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Global fixed points for centralizers and Morita’s Theorem

JOHN FRANKS

MICHAEL HANDEL

We prove a global fixed point theorem for the centralizer of a homeomorphism of the
two-dimensional disk D that has attractor–repeller dynamics on the boundary with
at least two attractors and two repellers. As one application we give an elementary
proof of Morita’s Theorem, that the mapping class group of a closed surface S of
genus g does not lift to the group of C 2 diffeomorphisms of S and we improve the
lower bound for g from 5 to 3 .

37E30, 57M60, 37C25

1 Introduction

In this article we are concerned with the properties of groups of homeomorphisms
or diffeomorphisms of surfaces. We assume throughout that S is a surface of finite
negative Euler characteristic, without boundary but perhaps with punctures. We denote
the group of orientation preserving homeomorphisms of S and the group of orientation
preserving C 1 diffeomorphisms of S by Homeo.S/ and Diff.S/ respectively and
we denote the subgroups consisting of elements that are isotopic to the identity by
Homeo0.S/ and Diff0.S/ respectively.

An important tool in the study of subgroups of these groups is the existence of a global
fixed point. A global fixed point for a subgroup G of Homeo.S/ is a point x 2 S that
is fixed by each element of G . The set of global fixed points for G is denoted Fix.G/.
When G is a subgroup of Diff.S/ and Fix.G/ is nonempty, the assignment g 7!Dgx

(the derivative of g at x 2 Fix.G/), gives a representation of G in Gl.2;R/. This
representation can be very useful for understanding G ; for example in our paper [8]
this representation was used to prove that many lattices, including SL.3;Z/; are not
isomorphic to a subgroup of the group of measure preserving diffeomorphisms of a
surface.

Unfortunately, there are no general techniques for finding a global fixed point for a
subgroup of Homeo.S/. In particular there are no analogues of the standard tools of
algebraic topology for finding fixed points of a single map. In the case of surfaces
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there is a literature concerning the existence of global fixed points, but it is largely
limited to abelian groups (see, eg Bonatti [1; 2], Franks, Handel and Parwani [10; 9]
and Handel [11]).

The main objective of this article is to provide a technique which, in many cases, allows
us to find a global fixed point for the centralizer of f 2 Homeo.S/. We denote the
centralizer of f by Cent.f / and observe that it can be a very large group and far from
abelian, for example when Fix.f / has interior.

As one application of this result we address the “lifting problem” for the mapping
class group (see Section 6 of Farb [5]). Using our result on global fixed points and
the representation in Gl.2;R/ mentioned above, we give an elementary proof of an
important theorem of Morita about the nonexistence of liftings of the full mapping
class group to Diff2.S/ and improve the lower bound on the genus of S required for
the result (see Theorem 1.5 below).

The closed two-dimensional disk is denoted D . The universal cover zS of S is naturally
identified with int D and the compactification of zS by the circle at infinity S1 is
naturally identified with D . For this reason, our main result concerns global fixed
points for group actions on D .

Theorem 1.1 Let G be a subgroup of Homeo.D/ and let f be an element of the
center of G: Suppose K WD Fix.f /\ @D consists of a finite set with more than two
elements each of which is either an attracting or repelling fixed point for f W D!D:

Let G0 � G denote the finite index subgroup whose elements pointwise fix K . Then
Fix.G0/\ int.D/ is nonempty.

The hypothesis of this theorem has both an algebraic part, namely that G0 � Cent.f /,
and a dynamical part, namely that Fix.f /\@D consists of points which are attractors or
repellers. The latter implies that Fix.f /\ int D¤∅ as a consequence of the Lefschetz
index theorem. The former is used to relate the dynamics of elements of G0 to f and
hence to each other.

The fixed point set Fix.f / of f 2 Homeo.S/ is partitioned into Nielsen classes. Two
elements x;y 2 Fix.f / belong to the same Nielsen class if there is a lift zf W zS ! zS
of f W S ! S and lifts zx; zy 2 Fix. zf / of x and y . Equivalently, every lift of f that
fixes a lift of x also fixes a lift of y . If f is isotopic to g and zf is a lift of f then the
isotopy between f and g lifts to an isotopy between zf and a lift zg of g . We say that
zf and zg are paired. Pairing defines a bijection between lifts of f and lifts of g and

we say that the f –Nielsen class of x 2 Fix.f / is paired with the g–Nielsen class of
z 2 Fix.g/ if there are paired lifts zf and zg of f and g and there are lifts zx 2 Fix. zf /
of x and zz 2 Fix.zg/ of z .
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By a pseudo-Anosov homeomorphism of a punctured surface we mean the restriction
of a homeomorphism of the unpunctured surface that is pseudo-Anosov relative to the
set of punctures.

Theorem 1.2 Suppose that ˛2Homeo.S/ is pseudo-Anosov and that f 2Homeo.S/
is isotopic to ˛ . Let H0 D Cent.f /\Homeo0.S/. Then Fix.H0/ is infinite. More
precisely, for each n � 0 and each y 2 Fix.˛n/ there exists x 2 Fix.H0/\ Fix.f n/

such that the Nielsen class of f n determined by x is paired with the Nielsen class of
˛n determined by y .

In the special case that f D ˛ , the group H0 is trivial (see, eg Travaux de Thurston sur
les surfaces [6]) and Theorem 1.2 is obvious. Thus Theorem 1.2 fits into the general
scheme of results in surface dynamics in which an important property of pseudo-Anosov
maps is extended to all elements of its isotopy class.

Remark 1.3 Suppose that f 0W T 2! T 2 is isotopic to a linear Anosov homeomor-
phism ˛0W T 2! T 2 and that e 2 Fix.˛/ is the image of .0; 0/ 2R2 under the usual
covering map. Assume e 2 Fix.f 0/: Let S D T 2 nfeg, let f D f 0jS and let ˛D ˛0jS .
Then ˛ is pseudo-Anosov and we may apply Theorem 1.2. The conclusions are exactly
as given in the theorem but are applied to the subgroup H0

0
of Cent.f 0/ that are isotopic

to the identity relative to e .

Our next result is the analogue of Theorem 1.2 for reducible isotopy classes with
a pseudo-Anosov component. It is a corollary of, and the original motivation for,
Theorem 1.1, since it provides the tool we use to prove Morita’s theorem.

Theorem 1.4 Suppose that f 2Homeo.S/, that S0 � S is an incompressible subsur-
face and that f is isotopic to ˛ 2 Homeo.S/ where ˛.S0/D S0 and ˛jS0

is pseudo-
Anosov. Let H0 be the subgroup of Cent.f / consisting of elements that are isotopic to
a homeomorphism that pointwise fixes S0 . Then Fix.H0/ is infinite. More precisely,
for each n � 0 and each y 2 Fix.˛n/\ int.S0/ there exists x 2 Fix.H0/\ Fix.f n/

such that the Nielsen class of f n determined by x is paired with the Nielsen class of
˛n determined by y .

The mapping class group MCG.S/ of a closed surface S is the group of isotopy classes
of orientation preserving homeomorphisms of S . There is a natural homomorphism
Homeo.S/!MCG.S/ that sends h 2 Homeo.S/ to its isotopy class Œh� 2MCG.S/.
A lift of a subgroup � of MCG.S/ is a homomorphism �! Homeo.S/ so that the
composition

�! Homeo.S/!MCG.S/
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is the inclusion. Every free abelian subgroup (see Section 6.3 of Farb [5]) and every
finite subgroup (see Kerckhoff [14]) of MCG.S/ has a lift to Diff.S/. Morita [18; 19]
proved that MCG.S/ does not lift to Diff2.S/ for genus.S/� 5 and Markovich [16]
proved that MCG.S/ does not lift to Homeo.S/ for genus.S/� 6.

Using Theorem 1.4 and the Thurston stability theorem we give an elementary proof of
Morita’s theorem and improve the lower bound on the genus.

Theorem 1.5 Suppose S is a closed surface. Then MCG.S/ does not lift to Diff.S/
for genus.S/� 3.

This is actually a special case of a more general result in which we consider homomor-
phisms LW �! Diff.S/ that are not necessarily lifts.

Suppose that a closed surface SDS1[S2 where S1 and S2 are incompressible subsur-
faces with disjoint interiors. Recall that the relative mapping class group MCG.Si ; @Si/

is the set of isotopy classes rel @Si of homeomorphisms hW Si!Si that are the identity
on @Si . Each such h extends by the identity to a homeomorphism of S . This induces
a homomorphism ˆW MCG.Si ; @Si/!MCG.S/: If S is given a hyperbolic structure
with @Si a union of geodesics, it is straightforward to see that any f 2 Homeo0.S/ is
actually homotopic to the identity along geodesics, ie with ft .x/ on the geodesic from
x to f .x/ determined by the isotopy. From this it follows that if f is the identity on
the complement of Si , then we may choose a homotopy from f to the identity with
the same property, and hence an isotopy of f jSi

to the identity rel @Si . Therefore the
homomorphism ˆ is injective and we use it to identify MCG.Si ; @Si/ with a subgroup
of MCG.S/.

Theorem 1.6 Assume notation as above and that � D h�1; �i where

� �1 is a nontrivial finitely generated subgroup of MCG.S1; @S1/ such that
H 1.�1;R/D f0g,

� � 2MCG.S2; @S2/.

Then there does not exist a faithful homomorphism LW �! Diff.S/ such that

(1) ŒL.�1/��MCG.S1; @S1//,

(2) ŒL.�/� 2MCG.S2; @S2/ is represented by ˛W S ! S where ˛.S2/D S2 and
˛jS2 is pseudo-Anosov.
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Theorem 5.1 of Korkmaz [15] asserts that if S is a compact surface of genus at least
three with @S either empty or with one component, then H1.MCG.S; @S/;Z/ and
H1.MCG.S/;Z/ are both trivial. Moreover, in the case of genus 2, both of these
groups are isomorphic to Z=10Z. Hence whenever the genus is at least two both
H 1.MCG.S/;R/ and H 1.MCG.S; @S/;R/ are trivial. Theorem 1.5 follows from
these facts and Theorem 1.6. It is conjectured that when the genus is at least two
H 1.�;R/ is trivial for all finite index subgroups � of MCG.S/ or MCG.S; @S/:
If that conjecture is verified for MCG.S; @S/ then Theorem 1.6 will imply that no
finite index subgroup of MCG.S/ lifts to Diff.S/, which is known for genus at least
5 because Morita’s original proof applies to all finite index subgroups of MCG.S/.

Acknowledgements We thank Benson Farb for several very helpful conversations.
The first author was supported in part by NSF grant DMS-055463. The second author
was supported in part by NSF grant DMS-0103435.

2 A global fixed point theorem

We begin with generalities about attracting fixed points.

Suppose that f W X !X is a homeomorphism of a locally compact metric space X

and that x0 2 Fix.f /. We say that x0 is an attracting fixed point for f if there is
a compact neighborhood W of x0 such that the f n.W /! fx0g in the Hausdorff
topology; ie for every neighborhood N of x0 , we have f n.W /�N for all sufficiently
large n. The basin of attraction of x0 with respect to f is defined to be fx 2 X W

limn!1 f
n.x/ D x0g. Note that the basin of attraction of x0 is f –invariant and

contains W .

Remark 2.1 If W is a compact neighborhood of x0 such that f .W / � W then
f n.W /! fx0g in the Hausdorff topology if and only if

T1
nD1 f

n.W /D fx0g. Thus
by item (2) of Lemma 2.2 below, x0 is an attracting fixed point if and only if it has a
compact neighborhood W such that f .W /�W and

T1
nD1 f

n.W /D fx0g.

If x is an attracting fixed point for f �1 then it is a repelling fixed point for f .

Lemma 2.2 Let f W X !X be a homeomorphism of a locally compact metric space
with an attracting fixed point x0 2X and basin of attraction U .

(1) For any compact neighborhood W0 � U of x0 ,
1[

iD0

f �i.W0/D

1[
iD0

f �i.int W0/D U:
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(2) There exist arbitrarily small compact neighborhoods V of x such that f .V /�V .

(3) For any compact set A� U; limn!1 f
n.A/D fx0g in the Hausdorff topology.

(4) If x0 is also an attracting fixed point for a homeomorphism gW X ! X that
commutes with f then U is the basin of attraction of x with respect to g .

Proof Let W be a compact neighborhood of x0 as in the definition of attracting fixed
point.

Suppose that W0 � U is a compact neighborhood of x0 . Since U is f �1 –invariant,S1
iD0 f

�i.W0/ � U . Conversely, if x 2 U then f i.x/ 2 int W0 for all sufficiently
large i . This proves that U �

S1
iD0 f

�i.int W0/ �
S1

iD0 f
�i.W0/ � U which

proves (1).

For (2), choose q> 0 such that f q.W /� int.W / and define V1D
Sq

kD0
f k.W /�U:

Then f .V1/� V1 . Given a neighborhood N of x choose l � 0 so that f l.V1/�N

and let V D f l.V1/. Then V �N and f .V /� V .

By (1) and (2) there is a compact neighborhood V �W of x such that f .V /� V and
such that U D

S1
iD0 f

�i.int V /. If A is a compact subset of U then A� f �m.int V /

for some m> 0. Thus f i.A/� V for all i �m and we conclude limn!1 f
n.A/�T1

iD0 f
i.V /�

T1
iD0 f

i.W /D fx0g. This proves (3).

Suppose now that g is as in (4) and that U 0 is the basin of attraction of x0 with respect to
g . For any compact neighborhood N �U\U 0 of x0 , U D

S1
iD0 f

�i.int N / and U 0DS1
jD0 g�j .int N / by (1). For all i � 0 there exists j � 0 so that gj .N /� f i.int N /.

Thus gj .f �i.N // D f �i.gj .N // � int N or equivalently f �i.N / � g�j .int N /.
This proves that U � U 0 . The reverse inclusion follows by symmetry.

Lemma 2.3 Let f W X !X be a homeomorphism of a locally compact metric space
and let x0 2X be an attracting fixed point for f . If gW X !X is a homeomorphism
that commutes with f and fixes x0 then there exists m> 0 such that x0 is an attracting
fixed point for hD f mg .

Proof Let U be the basin of attraction for x0 with respect to f . Then g.U / is the
basin of attraction for x0 with respect to gfg�1 D f which implies that g.U /D U .
By part (2) of Lemma 2.2 there is a compact neighborhood V of x0 in U such that
f .V /�V . By part (3) of the same lemma there is m>0 such that f m.g.V //�f .V /.

Define hD f mg . Thus h.V / � f .V / � V: Applying hn�1 we conclude hn.V / �

f hn�1.V / for all n. Hence

f �1hn.V /� hn�1.V /
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for all n.

Let ƒ be the nonempty compact set
T

n�0 hn.V /: Then f .ƒ/�ƒ because f .V /�V .
Also, the displayed inclusion above implies f �1.ƒ/�ƒ. We conclude that f .ƒ/Dƒ
so by part (3) of Lemma 2.2 the only possibility is that ƒD fx0g. By Remark 2.1, this
proves that x0 is an attracting fixed point for h.

We now turn to the proof of our main result.

Proof of Theorem 1.1 The points of K are attractors or repellers for f and hence a
fortiori attractors or repellers for f j@D . Hence there must be an equal number of attrac-
tors and repellers which alternate on @D: We will denote the attractors fp1; : : : ;pkg

and the repellers fq1; : : : ; qkg in their circular order.

For simplicity it is useful to consider the two sphere S2 obtained by doubling D along
its boundary. There is a natural extension of f to S2 which we will also denote by f .
Then fp1; : : : ;pkg are attracting fixed points of f W S2! S2 and fq1; : : : ; qkg are
repelling fixed points. Each element of G0 also extends in a natural way to S2 and
abusing notation we will denote this group by G0 .

Let H be the set of elements of hG0; f i for which each pi is an attractor and each qi is
a repeller. Then f 2H and by Lemma 2.3, for all g 2 G0 there exists m> 0 such that
f mg 2H . Our goal is to find y 2S2 , not in the set fp1; : : : ;pkg[fq1; : : : ; qkg, such
that y 2Fix.h/ for each h2H . We then observe that y 2Fix.f /\Fix.f mg/�Fix.g/
for all g 2 G0 which will complete the proof.

Remark 2.4 An easy index argument shows that for each h 2H there is at least one
element of Fix.h/ that has negative index and so is neither a source nor a sink. The
challenge here is to find a single point that works for all h. The point we find in Fix.H/
will be shown to be neither a source nor a sink for any element h 2H , but we do not
know about its index.

Lemma 2.2 (4) and the fact that each h 2H commutes with f imply that the basin of
attraction U for p1 with respect to h 2H is independent of h. By Lemma 2.2 (1), U

can be written as an increasing union of open disks and so is connected and simply
connected. The fact that there is another attractor p2 implies that the frontier of U is
not a single point.

We will be interested in two compactifications of U . The first is xU , the closure of U

in S2 and the second is yU , the prime end compactification. The set ‚D yU nU of
prime ends is topologically a circle. Each homeomorphism hjU W U ! U extends to a
homeomorphism yhW yU ! yU . Moreover, the following holds:
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(�) For each continuous arc 
 W Œ0; 1� ! xU with 
 .Œ0; 1// � U and 
 .1/ in the
frontier of U there is a continuous arc y
 W Œ0; 1� ! yU with y
 .t/ D 
 .t/ for
t 2 Œ0; 1/: The point 
 .1/ is called an accessible point of the frontier of U and
y
 .1/ is a prime end corresponding to it (there may be more than one prime end
corresponding to an accessible point).

These properties go back to Caratheodory. An excellent modern exposition can be
found in Mather’s paper [17]. In particular see Section 17 of [17] for a discussion of
accessible points.

Let C denote the arc in @D joining p1 and q1 and not containing any other points
of Fix.f /: Then C � xU and all but the endpoint q1 of C lies in U . By (�), the half
open arc C \U converges to a prime end yw 2‚ that is fixed by each yh since C is
h–invariant for each h.

Our first objective is to show that yw is a repelling fixed point for each yhj‚ or equivalently
an attracting fixed point for each yh�1j‚: For this, there is no loss in replacing h by an
iterate so by applying Lemma 2.2 (3) we may choose a disk neighborhood D1 of q1

in the basin of attraction of q1 with respect to h�1 such that h�1.D1/� int.D1/. Let

0 denote the component of @D1\U which intersects C , and let 
i D h�i.
0/: Note
that each 
i intersects C and is the interior of a closed path x
i �

xU and so by (�) is
the interior of a closed path y
i �

yU . The 
i ’s separate U into two complementary
components Vi and Wi with WiC1 �Wi and

T1
iD1 Wi D∅ (where the last property

follows from Remark 2.1) . By Corollary 4 of [17], the y
i ’s converge to a single prime
end, which must be yw since each y
i intersects C . The yh�1 –orbit of the endpoints of
y
i converge to yw . This proves that yw is an attractor for yh�1j‚ .

The next step is to find a prime end yy that is fixed by each yh and that does not come
from @D . Since each yh commutes with yf , Lemma 2.2 (4) implies that the interval of
attraction of yw with respect to yh�1 is independent of h. Let yy be one endpoint of this
interval of attraction and let J be the interval in ‚ with endpoints yw and yy which lies
in the basin of yw . The only fixed points of yhjJ are the endpoints and yw is a repeller
while yy is an attractor.

Now we show how to extract a (not necessarily unique) point y 2 xU from yy that is
fixed by each h. By Corollary 11 and Theorem 13 of [17] there is a sequence of disjoint
closed arcs x̨i � xU with interior ˛i � U and endpoints in the frontier of U (in S2 )
and there exists y in the frontier of U such that

� x̨i! y (in the Hausdorff topology on S2 ),

� there is a component Zi of .U n˛i/ such that ZiC1 �Zi and
T1

iD1 Zi D∅,

Geometry & Topology, Volume 13 (2009)



Global fixed points for centralizers and Morita’s Theorem 95

� ˛i extends to a closed arc y̨i in yU such that y̨i converges to yy ( in the Hausdorff
topology on yU ).

Clearly if we show h.˛i/\˛i¤∅ then it follows that y 2Fix.h/: One of the endpoints
of y̨i , call it yxi , lies in J . Since yh has no fixed points in the interior of J it follows
that

lim
n!1

yhn.yxi/D yy and lim
n!�1

yhn.yxi/D yw:

On the other hand each z 2 ˛i lies in U , the basin of attraction of p1; so

lim
n!1

hn.z/D p1:

Since y̨i separates yy and p1 in yU we conclude that hn.˛i/\˛i ¤∅ for large n (and
hence also ˛i\h�n.˛i/¤∅). But this implies hk.˛i/\˛i ¤∅ for all k 2Z because
hk.˛i/\ ˛i D ∅ and k ¤ 0 would imply that for all n > 0 either hnk.˛i/ � Zi or
h�nk.˛i/�Zi which is a contradiction. Hence the point y is fixed by each h.

Moreover, for any h 2 H we have hk.˛i/\ ˛i ¤ ∅ for all k 2 Z. This implies y

is not an attractor for either h or h�1 since otherwise, choosing A D x̨i for some
large i , we would contradict Lemma 2.2 (3). We conclude y is not contained in
fp1; : : : ;pkg[ fq1; : : : ; qkg.

3 Applications

Proof of Theorem 1.2 and of Theorem 1.4 We assume the notation of Theorem 1.4
and allow the possibility that S0 D S .

We use the standard setup for discussing Nielsen classes in surfaces; further details can
be found, for example, in Section 3 of Handel [12]. The universal cover zS of S is
topologically the interior of a disk and is compactified to a closed disk D by the ‘circle
at infinity’ S1 . Every lift zgW zS ! zS of every homeomorphism gW S ! S extends to
a homeomorphism ygW D!D . If an isotopy between g1 and g2 is lifted to an isotopy
between lifts zg1 and zg2 then yg1jS1

D yg2jS1
.

Choose a component zS0 of the full preimage of S0 in zS and let C be the intersection
of the closure of zS0 in D with S1 . Then C is a Cantor set if S ¤ S0 and C D S1
if S D S0 . Since C contains at least three points there is at most one lift of any
homeomorphism that pointwise fixes C .

Given h 2H0 choose gW S ! S that is isotopic to h and pointwise fixes S0 and let
zgW zS ! zS be the lift of g that pointwise fixes zS0 . The isotopy from h to g lifts to
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an isotopy from zh to a lift zg of g satisfying yhjC D ygjC Didentity. The assignment
h! yh defines a lift bH0 � Homeo.D/ of H0 .

Given y 2 Fix.˛n/ \ int.S0/, choose a lift zy 2 zS0 of y , let AW zS ! zS be the
lift of ˛n that fixes zy and note that A preserves zS0 . Then C is yA–invariant and
Fix. yAjS1

/ is a finite subset of C with more than two elements. Moreover, each point
of Fix. yAjS1

/ is either an attracting or repelling fixed point for yAW D!D (see, for
example, Theorem 5.5 of Casson and Bleiler [4] or Handel and Thurston [13]). The
isotopy from ˛n to f n lifts to an isotopy from A to a lift F of f n such that yF D yA.
The commutator Œ yF ; yh� is the identity because it fixes each point in C and is the
extension of a lift of Œf n; h�D identity. This proves that yF commutes with each yh.

Theorem 1.1 applies to GDG0Dh
bH0 ;Fi. Thus there exists zx2Fix.bH0 /\Fix.F /\ zS .

The image x 2 S of zx satisfies the conclusions of the theorem.

The following result is implicit in the proof of Lemma (3.3.5) of Calegari [3].

Proposition 3.1 . Let G be a finitely generated group which admits a nontrivial C 1

action on a connected surface S in such a way that Fix.G/ contains a nonisolated point.
Then there is a nontrivial homomorphism �W G!R, ie H 1.G;R/ is nontrivial.

Proof Choose a nonisolated point x of Fix.G/. The assignment g 7! det.Dgx/

defines a homomorphism from G to R. If this is nontrivial we are done. Otherwise,
each Dgx has determinant one. Since x is the limit of global fixed points there is a
vector based at x that is fixed by each Dgx . Thus there is a basis for the tangent space
of S at x with respect to which each

Dgx D

�
1 xg

0 1

�
:

The map g 7! xg defines a homomorphism from G to R. If it is nontrivial we are
done. Otherwise xg D 0 and Dgx is the identity for all g 2 G . The existence of
a nontrivial homomorphism from G to R now follows from the Thurston stability
theorem ([20], see also Theorem 3.4 of [7]).

Proof of Theorem 1.6 Assuming there is a faithful homomorphism LW MCG.S/!
Diff.S/ satisfying (1) and (2), we prove that there is a nontrivial homomorphism from
L.�1/ to R, thereby contradicting the assumption that H 1.�1;R/ is trivial.

By hypothesis, each h 2 L.�1/ is isotopic to a homeomorphism that is the identity
on S2 and f WD L.�/ is isotopic to a homeomorphism ˛ such that ˛.S2/D S2 and
˛jS2

is pseudo-Anosov. Also f commutes with each h 2L.�1/ because � commutes
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with each element of �1 . Theorem 1.4 implies that Fix.L.�1// is infinite and hence
has an accumulation point. The existence of a nontrivial homomorphism from L.�1/

to R, now follows from Proposition 3.1.
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