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Cannon–Thurston maps for pared manifolds
of bounded geometry

MAHAN MJ

Let N h 2H.M;P / be a hyperbolic structure of bounded geometry on a pared mani-
fold such that each component of @0M D @M �P is incompressible. We show that
the limit set of N h is locally connected by constructing a natural Cannon–Thurston
map. This provides a unified treatment, an alternate proof and a generalization of
results due to Cannon and Thurston, Minsky, Bowditch, Klarreich and the author.

57M50

1 Introduction

This is one in a series of papers (in between [36] and [39]) leading to the existence of
Cannon–Thurston maps for, and local connectivity of limit sets of, finitely generated
Kleinian groups. The project is completed in [38] and [40]. The main aim of this
paper is to develop a reduction technique. Given the existence of Cannon–Thurston
maps for closed surface groups of bounded geometry (cf [36]), this paper develops
techniques to generalize this first to punctured surfaces and then to bounded geometry
pared manifolds with incompressible boundary. While this is not a reduction theorem
per se, the techniques of this paper shall be used mutatis mutandis in [39] and [40] to
obtain generalizations of Cannon–Thurston theorems for surface groups to theorems
for pared manifolds with incompressible boundary. The main focus of [38; 39] and
[40] will be to describe geometries of closed surface groups for which one can prove
the existence of Cannon–Thurston maps. The main theorem of this paper is as follows.

Theorem (Theorem 5.12) Suppose that N h 2 H.M;P / is a hyperbolic structure
of bounded geometry on a pared manifold .M;P / with incompressible boundary
@0M D .@M �P / (ie each component of @0M is incompressible). Let Mgf denote a
geometrically finite hyperbolic structure adapted to .M;P /. Then the map i W eMgf !

eN h extends continuously to the boundary yi W bMgf !
bN h . If ƒ denotes the limit set

of fM , then ƒ is locally connected.

Examples to which Theorem 5.12 applies include the following.
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(1) The cover corresponding to the fiber subgroup of a closed hyperbolic 3–manifold
fibering over the circle (Cannon and Thurston [15]),

(2) Hyperbolic 3 manifolds of bounded geometry, which correspond to simply or
doubly degenerate Kleinian groups isomorphic to closed surface groups (Minsky
[28]).

(3) Hyperbolic 3 manifolds of bounded geometry without parabolics and freely
indecomposable fundamental group (Mitra [36, Section 4.3] and Klarreich [23]).

(4) Hyperbolic 3 manifolds of bounded geometry, arising from simply or doubly
degenerate Kleinian groups corresponding to punctured surface groups (Bowditch
[11; 12]).

The main issue addressed in this paper has been raised in various forms by Minsky
[32], McMullen [26] and the author [33; 3].

Let M be a closed hyperbolic 3–manifold fibering over the circle with fiber F . LeteF and fM denote the universal covers of F and M respectively. Then eF andfM are quasi-isometric to H2 and H3 respectively. Now let D2 D H2 [ S1
1 and

D3 DH3[S2
1 denote the standard compactifications. In [15] Cannon and Thurston

show that the usual inclusion of eF into fM extends to a continuous map from D2 to
D3 .

This was generalized by Minsky [28] and Klarreich [23] and independently (and
using different techniques) by the author [36, Section 4] to prove that if M is a
geometrically tame hyperbolic 3–manifold with freely indecomposable fundamental
group and injectivity radius bounded below, and if Mcc denotes the (topological)
compact core of M then the inclusion of fM cc into fM extends to a continuous map
from cM cc to cM where fM cc and fM denote the universal covers of Mcc and M

respectively and cM cc and cM denote the (Gromov) compactifications of fM cc andfM respectively. However, all these results left unanswered the case of manifolds with
parabolics.

In [26] McMullen proved that the corresponding result holds for punctured torus groups,
using the model manifold built by Minsky for these groups in [29]. In [39], we shall
unify the framework of this paper with a certain notion of i–bounded geometry to give
a simultaneous generalization of the results of this paper and those of McMullen [26].

The present paper was born of an attempt to find a new proof (along the lines of [36]) of
a result of Bowditch. In [11; 12], Bowditch proved the existence of Cannon–Thurston
maps for punctured surface groups of bounded geometry using some of the ideas from
the first paper in the present series by the author [36]. The main result of this paper
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Cannon–Thurston maps for pared manifolds of bounded geometry 191

simultaneously generalizes Bowditch’s results [11; 12] and [36] and hence includes the
results of [15; 28; 23; 12; 11; 36]. When .M;P / is the pair S � I; ıS � I , for S a
surface group, we get Bowditch’s result [11; 12]. However, even in this case, our proof
is different and circumvents the use of locally infinite (Farey) graphs as in the proofs
of [11; 12].

We are grateful to Brian Bowditch for pointing out that local connectivity (the second
statement in Theorem 5.12 above) also follows by combining Bowditch’s result [12]
with a result of Anderson–Maskit [2]. See [12, Section 10] for details. The first part
of Theorem 5.12 answers a question attributed to Thurston by Bowditch in the same
paper [12, Section 10] (see also [1]).

In a sense, Theorem 5.12 above is a direct generalization of the following which we
proved in [36].

Theorem (Theorem 4.7 of [36]) Let M be a compact 3–manifold with incompress-
ible boundary @M without torus components. Let Mhyp be a hyperbolic structure
without parabolics on M such that each end of the manifold has bounded geometry.
Also suppose that Mgf is a geometrically finite structure on M . Then

� the inclusion of fM gf into fM hyp extends to a continuous map from cM gf tocM hyp

� the limit set of fM hyp is locally connected.

This problem is a part of a more general problem. A natural question seems to be the
following.

Question [36; 33; 3] Suppose H is a hyperbolic group acting freely and properly
discontinuously by isometries on a hyperbolic metric space X . Does the continuous
proper map i W �H !X extend to a continuous map yi W b�H !

bX ?

We can ask the same question for relatively hyperbolic groups (in the sense of Gromov
[20], Farb [17] and Bowditch [8]). A convenient framework for formulating this
question is that of convergence groups acting on compacta (Bowditch [10]). Hyperbolic
and relatively hyperbolic groups have been characterized in this setting by Bowditch
[9] and Yaman [49].

Question Suppose a relatively hyperbolic group H acts on a compact set K such
that the action is a convergence action and such that each ‘cusp group’ of H leaves
a point of K fixed. Does there exist an equivariant continuous map from @H to K?
(Here @H denotes the boundary of the relatively group H , which is well-defined as
per [8].)
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A closely related question was raised by McMullen [26] in the context of Kleinian
groups. However, his question deals with the Floyd completion rather than the Gromov
completion as we have done here. There is some difference between the two notions for
manifolds with cusps. Nevertheless, modulo Floyd’s result [18], the two questions are
equivalent in the context of Kleinian groups. This question has also gained attention
after the recent resolution of the Ending Lamination Conjecture by Minsky [31] and
Brock–Canary–Minsky [14]. In fact the question in the context of Kleinian groups has
also been raised by Minsky in [32]. Both McMullen and Minsky ask if the limit sets
of Kleinian groups are locally connected given that they are connected. This will be
completely answered in the affirmative in [40].

Perhaps the most general context in which the question of local connectivity makes
sense is that of convergence group actions on compacta [10].

Question Suppose a finitely generated group H acts on a compact connected metriz-
able perfect set K such that the action is a convergence action. Is K locally connected?
(ie does ‘admitting a convergence action’ promote a connected compactum to a Peano
continuum?)

1.1 Punctured surface groups of bounded geometry: A new proof

As a motivational example, we sketch the proof for Kleinian groups G that correspond
to punctured surface groups, such that the 3–manifold N h D H3=G has bounded
geometry away from the cusps, ie closed geodesics have length uniformly bounded
away from zero. These are precisely the examples handled by Bowditch in [12] and
[11] . We give a sketch in this particular case because these are the simplest new
non-trivial examples and also to underscore the difference in our approach.

We first excise the cusps (if any) of N h leaving us a manifold that has one or two ends.
Let N denote N h minus cusps. Then N is quasi-isometric to the universal curve
over a Lipschitz path in Teichmuller space from which cusps have been removed. (In
fact, in [36] we had proven that the path in question is a Teichmuller geodesic. The
proof there was for closed surfaces, but can be extended painlessly to that of surfaces
with punctures.) This path is semi-infinite or bi-infinite according as N is one-ended
or two-ended. Fix a reference finite volume hyperbolic surface Sh . Let S denote
Sh minus cusps. Then eS is quasi-isometric to the Cayley graph of �1.S/ which is
(Gromov) hyperbolic. We fix a base surface in N and identify it with S . Now look ateS � eN . Let �D Œa; b� be a geodesic segment in eS . We ‘flow’ � out the end(s) of eN
to generate a hyperbolic ladder-like set B� (thinking of eS as a horizontal sheet, see
Figure 4) that looks topologically like Œa; b�� Œ0;1/ or Œa; b�� .�1;1/ according
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as N has one or two ends. This is exactly a reproduction of our construction in [36] or
[35].

A few details are in order. Regarding N as a universal curve (minus cusps) over a
Lipschitz path in Teichmuller space, we can assume that each fibre over the path is
topologically S with hyperbolic structure varying over the path. The union of all points
that correspond to a (or b ) is a quasigeodesic ray (or bi-infinite quasigeodesic) in eN .
Join the pairs of points that lie in the lift of a single copy of eS � eN , giving a geodesic
in each copy of eS . This is what is meant by ‘flowing’ � out the end(s) with the two
quasigeodesic rays mentioned above as ‘guides’ (or boundary lines), generating B� .
The main technical theorems [35, Theorem 3.7] or [36, Theorem 3.8] ensure that there
is a retraction from eN to B� which does not increase distances much. From this it
follows that B� is quasi-isometrically embedded in eN . [A brief proof of this last
assertion, viz qi-embeddedness follows from retract, was given in [35] but we had
omitted it in [36]. We are grateful to Brian Bowditch for pointing out this gap in [12].
See Gromov [20, Section 7.3J] for related result and [30] for a detailed proof of the
same.] Note that for this we do not need eN to be hyperbolic (in fact eN is hyperbolic
only when Sh has no cusps and eN h D eN . This is what we had used to prove the
existence of Cannon–Thurston maps in [35] and [36]).

Now if � lies outside a large ball about a fixed reference point p in eS , then so does
B� in eN . Since B� is qi-embedded in eN , there exists an ambient eN –quasigeodesic
� lying in a bounded neighborhood of B� joining the end-points of �. If Sh had no
cusps, we immediately conclude that for any geodesic segment � in fSh lying outside
large balls around p , there is a quasigeodesic in eN h joining its endpoints and lying
outside a large ball around p in eN h . This gives us a continuous extension of the
inclusion of fSh into eN h to the boundary. At this stage we have recaptured the results
of Cannon and Thurston [15] and Minsky [28].

However, when Sh has cusps, fSh and eS are different. So a little more work is
necessary. Suppose as before that �0 is a geodesic in fSh lying outside a large ball
around p . For ease of exposition we assume that the end-points of �0 lie outside cusps.
Let �� eS be the geodesic in (the path-metric on) eS joining the same pair of points.
Then off horodisks, �0 and � track each other. Construct B� as before, and let �
be an ambient eN –quasigeodesic lying in a bounded neighborhood of B� joining the
end-points of �. Then off horoballs in eN h , � lies outside a large ball around p . Let
�0 be the hyperbolic geodesic joining the end points of �. Off horoballs, � and �0

track each other. Hence, off horoballs, �0 lies outside large balls about p . The points
at which �0 intersects a particular horoball therefore lie outside large balls about p .
But then the hyperbolic segment joining them must do the same. This shows that �0
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must itself lie outside large balls around p . As before we conclude that there exists a
continuous extension of the inclusion of fSh into eN h to the boundary. At this stage
we have recaptured the result of Bowditch for punctured surfaces [11; 12].

We note here that the main purpose of this paper is to continue with our parallel
approach to handling problems like the existence of a Cannon–Thurston map, and
local connectivity of limit sets, initiated in [35] and [36]. These papers and the current
one circumvent much of the sophisticated machinery specific to 2– and 3 manifolds
developed by Thurston et al. Thus, they provide a direct approach to the existence
of a Cannon–Thurston map, (as also local connectivity), without having to deal with
laminations and associated geometries. Of course, this means that we lose out on the
explicit description that Cannon and Thurston [15] or Minsky [28] or Bowditch [12]
provide in terms of laminations. McMullen [26] also uses the notion of foliations in
his proof to derive explicit information about locations of closed geodesics. However,
the large-scale or coarse nature of our approach makes it more general, and suitable for
application to cases where the surface machinery of Thurston is not available, eg general
hyperbolic or relatively hyperbolic spaces and groups in the sense of Gromov, and more
specifically, free groups where the notion of laminations developed by Bestvina, Feighn
and Handel is substantially different [5; 6]. However, once the Cannon–Thurston map is
in place, some notions of laminations can be resurrected, as in [34]. Thus, in principle,
a long term aim of the present approach would be to derive further parallels between
3 manifolds and surfaces on the one hand, and discrete groups and their subgroups
on the other. The latter context being vastly more general, we have tried to avoid the
techniques specific to 2 and 3 dimensions.

The main technical difficulty in the first part of this paper (up to Section 4) stems from
the fact that a closed geodesic on a component of the boundary of the pared manifold
@0M D .@M �P / may be homotopic to a curve on a component of P , ie it is an
accidental parabolic in any hyperbolic structure on .M;P /. This results in a somewhat
trying case-by-case analysis in Section 4 of this paper. The resulting notation becomes
a bit elaborate at times and we pause at a few moments during the course of the paper to
summarize notation and keep it clear. There are essentially 3 cases we need to handle.

� Z–cusps these are relatively easy to handle as the above sketch shows.

� .ZCZ/ cusps where no curve on any component of @0M is homotopic to a
curve on the boundary torus corresponding to the .ZCZ/ cusp.

� Z and .ZCZ/ cusps, where some curve(s) on component(s) of @0M is(are)
homotopic to a particular curve on the boundary torus corresponding to the
.ZCZ/ cusp or some multiple of the core curve of the Z–cusp.
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We shall have occasion to introduce a certain extra hypothesis of p–incompressibility,
but we stick to the general case, ie we do not introduce the extra hypothesis of p–
incompressibility (or absence of accidental parabolics on components of @0M ) till
Section 5.2, because the construction of B� goes through even in the absence of this
simplifying assumption. Further, once the proof is completed for the p–incompressible
case, we use it (towards the end of Section 5) to prove the general case.

1.2 Outline of the paper

A brief outline of the paper follows. Section 2 deals with preliminaries on (Gromov)
hyperbolic spaces. We also recall a result from McMullen [26] which says roughly that
hyperbolic geodesics and ambient geodesics (geodesics in spaces obtained by removing
some horoballs) track each other off horoballs.

In Section 3, we recall Thurston’s definition of pared manifolds [47; 48] and show that
the universal cover of a hyperbolic 3–manifold M , whose compact core is a pared
manifold, is quasi-isometric to a tree T of hyperbolic metric spaces with possibly
exceptional vertex, once the cusps of M have been removed. Further, if ˛ denotes the
root vertex, we demand that ˛ be the possibly exceptional vertex. Let X˛ denote the
corresponding vertex space.We shall choose a geometrically finite structure Mgf on
M and identify X˛ with ( eMgf minus Z–cusps). This converts X˛ into a hyperbolic
metric space, but we relax the requirement that the embeddings of the edge spaces into
X˛ be qi-embeddings (this is what makes ˛ exceptional). All other vertex and edge
spaces are hyperbolic and all other inclusions of edge spaces into vertex spaces are
qi-embeddings.

In Section 4, we modify the construction of [36] to construct a quasi-isometrically
embedded hyperbolic ladder-like set B� (see Figure 4) corresponding to a geodesic �.
We show that B� is qi-embedded in ( fM �Z–cusps). Z–cusps and .ZCZ/–cusps
are treated differently.The construction of B� does not require p–incompressibility of
the boundary components, but only their incompressibility.

It is in Section 5, that we first restrict the scope to pared manifolds with p–incompressible
boundary components. We show that if � lies outside a large ball about a fixed reference
point p in .X˛ [ cusps/ modulo horoballs then so does B� in fM .

Finally, we use the tracking properties of ambient quasigeodesics vis a vis hyperbolic
geodesics and assemble the proof of the main theorem in the case of p–incompressible
boundary. We deduce from this that the limit sets of the corresponding Kleinian
groups are locally connected. Once this case is proven, we use it to prove the result
for pared manifolds of incompressible boundary, thus relaxing the assumption on
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p–incompressibility. The concluding Section 6 deals with examples to which our
theorem applies, notably Brock’s example [13]. We also indicate possible directions of
generalization. It would be worth bearing in mind that most of the arguments of this
paper are relevant to the considerably more general framework of relatively hyperbolic
groups a la Gromov [20], Farb [17] and Bowditch [8].

Apologia In From Beowulf to Virginia Woolf: An astounding and wholly unauthorized
history of English literature [42] Robert Manson Myers claims that the plays usually
attributed to Shakespeare are not in fact written by him but by another person of the
same name. Being fully aware of our literary deficiencies we frankly admit that the
papers [35; 36] and the present one are written by the same person under different
names.

Acknowledgements I am grateful to Brian Bowditch for several helpful comments
on a previous version of this paper. I would also like to thank the referee for carefully
reading the manuscript and suggesting several corrections and improvements. Research
partly supported by a UGC Major Research Project grant.

Dedication To S V on his birthday.

2 Preliminaries

We start off with some preliminaries about hyperbolic metric spaces in the sense of
Gromov [20]. For details, see [16; 19]. Let .X; d/ be a hyperbolic metric space. The
Gromov boundary of X , denoted by @X , is the collection of equivalence classes of
geodesic rays r W Œ0;1/! � with r.0/D x0 for some fixed x0 2 X , where rays r1

and r2 are equivalent if supfd.r1.t/; r2.t//g<1. Let bX =X [@X denote the natural
compactification of X topologized the usual way (cf [19, page 124]).

The Gromov inner product of elements a and b relative to c is defined by

.a; b/c D 1=2Œd.a; c/C d.b; c/� d.a; b/�:

Definition 2.1 A subset Z of X is said to be k –quasiconvex if any geodesic joining
points of Z lies in a k –neighborhood of Z . A subset Z is quasiconvex if it is
k –quasiconvex for some k .

For simply connected real hyperbolic manifolds this is equivalent to saying that the
convex hull of the set Z lies in a bounded neighborhood of Z . We shall have occasion
to use this alternate characterization.
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Definition 2.2 A map f from one metric space .Y; dY / into another metric space
.Z; dZ / is said to be a .K; �/–quasi-isometric embedding if

1

K
.dY .y1;y2//� � � dZ .f .y1/; f .y2//�KdY .y1;y2/C �:

If f is a quasi-isometric embedding, and every point of Z lies at a uniformly bounded
distance from some f .y/ then f is said to be a quasi-isometry. A .K; �/–quasi-
isometric embedding that is a quasi-isometry will be called a .K; �/–quasi-isometry.

A .K; �/–quasigeodesic is a .K; �/–quasi-isometric embedding of a closed interval in
R. A .K; 0/–quasigeodesic will also be called a K–quasigeodesic.

Let .X; dX / be a hyperbolic metric space and Y be a subspace that is hyperbolic with
the inherited path metric dY . By adjoining the Gromov boundaries @X and @Y to X

and Y , one obtains their compactifications bX and bY respectively.

Let i W Y !X denote inclusion.

Definition 2.3 Let X and Y be hyperbolic metric spaces and i W Y ! X be an
embedding. A Cannon–Thurston map yi from bY to bX is a continuous extension of i .

The following lemma [35, Lemma 2.1] says that a Cannon–Thurston map exists if for
all M > 0 and y 2 Y , there exists N > 0 such that if � lies outside an N ball around
y in Y then any geodesic in X joining the end-points of � lies outside the M ball
around i.y/ in X . For convenience of use later on, we state this somewhat differently.

Lemma 2.4 A Cannon–Thurston map from bY to bX exists if the following condition
is satisfied. Given y0 2 Y , there exists a non-negative function M.N /, such that
M.N /!1 as N !1 and for all geodesic segments � lying outside an N –ball
around y0 2 Y any geodesic segment in X joining the end-points of i.�/ lies outside
the M.N /–ball around i.y0/ 2X .

The above result can be interpreted as saying that a Cannon–Thurston map exists if the
space of geodesic segments in Y embeds properly in the space of geodesic segments
in X .

We shall also be requiring certain properties of hyperbolic spaces minus horoballs.
These were studied by Farb [17] under the garb of ‘electric geometry’. We combine
Farb’s results with a version that is a (slight variant of a) theorem due to McMullen
[26, Theorem 8.1].
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Definition 2.5 A path 
 W I ! Y to a path metric space Y is an ambient K–quasi-
geodesic if we have

L.ˇ/�KL.A/CK

for any subsegment ˇ D 
 jŒa; b� and any path AW Œa; b�! Y with the same endpoints.

The following definitions are adapted from [17].

Definition 2.6 Let M be a convex hyperbolic manifold. Let Y be the universal cover
of M minus cusps and X D fM . 
 is said to be a K–quasigeodesic in X without
backtracking if

� 
 is a K–quasigeodesic in X

� 
 does not return to any horoball H after leaving it.


 is said to be an ambient K–quasigeodesic in Y without backtracking if

� 
 is an ambient K–quasigeodesic in Y

� 
 is obtained from a K–quasigeodesic without backtracking in X by replacing
each maximal subsegment with end-points on a horosphere by a quasigeodesic
lying on the surface of the horosphere.

Note that in the above definition, we allow the behavior to be quite arbitrary on
horospheres (since Euclidean quasigeodesics may be quite wild); however, we do not
allow wild behavior off horoballs.

BR.Z/ will denote the R–neighborhood of the set Z . Let H be a locally finite
collection of horoballs in a convex subset X of Hn (where the intersection of a
horoball, which meets @X in a point, with X is called a horoball in X ). The following
theorem is due to McMullen [26].

Theorem 2.7 [26] Let 
 W I ! X n
S
H D Y be an ambient K–quasigeodesic

for a convex subset X of Hn and let H denote a collection of horoballs. Let � be
the hyperbolic geodesic with the same endpoints as 
 . Let H.≡/ be the union of
all the horoballs in H meeting �. Then � [H.�/ is (uniformly) quasiconvex and

 .I/� BR.�[H.≡//, where R depends only on K .

The above theorem is similar in flavor to certain theorems about relative hyperbolicity
a la Gromov [20], Farb [17] and Bowditch [8]. We give below a related theorem that is
derived from Farb’s ‘Bounded Horosphere Penetration’ property.
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Let 
1 D pq be a hyperbolic K–quasigeodesic without backtracking starting from
a horoball H1 and ending within (or on) a different horoball H2 . Let 
 D Œa; b� be
the hyperbolic geodesic minimizing distance between H1 and H2 . Following [17] we
put the zero metric on the horoballs that 
 penetrates. The resultant pseudo-metric is
called the electric metric. Let b
 and b
1 denote the paths represented by 
 and 
1

respectively in this pseudometric. It is shown in [17] that 
 , b
 and b
1 have similar
intersection patterns with horoballs, ie there exists C0 such that the following hold.

(1) If only one of 
 and b
1 penetrates a horoball H, then it can do so for a distance
� C0 .

(2) If both b
1 and 
 enter (or leave) a horoball H then their entry (or exit) points
are at a distance of at most C0 from each other. [Here by ‘entry’ (resp ‘exit’)
point of a quasigeodesic we mean a point at which the path switches from being
in the complement of or ‘outside’ (resp in the interior of or ‘inside’) a closed
horoball to being inside (resp. outside) it].

The point to observe here is that quasigeodesics without backtracking in our definition
gives rise to quasigeodesics without backtracking in Farb’s sense. Since this is true
for arbitrary 
1 we give below a slight strengthening of this fact. Further, by our
construction of ambient quasigeodesics without backtracking, we might just as well
consider ambient quasigeodesics without backtracking in place of quasigeodesics.

Theorem 2.8 [17] Given C > 0, there exists C0 such that if

(1) either two quasigeodesics without backtracking 
1; 
2 in X , or

(2) two ambient quasigeodesics without backtracking 
1; 
2 in Y or

(3) 
1 – an ambient quasigeodesic without backtracking in Y and 
2 – a quasi-
geodesic without backtracking in X ,

start and end

(1) either on (or within) the same horoball, or

(2) a distance C from each other

then they have similar intersection patterns with horoballs (except possibly the first and
last ones), ie there exists C0 such that

(1) if only 
1 penetrates or travels along the boundary of a horoball H, then it can
do so for a distance � C0 ,

(2) if both 
1 and 
2 enter (or leave) a horoball H then their entry (or exit) points
are at a distance of at most C0 from each other.
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3 Trees of hyperbolic metric spaces and pared manifolds

3.1 Definitions

We start with a notion closely related to one introduced in Bestvina–Feighn [4].

Definition 3.1 A tree T of hyperbolic metric spaces satisfying the q(uasi) i(so-
metrically) embedded condition is a metric space .X; d/ admitting a map P W X ! T

onto a simplicial tree T , such that there exist ı;� and K > 0 satisfying the following.

(1) For all vertices v 2 T , Xv D P�1.v/�X with the induced path metric dv is a
ı–hyperbolic metric space. Further, the inclusions ivW Xv!X are uniformly
proper, ie for all M >0, there exists N >0 such that for all v2T and x;y 2Xv ,
d.iv.x/; iv.y//�M implies dv.x;y/�N .

(2) Let e be an edge of T with initial and final vertices v1 and v2 respectively. Let
Xe be the pre-image under P of the mid-point of e . Then Xe with the induced
path metric is ı–hyperbolic.

(3) There exist maps feW Xe�Œ0; 1�!X , such that fejXe�.0;1/ is an isometry onto
the pre-image of the interior of e equipped with the path metric.

(4) fejXe�f0g and fejXe�f1g are .K; �/–quasi-isometric embeddings into Xv1
and

Xv2
respectively. fejXe�f0g and fejXe�f1g will occasionally be referred to as

fv1
and fv2

respectively.

dv and de will denote path metrics on Xv and Xe respectively. iv , ie will denote
inclusion of Xv , Xe respectively into X .

We need a version of the above definition adapted to 3 manifolds with cusps. For
convenience of exposition, T shall be assumed to be rooted, ie equipped with a base
vertex ˛ .

Definition 3.2 A tree T of hyperbolic metric spaces with possibly exceptional vertex
satisfying the q(uasi) i(sometrically) embedded condition is a metric space .X; d/
admitting a map P W X ! T onto a rooted simplicial tree T with root ˛ , such that
there exist ı; � and K > 0 satisfying the following.

(1) For all vertices v 2 T , Xv D P�1.v/�X with the induced path metric dv is a
ı–hyperbolic metric space. Further, the inclusions ivW Xv!X are uniformly
proper, ie for all M > 0, v 2 T and x;y 2 Xv , there exists N > 0 such that
d.iv.x/; iv.y//�M implies dv.x;y/�N .
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(2) Let e be an edge of T with initial and final vertices v1 and v2 respectively. Let
Xe be the pre-image under P of the mid-point of e . Then Xe with the induced
path metric is ı–hyperbolic.

(3) There exist maps feW Xe�Œ0; 1�!X , such that fejXe�.0;1/ is an isometry onto
the pre-image of the interior of e equipped with the path metric.

(4) fejXe�f0g and fejXe�f1g are .K; �/–quasi-isometric embeddings into Xv1
and

Xv2
respectively for all v1; v2 ¤ ˛ . When one of v1; v2 is ˛ , this restriction is

relaxed for the corresponding inclusion of edge spaces. fejXe�f0g and fejXe�f1g

will occasionally be referred to as fv1
and fv2

respectively.

We shall work in the framework of pared manifolds in the sense of Thurston [47; 48].

Definition 3.3 A pared manifold is a pair .M;P /, where P � ıM is a (possibly
empty) 2–dimensional submanifold with boundary such that

(1) the fundamental group of each component of P injects into the fundamental
group of M ,

(2) the fundamental group of each component of P contains an abelian subgroup
with finite index,

(3) any cylinder C W .S1 � I; ıS1 � I/! .M;P / with C�W �1.S
1 � I/! �1.M /

injective is homotopic rel. boundary to P ,

(4) P contains every component of ıM which has an abelian subgroup of finite
index.

The terminology is meant to suggest that certain parts of the skin of M have been pared
off to form parabolic cusps in hyperbolic structures for M . H.M;P / will denote the
set of hyperbolic structures on .M;P /. (Note that this means that the elements of P

and the elements of P alone are taken to cusps.)

Definition A pared manifold .M;P / is said to have incompressible boundary if each
component of @0M D @M nP is incompressible in M .

Further, .M;P / is said to have p–incompressible boundary if

(1) it has incompressible boundary,

(2) if some curve � on a component of @0M is freely homotopic in M to a curve
˛ on a component of P , then � is homotopic to ˛ in @M .

P0;P1 will denote the components of P whose fundamental groups are virtually
Z; .ZCZ/ respectively. The adjective ‘virtually’ shall sometimes be omitted and we
shall refer to the components of P0 (resp. P1 ) as Z–cusps (resp. (ZCZ )–cusps).
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3.2 3 manifold as a tree of spaces

The convex core of a hyperbolic 3–manifold N h is the smallest convex submanifold
C.N h/�N h for which inclusion is a homotopy equivalence.

If an � neighborhood of C.N h/ has finite volume, N h is said to be geometrically
finite.

There exists a compact 3–dimensional submanifold Mcc �N h , the compact core or
Scott core [44] whose inclusion is a homotopy equivalence. Mcc can be thought of as
C.N h/ minus cusps for geometrically finite N h . N h minus cusps will be denoted
by N and C.N h/ minus cusps will be denoted by C.N /. The ends of N are in
one-to-one correspondence with the components of .N �Mcc/ or, equivalently, the
components of @0M .

We say that an end of N is geometrically finite if it has a neighborhood missing C.N /.

Note The notion of ends here is slightly non-standard, as we do not want to regard a
cusp as an end.

An end E of N is simply degenerate if it has a neighborhood homeomorphic to S0�R,
where S0 is the corresponding component of @0M , and if there is a sequence of
pleated surfaces (with cusps removed) homotopic in this neighborhood to the inclusion
of S0 , and exiting every compact set. Let Sh denote a hyperbolic surface of finite
volume, from which S0 is obtained by excising cusps. We shall refer to Eh D Sh�R
(respecting the parameterization of E ) as an end of N h . Note that we may think of
Eh as obtained from E by adjoining “half” a Z–cusp.

N is called geometrically tame if all of its ends are either geometrically finite or simply
degenerate. Note that N h and the interior of N are homeomorphic to the interior of
M . For a more detailed discussion of pleated surfaces and geometrically tame ends,
see Canary–Epstein–Green [46] or Minsky [27].

A hyperbolic structure on .M;P / is a complete hyperbolic metric on the interior of
M which takes precisely the elements of P to cusps. A manifold N h will be said
to be adapted to a pared manifold .M;P / if N h corresponds to such a hyperbolic
structure on .M;P /.

Note Since the flaring ends of N contribute nothing to our discussion, we shall
(abusing notation somewhat) regarding ND C.N/ and refer to N as a hyperbolic man-
ifold, though it should really be called a convex submanifold (minus cusps) homotopy
equivalent to the big manifold (minus cusps).
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A manifold M has bounded geometry if on a complement of the cusps, the injectivity
radius of the manifold is bounded below by some number � greater than 0. Equivalently,
all closed geodesics have length greater than � .

We want to first show that the universal cover of N h minus Z–cusps is quasi-isometric
to a tree of hyperbolic metric spaces with possibly exceptional vertex corresponding to
the core.

Let Eh be a simply degenerate end of N h . Then Eh is homeomorphic to Sh�Œ0;1/

for some surface Sh of negative Euler characteristic. Cutting off a neighborhood of the
cusps of Sh we get a surface with boundary denoted as S . Let E denote Eh minus a
neighborhood of the Z–cusps. We assume that each Z–cusp has the standard form
coming from a quotient of a horoball in H3 by Z . Also, we shall take our pleated
surfaces to be such that the pair .S; cusps/ is mapped to the pair .E; cusps/ for each
pleated Sh . We shall now show that each eE is quasi-isometric to a ray of hyperbolic
metric spaces satisfying the qi-embedded condition. In [36] we had shown this for
manifolds without cusps. Each edge and vertex space will be a copy of eS and the edge
to vertex space inclusions shall be quasi-isometries. Note that each eS can be thought
of as a copy of H2 minus an equivariant family of horodisks.

Lemma 3.4 [46] There exists D1 > 0 such that for all x 2E , there exists a pleated
surface gW .Sh; �/ ! Eh with g.S/\BD1

.x/ ¤ ∅. Also g maps .S; cusps/ to
.E; cusps/.

The following lemma follows easily from the fact that injN .x/ > �0 .

Lemma 3.5 [7; 46] There exists D2 > 0 such that if gW .Sh; �/!N h is a pleated
surface, then the diameter of the image of S is bounded, ie dia.g.S// <D2 .

The following lemma due to Thurston [46, Theorems 9.2 and 9.6.1] and Minsky [27]
follows from compactness of pleated surfaces.

Lemma 3.6 [27] Fix Sh and � > 0. Given a > 0 there exists b > 0 such that if
gW .Sh; �/! Eh and hW .Sh; �/! Eh are homotopic pleated surfaces which are
isomorphisms on �1 and Eh is of bounded geometry, then

dE.g.S/; h.S//� a) dTeich.�; �/� b;

where dTeich denotes Teichmuller distance.
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In Lemma 3.6 dE denotes the path-metric on E inherited from N h . More precisely,
the complete hyperbolic metric on N h gives rise to a path-metric on N h . E�N �N h

inherits a path-metric dE given by

dE.x;y/D inffl.�/ W � is a path in E joining x;yg:

In [27] a special case of Lemma 3.6 is proven for closed surfaces. However, the main
ingredient, a theorem due to Thurston is stated and proven in [46, Theorems 9.2 and
9.6.1] – ‘algebraic limit is geometric limit’ for finite area surfaces. The arguments
given by Minsky to prove the above lemma from Thurston’s Theorems (Lemma 4.5,
Corollary 4.6 and Lemma 4.7 of [27]) go through with very little change for surfaces of
finite area. In [12], Bowditch gives an alternate approach to this using (quite general)
Gromov–Hausdorff limit arguments.

Note that in the above lemma, pleated surfaces are not assumed to be embedded. This
is because immersed pleated surfaces with a uniform lower bound on injectivity radius
are uniformly quasi-isometric to the corresponding Riemann surfaces.

Construction of equispaced pleated surfaces exiting the end We next construct a
sequence of equispaced pleated surfaces Sh.i/ � Eh exiting the end. Assume that
Sh.0/; : : :;Sh.n/ have been constructed such that:

(1) S.i/; cusps is mapped to E; cusps,

(2) if E.i/ is the component of EnS.i/ for which E.i/ is non-compact, then
S.i C 1/�E.i/,

(3) Hausdorff distance between S.i/ and S.iC1/ is bounded above by 3.D1CD2/,

(4) dE.S.i/;S.i C 1//�D1CD2 ,

(5) from Lemma 3.6 and condition (2) above there exists D3 depending on D1 , D2

and S such that dTeich.S.i/;S.i C 1//�D3 .

Next choose x 2 E.n/, such that dE.x;Sn/ D 2.D1 CD2/. Then by Lemma 3.4,
there exists a pleated surface gW .Sh; �/! Eh such that dE.x;g.S// � D1 . Let
Sh.nC 1/D g.Sh/. Then by the triangle inequality and Lemma 3.5, if p 2 S.n/ and
q 2 S.nC 1/,

D1CD2 � dE.p; q/� 3.D1CD2/:

This allows us to continue inductively. S.i/ corresponds to a point xi of Teich.S/.
Joining the xi in order, one gets a Lipschitz path � in Teich.S/.
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Definition 3.7 A sequence of pleated surfaces satisfying conditions (1–5) above will
be called an equispaced sequence of pleated surfaces. The corresponding sequence of
S.i/�E will be called an equispaced sequence of truncated pleated surfaces.

Since all Sh.i/ have bounded geometry away from cusps, they all lie in the thick
part of Teichmuller space. After quotienting by the mapping class group, their images
lie in a compact subset of the moduli space. Hence, by acting on Sh.i/ by some
uniformly quasi-conformal map  i , we may assume that  i.S

h.i// gives rise to a
fixed point Sh in moduli space after quotienting by the mapping class group. Then
 i�1 ı  

�1
i W .S

h.i// ! .Sh.i � 1// is C –quasiconformal for some fixed C . We
may assume that  i ı 

�1
i�1
W .S.i � 1//! .S.i// is a bijective map by excising cusps

appropriately. Also, assume that all these excised surfaces correspond to a fixed S

obtained from Sh by excising cusps.

Definition 3.8 The universal curve over X�Teich.Sh/ is a fiber bundle over X

whose fiber over x 2 X is the Riemann surface corresponding to x . (Topologically
this is X�Sh .)

Assuming that the Z–cusps are invariant under Teichmuller maps, we may assume
that there is an induced universal curve of truncated hyperbolic surfaces obtained by
excising cusps.

Each S.i/ being compact (with or without boundary), eS.i/ is a hyperbolic metric
space. We want to regard the universal cover eE of E as being quasi-isometric to a
ray T of hyperbolic metric spaces. To this end, we construct a quasi-isometric model
of eE . Let the following hold.

(1) T D Œ0;1/.

(2) Vertex set V D fn W n 2N[f0gg.

(3) Edge set E D fŒn� 1; n� W n 2Ng.

(4) Xn D � D XŒn�1;n� , where � is a Cayley graph of �1.S/ with some fixed
generating set.

(5) There exists K; � and a map �n such that �nW � ! eS.n/ is a .K; �/ quasi-
isometry for all i . Let ��1

n denote its quasi-isometric inverse.

(6) The qi-embeddings of edge sets into vertex sets are given by:
� �nW XŒn�1;n�!Xn is the identity map on � ,
� �n�1W XŒn�1;n� ! Xn�1 is the change of marking induced by sending
 �1

n�1
.S/ to  �1

n .S/.
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By Lemma 3.6 and the fact that � is a Lipschitz path in Teichmuller space, this tree of
hyperbolic metric spaces satisfies the quasi-isometrically embedded condition. In fact,
we get more. Each S.i/ corresponds, via Sh.i/ to a point xi of Teich.S/. Joining the
xi in order, one gets the Lipschitz path � obtained above in Teich.S/. Mapping the
fiber over xi to an embedded incompressible surface lying in a (uniformly) bounded
neighborhood of the corresponding pleated surface and extending over product regions
(using a metric product structure), we get a homeomorphism between the model
and E . Further, since the Teichmuller distance between Sh.i/ and Sh.i C 1/ is
uniformly bounded above, the metric product is uniformly bi-Lipschitz to the region
trapped between them in E . Pasting these homeomorphisms together and lifting to the
universal cover, we get the following lemma.

Lemma 3.9 If Eh is a simply degenerate end of a hyperbolic 3 manifold N h with
bounded geometry, then there is a sequence of equispaced pleated surfaces exiting Eh

and hence a sequence of truncated pleated surfaces exiting eE . Further, eE is quasi-
isometric to a ray of hyperbolic metric spaces satisfying the qi-embedded condition.

This lemma allows us to pass between E and its quasi-isometric model, the ray of
hyperbolic metric spaces satisfying the qi-embedded condition.

Z–cusps in N correspond to Z–cusps in the boundary components of @0M . But this
is not true for .Z CZ/–cusps. Recall that P0 (resp. P1 ) denotes the components
of P whose fundamental group is virtually Z (resp. .Z CZ/). Let N0 D .N [

.ZCZ/ cusps/. We shall now describe the universal cover fN0 as a tree of hyperbolic
metric spaces with possibly exceptional vertex. It is at this stage that we need to assume
that N h is adapted to a pared manifold .M;P / with incompressible boundary. Recall
that the incompressibility of the boundary @0M of a pared manifold does not require
that @M be incompressible, but only that the components of @0M D @M n P be
incompressible.

We give .M;P1/ a geometrically finite structure (with no extra parabolics as per
definition of a hyperbolic structure adapted to .M;P1/) and denote the convex core of
this geometrically finite manifold as M0 . Note that M0 has no Z–cusps corresponding
to P0 but continues to have .ZCZ/ cusps corresponding to P1 . Further, since all
Z–cusps have been excised in N0 , all the .ZCZ/–cusps in N0 are retained in M0 .

Let E.1/;E.2/; : : : ;E.k/ denote the simply degenerate ends of .N0 � cusps/. M0

is homeomorphic by a homeomorphism that is a quasi-isometry to (the closure of)
N0n

S
i E.i/. We identify M0 with its image under this map and denote M0\E.i/D

F.i/, where F.i/ is both an embedded surface in E.i/ cutting off the end, and
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an incompressible boundary component of the pared manifold .M0;P1/. Note that
F.i/ need not be a truncated pleated surface; but we have constructed eE as a ray of
hyperbolic metric spaces, and hence we only need eF.i/ to be quasi-isometric to � , a
Cayley graph of the fundamental group �1.S/.

Remark That there exists such a geometrically finite hyperbolic manifold homeo-
morphic to N is part of Thurston’s monster theorem. See McMullen [24; 25] for a
different proof of the fact. Also, the limit set of a geometrically finite manifold is
locally connected (Anderson–Maskit [2]). This shall be of use later.

Summary of notation We summarize here the notation introduced so far.
� .M;P / – pared manifold.
� P0 � P – components of P whose fundamental group is virtually Z .
� P1 � P – components of P whose fundamental group is virtually .ZCZ/.
� N h 2 H.M;P /. Since flaring ends of N h do not contribute anything to the

discussion, we identify N h with its convex core C.N h/.
� N D .N h� cusps/.
� N0 DN with .ZCZ/–cusps (corresponding to P1 ) adjoined.
� M0 – geometrically finite structure on .M;P1/.
� E.i/ for i D 1 : : : k denote the ends of N . (Alternately, E.i/ D .Eh.i/ �

cusps/).
� M0 is identified with its quasi-isometric image and so is thought of as a subset

of N0 .
� N0 DM0[

S
i E.i/.

� F.i/DM0\E.i/.

Lemma 3.10 fN0 is quasi-isometric to a tree (T) of hyperbolic metric spaces satisfying
the qi-embedded condition with possibly exceptional vertex ˛ corresponding to eM0 �fN0 .

Proof Note that eM0 �
fN0 is the universal cover of the convex core of a geometrically

finite manifold and hence is a hyperbolic metric space. Let eF.i/ � fN0 represent a
lift of F.i/ to fN0 . Then, eF.i/ , being quasi-isometric to the fundamental group of a
compact surface (with or without boundary) is a word-hyperbolic metric space. If eE.i/
is a lift of E.i/ containing eF.i/ then from Lemma 3.9, eE.i/ is a ray of hyperbolic
metric spaces satisfying the qi-embedded condition. Since there are only finitely many
ends Ei , we can thus regard X D fN0 as a tree (T ) of hyperbolic metric spaces such
that the following hold.
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� ˛ is the root of T . X˛ DeM0 is a hyperbolic metric space.

� T consists of a (finite or infinite) collection of rays emanating from ˛ .

� Each copy of eE.i/ in fN0 is quasi-isometric to a ray (Ti ) of hyperbolic metric
spaces satisfying the qi-embedded condition (Lemma 3.9).

� N0 DM0[
S

i E.i/.

� F.i/DM0\E.i/.

� As of now no restrictions are imposed on the inclusion of each eFi into eM0 .

These are precisely the defining conditions of a tree of hyperbolic metric spaces with
possibly exceptional vertex satisfying the qi-embedded condition.

Note T has a root vertex ˛ which is possibly exceptional. The rest of T consists of
a number of rays emanating from ˛ .

3.3 A topological property of pared manifolds

Before we enter into the construction of quasiconvex sets, we shall describe a basic
topological property of pared manifolds.

Lemma 3.11 Let .M;P / be a pared manifold with incompressible boundary. Then

� no annulus component of P is freely homotopic to a curve on a torus component
or on another annulus component of P ,

� if two curves (which are not non-trivial powers of any other curves) on @0M D

@M nP are freely homotopic to curves on the same torus component of P , then
they are in fact freely homotopic to the same curve on a torus component of P

and hence to each other.

Proof Statement 1 Let � be a boundary torus. If possible, let A be an annulus in
the boundary of M such that its core curve is freely homotopic to a curve � on �.
The complement of a small neighborhood of � in � is an annulus A1 . Connecting
the boundary curves of A1 to those of A by the free homotopy we get an immersed
annulus with boundary on the boundary of M , but not homotopic to @M . This proves
that the core curve of A cannot be homotopic to the core curve of an annular component
of P as this would contradict condition 3 of the definition of a pared manifold. If
two core curves of annuli components of P are homotopic, we get a new annulus
interpolating between these curves, again contradicting Condition 3 of the definition of
a pared manifold. This proves the first part of the lemma.
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Statement 2 Let M� denote the cover of M corresponding to �1.�/. Let �1 and
�2 be the curves homotopic to curves ˛1 and ˛2 on �. Let B denote the annulus
between �1 and ˛1 , then the intersection number between ˛1 and ˛2 in � is the same
as the intersection number between ˛2 and B in M� (see for instance [46] or [7]).
Since ˛2 , �2 are homotopic in M , this homotopy lifts to M� . Hence, the intersection
number between ˛2 and B in M� is the same as the intersection number between �2

and B in M� (by homotopy invariance of intersection numbers). If �1 and �2 are on
different components then this latter number is zero.

Else, they belong to the same component K of @0.M /. �1.K/ is either free non-
abelian or else K is a closed surface of genus greater than 1. Since the fundamental
group of K injects into that of M , and since elements represented by �1 , �2 commute,
therefore �1 and �2 must be powers of the same curve. But the hypothesis says that
the curves �1 and �2 are not powers of any other curves. Hence the two denote the
same curve.

In either case, �1 and �2 are freely homotopic to the same curve on � and hence to
each other.

4 Construction of qi-embedded sets

From Lemma 3.10 we have that fN0 is quasi-isometric to a tree T of hyperbolic
metric spaces satisfying the qi-embedded condition with possibly exceptional vertex ˛
corresponding to eM0 �

fN0 . In fact T has a root vertex ˛ and consists of a number
of distinct rays emanating from ˛ . Let X denote the tree of spaces, Xv denote vertex
space corresponding to vertex v , Xe denote edge space corresponding to edge e .

For convenience of exposition, we shall sometimes need to modify X , Xv , Xe by quasi-
isometric perturbations and regard them as graphs. Given a geodesically complete metric
space .Z; d/ of bounded geometry, choose a maximal disjoint collection fB1.z

0/g of
disjoint 1–balls. Then by maximality, for all z 2Z there exist z0 in the collection such
that d.z; z0/ < 2. Construct a graph Z1 with vertex set fz0g and edge set consisting
of distinct vertices za , zb such that d.za; zb/� 4. Then Z1 equipped with the path-
metric is quasi-isometric to .Z; d/ (see for instance [21]). Henceforth we shall move
back and forth between descriptions of spaces as Riemannian manifolds and as graphs,
assuming that there is a quasi-isometry between them. The quasi-isometry will usually
be suppressed.

Let v be a vertex of T . Let v�¤˛ be the penultimate vertex on the geodesic edge path
from ˛ to v . Let e� denote the directed edge from v� to v . Define a quasi-isometry
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�vW fe�.Xe��f0g/! fe�.Xe��f1g/ as follows. If p2fe�.Xe��f0g/�Xv� , choose
x 2Xe� such that p D fe�.x�f0g/ and define

�v.p/D fe�.x�f1g/:

Note that in the above definition, x is arbitrarily chosen from a set of bounded diameter.

Let � be a geodesic in Xv� , joining a; b 2 fe�.Xe��f0g/. ˆv.�/ will denote a
geodesic in Xv joining �v.a/ and �v.b/. For our purposes since all the edge and
vertex spaces on a ray, (apart from X˛ ) are identical, we might as well identify
fe�.Xe��f0g/�Xv� with Xv� itself. Similarly we may identify fe�.Xe��f1g/�Xv
with Xv itself. Thus, �v is regarded as a quasi-isometry from Xv� to Xv for v; v�¤˛ .
We define a corresponding map ˆv from geodesics in Xv� to geodesics in Xv by
taking a geodesic joining a; b 2 Xv� to one joining �v.a/; �v.b/ 2 Xv . From Lemma
3.9, there exist k; � > 0 such that for all v , �v is a .k; �/–quasi-isometry.

In Section 4.1, we shall construct a hyperbolic ladder-like set B� containing �. In
Section 4.2, we shall construct a retract …�W fN0 !B� . In Section 4.3, we shall prove
that …� is a retract, ie it fixes B� and does not stretch distances much. This will show
that B� is quasi-isometrically embedded in fN0 .

4.1 Construction of the hyperbolic ladder-like set B�

The quasi-isometrically embedded set B� that we intend to construct will contain
the images of a geodesic under such quasi-isometries. Suppose F.i/ cuts off the end
E.i/ and � � eF.i/ � eE.i/ . Then denote the union of the images of � under the
quasi-isometries taking it to the different vertex spaces as B.�/. That is to say, if
v0; v1; : : : denote the vertices of the ray exiting the end, then the union of �, ˆv1

.�/,
ˆv2
ıˆv1

.�/, ˆv3
ıˆv2

ıˆv1
.�/, etc is denoted by B.�/.

Recall that M0 denotes a convex geometrically finite hyperbolic manifold with hy-
perbolic structure adapted to the pared manifold .M;P1/, where P1 � P denotes
the set of .Z CZ/–cusps. Also eM0 the universal cover of M0 is identified withfN0 �

S
i E.i/. Mcc will denote M0 minus a neighborhood of the .ZCZ/–cusps.

Note that Mcc can be thought of as the Scott core of the manifold. Mgf will denote a
geometrically finite hyperbolic structure adapted to the pared manifold .M;P /. The
difference between Mgf and M0 is that while Mgf is adapted to the pared manifold
.M;P /, M0 is adapted to the pair .M;P1/. Thus Mgf has incompressible boundary
as a pared manifold, but the same may not be true of M0 . One may also think of Mgf

as M0 with Z–cusps (corresponding to P0 ) adjoined.
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Fix a set of neighborhoods of the cusps of M0 , which are sufficiently separated from
each other. Recall that Mcc denotes M0 minus these cusps. Then eMcc DeM0 n

S
H

where H denotes an equivariant system of horoballs corresponding to lifts of .ZCZ/–
cusps. Note that eMcc is quasi-isometric to the Cayley graph of �1.M / as the quotient
is compact [19; 20].

Let �h D Œa; b� be a hyperbolic geodesic in eMgf . Let ˇh be a hyperbolic geodesic in
eN h joining a; b . Here eMgf is identified with its image in eN h . We shall show that
if �h lies outside a large ball around a fixed reference point p 2 eMgf then so does

ˇh 2
eN h . Recall that F.i/ for i D 1; : : : ; k are components of @0M D @M �P . We

can identify each F.i/ with a boundary component of M0 so that the inclusion of
F.i/ into Mcc induces an injection at the level of the fundamental group. We identify
each F.i/ with the first truncated pleated surface exiting the end E.i/.

Summary of Notation:

� M0 – convex geometrically finite hyperbolic structure on .M;P1/.

� Mgf – convex geometrically finite hyperbolic structure adapted to the pared
manifold .M;P /.

� Mcc – M0 minus .ZCZ/–cusps.

� N h 2H.M;P / has bounded geometry and is geometrically tame.

� N – .N h� cusps/.

� N0 – N with .ZCZ/ cusps adjoined.

� Mgf is identified with its homeomorphic image in N h taking cusps to cusps.

� M0 is identified with its homeomorphic image in N 0 .

� Mcc is identified with its homeomorphic image in N .

Construction of B0.�/ Given �h we shall first construct an ambient quasigeodesic �
in eM0 . Since �h is a hyperbolic geodesic in eMgf there are unique entry and exit points
for each horoball that �h meets and hence unique Euclidean geodesics joining them on
the corresponding horosphere. Replacing the segments of �h lying inside Z–horoballs
by the corresponding Euclidean geodesics, we obtain an ambient quasigeodesic � in
eM0 by Theorem 2.7. See Figure 1.

Again, since � coincides with �h outside horoballs corresponding to Z–cusps, there
exist unique entry and exit points of � into horoballs corresponding to .Z CZ/–
cusps, and hence again, unique Euclidean geodesics joining them on the corresponding
horosphere. Replacing the segments of � lying inside .Z CZ/–horoballs by the
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Figure 1

corresponding Euclidean geodesics, we obtain an ambient quasigeodesic �cc in eMcc

by Theorem 2.7. Each of the Euclidean geodesics mentioned above along with the
hyperbolic geodesic joining its end-points (and lying entirely within the horoball)
bounds a totally geodesic disk. (See Figure 2).

Figure 2
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The union of � and all these totally geodesic disks is denoted by B0.�/. There exists
C1 > 0 such that each B0.�/ is C1 –quasiconvex in eM0 . (See for instance McMullen
[26, Section 8].)

B
aug
0
.�/ will denote �[H.�/, where H.�/�H denotes the collection of horoballs

in H that � meets. Again, from Theorem 2.7, B
aug
0
.�/ can be assumed to be C1 –

quasiconvex in eM0 .

Note We will be using fN0 rather than eN h for the construction of B� . Hence
eM0 rather than eMgf is the relevant space. Recall (Lemma 3.10) that fN0 is a tree
of hyperbolic metric spaces with possibly exceptional vertex corresponding to eM0

satisfying the qi-embedded property.

Construction of B1.�/ Technically, (though not conceptually) this step is the most
intricate one, and is the one new construction that is required to handle parabolics. The
values of the constants chosen here become clear only through hindsight. The reason
behind the choices made here will become clear only while constructing the projection
in the next subsection. As mentioned in Section 1.1, we have to be quite careful while
handling the different kinds of cusps that arise:

(1) Z–cusps,

(2) .ZCZ/ cusps, where no curve on any component of @0M is homotopic to a
curve on the boundary torus corresponding to the .ZCZ/ cusp,

(3) Z and .ZCZ/ cusps, where some curve(s) on component(s) of @0M is (are)
homotopic to a particular curve on the boundary torus corresponding to the
.ZCZ/ cusp or to some multiple of the core curve of a Z–cusp.

Next we need to consider the parts of � that can have substantial overlap with the endseE , that is to say those pieces of � that follow some eF.i/ for a considerable length.
There are geodesic segments on each eF.i/ parallel to these pieces. The union of all
these parallel geodesic segments along with B0.�/ will be denoted by B1.�/. Details
follow.

Lemma 4.1 Let X be a convex subset of Hn . Let Y;Z be closed convex subsets of X .
Let YıDNı.Y /, ZıDNı.Z/ be closed ı–neighborhoods of Y;Z respectively where
ı denotes the hyperbolicity constant of the ambient space (in this case a convex subset
of Hn ). Let … denote nearest point projection of X onto Y . Then dX .….Z/;Yı\Zı/

is bounded in terms of ı .
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Proof Case (a) .Yı/\.Zı/ ¤ ∅. Let z 2 Z . We want to show that there exists
D D D.ı/ > 0 independent of z such that dX .….z/; .Yı/\.Zı// < D . Let …0

denote nearest point retraction of X onto the convex set .Yı/\.Zı/ (which, being an
intersection of convex sets, is convex).

As usual, Œa; b� denotes a geodesic joining a; b .

Œz;….z/��Nı.Œz;…0.z/�[ Œ…0.z/;….z/�/:

But Œz;…0.z/��Zı and Œ…0.z/;….z/�� Yı . Hence,

Œz;….z/��Nı.Y[Z/:

� z 2Z �Zı .

� …0.z/ 2 Yı\Zı .

� ….z/ 2 Yı .

The geodesic Œz;….z/� has to cross into Yı at some point p 2 Yı\Zı . (Note that here
we are using the fact that Yı \Zı is closed.) But then d.….z/;p/� ı (else we would
be able to find another point q at a distance of less than ı from p in Y contradicting
the definition of ….z/.) This proves Case (a).

Case (b) Yı \Zı D ∅. Let z1; z2 2 Z and let yi D ….zi/ for i D 1; 2: Since
local quasi-geodesics are global quasi-geodesics [20; 19] in hyperbolic metric spaces,
there exists D > 0 such that if d.y1;y2/ � D , then Œz1;y1�[Œy1;y2�[Œy2; z2� is a
2ı–quasigeodesic. (To see this, first note that [36, Lemma 3.1] ensures that
Œz1;y1�[Œy1;y2�[Œy2; z2� is a C D C.2ı/–quasigeodesic.That C D 2ı comes from
applying ı–thinness to triangles .z1;y1;y2/ and .y1;y2; z2/ in succession.) In this
case, .Œz1;y1�[Œy1;y2�[Œy2; z2�/�N2ı Œz1; z2�. But Œz1; z2��Z as Z is convex. In
particular y1;y2 2N2ı.Z/. This contradicts the assumption that Yı\Zı D∅. Hence,
d.y1;y2/�D , proving the lemma.

The above lemma can be ‘quasi-fied’ as follows. (The scheme of proof being a
‘quasification’ of the above, we omit it.)

Lemma 4.2 Given ı;C > 0, there exists k > 0 such that the following holds. Let
X be a ı–hyperbolic metric space and Y;Z be C –quasiconvex subsets of X . Let
Yk ;Zk denote k –neighborhoods of Y;Z respectively. Let … denote a nearest point
projection of X onto Y . Then dX .….Z/; .Yk \Zk// is uniformly bounded. Hence
there exists k > 0 such that .….Z/ � .Yk \Zk// if the latter set is non-empty and
….Z/ has diameter bounded by k > 0 if Yk \Zk D∅.
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Let F be one of the F.i/. Either eF is quasiconvex in eM0 (when there are no
accidental parabolics) or there exist disjoint curves �i for i D 1; : : : ; l (by Lemma
3.11) homotopic to curves on components of P . Therefore �i correspond to parabolics.
Each �i lies at a bounded distance from some Euclidean geodesic �i on a torus or
annular component of P in Mcc . Each �i forms the boundary of a totally geodesic
Z cusp �i (possibly a totally geodesic subset of a Z CZ–cusp). Further, the two
curves �i and �i bound between themselves an annulus Ai . Let GDF [

S
i.Ai[�i/.

Then eG is quasiconvex in eM0 . Choose a constant C2 > 0 such that each such eG is
C2 –quasiconvex in eM0 . Recall that B0.�/ and B

aug
0
.�/ are C1 –quasiconvex.

We are now in a position to start constructing B1.�/ from B0.�/.

Choosing Y D B0.�/ and Z D eG.i/ (one lift of G.i/ is considered in turn, and
choosing k to be the maximum of the corresponding finite collection of k ), we
obtain a k > 0 from Lemma 4.2 above, so that .….Z/ � .Yk \Zk//. Let eF.i/ ,
i D 1; : : : ; s denote the different lifts of the Fi that intersect a .3kC4ı/ neighborhood
of B0.�/. Since � is a finite segment, the number s is finite. Choose pi ; qi 2

eF.i/ \N3kC4ı.B0.�// such that d.pi ; qi/ is maximal.

Fix D > 0. Choose the copies of eF.i/ for which d.pi ; qi/�D .

Note The number D picks up significance in the p–incompressible case. We shall
come back to this in Section 5.2, when we simplify our problem under this extra
assumption.

Redefining s if necessary, we let eF.1/; : : : ; eF.s/ denote this collection. Let �i denote
the geodesic in eF.i/ joining pi and qi . Let E denote the corresponding collection of
eE.i/ . Let E 0 denote the collection of the remaining eE.i/ . We would like to define

B1.�/D B0.�/[
[
�i :

The choice of E , E 0 is dependent on k . We want each eE to be such that

� either eF is quasiconvex in eM0 (case where no curve on F is parabolic in eM0 ),

� or, eG (which is always quasiconvex in eM0 ) intersects at most one H 2H.˘/.

Lemma 4.3 There exists k 0 > 0 such that if eG intersects more than one horoball in
H.�/, then Nk0.B0.�//\ eF has non-zero diameter.
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Proof Suppose eG intersects more than one horoball H 2 H.˘/, say H1 , H2 . Let
p 2H1\

eG and q 2H2\
eG . Let Œp; q�0 denote the geodesic in eG joining p; q , and

let Œp; q� denote the geodesic in eM0 joining p; q . Œp; q�0 lies in a C1 –neighborhood
of Œp; q� as eG is C1 –quasiconvex. Since horoballs are sufficiently separated in botheG and eM0 , therefore some part of Œp; q�0 lies on eF . Hence NC1

.Œp; q�/\ eF ¤ ∅
and has non-zero diameter.

Next, there is a subsegment of � starting in H1 and ending in H2 . Let �0 be the part
of this subsegment lying outside the interior of the horoballs H1 and H2 . Then, off
horoballs, �0 and Œp; q� track each other (by Theorem 2.8), ie there exists C2 > 0 such
that Œp; q��NC2

.�[H.�// and the subsegment of Œp; q� lying outside the horoballs
H1 and H2 is contained in a C2 –neighborhood of B0.�/. Choosing k 0 D C1CC2 ,
we are through.

The next corollary follows.

Corollary 4.4 Given k > 0, there exists k 0 > 0 such that if the 2k –neighborhood ofeG intersects more than one horoball in H.�/, then the diameter of Nk0.B0.�//\ eF is
non-zero.

Here the term 2k occurs so as to recall the k of Lemma 4.2. Choose KD 3kC4ıCk 0 ,
where k is as in Lemma 4.2 and k 0 is as in Corollary 4.4 above.

We now return to our construction of B1.�/, or more specifically the �i that we had
mentioned after Lemma 4.2.

Let eF.i/ , i D 1; : : : ; s (redefining s if necessary) denote the different lifts of the F.i/

that intersect a K neighborhood of B0.�/. Since � is a finite segment, the number s

is finite. Choose pi ; qi 2
eF.i/ \N3kC4ı.B0.�// such that d.pi ; qi/ is maximal.

Recall that pi ; qi 2
eF.i/ \N3kC4ı.B0.�// for some copies of eF.i/ . Choose the

copies of eF.i/ for which d.pi ; qi/ > 0. Redefining s once more, if necessary, we let
eF.1/; : : : ; eF.s/ denote this collection. Let �i denote the geodesic in eF.i/ joining

pi and qi . Let E denote the corresponding collection of eE.i/ . Let E 0 denote the
collection of the remaining eE.i/ . We are finally in a position to define

B1.�/D B0.�/[
[
�i :

See Figure 3 below. � lies on eM0 . ‘Parallel’ segments �1; : : : ; �k are constructed
lying on eF.1/; : : : ;AF.k/ .
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�1

�2 �1

�fM0

F.i/

eF.1/
eF.2/

Figure 3

Construction of B.�/ Recall from Lemma 3.9 that each eE is quasi-isometric to a
ray Œ0;1/ of hyperbolic metric spaces with integer points corresponding to vertices
and Œn�1; n� (for n2N ) corresponding to edges. Fix a particular eF cutting off the endeE and a geodesic segment �� eF . Let Xi denote the vertex spaces for i D 0; 1; : : : .
Let �i denote the quasi-isometry from Xi�1 to Xi and ˆi denote the corresponding
map from geodesic segments in Xi�1 to those in Xi . Define

�i
Dˆi ı � � � ıˆ1.�/ and B.�/D

[
�i :

See Figure 4 below.

�2

�1

�D �0

Figure 4: Hyperbolic ladder-like Set

Definition of B� Finally define

B� D B1.�/[
[

iD1:::s

B.�i/:
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4.2 Definition of …�

Recall E D feE.1/; : : : ; eE.s/g and E 0 D fCE.sC 1/; CE.sC 2/; : : :g. We next want to
show that B� is quasi-isometrically embedded. To prove this, we shall construct a
retraction …� . Let Xij denote the vertex spaces in eE.i/ 2 E . Below, we shall have
need to replace eE.i/ by the union of vertex spaces

S
j Xij (fixing i and letting j

vary from 0 to 1) with the understanding that the latter has the metric induced from
eE.i/ . The difference between eE.i/ and

S
j Xij is just that the edge spaces of eE.i/

are not explicitly present in the latter.

Let �ij denote the quasi-isometry from Xi;j�1 to Xij and let ˆij denote the induced
map from geodesics in Xi;j�1 to geodesics in Xij . Let �ij �Xij denote the image
of �i under the composition of the maps ˆik as k runs from 1 to j .

� Let …ij denote a nearest point retraction onto �ij�Xij . On eE.i/ DS
j Xij ,

…i is defined by

…i.x/D…ij .x/ for x 2Xij :

� On eM0 DX˛ (recall that ˛ corresponds to the possibly exceptional vertex of
the tree of spaces) let …0 denote a nearest point retraction onto B0.�/.

On the remaining set E 0 , …� needs to be defined with some caution. Suppose eE 2 E 0 .
Observe first that no point on eF � eE lies at a distance less than K from B0.�/, where
K is as chosen after Corollary 4.4. Also let k be as in Lemma 4.2.

Case (a) N2k.eG / does not intersect H.�/. In this case, choose y 2 eF arbitrarily
and define

…E.x/D…0.y/ for all x 2 eE :
For eE D eE.i/ , denote …E by …i .

Case (b) N2k.eG / intersects precisely one H 2 H.˘/. In this case, there exists a
unique lift e� of a curve � on F , (parabolic in M0 ) lying on eF at a bounded distance
from H.

As in the construction of B.�/ for �� eF � eE , construct B.e� /DS
j e�j �

S
j
eS.j /

where S.j / denotes the j th member of a sequence of truncated pleated surfaces exiting
E and e�j D ĵ .e�j�1/ ( ĵ is the map on geodesics induced by the quasi-isometry
�j from CS.j � 1/ to eS.j / ). Note that this construction works just as well for infinite
geodesics. On eS.j / , define …�j to be a nearest point projection onto e�j . Define

…0
� .x/D…�j .x/ for x 2 eS.j /:
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Next, let …� denote nearest point projection of eE onto e� . Define

…E.x/D…0 ı…� .x/ ı…
0
� .x/ for all x 2 eE :

For eE D eE.i/ , denote …E by …i .

The reason for factoring the projection …� .x/ through …0
� .x/ is that on eF.i/ we

want …i to coincide with …� . (Else nearest point projections will have to be taken
in the eE.i/ metric and eF.i/ is not quasiconvex in this metric, so that nearest point
projections might well differ substantially in the two metrics.)

Non-Definition We would like to define

…�.x/D…i.x/;x 2 eE.i/ 2 E
D…0.x/;x 2X˛

D…i.x/;x 2 eE.i/ 2 E 0:

Caveat Our non-definition above is not yet a real definition as …� has been putatively
defined twice on each eF.i/ , once regarding eF.i/ as a subset of eM0 and again,
regarding it as a subset of eE.i/ . We will show that there is at most a bounded amount
of discrepancy between the two definitions and so any choice will work. So we make
the following definition.

Definition

…�.x/D…i.x/;x 2 eE.i/�Xi0; eE.i/ 2 E
D…0.x/;x 2X˛

D…i.x/;x 2 eE.i/ 2 E 0:

4.3 …� is a retract

We will show in this subsection that there exists C > 0 such that for all x;y 2X DfN0 ; d.…�.x/;…�.y// � Cd.x;y/ There are three parts in the definition of …� as
described above. We discuss the three cases separately.

Since we are dealing with graphs, it suffices to prove the result for d.x;y/D 1. We
need to check the following.

(1) x 2 eF.i/ D eE.i/\eM0 for some eE.i/ 2 E . We want to show that

d.…i.x/;…0.x//� C:
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(2) x;y 2 eE.i/ for some eE.i/ 2 E and d.x;y/D 1. We want to show that

d.…�.x/;…�.y//� C:

(3) x;y 2eM0 DX˛ and d.x;y/D 1. We want to show that

d.…0.x/;…0.y//� C:

(4) x 2 eF.i/ D eE.i/\eM0 for some eE.i/ 2 E 0 . We want to show that

d.…i.x/;…0.x//� C:

(5) x;y 2 eF.i/ D eE.i/\eM0 for some eE.i/ 2 E 0 and d.x;y/D 1. We want to
show that

d.…i.x/;…i.y//� C:

In the above check-list, the first and fourth steps ensure that there is approximate
agreement on eFi for the two possible definitions of …� occurring in the non-definition
given earlier. This ensures smooth passage from the non-definition to the definition.
The rest of the steps are required to prove the three cases in the definition of …� .

Step 1: Bounded discrepancy on eF.i/ when eE.i/ 2 E The next lemma follows
easily from the fact that local quasigeodesics in a hyperbolic metric space are quasi-
geodesics [19] (See also [36, Lemma 3.1]). If x;y are points in a hyperbolic metric
space, Œx;y� will denote a geodesic joining them.

Lemma 4.5 Given ı;C1 > 0, there exist D;C0 such that if a; b; c; d are vertices
of a ı–hyperbolic metric space .Z; d/, and W � Z is a C1 –quasiconvex set, with
d.a;W / D d.a; b/, d.d;W / D d.c; d/ and d.b; c/ � D then Œa; b�[W [ Œc; d � is
C0 –quasiconvex. Also, if Œb; c�W denotes the shortest path in W joining b; c , then
Œa; b�[Œb; c�W [Œc; d � is a C0 –quasigeodesic. Further, if Œb; c�amb denotes an ambient
quasigeodesic in .Z �W / (adding on b; c as the initial and terminal points), then
Œa; b�[Œb; c�amb[Œc; d � is an ambient C0 –quasigeodesic in .Z �W /.

The next couple of lemmas are taken from [36], where they are stated in the general
framework of trees of hyperbolic metric spaces satisfying the qi-embedded condition.
Xv;Xe; fv denote respectively vertex space, edge space and qi-embedding of edge
space in vertex space.

Lemma 4.6 [36, Lemma 3.6] Let X be a tree T of hyperbolic metric spaces and v
be a vertex of T . Let C > 0. Let �1 D Œa; b��Xv be a geodesic and let e be an edge
of T incident on v . Let p; q 2NC .�1/\fv.Xe/ be such that dv.p; q/ is maximal. Let
�2 be a geodesic in Xv joining p; q . If r 2 NC .�1/\fv.Xe/, then dv.r; �2/ �D1

for some constant D1 depending only on C; ı .
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Proof Let � denote a nearest point projection onto �1 . Since �2 and Œ�.p/; �.q/��
�1 are geodesics whose end-points lie at distance at most C apart, there exists C 0

such that Œ�.p/; �.q/��NC 0.�2/. If �.r/ 2 Œ�.p/; �.q/�, then

d.r; �2/� C CC 0:

If �.r/ … Œ�.p/; �.q/�, then without loss of generality, assume �.r/ 2 Œa; �.p/� �
Œa; �.q/�. Then

d.p; q/ � d.r; q/

� d.�.r/; �.q//� 2C

D d.�.r/; �.p//C d.�.p/; �.q//� 2C

� d.�.r/; �.p//C d.p; q/� 4C

) d.�.r/; �.p// � 4C

) d.r;p/ � 6C

) d.r; �2/ � 6C:

Choosing D1 DmaxfC CC 0; 6C g, we are through.

Lemma 4.7 [36, Lemma 3.7] Let �1 , �2 be as in Lemma 4.6 above. Let �i denote
nearest point projections onto �i .iD1; 2/. If p2fv.Xe/, then d.�1.p/; �2.p//�C6

for some constant C6 depending on ı alone.

Proof If d.�1.p/; �1��2.p//�D , then d.�1.p/; �2.p//� C CD .

Else, suppose d.�1.p/; �1��2.p// > D . Then Œp; �1.p/� [ Œ�1.p/; �1��2.p/� [

Œ�1��2.p/; �2.p/� is a (uniform) quasigeodesic by Lemma 4.5 . But p; �2.p/2fv.Xe/

which is quasiconvex. Hence there exists (uniform) C1 and r 2 fv.Xe/ such that
d.r; �1.p//� C1 .

Then, by Lemma 4.6 above, there exists s 2 �2 such that d.s; �1.p//� C1CD1 .

Again (see for instance [36, proof of Lemma 3.2]), .p; s/�2.p/
� 2ı . Hence,

.p; �1.p//�2.p/
� 2ıCC1CD1:

Similarly, .p; �1��2.p//�1.p/ � 2ı . Hence,

.p; �2.p//�1.p/
� 2ıCC:

Therefore, using the definition of Gromov inner product,

d.�1.p/; �2.p//D .p; �1.p//�2.p/C .p; �2.p//�1.p/
� 4ıC 2C CD1:
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Choosing C6 D 4ıC 2C CD1 we are through.

Though we have stated and proved Lemma 4.7 and Lemma 4.6 for geodesic segments,
the proof goes through for quasiconvex sets. What Lemma 4.7 effectively says is the
following.

We start with a geodesic �1 in a hyperbolic metric space X DXv . W D fv.Xe/�Xv
is a C1 –quasiconvex set. We consider the set of points

P D fp 2W W d.p:�1/� C2g:

Choose x;y 2 P such that d.x;y/ is maximal. Let �2 be the geodesic joining x;y .
Then nearest-point retractions onto �1; �2 almost agree for points in W .

This becomes easier to grasp if all sets in sight are convex subsets of Hn . We start
with X D Hn . W � X is convex. �1 is replaced by another convex set V � X .
We consider the intersection of neighborhoods N�.V /\N�.W / D V1 ¤ ∅. Then
nearest point retractions onto V1 and V almost agree for p 2W . This is the context
of Lemma 4.7 in general. We quasify this below.

Corollary 4.8 Given ı;C;C1 > 0, there exists D > 0 such that if

(1) A�Y , B�Z , Y �Z are inclusions of C1 –quasiconvex sets into ı hyperbolic
metric spaces,

(2) A and .NC .B//\Y / are within a Hausdorff distance of D of each other

(3) …A denote a nearest point projection of Y onto A, and …B denote a nearest
point projection of Z onto B ,

then for all y 2 Y , d.…A.y/;…B.y//�D .

There exist (possibly) curves �ij on F.i/ homotopic to some curves on components �j

of P in .M;P /. Then �ij is one boundary component of a (possibly immersed) annulus
Aij whose other boundary component lies on �j . Let J.i/D F.i/[

S
Aij �M0 .

Lift J.i/ to the universal cover eM0 to get copies of eJ.i/ .

We will show that on eF.i/ , the two putative definitions of …� almost agree. Suppose
�i D Œai ; bi �F � eF.i/ � eG.i/ is a geodesic in the path-metric on eF.i/ . As in the
construction of B0.�/, we can construct a ‘hyperbolic’ geodesic �h

i joining ai ; bi in
eG.i/ . Such a geodesic has unique entry and exit points for every horodisk and hence

unique ‘Euclidean’ geodesics joining them on the bounding horocycles. Replacing the
hyperbolic segments by Euclidean segments, we obtain an ambient quasigeodesic �a

i
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(by Theorem 2.7) in eJ.i/ . For x 2 eF.i/ , let …i1 denote a nearest point retraction
onto �i in the path metric on eF.i/ . Also, let …i2 denote a nearest point retraction
onto �a

i �
eJ.i/ in the path metric on eJ.i/ . Then from Lemma 4.6 and Lemma 4.7

above, we get the following lemma.

Lemma 4.9 There exists C > 0 such that for all i and x 2 eF.i/ � eJ.i/ ,

d.…i1.x/;…i2.x//� C:

Again, as in the construction of B0.�/, each of the Euclidean geodesic segments in �a
i

along with the hyperbolic geodesic segments of �h
i joining its end-points (and lying

entirely within the corresponding horodisk) bounds a totally geodesic disk. The union
of �a

i and all these totally geodesic disks is denoted by B0.�i/. There exists C1 > 0

such that each B0.�i/ is C1 –quasiconvex in fGi and hence in eM0 . (See for instance
McMullen [26, Section 8].)

Let …i3 denote a nearest point projection onto B0.�i/, in eG.i/ .

Lemma 4.10 There exists C > 0 such that for all i and x 2 eF.i/ � eJ.i/ ,

d.…i2.x/;…i3.x//� C:

Proof For the purposes of this lemma, Œa; b� will denote a geodesic in eG.i/ . First,
Œx;…i2.x/� [ �

a
i is a tripod in eJ.i/ and hence it is uniformly quasiconvex from

Lemma 4.5. Again, by the same lemma, Œx;…i3.x/�[B0.�i/ is quasiconvex. Further,
…i3.x/ 2 �

a
i (since �a

i forms the boundary of B0.�i/ in eG.i/ and separates it from
the eJ.i/ ). Therefore, Œx;…i2.x/�[Œ…i2.x/; ai � and (from Theorem 2.7) Œx;…i3.x/�[

Œ…i3.x/; ai � are both ambient quasigeodesics in the hyperbolic metric space eG.i/ .
In the same way, Œx;…i2.x/�[ Œ…i2.x/; bi � and Œx;…i3.x/�[ Œ…i3.x/; bi � are both
ambient quasigeodesics in the hyperbolic metric space eG.i/ .

Hence, …i3.x/ must lie in a bounded neighborhood of Œx;…i2.x/�[ Œ…i2.x/; ai �, as
also Œx;…i2.x/�[ Œ…i2.x/; bi �, as also �a

i . Hence, it must lie close to the intersection
of these three sets, which is …i2.x/. This proves the lemma.

Recall that …0 denotes nearest point projection onto B0.�/. Now, B0.�i/ lies in a
bounded neighborhood of B0.�/, since �i lies in a bounded neighborhood of �. Now
from Corollary 4.8, choosing Y D eG.i/ , Z DeM0 , A D B0.�i/, B D B0.�/, we
obtain the following corollary.
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Corollary 4.11 There exists C > 0 such that for all x 2 eF.i/ � eJ.i/ � eG.i/ �eM0 ,
d.…0.x/;…i3.x//� C .

Combining Lemma 4.9, Lemma 4.10 and Corollary 4.11, we get the following lemma.

Lemma 4.12 Recall that for x 2 eF.i/ , …i denotes nearest point retraction onto �i

and …0 denotes nearest point retraction onto B0.�/. Then d.…i.x/;…˛.x/� C4 for
some C4 � 0.

Step 2: Retract on eE.i/ for eE.i/ 2 E A number of lemmas will be necessary.
These are lifted directly from [36]. We state them here without proof.

The following lemma says nearest point projections in a ı–hyperbolic metric space do
not increase distances much.

Lemma 4.13 [36, Lemma 3.2] Let .Y; d/ be a ı–hyperbolic metric space and let
�� Y be a C –quasiconvex subset, eg a geodesic segment. Let � W Y ! � map y 2 Y

to a point on � nearest to y . Then d.�.x/; �.y//�C3d.x;y/ for all x;y 2 Y where
C3 depends only on ı;C .

The following lemma says that nearest point projections and quasi- isometries in
hyperbolic metric spaces ‘almost commute’.

Lemma 4.14 [36, Lemma 3.5] Suppose .Y; d/ is ı–hyperbolic. Let �1 be some
geodesic segment in Y joining a; b and let p be any vertex of Y . Also let q be a vertex
on �1 such that d.p; q/� d.p;x/ for any x 2 �1 . Let � be a .K; �/–quasi-isometry
from Y to itself. Let �2 be a geodesic segment in Y joining �.a/ to �.b/ . Let r be
a point on �2 such that d.�.p/; r/ � d.�.p/;x/ for x 2 �2 . Then d.r; �.q// � C4

for some constant C4 depending only on K; � and ı .

Theorem 4.15 There exists C > 0, such that if x;y 2 eE.i/ for some eE.i/ 2 E , and
d.x;y/D 1, then d.…i.x/;…i.y//� C .

Proof Case (a) x;y 2 Xij for some i D 1; : : : ; s , j D 0; 1; : : :. This follows
directly from Lemma 4.13.

Case (b) x 2 Xi;j�1 and y 2 Xij for some i D 1; : : : ; s , j D 0; 1; : : :. Recall that
�ik D B.�i/ \ Xik for all i; k . Then …i.z/ D …ik.x/ for z 2 Xik . Also, from
Lemma 3.9, there exist K; � > 0 such that for all i; k , �ik is a .K; �/–quasi-isometry.
Hence, �ij .�i;j�1/ is a .K; �/–quasigeodesic lying in a bounded K0–neighborhood
of ˆij .�i;j�1/D �ij where K0 depends only on K; �; ı .
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Now �ij ı…i;j�1.x/ lies on this quasi-geodesic. By Lemma 4.14, there exists C0 > 0

such that d.�ij ı…i;j�1.x/;…ij ı�i;j�1.x//�C0 . Also d.x;y/D 1D d.x; �ij .x//.
Hence, d.�ij .x/;y/� 2 and �ij .x/;y 2Xij . Therefore, by Lemma 4.13, there exists
C1 such that d.…ij ı�ij .x/;…ij .y//� 2C1 . Hence

d.…i.x/;…i.y//D d.…i;j�1.x/;…ij .y//

� d.…i;j�1.x/; �ij ı…i;j�1.x//C

d.�ij ı…i;j�1.x/;…ij ı�i;j�1.x//C d.…ij ı�ij .x/;…ij .y//

� 1CC0C 2C1:

Choosing C D .1CC0C 2C1/, we are through.

Step 3 Retract on eM0 DX˛ . This case follows directly from Lemma 4.13. We state
a special case required for our specific purposes.

Lemma 4.16 There exists C > 0 such that if x;y 2eM0 DX˛ and d.x;y/D 1, then
d.…0.x/;…0.y//� C .

Step 4 Bounded discrepancy on eF.i/ when eE.i/ 2 E 0 . We want to show that for
x;y 2 eF.i/ � eE.i/ 2 E 0 , d.…0.x/;…i.x// is uniformly bounded.

Recall from the definition of eG.i/ , two cases may arise.

Case (a) N2k. eG.i// does not intersect H.�/. In this case, recall that y 2 eF.i/ is
chosen arbitrarily, and we had defined

…i.x/D…0.y/ for all x 2 eE :
Next, by the choice of K D 3kC 4ıC k 0 in the definition of E 0 , and Corollary 4.4,
we have that the diameter of the set …0. eG.i// and hence …0. eF.i// is bounded by k

(from Lemma 4.2).

Hence, d.…0.x/;…i.x//D d.…0.x/;…0.y//� k .

Case (b) N2k. eG.i// intersects precisely one H 2H.˘/. In this case, there exists a
unique lift e� of a curve � on F.i/, (parabolic in M0 ) lying on eF.i/ at a bounded
distance from H. Recall that …� denotes nearest point projection of eE.i/ onto e�
and …0

� .x/ denotes nearest point projection onto B.e� /. On eF.i/ , …0
� coincides with

…� ı…
0
� . Also recall that …i.x/D…0 ı…� ı…

0
� .x/ for all x 2 eE.i/ .

On eF.i/ , …0
� coincides with …� ı…0

� . Thus, we want to show that d.…0.x/;…0 ı

…0
� .x// is uniformly bounded on eF.i/ .
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Here, Nk. eG.i// \Nk.B0.�// lies in some horoball H 2 H.˘/ while Nk. eF.i// \
Nk.B0.�//D∅ (as per definition of E 0 ). By Lemma 4.2 …0. eF.i//�Nk.B.A[ �/ �
Nk.H/, where � �G.i/ is the cusp whose boundary � bounds the annulus A along
with � in M0 . (Recall from the discussion following Lemma 4.2 that each � forms the
boundary of a totally geodesic 2 dimensional subset � of a Z cusp or a ZCZ–cusp
of M0 .) Also, B.A[ �/ D fA� (say) is C3 –quasiconvex for some C3 .

Let …� denote nearest point projection of eG.i/ onto fA� in the metric on eM0 . Also,
let …aug

0
denote nearest point projection onto B

aug
0
.�/. Then by Corollary 4.8 there

exists C4 > 0 such that

d.…�.x/;…
aug
0
.x//� C4 for all x 2 eG.i/:

Next, B0.�/�B
aug
0
.�/�eM0 and both B0.�/ and B

aug
0
.�/ are C1 –quasiconvex. Both

…0 and …0 ı…
aug
0

are large-scale Lipschitz retracts onto B0.�/, the only difference
being that the latter factors through a large-scale Lipschitz retract …aug

0
onto B

aug
0
.�/.

Hence the two maps must send x to close by points, ie there exists C5 > 0 such that

d.…0 ı…
aug
0
.x/;…0.x//� C5 for all x 2eM0 :

Using the above two inequalities along with Lemma 4.13 we get a C6 > 0 such that

d.…0 ı…�.x/;…0.x//� C6 for all x 2eM0 :

Finally, we observe that for x 2 eF.i/ , since …0
� denotes nearest point projection ontoe� , then d.…�.x/;…

0
� .x// is bounded. This is because e� separates eG.i/ into eF.i/

and fA� . Hence, the geodesic joining x to …�.x/ in eG.i/ must cut e� at some point
which therefore must coincide with …0

� .x/, provided we take nearest point projections
in eG.i/ . Since eG.i/ is quasiconvex in eM0 , therefore by Corollary 4.8, we might as
well take projections in the eM0 metric and we have a C7 > 0 such that

d.…�.x/;…
0
� .x//� C7 for all x 2 eF.i/:

Combining the above two inequalities and using Lemma 4.13 for …0 , we obtain finally
the next lemma.

Lemma 4.17 There exists C > 0 such that

d.…0 ı…
0
� .x/;…0.x//� C for all x 2 eF.i/:

Since on such a eF.i/ , …0 ı…
0
� is denoted by …i , we have d.…i.x/;…0.x//�C for

all x 2 eF.i/ .
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The three results Lemma 4.12, Case (a) of Step 4 above and Lemma 4.17 show that
…0 and …i almost agree, ie have at most a bounded amount of discrepancy for all
eF.i/ . We summarize these three in the following useful proposition.

Proposition 4.18 There exists C > 0 such that for all eF.i/ and all x 2 eF.i/ ,

d.…i.x/;…0.x//� C:

Step 5 Retract on eE.i/ for eE.i/ 2 E 0 . …i.x/D…0 ı…� ı…
0
� .x/ for all x 2 eE.i/ .

By the proof of Theorem 4.15, there exists C1 > 0 such that for all x;y 2 eE.i/ 2 E 0
with d.x;y/D 1, we have

d.…0
� .x/;…

0
� .y//� C1:

(Though Theorem 4.15 is stated for eE.i/ 2 E , all that we need for the above assertion
is the intrinsic metric on eE.i/ and here the proof is the same.)

Also, by Lemma 4.13, there exists C2 > 0 such that for x;y 2eM0 ,

d.…0.x/;…0.y//� C2d.x;y/:

Hence, it would be enough to prove that there exists C3 > 0 such that

d.…� .x/;…� .y//� C3d.x;y/

for all x;y 2 eE.i/ .

For this, it would suffice to show that e� is quasiconvex in eE.i/ . Recall that there exists
a simply degenerate end Eh , one of whose lifts to the universal cover is AEh.i/ . AEh.i/

with cusps removed is eE.i/ . We shall show that e� is quasiconvex in AEh.i/ . We give
Eh a convex hyperbolic structure by taking the cover of N h corresponding to �1.E

h/

and looking at its convex core. This makes the universal cover of Eh (equipped with
such a convex hyperbolic structure) quasi-isometric to AEh.i/ . For the purposes of this
step, therefore, we assume that AEh.i/ is the universal cover of a simply degenerate
hyperbolic manifold (so as to avoid the extra expository complication of mapping via
quasi-isometries). Now, � � Eh is a closed curve, and is therefore homotopic by a
bounded homotopy to a closed geodesic � 0 . Then any lift e� 0 is a hyperbolic geodesic
in the convex hyperbolic manifold AEh.i/ . Since e� lies at a bounded distance frome� 0 , we conclude that e� is quasiconvex in AEh.i/ and hence there exists a nearest point
projection of AEh.i/ onto e� which stretches distances by a bounded factor by Lemma
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4.13. Restricting this map to eE.i/ , the retraction property persists. Since the path
metric on eE.i/ dominates the metric induced from AEh.i/ , and since the metric on e�
remains undisturbed on removing cusps, we find (reverting to our description of spaces
as graphs) that there exists C3 > 0 such that

d.…� .x/;…� .y//� C3d.x;y/

for all x;y 2 eE.i/ .

Combining the three above equations, we arrive at the following proposition.

Proposition 4.19 There exists C > 0, such that if x;y 2 eE.i/ for some eE.i/ 2 E 0 ,
and d.x;y/D 1, then d.…i.x/;…i.y//� C .

We next prove that …� is a retract. We combine the five steps above to conclude that
…� is a retract. Recall the definition of …� .

Definition

…�.x/D…i.x/;x 2 eE.i/�Xi0; eE.i/ 2 E
D…0.x/;x 2X˛

D…i.x/;x 2 eE.i/�Xi0; eE.i/ 2 E 0:

Also recall that fN0 is quasi-isometric to a graph X which can be regarded as a tree of
hyperbolic metric spaces with possibly exceptional vertex ˛ satisfying the qi-embedded
condition. (See Lemma 3.9, Lemma 3.10 and the discussion preceding Lemma 3.9
where this is elaborated.)

We are now in a position to prove our main technical theorem.

Theorem 4.20 There exists C0 � 0 such that d.…�.x/;…�.y// � C0d.x;y/ for
x;y vertices of X .

Proof It suffices to prove the theorem when d.x;y/D 1.

(1) For x;y 2 eE.i/ �eM0 , eE.i/ 2 E , this follows from Theorem 4.15 in Step 2
above.

(2) For x;y 2X˛ DeM0 , this follows from Lemma 4.16 in Step 3 above.

(3) For x;y 2 eE.i/�eM0 , eE.i/ 2 E 0 , this follows from Proposition 4.19 in Step 5
above.

(4) x 2X˛;y 2Xi1 �
eE.i/ and d.x;y/D 1 for eE.i/ 2 E [ E 0 .
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Here,

d.…�.x/;…�.y//D d.…0.x/;…i.y//

� d.…0.x/;…i.x//C d.…i.x/;…i.y//:

Choose constants C1 , C2 and C3 from Proposition 4.18, Theorem 4.15 and Proposition
4.19. Let C D C1Cmax.C2;C3/. Then we get

d.…�.x/;…�.y//� C:

This proves the result.

5 Proof of main theorem

Recall that we started off with a geodesic �h on eMgf outside an n–ball around a
fixed reference point p , joining a; b . Replacing the maximal segments of �h lying
inside Z–horoballs by ‘Euclidean’ geodesics lying on the corresponding horosphere,
we obtained an ambient quasigeodesic � in eM0 joining a; b . � agrees with �h off
Z–horoballs. Let ˇh be the geodesic in eN h joining a; b . Performing the same
operation on ˇh for Z–horoballs in eN h , we obtain an ambient geodesic ˇ0

amb in fN0

joining the end-points of �. We have proved the existence of a retraction …� in the
preceding section (Theorem 4.20). Project ˇ0

amb onto B� , using …� to get another
ambient quasigeodesic ˇamb . Thus, ˇamb D…�.ˇ

0
amb/.

Our starting point for this section is therefore the ambient quasigeodesic ˇamb � B� �fN0 .

5.1 Quasigeodesic rays

The purpose of this subsection is to construct for any eE.i/ 2 E and x 2 B.�i/ D

B�\ eE.i/ a quasi-geodesic ray rx �B� passing through x . rx can be regarded both
as a function rx W f0g[N!B.�i/ or as a subset of B.�i/ (the image of the function
rx ). If x lies away from cusps, so will rx .

Fix eE 2 E . Recall that

� eE \eM0 D
eF ,

� eF \B� D �D �0 ,

� eE DS
i
eS.i/ ,

� B.�/D[i�i ,
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� �i Dˆi.�i�1/� eS.i/ .

Also note that ˆi is the map on geodesics induced by the quasi-isometry �i W
CS.i � 1/!

eS.i/ . The quasi-isometry �i is induced by a cusp-preserving homeomorphism of
truncated pleated surfaces. So we can assume that �i restricted to each horocycle
boundary component of CS.i � 1/ is an orientation-preserving isometry. Since each
such horocycle may naturally be identified with R, we might as well assume that
the map on horocycles induced by �i is the identity map. Now, extend �i to a

map �h
i W

CSh.i � 1/! ASh.i/ by demanding that �h
i restricted to each horodisk is an

isometry. Note that �h
i is thus an equivariant quasi-isometry from H2 to itself, taking

horodisks isometrically to horodisks. Next, let �h
i be the hyperbolic geodesic joining

the end-points of �i . As usual, let �a
i denote the ambient quasigeodesic obtained by

replacing hyperbolic segments in horodisks by ‘Euclidean’ segments on the boundary
horocycles. Then �a

i lies in a uniform (independent of i ) C0 –neighborhood of �i as
they are both ambient quasigeodesics in eS.i/ . Let

Ba.�/D[i�
a
i :

Then Ba.�/ lies in a C0 –neighborhood of B.�/. Let �c
i denote the union of the

segments of �a
i which lie along horocycles and let �b

i D �
a
i ��

c
i . Let

Bc.�/D[i�
c
i

Bb.�/D[i�
b
i :

We want to show that for all x 2Bb.�/ there exists a C –quasigeodesic rx W f0g[N!
Bb.�/ such that x2 rx.f0g[N/ and rx.i/2�

b
i . Suppose x2�b

k
�Bb.�/. We define

rx by starting with rx.k/D x and construct rx.k � i/ and rx.kC i/ inductively (of
course .k � i/ stops at 0 but .kC i/ goes on to infinity). For the sake of concreteness,
we prove the existence of such a rx.kC1/. The same argument applies to .k�1/ and
inductively for the rest.

Lemma 5.1 There exists C > 0 such that if rx.k/ D x 2 �b
k

then there exists
x0 2 �b

kC1
such that d.x;x0/� C . We denote rx.kC 1/D x0 .

Proof Let Œa; b� be the maximal connected component of �b
k

on which x lies. Then
there exist two horospheres H1 and H2 such that a 2 H1 (or is the initial point of
�k ) and b 2 H2 (or is the terminal point of �k ). Note that Œa; b� does not intersect
any of the horodisks of f

Sh
k

. Since �h
kC1

preserves horodisks, �kC1.a/ lies on a
horocycle (or is the initial point of �kC1 ) as does �kC1.b/ (or is the terminal point
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of �kC1 ). Further, the image of Œa; b� is a hyperbolic quasigeodesic (which we
now denote as �kC1.Œa; b�/) lying outside horoballs. Let ˆh

kC1
.Œa; b�/ denote the

hyperbolic geodesic joining �kC1.a/ and �kC1.b/. Let ˆkC1.Œa; b�/ denote the
ambient geodesic in CS.kC 1/ joining �kC1.a/ and �kC1.b/. Therefore ˆh

kC1
.Œa; b�/

lies in a bounded neighborhood of �kC1.Œa; b�/ (which in turn lies at a bounded
distance from ˆkC1.Œa; b�/) and hence by Theorem 2.8 there exists an upper bound
on how much ˆh

kC1
.Œa; b�/ can penetrate horoballs, ie there exists C1 > 0 such that

for all z 2 ˆh
kC1

.Œa; b�/, there exists z0 2 ˆh
kC1

.Œa; b�/ lying outside horoballs with
d.z; z0/� C1 . Further, since �kC1 is a quasi-isometry there exists C2 > 0 such that
d.�kC1.x/; ˆ

h
kC1

.Œa; b�//� C2 . Hence there exists x0 2ˆh
kC1

.Œa; b�/ such that

� d.�kC1.x/;x
0/� C1CC2 ,

� x0 lies outside horoballs.

Again, ˆkC1.Œa; b�/ lies at a uniformly bounded distance � C3 from �kC1 and so,
if c; d 2 �kC1 such that d.a; c/� C3 and d.b; d/� C3 then the segment Œc; d � can
penetrate only a bounded distance into any horoball. Hence there exists C4 > 0 and
x00 2 Œc; d � such that

� d.x0;x00/� C4 ,

� x00 lies outside horoballs.

Hence, d.�kC1.x/;x
00/ � C1 C C2 C C4 . Since d.x; �kC1.x// D 1, we have, by

choosing rkC1.x/D x00 ,

d.rk.x/; rkC1.x//� 1CC1CC2CC4:

Choosing C D 1CC1CC2CC4 , we are through.

Using Lemma 5.1 repeatedly (inductively replacing x with rx.kC i/ we obtain the
values of rx.i/ for i � k . By an exactly similar symmetric argument, we get rx.k�1/

and proceed down to rx.0/. Now for any i , z 2 eS.i/ and y 2CS.i C 1/ , d.z;y/� 1.
Hence, for any z 2 eS.i/ and y 2 eS.j / , d.z;y/ � ji � j j. This gives the following
corollary.

Corollary 5.2 There exist K; � > 0 such that for all x 2 �b
k
� Bb.�/ there exists a

.K; �/ quasigeodesic ray rx such that rx.k/D x and rx.i/2�
b
i for all i D 0; 1; 2; : : :.
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5.2 p–incompressible boundary

Till this point we have not used the hypothesis of p–incompressibility. We need a
modification of Corollary 5.2 above to go down from a point in �b D �b

0
to a point in

�b .

We can change B� to Ba
�

by replacing each B.�/� eE.i/ by Ba.�/ for eE.i/ 2 E .
Recall that we had started off with � being an ambient quasigeodesic in eM0 constructed
from �h by replacing hyperbolic geodesic segments within Z–horoballs by ‘Euclidean’
geodesic segments along horospheres. So, there is no need to freshly construct a �a

(we can think that �D �a ). But we do need to construct �cc by performing the same
modifications for .ZCZ/–horoballs. Just as in the construction of �a

i ; �
c
i ; �

b
i , we

can define �c to be the collection of subsegments of �cc lying along horoballs (Z
or .ZCZ/), and �b D �cc � �

c . Adjoining �cc , �c and �b to Ba.�/, Bc.�/ and
Bb.�/ we get respectively, Ba.�; �/, Bc.�; �/ and Bb.�; �/. Then we can extend
Corollary 5.2 above so that � is included.

For the convenience of the reader, we summarize the notation for the different types of
geodesics and quasigeodesics that we have introduced and will use henceforth.

� �h D hyperbolic geodesic in eMgf joining a; b .

� �D �a D ambient quasigeodesic in eM0 constructed from �h � eMgf .

� �cc D ambient quasigeodesic in eMcc constructed from ��eM0 .

� �c D part of �cc lying along Z–cusps or ZCZ–cusps.

� �b D �cc��
c .

� �i D ambient geodesic in eS.i/ .

� �a
i D ambient quasigeodesic in eS.i/ constructed from �i .

� �c
i D part of �a

i lying along Z–cusps.

� �b
i D �a

i ��
c
i .

Recall that in the construction of B1.�/ from B0.�/ we construct � from � by taking
a K (as in the discussion following Corollary 4.4) and choosing p; q 2 eF \NK .B0.�//

with d.p; q/ maximal.

Now suppose .M;P / is p–incompressible. (This assumption has effect from now till
the end of Section 5.4, unless explicitly stated otherwise.) Then eF is quasiconvex in
the hyperbolic metric space eM0 . Hence, � is a quasigeodesic in eM0 and therefore lies
in a K1 –neighborhood of B0.�/ (where K1 depends on K ). Further, since � does
not penetrate horoballs, the hyperbolic geodesic �0 in eM0 joining the end-points of �
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can penetrate horoballs only for some bounded length D1 . Also, there is a subsegment
�� D Œp

0; q0� � � such that d.p;p0/ �K1 and d.q; q0/ �K1 . By Theorem 2.8, �0

and �� must have similar intersections with horoballs, ie there exists C0 such that the
following hold.

� If only one of �0 and �� penetrates or travels along the boundary of a horoball
H, then it can do so for a distance � C0 .

� If both �0 and �� enter (or leave) a horoball H then their entry (or exit) points
are at a distance of at most C0 from each other.

Then as in Corollary 5.2 if x 2 �b there exists C1 > 0, x00 2 �0 and x0 2 �b such that

d.x;x00/� C1

d.x0;x00/� C1:

Hence, d.x0;x/ � 2C1 . We have thus shown, (using Corollary 5.2) the following
corollary.

Corollary 5.3 Suppose .M;P / is a pared manifold with p–incompressible bound-
ary. There exist K; � > 0 such that for all x 2 �b

k
� Bb.�; �/ there exists a .K; �/

quasigeodesic ray rx W f�1; 0g[N! Bb.�; �/ such that rx.k/D x , rx.i/ 2 �
b
i for

all i D 0; 1; 2; : : : and rx.�1/ 2 �b .

Note In the discussion preceding Corollary 5.3 above, all that we really required
was that � be a quasigeodesic in eM0 . Quasiconvexity of eF (following from p–
incompressibility) ensured this. We therefore state the more general version below,
as we shall require it to prove our main Theorem 5.12 where p–incompressibility is
relaxed to incompressibility.

Corollary 5.4 Suppose .M;P / is a pared manifold with incompressible boundary.
Given D; ı there exist K; � such that the following holds: Suppose � is a .D; ı/
hyperbolic quasigeodesic in fM 0 lying on eF for some F . Then for all x 2 �b

k
�

Bb.�; �/ there exists a .K; �/ quasigeodesic ray rx W f�1; 0g [N ! Bb.�; �/ such
that rx.k/D x , rx.i/ 2 �

b
i for all i D 0; 1; 2; : : : and rx.�1/ 2 �b .

The hypothesis of Corollary 5.4 is satisfied if � moves along boundaries of horoballs for
uniformly bounded distances. Equivalently, this is satisfied if the hyperbolic geodesic
�h joining the end-points of � penetrates horoballs by a uniformly bounded amount.
Actually, we do not need even this much. �h should penetrate exceptional horoballs
(see definition below) by a bounded amount.
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Definition A cusp of Mgf is said to be exceptional if there exist closed curves carried
by the cusp (ie lying on its boundary horocycle or horosphere) which are homotopic
to non-peripheral curves on some other boundary component of Mgf . Exceptional
horoballs are lifts of exceptional cusps. A geodesic is said to penetrate a horoball H

by at most D if any subsegment of it lying inside H has length less than or equal to
D .

The sufficient condition for the hypothesis of Corollary 5.4 to hold is set forth in the
following lemma.

Lemma 5.5 Let F be some boundary component of M0 and �� eF be a geodesic
segment in the path metric on eF . Let �h be the hyperbolic geodesic in eMgf joining the
end-points of �. Given D > 0 there exist K; � such that if �h penetrates exceptional
horoballs by at most D then � is a .K; �/ quasigeodesic in eM0 .

5.3 Ambient and hyperbolic geodesics

Recall

� �h D hyperbolic geodesic in eMgf joining a; b ,

� �D �a D ambient quasigeodesic in eM0 constructed from �h � eMgf ,

� ˇh D geodesic in eN h joining a; b ,

� ˇ0
amb D ambient quasigeodesic in fN0 obtained from ˇh by replacement of

hyperbolic by ‘Euclidean’ geodesic segments for Z–horoballs in eN h ,

� ˇamb D…�.ˇ
0
amb/.

By construction, the hyperbolic geodesic ˇh and the ambient quasigeodesic ˇ0
amb agree

exactly off horoballs. ˇamb is constructed from ˇ0
amb by projecting it onto B� and so

by Theorem 4.20, it is an ambient quasigeodesic. But it might ‘backtrack’. Hence, we
shall modify it such that it satisfies the no backtracking condition. First, observe by
Theorem 2.8 that ˇh , ˇ0

amb track each other off some K–neighborhood of horoballs.

The advantage of working with ˇamb is that it lies on B� . However, it might backtrack.
Now, recall that Ba.�/ was constructed from B� by replacing each B.�/ by Ba.�/.
We can therefore choose an ambient quasigeodesic lying on Ba.�/ that tracks ˇamb

throughout its length. The advantage of switching to Ba.�/ is that it is constructed from
ambient geodesics without backtracking lying on the universal covers of equispaced
pleated surfaces. We shall (abusing notation) call this new ambient quasigeodesic ˇamb .
Thus ˇamb now lies on Ba.�/ rather than B� .
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Lemma 5.6 There exists C > 0 such that for all x 2 �b
i � Ba.�; �/� Ba.�/ if �h

lies outside Bn.p/ for a fixed reference point p 2 eM h , then x lies outside an n�C
CC1

ball about p in fN0 .

Proof By Corollary 5.3, rx.�1/ 2 �b . Since �b is a part of �h , therefore rx.�1/

lies outside Bn.p/. By Corollary 5.3, there exists C > 0 such that for all i; j 2

f�1; 0; 1; 2; : : : g,

ji � j j � d.rx.i/; rx.j //� C ji � j j:

Also, d.x;p/� i since x 2 �b
i . (Here distances are all measured in fN0 .) Hence,

d.x;p/�maxfi; n�C.i C 1/g

�
n�C

C C 1

This proves the result.

If x 2Ba.�/, then x 2 �b or x 2 �c or x 2Bb.�/ or x 2Bc.�/ for some �. Hence
x 2 Ba.�/ implies that either x lies on some horosphere bounding some H 2H or,
from Lemma 5.6 above, d.x;p/� n�C

CC1
. Since ˇamb lies on Ba.�/, we conclude that

ˇamb is an ambient quasigeodesic in fN0 such that every point x on ˇamb either lies on
some horosphere bounding some H 2H or, from Lemma 5.6 above, d.x;p/� n�C

CC1
.

McMullen [26] shows (cf Theorem 2.7) that in eN h , any such ambient quasigeodesic
ˇamb lies in a bounded neighborhood of ˇh [H.ˇh/. We do not as yet know that
ˇamb does not backtrack, but we can convert it into one without much effort. (Note
that Theorem 2.7 does not require “no backtracking”.) Let … denote nearest point
projection of eN h onto �h[H . Since … is a large-scale Lipschitz retract (Theorem
4.20), ….ˇamb/ D ˇ1 is again an ambient quasigeodesic in fN0 . Further, ˇ1 tracks
ˇamb throughout its length as … moves points on ˇamb through a uniformly bounded
distance (Theorem 2.7). Now ˇ1 might backtrack, but it can do so in a trivial way, ie
if ˇ1 re-enters a horoball after leaving it, it must do so at exactly the point where it
leaves it. Removing these ‘trivial backtracks’, we obtain an ambient quasigeodesic
without backtracking ˇ which tracks ˇamb throughout its length.

Note On the one hand ˇ is an ambient quasigeodesic without backtracking. Hence, it
reflects the intersection pattern of ˇh with horoballs. On the other hand, it tracks ˇamb

whose properties we already know from Corollary 5.3 above.
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Since, of ˇ and ˇh , one is an ambient quasigeodesic without backtracking, and the
other a hyperbolic geodesic joining the same pair of points, we conclude from Theorem
2.8 that they have similar intersection patterns with horoballs, ie there exists C0 such
that

� if only one of ˇ and ˇh penetrates or travels along the boundary of a horoball
H, then it can do so for a distance � C0 ,

� if both ˇ and ˇh enter (or leave) a horoball H then their entry (or exit) points
are at a distance of at most C0 from each other.

Again, since ˇ tracks ˇamb , we conclude that there exists C > 0 such that ˇ lies in a
C –neighborhood of ˇamb and hence from Lemma 5.6,

� every point x on ˇ either lies on some horosphere bounding some H 2H or,
d.x;p/� n�C

CC1
�C .

The above three conditions on ˇ and ˇh allow us to deduce the following (identical to
the third) condition for ˇh in the p–incompressible case.

Proposition 5.7 Suppose .M;P / has p–incompressible boundary. Then every point
x on ˇh either lies inside some horoball H 2H or, d.x;p/� n�C

CC1
�C Dm.n/:

We have denoted n�C
CC1
� C by m.n/, so that m.n/ ! 1 as n ! 1. The above

Proposition asserts that the geodesic ˇh lies outside large balls about p modulo
horoballs. By Lemma 2.4 this is almost enough to guarantee the existence of a Cannon–
Thurston map.

Again as in Corollary 5.4 it is not necessary to restrict ourselves to the p–incompressible
case. We deduce, using Corollary 5.4 and Lemma 5.5 the following proposition.

Proposition 5.8 Suppose .M;P / has incompressible boundary @0P . Given D; n

there exist m.n;D/ such that the following holds: Let �h , ˇh , � and � be as before. If
each � penetrates exceptional horoballs by at most D , then every point x on ˇh either
lies inside some horoball H 2H or, d.x;p/ �m.n;D/, for some function m.n;D/

where m.n;D/!1 as n!1 for each fixed D .

We can divide ˇh into two subsets ˇc and ˇb as earlier. ˇcDˇh\H is the intersection
of ˇh with horoballs, and ˇb D ˇh�ˇc . The main theorem of this paper under the
assumption of p–incompressibility follows. Recall that Mgf is identified with its
homeomorphic image in N h taking cusps to cusps.
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Theorem 5.9 Suppose that N h 2 H.M;P / is a hyperbolic structure of bounded
geometry on a pared manifold .M;P / with p–incompressible boundary. Let Mgf

denotes a geometrically finite hyperbolic structure adapted to .M;P /, then the map
i W eMgf !

eN h extends continuously to the boundary yi W bMgf !
bN h . If ƒ denotes the

limit set of fM , then ƒ is locally connected.

Proof Let �h be a geodesic segment in eMgf lying outside Nn.p/ for some fixed
reference point p . Fix neighborhoods of the cusps and lift them to the universal cover.
Let H denote the set of horoballs. Assume without loss of generality that p lies outside
horoballs. Let ˇh be the hyperbolic geodesic in eN h joining the endpoints of �h .
Further, let ˇh D ˇb [ˇc as above. Then by Proposition 5.7, ˇb lies outside an m.n/

ball about p , with m.n/!1 as n!1.

Next, let H1 be some horoball that ˇh meets. Then the entry and exit points u and
v of ˇh into and out of H1 lie outside an m.n/ ball about p . Let z be the point
on the boundary sphere that H1 is based at. Then for any sequence xi 2 H1 with
d.p;xi/!1, xi ! z . If fxig and fyig denote two such sequences, then the visual
diameter of the set fxi ;yig must go to zero. Hence, if Œxi ;yi � denotes the geodesic
joining xi ;yi then d.p; Œxi ;yi �/!1. Since, u; v lie outside an m.n/ ball, there
exists some function  , such that the geodesic Œu; v� lies outside a  .m.n// ball
around p , where  .k/!1 as k!1.

We still need to argue that the function  is independent of the horoball H1 . Assume
that the lifts of horoballs miss the base-point p . If the conclusion fails, there exist a
sequence of horoballs Hi , points xi ;yi on the boundary of Hi , such that Œxi ;yi ��Hi

passes through some fixed N –ball BN .p/ about p . Passing to a subsequence and
extracting a limit we may assume that the horoballs Hi converge to some horoball H
cutting BN .p/ (possibly touching p ). Then the above discussion for H1 furnishes the
required contradiction. Hence, the choice of this function  does not depend on H1 .
We conclude that there exists such a function for all of ˇc . We have thus established:

� ˇb lies outside an m.n/ ball about p ,

� ˇc lies outside a  .m.n// ball about p ,

� m.n/ and  .m.n// tend to infinity as n!1.

Define f .n/Dmin.m.n/;  .m.n///. Then ˇh lies outside an f .n/ ball about p and
f .n/!1 as n!1.

By Lemma 2.4 i W eMgf !
eN h extends continuously to the boundary yi W bMgf !

bN h .
This proves the first statement of the theorem.
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Now, for any geometrically finite Kleinian group, its limit set is locally connected.(See,
for instance, Anderson–Maskit [2].) Hence, the limit set of eMgf is locally connected.
Further, the continuous image of a compact locally connected set is locally connected
Hocking–Young [22]. Hence, if ƒ denotes the limit set of eN h , then ƒ is locally
connected. This proves the theorem.

Again as in Corollary 5.4 and Proposition 5.8 it is not necessary to restrict ourselves
to the p–incompressible case. In Theorem 5.9 above we removed the clause on being
within horoballs from Proposition 5.7. In the proof of Theorem 5.9 above the one
new thing we had shown was that geodesics entering and leaving horoballs at a large
distance from the reference point p , itself lies at a large distance from p . Using this
observation along with Proposition 5.8 we easily deduce the following corollary.

Corollary 5.10 Suppose .M;P / has incompressible boundary @0P . Given D; n

there exist m.n;D/ such that the following holds: Let �h , ˇh be as before. If �h

penetrates exceptional horoballs by at most D and if �h lies outside Bn.p/ in eMgf

then ˇh lies outside a ball of radius m.n;D/, for some function m.n;D/ where
m.n;D/!1 as n!1 for each fixed D .

The above proposition will be useful in the next subsection when we go from p–
incompressibility to incompressibility.

5.4 From p–incompressibility to incompressibility

In this subsection we shall use Corollary 5.10 to relax the hypothesis of p–incom-
pressibility. Recall that we started with a hyperbolic geodesic �h in eMgf and then
modified it along horoballs to obtain �. In this subsection we first consider subsegments
�h

1
; : : : ; �h

k
where each �h

i starts and ends on horospheres bounding horoballs, and the
complementary segments (of �h ) lie inside horoballs. This decomposition is made in
such a way that the starting and ending points of �h

i lie on exceptional horoballs (see
previous subsection for definitions.) Having completed this decomposition we consider
hyperbolic geodesics ˇh

i in eN h joining the end-points of �h
i . If we ensure that the

geodesics �h
i penetrate exceptional horoballs by a uniformly bounded amount, then

by Corollary 5.10 above, we can ensure that the segments ˇh
i lie outside a large ball

about p .

If further, we can ensure that

� the ˇh
i penetrate the horoballs they start and end on by a bounded amount,
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� and that the terminal point of ˇh
i and the initial point of ˇh

iC1
are separated by

more than a critical amount,

then (by appealing to the fact that local quasigeodesics are global quasigeodesics
[20; 19]) we conclude that the union of the ˇh

i with the hyperbolic geodesics interpo-
lating between them (and lying entirely within horoballs) is a (uniform) hyperbolic
quasigeodesic.

Since each ˇh
i lies outside a large ball about p , it follows that their union along with

interpolating geodesics does so too. This union being a quasigeodesic, the geodesic
ˇh joining the end-points of � must also lie outside a large ball about p . By Lemma
2.4 the existence of a Cannon–Thurston map follows.

We now furnish the details of the above argument.

First note from Corollary 5.10 that given D there exists m.n;D/ such that if �h
1

be
a subsegment of �h penetrating exceptional horoballs by at most D , and if �h (and
hence �h

1
) lies outside Bn.p/ then ˇh

1
(the hyperbolic geodesic in eN h joining the

endpoints of �h
1

) lies outside an m.n;D/–ball about p .

The next proposition follows from the fact that local quasigeodesics are global quasi-
geodesics in hyperbolic space. (See Gromov [20, Proposition 7.2C] and Coornaert–
Delzant–Papadopoulos [16].)

Proposition 5.11 There exist D;K; � such that the following holds.

Suppose ˇx is a path in eN h such that ˇx can be decomposed into finitely many
geodesic segments ˇ1; : : : ; ˇk . Further suppose that the starting and ending point of
each ˇi lie on exceptional horospheres (except possibly the starting point of ˇ1 and
the ending-point of ˇk ) meeting the horospheres at right angles. Also suppose that the

‘even segments’ ˇ2i lie entirely within exceptional horoballs and have length greater
than D . Then ˇx is a .K; �/ quasigeodesic.

Proof Idea Since geodesic segments lying outside horoballs meet horospheres at
right angles, successive pieces meet at an angle that is bounded below. Hence, if
xi ; zi 2 ˇi ; ˇi C 1 respectively and ˇi \ ˇi C 1 D yi , then Œxi ;yi � [ Œyi ; zi � is a
(uniform) .K1; �1/–quasigeodesic of length �DC 1 assuming that any two horoballs
are separated by a distance of at least one. That is every segment of length DC 1 is
a .K1; �1/–quasigeodesic, ie see [16, Chapter 3]) it is a local quasigeodesic. If D is
sufficiently long, stability of quasigeodesics (Theorems 1.2, 1.3, 1.4 of [16, Chapter 3])
ensures that ˇx is a .K; �/ quasigeodesic for some K; � independent of ˇ .
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In fact we do not need that the horoballs be exceptional, but that they be uniformly
separated, ie the distance between any two horospheres is uniformly bounded below.
This is clearly true for the exceptional horoballs since they are lifts of certain given
cusps in Mgf which in turn are finitely many in number and have been chosen uniformly
separated.

Next, we need to look closely at how we use Corollary 5.3 to prove Theorem 5.9.
Note that ˇamb is an ambient quasigeodesic independent of the hypothesis of p–
incompressibility. It is in concluding that ˇamb lies outside a large m.n/–ball about
the reference point p that we needed to construct quasigeodesic rays going down to �.

Now let �h D Œa;x� be a hyperbolic geodesic in eMgf having the end-point x on an
exceptional horosphere bounding a horoball H . By our construction of B� we note
that B� is quasi-isometrically embedded in eN and further that ˇamb (the ambient
quasigeodesic corresponding to �h ) meets H either at x (if H is a .ZCZ/–horoball)
or at some point on rx (for a quasigeodesic ray rx constructed through x and lying in
the universal cover eE of an end E of the manifold) if H be a Z–horoball.

Now suppose �h
1
D Œa;x�, �h

2
D Œx;y� and �h

3
D Œy; b� be three hyperbolic geodesic

segments such that Œx;y��H and �h
3

meets H at y . Again, as before the corresponding
ambient quasigeodesic ˇ1

amb meets H at x or at some point along an rx and ˇ3
amb

meets H at y or at some point along an ry .

In any case, the distance between the entry point of ˇh
1

(the hyperbolic geodesic joining
the end-points of ˇ1

amb ) into H and the exit point of ˇh
3

(the hyperbolic geodesic
joining the end-points of ˇ3

amb ) from H is greater than d.x;y/� 2C0 for some C0

depending on the quasiconvexity constant of ˇi
amb (i=1,3) by Theorem 2.8. Thus C0

depends only on the quasi-Lipschitz constant of …� .

We are now in a position to break �h into pieces. Let �h
2i

denote the maximal
subsegments of �h lying inside exceptional horoballs and having length greater than
.2C0CD0/. Let �h

2i�1
denote the complementary segments. Now, let ˇh

2i�1
be the

hyperbolic geodesic in eN h joining the endpoints of �h
2i�1

. Then the entry point of

ˇh
2i�1

into the exceptional horoball H it terminates on lies at a distance greater than

.2C0 CD0 � 2C0/ D D0 from the exit point of ˇh
2iC1

from the same horoball H.

Shorten the hyperbolic geodesic ˇh
2i�1

if necessary by cutting it off at the entry point
into H. Let ˇh

2i�1
denote the resultant geodesic. By Corollary 5.10 ˇh

2i�1
being a

subsegment of ˇh
2i�1

lies at a distance of at least m.n; .2C0CD0//Dm1.n/ from
the reference point p .
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Next denote by ˇh
2i

the hyperbolic geodesic lying entirely within H joining the entry
point of ˇh

2i�1
into H to the exit point of ˇh

2iC1
from H. The initial and terminal points

of ˇh
2i

lying on H are at a distance of at least m1.n/ from p . Therefore each ˇh
2i

and
hence the union of all the ˇh

i lie outside an m2.n/ ball about p where m2.n/!1

as n!1. Further, the union of the segments ˇh
i is a hyperbolic quasigeodesic by

Proposition 5.11 and hence lies at a bounded distance D0 from the hyperbolic geodesic
ˇh joining the endpoints of � (ie the end-points of �h ). Let m3.n/ D m2.n/�D0 .
Then what we have shown amounts to the following.
� If �h lies outside Bn.p/, then ˇh lies outside a ball of radius m3.n/ about p .
� m3.n/!1 as n!1.

Coupled with Lemma 2.4 this proves the main theorem of this paper.

Theorem 5.12 Suppose that N h 2 H.M;P / is a hyperbolic structure of bounded
geometry on a pared manifold .M;P / with incompressible boundary @0M . Let Mgf

denotes a geometrically finite hyperbolic structure adapted to .M;P /. Then the map
i W eMgf !

eN h extends continuously to the boundary yi W bMgf !
bN h . If ƒ denotes the

limit set of fM , then ƒ is locally connected.

6 Examples and consequences

As mentioned in the Introduction, the simplest non-trivial examples to which Theorem
5.12 applies are hyperbolic three manifolds of finite volume fibering over the circle.
These include the original examples of Cannon and Thurston [15] as well as those of
Bowditch [11; 12].

The next set of examples are those three manifolds homeomorphic to the product of a
surface and R. These were dealt with in Minsky’s work [28] and the punctured surface
case was dealt with by Bowditch [11; 12].

The case of three manifolds of freely indecomposable fundamental group were dealt
with independently by Klarreich [23] and the author [36]. In fact, Klarreich’s theorem
is really a reduction theorem which effectively says that if one can prove Cannon–
Thurston for closed surface groups (of some given geometry) then one can also prove
it for 3 manifolds whose ends have the same geometry. In combination with Minsky’s
adaptation of the original proof of Cannon–Thurston, this proves the theorem for
bounded geometry 3–manifolds with incompressible (closed surface) boundary. In
[36] we had approached this problem directly and had given different proofs of these
results. In this paper we have continued the approach in [36] to prove the analogue of
the above results in the presence of parabolics.
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Incompressibility and compressibility One problem that has not been addressed by
this paper or its predecessor [36] is the case of compressible @0M . Miyachi [37] (see
also Souto [45]) has solved this problem in the bounded geometry case, when there
are no cusps. In [40] we shall combine the reduction techniques of this paper with a
coarse version of Miyachi’s argument to settle affirmatively the question of existence
of Cannon–Thurston maps for finitely generated Kleinian groups.

Coarse framework Many of the arguments of this paper rightfully belong to the
domain of ‘coarse’ or ‘asymptotic’ or ‘large-scale’ geometry in spirit and it is more
than likely that they may be generalized to this setting. In [35] and [36], we had proven
the following theorems.

Theorem 6.1 [35] Let G be a hyperbolic group and let H be a hyperbolic subgroup
that is normal in G . Let i W �H ! �G be the continuous proper embedding of �H in
�G described above. Then i extends to a continuous map yi from b�H to b�G .

Theorem 6.2 [36] Let .X; d/ be a tree (T ) of hyperbolic metric spaces satisfying
the qi-embedded condition. Let v be a vertex of T . If X is hyperbolic ivW Xv! X

extends continuously to yivW cXv ! bX .

In this paper we have described a fairly general way of handling cusps. The general-
ization to ‘coarse geometry’ involves dealing with relatively hyperbolic groups a la
Gromov [20], Farb [17] and Bowditch [8].

In [41], the author and Abhijit Pal generalize Theorem 6.2 to the context of trees of
(strongly) relatively hyperbolic metric spaces. In [43], Pal adapts the techniques of this
paper and generalizes Theorem 6.1 to (strongly) relatively hyperbolic normal subgroups
of (strongly) relatively hyperbolic groups.
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