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K –duality for stratified pseudomanifolds

CLAIRE DEBORD

JEAN-MARIE LESCURE

This paper continues our project started in [11] where Poincaré duality in K–theory
was studied for singular manifolds with isolated conical singularities. Here, we
extend the study and the results to general stratified pseudomanifolds. We review
the axiomatic definition of a smooth stratification S of a topological space X and
we define a groupoid T SX , called the S–tangent space. This groupoid is made of
different pieces encoding the tangent spaces of strata, and these pieces are glued into
the smooth noncommutative groupoid T SX using the familiar procedure introduced
by Connes for the tangent groupoid of a manifold. The main result is that C �.T SX /

is Poincaré dual to C.X / , in other words, the S–tangent space plays the role in
K–theory of a tangent space for X .

58B34, 46L80, 19K35, 58H05, 57N80; 19K33, 19K56, 58A35, 57P99

Introduction

This paper takes place in a longstanding project aiming to study index theory and related
questions on stratified pseudomanifolds using tools and concepts from noncommutative
geometry.

The key observation at the beginning of this project is that in its K–theoretic form,
the Atiyah–Singer index theorem [2] involves ingredients that should survive to the
singularities allowed in a stratified pseudomanifold. This is possible, from our opinion,
as soon as one accepts reasonable generalizations and new presentation of certain
classical objects on smooth manifolds, making sense on stratified pseudomanifolds.

The first instance of these classical objects that need to be adapted to singularities is
the notion of tangent space. Since index maps in [2] are defined on the K–theory
of the tangent spaces of smooth manifolds, one must have a similar space adapted to
stratified pseudomanifolds. Moreover, such a space should satisfy natural requirements.
It should coincide with the usual notion on the regular part of the pseudomanifold
and incorporate in some way copies of usual tangent spaces of strata, while keeping
enough smoothness to allow interesting computations. Moreover, it should be Poincaré
dual in K–theory (shortly, K–dual) to the pseudomanifold itself. This K–theoretic
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property involves bivariant K–theory and was proved between smooth manifolds and
their tangent spaces by Kasparov [19] and Connes and Skandalis [7].

In [11], we introduced a candidate to be the tangent space of a pseudomanifold with
isolated conical singularities. It appeared to be a smooth groupoid, leading to a
noncommutative C �–algebra, and we proved that it fulfills the expected K–duality.

In [21], the second author interpreted the duality proved in [11] as a principal symbol
map, thus recovering the classical picture of Poincaré duality in K–theory for smooth
manifolds. This interpretation used a notion of noncommutative elliptic symbols, which
appeared to be the cycles of the K–theory of the noncommutative tangent space.

In [13], with Nistor, we used the noncommutative tangent space together with other
deformation groupoids to construct analytical and topological index maps, and their
equality was proved. As expected, these index maps are straight generalizations of
those of Atiyah and Singer [2] for manifolds.

The present paper is devoted to the construction of the noncommutative tangent space
for a general stratified pseudomanifold and the proof of the K–duality. It is thus a
sequel of [11], but can be read independently. At first glance, one should have expected
that the techniques of [11] iterate easily to give the general result. In fact, although the
definition of the groupoid giving the noncommutative tangent space itself is natural
and intuitive in the general case, its smoothness is quite intricate and brings issues
that did not exist in the conical case. We have given here a detailed treatment of this
point, since we believe that this material will be useful in further studies about the
geometry of stratified spaces. Another difference with [11] is that we have given up the
explicit construction of a dual Dirac element. Instead, we use an easily defined Dirac
element and then prove the Poincaré duality by an induction, based on an operation
called unfolding which consists in removing the minimal strata in a pseudomanifold
and then “doubling” it to get a new pseudomanifold, less singular. The difficulty in this
approach is moved to the proof of the commutativity of certain diagrams in K–theory,
necessary to apply the five lemma and to continue the induction.

The interpretation of this K–duality in terms of noncommutative symbols and pseu-
dodifferential operators, as well as the construction of index maps together with the
statement of an index theorem, is postponed to forthcoming papers.

This approach of index theory on singular spaces in the framework of noncommutative
geometry takes place in a long history of past and present research works. But the
specific issues about Poincaré duality, bivariant K–theory, topological index maps and
statement of Atiyah–Singer–like theorems are quite recent and attract an increasing
interest; see Monthubert and Nistor [27], Melrose and Rochon [25], Emerson and
Meyer [14; 15], Savin [31] and Nazaı̆kinskiı̆, Savin and Sternin [29].
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1 Basic definitions

1.1 Around Lie groupoids

We refer to Renault [30], Cannas da Silva and Weinstein [32], Mackenzie [22] and
Debord and Lescure [12] for the classical definitions and constructions related to
groupoids, their Lie algebroids and C �–algebras of groupoids. In this section, we fix
the notation and recall the less classical definitions and results needed in the sequel.
Some material presented here is already in our works [11; 13].

1.1.1 Pull back groupoids Let G�M be a locally compact Hausdorff groupoid
with source s and range r . If f W N !M is a surjective map, the pull back groupoid
�f �.G/�N of G by f is by definition the set

�f �.G/ WD f.x; ;y/ 2N �G �N j r. /D f .x/; s. /D f .y/g

with the structural morphisms given by

(1) the unit map x 7! .x; f .x/;x/,

(2) the source map .x; ;y/ 7! y and range map .x; ;y/ 7! x ,

(3) the product .x; ;y/.y; �; z/D .x;  �; z/ and inverse .x; ;y/�1D .y; �1;x/.

The results of Muhly, Renault and Williams [28] apply to show that the groupoids G

and �f �.G/ are Morita equivalent when f is surjective and open.

Let us assume for the rest of this subsection that G is a smooth groupoid and that f
is a surjective submersion, then �f �.G/ is also a Lie groupoid. Let .A.G/; q; Œ ; �/
be the Lie algebroid of G . Recall that qW A.G/ ! TM is the anchor map. Let
.A.�f �.G//;p; Œ ; �/ be the Lie algebroid of �f �.G/ and Tf W TN ! TM be the
differential of f . Then there exists an isomorphism

A.�f �.G//' f.V;U / 2 TN �A.G/ j Tf .V /D q.U / 2 TM g

under which the anchor map pW A.�f �.G// ! TN identifies with the projection
TN �A.G/ ! TN . (In particular, if .V;U / 2 A.�f �.G// with V 2 TxN and
U 2Ay.G/, then y D f .x/.)
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1.1.2 Subalgebras and exact sequences of groupoid C �–algebras To any smooth
groupoid G are associated two C �–algebras corresponding to two different completions
of the involutive convolution algebra C1c .G/, namely the reduced and maximal C �–
algebras; see Connes [5; 6] and Renault [30]. We will denote respectively these
C �–algebras by C �r .G/ and C �.G/. Recall that the identity on C1c .G/ induces
a surjective morphism from C �.G/ onto C �r .G/ which is an isomorphism if the
groupoid G is amenable. Moreover in this case the C � algebra of G is nuclear by
Anantharaman-Delaroche and Renault [1].

Let G
s
�
r

G.0/

be a smooth groupoid with source s and range r . If U is any subset of G.0/ , we use
the following usual notation:

GU WD s�1.U / ; GU
WD r�1.U / and GU

U DGjU WDGU \GU :

To an open subset O of G.0/ corresponds an inclusion iO of C1c .GjO/ into C1c .G/

which induces an injective morphism, again denoted by iO , from C �.GjO/ into
C �.G/.

When O is saturated, C �.GjO/ is an ideal of C �.G/. In this case, F WDG.0/nO

is a saturated closed subset of G.0/ and the restriction of functions induces a surjec-
tive morphism rF from C �.G/ to C �.GjF /. Moreover, according to Hilsum and
Skandalis [17], the following sequence of C �–algebras is exact:

0 ����! C �.GjO/
iO
����! C �.G/

rF
����! C �.GjF / ����! 0 :

1.1.3 KK–elements associated to deformation groupoids A smooth groupoid G

is called a deformation groupoid if:

G DG1 � f0g[G2 � �0; 1��G.0/
DM � Œ0; 1� ;

where G1 and G2 are smooth groupoids with unit space M . That is, G is obtained by
gluing G2� �0; 1��M � �0; 1�, which is the cartesian product of the groupoid G2�M

with the space �0; 1�, with the groupoid G1 � f0g�M � f0g.

In this situation one can consider the saturated open subset M��0; 1� of G.0/ . Using the
isomorphisms C �.GjM��0;1�/' C �.G2/˝C0.�0; 1�/ and C �.GjM�f0g/' C �.G1/,
we obtain the following exact sequence of C �–algebras:

0 ����! C �.G2/˝C0.�0; 1�/
iM��0;1�
�����! C �.G/

ev0
����! C �.G1/ ����! 0

where iM��0;1� is the inclusion map and ev0 is the evaluation map at 0, that is ev0 is
the map coming from the restriction of functions to GjM�f0g .
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We assume now that C �.G1/ is nuclear. Since the C �–algebra C �.G2/˝C0.�0; 1�/

is contractible, the long exact sequence in KK–theory shows that the group homomor-
phism .ev0/� D �˝Œev0�W KK.A;C �.G//!KK.A;C �.G1// is an isomorphism for
each C �–algebra A; see Kasparov [19] and Cuntz and Skandalis [9].

In particular with ADC �.G1/ and ADC �.G/ we get that Œev0� is invertible in KK–
theory: there is an element Œev0�

�1 in KK.C �.G1/;C
�.G// such that Œev0�

�1˝Œev0�D

1C�.G1/ and Œev0�˝Œev0�
�1 D 1C�.G/ .

Let ev1W C
�.G/! C �.G2/ be the evaluation map at 1 and Œev1� the corresponding

element of KK.C �.G/;C �.G2//.

The KK–element associated to the deformation groupoid G is defined by:

ı D Œev0�
�1
˝Œev1� 2KK.C �.G1/;C

�.G2// :

One can find examples of such elements related to index theory in our papers [11; 12],
the papers of Connes [6] and Hilsum and Skandalis [17] and our paper with Nisitor [13].

1.2 Generalities about K –duality

We give in this paragraph some general facts about Poincaré duality in bivariant K-
theory. Most of them are well known and proofs are only added when no self contained
proof could be found in the literature. All C �–algebras are assumed to be separable
and � –unital.

Let us first recall what means the Poincaré duality in K–theory; see Kasparov [20],
Connes and Skandalis [7] and Connes [6]:

Definition 1 Let A;B be two C �–algebras. One says that A and B are Poincaré
dual, or shortly K–dual, when there exists ˛ 2 K0.A˝B/ D KK.A˝B;C/ and
ˇ 2KK.C;A˝B/'K0.A˝B/ such that

ˇ˝
B
˛ D 1 2KK.A;A/ and ˇ˝

A
˛ D 1 2KK.B;B/

Such elements are then called Dirac and dual-Dirac elements.

It follows that for A;B two K–dual C �–algebras and for any C �–algebras C;D , the
following isomorphisms hold:

ˇ˝
B
�W KK.B˝C;D/ �!KK.C;A˝D/ ;

ˇ˝
A
�W KK.A˝C;D/ �!KK.C;B˝D/ ;

with inverses given respectively by � ˝
A
˛ and � ˝

B
˛ .
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Example 1 A basic example is AD C.V / and B D C0.T
�V / where V is a closed

smooth manifold [20; 7] (see also our paper [11] for a description of the Dirac element
in terms of groupoids). This duality allows to recover that the usual quantification and
principal symbol maps are mutually inverse isomorphisms in K–theory:

�V D .� ˝
C0.T �V /

˛/W K0.C0.T
�V //

'
�!K0.C.V //

†V D .ˇ ˝
C.V /
�/W K0.C.V //

'
�!K0.C0.T

�V //

We observe that:

Lemma 1 Let A;B be two C �–algebras. Assume that there exists ˛2KK.A˝B;C/
and ˇ; ˇ0 2KK.C;A˝B/ satisfying

ˇ˝
B
˛ D 1 2KK.A;A/ and ˇ0˝

A
˛ D 1 2KK.B;B/ :

Then ˇ D ˇ0 so A;B are K–dual.

Proof A simple calculation shows that for all x 2KK.C;A˝D/ we have:

ˇ˝
B
.x˝

A
˛/D x ˝

A˝B
.ˇ˝

B
˛/ :

Applying this to C DC , D DA and x D ˇ0 we get:

ˇ0 D ˇ˝
B
.ˇ0˝

A
˛/D ˇ˝

B
1D ˇ :

Corollary 1 (1) Given two K–dual C �–algebras and a Dirac element ˛ , the dual-
Dirac element ˇ satisfying the Definition 1 is unique.

(2) If there exists ˛ 2KK.A˝B;C/ such that

� ˝
B
˛W KK.C;A˝B/ �!KK.A;A/ and � ˝

A
˛W KK.C;A˝B/ �!KK.B;B/

are onto, then A;B are K–dual and ˛ is a Dirac element.

The two lemmas below have been communicated to us by the referee.

Lemma 2 Let J1 and J2 be two closed two sided ideals in a nuclear C �–algebra
A such that J1\J2 D f0g and set B D A=.J1CJ2/. Denote by @k 2KK1.B;Jk/,
k D 1; 2, the KK–elements associated respectively with the exact sequences 0 �!

J1�!A=J2�!B�! 0 and 0�!J2�!A=J1�!B�! 0. Let also ik W Jk �!A

denote the inclusions. Then the following equality holds:

.i1/�.@1/C .i2/�.@2/D 0 :
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Proof Let @ 2KK1.B;J1CJ2/ denote the KK–element associated with the exact
sequence 0 �! J1 C J2 �! A �! B �! 0. Denote by jk W Jk �! J1 C J2 and
i W J1CJ2 �!A the inclusions and by pk W J1CJ2 �! Jk the projections, k D 1; 2.
Since the diagrams .k D 1; 2/

0 // J1CJ2

pk

��

// A

��

// B //

D

��

0

0 // Jk
// A=J3�k

// B // 0

commute, it follows that .pk/�.@/D @k .

Moreover, .p1/� � .p2/�W KK1.B;J1 C J2/ �! KK1.B;J1/ �KK1.B;J2/ is an
isomorphism whose inverse is .j1/�C.j2/� . It follows that @D .j1/�.@1/C.j2/�.@2/.
Moreover the six-term exact sequence associated to 0�! J1CJ2 �!A�!B �! 0

leads to i�.@/D 0. The result follows now from the equalities ik D i ıjk , k D 1; 2.

Lemma 3 Let X be a compact space and A be a nuclear C.X /–algebra. Let U1 and
U2 be disjoint open subsets of X . Set X1 D X nU2 and Jk D C0.Uk/A, k D 1; 2.
Let ‰W C.X /˝A �! A be the homomorphism defined by ‰.f ˝ a/D fa and let
'W C.X1/˝ J1 �! A,  W C0.U2/˝A=J1 �! A be the homomorphisms induced
by ‰ .

Denote by @1 2KK1.A=J1;J1/ and e@2 2KK1.C.X1/;C0.U2// the KK–elements
associated respectively with the exact sequences 0 �! J1 �!A �!A=J1 �! 0 and
0 �! C0.U2/ �! C.X / �! C.X1/ �! 0. Then the following equality holds:

.'/�.@1˝ 1C.X1//C . /�.1A=J1
˝ e@2 /D 0 :

Proof We use the notation of Lemma 2. We have commuting diagrams

0 // J1˝C.X1/

'1

��

// A˝C.X1/

��

// A=J1˝C.X1/ //

�

��

0

0 // J1
// A=J2

// B // 0

(1-1)

0 // A=J1˝C0.U2/

 2

��

// A=J1˝C.X /

��

// A=J1˝C.X1/ //

�

��

0

0 // J2
// A=J1

// B // 0

(1-2)

where vertical arrows are induced by ‰ . It follows that .'1/�.@1˝ 1C.X1//D �
�.@1/

and . 2/�.1A=J1
˝e@2 /D�

�.@2/. We then use the equalities 'D i1ı'1 and  D i2ı 2

and apply Lemma 2 to conclude.
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It yields the following, with the notation of Lemma 3:

Lemma 4 Let ı be in K0.A/ and set D D‰�.ı/, D1 D '
�.ı/, D2 D  

�.ı/. Then
for any C �–algebras C and D , the two following long diagrams commute:

� � �KKi .C;D˝C0.U2// //

˝
C0.U2/

ci D2

��

KKi .C;D˝C.X // //

˝
C.X/

ci D

��

KKi .C;D˝C.X1// //

˝
C.X1/

ci D1

��

KKiC1.C;D˝C0.U2// � � �

˝
C0.U2/

ciC1D2

��
� � �KKi .C˝A=J1;D/ // KKi .C˝A;D/ // KKi .C˝J1;D/ // KKiC1.C˝A=J1;D/ � � �

(1-3)

� � �KKi .C;D˝J1/ //

˝
J1

ci D1

��

KKi .C;D˝A/ //

˝
A

ci D

��

KKi .C;D˝A=J1/ //

˝
A=J1

ci D2

��

KKiC1.C;D˝J1/ � � �

˝
J1

ciC1D1

��
� � �KKi .C˝C.X1/;D/ // KKi .C˝C.X /;D/ // KKi .C˝C0.U2/;D/ // KKiC1.C˝C.X1/;D/ � � �

(1-4)

where the ci belong to f�1; 1g and are chosen such that ci D .�1/iC1ciC1 .

In particular, if two of three elements D1;D2;D are Dirac elements, so is the third
one.

Proof Observe first that Lemma 3 reads: @1˝
J1

Œ'�D�e@2 ˝
C0.U2/

Œ �, which gives:

@1˝
J1

D1 D @1˝
J1

.Œ'�˝ ı/D .@1˝
J1

Œ'�/˝ ı D .�e@2 ˝
C0.U2/

Œ �/˝ ı D�e@2 ˝
C0.U2/

D2

Now from the skew-commutativity of the product ˝
C

, for any x 2KKi.C;D˝C.X1//:

@1˝
J1

.x ˝
C.X1/

D1/D .@1˝
C

x/ ˝
J1˝C.X1/

D1

D .�1/i.x˝
C
@1/ ˝

J1˝C.X1/
D1

D .�1/ix ˝
C.X1/

.@1˝
J1

D1/

D .�1/ix ˝
C.X1/

.�e@2 ˝
C0.U2/

D2/

D .�1/iC1.x ˝
C.X1/

e@2/ ˝
C0.U2/

D2

This yields, thanks to the choice of the sign ci , the commutativity for the squares
involving boundary homomorphisms in Diagram (1-3). The other squares in Diagram
(1-3) commute by definition of D1;D2;D and by functoriality of KK–theory. The
commutativity of Diagram (1-4) is proved by the same arguments. The last assertion is
then a consequence of Corollary 1 and the five lemma.
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2 Stratified pseudomanifolds

We are interested in studying stratified pseudomanifolds; refer to Whitney [34],
Mather [23] and Goresky and MacPherson [16]. We will use the notation and equivalent
descriptions given by Verona in [33] or used by Brasselet, Hector and Saralegi in [3].
The reader should also look at Hughes and Weinberger [18] for a helpful survey of the
subject.

2.1 Definitions

Let X be a locally compact separable metrizable space.

Definition 2 A C1–stratification of X is a pair .S;N / such that:

(1) SDfsig is a locally finite partition of X into locally closed subsets of X , called
the strata, which are smooth manifolds and which satisfies

s0\ xs1 6D∅ if and only if s0 � xs1 :

In that case we will write s0 � s1 and s0 < s1 if moreover s0 6D s1 .

(2) N D fNs; �s; �sgs2S is the set of control data or tube system:
Ns is an open neighborhood of s in X , �sW Ns! s is a continuous retraction
and �sW Ns! Œ0;C1Œ is a continuous map such that s D ��1

s .0/. The map �s

is either surjective or constant equal to 0.
Moreover if Ns0

\ s1 6D∅ then the map

.�s0
; �s0

/W Ns0
\ s1! s0 � �0;C1Œ

is a smooth proper submersion.

(3) For any strata s; t such that s < t , the inclusion �t .Ns \Nt /�Ns is true and
the equalities:

�s ı�t D �s and �s ı�t D �s

hold on Ns \Nt .

(4) For any two strata s0 and s1 the following equivalences hold:

s0\ xs1 6D∅ if and only if Ns0
\ s1 6D∅ ;

Ns0
\Ns1

6D∅ if and only if s0 � xs1; s0 D s1 or s1 � xs0 :

A stratification gives rise to a filtration: let Xj be the union of strata of dimension � j ,
then:

∅�X0 � � � � �Xn DX :
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We call n the dimension of X and X ı WDX nXn�1 the regular part of X . The strata
included in X ı are called regular while strata included in X nX ı are called singular.
The set of singular (resp. regular) strata is denoted Ssing (resp. Sreg ).

For any subset A of X , Aı will denote A\X ı .

A crucial notion for our purpose will be the notion of depth. Observe that the binary
relation s0 � s1 is a partial ordering on S.

Definition 3 The depth d.s/ of a stratum s is the biggest k such that one can find k

different strata s0; � � � ; sk�1 such that

s0 < s1 < � � �< sk�1 < sk WD s :

The depth of the stratification .S;N / of X is:

d.X / WD supfd.s/; s 2 Sg :

A stratum whose depth is 0 will be called minimal.

We have followed the terminology of [3], but remark that the opposite convention for
the depth also exists [33].

Finally we can define stratified pseudomanifolds:

Definition 4 A stratified pseudomanifold is a triple .X; S;N / where X is a locally
compact separable metrizable space, .S;N / is a C1–stratification on X and the
regular part X ı is a dense open subset of X .

If .X; SX ;NX / and .Y; SY ;NY / are two stratified pseudomanifolds an homeomor-
phism f W X ! Y is an isomorphism of stratified pseudomanifold if:

(1) SY Dff .s/; s2SX g and the restriction of f to each stratum is a diffeomorphism
onto its image.

(2) �f .s/ ıf D f ı�s and �s D �f .s/ ıf for any stratum s of X .

Let us make some basic remark on the previous definitions.

Remark 1 (1) At a first sight, the definition of a stratification given here seems
more restrictive than the usual one. In fact according to [33] these definitions
are equivalent.

(2) Usually, for example in [16], the extra assumption Xn�1 DXn�2 is required in
the definition of stratified pseudomanifold. Our constructions remain without
this extra assumption.
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(3) A stratum s is regular if and only if Ns D s and then �s D 0.

(4) Pseudomanifolds of depth 0 are smooth manifolds, and the strata are then union
of connected components.

The following simple consequence of the axioms will be useful enough in the sequel to
be pointed out:

Proposition 1 Let .X; S;N / be a stratified pseudomanifold. Any subset fsigI of
distinct elements of S is totally ordered by < as soon as the intersection

T
i2I Nsi

is nonempty. In particular if the strata s0 and s1 are such that Ns0
\Ns1

6D ∅ then
d.s0/ 6D d.s1/ or s0 D s1 .

By a slight abuse of language we will sometime talk about a stratified pseudomanifold
X while we only have a partition S on the space X . This means that one can find
at least one control data N such that .X; S;N / is a stratified pseudomanifold in the
sense of our Definition 4.

2.2 Examples

(1) Smooth manifolds are, without other mention, pseudomanifolds of depth 0 and
with a single stratum.

(2) Stratified pseudomanifolds of depth one are wedges and are obtained as follows.

Take M to be a manifold with a compact boundary L and let � be a surjective
submersion of L onto a manifold s . Consider the mapping cone of .L; �/ :

c�L WDL� Œ0; 1�=��

where .z; t/�� .z0; t 0/ if and only if .z; t/D .z0; t 0/ or t D t 0 D 0 and �.z/D �.z0/.
The image of L�f0g identifies with s and by a slight abuse of notation we will denote
it s . Now glue c�L and M along their boundary in order to get X . The space X

with the partition fs;X n sg is a stratified pseudomanifold.

Two extreme examples are obtained by considering � either equal to identity, with
s DL or equal to the projection on one point c . In the first case X is a manifold with
boundary L isomorphic to M and the stratification corresponds to the partition of
X by fL;X nLg. In the second case X is a conical manifold and the stratification
corresponds to the partition of X by fc;X n cg, where c is the singular point.

(3) Manifolds with corners with their partition into faces are stratified pseudomanifolds;
see Melrose [24] and Monthubert [26].
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(4) If .X; S;N / is a pseudomanifold and M is a smooth manifold then X �M is
naturally endowed with a structure of pseudomanifold of same depth as X whose strata
are fs �M; s 2 Sg.

(5) If .X; S;N / is a pseudomanifold of depth k then C rX WD X �S1=X � fpg is
naturally endowed with a structure of pseudomanifold of depth kC1, whose strata are
fs � �0; 1Œ ; s 2 Sg[ fŒp�g. Here we have identified S1 n fpg with �0; 1Œ and we have
denoted by Œp� the image of X � fpg in C rX .

For example, if X is the square we get the following picture:

2.3 The unfolding process

Let .X; S;N / be a stratified pseudomanifold. If s is a singular stratum, we let Ls WD

��1
s .1/. Then Ls inherits from X a structure of stratified pseudomanifold.

One can then define the open mapping cone of .Ls; �s/:

c�s
Ls WDLs � Œ0;C1Œ=��s

where ��s
is as before.

According to [33] (also [3]) the open mapping cone is naturally endowed with a structure
of stratified pseudomanifold whose strata are f.t \Ls/� �0;C1Œ; t 2 Sg[ fsg. Here
we identify s with the image of Ls � f0g in c�s

Ls . Moreover, up to isomorphism,
the control data on X can be chosen such that one can find a continuous retraction
fsW Ns n s!Ls for which the map

(2-1)
‰sW Ns ! c�s

Ls

z 7!

�
Œfs.z/; �s.z/� if z … s

z elsewhere

is an isomorphism of stratified pseudomanifolds. Here Œy; t � denotes the class in c�s
Ls

of .y; t/ 2Ls � Œ0;C1Œ.

This result of local triviality around strata will be crucial for our purpose. In particular
it enables one to make the unfolding process [3] which consists in replacing each
minimal stratum s by Ls . Precisely suppose that d.X / D k > 0 and let S0 be the
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set of strata of depth 0. Define O0 WD
S

s2S0
fz 2Ns j �s.z/ < 1g, Xb DX nO0 and

L WD
S

s2S0
fz 2Ns j �s.z/D 1g �Xb . Notice that it follows from Remark 1 that the

Ls ’s where s 2 S0 are disjoint and thus LDts2S0
Ls . We let

2X DX�b [L� Œ�1; 1�[XC
b

where X˙
b
D Xb and X�

b
(respectively XC

b
) is glued along L with L � f�1g �

L� Œ�1; 1� (respectively L� f1g �L� Œ�1; 1�).

Let s be a stratum of X which is not minimal and which intersects O0 . We define the
following subset of 2X :

zs WD .s\X�b /[ .s\L/� Œ�1; 1�[ .s\XC
b
/

We then define

S2X WD fzsI s 2 S and s\O0 6D∅g[ fs�; sCI s˙ D s 2 S and s\O0 D∅g :

The space 2X inherits from X a structure of stratified pseudomanifold of depth k � 1

whose set of strata is S2X .

Notice that there is a natural map p from 2X onto X . The restriction p to any copy
of Xb is identity and for .z; t/ 2 Ls � Œ�1; 1�, p.z; t/D ‰�1

s .Œz; jt j�/. The strata of
2X are the connected components of the preimages by p of the strata of X .

The interested reader can find all the details related to the unfolding process in [3]
and [33] where it is called decomposition. In particular starting with a compact
pseudomanifold X of depth k , one can iterate this process k times and obtain a compact
smooth manifold 2kX together with a continuous surjective map � W 2kX !X whose
restriction to ��1.X ı/ is a trivial 2k –fold covering.

Example 2 Look at the square C with stratification given by its vertices, edges
and its interior. It can be endowed with a structure of stratified pseudomanifold of
depth 2. Applying once the unfolding process gives a sphere with 4 holes: S WD

S2 n fD1;D2;D3;D4g where the Di ’s are disjoint and homeomorphic to open disks.
The set of strata of S2 is then int S;S1;S2;S3;S4g where Si is the boundary of Di

and int S the interior of S . Applying the unfolding process once more gives the torus
with three holes.
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3 The tangent groupoid and S–tangent space of a compact
stratified pseudo-manifold

3.1 The set construction

We begin by the description at the set level of the S–tangent groupoid and the S–tangent
space of a compact stratified pseudo-manifold.

We keep the notation of the previous section: X is a compact stratified pseudo-manifold,
S the set of strata, X ı the regular part and N D fNs; �s; �sgs2S the set of control data.

For each s 2 S we let

Os WD fz 2Ns j �s.z/ < 1g and Fs WDOs n

[
s0<s

Os0
:

Note that Fs DOs if and only if s is a minimal stratum and Os D s when s is regular.

Lemma 5 The set fFsgs2S form a partition of X .

Proof If z belongs to X , let Rz WD fs 2 S j z 2Ns and �s.z/ < 1g. It follows from
Proposition 1 that Rz is a finite set totally ordered by <. Since the set Rz contains the
stratum passing through z , it is nonempty. Let sz

0
be the minimal element of Rz . Then

z belongs to Fsz
0

. Moreover, for all stratum s 2 S, if s 6D sz
0

and z 2Os , then s 2 Rz ,
whence sz

0
< s , so that s … Fs .

Recall that Oıs DOs \X ı . We denote again by �sW O
ı
s ! s the projection. When s

is a stratum, �s is a proper submersion and one can consider the pullback groupoid
���s .T s/�Oıs of the usual tangent space T s�s by �s . It is naturally endowed with
a structure of smooth groupoid. When s is a regular stratum, s DOs DOıs and �s is
the identity map, thus ���s .T s/' TOıs in a canonical way.

At the set level, the S-tangent space of X is the groupoid:

T SX D
[
s2S

���s .TS/jFıs�X ı

where Fıs DFs\X ı . Following the cases of smooth manifolds [6] and isolated conical
singularities [11], the S-tangent groupoid of X is defined to be a deformation of the
pair groupoid of the regular part of X onto its S–tangent space:

Gt
X WD T SX � f0g[X ı �X ı � �0; 1��X ı � Œ0; 1� :

Examples 1 (1) When X has depth 0, we recover the usual tangent space and
tangent groupoid.
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(2) Suppose that X is a trivial wedge (see Section 2.2):

X D c�L[M

where M is a manifold with boundary L and L is the product of two manifolds
L D s �Q with � W L ! s being the first projection. We have denoted by
c�LDL� Œ0; 1�=�� the mapping cone of .L; �/. In other word c�LD s�cQ

where cQ WD Q� Œ0; 1�=Q� f0g is the cone over Q. We denote again by s

the image of L � f0g in X . Then X admits two strata: s and X ı D X n s ,
Fs DOs DL� �0; 1Œ and FX ı DX ı nOs DM . The tangent space is

T SX D T s � .Q��0; 1Œ/� .Q��0; 1Œ/tTM�X ı

where T s � .Q��0; 1Œ/� .Q��0; 1Œ/ is the product of the tangent space T s�s

with the pair groupoid over Q� �0; 1Œ and TM denotes the restriction of the
usual tangent bundle TX ı to the submanifold with boundary M .

Remark 2 For any stratum s , the restriction of Gt
X

to Fıs is equal to
���s .TS/jFıs � f0g[Fıs �Fıs � �0; 1��Fıs � Œ0; 1�

which is also the restriction to Fıs of �.�s � Id/�.Gt
s/, the pullback by �s � IdW Oıs �

Œ0; 1�! S � Œ0; 1� of the (usual) tangent groupoid of s :

Gt
s D T s � f0g[ s � s � �0; 1��s � Œ0; 1� :

In the following, we will denote by At
�s�Id the Lie algebroid of �.�s � Id/�.Gt

s/.

3.2 The recursive construction

Thanks to the unfolding process described in Section 2.3, one can also construct the
S–tangent spaces of stratified pseudomanifolds by an induction on the depth.

If X is of depth 0, it is a smooth manifold and the S–tangent space is the usual tangent
space TX viewed as a groupoid on X .

Let k be an integer and assume that the S–tangent space of any pseudomanifold of
depth smaller than k is defined. Let X be a stratified pseudomanifold of depth kC 1

and let 2X be the stratified pseudomanifold of depth k obtained from X by applying
Section 2.3. With the notation of Section 2.3 we define

T SX D T S2X j
2X ı\X

C

b

[
s2S0

���s .T s/jOıs�X ı

where T S2X is the S–tangent space of the stratified pseudomanifold 2X . Here we
have identified 2X ı\XC

b
with the subset X ı nO0 DXb \X ı of X ı . It is a simple
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exercise to see that this construction leads to the same definition of S–tangent space as
the previous one.

3.3 The smooth structure

In this subsection we prove that the S–tangent space of a stratified pseudomanifold, as
well as its S–tangent groupoid, can be endowed with a smooth structure which reflects
the local structure of the pseudomanifold itself.

Let .X; S;N / be a stratified pseudomanifold. The smooth structure of T SX will
depend on the stratification and a smooth, decreasing, positive function � W R! R
such that �.Œ0;C1Œ/D Œ0; 1�, ��1.0/D Œ1;C1Œ and � 0 does not vanish on �0; 1Œ. The
function � will be called a gluing function. We will also use functions associated with
� and defined on Ns for any singular stratum s by: for each singular stratum:

�s D � ı �s

Observe that �s D 0 outside Oıs .

Before coming into the details of the smooth structure of T SX , let us describe its
consequences for the convergence of sequences:

A sequence .xn;Vn;yn/ 2
���sn

.T sn/jFsn
where n belongs to N , goes to .x;V;y/ 2

���s .T s/jFs
if and only if:

(3-1) xn! x; yn! y; VnC
�s.xn/��s.yn/

�sn
.xn/

! V

The first two convergences have an obvious meaning, and they imply that for n big
enough, sn� s . The third one needs some explanations. Let us note zD�s.x/D�s.y/

and zn D �sn
.xn/D �sn

.yn/. Since �s.xn/ and �s.yn/ become close to z , we can
interpret wnD�s.xn/��s.yn/ as a vector in T�s.yn/s (use any local chart of s around
z ). Moreover, using �sn

ı �s D �sn
, we see that this vector wn is vertical for �sn

,
that is, belongs to the kernel Kn of the differential of �sn

(suitably restricted to sn ).
Now, the meaning of last convergence in (3-1) is T�sn

.V �wn=�sn
.xn//�Vn! 0

which has to be interpreted for each subsequences of .xn;Vn;yn/n with sn D sn0
for

all n� n0 big enough.

The smooth structure of T SX will be obtained by an induction on the depth of the
stratification, and a concrete atlas will be given. For the sake of completeness, we also
explicit a Lie algebroid whose integration gives the tangent groupoid Gt

X
. We begin by

describing the local structure of X ı around its strata, then we will prove inductively the
existence of a smooth structure on the S–tangent space. Next, an atlas of the resulting
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smooth structure is given by brut computations. A similar construction is easy to guess
for the tangent groupoid Gt

X
. In the last part the previous smooth structure is recovered

in a more abstract approach using an integrable Lie algebroid.

These parts are quite technical and can be left out as soon as you believe that the tangent
space and the tangent groupoid can be endowed with a smooth structure compatible
with the topology described above.

Before going into the details, we should point out that the constructions described above
depend on the set of control data together with the choice of � , the gluing function.
As far as we know, there is no way to get rid of these extra data. Nevertheless, a
consequence of the last chapter is that up to K–theory the S–tangent space T SX only
depends on X .

3.3.1 The local structure of X ı We now describe local charts of X ı adapted to the
stratification, called distinguished charts.

Let z 2X ı and consider the set

Sz WD fs 2 S j z 2Ns and �s.z/� 1g :

It is a nonempty finite set, totally ordered according to Proposition 1, thus we can write

Sz D fs0; � � � ; s�g; s0 < s1 < � � �< s�

where s� �X ı must be regular. Let ni be the dimension of si , i 2 f0; 1; : : : ; �g and
nD n� D dim X ı .

Let Uz be an open neighborhood of z in X ı such that the following hold:

(3-2) Uz �

\
s2Sz

Ns and 8s 2 Ssing; Uz \Os 6D∅, s 2 Sz

In particular, the following hold on Uz :

(3-3) for 0� i � j � � W �si
ı�sj D �si

and �si
ı�sj D �si

:

Without loss of generality, we can also assume that Uz is the domain of a local chart
of X ı .

If � D 0, any local chart of X ı with domain Uz will be called distinguished. When
� � 1, we can take successively canonical forms of the submersions �s0

; �s1
: : : ; �s�

available on a possibly smaller Uz , that is, one can shrink Uz enough and find diffeo-
morphisms:

(3-4) �i W �si
.Uz/!Rni for all i 2 f0; 1; : : : ; �g
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such that the diagram:

(3-5) �si
.Uz/

�sj

��

�i // Rni

�nj

��
�sj .Uz/

�j // Rnj

commutes for all i; j 2 f0; 1; : : : ; �g such that i � j . Above, for any integers p � d ,
the map �d W R

p!Rd denotes the canonical projection onto the last d coordinates.

Remember that s� is regular so �s� is the identity map and � WD �� is a local chart
around z of X ı . Now we set:

Definition 5 A distinguished chart of X ı around z 2 X ı is a local chart .Uz; �/

around z such that Uz satisfies (3-2) together with diffeomorphisms (3-4) satisfying
(3-5) and � D �� .

From now on, a Riemannian metric is chosen on X ı (any adapted metric in the sense
of Brasselet, Hector and Saralegi [4] is suitable for our purpose). Recall that for any
stratum s , the map �sW N ıs ! s is a smooth submersion. Thus, if Ks � TN ıs denotes
the kernel of the differential map T�s and qsW TN ıs !TN ıs the orthogonal projection
on Ks , the map

.qs;T�s/W TN ıs !Ks˚�
�
s .T s/

is an isomorphism and the vector bundle ��s .T s/ can be identified with the orthogonal
complement of Ks into TNs D TX ıjNs

.

Now, let .Uz; �/ be a distinguished chart around some z2X ı . Set SzDfs0; s1; : : : ; s�g

with s0 < s1 < : : : < s� , and set Ki DKsi
jUz

, Ui D �si
.Uz/ for all i D 0; 1; : : : ; � .

By (3-3) we have:

(3-6) Uz � f0g DK� �K��1 � � � � �K1 �K0 � T Uz :

Rewriting the diagram (3-5) for the differential maps and i D � , we get for all j � � :

(3-7) T Uz

T�sj

��

T� // Rn �Rn

�nj
��nj

��
T Uj

T�j // Rnj �Rnj

and we see that T� sends the filtration (3-6) to the following filtration:

(3-8) Rn
� f0g �Rn

�Rn�n��1 � � � � �Rn
�Rn�n0 �Rn

�Rn;
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where Rn�ni is included in Rn by the map v 7! .v; 0/ 2 Rn�ni �Rni ' Rn . This
property can be reformulated in terms of natural graduations associated with (3-6) and
(3-8) (and will be used in this latter form). Indeed, let T i be the orthogonal complement
of Ki into Ki�1 for all i D 0; : : : ; � (with the convention K�1 D T Uz ). Moreover,
on the Euclidean side, let us embed Rni�ni�1 into Rn by the map:

v 2Rni�ni�1 7�! .0; v; 0/ 2Rn�ni �Rni�ni�1 �Rni�1 'Rn

for all i D 0; 1; : : : ; � (by convention n�1 D 0). With these notation and conventions,
the filtrations (3-6) and (3-8) give rise to the following decompositions:

T Uz D T �
˚T ��1

˚ � � �˚T 0(3-9)

Rn
�Rn

DRn
� .Rn�n� ˚Rn��n��1 ˚ � � �˚Rn1�n0 ˚Rn0/(3-10)

Now, that T� respects the filtrations (3-6) and (3-8) means that for all x 2Uz the linear
map T�x is upper triangular with respect to the decompositions (3-9) and (3-10).

The diagonal blocks of T� are the maps:

ıj�W T j
�!Rn

�Rnj�nj�1 I j D 0; 1; : : : ; � ;

obtained by composing T� on the left and on the right respectively by the projections:

T Uz D T �
˚T ��1

˚ � � �˚T 0
�! T j

Rn
� .Rn�n� ˚Rn��n��1 ˚ � � �˚Rn1�n0 ˚Rn0/ �!Rn

�Rnj�nj�1 :

The diagonal part of T� will be defined by �� D .ı��; ı��1�; : : : ; ı0�/. Of course,
the inverse of T� is also upper triangular with diagonal blocks given by .ıj�/�1 ,
j D 0; 1; : : : ; � .

We have similar properties for all the underlying maps �i , i D 0; 1; : : : ; � � 1 coming
with the distinguished chart. To fix notation and for future references, let Ui denote
�si
.Uz/, and T

j
i denote T�si

.T j / for all j � i < � . Applying now T�si
to (3-9)

yields:

T Ui D T i
i ˚T i�1

i ˚ � � �˚T 0
i ;

It follows that the differential maps:

T�i W T
i
i ˚T i�1

i ˚ � � �˚T 0
i �!Rni � .Rni�ni�1 ˚ � � �˚Rn1�n0 ˚Rn0/

for all i D 0; 1; : : : ; � � 1 are upper triangular with diagonal blocks ıj�i defined as
above. Note that for all j � i � k � � , .T�si

/.T
j

k
/DT

j
i and that applying the correct
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restrictions and projections in (3-7) gives the following commutative diagram:

T j

T�si
��

ıj�k // Rnk �Rnj�nj�1

�ni
�Id

��
T

j
i

ıj�i // Rni �Rnj�nj�1

3.3.2 The smooth structure by induction We show that T SX can be provided with
a smooth structure by a simple recursive argument.

Let us first introduce the s–exponential maps. Let s be a stratum. The corresponding
s–exponential map will be an exponential along the fibers of �s . Precisely, recall that
the map �sW N ıs ! s is a smooth submersion, Ks � TN ıs denotes the kernel of the
differential map T�s and qsW TN ıs ! TN ıs the orthogonal projection on Ks . The
subbundle Ks of TX ı inherits from TX ı a Riemannian metric whose associated
Riemannian connection is rs D qs ır , where r is the Riemannian connection of the
metric on X ı . The associated exponential map

Exps
W Vs �Ks!N ıs

is smooth and defined on an open neighborhood Vs of the zero section of Ks . Moreover
it satisfies:

� �s ıExps
D �s .

� For any fiber Ls of �s , the restriction of Exps to Ls is the usual exponential
map for the submanifold Ls of X ı with the induced Riemannian structure.

If X is a stratified pseudomanifold of depth 0 it is smooth and its S–tangent space is
the usual tangent space TX equipped with its usual smooth structure.

Suppose that the S–tangent space of any stratified pseudomanifold of depth strictly
smaller than k is equipped with a smooth structure for some integer k > 0 . Let X be
a stratified pseudomanifold of depth k and take 2X be the stratified pseudomanifold
of depth k � 1 obtained from X by the unfolding process Section 2.3. According to
Section 3, with the notation of Section 2.3 we have

T SX D T S2X j
2X ı\X

C

b

[
s2S0

���s .T s/jOıs�X ı :

Let Lı be the boundary of 2X ı \XC
b

in X ı . We equip the restriction of T SX to
2X ı\XC

b
nLı with the smooth structure coming from T S2X and its restriction to

any Os0
, s0 2 S0 , with the usual smooth structure. It remains to describe the gluing
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over Lı . One can find an open subset W of T S2X which contains the restriction of
T S2X to Lı such that the following map is defined:

‚W W �! T SX

.x;u;y/ 7!

�
.x;T�s0

.u/;Exps0.y;��s0
.x/qs0

.u/// if x 2Oıs0
; s0 2 S0

.x;u;y/ elsewhere

Here, if s denotes the unique stratum such that x;y 2Fs , the vector bundle ��s .T s/ is
identified with the orthogonal complement of Ks into TN ıs , in other words qs0

.y;u/D

qs0
.W � qs.W // where W 2 TyX ı satisfies T�s.W /D u.

Then, we equip T SX with the unique smooth structure compatible with the one
previously defined on T SX jX ınLı and such that the map ‚ is a smooth diffeomorphism
onto its image. The nontrivial point is to check that the restriction of the map ‚ over
Oıs0

is a diffeomorphism onto its image for any s0 2 S0 . This will follows from the
following lemma.

Lemma 6 If s0 < s , for any x0 2 s0 and x 2 s with �s0
.x/ D x0 . The following

assertions hold:

(1) E WD qs0
.��s .T s// is a subbundle of Ks0

of dimension dim.s/� dim.s0/.

(2) Let Ex WD qs0
.��s .T s//j��1

s .x/ be the restriction of E to the submanifold
��1

s .x/. There exists a neighborhood W of the zero section of Ex such that the
restriction of Exps0 to W is a diffeomorphism onto a neighborhood of ��1

s .x/

in ��1
s0
.x0/.

Proof (1) The first assertion follows from the inclusion: ��s0
.T s0/DK?s0

�K?s D

��s .T s/ which ensures that the dimension of the fibers of qs0
.��s .T s// is constant

equal to dim.s/� dim.s0/.

The same argument shows that Ks0
DKs˚E .

(2) If ‰ denotes the restriction of Exps0 to Ex then T‰.z; 0/.U;V / D U C V

where .z;U / 2Ks and V 2Ez . Since Ks\E is the trivial bundle we get that T‰ is
injective and since Ex and ��1

s0
.x0/ have same dimension, it is bijective. We conclude

with the local inversion theorem.

3.3.3 An atlas for T SX The atlas will contain two kinds of local charts. The kind
of charts will depend on the fact that their domains meet or not a gluing between the
different pieces composing the tangent space T SX , that is the boundary of some Fs .

The first kind of charts, called regular charts are charts whose domain is contained in
T SX jint Fs

for a given stratum s of the stratification. We observe that T SX jint Fs
is
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a smooth groupoid as an open subgroupoid of ���s .T s/�N ıs . Thus, regular charts
have domains contained in G

s2S
int Fs

and coincide with the usual local charts of the (disjoint) union of the smooth groupoidsF
s2S
���s .T s/.

The second kind of charts, called deformation charts (adapted to a stratum s ), are charts
whose domain meets T SX j@Fs

for a given stratum s , that is, charts around points in[
s2S

T SX j@Fs
:

Their description is more involved. Let .p;u; q/ 2 T SX . Thus there is a stratum s

such that p and q belong to Fs with �s.p/D �s.q/ and u 2 T�s
.p/s . Assume that

p 2 @Fs . This means that �s.p/ < 1, that �t .p/ � 1 for all strata t < s and that the
set of strata t such that t < s and �t .p/D 1 is not empty. Using again the axioms of
the stratification, we see that this set is totally ordered and we denote s0; s1; : : : ; sl�1

its elements listed by increasing order. We also set sl D s . Observe that:

fs0; s1; : : : ; slg D Sp \ft 2 S j t � sg

and that, thanks to the compatibility conditions (3-3), this set only depends on �s.p/

and thus is equal with the corresponding set associated with q .

Let us take distinguished charts �W Up!Rn around p and �0W Uq!Rn around q .
Since �s.p/D �s.q/, we can also assume without loss of generality that:

(3-11) �si
.Up/D �si

.Uq/ and �i D �
0
i for i D 0; : : : ; l :

We will use the same notation as in Section 3.3.1: ni D dim si , Ui D �si
.Up/, Ki D

ker.T�si
/jUp

, T i DK?Ki�1
i for all i D 0; 1; : : : ; l (here again K�1 D T Up ). The

main difference with the settings of Section 3.3.1is that we forget the strata bigger
than s in Sp and Sq to concentrate on the lower (and common) strata in Sp and Sq . It
amounts to forget the tail of the filtration (3-6) up to the term Kl :

Kl �Kl�1 � � � � �K0 � T Up

and this leads to a less fine graduation:

T Up DKl ˚T l
˚T l�1

˚ � � �˚T 0
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Let us also introduce the positive smooth functions:

ti D

iX
jD0

� ı �sj ; i D 0; 1; : : : ; l I �i D

lY
jDi�1

tj ; i D 1; : : : ; l

Note that tj (resp. �j ) is strictly positive on Fsi
if j � i (resp. j > i ) and vanishes

identically if j < i (resp. j � i ).

Finally we will write:

8x 2Up; �.x/D .xlC1;xl ; : : : ;x1;x0/2Rn�nl �Rnl�nl�1�� � ��Rn1�n0�Rn0 ;

and for all j D 0; 1; : : : ; l ,
�sj .x/D xj ;

thus �j .xj / D .x
j ;xj�1; : : : ;x0/ 2 Rnj ; and we adopt similar notation for �0 and

y 2 Uq .

We can now define a deformation chart around the point .p;u; q/. The domain will be:

zU D T SX j
Up

Uq

and the chart itself:
z�W zU !R2n

is defined as follows. Up to a shrinking of Up and Uq , the following is true: for
all .x; v;y/ 2 zU , there exists a unique i 2 f0; 1; : : : ; lg such that x 2 Fsi

. Then
.x; v/ 2 ��si

.T Ui/, and we set:

z�.x; v;y/D

 
�.x/;

xlC1�ylC1

�lC1.x/
; : : : ;

xiC1�yiC1

�iC1.x/
;��i.xi ; v/

!
The map z� is clearly injective with inverse defined as follows. For .x;w/ 2 z�. zU / and
i such that ��1.x/ 2 Fsi

:

z��1.x;w/D
�
��1.x/; .��i/

�1.xi ;w/; �0�1.x�‚ŒiC1�.��1.x// �w/
�

where xi D �ni
.x/ and, using the decomposition

wD .wlC1;wl
� � � ;w0/ 2Rn�nl �Rnl�nl�1 � � � � �Rn1�n0 �Rn0 ;

we have set

‚ŒiC1�.x/ �wD �lC1.x/wlC1
C � � �C �iC1.x/wiC1

2Rn�ni � f0g �Rn:

To ensure that .z�; zU / is a local chart, it remains to check that z�. zU / is an open
subset of R2n . It is easy to see that z�.int Fsi

/ is open for every i 2 f0; : : : ; lg so we
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consider .p;u; q/ 2 zU such that p 2 @Fsi
for some integer i . Let J D fi0; : : : ; ikg �

f0; 1; : : : ; i � 1g such that:

8j 2 J; �sj .p/D 1 :

Thus we have:

�si
.p/ < 1I 8j 2 J; �sj .p/D 1I 8j 62 J and j < i; �sj .p/ > 1

by construction, q satisfies the same relations. Set z�.p;u; q/D .x0; v0/. Using the
Taylor formula and the fact that �jC1 is negligible with respect to 1��sj at the region
�sj D 1, noting also the invariance of �sk

with respect to perturbations of points
along the fibers of �skC1

; �skC2
; : : :; we prove that there exist an open ball B1 of Rn

centered at x0 and an open ball B2 of Rn centered at 0 and containing v0 such that
for all .x; v/ 2 B1 �B2 , if

x D ��1.x/ 2 Fsj for j 2 J or j D i; then y D �0�1.x�‚ŒjC1�.x/ � v/ 2 Fsj :

This proves that .x; v/ 2 Im z� , thus

z�.p;u; q/ 2 B1 �B2 � Im z�

and the required assertion is proved. We end with:

Theorem 1 The collection of regular and deformation charts provides T SX with a
structure of smooth groupoid.

Proof The compatibility between a regular and a deformation chart contains no issue
and is omitted. We need only to check the compatibility between a deformation chart
adapted to a stratum s and a deformation chart adapted to a stratum t , when their
domains overlap, which implies automatically that s < t or s > t or s D t .

Let us work out only the case s D t , since the other case is similar. We have here to
compare two charts z� and z with common domain zU and involving the same chain
of strata s D sl > sl�1 > � � � > s0 . The whole notation are as before and  ; 0 are
the underlying charts of X ı allowing the definition of z . We note, for the sake of
concision, uk (resp. u0k ), k D l C 1; : : : ; 0, the coordinate functions of u WD  ı��1

(resp.  0 ı �0�1 ) with respect to the decomposition (3-10) of Rn . Observe, thanks
to the particular assumptions made on �; �0;  ;  0 (cf (3-5), (3-11)), that uk.x/ only
depends on xk WD .xk ; xk�1; : : : ; x0/ 2Rnk and that uk D u0k for all k < l C 1. Let
.x; v/ 2 Im z� and i such that x D ��1.x/ 2 Fsi

. Then:

z ı z��1.x; v/ D
�
u.x/; ulC1.x/�u0lC1.x�‚ŒiC1��v/

� lC1 ; ul .x/�ul .x�‚ŒiC1��v/
� l ; : : :

: : : ; uiC1.x/�uiC1.x�‚ŒiC1��v/
� iC1 ; .� i/ ı .��i/

�1.v/
�
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We need to check that the above expression matches smoothly with the corresponding
expression for an integer k 2 Œi; l � when �k.x/ (and thus �k�1; : : : ; �iC1 ) goes to zero.
For that, the Taylor formula applied to ur , k � r � i C 1, shows that the map defined
below is smooth in .x; v; t/ where .x; v/ are as before and t D .tl ; tl�1; : : : ; t0/2RlC1

is this time an arbitrary .l C 1/–uple close to 0:(
ur .x/�ur .x�‚ŒiC1��v/

�r if �r D…
l
r�1

tj 6D 0

d.ur /x.vr C tr�2vr�1C � � �C tiviC1/ if 9j 2 fr � 1; r; : : : ; lg such that tj D 0:

In our case, tj D tj .x/ and tk�1; : : : ; ti go to zero, so the second line in the previous
expression is just:

d.ur /x.vr /

and for obvious matricial reasons:

d.ur /x.vr /D .� k/ ı .��k/
�1.vr /

Summing up these relations for r D i C 1; : : : ; k , we arrive at the desired identity.

Thus, T SX is endowed with a structure of smooth manifold. Changing the Riemannian
metric on X ı modifies the choices of the T i

j ’s, but gives rise to compatible charts.
Moreover, the smoothness of all algebraic operations associated with this groupoid is
easy to check in these local charts.

3.3.4 The Lie algebroid of the tangent groupoid We describe here the smooth
structure of the tangent space via its infinitesimal structure, namely its Lie algebroid.
Precisely, we define

QsW TX ı �! TX ı

.z;V / 7!

�
.z; �s.z/qs.z;V // if z 2N ıs
0 elsewhere

By a slight abuse of notation, we will keep the notation qs and Qs for the corresponding
maps induced on the set of local tangent vector fields on X ı .

Let A be the smooth vector bundle A WD TX ı� Œ0; 1� over X ı� Œ0; 1�. We define the
following morphism of vector bundle:

ˆW AD TX ı � Œ0; 1� �! TX ı �T Œ0; 1�

.z;V; t/ 7! .z; tV C
P

s2Ssing
Qs.z;V /I t; 0/

In the sequel we will give an idea of how one can show that there is a unique structure
of Lie algebroid on A such that ˆ is its anchor map. The Lie algebroid A is almost
injective and so it is integrable, moreover we will see that at a set level Gt

X
must be a
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groupoid which integrates it [8; 10]. In particular Gt
X

can be equipped with a unique
smooth structure such that it integrates the Lie algebroid A.

Now we can state the following:

Theorem 2 There exists a unique structure of Lie algebroid on the smooth vector
bundle AD TX ı � Œ0; 1� over X ı � Œ0; 1� with ˆ as anchor.

To prove this theorem we will need several lemmas:

Lemma 7 Let s0 and s1 be two strata such that d.s0/� d.s1/.

(1) For any tangent vector field W on X ı , Qs1
.W /.�s0

/D 0.

(2) For any .z;V / 2 TX ı , the following equality holds:

Qs1
ıQs0

.z;V /DQs0
ıQs1

.z;V /D �s0
.z/Qs1

.z;V / :

Proof First notice that outside Os0
\Os1

either Qs1
hence Qs1

.W / or �s0
and Qs0

vanish thus the equalities in (1) and (2) are simply 0D 0.

(1) According to the compatibility conditions (3-3) we have �s0
ı �s1

D �s0
on

Os0
\Os1

. Thus �s0
is constant on the fibers of �s1

and since �s0
D � ı �s0

, �s0
is

also constant on the fibers of �s1
. For any tangent vector field W , and any z 2Oıs1

the
vector Qs1

.W /.z/ is tangent to the fibers of �s1
thus Qs1

.V /.�s0
/D 0 on Os0

\Os1
.

(2) The result follows from the first remark and the equality (3-6) of the part above.

The next lemma ensures that ˆ is almost injective, in particular it is injective in
restriction to X ı � �0; 1�. A simple calculation shows the following:

Lemma 8 For any t 2 �0; 1� the bundle map ˆt is bijective, moreover

ˆ�1
t .z/D

1

t
V �

X
s2Ssing

1

.t C ts.z// � .t C ts.z/� �s.z//
Qs.z;V /

where for any singular stratum s the map ts is defined as follows:

tsW X
ı
!R ; ts.z/D

lX
s0�s

�s0
.z/ :

Thus in order to prove the Theorem 2 it is enough to show that locally the image of
the map induced by ˆ from the set of smooth local sections of A to the set of smooth
local tangent vector fields on X ı � Œ0; 1� is stable under the Lie bracket.
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Idea of the proof of Theorem 2 First notice that outside the closure of
S

Oısi
, where

si 2 Ssing , the image under ˆ of local tangent vector fields is clearly stable under Lie
Bracket.

Thus using decomposition of the form (3-9) described in the last part and standard
arguments it remains to show that if sa and sb are strata of depth respectively a and
b with sa � sb , if U is an open subset of X ı , as small as we want contained in
Nsa
\Nsb

, and if W ?;V ?; Va and Wb are tangent vector fields on U , satisfying:

V ? and Va can be projected by �sb
,

Qs.W
?/DQs.V

?/D 0 for any s 2 S ,

Qs.Va/D

�
�sVa when s � sa

0 elsewhere
and Qs.Wa/D

�
�sWa when s � sb

0 elsewhere
,

then Œˆ.W ? CWb/; ˆ.V
?/� and Œˆ.Wb/; ˆ.Va/� are in the image of ˆ. In other

word, we have to show that the maps

.z; t/ 2X ı � �0; 1� 7! .ˆ�1
t .Œˆ.W ?CWb/; ˆ.V

?/�.z//; t/

.z; t/ 2X ı � �0; 1� 7! .ˆ�1
t .Œˆ.Wb/; ˆ.Va/�.z//; t/and

can be extended into smooth local sections of A. The result follows from our preceding
lemmas and usual calculations.

Now we can state:

Theorem 3 The groupoid Gt
X

can be equipped with a smooth structure such that its
Lie algebroid is A with ˆ as anchor.

Proof According to Theorem 2 and Lemma 8, the Lie algebroid A is almost injective.
Thus according to [10] there is a unique s–connected quasi-graphoid G.A/�X ı�Œ0; 1�

which integrates A. Suppose for simplicity that for each stratum s , Oıs is connected
(which will ensure that Gt

X
jFıs �Œ0;1� is a s–connected quasi-graphoid).

Moreover the map ˆ satisfies:

(i) ˆ induces an isomorphism from A�0;1� WDAjX ı��0;1� to TX ı � �0; 1�.

(ii) For any stratum s , the Lie algebroid A restricts over Fıs � Œ0; 1� to a Lie
algebroid As WD AjFıs �Œ0;1� which is isomorphic to the restriction of At

�s�Id
over Fıs � Œ0; 1�.

Thus, again by using the uniqueness of s–connected quasi-graphoid integrating a given
almost injective Lie algebroid, we obtain:

Geometry & Topology, Volume 13 (2009)



76 Claire Debord and Jean-Marie Lescure

(i) The restriction of the groupoid G.A/ over X ı � �0; 1� is isomorphic to X ı �

X ı � �0; 1��X ı � �0; 1�, the pair groupoid on X ı parametrized by �0; 1�.

(ii) To each stratum s the restriction over Fıs � Œ0; 1� is equal to Gt
X
jFıs �Œ0;1� .

Finally G.A/D Gt
X

and there is a unique smooth structure on Gt
X

such that A is its
Lie algebroid.

If some Oıs is not connected, we replace in the construction of the tangent space
the groupoid ���s .T s/jFs

by its s–connected component. Let C T SX and CGt
X

be
the corresponding groupoids. The previous arguments apply and the groupoid CGt

X

admits a unique smooth structure such that A is its Lie algebroid. One can then
show that there is a unique smooth structure on Gt

X
such that CGt

X
is its s–connected

component. Precisely, according to [10] there is a quasi-graphoid GI.A/�X ı� Œ0; 1�

which integrates A and is maximal for the inclusion among quasi-graphoids which
integrate A. The groupoid CGt

X
is then the s–connected component of GI.A/. In

particular it is open in GI.A/. Let X r WD X ı n
S

s2S Fs . The restriction of Gt
X

to
X r � Œ0; 1� is a quasi-graphoid which integrates the restriction of A to X r � Œ0; 1�

and is then clearly an open subgroupoid of GI.A/. Now we have that Gt
X

equals
f �� j  2 CGt

X
; � 2 Gt

X
jX r�Œ0;1�; s. /D r.�/g which is open in GI.A/ and so Gt

X

inherits the required smooth structure.

Thus T SX , which is the restriction of Gt
X

to the saturated set X ı � f0g, inherits from
Gt

X
a smooth structure which is equivalent to the one described in previous paragraphs.

3.3.5 Standard projection from the tangent space onto the space The space of
orbits of X ı=T SX is equivalent to X in the sense that there is a canonical isomorphism
C0.X

ı=T SX /' C.X /.

Definition 6 Let r; sW T SX ! X ı be the target and source maps of the S–tangent
space of X . A continuous map pW X !X is a standard projection for T SX on X if:

(1) p ı r D p ı s .

(2) p is homotopic to the identity map of X .

A standard projection p for T SX on X is surjective if pjX ı W X
ı!X is onto.

This definition leads to the following:

Lemma 9 (1) There exists a standard surjective projection for T SX on X .

(2) Two standard projections are homotopic and the homotopy can be done within
the set of standard projections.
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Proof (1) If X has depth 0, X ı DX and we just take p D Id. Let us consider X

with depth k > 0. Choose a smooth nondecreasing function f W RC!RC such that
f .Œ0; 1�/D 0 and f jŒ2;C1Œ D Id. Recall that there exists for each singular stratum s

an isomorphism (2-1):

‰sW Ns! c�s
Ls DLs � Œ0;C1Œ=�s :

we define the map
psW Ns �!Ns

by the formula:
‰s ıps ı‰

�1
s Œx; t �D Œx; f .t/� :

For each integer i 2 Œ0; k � 1�, we define a continuous map:

pi W X �!X

by setting pi.z/D ps.z/ if z belongs to Ns for some singular stratum of depth i and
pi.z/D z elsewhere. In particular, pi jOs

D �s for every stratum s of depth i . Finally
we set:

p D p0 ıp1 ı � � � ıpk�1 :

This is the map we looked for. Indeed:

Let  2 T SX . There exists a unique stratum s such that  2 ���s .TS/. If s is regular,
then r. /D s. / so the result is trivial here. Let us assume that s is singular and let
i < k be its depth. By definition, r. / and s. / belong to Os . For each stratum t � s

of depth j � i , we have everywhere it makes sense:

�t ıpt D �t ; �s ı�t D �s; �s ı�t D �s

�s ıpt D �s ı�t ıpt D �s ı�t D �sthus:

which proves that pj .Os/DOs , and moreover:

�s ıpt D �s ı�t ıpt D �s ı�t D �s

Recalling that pi jOs
D �sjOs

, this last relation implies:

pi ı � � � ıpk�1jOs
D �s ıpiC1 ı � � � ıpk�1jOs

D �sjOs

Since by definition we also have �s.r. //D �s.s. //, we conclude that:

p.r. //D p0 ı � � �pi�1 ı�s.r. //D p0 ı � � �pi�1 ı�s.s. //D p.s. //

If in the definition of p , we replace the function f by t IdRC C.1� t/f , we get a
homotopy between p and IdX .
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Finally, p has the required surjectivity property: pk�1.X
ı/D X ı [d.s/Dk�1 s and

for all j we have the equality pj�1.X
ı[d.s/�j s/DX ı[d.s/�j�1 s .

(2) Let q be a standard projection and p be the standard projection built in (1). Let
also qt be a homotopy between q and IdX and pt the homotopy built in (1) between
p and IdX . Observe that qt ıp is a standard projection, providing a path of standard
projections between q ı p and p . Moreover, by construction of pt , the inclusion
Im.pt ır;pt ıs/� Im.r; s/ holds for any 1� t > 0, thus qıpt is a standard projection,
providing a path of standard projections between q ı p and q . Thus, any standard
projection q is homotopic to p within the set of standard projections and the result is
proved.

Remark 3 Let p be the surjective standard projection built in the proof of the last
proposition. The map p ı r W T SX !X provides T SX with a structure of continuous
field of groupoids. Following the arguments of [11, Remark 5], it can be shown that
each fiber of this field is amenable, thus T SX is amenable and C �.T SX /DC �r .T

SX /

is nuclear. The same holds for Gt
X

and all other deformation groupoids used below.

4 Poincaré duality for stratified pseudo-manifolds

Let X be a compact stratified pseudomanifold of depth k � 0.

The tangent groupoid Gt
X

is a deformation groupoid, thus it provides us with a K–
homology class, called a pre-Dirac element:

ıX D Œe0�
�1
˝ Œe1� 2KK.C �.T SX /;C/ :

Here e0W C
�.Gt

X
/! C �.T SX / and e1W C

�.Gt
X
/!K.L2.X ı// are the usual evalua-

tion homomorphisms. Now we need:

Lemma 10 (1) Let pW X ı!X be a surjective standard projection for T SX . The
formula:

8a 2 C �.T SX /; f 2 C.X /;  2 T SX; .a �f /. /D f .p ı r. //:a. /

defines a C.X /–algebra structure on C �.T SX /.

(2) For any standard projection p for T SX , the formula:

8a 2 C �.T SX /; f 2 C.X /;  2 T SX; ‰X .a �f /. /D f .p ı r. //:a. /

defines a homomorphism ‰X W C
�.T SX /˝C.X /! C �.T SX / whose class

Œ‰X �2KK.C �.T SX /˝C.X /;C �.T SX // does not depend on the choice of p.
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The last assertion uses Lemma 9. Note that if k D 0, X is smooth and we can choose
p D Id, thus:

‰X .a˝ b/.V /D b.x/:a.x;V /

for all V 2 TxX , x 2X , a 2 C.X / and b 2 C �.TX /.

From now on, we choose a surjective standard projection and denote by ‰X W C.X /˝

C �.T SX /! C �.T SX / the homomorphism defined in the previous lemma. We set:

DX D‰
�
X .ıX /D Œ‰X �˝ ıX 2KK.C �.T SX /˝C.X /;C/:

This section is devoted to the proof of the main theorem:

Theorem 4 Let X be a compact stratified pseudomanifold. The K–homology class
DX is a Dirac element, that is, it provides a Poincaré duality between the algebras
C �.T SX / and C.X /.

We need some notation. If W is an open set of the stratified pseudomanifold X and
SW its closure, we set:

T SW D T SX jW ı ; T S SW D T SX j SW ı and Gt
W D G

t
X jW ı�Œ0;1� :

The groupoid Gt
W

is a deformation groupoid which defines the K–homology class
ıW 2K0.C �.T SW //. We define the homomorphisms induced by ‰X :

y‰W W C
�.T S SW /˝C0.W /! C �.T SW /

y‰ SW W C
�.T SW /˝C. SW /! C �.T SW /

and we set ‰W D iW ı y‰W and ‰ SW D iW ı y‰ SW where iwW C
�.T SW /!C �.T SX /

is the natural homomorphism. Finally we let:

DW D .y‰W /
�.ıW /D .‰W /

�.ıX / 2KK.C �.T S SW /˝C0.W /;C/

D SW D .
y‰ SW /

�.ıW /D .‰ SW /
�.ıX / 2KK.C �.T SW /˝C. SW /;C/ :

In the sequel, we will be interested in the disjoint open sets:

(4-1) O� D
[

s2S0

fz 2Ns j �s.z/ < 2g and OC DX nO� ;

as well as in the intersection of their closures:

LDOC\O� D
[

s2S0

fz 2X j �s.z/D 2g :

We recall from Section 2.3 that S0 denotes the set of minimal strata.
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Proof of Theorem 4 It will be proved by induction on the depth of the stratification
and the unfolding process will be used to reduce the depth.

If depth.X / D 0 the content of the theorem is well known, and that DX is a Dirac
element is a consequence of [11]. Let k � 0, assume that the Theorem 4 holds for all
compact stratified pseudomanifolds with depth � k and let X be a compact stratified
pseudomanifold of depth kC 1. The proof of the induction is divided in two parts.

First part of the proof We consider two natural “restrictions” of DX , namely DOC 2

K0.C �.T SOC/˝C0.OC// and DO� 2K0.C �.T SO�/˝C.O�//. Then, we reduce
the proof of the theorem to checking that DOC is a Dirac element.

Let O0 be the open set of X obtained by replacing the condition �s < 2 by �s < 1 in
the definition of O� in (4-1). The C �–algebra C �.T SO0/ is a closed two-sided ideal
in C �.T SO�/ and the quotient

C �.T SO�/=C �.T SO0/' C0.Œ1; 2Œ/˝C �.T SL�R/

is contractible in K–theory. It follows that the inclusion C �.T SO0/ � C �.T SO�/

is a KK–equivalence which sends ıO0
to ıO� . This is obvious once we consider

the corresponding tangent groupoids Gt
O0
; Gt

O�
. As already noted there is a natural

Morita equivalence between the groupoid T SO0D
S

s2S0

���s .T s/jOs
and the tangent

space TS D
S

s2S0
T s of the closed smooth manifold S D

S
s2S0

s . Under this
Morita equivalence, ıO0

corresponds to ıS : this follows from the extension of the
previous Morita equivalence to the tangent groupoids Gt

O0
and Gt

S
. Moreover the

control data provide a homotopy equivalence between O� and S and we finally get a
KK–equivalence between C �.T SO�/˝C.O�/ and C �.T SS/˝C.S/ under which
the class Œ‰O� � coincides with the class Œ‰S �. We have proved:

Lemma 11 There is a KK–equivalence between C �.T SO�/ ˝ C.O�/ and
C �.T SS/ ˝ C.S/ under which the Dirac element DS corresponds to DO� . In
particular, DO� is a Dirac element.

We now apply Lemma 4 to the nuclear C.X /–algebra C �.T SX /, the disjoint open
subsets O� and OC and the K–homology class ıX . Since by Lemma 11 DO� is a
Dirac element, we immediately get:

DX is a Dirac element if and only if DOC is.

Second part of the proof We check that DOC is a Dirac element. Let us go back
to the compact pseudomanifold of depth k coming from the unfolding process: 2X .
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Modifying slightly the definition of Section 2.3, we set:

2X DOC[
L

L� Œ�2;C2�[
L

OC

We consider this time the disjoint open subsets U D L� �� 2;C2Œ and V D 2X n

L� Œ�2;C2�DOC tOC of the pseudomanifold 2X . Let us introduce as before the
homomorphisms induced by ‰2X :

‰ xU W C
�.T SU /˝C. xU / �! C �.T S2X /

‰V W C
�.T S xV /˝C0.V / �! C �.T S2X /and

where T SU D T S2X jU ı and T S xV D T S2X j xV ı . Note that under the natural identifi-
cation C �.T S xV /˝C0.V /'M2.C

�.T SOC/˝C0.OC//, the homomorphism ‰V

has the following diagonal form: ‰V D diag.‰OC ; ‰OC/.

We shall consider three K–homology classes:

D2X D‰
�
2X .ı2X /; D xU D‰

�
xU
.ı2X /; DV D‰

�
V .ı2X / :

Since 2X is a compact stratified pseudomanifold of depth k , we know by induction
hypothesis that D2X is a Dirac element.

The space L with the stratification induced by X is also a compact stratified pseudo-
manifold of depth k . So it has a Dirac element DL defined as before. Observe that ‰ xU
has range in the ideal C �.T SU / of C �.T S2X /. We note y‰ xU the induced homomor-
phism, iU W C

�.T SU /!C �.T S2X / the inclusion and ıU the KK–element associated
with the deformation groupoid Gt

U
WD Gt

2X
jU ı . We have ıU D .iU /�.ı2X /, hence

D xU D .
y‰/�
xU
.ıU /. On the other hand, let ı be the KK–element associated with the

deformation groupoid Gt
��2;2Œ

. It is clear that ı is a generator of K0.C �.T ��2; 2Œ//'Z
and its pullback � under the homotopy equivalence C.Œ�2; 2�/!C is a Dirac element.
Now, under the groupoid isomorphism T SU ' T SL � T � � 2; 2Œ, the element ıU
corresponds to ıL˝

C
ı and D xU to DL˝

C
�. It follows that D xU is a Dirac element.

Since D2X and D xU are Dirac elements, we get from Lemma 4 applied to the nuclear
C.2X /–algebra C �.T S2X /, to the open sets U;V and to the K–homology class ı2X ,
that DV is a Dirac element. Since ‰�

V
has diagonal form, we have:

DV DDOC ˚DOC 2K0.C �.T SOC/˝C0.OC//
˚2

�K0.C �.T S xV /˝C0.V // :

It is clear from this formula that DV is a Dirac element if and only if DOC is, so we
have proved that DOC is a Dirac element, which ends the proof of the theorem.

The following remark collect some technical facts which were in the main body of the
proof of Theorem 4 before we took into account the Referee’s suggestions.
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Remark 4 Replace �s.z/<2 by �s.z/<1 in the definition of O� in (4-1) and modify
accordingly the subsequent sets in (4-1). Let @˙ 2KK1.C

�.T SL�R/;C �.T SO˙//

be the KK–elements associated with the exact sequences of C �–algebras:

0 �! C �.T SO˙/ �! C �.T SO˙/ �! C �.T SL�R/ �! 0 :

We can apply Lemma 2 to AD C �.T SX /, J1 D C �.T SOC/ and J2 D C �.T SO�/.
This gives:

@C˝ ıOC D�@�˝ ıO� 2K1.C �.T SL�R// :

Moreover, one can show that this element is the Dirac element DL associated with L,
modulo sign and Bott periodicity K1.C �.T SL�R//'K0.C �.T SL//. The idea to
prove this is to build a smooth groupoid:

yGt
O�
WD Gt

O�
t .Gt

L �R/�O� � Œ0; 1� :

such that the following (smooth) isomorphisms hold:

� yGt
O�
jO��f0g

' T SO� ,

� yGt
O�
jO��f1g

' .Lı �Lı/� .RÌ� Rj�0;1�/,

where RÌ� R�R is the groupoid of the action of R onto itself by the complete flow
of the vector field �.h/@h and � is the gluing function used in Section 3.3 (this is
exactly the tangent space of Œ1;C1Œ with f1g as a conical point). Since yGt

O�
jO��f1g

has vanishing K–theory, the KK–element ˛ associated with the exact sequence:

0 �! C �.Oı� �Oı�/ �! C �. yG t
O�
jO��f1g

/ �! C �.Lı �Lı �R/ �! 0

is invertible in KK–theory, thus it corresponds to Bott periodicity modulo a sign and
the Morita equivalences between C �.Oı� �Oı�/;C

�.Lı �Lı/ and C . Finally, we
consider the commutative diagram:

0 // C �.T SO�/ // C �.T SO�/ // C �.T SL�R/ // 0

0 // C �.Gt
O�
/

e
O�
0

OO

e
O�
1

��

// C �. yGt
O�
/

eO�
0

OO

eO�
1

��

// C �.Gt
L
�R/

eL
0
˝1

OO

eL
1
˝1

��

// 0

0 // C �.Oı� �Oı�/
// C �. yGt

O�
jO��f1g

/ // C �.Lı �Lı �R/ // 0

It gives by functoriality: @�˝ ıO� D ıL˝
C
˛ which proves the claim.
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4.0.6 Stratified pseudomanifold with boundary As a byproduct of the proof of
Theorem 4, we have proved that Poincaré duality also holds for compact stratified
pseudomanifolds with boundary. Precisely a stratified pseudomanifold with boundary
is .Xb;L; Sb;Nb/ where:

(1) Xb is a compact separable metrizable space and L is a compact subspace of
Xb .

(2) Sb D fsig is a finite partition of Xb into locally closed subset of Xb , which are
smooth manifolds possibly with boundary. Moreover for each si we have

si \LD @si :

(3) NbDfNs; �s; �sgs2Sb
, where Ns is an open neighborhood of s in X , �sW Ns!

s is a continuous retraction and �sW Ns ! Œ0;C1Œ is a continuous map such
that s D ��1

s .0/.

(4) The double

X DXb [
L

Xb

obtained by gluing two copies of Xb along L together with the partition

S WD fsi j@si D∅g[ fsi [
@si

sig[ fsi j@si D∅g

and the set of control data N D f zNs; z�s; z�sgs2S where

Ns DNsi
; �s D �si

; �s D �si
if s D si with @si D∅

Ns DNsi
[

Nsi
\L
Nsi

; �sjNsi
nL D �si

; �sjNsi
nL D �si

elsewhereand

is a stratified pseudomanifold.

We let Ob WD Xb nL. According to the previous work, one can define the tangent
spaces:

T SXb WD T SX jXb
and T SOb WD T SX jOb

We deduce the following:

Theorem 5 The C �–algebras C �.T SXb/ and C0.Ob/ are Poincaré dual as well as
the C �–algebras C �.T SOb/ and C.Xb/.
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