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Congruences between modular forms given by
the divided ˇ family in homotopy theory

MARK BEHRENS

We characterize the 2–line of the p–local Adams–Novikov spectral sequence in
terms of modular forms satisfying a certain explicit congruence condition for primes
p � 5 . We give a similar characterization of the 1–line, reinterpreting some earlier
work of A Baker and G Laures. These results are then used to deduce that, for ` a
prime which generates Z�p , the spectrum Q.`/ detects the ˛ and ˇ families in the
stable stems.

55Q45; 55Q51, 55N34, 11F33

1 Introduction

The Adams–Novikov spectral sequence

Exts;t
BP�BP

.BP�;BP�/) .�S
t�s/.p/

is one of the main tools for organizing periodic phenomena in the p–local stable
homotopy groups of spheres. Assuming that p is an odd prime, the 1–line is generated
by elements

˛i=j 2 Ext1;2.p�1/i�1
BP�BP

.BP�;BP�/

of order pj , for i � 1 and j satisfying

j D �p.i/C 1:

The elements ˛i=j are all permanent cycles, and detect the generators of the image
of the J –homomorphism. The image of J admits a global description in terms of
denominators of Bernoulli numbers: there is a correspondence

˛i=j $ Bt

between the generator ˛i=j and the t th Bernoulli number for t D .p� 1/i . The order
pj of the element ˛i=j is equal to the p–factor of the denominator of the quotient

Bt

t
:
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320 Mark Behrens

Thus the 1–line of the Adams–Novikov spectral sequence is governed by the p–adic
valuations of the denominators of the Bernoulli numbers. The purpose of this paper is
to provide a similar description for the 2–line of the Adams–Novikov spectral sequence,
in terms of certain congruences of modular forms.

Let
Mk.�0.N //

denote the space of weight k modular forms for �0.N / defined over Z. For a ring R,
let

(1-1) Mk.�0.N //R DMk.�0.N //˝R

be the corresponding space of modular forms defined over R. If N D 1, we shall
simplify the notation:

.Mk/R WDMk.�0.1//R:

We shall sometimes work with modular forms which are simply meromorphic at 1,
which we shall denote

Mk.�0.N //0R DMk.�0.N //R Œ�
�1�

where � 2M12 is the discriminant.

Remark 1.1 Implicit in our definition of the notation Mk.�0.N //R given by (1-1)
is a non-trivial base change theorem. One typically requires N to be invertible in R,
and then one regards the modular forms for a ring R as the sections of a certain line
bundle of the base-change of the moduli stack of elliptic curves to R. In most instances
considered in this paper, these two notions agree, see Katz [12, Sections 1.7,1.8].

The q–expansion gives rise to an embedding

Mk.�0.N // ,! ZŒŒq��

f 7! f .q/

and consequently embeddings

Mk.�0.N //R ,!RŒŒq��;

Mk.�0.N //0R ,!R..q//:

Therefore, a modular form over R is determined by its weight and its q–expansion.

For any f 2 .Mk/R , and any prime `, the power series

.V`f /.q/ WD f .q
`/
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Congruences given by the ˇ family 321

is the q–expansion of a modular form

V`f 2Mk.�0.`//R:

Suppose that p is a prime greater than 3. Miller, Ravenel and Wilson showed that the
2–line of the Adams–Novikov spectral sequence is generated by elements

ˇi=j ;k 2 Ext2;�
BP�BP

.BP�;BP�/

for i , j , and k satisfying certain elaborate conditions (see Theorem 11.2). Our main
theorem is stated below.

Theorem 1.2 For each additive generator

ˇi=j ;k 2 Ext2;�
BP�BP

.BP�;BP�/

there is an associated modular form

fi=j ;k 2Mt

(where t D i.p2� 1/) satisfying:

(1) The q–expansion fi=j ;k.q/ is not congruent to 0 mod p .

(2) We have ordq fi=j ;k.q/ >
t�j.p�1/

12
or ordq fi=j ;k.q/D

t�j.p�1/�2
12

.

(3) There does not exist a form

g 2Mt 0 ; for t 0 < t ;

satisfying
fi=j ;k.q/� g.q/ mod pk :

(4) For every prime `¤ p , there exists a form

g` 2Mt�j.p�1/.�0.`//

satisfying
fi=j ;k.q

`/�fi=j ;k.q/� g`.q/ mod pk :

The congruence conditions met by the forms fi=j ;k are sharp; we have the following
converse theorem.

Theorem 1.3 Suppose there exists a modular form

f 2Mt
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satisfying Theorem 1.2 (1)–(4), where t � 0 mod .p� 1/pk�1 . Then t D i.p2� 1/

for some i , and if i is not a power of p , there is a corresponding generator

ˇi=j ;k 2 Ext2;�
BP�BP

.BP�;BP�/:

Finally, the congruence condition given in Theorem 1.2 exhibits a certain rigidity, as
explained in the following theorem.

Theorem 1.4 Suppose that `0 is a prime which generates Z�p . Then, if f is a modular
form of weight t � 0 mod .p�1/pk�1 satisfying Theorem 1.2 (1)–(3), and Theorem
1.2 (4) for `D `0 , then f satisfies Theorem 1.2 (4) for all primes `¤ p .

Remark 1.5 In [15], G Laures introduced the f –invariant, a higher analog of the
Adams e–invariant, which gives an injection of the groups Ext2;�

BP�BP
.BP�;BP�/ into

Katz’s ring of divided congruences, tensored with Q=Z. Laures’ f –invariant therefore
associates to an element ˇi=j ;k , a non-congruence between modular forms. It is natural
to ask what relation this non-congruence has to the non-congruences given by condition
(3) of Theorem 1.2. Laures and the author have discovered that the f –invariant of
ˇi=j ;k is precisely represented by the modular forms fi=j ;k (Behrens–Laures [5]).
Thus, Theorem 1.3 gives a precise description of the image of the f –invariant. The
image of the elements ˇi under the f –invariant has been calculated in a different way
by J Hornbostel and N Naumann [11].

The proofs of Theorems 1.2–1.4 use the spectrum Q.`/ introduced by the author in [3;
2]. Analyzing the chromatic spectral sequence

E
s;t
1
D �tMsQ.`/) �t�sQ.`/;

we observe that a density result (Behrens–Lawson [7]) relates part of the 2–line of the
chromatic spectral sequence of Q.`/ to the 2–line of the chromatic spectral sequence
for the sphere. We also analyze the 0 and 1–lines of the chromatic spectral sequence
of Q.`/, and find the following.

(1) The 0–line �tM0Q.`/ is concentrated in t D 0;�1;�2 (Corollary 8.4).

(2) The 1–line �tM1Q.`/ is generated in degrees congruent to 0 mod 4 by the
images of the elements ˛i=j 2 ��M1S (Corollary 9.7).

In fact, the additive generators of �4tQ.`/ are given by the Eisenstein series E2t 2

.M2t /Q 9.5, and the orders of the groups �4tM1Q.`/ are directly linked to the p–adic
valuation of the denominators of the Bernoulli numbers B2t

4t
through the appearance of

the Bernoulli numbers in the q–expansions of the Eisenstein series. The relationship
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Congruences given by the ˇ family 323

was originally made precise by G Laures [14], and rederived by A Baker in [1], where
Hecke operations are used to conclude that Eisenstein series generate the 1–line of the
TMF–Adams Novikov spectral sequence. Our analysis is closely related to these.

As a consequence of our study of the chromatic spectral sequence for Q.`/ we are
able to prove the following theorem.

Theorem (Theorem 12.1) The images of the elements ˛i=j and the elements ˇi=j ;k

under the homomorphism
��SE.2/! ��Q.`/

are non-trivial.

This theorem shows that the homotopy of the spectrum Q.`/ is closely tied to Greek
letter phenomena. It also gives credibility to the author’s hope that the following
questions have affirmative answers.

(1) Are the homotopy Greek letter elements ˇh
i=j ;k

(see the author’s [4]) detected
by the spectra Q.`/ at the primes 2 and 3?

(2) Do the spectra QU .K
p;`/ (constructed using Shimura varieties of type U.1; n�

1/ in Behrens–Lawson [6]) detect the vn –periodic Greek letter elements?

Organization of the paper In Section 2 we summarize the chromatic spectral se-
quence. We also recall Morava’s change of rings theorem, which relates the terms of
the chromatic spectral sequence to the cohomology of the Morava stabilizer groups Sn .

In Section 3 we explain how to associate a p–complete TMF–spectrum to every com-
pact open subgroup of the adele group GL2.A

p;1/, following standard conventions
used in the theory of modular forms. Certain E1–operations between these spectra
are given by elements of GL2.A

p;1/.

In Section 4 we explain how to use the GL2 action of Section 3 to define spectra Q.S/

for a set of primes S . These spectra agree with the spectra Q.`/ defined by the author
in [3; 2] when S D f`g. The approach of this paper, however, mimics that of [6]. We
explain how the results of [3; 7] arise in this framework. In particular, we identify the
K.2/–localization of Q.S/ as the homotopy fixed points of a dense subgroup �S of
the Morava stabilizer group S2 .

In Section 5 we explain how the building resolution of Q.`/ given in [3] can be
recovered using the methods of [6]. We use this resolution to define a finite cochain
complex C �.`/ of modular forms whose cohomology gives ��Q.`/.

Geometry & Topology, Volume 13 (2009)



324 Mark Behrens

In Section 6 we express the first differential in C �.`/ in terms of the Verschiebung of
modular forms.

In Section 7 we describe the chromatic spectral sequence of Q.`/. In particular, we
show that its E1 –term consists of three lines: M0Q.`/, M1Q.`/, and M2Q.`/. We
explain how to modify the chain complex C �.`/ to compute these terms. We also
relate M2Q.`/ to the cohomology of the group �` .

In Section 8 we show that �tM0Q.`/ is concentrated in t D 0;�1;�2. We also
deduce that the rest of �tQ.`/ is p–torsion, and give bounds for the torsion.

In Section 9 we compute �4tM1Q.`/, and show that its generators can be expressed
as Eisenstein series. The orders of these groups are given by the p–adic valuation of
the Bernoulli numbers B2t=4t .

In Section 10 we recall theorems of Serre and Swinnerton–Dyer, which relate congru-
ences amongst q–expansions of modular forms to multiplication by the Hasse invariant
Ep�1 .

In Section 11 we analyze ��M2Q.`/, and prove Theorems 1.2–1.4.

In Section 12 we deduce Theorem 12.1 from our extensive knowledge of the chromatic
spectral sequence for Q.`/.

Acknowledgements This paper was prepared while the author visited Harvard Uni-
versity, and the author is grateful for their hospitality. The author is also grateful to
Niko Naumann for pointing out an error in an earlier draft concerning the integrality of
Eisenstein series.

The author was supported by the NSF grant DMS-0605100, the Sloan Foundation, and
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2 The chromatic spectral sequence

Let X be a spectrum. The chromatic tower for X is the tower of Bousfield localizations
with respect to the Johnson–Wilson spectra E.n/.

M0X M1X

��

M2X

��
XE.0/ XE.1/

oo XE.2/
oo oo � � �
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Congruences given by the ˇ family 325

Here the fibers MnX are the nth monochromatic layers. They admit a presentation as

(2-1) MnX ' hocolim
I

M.I/0 ^XE.n/

where M.I/0 DM.i0; : : : ; in�1/
0 is the generalized Moore spectrum with top cell in

dimension 0 and BP –homology,

BP�M.i0; : : : ; in�1/D†
�kIk�nBP�=.p

i0 ; v
i1

1
; : : : ; v

in�1

n�1
/

with
kIk WD

X
j

2ij .p
j
� 1/

and I ranges over a suitable cofinal collection of multi-indices. (This colimit presenta-
tion of the monochromatic layers was conjectured in Ravenel [18, Section 5.9]. The
conjecture was resolved by the Hopkins–Smith periodicity theorem [10], which implies
the existence of such a system of generalized Moore spectra.)

Applying homotopy to the chromatic tower yields the chromatic spectral sequence

E
n;k
1
D �kMnX ) �k�nX.p/

which is conditionally convergent if X is harmonic.

Morava’s change of rings theorem [17] states that the Adams–Novikov spectral sequence
for MnX takes the form

(2-2) H s
c .Sn; .MnEn/t .X //

Gal.Fp/) �t�s.MnX /:

For p� n this spectral sequence is known to collapse. A simple instance of this (for
X D S ) is given by the following lemma.

Lemma 2.1 For X D S and 2p� 2�maxfn2; 2nC 2g, the spectral sequence (2-2)
collapses: the groups

H s
c .Sn; �tMnEn/

Gal.Fp/

are zero unless t � 0 mod 2.p� 1/.

Proof The action of an element a of the finite subgroup F�p � Sn on

�2tMnEn Š .�2tEn/=.p
1; v11 ; : : : ; v

1
n�1/:

is given by multiplication by eat , where ea is the image of a under the Teichmüller
embedding F�p � Z�p . Since F�p is cyclic of order p � 1, it follows that Fp�1 acts
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trivially if and only if t � 0 mod p � 1. Because the subgroup F�p � Sn is central
and Galois invariant, it follows that there is an induced action of F�p on

H s
c .Sn; �2tMnEn/

Gal.Fp/:

However, the induced action on cohomology must be trivial, because the action is
obtained by restriction from the action of Sn . Thus, the cohomology groups must
be trivial, except when t � 0 mod p � 1. The result follows from the fact that if
n< p� 1, the group Sn has cohomological dimension n2 [17].

The sparsity of the spectral sequence (2-2), together with the fact that E
s;t
2
D 0 for

s � n2 implies the following corollary.

Corollary 2.2 For 2.p� 1/�maxfn2; 2.nC 1/g, we have

�tMnS ŠH s
c .Sn; �tCsMnEn/

Gal.Fp/

where t D 2k.p� 1/� s and 0� s < 2.p� 1/.

3 Adelic formulation of TMF

Let A denote the rational adeles. For a set of finite places S of Q, define

bZS
WD

Y
`…S

Z`;

AS;1
WDbZS

˝Q:

Fix a rank 2 module:
V p
WDAp;1

˚Ap;1;

and let Lp D bZp
˚ bZp

be the canonical lattice contained in V p .

For an elliptic curve C over an algebraically closed field k of characteristic unequal
to `, let

T`.C / WD lim
 �

k

C.k/Œ`k �

denote the `–adic Tate module of C . The Tate module T`.C / is a free Z`–module
of rank 2 (Silverman [19]). If the characteristic of k is zero or p , the `–adic Tate
modules assemble to give the Ap;1–module

V p.C / WD T p.C /˝Q;
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Congruences given by the ˇ family 327

where
T p.C / WD

Y
`¤p

T`.C /:

There is a canonical short exact sequence

T p.C /! V p.C /
u
�! C Œtorp �

where C Œtorp � is the subgroup of the group of k –points of C consisting of those points
which are torsion of order prime to p .

A rational uniformization is an isomorphism

�W V p Š
�! V p.C /:

The group GL2.A
p;1/ acts on the set of rational uniformizations by precomposition.

As explained in Behrens–Lawson [6, Section 3.2], a rational uniformization � of
V p.C / gives rise to a prime-to-p quasi-isogeny

(3-1) ��W C ! C�

(up to isomorphism of C� ). If the uniformization has the property that

(3-2) T p.C /� �.Lp/;

the quasi-isogeny is an isogeny. In this case, the (isomorphism class of the) isogeny
�� is characterized by its kernel H� , which is given by:

ker.�/DH� WD image.Lp ,! V p �
�! V p.C /

u
�! C Œtorp �/:

(The case of more general �, not satisfying (3-2), is easily generalized from this,
producing quasi-isogenies �� which need not be isogenies.)

For a subgroup
Kp
�GL2.A

p;1/;

we let Œ��K p denote the Kp –orbit of rational uniformizations generated by �. The we
shall refer to the orbit Œ��K p as an Kp –level structure. If we define

K
p
0
WDGL2.bZp

/�GL2.A
p;1/;

then, given a rational uniformization

�W V p Š
�! V p.C /;

the isomorphism class of the quasi-isogeny �� depends only on the K
p
0

level structure
Œ��K p

0
.
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If C is an elliptic scheme over a connected base S , we can pick a geometric point
s of S and talk about level structures of the fiber Cs , provided they are �1.S; s/–
invariant. Given a �1.S; s/–invariant K

p
0

–level structure Œ��K p

0
represented by a

rational uniformization
�W V p �

�! V p.Cs/;

(satisfying (3-2)) there is an associated subgroup

H�;s < Cs Œtorp �:

The �1.S; s/–invariance of Œ��K p

0
implies that H�;s extends to a local system over S ,

giving a subgroup
H� < C;

and a corresponding isogeny

��W C ! C=H� DW C�:

Extending this to � not satisfying (3-2) associates to a �1.S; s/–invariant K
p
0

–level
structure Œ��K p

0
of Cs an quasi-isogeny ��W C ! C� of elliptic schemes over S .

Associated to a compact open subgroup

Kp
�GL2.A

p;1/

is a Deligne–Mumford stack M.Kp/ over Z.p/ of elliptic curves with Kp –level
structure (see, for instance, Hida [9, Section 7.1.2], specialized to the group GL2 ).
For a connected scheme S over Z.p/ with a specified geometric point s , the S –points
of M.Kp/ are the groupoids whose objects are tuples

.C; Œ��K p /

where:

C D elliptic scheme over S ,

Œ��K p D �1.S; s/ invariant Kp–level structure on Cs .

The morphisms of the groupoid of S –points of M.Kp/

˛W .C; Œ��K p /! .C 0; Œ�0�K p /

are the prime-to-p quasi-isogenies

˛W C ! C 0

for which
Œ˛� ı ��K p D Œ�0�K p :

Geometry & Topology, Volume 13 (2009)
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Remark 3.1

(1) If the compact open subgroup is given by

K
p
0
WDGL2.bZp

/�GL2.A
p;1/

then there is an isomorphism

M.K
p
0
/
Š
�!M`˝Z.p/

.C; Œ��K p

0
/ 7! C�

where M`=Z is the usual (uncompactified) moduli stack of elliptic curves (see,
for instance, Kudla [13]).

(2) If the compact open subgroup is given by

K
p
0
.`/ WDGL2.bZp;`

/K0.`/�GL2.A
p;1/;

where K0.`/�GL2.Z`/ is the subgroup of matrices given by

K0.`/D

�
A 2GL2.Z`/ WA�

�
� �

0 �

�
mod `

�
;

then there is an isomorphism [13]

M.K
p
0
.`//

Š
�!M.�0.`//˝ZŒ1=`�Z.p/;

.C; Œ��K p

0
.`// 7! .C�;N�/

where M.�0.`// is the moduli stack of elliptic curves with a �0.`/–structure,
and N� is the �0.`/–structure (subgroup of order `) of C associated to the
image of the composite

`�1Z`˚Z`! V p �
�! V p.C /

.��/�
����! V p.C�/:

(3) If K
p
1
<K

p
2

is a pair of compact open subgroups, then there is an induced étale
cover of moduli stacks:

M.K
p
1
/!M.K

p
2
/;

.C; Œ��K p

1
/ 7! .C; Œ��K p

2
/:

If K
p
1

is normal in K
p
2

, the cover is a torsor for K
p
2
=K

p
1

.

(4) An element g 2GL2.A
p;1/ gives rise to an isomorphism of stacks

g�WM.gKpg�1/!M.Kp/;

.C; Œ��gK pg�1/ 7! .C; Œ� ıg�K p /:
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Clearly we have

(3-3) g� D .gk/� for k 2Kp .

The moduli of p–divisible groups corresponding to the moduli space M.Kp/ satisfies
Lurie’s generalization of the Hopkins–Miller theorem [6, Section 8.1], and hence the
p–completion M.Kp/^p carries a presheaf of p–complete E1–ring spectra EK p on
the site .M.Kp/^p /et such that the following hold.

(1) The presheaf EK p satisfies homotopy hyperdescent (ie it is Jardine fibrant).

(2) For an affine étale open

Spf.R/
.C;Œ��Kp /
�������!M.Kp/^p

the corresponding spectrum of sections

E D EK p .Spf.R//

is a weakly even periodic elliptic spectrum associated to the elliptic curve C (ie
�0.E/DR, and the formal group associated to E is isomorphic to the formal
group of C ).

Define TMF.Kp/ to be the global sections

TMF.Kp/ WD EK p .M.Kp/^p /:

In particular, we have

TMF.Kp
0
/D TMFp;

TMF.Kp
0
.`//D TMF0.`/p:

By the functoriality of Lurie’s theorem [6, Section 8.1.4], the action of GL2.A
p;1/

described in Remark 3.1 gives rise to maps of E1–ring spectra

(3-4) g�W TMF.Kp/! TMF.gKpg�1/:

4 The spectra Q.S /

The collection of compact open subgroups Kp of GL2.A
p;1/ under inclusion forms

a filtered category, and we may take the colimit

(4-1) V WD colim
K p

TMF.Kp/:
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The action of GL2.A
p;1/ described above gives V the structure of a smooth

GL2.A
p;1/–spectrum [6, Section 10.3]. We may recover each of the spectra TMF.Kp/

from V by taking homotopy fixed points [6, Section 10.6.5]:

TMF.Kp/' VhK p

:

For a set of primes S not containing p , we have an open subgroup

.K
p;S
0

/C WDGL2.AS /K
p;S
0
�GL2.A

p;1/

where AS D
Q0
`2S Q` is the ring of S –adeles and

K
p;S
0
D

Y
` 62fpg[S

GL.Z`/:

We define a spectrum
Q.S/D Vh.K

p;S

0
/C :

The K.2/–localization of the spectrum Q.S/ is closely related to the K.2/–local
sphere, as we now explain. Let C0 be a fixed supersingular curve over Fp (any two
are isogenous). Assume (for convenience) that C0 is defined over Fp (such a curve
exists for every prime p Waterhouse [20]). The quasi-endomorphism ring

D WD End0.C0/

is a quaternion algebra over Q ramified at p and 1. The subring of actual endomor-
phisms

OD WD End.C0/�D

is a maximal order. For our set of primes S , define a group

�S WD .OD ŒS
�1�/�:

The group �S is the group of quasi-isogenies of C0 whose degree lies in

ZŒS�1�� �Q�:

The group �S embeds in the (profinite) Morava stabilizer group through its action on
the height 2 formal group of C0 :

�S ,! Aut.bC 0/Š S2:

Theorem 4.1 (Behrens–Lawson [7]) If p is odd, and S contains a generator of Z�p ,
then the subgroup

�S ,! S2

is dense.
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The universal deformation eC 0 of the supersingular curve C0 , by Serre–Tate theory ,
gives Morava E–theory E2 the structure of an elliptic spectrum, where

��E2 DW .Fp/ŒŒu1��Œu
˙1�:

Since C0 is assumed to admit a definition over Fp , there is an action of the Galois
group Gal.Fp/ on the spectrum E2 . Picking a fixed rational uniformization

�0W V
p Š
�! V p.C0/

gives, for every Kp , a canonical map of E1–ring spectra

TMF.Kp/
.eC 0;Œ�0�Kp /
���������!E2

classifying the pair .eC 0; Œ�0�K p /, thus a map

(4-2) V
.eC 0;�0/
�����!E2:

Using the Tate embedding

End0.C0/ ,! End.V p.C0//;

the rational uniformization �0 induces an inclusion

 W �S ,! .K
p;S
0

/C �GL2.A
p;1/;

˛ 7! ��1
0 ˛�0:

Lemma 4.2

(1) For ˛ 2 �S , the following diagram commutes

TMF.Kp/
.eC 0;�0/ //

.˛/�
��

E2

˛�

��
TMF. .˛/Kp .˛/�1/

.eC ;�0/

// E2

where  .˛/� is the morphism induced by the action of GL2.A
p;1/ on TMF,

and ˛� is the morphism induced by the action of the Morava stabilizer group on
E2 through the inclusion �S � S2 .

(2) The map

TMF.Kp/
.eC 0;�0/
�����!E2

is invariant under the action of Gal.Fp/ on E2 .
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Proof Let Def.C0/ denote the formal moduli of deformations of C0 . For a complete
local ring .R;m/, the R–points of Def.C0/ is the category of tuples

.C; �; ˇ/;

where

C D elliptic curve over R, with reduction C mod m,

�W Fp!R=m;

ˇW ��C0
Š
�! C :

The element ˛ 2 �S acts on the R–points of Def.C0/ by

˛�W .C; �; ˇ/ 7! .C; �; ˇ ı˛/:

By Serre–Tate theory, this space is equivalent to the formal moduli Def.bC 0/ of defor-
mations of the associated height 2 formal group bC 0 , and the action of �S on Def.C0/

is compatible with the action of S2 on Def.bC 0/. Part (1) of the lemma follows from
the commutativity of the following diagram, which is easily checked on R–points.

M.Kp/ Def.C0/
.Cuniv;Œ.ˇuniv/��0�/oo

M. .˛/Kp .˛/�1/

.˛/�

OO

Def.C0/

˛�

OO

.Cuniv;Œ.ˇuniv/��0�/

oo

Part (2) is checked in a similar manner.

Lemma 4.2 implies that the morphism (4-2) descends to give a morphism

(4-3) Q.S/D Vh.K p;S /C !

�
E

h�S

2

�h Frp
DWE.�S /:

Here, if X is a spectrum with an action of the Frobenius Frp 2 Gal.Fp/, the spectrum
X h Frp is defined to be the homotopy fiber

X h Frp !X
Frp �1
����!X:

The following theorem is proved in [3] in the case where S consists of one prime. The
proof of the more general case is identical to the proof of [6, Corollary 14.5.6].

Theorem 4.3 The map (4-3) induces an equivalence

Q.S/K.2/!E.�S /:
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5 The building resolution

If S D f`g is a set containing one prime, the spectrum Q.`/ defined in Section 4 is
equivalent to the spectrum constructed in [3]. In [3], the spectrum Q.`/ was defined to
be the totalization of a certain semi-cosimplicial E1–ring spectrum. This description
is recovered as follows.

The group GL2.Q`/ acts on its building B D B.GL2.Q`// with compact open sta-
bilizers. Explicitly, the building B is equivariantly homeomorphic to the geometric
realization of a semi-simplicial GL2.Q`/–set B� of the form
(5-1)

B� D

0@GL2.Q`/=GL2.Z`/
 

 

GL2.Q`/=K0.`/

�

GL2.Q`/=GL2.Z`/

 

 

 

GL2.Q`/=K0.`/:

1A
The action of GL2.Q`/ on the building B extends to an action of .Kp;`

0
/C , simply

by letting the local factors away from ` act trivially. Regarded as a semi-simplicial
.K

p;`
0
/C–set, we have

(5-2) B� D

0B@.Kp;`
0
/C=K

p
0

 

 

.K
p;`
0
/C=K

p
0
.`/

�

.K
p;`
0
/C=K

p
0

 

 

 

.K
p;`
0
/C=K

p
0
.`/

1CA :
The canonical .Kp;`

0
/C–equivariant morphism

(5-3) V c
�!Map.B;V/sm

(given by the inclusion of the constant functions) is an equivalence [6, Lemma 13.2.3].
Here, Map.�;�/sm is defined to be the colimit of the U –fixed point spectra, as U

ranges over the open subgroups of GL2.A
p;1/. The argument in [6] relies on the

fact that the building B is not only contractible, but possesses a canonical contracting
homotopy with excellent equivariance properties.

The semi-simplicial decomposition of B induces an equivariant equivalence

Map.B;V/sm
' Tot Map.B�;V/sm

and therefore an equivalence on fixed point spectra:

Q.`/D Vh.K
p;`

0
/C

' Tot
�

Map.B�;V/sm
�h.K

p;`

0
/C
:
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Using Shapiro’s lemma in the context of smooth .Kp;`
0
/C–spectra gives an equivalence

.Map..Kp;`
0
/C=K

p;V/sm/h.K
p;`

0
/C ' VhK p

:

Since we have

VhK
p

0 ' TMF.Kp
0
/D TMFp

VhK
p

0
.`/
' TMF.Kp

0
.`//D TMF0.`/p:

Thus there is an induced semi-cosimplicial decomposition

(5-4) Q.`/' Tot Q.`/�

where

(5-5) Q.`/� D

0@TMFp
!

!

TMF0.`/p
�

TMFp

!

!

!

TMF0.`/p

1A :
For p � 5, the homotopy groups of TMFp and TMF0.`/p are concentrated in even
degrees, and there are isomorphisms

�2k TMFp Š .Mk/
0
Zp
;

�2k TMF0.`/p ŠMk.�0.`//
0
Zp
:

Applying homotopy to the semi-cosimplicial spectrum Q.`/� (5-5) gives a semi-
cosimplicial abelian group

(5-6) C.`/�2k WD

0B@.Mk/
0
Zp

!

!

Mk.�0.`//
0
Zp

�

.Mk/
0
Zp

!

!

!

Mk.�0.`//
0
Zp

1CA :
The Bousfield–Kan spectral sequence for Q.`/� takes the form

(5-7) E
s;t
1
D C.`/st ) �t�sQ.`/:

Proposition 5.1 For p � 5, the spectral sequence (5-7) collapses at E2 to give an
isomorphism

�nQ.`/ŠH 0.C.`/�n/˚H 1.C.`/�nC1/˚H 2.C.`/�nC2/:
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Proof The rings of modular forms M� and M�.�0.`// are concentrated in even
weights. This easily follows in the case of �0.`/ from the fact that the inversion
Œ�1�W C ! C gives an automorphism of any �0.`/–structure. Thus there is no room
for differentials, or hidden extensions, in the spectral sequence (5-7).

In fact, since we have argued that H s.C.`/�t / is non-zero unless t � 0 mod 4, we
have the following.

Corollary 5.2 For p � 5, there are isomorphisms

�tQ.`/ŠH s.C.`/�/tCs

where t D 4k � s and 0� s < 4.

6 Effect of coface maps on modular forms

Suppose that p � 5. In this section we will deduce the effect of the two initial
cosimplicial coface maps of C.`/�

2k
on the level of q–expansions. To aid in this, we

recall from [3] that the semi-cosimplicial resolution of Q.`/ may be constructed by
applying the Goerss–Hopkins–Miller presheaf to a semi-simplicial object in the site
.M`/et :

(6-1) M� WD

0@.M`/p
 

 

M.�0.`//p
q

.M`/p

 

 

 

M.�0.`//p

1A :
The coface maps di WM1!M0 are given on R–points by

di W .M`/p! .M`/p

d0W C 7! C=C Œ`�

d1W C 7! C

di W .M.�0.`///p! .M`/p

d0W .C;H / 7! C=H

d1W .C;H / 7! C:

Proposition 6.1 Consider the morphisms

d0; d1W .Mk/
0
Zp
!Mk.�0.`//

0
Zp
� .Mk/

0
Zp
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induced by the initial coface maps of the cosimplicial abelian group C.`/�
2k

. On the
level of q–expansions, the maps are given by

d0.f .q// WD .`
kf .q`/; `kf .q//;

d1.f .q// WD .f .q/; f .q//:

Proof It is clear from the description of the map d1 that its effect on q–expansions is
as given. Choosing an embedding Zp ,!C , by the q–expansion principle, it suffices
to verify these identities hold when we base-change to C and consider the Tate curve:

Cq WDC�=qZ:

The group of `th roots of unity �` �C� induces a �0.`/–structure on the Tate curve
Cq :

�` �C�=qZ
D Cq:

This level structure is the kernel of the isogeny

��` W Cq DC�=qZ
!C�=q`Z D Cq` ;

z 7! z`:

The invariant differential dz=z on Cq transforms under this isogeny by

��.dz=z/D `dz=z:

It follows that d0 on the Mk.�0.`//
0
Zp

–component is given by

d0W .Mk/
0
Zp
!Mk.�0.`//

0
Zp
;

f .q/ 7! `kf .q`/;

as desired. The `th power map

Œ`�W Cq! Cq

z 7! z`

transforms the invariant differential by

Œ`��.dz=z/D `dz=z:

If follows that the .Mk/
0
Zp

component of d0 is given by

d0W .Mk/
0
Zp
! .Mk/

0
Zp
;

f .q/ 7! `kf .q/:
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7 The chromatic spectral sequence for Q.`/

The following lemma implies that the chromatic resolution of Q.`/ is finite.

Lemma 7.1 The spectrum Q.`/ is E.2/–local.

Proof The spectra TMFp and TMF0.`/p are E.2/–local. By (5-4), the spectrum
Q.`/ is E.2/–local.

We deduce that the chromatic resolution for Q.`/ takes the following form.

M0Q.`/ M1Q.`/

��

M2Q.`/

��
Q.`/E.0/ Q.`/E.1/oo Q.`/oo

Applying homotopy, we get a three line spectral sequence

(7-1) E
n;k
1
D

�
�kMnQ.`/; n� 2

0; n> 2

�
) �k�nQ.`/:

Assuming that p� 5, applying Mn to the cosimplicial resolution (5-4), we get spectral
sequences

E
s;t
2
DH s.C.`/�Œp�1�/t ) �t�sM0Q.`/(7-2)

E
s;t
2
DH s.C.`/�=p1Œv�1

1 �/t ) �t�sM1Q.`/(7-3)

E
s;t
2
DH s.C.`/�=.p1; v11 //t ) �t�sM2Q.`/:(7-4)

Here, the E2 –terms are the cohomology of the cosimplicial abelian group obtained
from applying the functor ��.Mn�/ to (5-4). The values of the resulting cosimplicial
abelian group are given by the following lemma.

Lemma 7.2 Let p � 5 and .N;p/D 1. Then

�2�M0 TMF0.N /p DM�.�0.N //0Qp
;

�2�M1 TMF0.N /p DM�.�0.N //0Zp
=p1ŒE�1

p�1�;

�2�M2 TMF0.N /p DM�.�0.N //0Zp
=.p1;E1p�1/:

Proof This is a direct application of (2-1). Here, Ep�1 is the .p � 1/st Eisenstein
series, which reduces to the Hasse invariant v1 mod p [12, Section 2.1].
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In particular, since C.`/�t is non-zero only when t � 0 mod 4, the same argument
proving Corollary 5.2 gives the following.

Corollary 7.3 For p � 5, there are isomorphisms

�tM0Q.`/ŠH s.C.`/�Œp�1�/tCs

�tM1Q.`/ŠH s.C.`/�=.p1/Œv�1
1 �/tCs

�tM2Q.`/ŠH s.C.`/�=.p1; v11 //tCs

where t D 4k � s and 0� s < 4.

We end this section by relating M2Q.`/ to the subgroup �` � Sn . By Theorem 4.3
there are equivalences

M2Q.`/'M2.Q.`/K.2//'M2..E
h�`
2

/h Frp /:

We recall the following result from [3].

Proposition 7.4 The group �` acts on the building B for GL2.Q`/ with finite stabi-
lizers, given by groups of automorphisms of supersingular curves.

We deduce the following.

Lemma 7.5 There is an equivalence

M2..E
h�`
2

/h Frp /' ..M2E2/
h�`/h Frp :

Proof Since the spectra M.I/0 are finite, we have

M.I/0 ^ ..E
h�`
2

/h Frp /' ..M.I/0 ^E2/
h�`/h Frp :

The result would follow from (2-1) if we could commute the homotopy colimit over
I with the homotopy fixed points with respect to �` . However, by Proposition 7.4,
the group �` acts on the building B for GL2.Q`/ with finite stabilizers. Since B is
contractible and finite dimensional, we conclude that the group �` has finite virtual
cohomological dimension.

We conclude that there is an equivalence

M2Q.`/' ..M2E2/
h�`/h Frp

and a homotopy fixed point spectral sequence

(7-5) E
s;t
2
DH s.�`; �tM2E2/

Gal.Fp/) �t�sM2Q.`/:
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Lemma 7.6 For p � 5, we have:

(1) H s.�`; �tM2E2/
Gal.Fp/ D 0 for s > 2.

(2) H s.�`; �tM2E2/
Gal.Fp/ D 0 for t 6� 0 mod 4.

(3) There are isomorphisms

�tM2Q.`/ŠH s.�`; �tCsM2E2/
Gal.Fp/

where t D 4k � s and 0� s < 4.

Proof (1) follows from Proposition 7.4, together with the fact that the coefficients are
p–local and the building is contractible and 2–dimensional. (2) follows from the fact
that there is a central, Galois invariant element Œ�1� 2 �` (given by inversion) which
acts on �2iM2E2 by .�1/i . (3) follows from (1) and (2), using the spectral sequence
(7-5).

Combining Corollary 7.3 with Lemma 7.6, we get the following.

Corollary 7.7 For p � 5, there are isomorphisms

H s.C.`/�=.p1; v11 //t ŠH s.�`; �tM2E2/
Gal.Fp/:

Remark 7.8 One could give a purely algebraic proof of Corollary 7.7 which makes
no reference to topology. In the context of the exposition of this paper it happens to be
quicker (but arguably less natural) to use topological constructions.

8 M0Q.`/

Let p � 5 and ` be a topological generator of Z�p . In this section we will concern
ourselves with locating the non-trivial homotopy of M0Q.`/.

Proposition 8.1 The groups
H s.C �.`//2t

consist entirely if pj –torsion if

t � 0 mod .p� 1/pj�1;

and are zero if t 6� 0 mod .p� 1/.
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Proof Consider the central element

Œ`� WD

�
` 0

0 `

�
2GL2.Q`/:

Let V be the smooth GL2.A
p;1/–spectrum of (4-1). We assume that V is fibrant

as a smooth GL2.A
p;1/–spectrum, so that homotopy fixed points are equivalent to

point-set level fixed points
VhU
' VU

for U an open subgroup of GL2.A
p;1/ [6, Corollary 10.5.5]. Because Œ`� is central,

the action of Œ`� on V is GL2.A
p;1/–equivariant. Because Œ`� is contained in the

subgroup .Kp;`
0
/C , it acts as the identity on

Q.`/' V.K
p;`

0
/C :

However, the morphism c of (5-3) is compatible with the action of Œ`�, where we
let Œ`� act on Map.B;V/sm through its action on the target V . We deduce that the
endomorphism Œ`� acts on the cosimplicial object Q.`/� , where the action is given
level-wise on each factor by the endomorphism

Œ`�W TMF.Kp/! TMF.Kp/

(where Kp is either K
p
0

or K
p
0
.`/). The endomorphism Œ`� is the induced action of

Œ`� on the fixed point spectrum

TMF.Kp/' VhK p

:

The action of Œ`� on the homotopy groups of TMF.Kp/ is given by

Œ`�W �2k TMF.�0.N //! �2k TMF.�0.N //;

f 7! `kf:

This is easily deduced from the fact that the induced quasi-isogeny (3-1)

C�! C�ıŒ`�

is isomorphic to the `th power map of elliptic curves. It follows that

Œ`�W H s.C.`/�2k/!H s.C.`/�2k/

acts by multiplication by `k . However, since we have shown that Œ`� acts by the identity
on ��Q.`/, Proposition 5.1 implies that Œ`� acts by the identity on H s.C.`/�

2k
/. We

deduce that multiplication by `k�1 is the zero homomorphism on H s.C.`/�
2k
/. Since

` was assumed to be a topological generator of Z�p , the proposition follows.
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We immediately deduce the following.

Corollary 8.2 We have

H s.C �.`/Œp�1�/t D 0

for t ¤ 0.

We can be more specific in the case of s D 0.

Lemma 8.3 We have

H 0.C �.`/Œp�1�/0 DQp:

Proof We must analyze the kernel of the cosimplicial differential

d0� d1W .M0/
0
Qp
!M0.�0.`//

0
Qp
˚ .M0/

0
Qp
:

We claim that is is given by the subspace generated by 1 2 .M0/Qp
. Indeed, suppose

that f 2 .M0/
0
Qp

satisfies

d0.f /� d1.f /D 0:

By Proposition 6.1, it follows that

f .q`/�f .q/D 0:

Writing f .q/D
P

anqn , we find

an D

(
an=`; n� 0 mod `

0; n 6� 0 mod `:

It follows by induction that f .q/D a0 .

Applying this knowledge to the spectral sequence (7-2), we deduce the following.

Corollary 8.4 We have

�t .M0Q.`//D 0

if t 62 f0;�1;�2g, and

�0.M0Q.`//DQp:
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9 M1Q.`/: Eisenstein series and the ˛–family

Let p � 5 and assume that ` is a topological generator of Z�p . In this section we will
compute

H 0.C �.`/=p1/;

the 0th cohomology of the cochain complex associated to the cosimplicial abelian
group C �.`/ tensored with the group Z=p1 . These computations will allow us to
determine part of the 1–line of the chromatic spectral sequence for Q.`/.

We have
H 0.C �.`/=p1/D lim

�!
j

H 0.C �.`/=pj /;

so it suffices to compute the latter. Our explicit determination of the first differential in
C �.`/ implies that

At=j WDH 0.C �.`/=pj /2t(9-1)

D

�
f 2 .Mt /

0
Z=pj W

.i/ .`t � 1/f .q/� 0 mod pj ;

.ii/ `tf .q`/�f .q/� 0 mod pj :

�
(9-2)

Lemma 9.1 A modular form f 2M 0
t represents an element of the group At=j if and

only if

(1) pif � 0 mod pj for t D .p� 1/pi�1s , and .s;p/D 1,

(2) f .q/� a mod pj for a 2 Z=pj .

Proof Since ` was assumed to be a topological generator of Zp ,

�p.`
t
� 1/D i

for t D .p� 1/pi�1s , with .s;p/D 1. Condition (i) of (9-2) states that

.`t
� 1/f � 0 mod pj :

This proves (1).

Because `tf .q/ � f .q/ mod pj , we deduce that condition (ii) of (9-2) may be
rewritten as

f .q`/� f .q/ mod pj :

But, writing
f .q/D

X
n

anqn
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for an 2 Z=pj , we see that

an �

(
0; n� 0 mod `;

an=`; n 6� 0 mod `:

Therefore, we inductively deduce that an � 0 mod pj unless nD 0.

Let Ek 2Mk denote the weight k normalized Eisenstein series (for k � 4 even), with
q–expansion

(9-3) Ek.q/D 1�
2k

Bk

1X
iD1

�k�1.i/q
i
2QŒŒq��;

where
�k.i/ WD

X
d ji

dk :

The following lemma follows immediately from the Clausen–von Staudt Theorem on
denominators of Bernoulli numbers.

Lemma 9.2 If p � 1 divides k , the q–expansion of Ek is p–integral. For k � 0

mod .p� 1/pj�1 we have

Ek.q/� 1 mod pj :

Lemma 9.3 For each even weight k � 4 there exists a modular form

ek 2 .Mk/
0
Z.p/

such that

(1) if k � 0 mod p� 1, we have

ek DEk ;

(2) the q–expansion of ek satisfies

ek.q/D 1C higher terms;

(3) if k1 � k2 mod .p� 1/pj�1 , then

ek1
.q/� ek2

.q/ mod pj :
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Proof Observe that for any even k � 4, there exist modular forms ek satisfying
condition (2) (one can simply take ek D Ei

4
E

j
6

for appropriate i and j ). Fix such
choices of ek for even k satisfying 4 � k < p� 1 and k D pC 1. Also set e0 D 1.
For even k � p� 1 satisfying k ¤ pC 1 set

ek D ek�.p�1/tE.p�1/t

for t chosed such that

0� k � .p� 1/t < p� 1 or k � .p� 1/t D pC 1:

Then condition (1) is obviously satisfied, and condition (3) is satisfied by Lemma
9.2.

The following lemma provides a convenient basis for p–integral modular forms which
we shall make frequent use of.

Lemma 9.4 The forms

f�ket�12k W k 2 Z; t � 12k � 4 and eveng;

together with
�k if t D 12k ;

form an integral basis of M 0
t .

Proof Since
�.q/D qC � � �

we have
�k.q/et�12k D qk

C � � � :

This establishes linear independence. We may deduce that these forms span M 0
t by

the explicit calculation

M� D ZŒE4;E6; �
�1�=.�D

E3
4
�E2

6

1728
/:

Proposition 9.5 The groups At=1 D colimj At=j are given by

At=1 D Z=pj
fEt=p

j
g

for t D .p� 1/pj�1s , where .s;p/D 1 and t � 4, and

A0=1 D Z=p1:

(Here, the element Et=p
j is the image of the element Et 2At=j .)

Geometry & Topology, Volume 13 (2009)



346 Mark Behrens

Proof This follows immediately from Lemma 9.1 and Lemma 9.4, provided we can
show that Et lies in At=j . This again follows from criterion (2) of Lemma 9.1: by
Lemma 9.2

Et .q/� 1 mod pj :

We obtain the zero-line of spectral sequence (7-2) as a corollary.

Corollary 9.6 We have

H 0.C �.`/=p1Œv�1
1 �/2t Š

(
Z=pj ; t D .p� 1/pj�1s and .s;p/D 1;

0; t 6� 0 mod .p� 1/:

Combining this with Corollary 7.3 and Proposition 8.1, we find the following.

Corollary 9.7 We have

�tM1Q.`/Š

(
Z=pj ; t D 2.p� 1/pj�1s and .s;p/D 1;

0; t 6� 0;�1;�2 mod 2.p� 1/:

10 Mod pj congruences

Let p � 5. The congruence

Ep�1.q/� 1 mod p

implies the congruence

(10-1) E
pj�1

p�1
.q/� 1 mod pj :

It follows that multiplication by E
pj�1

p�1
induces an injection

�E
pj�1

p�1
W Mt .�0.N //Z=pj ,!MtC.p�1/pj�1.�0.N //Z=pj :

(Here we regard Ep�1 as a modular form for �0.N /.) The image of this inclusion is
characterized by the following theorem of Serre [12, Corollary 4.4.2].

Theorem 10.1 (Serre) Let fi be an elements of Mki
.�0.N //Z=pj for i D 1; 2 and

k1 < k2 . Then
f1.q/D f2.q/ 2 Z=pj ŒŒq��

if and only if
(1) k1 � k2 mod .p� 1/pj�1 , and

(2) f2 DE
k2�k1

p�1

p�1
f1 .
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11 M2Q.`/: The ˇ–family congruences

Let p � 5, and let ` be a topological generator of Z�p . In this section we prove
Theorem 1.2 and Theorem 1.3. The key observation is the following.

Lemma 11.1 The inclusion �` ,! S2 induces an isomorphism

H 0
c .S2; �tM2E2/

Gal.Fp/
Š
�!H 0.�`; �tM2E2/

Gal.Fp/:

Proof By Theorem 4.1, the group �` is dense in S2 . Since S2 acts continuously on
�tM2E2 , the invariants of S2 are the same as the invariants of �` .

Combined with Corollary 7.7, we have an isomorphism

H 0.C.`/�=.p1; v11 //t ŠH 0
c .S2; �tM2E2/

Gal.Fp/:

The right-hand side has been computed by Miller–Ravenel–Wilson [16].

Theorem 11.2 (Miller–Ravenel–Wilson) The groups H 0
c .S2; ��M2E2/

Gal.Fp/ are
generated by elements

ˇi=j ;k 2H 0
c .S2; �2i.p2�1/�2j.p�1/M2E2/

Gal.Fp/

which generate cyclic summands of order pk . Here, for i D spn with .s;p/D 1, the
indices j and k are taken subject to

(1) pk�1jj ,

(2) j � pn�kC1Cpn�k � 1,

(3) either j > pn�k Cpn�k�1� 1 or pk 6 jj .

We now compute
H 0.C �.`/=.p1; v11 //�

in terms of modular forms.

We have

H 0.C �.`/=.p1; v11 //2t D lim
�!

k

lim
�!

jDspk�1

s�0

H 0.C �.`/=.pk ; v
j
1
//2tC2j.p�1/;
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so it suffices to compute the latter. Proposition 6.1, Lemma 7.2, and Theorem 10.1
imply that, for j � 0 mod pk�1 , we have:

Bt=j ;k WDH 0.C �.`/=.pk ; v
j
1
//2tC2j.p�1/

D ker

0BBB@M 0
tCj.p�1/

.pk ;E
j
p�1

/

d0�d1
����!

M 0
tCj.p�1/

.pk ;E
j

p�1
/

˚

MtCj.p�1/.�0.`//
0

.pk ;E
j

p�1
/

1CCCA

D ker

0BBBB@
.MtCj.p�1//

0
Z=pk

.Mt /
0
Z=pk

d0�d1
����!

.MtCj.p�1//
0

Z=pk

.Mt /
0

Z=pk

˚

MtCj.p�1/.�0.`//
0

Z=pk

Mt .�0.`//
0

Z=pk

1CCCCA

D

8̂̂̂<̂
ˆ̂:f 2

.MtCj.p�1//
0
Z=pk

.Mt /
0
Z=pk

W

.i/ .`tCj.p�1/� 1/f .q/D g1.q/;

for g1 2 .Mt /
0
Z=pk

.ii/ `tCj.p�1/f .q`/�f .q/D g2.q/;

for g2 2Mt .�0.`//
0
Z=pk

9>>>=>>>; :
Here, we are regarding the space of mod pk modular forms of weight t as being
embedded in the space of mod pk modular forms of weight t C j .p� 1/ through the
inclusion induced by multiplication by E

j
p�1

using Theorem 10.1.

For a finitely generated abelian p–group A, we shall say that a 2 A is an additive
generator of order pk if a generates a cyclic subgroup of A of order pk .

Theorem 11.3 There is a one-to-one correspondence between the additive generators
of order pk in

H 0.C.`/�=.p1; v11 //2t

and the modular forms f 2M 0
tCj.p�1/

for j � 0 mod pk�1 satisfying the following.

(1) We have t � 0 mod .p� 1/pk�1 .

(2) The q–expansion f .q/ is not congruent to 0 mod p .

(3) We have ordq f .q/ >
t

12
or ordq f .q/D

t�2
12

.

(4) There does not exist a form f 0 2 M 0
t 0 such that f 0.q/ � f .q/ mod pk for

t 0 < t C j .p� 1/.
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.5/` There exists a form
g 2Mt .�0.`//

0

satisfying
f .q`/�f .q/� g.q/ mod pk :

We will need to make use of the following lemma.

Lemma 11.4 There exist homomorphisms

rmW M
0
tCm!M 0

t

such that, if j � 0 mod pk�1 , the short exact sequences

0! .Mt /
0
Z=pk

�E
j

p�1

����! .MtCj.p�1//
0
Z=pk !

.MtCj.p�1//
0
Z=pk

.Mt /
0
Z=pk

! 0

are split by the mod pk reduction of rj.p�1/ .

Proof Using the basis of Lemma 9.4 we define explicit splitting morphisms

rmW MtCm!Mt

whose effect on basis vectors is given by

rm.�
netCm�12n/D

(
�net�12n; t � 12nD 0; or t � 12nD 2i for i � 2;

0; otherwise:

We just need to verify that rj.p�1/ reduces to give the appropriate splittings. By
Condition (3) of Lemma 9.3, and (10-1), we have

et .q/E
j
p�1

.q/� et .q/� etCj.p�1/.q/ mod pk :

We therefore compute

rj.p�1/.�
net�12nE

j
p�1

/� rj.p�1/.�
netCj.p�1/�12n/ mod pk

��net�12n mod pk :

The splittings of Lemma 11.4 induce splitting homomorphisms which give short exact
sequences

(11-1) 0 .Mt /
0
Z=pk

rj ;k
 �� .MtCj.p�1//

0
Z=pk

�j ;k
 ��

.MtCj.p�1//
0
Z=pk

.Mt /
0
Z=pk

 0:

These short exact sequences are compatible as k and j vary.
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Lemma 11.5 For t even, the image of the homomorphism �j ;k is given by

ff 2 .MtCj.p�1//
0
Z=pk W ordq f .q/ >

t

12
or ordq f .q/D

t � 2

12
g:

Proof A basis of .Mt /
0
Z=pk is given by

f�net�12n W n�
t

12
; n¤

t � 2

12
g:

The image of this basis under �j ;k is spanned by

f�net�12nCj.p�1/ W n�
t

12
; n¤

t � 2

12
g:

Since
�net�12nCj.p�1/ D qn

C � � �

we deduce the result.

Proof of Theorem 11.3 Suppose that b0 2 Bt=j ;k0 is an additive generator of order
pk . Let f 0 be the lift

f 0 WD �j ;k0.b
0/ 2 .MtCj.p�1//

0
Z=pk0 :

Since b0 is assumed to be an additive generator of order pk and �j ;k0 is injective, we
deduce that f 0 is a modular form in .MtCj.p�1//Z=pk0 of exact order pk . Hence
f 0 D pk0�kf for some modular form f 2 .MtCj.p�1//

0
Z=pk . It is simple to check

that the image

b 2
.MtCj.p�1//

0
Z=pk

.Mt /
0
Z=pk

represents an element of Bt=j ;k .

It follows that the additive generators of order pk in

H 0.C.`/�=.p1; v11 //t D colim
k0

colim
jDspk0�1

s�1

Bt=j ;k0

exactly correspond to the additive generators of order pk in Bt=j ;k which are not in
the image of the inclusion

�E
pk�1

p�1
W Bt=j�pk�1;k ,! Bt=j ;k :

Suppose that b is such an additive generator. Let f be the lift

f WD �j ;k.b/ 2 .MtCj.p�1//
0
Z=pk :
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Then by Lemma 11.5 the lift f satisfies

ordq f .q/ >
t

12
or ordq f .q/D

t � 2

12
:

From the definition of Bt=j ;k we have

.i/ .`tCj.p�1/� 1/f .q/D g1.q/;

for g1 2 .Mt /
0
Z=pk

.ii/ `tCj.p�1/f .q`/�f .q/D g2.q/;

for g2 2Mt .�0.`//
0
Z=pk :

Since j � 0 mod pk�1 we deduce that

`tCj.p�1/
� `t :

Let v D �p.`t � 1/. Condition (i) above implies that

f .q/�
g1.q/

`t � 1
mod pk�v:

But, if b00 2 Bt=j ;k�v is the image of the mod pk�v reduction of b , then

f .q/� �j ;k�v.b
00/ mod pk�v

and thus, by the exactness of (11-1), we have

rj ;k�v.f /D g1 D 0:

Thus we actually have

.`t
� 1/f .q/� 0 mod pk :

Since f .q/ has order pk , we deduce that

`t
� 1 mod pk :

Since ` is a topological generator of Z�p , we deduce that

t � 0 mod .p� 1/pk�1:

Thus condition (ii) may be rewritten as

f .q`/�f .q/D g2.q/ for g2 2Mt .�0.`//
0
Z=pk :

We have therefore verified conditions (1)–(5) of Theorem 11.3.
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For the converse direction, suppose f 2 .MtCj.p�1//Z=pk satisfies conditions (1)–(5)
of Theorem 11.3. Then by Lemma 11.5, f is in the image of �j ;k . Consider the image

b D Œf � 2
.MtCj.p�1//

0
Z=pk

.Mt /
0
Z=pk

of f in the quotient. Observe that by (2), the element b has order pk . We just need
to verify that it is an element of Bt=j ;k , which amounts to seeing that f satisfies
conditions (i) and (ii) above. But condition (1) implies that

`t
� `tCj.p�1/

� 1 mod pk :

This immediately implies that f satisfies condition (i). Condition (ii) then follows
from condition (5).

Observe that if S is a set of primes which contains ` and does not contain p , then we
have

�` � �S � S2:

Since �` is dense in S2 , the subgroup �S is dense in S2 . We therefore deduce the
following lemma.

Lemma 11.6 For a set of primes S not containing p and containing `, there is an
isomorphism

H 0.�S ; �tM2E2/
Gal.Fp/

Š
�!H 0.�`; �tM2E2/

Gal.Fp/:

In particular, letting `0 be a prime in S , we have a zig-zag

H 0.�`; �tM2E2/
Gal.Fp/

Š
 �H 0.�S ; �tM2E2/

Gal.Fp/ ,!H 0.�`0 ; �tM2E2/
Gal.Fp/:

If `0 also generates Z�p , then the inclusion is an isomorphism. Corollary 7.7 allows us
to deduce the following.

Corollary 11.7 For any prime `0 ¤ ` There is an inclusion

H 0.C.`/�=.p1; v11 //t ,!H 0.C.`0/�=.p1; v11 //t :

If f satisfies Conditions (1)–(4) and .5/` of Theorem 11.3, then it satisfies condition
.5/`0 .

We finish this section by observing that the results of this section combine to give
proofs of some of the theorems stated in Section 1.
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Proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4 Corollary 11.7 implies
Theorem 1.4. The element

ˇi=j ;k 2H 0.S2; �2i.p2�1/�2j.p�1/M2E2/
Gal.Fp/

detects a corresponding Greek letter element

ˇi=j ;k 2 Ext2;�
BP�BP

.BP�;BP�/

in the chromatic spectral sequence if i > 0 and i ¤ pn [16] (if i D pn , then j must
be greater than or equal to pn ). Thus Theorem 1.2 and Theorem 1.3 follow from
Theorem 11.3. Note that the modular forms f D fi=j ;k of Theorem 1.2 and Theorem
1.3 are taken to be holomorphic at the cusps, whereas in Theorem 11.3, they are merely
assumed to be meromorphic at the cusps. This discrepancy is resolved by noting that if
i; j ; k are chosen such that ˇi=j ;k exists in ExtBP�BP .BP�;BP�/, then

t D i.p2
� 1/� j .p� 1/� 0:

Therefore, condition (2) of Theorem 11.3 guarantees that the modular forms in question
are holomorphic at the cusps.

12 Greek letter elements in the Hurewicz image of Q.`/

Since the cosimplicial spectrum Q.`/� is a cosimplicial object in the category of
E1–ring spectra, the equivalence Q.`/' Tot Q.`/� (5-4) allows us to regard Q.`/

as an E1–ring spectrum. In particular, it possesses a unit map

S !Q.`/

which, by Lemma 7.1, localizes to give a map

SE.2/!Q.`/:

In this section we prove the following.

Theorem 12.1 The images of the elements ˛i=j and the elements ˇi=j ;k under the
homomorphism

��SE.2/! ��Q.`/

are non-trivial.

We first will need a lemma.
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Lemma 12.2 The map
�tM1S ! �tM1Q.`/

is an isomorphism for t � 0 mod 4.

Proof Let C be an ordinary elliptic curve over Fp , so that there is an isomorphism
of formal groups

C^ Š bGm:

Let U be the formal neighborhood of the associated point of M.K
p
0
/, which carries a

universal deformation eC =U of C . Let

E D EK
p

0
.U /

be the sections of the sheaf E over U . By Serre–Tate theory, and the deformation
theory of p–divisible groups [6, Section 7.1], we deduce that

U Š Spf.W .xFp/ŒŒx��/

and therefore that E is an even periodic ring spectrum with �0.E/ŠW .xFp/ŒŒx��, with
associated formal group given by eC ^ . The cofiber

E
�x
�!E!E=x

is an even periodic ring spectrum (Elmendorf–Kriz–Mandell–May [8]). The restrictioneC can of the deformation eC to �0.E=x/ŠW .xFp/ is the canonical deformation of C

(the deformation whose p–divisible group splits). The formal group eC ^can is therefore
a universal deformation of Gm=xFp , and we conclude that there is an isomorphismeC ^can Š

bGm

between the formal group for E=x and the multiplicative formal group. In particular,
this implies that there is an equivalence of ring spectra

Kp˝Zp
W .xFp/ŠE=x;

where Kp is the p–adic K–theory spectrum. Now, the unit map S !Kp induces an
inclusion

�2tM1S ,! �2tM1Kp

(it gives the Adams e–invariant). Therefore the unit map for E=x induces an inclusion

�2tM1S ,! �2tM1.E=x/:

However, the unit for E=x is homotopic to the composite

S !Q.`/' Tot Q.`/�!Q.`/0 D TMFp!E!E=x
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because all of the maps in the composite are maps of ring spectra. We deduce that the
maps

�tM1S ! �tM1Q.`/

are injective for t � 0 mod 2. By Corollary 9.7, these (finite) groups are abstractly
isomorphic for t � 0 mod 4 and t ¤ 0. The result for t ¤ 0 therefore is proven. The
cases of t D 0 follows immediately from the fact that the map �0S ! �0Q.`/Š Zp

is a map of rings.

Proof of Theorem 12.1 Consider the map of chromatic spectral sequences:

�kMnSE.2/
+3

��

�k�nSE.2/

��
�kMnQ.`/ +3 �k�nQ.`/

The elements ˛i=j 2 �2i.p�1/.M1S/ are known to be permanent cycles for i > 0, and
therefore map to permanent cycles in the chromatic spectral sequence for Q.`/. By
Lemma 12.2, the images of ˛i=j in �tM1S are nontrivial, and generate these groups
for t � 0 mod 4. Since, by Corollary 8.4, �tM0Q.`/ is zero for t ¤ 0;�1;�2, there
are no non-trivial differentials

d1W �tM0Q.`/! �tM1Q.`/

for t > 0. We deduce that the images of the elements ˛i=j in the chromatic spectral
sequence for Q.`/ are non-trivial permanent cycles, and hence witness the non-triviality
of the images of the elements ˛i=j in ��Q.`/. As a side-effect, we have also determined
that the groups �tM1Q.`/ are generated by permanent cycles for t � 0 mod 4. That,
combined with the fact that �tM0Q.`/ is zero for t positive, allows us to deduce that
there are no non-trivial differentials killing elements of �tM2Q.`/ for t � 0 mod 4.
To complete the proof of the theorem, it suffices to show that the images of the elements
ˇi=j ;k are non-trivial under the homomorphism

(12-1) �tM2S ! �tM2Q.`/

where t D 2i.p2 � 1/� 2j .p � 1/. But, for such t , the map (12-1) is given by the
composite of isomorphisms

�tM2S ŠH 0
c .S2; �tM2E2/

Gal.Fp/

ŠH 0.�`; �tM2E2/
Gal.Fp/

Š �tM2Q.`/

given by Corollary 2.2, Lemma 11.1, and Lemma 7.6.
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