard genus one Heegaard surface in S3 .

3 Strong irreducibility and criticality

The main technical tools of this paper are strongly irreducible [4] and critical [1]
surfaces. Both strong irreducibilty and criticality are combinatorial conditions satisfied
by the compressing disks for a Heegaard surface.

Definition 3.1 Let V[H W be a Heegaard splitting of a 3–manifold M . Then we say
the pair .V;W / is a weak reducing pair for H if V and W are disjoint compressing
disks on opposite sides of H .

Definition 3.2 A Heegaard surface is strongly irreducible if it is compressible to both
sides but has no weak reducing pairs.

The restriction to surfaces that are compressible to both sides rules out various possibil-
ities, such as trivial Heegaard splittings of compression bodies and product manifolds.
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Definition 3.3 Let H be a Heegaard surface in some 3–manifold which is compressible
to both sides. The surface H is critical if the set of all compressing disks for H can
be partitioned into subsets C0 and C1 such that the following hold.

(1) For each i D 0; 1 there is at least one weak reducing pair .Vi ;Wi/, where
Vi ;Wi 2 Ci .

(2) If V 2 C0 and W 2 C1 then .V;W / is not a weak reducing pair.

Definition 3.3 is significantly simpler and slightly weaker, than the one given in [1].
In other words, anything that was considered critical in [1] is considered critical here
as well. Hence, a result such as [1, Theorem 7.1] still holds. This result says that
in a non-Haken 3–manifold the minimal genus common stabilization of any pair of
non-isotopic, unstabilized Heegaard splittings is critical. The basic idea of the proof is
as follows: suppose H0 and H1 are non-isotopic Heegaard splittings in a 3–manifold
M which are isotopic to a surface K after one stabilization. Another way to say this is
that there are weak reducing pairs .V0;W0/ and .V1;W1/ representing destabilizations
of K that lead to H0 and H1 . We then show that either we can use the disks Vi and
Wi to create a partition of the compressing disks for K that satisfies the conditions of
Definition 3.3, or there is an incompressible surface in M .

Example 3.4 Let M be a Seifert fibered space which fibers over a two-sphere with
three exceptional fibers. There are three vertical splittings H , H 0 and H 00 of M

and these are generally not isotopic (see Moriah and Schultens [11] for the relevant
definitions). Let K be the genus three splitting which is the common stabilization of
these three. Since M is non-Haken, it follows from [1, Theorem 7.1] that K is critical.

Example 3.4 shows that the partition of disks into just two sets in Definition 3.3 is a bit
misleading. For a critical Heegaard surface in a non-Haken 3–manifold one can make
a partition with a set for each distinct Heegaard splitting obtained by destabilization.
This point is made more explicit in the definition of criticality given in [1]. Somehow
the useful results (such as Theorem 3.5 below) about critical surfaces only require a
partition with at least two sets. This is one reason for the more streamlined definition
given here.

Theorem 3.5 If a 3–manifold M admits a strongly irreducible or critical Heegaard
splitting then M is irreducible and @M is incompressible.

Proof Let S be an essential sphere or disk in M and H be a Heegaard surface. We
break the proof into two cases, depending on whether H is strongly irreducible or
critical.
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Case 1 H is strongly irreducible. The strongly irreducible case is a direct consequence
of the “Haken Lemma” [8]. For completeness (and perhaps of independent interest)
we present a proof here.

Let H be a strongly irreducible Heegaard surface, separating M into compression
bodies V and W . By the definition of strong irreducibility there are compressing
disks V � V and W � W for H . A neighborhood of V is homeomorphic to a
3–ball and hence we can define an isotopy supported in this 3–ball which pushes S

off V . Similarly, we can define an isotopy of S which pushes S off of W . Putting
such isotopies together gives us an isotopy St (ie a map  W S � Œ�1; 1�!M where
St D  .S; t// such that

� S�1\V D∅,

� S0 D S and

� S1\W D∅.

Let t0 D�1, ftign�1
iD1

be the set of points in Œ�1; 1� where St is not transverse to H

and tn D 1. These points break Œ�1; 1� up into subintervals, which we now label. If
there is a t 2 .ti ; tiC1/ such that H \St contains the boundary of a compressing disk
for H in V then this interval gets the label V . Similarly, if there is a t 2 .ti ; tiC1/

such that H \St contains the boundary of a compressing disk for H in W then this
interval gets the label W .

We now present several claims which produce the desired result.

Claim 3.6 The interval .t0; t1/ is either labeled V or has no label. Similarly, the
interval .tn�1; tn/ is labeled W or has no label.

Proof For t near -1 the surface St is disjoint from V . Suppose the interval containing
t is labeled W . Then there is a loop ˛ �H \St which bounds a compressing disk
W 0 for H in W . But then @W 0\ @V D∅, contradicting the strong irreducibility of
H . A symmetric argument completes the proof.

Claim 3.7 No interval has both labels.

Proof If, for some t , there are loops of St \H that bound disks in V and W then
we immediately contradict the strong irreducibility of H .

Claim 3.8 An interval labeled V cannot be adjacent to an interval labeled W .

The proof is essentially the same as that of Gabai [7, Lemma 4.4].
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Proof Suppose ti is the intersection point of adjacent intervals with different labels.
Let t� D ti � � and tC D ti C � . As H is orientable the loops of St� \H can be
made disjoint (on H ) from the loops of StC \H . Hence, if St� \H contains the
boundary of a compressing disk for H in V it can be made disjoint from the boundary
of a compressing disk in W that is contained in StC \H . This again contradicts the
strong irreducibility of H .

Following these claims we conclude there is an unlabeled interval. Henceforth we
assume t is in such an interval.

Claim 3.9 Every loop of St \H is inessential on H .

Proof Suppose this is not the case. Let ˛ be a loop of St \H which is innermost on
St among all such loops that are also essential on H . Our goal is to show the loop ˛
bounds a compressing disk for H , which contradicts the fact that t lies in an unlabeled
interval.

As St is a sphere or disk the loop ˛ bounds a subdisk A of St so that all curves of
int.A/\H are inessential on H . If the interior of A misses H then A is a compressing
disk for H . If not then there is some loop ˇ where the interior of A meets H . By
assumption ˇ is inessential on H . Hence, ˇ bounds a subdisk B of H . Let  denote
a loop of A\B which is innermost on B . Note that  ¤ ˛ , as ˛ is essential on H

and  is not. The loop  bounds a subdisk C of H whose interior is disjoint from A.
We now use C to surger A, removing one loop of A\H . Continuing in this way we
may remove all loops of A\H , besides @A. The resulting disk is a compressing disk
for H .

By the previous claim St \H consists of loops that are inessential on both surfaces.
Let  now be a loop of H \St that is innermost on H , in the sense that  bounds a
subdisk C �H whose interior is disjoint from St . Then we may use the disk C to
surger St to obtain S 0t and S 00t . At least one of these surfaces will also be essential
and will meet H fewer times. Continuing in this way we obtain an essential sphere or
disk that is disjoint from H and thus lies in a compression body. If the surface is an
essential sphere, we contradict the fact that compression bodies are irreducible. If the
surface is a disk, we contradict the fact that the negative boundary of a compression
body is incompressible.

Case 2 H is critical. In this case Theorem 3.5 essentially follows from [1, Theorem
5.1]. As we are using a slightly weaker definition of the term “critical” here, we
reproduce the proof. Henceforth we will assume that H is a critical Heegaard surface
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which separates M into compression bodies V and W . Let C0 and C1 be the sets in
Definition 3.3. By definition there are compressing disks Vi � V and Wi �W where
.Vi ;Wi/ is a weak reducing pair and Vi ;Wi 2 Ci .

The proof is in several stages. First, we construct a map ˆ from S �D2 into M .
We then use ˆ to break up D2 into regions and label them in such a way so that if
any region remains unlabelled then the conclusion of the lemma follows. Finally, we
construct a map from D2 to a labelled 2–complex … which is homotopy equivalent
to a circle and show that if there is no unlabelled region then the induced map on
homology is nontrivial, a contradiction. This general strategy is similar to that used in
Rubinstein and Scharlemann [13], although the details have little in common.

3.1 Constructing the map, ˆW S �D2!M

We begin by defining a two-parameter family of surfaces in M isotopic to S . For any
map ˆW S �D2!M we let Sx denote the image of ˆ.S;x/.

Claim 3.10 Let �0 and �1 be distinct points on @D2 . Let U and L be arcs of
@D2 such that @D2 D U [L, where U \L D �0 [ �1 . There is a continuous map
ˆW S �D2!M such that

� for all x 2D2 the surface Sx is embedded,
� for i D 0; 1 the surface S�i

is disjoint from both Vi and Wi ,
� for each � 2 U the surface S� is disjoint from at least one compressing disk for

H in V and
� for each � 2L the surface S� is disjoint from at least one compressing disk for

H in W .

Proof We start by inductively defining a sequence of compressing disks for H ,
fV ign

iD0
, such that V i \ V iC1 D 0 for all i between 0 and n � 1, V 0 D V0 and

V n D V1 .

(1) Define V 0 D V0 .

(2) Let V i denote the last disk defined and suppose there is a simple closed curve
in V1 \ V i . Let v denote an innermost subdisk of V1 bounded by a loop of
V1\V i . Now surger V i along v . The result is a disk and a sphere. Throw away
the sphere and denote the disk as V iC1 . Note that jV1\V iC1j< jV1\V i j.

(3) Let V i denote the last disk defined and suppose there are only arcs in V1\V i .
Let v denote an outermost subdisk of V1 cut off by an arc of V1 \ V i . Now
surger V i along v . The result is two disks, at least one of which is a compressing
disk for H . Call such a disk V iC1 . Again, note that jV1\V iC1j< jV1\V i j.
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(4) If neither of the previous two cases apply then we have arrived at a disk V n�1

such that V n�1\V1 D∅. Now let V n D V1 and we are done.

We can apply a symmetric construction to produce a sequence of compressing disks,
fW j gm

jD0
, such that W 0 DW0 , W m DW1 and W j \W jC1 D∅ for all j between

0 and m� 1.

�0 �1

V 0 V 2 V 1

W 0 W 1

U

L

H

S

Figure 1

The map ˆ can now be described as follows. See Figure 1. For x at the center of D2

the surface Sx is identical to S . Near �0 the surface Sx is disjoint from both V 0 and
W 0 . As x progresses along U toward �1 the surface Sx ceases to be disjoint from
W 0 , but becomes disjoint from V 1 . Progressing further the surface Sx ceases to be
disjoint from V 0 , but becomes disjoint from V 2 . This continues until x gets to �1 ,
when Sx is disjoint from both V n and W m . This is illustrated for nD 2 and mD 1

in Figure 1.
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To rigorously define ˆ requires a considerable amount of work (and, unfortunately,
notation). For each i between 0 and n let Ai denote a neighborhood of the disk
V i . For each j between 0 and m let Bj denote a neighborhood of the disk W j .
Because V i \V iC1 DW j \W jC1 D V 0\W 0 D V n\W m D∅ we may assume
Ai \AiC1 D Bj \BjC1 DA0\B0 DAn\Bm D∅.

For each i between 0 and n, let  i W Ai � I !Ai be an isotopy which pushes S off
of V i , inside Ai . In other words,  i.x; 0/ D x for all x 2 Ai ,  i.S; 1/\ V i D ∅
and  i.x; t/D x for all x 2 @Ai . Similarly, for each j between 0 and m, let ıj be
an isotopy which pushes S off of W j , inside Bj .

Choose n pairs of circular arcs centered on points of U and m pairs of arcs centered
on points of L, “linked” as in Figure 21. For the i th pair of arcs chosen, centered on a
point of U , define f i W D2! Œ0; 1� to be the continuous function depicted in Figure 3.
Let gj W D2! Œ0; 1� be the function similarly defined for the j th pair of arcs centered
on a point of L.

�0 �1

Figure 2: “Linked” pairs of circular arcs in D2 .

Finally, we define ˆW S �D2!M . Suppose x 2 S and p 2D2 . If f i is non-zero
at p and x 2 Ai then we define p̂.x/ D 

i.x; f i.p//, where p̂.x/ D ˆ.x;p/.
Similarly, if gj is non-zero at p and x 2Bj then we define p̂.x/D ı

j .x;gj .p//.
If x is a point of S not in such an Ai or Bj then we define p̂.x/D x .

1Figure suggested by Saul Schleimer.
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�0 �1

f i D 0

f i D 1

Figure 3: In the black region f i takes on the value 1. In the white region
f i D 0 . The shading between these two regions is meant to indicate that
between the arcs the function f i continuously varies from 0 to 1 .

The proof is now complete by making the following observations.

� If f i and f k are non-zero at p (where k > i ) then k D i C 1 and gj .p/D 0

for all j . Since Ai and AiC1 are disjoint the function p̂ is well defined.
(Ambient isotopies with disjoint supports commute.)

� A similar statement holds if gj and gl are non-zero at p .

� If f i and gj are non-zero at p then either i D j D 0 or i D n and j D m.
Since A0\B0 DAn\Bm D∅ the function is again well defined.

� For p near the center of D2 the function p̂ is the identity on S .

� At each p 2 @D2 at least one of the functions ff ig or fgj g is 1. Assume this is
true of f i.p/. If x 2 S \Ai then p̂.x/D 

i.x; 1/. Note that this is disjoint
from the disk V i . Hence, for every point p 2 @D2 the surface Sp is disjoint
from at least one of the disks in fV ig or fW j g.

� At �0 both f 0 and g0 are 1. Hence, the surface S�0
is disjoint from both

V 0 D V0 and W 0 DW0 . Similarly, at �1 both f n and gm are 1. Hence, the
surface S�1

is disjoint from both V n D V1 and W m DW1 .
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We now perturb ˆ slightly so that it is smooth and in general position with respect to
H and again denote the new function as ˆ. Consider the set †D fx 2D2jSx is not
transverse to H g. (This set is called the graphic in [13].) If ˆ is in general position
with respect to H , then Cerf theory (see [5]) tells us that † is homeomorphic to a
graph and the maximum valence of each vertex of this graph is 4. We will use these
facts later.

3.2 Labelling D2

A region of D2 is a component of D2�†. Let x be any point in some region. We
will label this region from the set fV0;W0;V1;W1g as follows. The region containing
x will have the label

� V0 if there is a loop of H \Sx which bounds a compressing disk V � V for
H such that V 2 C0 ,

� W0 if there is a loop of H \Sx which bounds a compressing disk W �W for
H such that W 2 C0 ,

� V1 if there is a loop of H \Sx which bounds a compressing disk V � V for
H such that V 2 C1 or

� W1 if there is a loop of H \Sx which bounds a compressing disk W �W for
H such that W 2 C1 .

Claim 3.11 If some region is unlabeled then the conclusion of Theorem 3.5 follows.

Proof If any region remains unlabeled then there is no loop of H \Sx which bounds
a compressing disk for H . We claim that in such a situation every loop of H \Sx is
inessential on both surfaces and hence we can remove all intersections by a sequence
of surgeries, using an argument identical to that which appears in the last paragraph of
Case 1. The conclusion of Theorem 3.5 thus follows.

The argument as to why every loop of H\Sx is inessential on both surfaces is identical
to that of Claim 3.9. Suppose H \Sx contains a loop  which is essential on H . As
S is a sphere or disk the loop  bounds a subdisk D of S . Let  0 denote a loop of
H \Sx which is innermost on D among all loops that are essential on H (possibly
 0 D  ). The loop  0 thus bounds a subdisk D0 of S whose interior meets H in a
collection of loops that are inessential on both surfaces. Hence we may do a sequence
of surgeries on D0 to obtain a compressing disk for H . It would follow that the region
containing x has a label.

Claim 3.12 No region can have both of the labels Vi and W1�i .
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Proof Let x be a point in a region with the labels V0 and W1 . Let V � V and
W �W be disks whose existence is implied by these labels. Hence, V 2 C0 and
W 2C1 . But both @V and @W are contained in H \Sx . Thus they are either disjoint
or equal (in which case they can be made disjoint). This contradicts the definition of
C0 and C1 , as then .V;W / would be a weak reducing pair.

Claim 3.13 If a region has the label Vi then no adjacent region can have the label
W1�i .

The proof is similar to the argument of Gabai used in Claim 3.8.

Proof Suppose the region R0 has the label V0 and R1 is an adjacent region with
the label W1 . Let xi be some point in Ri . Let pW I ! D2 be an embedded path
connecting x0 to x1 meeting † once, transversally. The fact that R0 has the label V0

implies that for each t for which p.t/ is in R0 there is a compressing disk Vt � V
for H such that Vt 2 C0 and @Vt � H \ Sp.t/ . Similarly, for each t for which
p.t/ is in R1 there is a compressing disk Wt �W for H such that Wt 2 C1 and
@Wt �H \Sp.t/ .

As t increases from 0 to 1, we see a moment, t� , when Sp.t�/ does not meet H

transversely (ie t� corresponds to the place where the path p crosses an edge of †).
At t� we simultaneously see the disappearance of @Vt and the appearance of @Wt .
(Otherwise, R1 would have both the labels V0 and W1 , which we ruled out in Claim
3.12.) We conclude that as t approaches t� from below we see @Vt become tangent to
itself, or to another loop of H \Sp.t/ . Similarly, as t approaches t� from above we
see @Wt become tangent to itself, or to another loop of H \Sp.t/ . As only one such
tangency occurs for each t on an edge of † we see that

lim
t!t��

@Vt \ lim
t!t
C
�

@Wt ¤∅

as in Figure 4.

Since Vt and Wt are on opposite sides of H , we see from Figure 4 that @Vt��� can
be made disjoint from @Wt�C� (since H is orientable). This contradicts the fact that
Vt 2 C0 and Wt 2 C1 .

We now assume, to obtain a contradiction, that there are no unlabeled regions.
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@Vt

@Wt

t < t� t > t�t D t�

Figure 4

V0

V0,V1

V1

W0

W0,W1

W1

V0,W0 V1,W1

Figure 5: The 2–complex, … .

3.3 The 2–complex … and a map from D2 to …

Let … be the labelled 2–complex depicted in Figure 5. Let †0 be the dual graph of †.
Map each vertex of †0 to the point of … with the same label(s) as the region of D2 in
which it sits. Claim 3.12 assures that this map is well defined on the vertices of †0 .

Similarly, map each edge of †0 to the 1–simplex of … whose endpoints are labelled
the same. Claim 3.13 guarantees that this, too, is well defined.

Claim 3.14 The map to … extends to all of D2 .
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Proof Note that the maximum valence of a vertex of † is four. Hence, the boundary
of each region in the complement of †0 gets mapped to a 1–cycle with at most four
vertices in …. Inspection of Figure 5 shows that there is only one such cycle which is
not null homologous. Hence, we must rule out the possibility that there are four regions
around a common vertex x� of †, each with only one label, where all such labels are
distinct. As in the proof of Claim 3.13 this implies that each edge of † incident to x�
corresponds to a saddle tangency. Hence, Sx� \H is a graph with exactly two valence
four vertices and simple closed curves.

Figure 6: Resolving a vertex of Sx� \H .

For x in the interior of a region which meets x� the set Sx \H is obtained from
Sx� \H by some resolution of its vertices (see Figure 6). There are exactly four
possible ways to resolve two vertices. As there are four regions with different labels
around x� we must see all four resolutions. However, the orientability of H guarantees
that some resolution will consist of loops that can be made disjoint from all components
of all other resolutions. There are now four symmetric cases. Suppose, for example,
that such a resolution contains the boundary of a disk V � V such that V 2 C0 . We
know some other resolution contains that boundary of a disk W �W such that W 2C1 .
But this contradicts the fact that @V can be made disjoint from @W . The proof is now
complete by symmetry.

3.4 Finding an unlabelled region

To obtain a contradiction to our assumption that all regions are labeled it suffices to
prove that the map from D2 to …, when restricted to @D2 , induces a non-trivial map
on homology. To this end we must examine the possibilities for the labels of the regions
adjacent to @D2 .

Claim 3.15 If Sx is disjoint from a compressing disk V � V for H such that V 2 Ci

then the region containing x does not have the label W1�i . Similarly, if Sx is disjoint
from a compressing disk W �W for H such that W 2 Ci then the region containing
x does not have the label V1�i .
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Proof Assume Sx is disjoint from a disk V � V , where V 2 Ci . If the region
containing x has the label W1�i then there is a loop  of Sx \H which bounds a
compressing disk W �W for H such that W 2 C1�i . Then @W \ @V D ∅. This
contradicts the fact that .V;W / is not a weak reducing pair. The proof is complete by
symmetry.

Recall the arcs U and L of @D2 from Claim 3.10. For any point x near U the surface
Sx is disjoint from some compressing disk for H in V . Similarly, for any x near L

the surface Sx is disjoint from a compressing disk for H in W .

Claim 3.16 Suppose R0 and R1 are regions such that R0\U is adjacent to R1\U .
If R0 has the label W0 then R1 cannot have the label W1 . Similarly, if R0 \L is
adjacent to R1\L and R0 has the label V0 then R1 cannot have the label V1 .

Proof Suppose R0\U is adjacent to R1\U , the label of R0 is W0 and the label
of R1 is W1 . Let p be the point R0 \R1 \U . By Claim 3.10 the surface Sp is
disjoint from a compressing disk V � V for H . Hence, for all points x near p the
surface Sx will be disjoint from V . But every neighborhood of p contains points in
both R0 and R1 . For x near p and in R0 Claim 3.15 implies V 2C0 . But if x 2R1

then Claim 3.15 implies V 2 C1 . As C0 and C1 partition the compressing disks for
H the disk V cannot be in both.

We now examine the properties of ˆ listed in Claim 3.10 and the complex …. If x is
in a region containing the point �0 then Sx is disjoint from V0 and W0 . It follows
from Claim 3.15 that this region can not have either of the labels V1 or W1 and hence
must get mapped to the left triangle of …. Similarly, a region containing the point �1

gets mapped to the right triangle of …. If x is in a region containing a point of U then
Sx is disjoint from some compressing disk for H in V . It follows from Claim 3.15
that such a region cannot get both of the labels W0 and W1 and hence does not get
mapped to the bottom point of …. It follows from Claim 3.16 that no adjacent pair of
regions next to U gets mapped to the horizontal edge of the bottom triangle of …. We
conclude that the arc U gets mapped to the union of the left, right and top triangles of
…. A symmetric argument shows that L gets mapped to the union of the left, right
and bottom triangles of …. We summarize these observations in Figure 7. It follows
that the map from D2 to …, when restricted to @D2 , is a homotopy equivalence, a
contradiction. We conclude that there must have been an unlabeled region, as this was
the only assumption we made in constructing the map. Theorem 3.5 now follows from
Claim 3.11.
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V0

V0

V0

V0,V1

V1

V1

V1

W0

W0

W0

W0,W1

W1

W1

W1

V0,W0

V0,W0

V0,W0
V1,W1

V1,W1

V1,W1

�0 �1

U

L

Figure 7: The map from @D2 to … is non-trivial on homology.

4 Generalized Heegaard splittings

Theorem 10.1 is essentially proved by a complex sequence of handle slides. However,
we find that a handle structure is more cumbersome to deal with than a generalized
Heegaard splitting, defined presently. The relationship between handle structures and
generalized Heegaard splittings is made explicit in Example 4.4.
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Definition 4.1 A generalized Heegaard splitting (GHS) H of a 3–manifold M is a
pair of sets of pairwise disjoint, transversally oriented, connected surfaces, Thick.H /

and Thin.H / (called the thick levels and thin levels, respectively), which satisfies the
following conditions.

(1) Each component M 0 of M�Thin.H / meets a unique element HC of Thick.H /

and HC is a Heegaard surface in M 0 . Henceforth we will denote the closure of
the component of M �Thin.H / that contains an element HC 2 Thick.H / as
M.HC/.

(2) As each Heegaard surface HC � M.HC/ is transversally oriented, we can
consistently talk about the points of M.HC/ that are “above” HC or “below”
HC . Suppose H� 2 Thin.H /. Let M.HC/ and M.H 0C/ be the submanifolds
on each side of H� . Then H� is below HC if and only if it is above H 0C .

(3) There is a partial ordering on the elements of Thin.H / which satisfies the
following: Suppose HC is an element of Thick.H /, H� is a component of
@M.HC/ above HC and H 0� is a component of @M.HC/ below HC . Then
H� >H 0� .

Example 4.2 Suppose HC is a Heegaard surface in a closed 3–manifold M . Then a
GHS H of M is given by Thick.H /D fHCg and Thin.H /D∅.

Example 4.3 Suppose M is a 3–manifold, HC is a Heegaard surface in M and
@M has two homeomorphic components separated by HC . Let M 1 and M 2 denote
two homeomorphic copies of M and H i

C the image of HC in M i . Let N denote
the connected 3–manifold obtained from M 1 and M 2 by identifying the boundary
components in pairs by some homeomorphisms. The image of the boundary components
in N are F1 and F2 . We may attempt to define a GHS H by setting Thick.H / D

fH 1
C;H

2
Cg and Thin.H /D fF1;F2g. But this H is not a GHS of N , since there is

no way to consistently satisfy conditions (2) and (3) of the definition. If transverse
orientations are chosen for H 1

C and H 2
C that satisfy condition (2), then the relation

specified by condition (3) will imply both F1 > F2 and F2 > F1 . See Figure 8.

Example 4.4 The original formulation of a GHS was given by Scharlemann and
Thompson in [15]. They defined these structures as being “dual” to handle structures.
To be explicit, assume M is built by starting with 0–handles and attaching 1–handles,
2–handles and 3–handles in any order. The set of thick and thin levels of the GHS
associated with this handle structure appears at the various interfaces of the 1– and
2–handles, as indicated in Figure 9.
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F1 F2

H 1
C

H 2
C

Figure 8: Transverse orientations on H 1
C and H 2

C are given by normal
vectors. If the orientations on F1 and F2 are chosen to be consistent with
condition (2) of Definition 4.1 (as pictured) then they will be inconsistent
with condition (3).

= 0– and 1–handles = 2– and 3–handles

Thick
levels

Thin
levels

Figure 9: The GHS associated with a handle structure.

Definition 4.5 Suppose H is a GHS of a 3–manifold M with no 3–sphere components.
Then H is strongly irreducible if each element HC 2 Thick.H / is strongly irreducible
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in M.HC/. We say H is critical if there is a unique element H� 2 Thick.H / which
is critical in M.H�/ and every other element HC 2 Thick.H / is strongly irreducible
in M.HC/.

Lemma 4.6 Suppose H is a strongly irreducible or critical GHS of M . Then each
element of Thin.H / is incompressible in M .

The strongly irreducible case is done in [15].

Proof Let H be a strongly irreducible or critical GHS. Choose a compressing disk D

for some thin level whose interior meets the union of all thin levels a minimal number
of times. If any loop of D \ Thin.H / is inessential on Thin.H / then let ˇ denote
such a loop that is innermost on Thin.H /. Then ˇ bounds a subdisk C of Thin.H /

that we can use to surger D , lowering jD\Thin.H /j.

We conclude that every loop of D \ Thin.H / is essential on Thin.H /. Let ˛ now
denote such a loop that is innermost on D . The loop ˛ bounds a subdisk A of D

which lies in M.HC/, for some HC 2 Thick.H /. By assumption HC is either a
strongly irreducible or a critical Heegaard surface in M.HC/. This now contradicts
Theorem 3.5, as A is a compressing disk for @M.HC/.

Lemma 4.7 If M admits a strongly irreducible or critical GHS then M is irreducible.

Proof Let S be an essential sphere in M . Let H denote a strongly irreducible or
critical GHS. By Lemma 4.6 the union of the set of thin levels of H forms a (possibly
disconnected) incompressible surface in M . Let  be a loop of Thin.H /\S that is
innermost on Thin.H /, in the sense that  bounds a subdisk C � Thin.H / whose
interior is disjoint from S . Then we may use the disk C to surger S to obtain S 0

and S 00 . At least one of these surfaces will also be essential and will meet Thin.H /

fewer times. Continuing in this way we obtain an essential sphere that is disjoint from
Thin.H / and thus lies in M.HC/, for some HC 2 Thick.H /. This now contradicts
Theorem 3.5.

Definition 4.8 A stabilization of a GHS G is a new GHS, obtained from G by
forming the connected sum of some element GC 2 Thick.G/ with the standard genus
one Heegaard surface in S3 .

Note that in the case where G has a unique thick level, this definition is consistent
with Definition 2.5.
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5 Reducing GHSs

We now define weak reduction: a way to take a GHS of a 3–manifold M which is not
strongly irreducible and obtain a “simpler” GHS. The new GHS will be of a manifold
which is either homeomorphic to M , or is obtained from M by cutting along a 2–
sphere and capping off the resulting boundary components with a pair of 3–balls. The
procedure is broken into two stages, called pre-weak reduction and cleaning. Half-way
between the two we have a structure called a pseudo-GHS, defined as follows.

Definition 5.1 Let M be a compact, orientable 3–manifold with no 3–sphere com-
ponents. Let G D fT .G/; t.G/g be a pair of sets of transversally oriented, connected
surfaces in M such that the elements of T .G/[ t.G/ are pairwise disjoint. Then we
say G is a pseudo-GHS if the following hold.

(1) Each component M 0 of M � t.G/ meets exactly one element GC of T .G/.
We denote the closure of M 0 as M.GC/.

(2) Each element GC 2 T .G/ separates M.GC/ into punctured (possibly trivial)
compression bodies W and W 0 , where @CW D @CW 0 DGC .

(3) There is a partial ordering of the elements of t.G/ that satisfies similar properties
to the partial ordering of the thin levels of a GHS given in Definition 4.1.

We now define the first stage of weak reduction.

Definition 5.2 Let M be a compact, orientable 3–manifold with no 3–sphere compo-
nents. Let H be a pseudo-GHS. Let D and E be disjoint disks in the complement
of t.H / which meet T .H / in their boundaries. If HC is the union of the surfaces in
T .H / that meet @D[ @E then D and E are assumed to be on opposite sides of HC .
(Hence, if HC is connected and @D and @E are essential on this surface then .D;E/
is a weak reducing pair for HC .) Define

T .G/D .T .H /�fHCg/[fHC=D;HC=Eg; and

t.G/D t.H /[fHC=DEg:

We say the pseudo-GHS GDfT .G/; t.G/g is obtained from H by pre-weak reduction
along .D;E/.

Pre-weak reduction is illustrated in Figure 10.

Definition 5.3 Let M be a compact, orientable 3–manifold with no 3–sphere com-
ponents. Let H D fT .H /; t.H /g be a pseudo-GHS in M . We say the pseudo-GHS,
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HC=D

HC=E

HC=DE

HC

E

D

Figure 10: Pre-weak reduction.

along with the 3–manifold M 0 , given by the following algorithm is obtained from H

by cleaning. The algorithm starts by initially setting M 0 DM . We then follow these
steps.

(1) For each sphere S 2 t.H /, cut M 0 along S , cap off the resulting sphere boundary
components with 3–balls and remove S from t.H /.

(2) If M 0 now contains 3–sphere components then delete them, along with all
elements of T .H / and t.H / that they contain. (So if M Š S2 � S1 then
cleaning may delete the entire manifold. See Example 5.11.)

(3) If there are elements HC 2T .H / and H� 2 t.H / that cobound a product region
P of M 0 such that P \T .H /DHC and P \ t.H /DH� then remove HC
from T .H / and H� from t.H /.

Lemma 5.4 Cleaning a pseudo-GHS produces a GHS.

Proof Suppose a pseudo-GHS G has been obtained from H by cleaning. As the
surfaces of t.G/ are appropriately partially ordered, we must only check that each
element GC of T .G/ bounds a non-trivial compression-body to both sides in M.GC/.
As G is a pseudo-GHS, GC bounds punctured, possibly trivial compression bodies
on both sides in M.GC/. But the existence of punctures implies that there are sphere
elements of t.G/. Hence, G could not have been obtained from cleaning. If there
are no punctures, but some compression body is trivial, then a surface of t.G/ and
a surface of T .G/ cobound a product region that should have been removed during
cleaning.

It will be a useful fact that the order one performs the steps of cleaning often does not
change the final result. We prove this now.

Lemma 5.5 Let M be a compact, orientable 3–manifold with no 3–sphere com-
ponents. Let H D fT .H /; t.H /g be a pseudo-GHS in M . Suppose that for some
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HC 2 T .H / there is a surface H� � @M.HC/ such that HC and H� cobound a
product region. Removing HC and H� from T .H / and t.H /, then cleaning the
resulting pseudo-GHS, yields the same pseudo-GHS as just cleaning H .

Proof If HC is not a sphere, then it will be unaffected if we cut M along a sphere
component S of t.H / and then cap off the resulting boundaries by 3–balls (Step 1).
If HC[H� then ends up in a 3–sphere component of the resulting manifold, then it
does not matter if we had first removed them from T .H / and t.H /, or if we remove
the whole S3 component first.

The only remaining possibility, then, is that HC and H� are spheres. Since H is
a pseudo-GHS, HC divides M.HC/ into two punctured 3–balls. Hence, all of the
components of @M.HC/ are spheres. If we first perform Step 1 of Definition 5.3 then
M.HC/ will get cut out of M and all of its boundary components will get capped
off by 3–balls. The result will be S3 and so will be removed in Step 2. This yields
the same result as if we first removed HC and H� from T .H / and t.H /, cut M

along all of the boundary components of M.HC/ that were not H� and capped off
the resulting boundaries by 3–balls. See Figure 11.

Definition 5.6 Let M be a compact, orientable 3–manifold with no 3–sphere com-
ponents. Let H be a pseudo-GHS of M . Let D and E be disjoint disks in the
complement of t.H /, with boundaries on elements of T .H /. We say the GHS G of
the 3–manifold M 0 given by pre-weak reduction along .D;E/, followed by cleaning,
is obtained from H by weak reduction along .D;E/.

One thing that may seem curious to the experts about the way we have defined weak
reduction is that there is no assumption that D or E are compressing disks, or that
their boundaries are on the same surface. This technical point will be useful in the next
section. For now, however, we prove that nothing has been lost by stating things in
such generality.

Definition 5.7 Let D and E be disks as given in Definition 5.6. If @D and @E are
essential loops on the same element of T .H / then we say .D;E/ is a weak reducing
pair for the pseudo-GHS H .

Lemma 5.8 Let M be a compact, orientable 3–manifold with no 3–sphere compo-
nents. Let H be a pseudo-GHS of M . Suppose G has been obtained from H by weak
reduction along .D;E/. If .D;E/ is not a weak reducing pair then G can be obtained
from H by cleaning.
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HC H�

Š

S3

Figure 11: On the left we cut along the components of @M.HC/ , cap off
with 3–balls and remove S3 . On the right we remove HC and H� , and then
cut and cap off. The results are homeomorphic.

It follows that if H is a GHS and .D;E/ is not a weak reducing pair then weak
reducing along .D;E/ has no effect.

Proof There are two cases, with very similar proofs. Suppose first that HD 2 T .H /,
the surface that contains @D , is not the same as HE 2 T .H /, the surface that contains
@E . Let HC D HD [HE . Then HC=D D .HD=D/ [HE and HC=E D HD [
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.HE=E/. Hence, pre-weak reduction produces the sets

T .G/D .T .H /�fHCg/[fHC=D;HC=Eg

D .T .H /�fHD ;HEg/[fHD=D;HE ;HD ;HE=Eg

t.G/D t.H /[fHC=DEg

D t.H /[fHD=D;HE=Eg:

By Lemma 5.5, we may assume the first step of cleaning is the removal of repetitions
between T .H / and t.H /. This leaves

T .G/D .T .H /�fHD ;HEg/[fHE ;HDg

t.G/D t.H /:

This is the original pseudo-GHS H . Hence, completion of cleaning by removing any
remaining spheres and parallelisms between t.G/ and T .G/ will produce the same
thing as cleaning H .

The second case is when HD DHE DHC , but @D (say) is not essential on HC . The
loop @D thus bounds a disk D0 �HC . The surface HC=D has two components. One
of these is the sphere D[D0 and the other is a surface H 0C .

Pre-weak reduction produces the sets

T .G/D .T .H /�fHCg/[fHC=D;HC=Eg

D .T .H /�fHCg/[fD[D0;H 0C;HC=Eg

t.G/D t.H /[fHC=DEg

D t.H /[fD[D0;H 0C=Eg:

Let M 0 denote the manifold obtained from M by cutting along the sphere D [D0

and capping off the resulting boundary components with 3–balls. There are three cases
for the sphere D[D0 . Either it bounds a ball B in M which is disjoint from H , it
bounds a ball B in M which meets H , or it is essential in M . In the first case the
surfaces H 0C and H 0C=E are isotopic to HC and HC=E in M 0 . In the latter two
cases there is a collection of spheres S � t.H /. Cutting along S and capping off
the resulting boundary components yields M 0 as well and again the surfaces H 0C and
H 0C=E are isotopic to HC and HC=E in M 0 . Hence, in all cases after cleaning H

we may assume H 0C and H 0C=E are the same as HC and HC=E in M 0 .

This gives us

T .G/D .T .H /�fHCg/[fHC;HC=Eg

t.G/D t.H /�[fHC=Eg
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where t.H /� is either the original set t.H /, or the one obtained from it by removing
the collection of spheres S .

By Lemma 5.5 we may assume repetitions between T .G/ and t.G/ are removed next.
(That is, before we cut along any more spheres.) This leaves

T .G/D .T .H /�fHCg/[fHCg

t.G/D t.H /�:

This is either the original pseudo-GHS H , or the one obtained from H by cutting M

along S and capping off the resulting boundary components.

Example 5.9 Suppose Thick.H / contains a single element HC and Thin.H /D∅,
so that HC is a Heegaard surface for M and M is not S3 . Suppose .D;E/ is a weak
reducing pair for H and @D and @E cobound an annulus A of HC . If the sphere
D[A[E is separating in M then the inverse of the weak reduction is a connected
sum, in the sense of Definition 2.3.

Suppose HC is obtained from some lower genus Heegaard surface by a stabilization.
Recall that a stabilization is a connected sum with the standard genus one Heegaard
surface in S3 . Hence there will be a weak reduction for H which performs a destabi-
lization.

In the previous example we saw that a sphere may appear at a thin level in the process
of weak reduction when @D and @E were parallel. The next example shows that there
is another way for spheres to appear at thin levels during weak reduction.

Example 5.10 Let M1 and M2 be 3–manifolds with genus one Heegaard splittings,
at least one of which is not S3 . Let M DM1#M2 . Then, as in Example 2.4, there is
a genus two Heegaard splitting HC of M which is the connected sum of genus one
splittings of M1 and M2 . There are compressing disks D �M1 and E �M2 on
opposite sides of HC in M the union of whose boundaries do not separate HC . Hence
the pair .D;E/ is a weak reducing pair. During pre-weak reduction we add HC=DE

to Thin.H /. But this surface is a sphere, which will get removed when cleaning.

If M2 Š S3 then HC was a stabilization of the splitting of M1 that we started with.
The weak reduction given by .D;E/ has undone this stabilization.

Example 5.10 is interesting because it says that there are weak reductions .D;E/ that
perform destabilizations, where @D is not parallel to @E .

In Example 5.9 and Example 5.10 the surface HC=DE had a separating sphere
component. In the next two examples we explore what happens when HC=DE

contains a non-separating sphere.
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Example 5.11 Consider S2 � S1 . If l is a loop in S2 then l � S1 is a Heegaard
torus, H . The loop l bounds disks D and E on opposite sides of H , which can be
isotoped to be disjoint. In the process of weak reduction the manifold will get cut along
an essential 2–sphere and the resulting boundary components will get capped off by
3–balls. The result is S3 , which will then get deleted. Hence, weak reducing along the
pair .D;E/ produces the empty GHS of the empty set.

Our next example is, in some sense, a combination of the situations described in
Example 5.9 and Example 5.11.

Example 5.12 Suppose, as in Example 5.9, that Thick.H / contains a single element
HC and Thin.H /D∅, so that HC is a Heegaard surface for M . Suppose again that
.D;E/ is a weak reduction for H and @D and @E cobound an annulus A of HC . If
the sphere D [A[E is non-separating in M then either M ŠM 0#.S2 � S1/ or
M Š S2 �S1 . In the first case the weak reduction produces a Heegaard splitting of
M 0 whose genus is one less than the genus of HC . In the second case weak reduction
produces the empty GHS of the empty set.

We now define a partial ordering of GHSs. Any partial ordering will suffice, as long as
a weak reduction produces a smaller GHS and any monotonically decreasing sequence
of GHSs must terminate. This is motivated by [15].

Definition 5.13 If H is a GHS then let c.H / denote the set of genera of the elements
of Thick.H /, where repeated integers are included and the set is put in non-increasing
order. We compare two such sets lexicographically. If G and H are two GHSs then
we say G <H if c.G/ < c.H /.

Lemma 5.14 Suppose G and H are GHSs and G is obtained from H by a weak
reduction. Then G <H .

Proof In the definition of weak reduction we remove HC from Thick.H / and replace
it with (possibly multiple) surfaces of smaller genus. Some of these surfaces may then
appear at the boundary of a product submanifold or in an S3 component and so will
be removed. In any case, c.H / has gone down under the lexicographical ordering.

6 Swapping weak reductions

There will be many times when we will want to alter a sequence of weak reductions.
In this section we prove an important lemma that tells us when we can do this. Before
proceeding to this we will need the following result.
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Lemma 6.1 Suppose H D fT .H /; t.H /g is a pseudo-GHS of M . Then cleaning
H , followed by a weak reduction along .D;E/, yields the same result as pre-weak
reducing along .D;E/, followed by cleaning.

Proof The assertion of the lemma only has content when H is not clean. That is,
there is a sphere in t.H / or a surface in T .H / that is parallel to a surface in t.H /,
with no other elements of t.H /[T .H / between them. We address each of these cases
independently.

(1) There is a sphere S in t.H /. If D or E meets S then .D;E/ is not a weak
reducing pair. Thus, by Lemma 5.8 pre-weak reduction, followed by cleaning,
yields the same result as just cleaning. On the other hand, if neither D nor
E meet S then pre-weak reduction along .D;E/ will not effect S . During
cleaning M will be cut along S and the resulting boundary components will be
capped off by 3–balls. This can happen before or after pre-weak reduction with
the same result.

(2) There is a surface HC 2 T .H / which is parallel to a surface H� 2 t.H /, with
no other elements of t.H /[T .H / between them. Then HC is incompressible
in the submanifold of M cobounded by HC and H� . It follows that if .D;E/
is a weak reducing pair then neither disk meets HC and thus the removal of
HC [H� can happen before or after pre-weak reduction along .D;E/. On
the other hand, if .D;E/ is not a weak reducing pair then Lemma 5.8 implies
the pre-weak reduction, followed by cleaning, yields the same result as just
cleaning.

Lemma 6.2 Suppose .D;E/ and .D0;E/ are weak reductions for a GHS H , where
D \D0 D ∅. Let G be the GHS obtained from H by the weak reduction .D;E/
and G0 the GHS obtained from H by the weak reduction .D0;E/. Then one of the
following holds:

(1) there is a GHS F that can be obtained from G by the weak reduction .D0;E/
and from G0 by the weak reduction .D;E/,

(2) G can be obtained from G0 by the weak reduction .D;E/,

(3) G0 can be obtained from G by the weak reduction .D0;E/ or

(4) G is isotopic to G0 .

Proof Let fT .G/; t.G/g be the pseudo-GHS obtained from H by pre-weak reducing
along .D;E/. By Lemma 6.1 if we complete the weak reduction by cleaning and
follow with weak reduction along .D0;E/, then we obtain the same thing as if we
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pre-weak reduce fT .G/; t.G/g along .D0;E/ and then clean. Now consider the effect
of pre-weak reducing along .D;E/, followed by immediately pre-weak reducing along
.D0;E/. Pre-weak reducing along .D;E/ yields

T .G/D .Thick.H /�fHCg/[fHC=D;HC=Eg; and

t.G/D Thin.H /[fHC=DEg:

We now follow this with pre-weak reduction along .D0;E/. Notice that both D0 and
E are disks with their boundaries on HC=D . Hence, pre-weak reduction yields:

T .F /D .Thick.H /�fHCg/[fHC=DD0;HC=DE;HC=Eg; and

t.F /D Thin.H /[fHC=DE;HC=DD0Eg:

By Lemma 5.5 we may start cleaning by removing repetitions between T .F / and
t.F /. This yields

T .F /D .Thick.H /�fHCg/[fHC=DD0;HC=Eg; and

t.F /D Thin.H /[fHC=DD0Eg:

But notice that this result is symmetric in D and D0 , so we would obtain the same result
if we pre-weak reduce along .D0;E/ first and then follow with pre-weak reduction
along .D;E/.

If the pair .D0;E/ is not a weak reducing pair for G , then by Lemma 5.8 weak
reduction of fThick.G/;Thin.G/g along the pair .D0;E/ produces sets isotopic to
fThick.G/;Thin.G/g. In this case F is isotopic to G0 and hence G is obtained from
G0 by the weak reduction .D;E/. By symmetry, it may also be possible that G0 is
obtained from G by weak reduction along .D0;E/. Finally, it may be that .D0;E/
is not a weak reducing pair for G and .D;E/ is not a weak reducing pair for G0 . It
would thus follow from Lemma 5.8 that G is isotopic to G0 .

7 Amalgamations

Let H be a GHS of a 3–manifold M . In this section we use H to produce a graph
† in M . Each component of M will contain exactly one component of †. Each
component of † will be the spine of a Heegaard splitting of the component of M that
contains it. We call the disjoint union of these Heegaard splittings the amalgamation
of H . Note that this is a generalization of a standard procedure of the same name, first
defined by Schultens [16]. First, we must introduce some new notation.
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Definition 7.1 Suppose H is a GHS of M and HC 2 Thick.H /. Recall that HC is
transversally oriented, so that we may consistently talk about those points of M.HC/

that are “above” HC and those points that are “below.” The surface HC divides
M.HC/ into two compression bodies. Henceforth we will denote these compression
bodies as V.HC/ and W.HC/, where V.HC/ is below HC and W.HC/ is above.
When we wish to make reference to an arbitrary compression body which lies above
or below some thick level we will use the notation V and W . Define @�M.HC/ to
be @�V.HC/ and @CM.HC/ to be @�W.HC/. That is, @�M.HC/ and @CM.HC/

are the boundary components of M.HC/ that are below and above HC , respectively.

We now inductively build †. The intersection of † with some M.HC/ is depicted in
Figure 12. First, we define a sequence of manifolds fMig where

M0 �M1 � � � � �Mn DM:

The submanifold M0 is defined to be the disjoint union of all manifolds of the form
M.HC/, such that @�M.HC/D∅. The fact that M is closed and the thin levels of
H are partially ordered guarantees M0 ¤∅. Now, for each i we define Mi to be the
union of Mi�1 and all manifolds M.HC/ such that @�M.HC/� @Mi�1 . Again, it
follows from the partial ordering of thin levels that for some i the manifold Mi DM .

We now define a sequence of graphs †i in M . The final element of this sequence will
be the desired graph †.

Each V �M0 is a handle-body. Choose a spine of each and let †0
0

denote the union
of these spines. The complement of †0

0
in M0 is a (disconnected) compression body,

homeomorphic to the union of the compression bodies W �M0 . Now let †0 be the
union of †0

0
and one vertical arc for each component H� of @M0 , connecting H� to

†0
0

.

We now assume†i�1 has been constructed and we construct †i. Let M 0
iDMi �Mi�1 .

For each compression body V � M 0
i choose a set of arcs � � V such that @� �

†i�1\ @Mi�1 and such that the complement of � in V is a product. Let †0i be the
union of †i�1 with all such arcs � . Now let †i be the union of †0i and one vertical
arc for each component H� of @Mi , connecting H� to †0i .

Lemma 7.2 If H is a GHS of M then each component of the graph † defined above
is the spine of a Heegaard splitting of the component of M that contains it.

Proof We must show that the complement of † in M is a union of handlebodies.
For each subset X of M , we denote X �Nbhd.†/ as X† .
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HC

V.HC/

W.HC/

†

Figure 12: The intersection of † with V.HC/ and W.HC/ .

Suppose that N DM.HC/, where HC 2 Thick.H / and @CN D ∅. Then W.HC/

is a handlebody and is disjoint from †. Also, V.HC/† is homeomorphic to a product.
Thus N† is homeomorphic to W.HC/.

Now suppose that we have accumulated a submanifold N �M such that

(1) N is a union of submanifolds of the form M.HC/, for thick levels HC 2

Thick.H /,

(2) @CN D∅ and

(3) N† is a disjoint union of handlebodies.

Suppose that HC is a thick level which is not contained in N , such that @CM.HC/�

@�N . Let N 0 D N [M.HC/. We must check that N 0
†

is a disjoint union of
handlebodies. If †\W.HC/D∅ then this is easy; in fact N 0 is the disjoint union of
N and M.HC/. If not, then W.HC/ is of the form fpunctured surfaceg�I , together
with one-handles. So N† [W.HC/† is a disjoint collection of handlebodies. Again,
V.HC/† is homeomorphic to a product and is correctly glued to N† [W.HC/† .

Definition 7.3 Let H be a GHS and † the graph in M defined above. The union of the
Heegaard splittings that each component of † is a spine of is called the amalgamation
of H and will be denoted A.H /.

Note that although the construction of the graph † involved some choices, its neigh-
borhood was uniquely defined up to isotopy at each stage. Hence, the amalgamation of
a GHS is well defined, up to isotopy.

Lemma 7.4 Suppose H is a GHS of M , G is obtained from H by weak reduction,
and H is not a stabilization of G . Then each component of A.H / is either
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(1) isotopic to a component of A.G/,
(2) the connected sum of two components of A.G/,
(3) the connected sum of a component of A.G/ and the genus one Heegaard splitting

of S2 �S1 or

(4) a Heegaard splitting of S2 �S1 and A.G/ is obtained from A.H / by deleting
this splitting.

Proof It suffices to assume M is connected. Suppose G is obtained from H by the
weak reduction .D;E/ for the thick level HC , where D is above HC and E is below.
Let † be the graph associated with H as defined above. In the first stage of weak
reduction (pre-weak reduction) we replace HC in Thick.H / with the components of
HC=D and HC=E . We also add the components of HC=DE to Thin.H /.

Suppose first that HC=DE contains a sphere S and that S is inessential. Let B be the
ball bounded by S . Then B contains a component H 0C of either HC=D or HC=E .
During cleaning M will get cut along S and the ball B will get capped off to form
S3 . The surface H 0C then becomes a Heegaard surface in S3 and is subsequently
deleted. It follows that H is a stabilization of G .

Now suppose HC=DE contains a sphere S that is essential in M . During cleaning
we cut along this sphere and cap off the resulting boundary components with 3–balls.
Thus, if S is separating then M DM1#M2 and G is a GHS of M1 [M2 . If S is
non-separating then either M DM 0#.S2 �S1/ or M Š S2 �S1 . In the first case
G is a GHS of M 0 and H is obtained from G by taking the connected sum with the
genus one splitting of S2 �S1 . In the second case G is empty.

If HC=DE does not contain a sphere component then the second stage of weak
reduction (cleaning) involves only the removal of parallel thick and thin levels. Now
observe that if we postpone this step and we first form the associated graph †0 as
above, then we end up with the same graph as we would have if we removed parallel
thick and thin levels first.

We now claim that a neighborhood N.†0/ is isotopic to N.†/. Outside M.HC/ we
may assume † and †0 coincide, so we focus our attention inside M.HC/.

The manifold M.HC/ can be built as follows. Begin with V.HC=E/. Attach a
1–handle to the positive boundary whose co-core is E . This is now the manifold
V.HC/. To continue, attach a 2–handle whose core is D and then attach the manifold
W.HC=D/. The 2–handle and W.HC=D/ is precisely W.HC/. See Figure 13.
Since D and E are disjoint we may build M.HC/ in an alternate way: Begin with
V.HC=E/, attach the 2–handle, then attach the 1–handle and finally attach W.HC=D/.
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D

DE

E

W.HC/

V.HC/
V.HC=E/ V.HC=E/

W.HC=D/ W.HC=D/

Figure 13: Because D and E are disjoint the manifold M.HC/ can be built
in two different ways.

D

DE

E

˛





Figure 14: The graph † can be obtained from †0 by contracting ˛ .

Now note that we can build † by starting with a set of arcs in V.HC=E/ whose
complement is a product, attaching a core  of the 1–handle whose co-core is E and
then attaching some vertical arcs. Similarly, †0 can be built by starting with the same
set of arcs in V.HC=E/, attaching vertical arcs ˛ , then attaching  , and finishing
with more vertical arcs. See Figure 14. By contracting the vertical arcs ˛ we achieve
the desired isotopy of N.†0/.

Corollary 7.5 Suppose H is a GHS of an irreducible 3–manifold M , G is obtained
from H by a weak reduction and H is not a stabilization of G . Then A.H / is isotopic
to A.G/.
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Definition 7.6 The genus of a GHS H is the sum of the genera of the components of
A.H /.

Corollary 7.7 Suppose H is a GHS of M that is not a stabilization of another GHS.
Let G be a GHS obtained from H by a weak reduction and suppose G is a GHS of
M 0 . Then either M DM 0 and genus.H /D genus.G/, or M DM 0#.S2 �S1/ and
genus.H /D genus.G/C 1.

Proof By Lemma 7.4 the only way the genus can drop by more than one is if A.H /

has a component that is a genus g Heegaard splitting of S2 �S1 and g � 2. But any
such splitting is stabilized.

The previous corollary motivates the following definition.

Definition 7.8 Suppose H is a GHS of a 3–manifold M . The irreducible genus of H ,
denoted genus�.H /, is equal to genus.H / minus the number of S2 �S1 summands
in the prime decomposition of M .

With this definition in hand we can restate the previous corollary in a much simpler
way.

Corollary 7.9 Suppose H is a GHS of M that is not a stabilization of another
GHS. Let G be a GHS obtained from H by a weak reduction. Then genus�.H / D

genus�.G/.

8 Sequences of generalized Heegaard splittings

Definition 8.1 A Sequence Of GHSs (SOG), f.H i ;M i/g, is a finite sequence such
that H i is a GHS of M i and either H i or H iC1 is obtained from the other by a weak
reduction.

Notation We will always use superscripts to denote the GHSs of a SOG and a boldface
font to denote the entire SOG. Hence, H j is the j th GHS of the SOG H.

Definition 8.2 If H is a SOG and k is such that H k�1 and H kC1 are obtained from
H k by a weak reduction then we say the GHS H k is maximal in H.

It follows from Lemma 5.14 that maximal GHSs are larger than their immediate
predecessor and immediate successor.
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Definition 8.3 Suppose H is a Heegaard surface in a 3–manifold. Let .Vi ;Wi/ be a
weak reducing pair for H for i D 0; 1. Then we define the distance between .V0;W0/

and .V1;W1/ to be the smallest n such that there is a sequence fDj g
nC1
jD0

where

(1) fD0;D1g D fV0;W0g,

(2) fDn;DnC1g D fV1;W1g,

(3) for all j the pair .Dj ;DjC1/ is a weak reducing pair for H ,

(4) for 1� j � n, Dj�1 is disjoint from, or equal to, DjC1 .

If there is no such sequence then we define the distance to be 1.

The reader may wonder how this notion of distance between weak reducing pairs
is related to the distance you would get by dropping the last condition. This is best
visualized in the curve complex of H , where vertices correspond to isotopy classes of
essential loops in H and edges correspond to disjoint pairs of loops. In Figure 15(a)
we have depicted a path in the curve complex from @V0 to @W1 . In Figure 15(b) we
see how the boundaries of the disks Di of Definition 8.3 are related. The picture is
reminiscent of the geodesic hierarchies of Masur and Minsky [10]. The figure illustrates
how the distance of Definition 8.3 is more closely related to the length of a chain of
2–simplices, rather than the length of a chain of 1–simplices.

Lemma 8.4 Suppose H is an embedded surface in a 3–manifold. If there are weak
reducing pairs .D;E/ and .D;E0/ for H then the distance between .D;E/ and
.D;E0/ is finite.

Proof We construct a sequence fEig
m
iD0

such that E0 DE0 , Em DE , for all i the
pair .D;Ei/ is a weak reducing pair and Ei \EiC1 D∅. The sequence

fD;E0 DE0;D;E1;D;E2; : : : ;D;E DEmg

then satisfies the conditions in Definition 8.3, establishing that the distance between
.D;E0/ and .D;E/ is at most 2m.

The sequence fEig is constructed inductively. The construction is essentially the same
as that given in the proof of Claim 3.10.

(1) Define E0 DE0 .

(2) Let Ei denote the last disk defined and suppose there is a simple closed curve in
E\Ei . Let e denote an innermost subdisk of E bounded by a loop of E\Ei .
Now surger Ei along e . The result is a disk and a sphere. Throw away the
sphere and denote the disk as EiC1 . Note that jE \EiC1j< jE \Ei j.

Geometry & Topology, Volume 12 (2008)



Connected sums of unstabilized Heegaard splittings are unstabilized 2363

(a) (b)

V0

W0

V1

W1

V0 DD0

D2

D4

D6

D1;3;5;7

D9

D11

D13

D15

D17

D8;10;12;14;16;18
D20

D22

D24

D26

D19;21;23;25;27

W1 DD28

Figure 15: (a) The shortest path through alternately compressible loops from
@V0 to @W1 , in the curve complex of H . (b) The distance from .V0;W0/ to
.V1;W1/ is 27.

(3) Let Ei denote the last disk defined and suppose there are only arcs in E \Ei .
Let e denote an outermost subdisk of E cut off by an arc of E\Ei . Now surger
Ei along e . The result is two disks, at least one of which is a compressing disk
for H . Call such a disk EiC1 . It follows from the fact that e \D D ∅ that
EiC1\D D∅. Again, note that jE \EiC1j< jE \Ei j.

(4) If neither of the previous two cases apply then we have arrived at a disk Em�1

such that .Em�1;D/ is a weak reducing pair and Em�1 \E D ∅. Now let
Em DE and we are done.

Lemma 8.5 Suppose H is a Heegaard surface in a 3–manifold. If there are weak
reducing pairs .V0;W0/ and .V1;W1/ for H such that the distance between .V0;W0/

and .V1;W1/ is 1 then H is critical.

Proof Let C0 be the set of compressing disks such that for each D 2 C0 there exists
an E where the distance between .V0;W0/ and .D;E/ is finite. Let C1 denote the
set of compressing disks that are not in C0 . We claim that the sets C0 and C1 satisfy
the conditions of Definition 3.3.
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Clearly, V0 and W0 are in C0 . We claim V1 is in C1 . By symmetry it will follow
that W1 2 C1 and hence Condition 1 of Definition 3.3 is satisfied. If V1 is not in C1

then there is an E which forms a weak reducing pair with V1 such that the distance
between .V0;W0/ and .V1;E/ is finite. But then, by concatenating sequences, it
would follow from Lemma 8.4 that the distance between .V0;W0/ and .V1;W1/ is
finite, a contradiction.

Suppose now D 2 C0 and E is such that .D;E/ is a weak reducing pair for H . To
establish Condition 2 we must show E 2C0 . By definition there is an E0 such that the
distance between .V0;W0/ and .D;E0/ is finite. It thus follows again from Lemma
8.4 that the distance between .V0;W0/ and .D;E/ is finite and hence, E 2 C0 .

We now define a complexity on maximal GHSs of SOGs. The definition is illustrated
in Figure 16.

H 1

H 2

H 3

.D;E/ .D0;E0/

5

Figure 16: If the distance between .D;E/ and .D0;E0/ is 5 then the angle
at H 2 is 5 .

Definition 8.6 Suppose H k is a maximal GHS of a SOG H. Suppose further that
H k�1 is obtained from H k by the reduction given by the weak reducing pair .D;E/
for the surface H k

C 2Thick.H k/ and that H kC1 is obtained from H k by the reduction
given by the weak reducing pair .D0;E0/ for the surface H k

� 2 Thick.H k/. If H k
C D

H k
� then define the angle †.H k/ to be the distance between .D;E/ and .D0;E0/.

(In particular, if .D;E/D .D0;E0/ then the angle is 0.) If H k
C ¤H k

� then we define
†.H k/ to be 1.

Recall that a weak reduction is a way to take a GHS and obtain a smaller one. Our
goal here is to define several ways to take a SOG and obtain a smaller one. Any of
these will be referred to as a reduction of a SOG. To justify the statement that reduction
produces something smaller, we must define a complexity for SOGs that induces a
partial ordering. Furthermore, such a complexity should have the property that any
decreasing sequence must terminate. This would immediately imply that any sequence
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of reductions must be finite. As our complexity is a lexicographically ordered multi-
set of non-negative integers this latter property follows from a transfinite induction
argument.

The actual complexity we define is a bit complicated. Fortunately, the only features
that we will use are easy to list.

(1) Eliminating or replacing a maximal GHS with one or more smaller ones will
represent a decrease in complexity.

(2) Replacing a maximal GHS with angle n with several identical maximal GHSs,
each of which having angle less than n, will represent a decrease.

Any complexity one can define which behaves in this way will work for our purposes.
We give one now for completeness. Let H be a SOG. Then the complexity of H is
given by n�

H k ;†.H k/
�
jH k is a maximal GHS

o
:

Sets appearing in parentheses are ordered as written. Sets appearing in brackets are put
in non-increasing (lexicographical) order and repetitions are included. When comparing
the complexity of two SOGs one should make lexicographical comparisons at all levels.
For comparison purposes we assume 1> n for all n 2N .

Example 8.7 Consider the SOG pictured in Figure 17. If H >K then the complexity
of this SOG would be

f.H;1/; .H; 5/; .H; 5/; .K; 6/g:

If K >H then the complexity would be

f.K; 6/; .H;1/; .H; 5/; .H; 5/g:

Finally, if H and K are not comparable (ie c.H /D c.K/) then the complexity would
be

f.H;1/; .K; 6/; .H; 5/; .H; 5/g:

We now define the various complexity decreasing operations that one can perform on a
SOG that will be referred to as reductions. As in Definition 8.6 assume H k is maximal
in H. We assume H k is a GHS of a manifold with no S3 components. There is then
some thick level H k

C such that H k�1 is obtained from H k by a reduction given by
the weak reducing pair .D;E/ for the surface H k

C . There is also a thick level H k
�

such that H kC1 is obtained from H k by a reduction given by the weak reducing pair
.D0;E0/ for the surface H k

� .
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5

1

6

5

H

H H

K

Figure 17: A SOG.

8.1 Reductions of type I

These are reductions which effect maximal GHSs without any consideration of their
angles.

(1) If H k
C ¤H k

� then we may replace H k with G� in H, where G� is the GHS
obtained from H k�1 by the weak reduction .D0;E0/. Since G� can also be
obtained from H kC1 by the weak reduction .D;E/ our substitution has defined
a smaller SOG H0 .

H k�1

H k�1

H k

H kC1

H kC1

G�

.D
;E
/

.D
;E
/

.D
0;E
0/

.D
0;E
0/

(2) Next, assume H k
C D H k

� , but there is a thick level H k
0
¤ H k

C in Thick.H k/

which is not strongly irreducible. Let .D�;E�/ be a weak reducing pair for
H k

0
. Let Gk�1 , Gk and GkC1 denote the GHSs obtained from H k�1 , H k

and H kC1 by the weak reduction corresponding to .D�;E�/. Now replace H k

in H with the subsequence fGk�1;Gk ;GkC1g to define a new, smaller SOG
H0 .
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H k�1

H k�1

H k

H kC1

H kC1

Gk�1

Gk

GkC1

.D
;E
/

.D
;E
/

.D
0;E
0/

.D
0;E
0/

.D
�
;E
�
/ .D

� ;
E
� /

8.2 Reductions of type II

In all Type II reductions H k
C DH k

� and we focus on †.H k/.

(1) †.H k/ D 0. Then .D;E/ is the same as .D0;E0/, so removal of the subse-
quence fH k ;H kC1g from H defines a new, smaller SOG H0 .

H k�1

H k

H kC1

H k�1 DH kC1

.D
;E
/ .D

;E
/

0

(2) †.H k/ D 1. In this case either D D D0 and E \E0 D ∅ or E D E0 and
D \D0 D∅. Assume the latter. Then we may apply Lemma 6.2 to conclude
one of the following holds.

(a) There is a GHS G� that can be obtained from both H k�1 and H kC1 by
weak reductions. Replacing H k with G� in H thus produces a smaller
SOG. The accompanying figure is the same as that for a Type I(1) reduction,
with E DE0 .
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(b) One of H k�1 or H kC1 can be obtained from the other by weak reduction.
We may thus remove H k from H to obtain a smaller SOG.

H k�1 H k�1

H k

H kC1 H kC1
.D;E/

.D
;E
/

.D
0;E

/1

(c) H k�1 is isotopic to H kC1 . Hence we may remove the subsequence
fH k ;H kC1g from H to obtain a smaller SOG. The accompanying figure is
the same as that for a Type II(1) reduction, with E DE0 .

(3) †.H k/Dn for some n> 1. Let fDj g
nC1
jD0

be a sequence given by Definition 8.3.
Choose some m between 1 and n�1. Then the weak reducing pair .Dm;DmC1/

cannot be equal to either .D;E/ or .D0;E0/. Let H� denote the GHS obtained
from H k by the weak reduction corresponding to .Dm;DmC1/ D .D

�;E�/.
Now, let H0 denote the SOG obtained from H by inserting the subsequence
fH�;H kg just after H k . Note that the maximal GHS H k appears one more
time in H0 than in H. However, the angle at the old occurrence of H k is now
m and the angle at the new occurrence is n�m. As both of these numbers are
smaller than n we have produced a smaller SOG.

H k�1 H k�1

H k H k H k

H kC1 H kC1H�

.D
;E
/

.D
;E
/

.D
0;E
0/

.D
0;E
0/

.D
� ;

E
� /

.D
�
;E
�
/

n m n�m

Definition 8.8 If the first and last GHS of a SOG are strongly irreducible and none of
the above reductions can be performed then the SOG is said to be irreducible.

Lemma 8.9 Every maximal GHS of an irreducible SOG is critical.
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Proof The fact that every thick level but one is strongly irreducible follows immediately
from the fact that one cannot perform any Type I reductions. The remaining thick level
(the surface Gk

C in the definition of the reductions) must be critical by Lemma 8.5
since the lack of availability of Type II reductions implies that the distance between
.D;E/ and .D0;E0/ is 1.

Definition 8.10 Let H be a SOG. If genus�.H i/ is non-constant and the first change
in irreducible genus is an increase, then we say H is initially increasing. Similarly,
if genus�.H i/ is non-constant and the first change in irreducible genus is a decrease,
then we say H is initially decreasing.

Hence, if H is neither initially increasing nor initially decreasing, then genus�.H i/ is
the same for all i .

Definition 8.11 Suppose a GHS G is obtained from a GHS H by weak reduction.
Then we say H was obtained from G by partial amalgamation.

So, if H is a GHS of a connected 3–manifold M , then the GHS whose only thick
level is A.H / is obtained from H by a sequence of partial amalgamations.

The advantage of this terminology is that it allows us to always talk about an element
of a SOG in terms of how it was obtained from its predecessor. So, if H is a SOG, then
H is defined by an initial GHS, together with a sequence of weak reductions and partial
amalgamations. This will be a useful point of view for the proof of the next lemma.

Lemma 8.12 Suppose G is a SOG that is obtained from a SOG H by a reduction. If
G is initially increasing then H was initially increasing.

Proof Assume H is not initially increasing. We show G is also not initially increasing.
To prove the lemma it suffices to establish the following facts.

(1) If a reduction of H inserts a partial amalgamation that makes the irreducible
genus go up, then it also inserts a weak reduction before it that makes the
irreducible genus go down.

(2) No reduction of H will ever remove the first weak reduction that lowers the
irreducible genus, if it comes before every partial amalgamation that raises
irreducible genus.

The first assertion above is almost immediate: inspection of the different types of
reductions shows that the only time a partial amalgamation .D�;E�/ is introduced
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into a SOG is when the weak reduction .D�;E�/ is also introduced sometime before
it. If the partial amalgamation .D�;E�/ makes the irreducible genus go up, then the
weak reduction defined by .D�;E�/ makes the irreducible genus go down. This can
happen only in Type I(2) and Type II(3) reductions.

The second assertion is not quite as immediate. In Type II(1) and Type II(2c) reductions
a weak reduction that makes the irreducible genus go down may be removed, but
only if it had been preceded by its inverse. Hence, these cases can not effect the first
time a weak reduction makes the irreducible genus go down. In Type I(1) and Type
II(2a) reductions the order of the partial amalgamation .D;E/ and the weak reduction
.D0;E0/ may be reversed. Hence, if .D0;E0/ is the first weak reduction in H that
reduces irreducible genus, then it will also correspond to the first weak reduction in G
that reduces irreducible genus.

There is one final case that needs to be addressed to establish the second assertion
above. In a Type II(2b) reduction the decrease .D0;E/ is removed from H. We claim,
however, that if it reduced irreducible genus then the partial amalgamation .D;E/
made the irreducible genus increase. Hence, .D0;E/ was not the first weak reduction
that reduced irreducible genus. (Since we are assuming H is not initially increasing,
the first weak reduction that reduces irreducible genus has no partial amalgamations
before it that increase irreducible genus.)

As the weak reduction .D0;E/ is assumed to reduce irreducible genus, we have

genus�.H kC1/ < genus�.H k/:

By hypothesis, H k�1 is obtained from H kC1 by the weak reduction .D;E/; it follows
that

genus�.H k�1/� genus�.H kC1/:

Putting these inequalities together, we find

genus�.H k�1/ < genus�.H k/:

Hence, the partial amalgamation .D;E/ did make the irreducible genus go up.

9 Examples

We now present examples suggested at a conference at Oberwolfach in 2005, and
related to the author by the referee. These examples illustrate some of the key concepts
of this paper.
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9.1 SOGs of connected sums of lens spaces

Let L1 and L2 denote two lens spaces. Let Ti denote a Heegaard torus in Li . Let T1

denote the Heegaard torus obtained from T1 by reversing orientation. Let T denote a
Heegaard torus in S3 .

The genus two Heegaard surfaces T1#T2 and T1#T2 are equivalent after one stabiliza-
tion in M1#M2 . Hence, we may build a SOG YD f.Y i ;M i/g as follows:

� M 1 DL1[L2 , Thick.Y 1/D fT1;T2g, Thin.Y 1/D∅,

� M 2 DL1#L2 , Thick.Y 2/D fT1#T2g, Thin.Y 2/D∅,

� M 3 DL1#L2#S3 , Thick.Y 3/D fT1#T2#T g, Thin.Y 3/D∅,

� M 4 DL1#L2 , Thick.Y 4/D fT1#T2g, Thin.Y 4/D∅,

� M 5 DL1[L2 , Thick.Y 5/D fT1;T2g, Thin.Y 5/D∅.

The GHS Y 3 is maximal in Y. By Lemma 4.7 it cannot be critical, since M 3 is
reducible. Hence, by Lemma 8.9 there must be a reduction for Y. Such a reduction is
not difficult to find.

Let S denote the summing sphere in L1#L2 . Now note that T1 and T1 are equivalent
after one stabilization in L1 . Hence, when we do the connected sum with T to form
Y 3 we may assume that it lies entirely on the L1 side of S .

The surface T1#T2#T cuts S into disks D and E . Let .A;B/ denote the weak
reducing pair which we use to go from Y 3 to Y 2 and let .A0;B0/ denote the weak
reducing pair which we use to go from Y 3 to Y 4 . It follows that D is disjoint
from both B and B0 . The sequence fA;B;D;B0;A0g thus satisfies the conditions of
Definition 8.3. We conclude †.Y 3/D 3. (For it to be any less either B DB0 , ADA0 ,
A \B0 D ∅, or A0 \B D ∅. None of these are the case.) We may thus apply a
reduction of Type II(3) to Y, followed by several Type II(2) reductions. After such a
sequence of reductions we are left with the following SOG XD f.X i ;N i/g:

� N 1 DL1[L2 , Thick.X 1/D fT1;T2g, Thin.X 1/D∅,

� N 2 DL1#S3[L2 , Thick.X 2/D fT1#T;T2g, Thin.X 2/D∅,

� N 3 DL1[L2 , Thick.X 3/D fT1;T2g, Thin.X 3/D∅.
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9.2 SOGs of SFSs

Let M be a Seifert Fibered Space with four exceptional fibers and base a two-sphere.
Let S be the base orbifold of M and pW M ! S the projection map. Let ei denote
the exceptional fibers, for i D 1; 2; 3; 4. Thus, for each i , p.ei/ is a point of S .

Let S� denote S with a neighborhood of the points p.ei/ removed, for i D 1; 2; 3; 4.
Then there is a homeomorphism hW S� �S1! p�1.S�/. The submanifold p�1.S�/

of M has four torus boundary components, Ti , where Ti bounds a solid torus in M

that contains ei . Choose some x 2 S1 and y 2 S� . Let ˛i be an arc in h.S�;x/

connecting Ti to the point h.y;x/.

For each i , we may now construct a genus three Heegaard splitting of M as follows.
Remove a neighborhood of j̨ from p�1.S�/, for each j ¤ i . The resulting submani-
fold of M has two boundary components. One of these will be the torus Ti . The other
will be a genus three “vertical” Heegaard surface Hi (see Moriah and Schultens [11]).

All four Heegaard splittings Hi have a common genus four stabilization (see Schultens
[17]). We call this splitting simply H . The surface H is the boundary of the manifold
obtained from p�1.S�/ by removing a neighborhood of ˛i , for all i .

The Heegaard surface H separates M into V and W . Assume V contains the
exceptional fibers. A neighborhood of the arc ˛i is a 1–handle in V , for each i . Let
Vi be a cocore of this 1–handle. To obtain Hi from H we destabilize along the pair
.Vi ;Wi/, where Wi is some compressing disk for H in W that meets Vi in a point.
Let Wjk be the vertical compressing disk for H in W given by p�1. j̨ [˛k/\W .
Then for each i ¤ j ¤ k the pair .Vi ;Wjk/ is a weak reducing pair for H .

We now define a SOG YD fY ig3
iD1

of M , where Thin.Y i/D∅ for all i and

� Thick.Y 1/D fH1g,

� Thick.Y 2/D fH g,

� Thick.Y 3/D fH2g.

The GHS Y 2 is maximal in this SOG. The GHS Y 1 is obtained from Y 2 by the
weak reduction .V1;W1/. The GHS Y 3 is obtained from Y 2 by .V2;W2/. Note
also that the disks V1 and V2 are disjoint from the disk W34 . Because the sequence
fW1;V1;W34;V2;W2g satisfies the conditions of Definition 8.3, the angle at Y 2 is 3.
We may thus apply a Type II(3) reduction to Y.

The resulting SOG now has two maximal GHSs, each a copy of Y 2 . Between them
there is a new GHS, which is either obtained from Y 2 by the weak reduction .V1;W34/,
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or by the weak reduction .V2;W34/. In either case, this new GHS has a thin level that
is an essential, vertical torus that separates e1[ e2 from e3[ e4 . This illustrates the
main result of [1]: if the minimal genus common stabilization of a pair of Heegaard
splittings is not critical, then the manifold contains an essential surface.

10 The stability theorem

We now proceed with our proof of Gordon’s conjecture.

Theorem 10.1 Let M1 and M2 be closed, oriented 3–manifolds. Suppose Hi is a
Heegaard surface in Mi , for i D 1; 2. If H1#H2 is a stabilized Heegaard surface in
M1#M2 then either H1 or H2 is stabilized.

Proof Let M1 and M2 be two closed, oriented 3–manifolds. Let M DM1#M2 .
Suppose Hi is an unstabilized Heegaard surface in Mi and let H DH1#H2 . By way
of contradiction we assume there is a Heegaard surface G in M such that H is a
stabilization of G .

Let fM j
i g denote the irreducible manifolds in a prime decomposition of Mi . (If Mi is

the connected sum of copies of S2�S1 then fM j
i g D∅.) By [8] Hi is the connected

sum of Heegaard splittings H
j
i of M

j
i and Heegaard splittings of copies of S2 �S1 .

Similarly, the Heegaard surface G is a connected sum of Heegaard splittings G
j
i of

M
j
i and Heegaard splittings of copies of S2 �S1 .

The first step is to build the SOG Y defined by Figure 18. The GHSs Y i1 through Y i5

have no thin levels. The thick levels of Y i1 and Y i5 are precisely the sets fH j
i g and

fG
j
i g. Both of these are GHSs of the disjoint union of the manifolds fM j

i g. The GHSs
Y 1 and Y n are obtained from Y i1 and Y i5 (respectively) by maximal sequences of
weak reductions and are hence strongly irreducible. Finally, by construction observe
that Y i3 is the unique maximal GHS of the SOG Y.

Since the thick level of Y i3 is the connected sum of the thick levels of Y i2 , it follows
that

genus�.Y i2/D genus�.Y i3/:

As Y i2 is unstabilized, it follows from Corollary 7.9 that

genus�.Y 1/D genus�.Y i2/:

Putting these together gives

(1) genus�.Y 1/D genus�.Y i3/:
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Figure 18

By hypothesis, the genus of the thick level of Y i4 is less than the genus of the thick
level of Y i3 . Since the manifolds are the same, we conclude

genus�.Y i4/ < genus�.Y i3/:

It follows then, that the SOG Y is initially decreasing.

As Y n is obtained from Y i4 by a sequence of weak reductions, we have

genus�.Y n/� genus�.Y i4/:

Hence,

(2) genus�.Y n/ < genus�.Y i3/:

Putting (1) and (2) together thus gives

genus�.Y n/ < genus�.Y 1/:

Now apply a maximal sequence of reductions to Y to obtain an irreducible SOG
XD fX igm

iD1
. By Lemma 8.9 the maximal GHSs of X are critical. By Lemma 4.7 the

manifolds that these are GHSs of are irreducible. It follows that every GHS in X is a
GHS of an irreducible manifold.
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Since X is obtained from Y by a sequence of reductions, it follows that X 1 D Y 1 and
X m D Y n . Hence,

(3) genus�.X m/ < genus�.X 1/:

By construction, the SOG Y is initially decreasing. It thus follows from Lemma 8.12
that X is not initially increasing. Hence, if the irreducible genus changes in X, it must
go down first. By (3) the irreducible genus does change in X, so there must be some
number k such that

(4) genus�.X kC1/ < genus�.X k/

and for all l < k , genus�.X l/ is the same. As X l is a GHS of an irreducible manifold
for all l , it follows from Corollary 7.5 that A.X l/ is the same for all l � k . In
particular, A.X k/DA.X 1/.

As Y i1 contains a single thick level in each component of the manifold it is a GHS of,
it follows that Thick.Y i1/DA.Y i1/. As this manifold is irreducible, it follows from
Corollary 7.5 that A.Y 1/DA.Y i1/. Finally, as X 1D Y 1 , we have A.X 1/DA.Y 1/.

Putting all of this together, we have:

Thick.Y i1/DA.Y i1/DA.Y 1/DA.X 1/DA.X k/:

In particular, as Y i1 is unstabilized, so is A.X k/. It follows that X k is also unstabilized.
But by Corollary 7.9, (4) implies that X k was stabilized, so we have reached a
contradiction.

As noted in the proof of the previous Theorem, it follows from [8] that every Heegaard
splitting can be expressed as the connected sum of Heegaard splittings of prime 3–
manifolds. The next theorem asserts that for unstabilized Heegaard splittings, this
connected sum decomposition is unique (up to isotopy).

Theorem 10.2 Let M be a closed, orientable 3–manifold. Let H be an unstabilized
Heegaard splitting of M . Then H has a unique expression as the connected sum of
Heegaard splittings of prime 3–manifolds.

Proof Let fMig denote the irreducible manifolds in a prime decomposition of M . By
[8] H is the connected sum of Heegaard splittings Hi of Mi and Heegaard splittings
of copies of S2 �S1 . Suppose H is also the connected sum of Heegaard splittings
Gi of Mi and Heegaard splittings of copies of S2 �S1 . Our goal is to show that for
each i , Hi is isotopic to Gi .
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Let Y be the SOG defined by Figure 19. In the figure, Y 1 and Y n are strongly irre-
ducible GHSs, obtained from Y i1 and Y i3 , by maximal sequence of weak reductions.

Since, by assumption, Y i2 is unstabilized and every other GHS in Y is obtained from
Y i2 by weak reductions, it follows from Corollary 7.9 that the irreducible genus never
changes in Y.

Now apply a maximal sequence of reductions to Y to obtain an irreducible SOG
XDfX igm

iD1
. As in the proof of Theorem 10.1 it follows from Lemma 8.9 and Lemma

4.7 that every GHS in X is a GHS of an irreducible manifold.

Since the irreducible genus never changes in Y, it follows from Lemma 8.12 that X is
not initially increasing. Let k be the largest number such that for all l �k , genus�.X l/

is the same. As X l is a GHS of an irreducible manifold for all l , it follows from
Corollary 7.5 that A.X l/ is isotopic for all l � k . In particular, A.X k/�A.X 1/.

As Y i1 contains a single thick level in each component of the manifold it is a GHS of,
it follows that Thick.Y i1/DA.Y i1/. As this manifold is irreducible, it follows from
Corollary 7.5 that A.Y 1/�A.Y i1/. Finally, as X 1D Y 1 , we have A.X 1/DA.Y 1/.
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Putting all of this together, we have:

(5) Thick.Y i1/DA.Y i1/�A.Y 1/DA.X 1/�A.X k/:

In particular, as Y i1 is unstabilized, so is A.X k/. It follows that X k is also unstabilized.
If k <m it now follows from Corollary 7.9 that

genus�X k
� genus�X kC1:

But we know X is not initially increasing, so we conclude

genus�X k
D genus�X kC1:

This, however, violates the maximality of our choice of k . We conclude k Dm and
thus (5) implies Thick.Y i1/�A.X m/.

As Y i3 contains a single thick level in each component of the manifold it is a GHS of,
it follows that Thick.Y i3/DA.Y n/. As this manifold is irreducible, it follows from
Corollary 7.5 that A.Y n/�A.Y i3/. Finally, as X mDY n , we have A.X m/DA.Y n/.

Putting everything together, we now have:

fHig D Thick.Y i1/�A.X m/DA.Y n/�A.Y i3/D Thick.Y i3/D fGig:

Thus, Hi �Gi for all i .
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École Norm. Sup. .4/ 16 (1983) 451–466 (1984) MR740078

[4] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987)
275–283 MR918537
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