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Kobayashi-Hitchin correspondence
for tame harmonic bundles II

TAKURO MOCHIZUKI

Let X be a smooth irreducible projective complex variety with an ample line bun-
dle L, and D be a simple normal crossing hypersurface. We establish the Kobayashi—
Hitchin correspondence between tame harmonic bundles on X — D and py —stable
parabolic A—flat bundles with trivial characteristic numbers on (X, D). In particu-
lar, we obtain the quasiprojective version of the Corlette—Simpson correspondence
between flat bundles and Higgs bundles.

14J60; 53C07

1 Introduction

1.1 Main results

We explain the main results of this paper. We do not review the history or the background
on the study of Kobayashi—Hitchin correspondence and harmonic bundles, for which
we refer to Liibke and Teleman [11], Simpson [19; 20] or Mochizuki [14], for example.
The notion of regular filtered A —flat bundle and parabolic A—flat bundle are explained in
Section 2.1. (See also Sections 3.1-3.2 of [14]. But note that we use slightly different
notation and terminology.) Since they are equivalent, we will not make a distinction
between them in this introduction. The notion of filtered local system is explained in
Section 6.

1.1.1 Kobayashi—Hitchin Correspondence Let X be a smooth irreducible complex
projective variety with an ample line bundle L. Let D be a simple normal crossing
hypersurface of X'. Our main purpose is to show the following theorem.

Theorem 1.1 (Theorem 5.16, Proposition 2.55, Proposition 2.56) Let (E4,D*) be a
regular filtered A—flat bundle on (X, D). We put E := E|y_p. Then the following
conditions are equivalent.

o (E«,D%) is ur —polystable with trivial characteristic numbers.

e There exists a pluri-harmonic metric h of (E,D*) adapted to the parabolic
structure.

Such a metric is unique up to obvious ambiguity. m|
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Remark 1.2 Theorem 1.1 in the case A = 0 has already been proven in our previous
paper [14]. Hence, we restrict ourselves to the case A # 0 in this paper. a

Corollary 1.3 (Corollary 5.18) Let CkpOly denote the category of py —polystable
regular filtered ). —flat bundles on (X, D) with trivial characteristic numbers. Then we
have the natural equivalence of the categories E) | ),: Ci‘:ly ~ C/\pzly for any A; € C
(i = 1,2). The equivalence preserves tensor products, direct sums and duals. a

Remark 1.4 Let A; € C* (i = 1,2). A Ay—connection D*2 = d” + (A, /A1) -d’
is induced by a A;—connection D*! = d” + d’, which gives the obvious functor
Obv: Ci?ly — Cizly‘ Note that this is not the same as the above functor &, »,.

O

In particular, we obtain a generalization of the Corlette—Simpson correspondence
between flat bundles and Higgs bundles in the so-called nonabelian Hodge theory.

Corollary 1.5 We have an equivalence of the following two categories:

e The category of uy —polystable regular filtered Higgs bundles on (X, D) with
trivial characteristic numbers.

e The category of [ij —polystable regular filtered flat bundles on (X, D) with
trivial characteristic numbers. a

Remark 1.6 C Simpson [18] established these results in the case dim X = 1. O Bi-
quard [1] obtained the correspondence in the case that D is smooth. m|

1.1.2 Bogomolov-Gieseker inequality and a formula for the characteristic num-
bers Let X, L and D be as above.

Theorem 1.7 (Corollary 3.20) Let (E«, D) be a jur —stable regular filtered A —flat
bundle on (X, D). Then the following inequality holds for the parabolic characteristic
numbers for Ey :

Jy parc?  (Ex)

<ch, 7 (E,) <
Lparc 2, (Ex) = 2rank £
It is a generalization of the so-called Bogomolov—-Gieseker inequality. a

In the case A # 0, there exist some formulas to express |’ x par-ch, ; (Ex) in terms
of the data at D, which are valid for any parabolic A—flat bundles. One of them is
comprehensible from the viewpoint of the correspondence between regular filtered
A—flat sheaves and filtered local systems. Let (E4, D) be a regular filtered A —flat sheaf
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on (X, D). As is explained in Remark 1.4, we have the obvious correspondence of a
flat A—connection D* = d” +d’ (A # 0) and a flat connection D*/ =d” +A~1d’. In
particular, we obtain a local system £ on X — D from the flat bundle (E, D*-f )| X—D-
Moreover, the parabolic structure of (Ex, IDD)‘) induces the filtered structure of £, and
we have the more refined claims as in the following proposition.

Proposition 1.8 (Corollary 6.5 and Corollary 6.7) Let C (X, D) denote the category
of filtered local systems on (X, D), and let Ciat(X , D) denote the category of saturated
regular filtered A—flat sheaves on (X, D) for A # 0. Then we have an equivalence
of categories ®;: C(X, D) —> C3*(X, D) such that par-c;(®) (Ls)) = par-c; (L)
and [y par-ch, (1 (L+)) = [y par-ch, ; (L«). The functor @), preserves the i —
stability. a

Let us also describe the formula [} par-ch, 1 (®(Ly)) = Jx par-ch, y (L) in terms
of the c—truncation (o Ex, D*) of saturated regular filtered A—flat bundle ®; (L4). For
simplicity, we assume dim X = 2.

) / par-ch, (¢ E'«)
X

:%Z Z (Re(k_la)+a)2'i’(i,u)'[Di]2

i€S ueKMS(cEx,i)

1
+§Z > Y (Re(A ') +ai) (Re( o) +aj) -7 (Poug.uj).
ieS J#i (u;,uj)eEKMS(cEx,P)
PGD,‘ﬂDj

Here, u = (a,a), u; = (a;,o;) and u; = (aj,a;) denote elements of the KMS—
spectrum of (¢ E,D*). We put r (i, u) := rankiGrf’E(cE) foru e CMS(cEx,i),and
r(P,ui,uj) :=rankPGr5;’_ﬂ?uj)(cE|p) for (uj,uj) e CMS(cE, P)and P D;ND;j.
And, [D;]? denote the self-intersection number of D; .

Remark 1.9 We also have some other formulas for [ par-ch, (cE *) (Proposition
3.22) or some vanishings for the data of (¢ Ex, D*) at D (Corollary 3.20 and Proposition
3.22). O

Remark 1.10 From Theorem 1.7 and Proposition 1.8, we obtain the Bogomolov—
Gieseker inequality for wy —stable filtered local systems (Corollary 6.8). This kind of
inequality is discussed by Simpson [21]. O
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1.1.3 Vanishing of the characteristic numbers and existence of the Corlette—
Jost-Zuo metric Due to Proposition 1.8, we obtain the vanishings par-deg; (E«) =
/ 'y par-ch, 1 (Ex) = 0, when (E«, V) corresponds to a filtered local system whose
parabolic structure is trivial, in other words, Re(a) 4+ a = 0 is satisfied for any element
of the KMS—spectrum u = (¢, ) € KMS(i) and for any i € S. We can apply such
a consideration to the canonical prolongation of a flat bundle due to P Deligne [3].
Let (E,V) be a flat bundle on X — D. Deligne showed [3, Section I1.5] that there
uniquely exists a holomorphic vector bundle E on X satisfying (i) E lx-p = E,
(i) VECE® Q;(’O(log D), (iii) the real parts of any eigenvalues of Res;(V) are
contained in [0, 1[. (Note that he also studied the case in which D is not necessarily
normal crossing. See also the nice textbook by Hotta, Takeuchi and Tanisaki [8].) In that
case, we have the naturally defined parabolic structure F for which Re(o) +a =0 is
satisfied for any element of the KMS—spectrum (a, o). Hence, we obtain the vanishing
par-deg; (E,F) = Ix par—chz’L(E, F)=0.

This vanishing is significant to understand the existence theorem for the Corlette—Jost—
Zuo metric from the viewpoint of Kobayashi—Hitchin correspondence. Recall the
existence of a tame pure imaginary pluri-harmonic metric for a semisimple flat bundle
(E,V) on X — D, which we call the Corlette—Jost—Zuo metric. (See Corlette [2] for
the case D = @& and Jost and Zuo [10] for the general case. See also Mochizuki [15].)
Since semisimplicity of (£, V) is equivalent to the py —polystability of (E ,F, V) (see
Sabbah [16], for example), we can derive the existence of the Corlette-Jost—Zuo metric
from Theorem 1.1 and the above vanishing of the characteristic numbers. (See Section
5.3.3)

1.2 Methods and difficulty

1.2.1 Perturbation of parabolic structure Let us explain our basic strategy in [14]
and this paper. See also Section 1.2.2 of [14].

Simpson [17] showed a very nice result on the existence of Hermitian-Einstein metrics
for a Higgs bundle on open manifolds, which can be generalized for flat A—connections
for any A, as he mentioned in [18]. To apply it, however, we need to construct an
initial metric whose pseudo-curvature satisfies some finiteness condition. In the one
dimensional case, a construction was done by Simpson himself. The nilpotent part of the
residue on the graded pieces made it more complicated than that for ordinary parabolic
bundles. If D is smooth, it was generalized by Biquard. However, in the normal
crossing case, it is difficult to generalize their construction without any assumption on
compatibility of the nilpotent parts of the residues.

To overcome it, we introduced the method of e—perturbation in [14]. Let us briefly
recall it for flat A—connections. (See Section 2.1.6 for more details and precise.)
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Let X be a smooth irreducible projective surface, and let D be a simple normal
crossing divisor of X . Let (E,F,D*) be a parabolic A—flat bundle on (X, D). On
each graded piece ! Grf (E), we obtain the filtration by vector subbundles such that
it gives the weight filtration of the nilpotent part of Grf (Res; (D*)) at the generic
point of D;. Mixing it to the parabolic filtration, for any small € > 0, we take an €—
perturbation F© of the parabolic structure so that (E,F©, IDD}‘) is graded semisimple,
ie, the residues are essentially semisimple. A construction of an initial metric for
(E,F@, ]D))“) is not difficult, which can be done in a rather naive way (Section 3).
Hence, if (E,F©, ]D))‘) is py —stable, we obtain the existence of a Hermitian-Einstein
metric Ay of (E|x— p.D*) which is adapted to F© for € > 0. In particular, we
obtain the Bogomolov—Gieseker inequality for (E, F©, D*).

Then we can easily derive the Bogomolov—Gieseker inequality (Theorem 1.7) since
the characteristic numbers continuously depend on the parabolic weights. As for
the existence of a pluri-harmonic metric (Theorem 1.1), we need much more work.
Ideally, the limit lim¢_, /{5 should give the desired pluri-harmonic metric for the
given parabolic A—flat bundle (E,F,D*). However, it is not easy to show such a
convergence. That is the main problem which we have to overcome in this paper.

Note that we also obtain formulas like (1) by using the method of € —perturbation.

1.2.2 Difficulty In [14], we gave an argument to deal with such a convergence
problem for the case A = 0. The argument doesn’t work in the case A # 0. Let us
explain the difference heuristically and imprecisely in the case A = 1. Since we have
par-deg; (E,F©) = 0, the metrics hgﬁ give harmonic metrics in this case. Recall that
a harmonic metric can be regarded as a harmonic map, at least locally, and that we
know a well established argument for the convergence of a sequence of harmonic maps
if their energies are dominated. (See Eells and Sampson [6].) In our case, the energies
of h(ﬁ: over X — D are not finite, in general. Even if we consider the energies over a
compact subset Z C X — D, it is not clear how to derive an estimate uniformly in €.

If A =0, the Higgs field is fixed for this convergence problem. Although the metrics
are varied, the eigenvalues of the Higgs field are fixed. Hence, we can derive the
estimate of the local L2—norms of the Higgs field with respect to the varied metrics,
independently from €. Since such L2—norms play the role of the energies, the local
convergence can be easily shown in the case A = 0, although we need some more
consideration for the global convergence. On the contrary, even the local convergence
is not easy to show in the case A # 0.

1.2.3 Convergences Our argument to attack this convergence problem consists of
three steps, which is a variant of the classical one due to S K Donaldson in [4; 5].
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Step1 We study a similar convergence problem in the curve case where the Kobayashi—
Hitchin correspondence was established and well understood by the work of Simp-
son [18]. Let C be a smooth projective curve, and let D be a divisor of C. Let
(Ec,Fc.DL) be a A-flat stable parabolic bundle on (C, D), and let F be -
perturbations. Note det(E¢c,Fc, ID%) =det(Ec, F(CE), ID%). We can take a sequence
of harmonic metrics h(é) for (Ec,F (Ce),ID)é,) (e = 0) such that deth(é) = deth(co),
according to the result of Simpson. We will show that the sequence {h(é) e > 0}

converges to hg) .

This is not so easy as it looks. We argue as follows. Let /) (¢ > 0) be initial metrics

for (Ec.F£, D}é)’ and let s© be the endomorphism determined by /Y = AfS) - 5.
We can show the following relations:

M (h;)

in’

H]D)}‘s(é) ”iz,h};’,we < /‘tr(s‘e)-G(h;))H dvole,

he) <0, |10g5(6)}hﬁ> < Cre+ Coe- M) hE).

Here, M (hfn), h(é)) denote the Donaldson functionals, and w, denote appropriate
metrics of C — D. (See Lemma 2.50 for the first, Proposition 2.41 for the second, and
Lemma 4.14 for the third.)

Moreover, we show that C; ¢ can be taken independently from e for some we (Propo-
sition 2.49), and we can construct appropriate family of initial metrics h;;) such that
G(h;;)) are uniformly bounded with respect to w, and h;en) (Sections 4.2-4.4). Then
we obtain the L] -boundedness of the family {s‘©, (s¢)~! ‘ € > 0}. Then by using a
standard bootstrapping argument, we can show that the sequence {5} is convergent

to the identity in the C®°—sense, ie, {h(é’} is convergent to ~2” (Proposition 4.1).

Step 2 To argue the convergence of {hﬁﬁ} on X — D, we consider the convergence
of their restrictions to almost every ample curves in X . Note the Mehta—Ramanathan
type theorem for regular parabolic A—flat bundles (Proposition 2.21). Under the setting
of Step 1, it is rephrased as follows. We consider hermitian metrics h(é) = h(Ce) 3@

for € > 0, with the following properties:
. detg(é) = deth(ce).
o [IGHE)> —> 0.

. HID))‘E“) H ? < 0. (We do not need uniform bound.)

Then we can show that {Z(Ce)} is convergent to hg'. (See Section 5.1 for more precise
claims.)
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Step 3 Let /ic be a harmonic metric of (£, F, ]D))‘)|C. Applying the result in Step 2
to hij)E| c= h(ce), we can show that {h;fI’E | ¢ 1s convergent to ¢ almost everywhere
on C for almost every very ample C C X . Therefore, we obtain a metric /4y defined
almost everywhere on X' — D such that /y|c = hc almost everywhere on C for
almost every curve C C X . With some more additional argument, we can show that

hy gives the desired pluri-harmonic metric, indeed (Section 5.2).

Remark 1.11 Perhaps, the argument of this paper may be applicable in the Higgs
case, to show the existence of a pluri-harmonic metric. However, we remark that the
argument for a convergence given in [14] can be applied in a wider range. In fact, we
used it to discuss the convergence of a family of harmonic bundles induced by the
constant multiplication of Higgs fields. a
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2 Preliminaries

2.1 Generality of regular filtered A —flat sheaves in complex geometry

We give a generality of regular filtered A—flat sheaves in complex geometry. Recall
that the notions of parabolic bundle, filtered bundle and their characteristic numbers
are explained also in Sections 3.1-3.2 of [14]. We will use the notation there.

2.1.1 Regular c—parabolic A —flat sheaf and regular filtered A—flat sheaf

A—connection Let Y be a complex manifold, and let £ be an Oy —module. Recall
that a A—connection of & is defined to be a linear map D*: £ — £ ® Q;’O satisfying
the twisted Leibniz rule D*(f -s) = f-D*(s) + A - dy(f) - s, where f and s
denote holomorphic sections of Oy and & respectively. The maps D*: £ ® Q20 —
E®QPTLO are induced. If D o D* =0 is satisfied, it is called flat.
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Regular c—parabolic A-flat sheaf Let X be a complex manifold, and let D be a
simple normal crossing divisor with the irreducible decomposition D = | J;cg D;. Let
c € RS The i —th component of ¢ is denoted by ¢;. Let Ex = (€, {{F ‘ ieS}) beac-—
parabolic sheaf on (X, D). Namely, £ is a torsion-free Oy —coherent sheaf, and “F are
increasing filtrations of £ indexed by Jc; — 1, ¢;] such that (i) “F,(£) D £ ® Ox (—D;),
(i) Fa(€) = Na<p Fp (&), (iii) the sets Par(Ex. i) := {a |'Cr} (€) # 0} are finite,
where {Gr’ (€) := F4(E)/ F<a(&). (See Section 3.1 of [14] for more details on
c—parabolic sheaf.)

A flat logarithmic A—connection of & is defined to be a map D*: £ — £QQ2!%(log D)
satisfying the same twisted Leibniz rule as above, the flatness D* o D* = 0 and
D*(F,) C iF, @ 21:%(log D). Such a tuple (£, D*) will be called a regular parabolic
A—flat sheaf. A morphism of regular filtered A—flat sheaves (&, ]D)i‘) — (&4, ]D);‘)
is defined to be a morphism of the underlying Oy -modules £ — &, compatible
with A—connections and the filtrations.

If the underlying c—parabolic sheaf £, is a c—parabolic bundle in codimension k, it is
called a regular A—flat c—parabolic bundle in codimension k.

Remark 2.1 We do not recall the precise definition of c—parabolic bundle. See
Definition 3.12 of [14]. Although it is not difficult, it is a little complicated to state. It
briefly means that F is a locally free Oy —module, and that iGr;r (€) are locally free
Op, —modules. However, we need some compatibility conditions at the intersection
of divisors in the case dim X > 3. Note that it is equivalent to filtered bundle below,
and J Iyer and C Simpson [9] and C Hertling and C Sevenheck [7] gave different but
equivalent conditions. a

Remark 2.2 We often omit to state “regular” in this paper, because we always assume
regularity. The nonregular case is studied in [13]. O

Regular filtered A-flat sheaf Let Ex = (E,{cE}|c € RS) be a filtered sheaf on
(X, D). Namely:
e E is a torsion-free coherent Oy (* D)—module.

e {.E} is an increasing filtration by coherent Oy —submodules of E indexed
by RS such that (i) Eix—p = cE|x—p forany ¢, (ii) o £ = Na<pbE, (iii)
E= UaGRS aE'

e vyE=4E®Ox(—)_nj-Dj) as submodules of E, where a’ =a—(n; | j € S).
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e For each ¢ € RS, let iF be a filtration of (E indexed by ]c; — 1, ¢;] given as
follows: .
"Fa(eE):= | ] aE.

a;<d
a=<c

Then the tuple (Ex := (E,{F|i € S}) is a c—parabolic sheaf, ie, the sets
{a ‘ iGrZ:(cE) = (0} are finite.

See Section 3.2 of [14] for more details on filtered sheaf. Each (E . is called the
c—truncation of E,. We can reconstruct E4 from (E. It is easy to observe that the
notions of c—parabolic sheaves and filtered sheaves are essentially equivalent. If each
c—truncation is a c—parabolic bundle, E is called a filtered bundle. If there exists a
closed subset Z C X such that (i) codimy (£) > k, (ii) E x—_ 7 is a filtered bundle,
then E, is called a filtered bundle in codimension k.

A regular flat A—connection of E, is defined to be a flat A—connection D* of E
satisfying D* (ce) Cc EQS2 )1(’0 (log D). Such atuple (Ey, D%) is called a regular filtered
A—flat sheaf. A morphism of regular filtered A—flat sheaves (E, ]D)i‘) —> (Eox, ]D);‘)
is defined to be a morphism of the underlying Oy (* D)-modules compatible with the
A—connections and the filtrations. It is easy to observe that the categories of regular
filtered A—flat sheaves and regular c—parabolic sheaves are equivalent, given by the
functor taking c—truncations. We will not have to distinguish them so carefully.

If the underlying filtered sheaf is a filtered bundle in codimension k, it is called a
regular filtered A—flat bundle in codimension k.

Lemma 2.3 A regular filtered A—flat sheaf on (X, D) is a regular filtered A—flat
bundle in codimension one.

Proof We have only to check that there exists a subset W C D with codimy (W) > 2,
such that ¢ | y\p is a c—parabolic bundle on (X' \ W, D\ W) for some ¢. We can take
W as U#J— D;NDj C W, and hence we may assume D is smooth. Since £ =E|x_p
is locally free and (E is torsion-free, we can take W’ C D with codimy (W') > 2
such that ¢ E|x_p is locally free. We may also take a subset W” C D\ W' with
codimy (W") > 2 such that the parabolic filtration of ¢ E| p\gw uw ) is filtration in
the category of vector bundles. Then W = W’ U W gives the desired subset. O

Stability If X is an n—dimensional projective variety with an ample line bundle L,
we can define the p—stability, u—semistability, and p—polystability of regular filtered
A—flat sheaves with respect to L, in the standard manner. “j—stability with respect to
L” will be called p —stability, in this paper.
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Remarks about the terminology and the notation We give some remarks about the
terminology “parabolic structure”. We often study a regular c—parabolic A—flat bundle
on (X, D) for some ¢ € RS. In our most arguments, a choice of ¢ are not relevant.
In fact, c is fixed to be (0, ...,0) in many references where the parabolic structure is
investigated. However, it is sometimes convenient to avoid the case ¢; € Par (¢ Ex, i),
for example, when we consider a perturbation of the parabolic structure. That is the
main reason why we consider general c—parabolic structure.

In the following argument, we often assume c¢; & Par(cE«,i) implicitly, and we
often omit to distinguish ¢, and use the terminology “parabolic structure” instead
of “c—parabolic structure”, when we do not have to care about the choice of ¢. The
author hopes that there will be no risk of confusion and that it will reduce unnecessary
complexity of the description.

Relatedly we have the remark about the notation for parabolic bundles. We often use
the symbols (£, F) or . E« to denote a c—parabolic bundle, when we would like to
distinguish ¢. The symbol “¢ E” is also appropriate and useful, when we regard it as a
prolongment of a locally free sheaf £ on X — D. But, in some case, a vector bundle
is given not only on X — D but also on X from the beginning. And, as is said above,
we will not care about the choice of ¢. In such a case, we often prefer the symbols
(E,F) or E, for simplicity of the description.

One more remark is that we will not distinguish regular ¢—parabolic sheaves and regular
filtered A—flat sheaves, because the notions are essentially equivalent.

2.1.2 KMS-structure, graded semisimplicity and SPW-condition We prepare
some notation and conditions. Let (E4, D) be a regular filtered A—flat bundle over
(X, D). For simplicity, we consider only the case A # 0. Let us take any element
ce RS, and the c—truncation (Eyx of E,. Let Dy := ﬂie[ D; for any subset I C S.
We have the induced filtrations ‘F (i € I) on ¢E|p,. For ae[];c7lei —1,¢i], we put

'Fa(cE\p,) I ‘
. TFa(cE\p,) =) 'Fai (E\D,)-
E:bia IFb(cElDI) a(c |D1) . a (C |D1)

We obtain the following sets:

IGrE(E) =

Par(cEx. 1) :={a| 'Grf (cE) #0}. Par(Bx.1):= | | Par(cEx.I)

ceERS

Any elements of these sets are called parabolic weights. Due to the regularity, we have
the residue endomorphism Res; (D*) (i € I) on E |D; » Which preserves the filtrations
JF (j € I). (Such a tuple of filtrations and endomorphisms is called KMS—structure.)
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Hence we have the induced endomorphism 7 Grf Res; (D*) of { Grf (ce). We remark
that the eigenvalues of Res;(D*) are constant on D;. In particular, we obtain the
generalized eigen decomposition:
"Gl (E)= P "Gl  (E).
acC!

We put KMS(cEx, I) :={(a, &) € [[;e;(ci — 1, ¢i]x C) | !Gri o (¢ E|p,) # 0} . The
sets

2) KMS(Ex. 1), KMS(ExI):= | ] KMS(Ex.1)
ceRS

are called the KMS—spectrum.

Remark 2.4 In our other papers [15; 14; 13], an element of the above sets (2) is called
a KMS—spectrum. We follow the suggestion of the referee in this paper. a

Remark 2.5 Although we assumed that (E,, D*) is a regular filtered A—flat bundle,
the above sets make sense for I C S with |I| < k if (E«,D%) is a regular filtered
A—flat bundle in codimension k. In particular, we always have the sets Par(Ex, i),

KMS(Ey, i), etc.,fori € S. O

Definition 2.6 We introduce two auxiliary conditions on (Ey, D*).

¢ (Graded semisimple) The nilpotent parts of Gr5 Res; (D*) € End(i Grfj (cE ))
are 0 forany i € S, c€ RS and a € R.

e (SPW) There exist a positive integer m and real numbers y; (i € S) such that
Par (Ex,1) is contained in {y; + p/m } p € Z} for each i.

We will study (¢ E«, D*) satisfying these conditions in Section 3 as a preparation for
our main theorem.

2.1.3 Saturated regular filtered A —flat sheaf We introduce a nice class of regular
filtered A—flat sheaves. Let (E4, D*) be a regular filtered A—flat sheaf on (X, D).

Definition 2.7 (E.,D?%) is called saturated, if there exists a subset Z C D with
codimy (Z) > 2 such that each , E' are determined on , E|x_ 7z . Namely, for any open
subset U C X, the following holds:

3 aE(U) =aE(U\Z)NE)

It is easy to see that a regular filtered A—flat bundle is saturated.
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Lemma 2.8 If (E,, D*) is saturated, each c—truncation (E is reflexive.

Proof Recall we have already known that ( £ is a filtered bundle in codimension one
(Lemma 2.3). Let (EVY denote the double dual of . E. We have the naturally defined
injective map E —> (E"Y". Due to the saturatedness, any sections of £ naturally
gives sections of (E, ie, ¢ E is isomorphic to (EVY. O

Lemma 2.9 A saturated regular filtered A —flat sheaf (E«, D*) on (X, D) is a regular
filtered A —flat bundle in codimension two.

Proof We have only to show that there exists a subset Z C D with codimy (Z) > 3
such that ¢ Ey| y_z is a c—parabolic bundle on (X — Z, D — Z) for any ¢. Because
c+bE =cE®O(D- D), where b-D =) ..¢ b; - D;, we have only to show such a
claim for a finite number of tuples ¢. Due to Lemma 2.8, there exists a subset Z’ C D
with codimy (Z’) > 3 such that ¢ E|y_z is locally free. Hence, we can assume that
¢E is locally free from the beginning.

We have the parabolic filtration ‘F = {{F, |¢; — 1 <a < ¢;} of E |D; - We can take
the saturation ifa of iF,. Namely, we put G4 := ¢E|p, / iF,, and let G4, denote
the torsion-part of G,. Let m4: ¢E|p; —> G4 denote the projection, and we put
iﬁa = 7Ta_1(Gator)-

Lemma 2.10 ‘F, =F,.

Proof By our construction, we have F, C ’fa, and we also know that there exists a
subset W C D; with codimp, (W) > 1 such that 'Fy | p,—w ="Fy| p,—w -

Let P be any point of D;. Let g be a germ of a section of F, at P,andlet G bea
local section of ¢ £ on an open neighbourhood U of P in X such that the germ of the
restriction of G to D; gives g. Then G|y gives a section of ¢ E on U \ W, where
d = (cj’.) is determined by cJ’. =c¢j (j #1) and ¢; = a. Due to the saturatedness, G is
a section of ¢ E on U . Thus, g is the germ of a section of iFa, and iFa = ’fa. Hence,
we obtain Lemma 2.10. |

Let us return to the proof of Lemma 2.9. Due to Lemma 2.10, the associated graded
vector bundle !Grf (cE|p,) is torsion free. Hence, there exists a subset Z lf’ C D; with
codimp, Z;' > 2 such that 'Fp,\ zy is a filtration in the category of vector bundles on
D!\ Z!.Then ¢Ey| x—z» is a c—parabolic locally free sheaf on (X —Z", D —Z").
Thus we are done. O

Remark 2.11 By the correspondence of saturated regular filtered flat sheaves and
filtered local systems, we can obtain more concrete picture of the saturated regular
filtered flat sheaves. See Section 6. |
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2.1.4 Canonical decomposition Let X be a smooth irreducible projective variety
with an ample line bundle L. Let D be a simple normal crossing hypersurface of X .
Let (£, D*D) (i =1,2) be puz —semistable regular c—parabolic A—flat sheaves on
(X, D) such that uz (") = ur(EP). Let f: (EL,D*V) — (£2 D*@) be a
nontrivial morphism. Let (K, ]D),)&) denote the kernel of f', which is naturally equipped
with the parabolic structure and the flat A—connection. Let Z denote the image of f,
and 7 denote the saturated subsheaf of £@ generated by Z. The parabolic structures
of £"” and £ induce the parabolic structures of Z and 7, respectively. We denote
the induced parabolic flat sheaves by (Z, ID)%) and (f*, ]D)%). The following lemma
can be shown by the same argument as the proof of Lemma 3.9 of [14].

Lemma 2.12 (K4, D%}), (Zy,D%) and (f*,D%) are also [y —semistable such that
wr(Ks) = nr(Zy) = pnr(Zy) = nr(EY). Moreover, I, and I, are isomorphic in
codimension one. a

Lemma 2.13 Let (£, D*@) (i =1,2) be 1. —semistable reflexive saturated regu-
lar parabolic ) —flat sheaves such that ur (E") = 1. (). Assume either one of the
following:

(1) One of (£, D*®) s yu —stable, and rank(£") = rank(£) holds.
(2) Both (£, D* @) are puy —stable.

If there is a nontrivial morphism f: (£, D*1) — (€2, D* @), then f is an
isomorphism.

Proof If (£, D* M) is ps —stable, the kernel of f s trivial due to Lemma 2.12. If
(P D} @) is py —stable, the image of f and £ are the same at the generic point
of X . Thus, we obtain that f is generically isomorphic in any case. Then we obtain
that f is isomorphic in codimension one, due to Lemma 3.7 of [14]. Since both gD
are reflexive and saturated, we obtain that f is isomorphic. a

Corollary 2.14 Let (4, D%) be a ;1 —polystable reflexive saturated regular parabolic
A—flat sheaf. Then we have the unique decomposition:

(Ex, DY) = @(gin’ Dk(j)) ®Ccm),

J

Here, (£, D*D)) are puj —stable with i (EY’) = u(Ex), and they are mutually
nonisomorphic. It is called the canonical decomposition in the rest of the paper. O
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2.1.5 Prolongment of flat subbundle and a Mehta—Ramanathan type theorem
Mehta—Ramanathan type theorems are one of the most important and standard tools
in the study of stable objects on projective varieties (Proposition 2.21). In the case of
regular filtered A—flat sheaves, it can be proved in a much more elementary way.

To begin with, we recall a well known fact about regular singularity of a flat meromor-
phic connection.

Lemma 2.15 Let E be a holomorphic bundle on a disc A, and let V be a logarithmic
flat connection of E on (A, O),ie, V(E) C E® QlA’O(log 0). Let f be a fiat section
of E\p+. Then f naturally gives a meromorphic section of E . O

Corollary 2.16 Weput X = A, x Al and D = {0} x A” . Let E be a holomorphic
vector bundle on X and V be the logarithmic flat connection of E on (X, D). Let ¢
be a flat section of E|x_p.

e ¢ gives a meromorphic section of E .

* Assume that e is holomorphic on E and that ejg # 0 for some Q € D. Then
ejor #0 forany Q' € D.

Proof We may assume that we have a holomorphic frame v of £. We have the
expression ¢ = Y fi(z, w)-v;. When we fix w, then f;(z, w) are meromorphic with
respect to z. Thus, we have the least integer j(w) such that the orders of the poles of
Ji(z, w) are less than j(w). We put Sj :={w | j(w) < j}. We have D = Uj S;. If
Sj # D, the measure of S; is 0. Hence, we obtain S; = D for some j, which means
e is meromorphic. Thus, we obtain the first claim.

Assume that e is holomorphic and that ¢g # 0 for some Q € D. Recall that we have
the induced connection PV of E |p - Namely, for any holomorphic section f € E|p,
take a holomorphic F € E such that F|p = f, and then Dy(f) = V(F) p is well
defined. Because DV(e‘ p) = 0, we obtain the second claim. ad

Corollary 2.17 Weput X = A", D; ={z; =0} and D = J;_, D;. Let (E, V) be
a logarithmic connection on (X, D), and let e be a flat sectionon X — D.

e ¢ gives a meromorphic section of E .

* Assume that e is holomorphic. We put D} := D; \Uj# Dj. If ejg # 0 for
some Q € D7, we have e|g: # 0 forany Q" € D;. O
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Let X be a complex manifold, and let D be a normal crossing divisor of X. Let
(E,V) be aflat bundle on X — D. Recall that P Deligne gave the extension E of E
in [3], such that (i) E|x_p = E, (ii) V(E) C E ® 2(log D), (iii) the real parts of
the eigenvalues of Res; (V) are contained in {0 <¢ < 1}. Such an extension is unique,
or in other words, it is unique as the subsheaf of ¢« E, where ¢ denotes the inclusion
X —D — X . If A #0, the prolongment can also be done for A—flat bundle (E, D)
on X — D, or more precisely, for the associated flat bundle (FE, D*f ).

Lemma 2.18 Let (E4,D*) be a regular filtered A—flat bundle on (X, D), and we
put (E,D*) := (E*,D)‘)|X_D. Let (E,]D))“) be the Deligne extension of (E,D*).
Then we have E = E ® Ox (xD), where Oy (* D) denotes the sheaf of meromorphic
functions on X whose poles are contained in D.

Proof We have the naturally defined flat section s on Hom(.F, E )i x—p- Due to
Corollary 2.17, s is a meromorphic section, and hence we obtain the flat inclusion
E—E® O(N - D) for some large integer NV, which induce the morphism E =
UcE = ¢E Q@ O(xD) — E ® O(xD). Similarly, we obtain the inclusion £ —>
E®O(N - D), and E® O(xD) — E. They are clearly mutually inverse. ad

Lemma 2.19 Let (Ey,D*) be a regular filtered A—flat sheaf on (X, D), and let
(E D*) be as in the previous lemma. Then we have E ~ E® O(* D) naturally.

Proof Due to Lemma 2.3 and Lemma 2.18, there exists a subset W C D with
codimy (W) > 2 such that E| y _p =~ E® O(*D)|x—w . Let us fix ¢. There exists a
large integer N such that we have ¢ E |y _y C E@O(N~D)|X_W. Since E is locally
free, we obtain (E C E ® O(N - D), and thus E C E® O(*D). On the other hand,
there exists a large integer N’ such that E|X—W CE®O(N'- D) x_w. Hence,
E C.EVV®O(N'-D), where (EVV denotes the double dual of  E . Hence, we obtain
EQ®O(D) C EYY @ O(xD). Itis easy to see (EVY ® O(xD) ~ E @ O(xD).
Thus we are done. a

Lemma 2.20 Let (E4,D%) be a regular filtered A—flat sheaf on (X, D), and we put
(E,D*) := (E*,DK)U(_D. Let E’ be a A—flat subbundle of E. Then we have the
corresponding regular filtered A —flat subsheaf E/, C E such that . E’ are saturated in
cE.ie, cE/ E’ is torsion-free.

Proof Let E denote the Deligne extension of (£, ]D))‘) We have the correspondlng
subbundle £’ C E. Therefore, we obtain E := E’ @ O(xD) C E ® O(xD) =

For each ¢, the c—truncation ¢E’ is given by the intersection of (£ and E' in E. Or
equivalently, . E’ can be given by the intersection of ¢ E and E7(N -D) in E (N-D)
for a sufficiently large N . Thus, we obtain E], C E. |
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Let us show the Mehta-Ramanathan type theorem for regular filtered A—flat sheaves.
Let X be a smooth irreducible projective variety with an ample line bundle L and
a simple normal crossing divisor D. Let (E4, D*) be a regular filtered A—flat sheaf
on (X, D). Let N be a sufficiently large number. We can take a generic hyper-plane
section Y of L®N satisfying the properties: (i) Dy := Y N D is simply normal
crossing in Y, (ii) w1 (Y \ D) — 7 (X \ D) is surjective.

Proposition 2.21 Assume dim X > 2. Then (E«,D*) is jy —stable, if and only if
(Ex, DY)y is p —stable.

Proof Letus fix ¢. If W C ¢ E destabilizes, the restriction W)y clearly destabilizes.
Hence, the p —stability of (¢ Ex, ]D))‘)|y implies the puz —stability of (¢Ex, D*). As-
sume (cE*,]D))‘)|y is not py —stable, and let W be a subsheaf of ¢E|y satisfying
D*W)CcW® Q;’o(log Dy) and par-deg(Wy)/ rank(W) > par-deg(. E«)/ rank E .
Let Q be any point of X — D. Take a path y connecting Q and a point P of Y \ D.
By the parallel transport along the path, we obtain the vector subspace Wé CE|g.Itis
independent of choices of P and y, and we obtain the flat subbundle W' C . E|y_p.
Due to Lemma 2.20, we obtain the saturated subsheaf W’/ C <E. By a general
argument, it can be shown that there exists a subset Z C D with codimy (Z) > 2 such

that WQ x_z is a parabolic subbundle of . E|x_z. Then it is easy to check that w’
destabilizes. m|

2.1.6 Perturbation of parabolic structure We recall the method of perturbation of
parabolic structure, which is one of the main ideas in [14] and this paper.

Let X be a smooth projective surface with an ample line bundle L, and D be a simple
normal crossing hypersurface with the irreducible decomposition D = | J;cg D;. Note
that each D; is smooth by the assumption. Let (. £, F, D*) be a regular c—parabolic
A—flat bundle over (X, D) for some ¢ € RS. Assume A # 0. We also assume
¢; € Par(.E,F,i) foreach i € S, for simplicity. Let V; denote the nilpotent part of
the induced endomorphism Grf Res; (D*) on iGrf (¢E). We would like to consider
perturbation of parabolic structure, as in Section 3.4 of [14]. First, we will recall a
general construction. Then we will give two kinds of more specified perturbations.

Let 1 be a generic point of D;. We have the weight filtration W), of the nilpotent map
Nip on Gt (.E),, which is indexed by Z. Then we can extend it to the filtration W
of !Grf (.E) in the category of vector bundles on D; because D; are smooth curves.
By our construction, N;(Wj) C Wy_,. The endomorphism Res; (D*) preserves the
filtration W on !Grf (¢ E), and the nilpotent part of the induced endomorphisms on
Gt (i Grf (E )) are trivial. Recall that the flat A—connection D* locally induces the
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A—connection ‘D* of the vector bundle (E |p; on D;. Since iGeF (iID))‘) commutes
with Res; D)‘, it preserves the filtration W',

Let us take a refinement of the filtration ‘F for each i . For any a €]c; — 1, ¢;], we have
the surjection 7 : iFa(cE|Di) — iGrf(cE). We put ’fa,k = na_l(Wk). Thus, we
obtain the increasing filtration 'F indexed by Jc; — 1, ¢;] X Z with the lexicographic
order. Obviously, the set S; := {(a, k) €le; — 1, ¢i] x Z| "Grgl,k) # 0} is finite.

Let us explain an e—perturbation. Let ¢;: S; —>]ci—1, ¢;] be increasing maps such that
lpi(a, k)—a| < C-e for some C > 0. (Since we are interested in the family of filtrations
F© (e > 0), this condition makes sense.) Then 'F and @; give a c—parabolic filtration
F© = (‘F© | i € S), and we obtain a regular c—parabolic A—flat bundle (. E, F©, D*)
called an e—perturbation of (.E,F, D*). We mention two properties which are clear
from the construction.

e We have the following convergence in the cohomology group H*(X,R).

lim par-c, (. E,F©) = par-c, (. E,F),

e—>0
lim par-ch, (. E, F“) = par-ch, (. E, F)
€e—0
(See Sections 3.1.2 and 3.1.5 of [14] for par-c;(¢£.F) and par-ch,(.E.F).)
o (.E,F© D*) is graded semisimple (Definition 2.6).

The following proposition is standard. (See Proposition 3.28 of [14], for example.)

Proposition 2.22 Assume that (cE ,F, ]D))‘) is pur —stable. If € is sufficiently small,
the e —perturbation (cE,F©, ID))‘) is also g —stable. ]

We will use two kinds of perturbations ¢; of weights.

(I) The image of ¢; is contained in Q for each i € S. This kind of perturbation
will be used to obtain a formula to express the parabolic characteristic numbers
in terms of the boundary data (Section 3.5).

(II) For simplicity, we assume € = m~! and 0 < 10rank E - € < gap(.E,F). (See
Section 3.1 of [14] for gap.) Let i € S. For each a € Par(.E,F), we take
a'(e,i)em™'-Z such that |a’(e,i)—a| <m™!. Let L(¢,i) € R be determined
by the following:

L(e,i) -rank(E) := Z(a/(e, i)—a)-rank'Grf (.E)
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Then we put a(e,i) := da’(e,i) — L(e,i) and ¢(a,k) := a(e,i) + k -€. By
construction, we have the following equality:

Z(p(a, k) -rank(iGrik(cE)) = Za-rank(iGrf(cE))
a.k a

Hence, we have par-c,(cE,F) = par-c; (. E,F©). For each i, we also have
some —1/m < y; <0 such that

Par(E.F,i) C{ci+yi+ p/m|pe€l<o, =1 <yi+ p/m =0}.

In other words, (cE, F©,D*) satisfies the SPW-condition (Definition 2.6).

Remark 2.23 The construction given in this subsection is valid, when the base mani-
fold X is a curve. However, some modification would be required in the case dim X > 3,
because a filtration at the generic point D; may not be extended to a filtration by vector
bundles on D; if dim D; > 2. O

2.2 Generality for A —connection in the C °°—category

We give some generality for A—connections in the C°°—category. They are straight-
forward generalizations of the argument for Higgs bundles or flat bundles given in
Simpson’s papers (for example [17; 19]), and hence we will often omit to give a detailed
proof. For simplicity, we will assume A # 0.

2.2.1 The induced operators Let X be a complex manifold, and (FE, ]D))‘) be a flat
A—connection on X . We have the decomposition of D* into the (0, 1)—part d’y, and the
(1, 0)—part d'; . The holomorphic structure of E is given by d,. Recall that the twisted
Leibniz rule d/ 5 (fv)=10x(f)v+ f-dv holds for feCoo(X) andveC>®(X,E).
Let /1 be a hermltlan metric of E. From dy, and h, we obtain the (1,0)—operator
8’ ,, determined by h(u,v) = h(dgu,v) + h(u, 8y V). From d; and h, we obtain
the (0 1)—operator &' , determined by Adh(u, v) = h(dzu,v) + h(u, 8% ,v). We
remark that §'; e v) = A-Oxf v+ f-8" ., (v). We obtain the operators

- 1 1
0ppi=———=(die+A8"% ), 0gp:= rdr + 68
(4) E.h 1+|)L|2( E+ E,h) E.h 1+|)\|2( E+ h)
T 1 3 an "
0, =—Adyp—6 . Oppi=———(d] X5

It is easy to see the following Leibniz rule:

O n(fs)=0x f-s+ f-0gns. Opn(fs)=0xf s+ f-0Ens.
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On the other hand, 6 and 67 give the sections of End(E) ® Q':* and End(E) ® Q°!
respectively. We also have the formulas:

df =0gn +k92,h, dg =A0gn+O0F .
85 5 =05 — Mg h. bn=ropa—0L,

Remark 2.24 The index “E,h” is attached to emphasize the bundle £ and the
metric 1. We will often omit them if there are no risk of confusion. O

Remark 2.25 We have the hermitian product (-, -)p: (E ® Q) ® (E ® Q) —
Q" induced by /4. For a section 4 of End(F) ® Q719, let A;C denote the sec-
tion of End(E) ® Q%7 which is the adjoint of 4 with respect to /4 in the sense
(A-u,v)y = (u, AZ v);,. The above 92 is the adjoint of 6y in this sense. ]

We put D% =8, =8 =05+ 9}: — A3y, + 65). We have the following formula:

A A
D* — AD}*

D} * + AD*
BRI IR

0+ 0 = Y, PR

bt Op ht+ O, ENIE
We recall that / is called a pluri-harmonic metric if (3;,+6),)% = 0 holds, ie, (E, 8y, 6y,)
is a Higgs bundle. The condition is equivalent to D, Dz *] = 0. In the following, a
A—flat bundle with pluri-harmonic metric is called a harmonic bundle.

Let us consider the case in which X is provided with a Kahler form w. For a differential
operator A of E® Q" of degree one, ie, A: C®(X, E® Q) — C®(X, E® Qit!),
let A* denote a formal adjoint with respect to w and 7, ie, [y (Au,v)p 4 dvol, =
[y (u, A*v)p, 4 dvoly, hold for any C*°—sections u and v with compact supports. Here,
(*+ "), denotes the Hermitian inner product of appropriate vector bundles induced by
h and w.

Lemma 2.26 (D**)* = v/—1[Ay, D*] and (D*)* = —v/—1[A. D**].

Proof It follows from the relations 8* = v/—1[Ay, dg], 0* = —vV—1[Aw, dg], 0* =
—V—=1[Aw, 0T and (6%)* = V=1[A4. 6]. O

The Laplacian Ai‘ w: CC X, E) — C(X, E) is defined by

A} = /~1A,D*D**.
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Remark 2.27 For the differential operators of functions, we have
A ° 29 9
Ay i=~—=1A0+A0)o(d—A0)=(1+ IA|?)V—1A30 = (1 + I)\|2)AZ),

where A” denotes the usual Laplacian ~/—1A 9. O
1192 4 3 —1p2 _ -132 .5 —19T\2 —
Lemma 2.28 When A # 0, we have A~ 95, +A7 0, =0 and A" 9, +A~(6,)° = 0.

Proof From the flatness (]D))“)2 = 0, we obtain the following formulas:

(5) @+ 2802 =32 +2048] +22(6))2 =0
(6) (R0p + 0p)* = 1205 + X040, + 07 =0
D [ +A60), Adh + 0] = A(On . 04) + 6], 6]) + 36 + A20,,6] =0

It is easy to see (52)}: = —82, (5;192)Jr = 0,0 and (0}:)2 = —(Qi)T. Therefore, we
obtain the following equality from (5):

8) — 37 + A(0404) —A%0F =0
From (6) and (8), we obtain (A+A~1)02 + (A1 +1)67 = (1+[A[H)(A 102 +17167) =

0, which gives the first formula in the lemma. The second formula can be obtained by
taking the adjoint. |

Lemma 2.29 If A # 0, the following holds:
200, AT 00, =0, [, 94+ (64, 6]1=0

Proof It is easy to check [, 941} = [0, 31l [0 6] 1) = —[64. 671 and (3,64)] =
ay 0}:. Hence, we obtain the following equality from (7):

) (3 0] — 6] Op) + A1 - 040 + X -3,65, = 0.

The claim of the lemma immediately follows from (7) and (9). m|

Corollary 2.30 When A # 0, the pluri-harmonicity of the metric h is equivalent to
the vanishings 62 = 0 and 9,0, = 0. ad
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2.2.2 Local expression Let (E,D*) be a flat A—connection, and let 4 be a C*®°—
metric. Let v= (vy,...,v;) be a holomorphic frame of E. Let H = H(h, V) denote
the hermitian matrix valued function of / with respect to v, ie, H; j = h(v;,vj). Let
us look at the local expression of the induced operators.

Let A denote the M (r)—valued (1,0)—form of D* with respect to v, ie, D*v=v-4,
in other words, D*v; = 3" 4;; -v;. Let B denote the (1,0)—form of &), with respect
to v, ie, §,v=v- B, and then we have

h(vj, vj) = h(v,-, 8;lvj) = Zh(vi, Bk,jvk).

Hence, dH = H - B, ie, we obtain B = H'9H. Let C denote the (0, 1)~form of
&), with respect to v, ie, §;'v=v-C, and then we have

A 0h(vi,v;) = h(d"vi.vp) + (i, 85v) =Y h(Ajve. vi) + > h(i. Cr jvk)-
k k

Hence, A\0H = 'AH + HC, ie, we obtain C = - H '0H — H Y"AH. Thus, we
obtain the following:

0V =v (A—AH 9H), dpv=v- (-H'9H - A})

1
T4 A2 1+ A2

Here, AT denote the adjoint of 4 with respect to #, ie, A}: =H ' 'A-H.

2.2.3 Pseudo-curvature and a Hermitian-Einstein condition Assume A # 0. For
a flat A—connection (E, D*) with a hermitian metric /, the pseudo-curvature G(h, D*)
is defined as follows:

A2

G(h,D*) = [D* D}*] = -

(O + 0n)?

Then a hermitian metric / is a pluri-harmonic metric for (E ,D*), if and only if
G(h,D*) = 0 holds. We will often use the symbols G(h) or Gy, instead of G (h, D*)
if there are no risk of confusion.

When X is provided with a Kahler form w, a Hermitian-Einstein condition for / is
AoG(h,D*)L =0, where “_L” means the trace free part.

2.2.4 Some relations between curvature and pseudo-curvature By the construc-
tion of §; , the operator d” + &) is a unitary connection of (E, /). The curvature of
d" +§), is denoted by R(d",h). We have the following expression of R(d"”,h) due
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to [d”,d']=0:

14 |A|?
(10) R(d", h)y=[d",8]=[d".2"'d']- +| | ————[d", 6]
1+ A% =
=— x| | (a,,ehﬂ[e,f,e,,])
Lemma 2.31 The following equality holds:
1 LR

11 tr R(d", h) = tr G(D*, h) = Itrf
(11 rR(d". h) T " (D, ) - h

Proof From (10), we obtain tr R(d”,h) = —(1 + [A|))A™ - dtr6,. We have the
following equality:

T+ A2~ -
tr G(h, DY) = —%u(a}, b+ 62) = %a 6,

Here, we have used tr(Q,f) = 0, which implies tr(gfl) = 0 due to Lemma 2.28. Thus
we are done. |

Lemma 2.32 In the case dim X = 2, we have the following formula:

(1+A)

tr(R(d", h)?) = n

tr(G(h,D*)?) - dt(6?-6))

(1+[A2)?
Proof We have the following equalities:

A 2\4 _ _
(l—i_}h#( r((aheh)z) + 2tr(ai . 9;))

(er(@8)?) + 21 tr(B40n - 04, 61]) + 22 (161, 6] 1))

tr(G(h,D)?) =

(1+[A»?
22

Because tr([@h, 0;{]2) =-2 tr(G}fH;z) and (0, + )»9;[)2 = 5% + )»5;,6” kzeTZ 0,

we obtain the following:

12 (0, O)) = —26(2-67-6)%) = 21(33 - 67 + 1~ 540 - 67)

tr(R(h,d")?) =

Hence, we have the following equality:

2\ 2
tr(R(h,d")*) = (1 +)L|)\| ) X

(tr((ﬁ,, 0)2) + 27 tc(3,60 - (O, 671) +20(83 - 62) + 22 (3,6, - 9,3))
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We also remark the following:

(316 - 16n, 651)+ (67 - 3,6)
= tr((gheh) -6y - 92) + tr(5h0h . 92 . 9;,) — tr(@h -5;,92 . «9;,)
=3t (6y-0) -04) = —0 (62 -6))

Then the claim of the lemma immediately follows. O

2.2.5 Change of hermitian metrics Let 4#; (i = 1,2) be hermitian metrics of

E. The endomorphism s is determined by A, = hy-s, ie, hy(u,v) = hi(s-u,v) =

hq(u,s-v), which is self-adjoint with respect to both /; and /,. Then we have the

relations 8, =4, + S_I(S;l s and 8 =8 + S_ISZ s. Therefore, we have the
2 1 1 2 1 1

following relations from (4):

a9 9 A -1 -1
ahzzah1+—l+|k|2s 8y, S, ahzzahl+—l+|k|2s 8p,S
T _ gt 1 —1grn _ A —1os
th —th— 1—}—|)L|2S 5/128’ 9]12 —th—ms 8h1S

We also have ]D)z Y= ID);; * s_IID),); *s, and thus
2 1 1
[D* Dy *] = [D*. D) *]+ D (s1) - Dj *s + 57 DD *s.
Then we obtain the following formula:
(12)  Ap o8 =5V=1(AuG(h2) = ApG(h)) + V=1A,(D*s - 57D *s)
In particular, we obtain the following formula by taking the trace:
—1/212
AX te(s) = tr(sx/—l(AwG(hz) _ AwG(hl))) — D )72
As in Lemma 3.1 of [17], we can derive the following inequality:

Ny logte(s) < [AwG(hy)|, +[A0G(ha)],,

2.3 Analytic stability of A —flat bundle

Let X be a complex manifold with a Kahler form @. We often impose the following
condition on them as in [17].
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Condition 2.33

(1) The volume of X with respect to w is finite.

(2) There exists a C°°—function ¢: X —> R ( with the following properties:

e {x € X|[¢(x) <a} is compact for any a.
e 0<+/—100¢ < C-w, and 3¢ is bounded with respect to .

(3) There exists a continuous increasing function a: [0, co[—> [0, oo[ with the
following properties:
e a(0)=0and a(t) =t fort > 1.
e Let f be a positive bounded function on X such that A, f < B for some
B € R. Then there exists a constant C(B), depending only on B, such
that supy | /| < C(B)-a([y | f|-dvol,). Moreover, A,(f) < 0 implies
A (f)=0.

Let (E,D*) be a A—flat bundle on X . There are two kinds of finiteness conditions for
the pseudo-curvature of (F, D*, 1). The stronger one is

(13) sup|G(h,]D))“)‘h’w < Q.

It implies the weaker one

14) sup}AwG(h,]D))‘)‘h’m < Q.

When we are given a hermitian metric s of E satisfying the finiteness (14), the degree
deg,, (E, h) is defined as follows:

V=1 [ wGHh,D* ,_, \/—1/
w = —
2w

deg, (E. h) := —— B XtrR(h,d”)-a)”_l

Here, we have used (11). For any A—flat subbundle (V, ]D))I‘,) C (E,D%), the restriction
hy := h)y induces deg, (V,hy). Asin Lemma 3.2 of [17], we have the Chern—Weil
formula. The proof is done in the same way.

Lemma 2.34 Assume that (14) is satisfied. Let wy denote the orthogonal projection
of E onto V. Then the following equality holds:

deg, (V. hy) = L e |)\|2 (\/_/ tr(my 0 G(h, DY) /X}DX”V{i,w)

The value is finite or —oo. O
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Definition 2.35 (E,D*, /) is defined to be analytically stable with respect to w, if
the inequality

deg, (V, hy) - deg, (E, h)
rank V rank £
holds for any (V, ]DD)I‘,) C (E,D%) such that 0 < rank V < rank E .

2.4 Review of Donaldson functional

We recall the Donaldson functional by following Donaldson [4] and Simpson [17] in
our situation. We give a rather detailed review because we would like to use variants
(Lemma 2.45 and Lemma 2.48) of a main estimate (Proposition 2.41). They will be
used in the proof of Propositions 4.1 and 4.2, together with Lemma 2.50.

2.4.1 Functions of self-adjoint endomorphisms Let V' be a vector space over C
with a hermitian metric /. Let S(V, i) denote the set of endomorphisms of V' which
are self-adjoint with respect to /4. Let ¢: R — R be a continuous function. Then
@(s) is naturally defined for any s € S(V, ). Namely, let vy, ..., v, be an orthogonal
base which consists of eigen vectors of s, and let v, ..., v, be the dual base. Then
we have the description s = ) «; - v’ ® v;, and we put ¢(s) := > (ki) - v ® v;.
Thus, we obtain the induced map ¢: S(V, h) —> S(V, h), which is well known to be
continuous. To see the continuity, for example, we can argue as follows: Let U(%)
denote the unitary group with respect to 4. Take e = (ey, .. ., e, ) be an orthogonal base
of V. Let T denote the set of endomorphisms of V' which is diagonal with respect
to the base e. Then we have the continuous surjective map 7: U(h) x T — S(V, h)
given by (u,1) —> u-t-u~!. It is easy to check the continuity of the composite g o 7.
Since the topology of S(V, ) is the same as the induced topology via 7, we obtain
the continuity. When ¢ is real analytic given by a convergent power series ) _ a; -t
then ¢(s) = > a; -5/ . The induced map is real analytic in this case.

Let W: R x R — R be a continuous function. For a self-adjoint map s € S(V, /), let
vi,....vp and v), ..., v} beasabove. Then we put W(s)(A4) =D W(k;, kj)Ai jv; ®
vj for any endomorphism A =3 A; j-v;’ ®v; of V. Thus, we obtain ¥: S(V, h) —
S(End(V), h), which is also well known to be continuous. Here, S(End(V), /) denotes
the set of self-adjoint endomorphisms of End(V') with respect to the metric induced
by 4. To see the continuity, we can use the same argument as above. When W is real
analytic given by a power series ) by nt{"ty , then we have W(s)(A4) = D by us™ -
A -s", and the induced map is real analytic.

Let : R—> R be C!, and let dp: R> — R? denote the continuous function given
by do(t1,12) = (t1 — 1)~ (¢(t1) — ¢(t2)) (11 # 12) and do(t1,11) = ¢/(11). In this
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case, the induced map ¢: S(V,h) — S(V, h) is also C', and the derivative at s is
given by do(s). To see it, we can argue as follows: If ¢ is real analytic, the claim can
be checked by a direct calculation. In general, we can take an approximate sequence
@i —> ¢ by real analytic functions on an appropriate compact neighbourhoods of
the eigenvalues of s € S(V, k). The induced maps ¢;: S(V,h) — S(V,h) and
doi: S(V,h) — S(End(V), h) uniformly converge to ¢ and d¢ on an appropriate
compact neighbourhoods of s. Then we can derive that ¢ is the integral of the form
dg by a general fact.

The construction can be done on manifolds. Namely, let £ be a C°°—vector bun-
dle with a hermitian metric 2. Let S,(E) (or simply S;) be the bundle of self-
adjoint endomorphisms of (£, /), and let S;(End(E)) be the bundle of self-adjoint
endomorphisms of (End(E), /). Then a continuous function ¢: R — R induces
¢: Sp(E) — Sp(E), and ¥: R? — R induces ¥: S;,(E) — Sj(End(E)). We
have D*¢(s) = d(p(s)(ID))‘s), if ¢ is C1.

2.4.2 A closed one form Let (X,®) and (E,D") be as in Condition 2.33. Following
Simpson [17], we introduce the space P(S}) which consists of sections s of S;(E)
satisfying the following finiteness:

. A A
I51l4.0,P = sup Is1p + ID*sll2,8,0 + 1A% o8 l1,h0 < 00

Here, || ||p.5,» denote the L?-norm with respect to (2, ). We will omit to denote @
and /1, when there are no risk of confusion. The following lemma is the counterpart of
Proposition 4.1 (d) in [17]. The proof is done in the same way.

Lemma 2.36 Suppose ¢ and ¥V are analytic functions on R with infinite radius of
convergence. Then ¢: P(Sy) — P(Sy) and V: P(Sy) — P(Sy(End(FE))) are
analytic. O

Let /1 be a metric satisfying (14). Let P4 (Sy) denote the set of self-adjoint positive
definite endomorphisms s with respect to /2 such that [|s||;, p < oo and [s™!||5,p < co.
Note [|sln,p < oo and sup |s~1|; < oo imply ||s! ln,p <o0o. Weput Pp:={h-s !s €
P+ (Sp)}. Itis easy to see that any /11 € Py, also satisfies (14) due to (12). It is also
easy to see Py = Py, for hy € Py.

Let P(S},) denote the space of self-adjoint endomorphisms s with respect to 4 such that
ls]lp,n < o00. Itis easy to see that P (Sy) is open in P(Sy). In particular, we obtain
the Banach manifold structure of P (Sy). By the natural bijection Pj >~ P4 (Sy,)
for hy € Py, we also obtain a Banach manifold structure of Py, which is independent
of the choice of /; € Pj. We have the map P(Sy,) —> P+(Sp,) given by s —> €°
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(Lemma 2.36). It gives a diffeomorphism around 0 € P(S;,) and 1 € P4 (Sp,).
Therefore, the map P(Sy,) —> Pp by s —> hy -€® gives a diffeomorphism around 0
and /1. In particular, the tangent space T}, Py, can be naturally identified with P(Sp,)
for any /1 € Pj. We also have the natural isomorphism P(Sj,) >~ P(Sy) given by
t —> u-t for hy = h-u € Py, which gives a local trivialization of the tangent bundle.

For any hy € Py and s € Ty, Py, we put
@y, (5) ::/ @), (s)dvol, € C. @ () 1= —1tr(s- ApG(D* hy)).
X

Then @ gives an L!(X, ;(’1)—Valued one form on Py, and & gives a one form of
‘P, . The differentiability of & is easy to see.

Lemma 2.37 & is a closed one form.

Proof In the following argument, we use the symbol D** instead of ]D)z*. Let
ki, ky € Py. They naturally give the vector field by addition. At any point /4y € Py,
they give the tangent vectors o = hl_lkl and T = hl_lkz in Ty, Pp = P(Sy,). Hence,
the following holds at /& + €k :

Dy ek, (k2) = J—T/u((h teky)ky - Gh —I—ekl)) !

We have (h+¢eki) ks =(1+e0) 't =t —eot+ (1 +€0) 2€20%r. Remark o271
is bounded. We also have the following:

(14 €0)(G(h + €k1)—G(h))
=D*D**(1 +e0) =D (1 +€0)- (1 +€0)"'D**(1 + €0)

= eD*D o —2D*o - (1 4+ €0) " 'D* *o.

Hence, we have G(h + eky) — G(h) = eD*D**o + €2 Ry (e, 0, 1), where Rg(€,0, 1)
is an L!—section of End(E)® Q2, and the L!—norm is bounded independently from €.
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Therefore, we obtain the following:
Cpyek, (k2) — Pp(k2)
=v-1 /tr((h +ek1) Y G(h + €ky))o" T — V-1 /tr(h_lsz(h))a)”_l

=v-1 tr(tG(h + eky) — rG(h))cu”_1
—evV/~1[tr(otG(h + €ky))0" '+ €Ry (€, 0, T)

—c (\/—_I/tr(fID))‘]D)}“*G)-a)"_l—«/—_I/tr(UTG(h))'wn_l) +€Ry(€,0,7)

Here, we have R;(¢,0,7)— 0 (i =1,2) as € —0,dueto ||o||p <oo and |t||p < oc.
Hence, we obtain the following equality:

dp®(0,7) =v—1 / (tr(r]D))‘]D))‘ *o) — tr(oD)‘]D)}‘ *7) —tr([o, t]G(h))a)”_1

We have the following equality, due to [D*, D**] = G(h):
(=9 + ) tr(rD*0) + (A + 9) tr(cD* * 1)
= tr(D**tD*0) + tr(zD* *D*0) + (D o D* *1) + tr(cD*D* *7)
= —tr(tD*D**0) + tr(z - [G(h), 0]) + tr(cD*D* * 1)
= —tr(eD*D**0) + tr(oeD*D* * 1) + tr([o, 7]- G(h))
Hence, we obtain dj,®(0, 7) = —v/—1 [y ((=A3+9) tr(tD*0) + (13+0) tr(cD* *7))-

"1, By using ||o||p < oo and ||z||p < 0o, we obtain the vanishing of d;® (o, 1),
due to Lemma 5.2 of [17]. O

2.4.3 Donaldson functional For /11, i, € Py, take a differentiable path y: [0, 1] —
Py, such that (0) = /; and y(1) = h,, and the Donaldson functional is defined to be

M(hq, hy) ::/ .

Y

It is independent of the choice of a base metric w, in the case dim X = 1. We have
M(hy,hy) + M(hy, hsy) = M(hy, h3) by the construction.

Lemma 2.38 When hy = hy -¢e* for s € P(Sy,), we have the following formula:

(15) M(hl,hz) = \/—_1/ tr(sAwG(hl)) dvolw—i-/ (\IJ(S)D)‘S,ID))‘S)wh dvol,,
X X o
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Here, (-, *),n, denotes the hermitian product induced by w and hy, and W is given
as follows:

el — (1 —1y)—1
(ty—11)?

See Section 2.4.1 for the meaning of W(s) (]D))‘s).

(16) V(. 1) =

Proof Let M'(hy,h;) denote the right hand side of (15). The following formula
immediately follows from the definition:

0
a—uM/(hlets,hle(H”)s =0 /v 1tr sAwG(hle”))

We also have the following equalities:

02 92
atauM,(hlets’hle(t+u)s)|u=0 = ﬁM (hl hlé’ )|u=0
92 (i)
— u)s
= WM (hl h e )|u=0.

The second equality can be shown formally. The first equality can be shown by the
argument on page 883 of [17]. We also have the obvious equality:

d d
8_MM/(hlets’ hle(t+u)s)|t=0,u=0 — a_uM/(hl ’ hle(t+u)s)|t=0,u=0-

Hence, we obtain the following:

0
EM/(hl,hle’S)zf V—ltr(sApG(h1e'™)).
X
Thus, M'(hy,he®) is the integral of ® along the path y(t) = hie’*, and hence
M'(hy,hy) = M(hy, hy). o

Remark 2.39 In [17], the formula (15) is adopted to be the definition of the functional.
We follow the original definition due to Donaldson [4]. O

We obtain the following corollary due to the positivity of the function W.

Corollary 2.40 If sup |A,G(h)|, < B is satisfied, we have the following inequality:
M (h,he®) > ~/— /tr (sAwG(h))-dvoly, > /|s|h dvoly, .

In particular, the upper bound of s gives the lower bound of M (h, he®). O
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2.4.4 Main estimate The following key estimate is the counterpart of Proposition 5.3
in [17]. The proof is the same.

Proposition 2.41 Fix B > 0. Let (E,D") be a flat A—connection. Let h be a her-
mitian metric of E such that sup |A,G(h,D*)|, < B. Let (E,D*, h) be analytically
stable with respect to w. Then there exist constants C; > 0 (i =1, 2) with the following

property:

e Let s be any self-adjoint endomorphism satisfying ||s||p,, < oo, tr(s) = 0 and
sup |[AwG(h-e*,D*)| < B. Then the following inequality holds:

sup |s|p < C1 + Cy- M(h, he®)
X

Sketch of the proof The excellent argument given in [17] works in the case of flat
A—connection without any essential change. Since we would like to use some minor
variants of this proposition (Sections 2.4.5-2.4.6), we recall an outline of the proof for
the convenience of readers. To begin with, we remark that we have only to show the
following inequality for some C; > 0 due to Corollary 2.40:

sup |s|p < C| + C5 -max{0, M (h, he®)}
X
In the following, C; denote positive constants. As is noticed in Section 2.2.5, the

inequality
Al logt(e®) < [AG()|, + |AG(he®) |, <2B

holds. Hence, there exist C; > 0 (i = 3, 4) such that the inequality
suplogtr(e®) < C3 4+ Cy - / log tr(e®)
holds for any s as above, due to Condition 2.33. Because
Cs + Cg - |s|p <logtre® <C7+ Cg-|s|p

for some C; >0 (i = 5,6,7,8), there exist C; (i =9, 10) such that the following
holds for any s as above:

(17) sup [s|p < Co + C10'/ |s |5

Assume that the claim of the proposition does not hold, and we will derive a contradic-
tion. Under the assumption, either one of the following occurs:

Case 1 There exists a sequence {s; € P(Sy)|i =1,2,---} such that sup |s;|, —> 00
and M (h, he®i) <0.
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Case 2 There exist sequences {s; € P(Sy)} and {C,; € R} with the following
properties:

sup |si| — o0, C; —> 00, (i —> 00)
X
M(h,he®’)y >0, suplsi|p = CyiM(h, he')

In both the cases, we have ||s;||;1 —> oo due to (17). We put ¢; := ||s;||z1 and
u; :=s;/L;. Clearly, we have |u;||;1 = 1 and uniform boundedness supy |u;| < C
due to (17). In the following, let L2(S}),) (resp. L%(Sh)) denote the space of L?—
sections (resp. L%—seotions) of S},. The following lemma is one of the keys in the
proof of Proposition 2.41.

Lemma 2.42 After going to an appropriate subsequence, {u;} weakly converges
to some uso # 0 in L%(Sh). Moreover, we have the following inequality, for any
C>®—function ®: R x R — Rx such that ®(y;, y2) < (y1 — y2)~! for y; > y:

\/—_I/tr(uokoG(h)) +/ (CD(MOO)DAuOO’DAuOO)h [0} =0.
¥ )

Proof By considering ® — ¢ for any small positive number €, we have only to
consider the case ®(y;, y2) < (y1 — y2)~! for y; > y,. In both the cases, we have
the inequalities for some positive constant C, from the formula (15):

C
zi¢—1[ tr(u,-AwG(h,]D))‘))+E?[(W(€iui)Dkui,DAui)hEflwc :
X

2,i

(In the case 1, we take any sequence {C,;} such that C; ; —> 00). Let ® be as
above. Due to the uniform boundedness of u;, we may assume that ® has the compact
support. Then if £ is sufficiently large, we have ®(A,A;) <€W(LA1,LA,). Therefore,
we obtain the following inequality:

«/—_I/Xtr(uiAa,G(h,]D))‘)) + /}((d)(u,-)D)‘u,-,D)‘ui)h,w < %

Since supy |u;| is bounded independently of 7, there exists a function @ as above which
satisfies ®(u;) = ¢ -id, moreover, for some small positive number ¢ > 0. Therefore,
we obtain the boundedness of {u;} in L%. By taking an appropriate subsequence,
{u;} is weakly convergent in L%. Let us denote the weak limit. Let Z be any
compact subset of X. Then {u;} is convergent to us on Z in L?, and hence
[z luil = [, luoo|. Since sup |u;| are uniformly bounded, we obtain [, |uco| # 0,
if the volume of X — Z is sufficiently small. Thus, u#s # 0. Similarly, we can
show the convergence [ tr(u; AG(h,D*)) — [ tr(use AG(h,D*)). Since {u;} are
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weakly convergent to s, in L2, we have the almost everywhere convergence of {u;}
and {D*u;} t0 uso and D us respectively. Therefore, the sequence {®(u;)D u;}
converges to <I>(uoo)]D))‘uoo almost everywhere. Hence, we have

/(fb(uoo)ID))‘uoo,]D))“uoo)h’w Sli_m/(cb(u,-)]D))“ui,D)‘u,-)h’w

due to Fatou’s lemma. Thus, we obtain the desired inequality, and the proof of Lemma
2.42 is finished. i

We reproduce the rest of the excellent argument given in [17] just for the completeness.
We do not use it in the later argument. The point is that the existence of a nontrivial
section U, as in Lemma 2.42 contradicts the analytic stability of (FE, DA, k).

Lemma 2.43 The eigenvalues of u, are constant, and u, has at least two distinct
eigenvalues.

Proof To show the constantness of the eigenvalues, we have only to show the constant-
ness of tr(¢(uoo)) for any C®°—function ¢: R —> R. We have (3 4+ Ad) tr ¢(uoo) =
tr(]D))“go(uoo)) = tr(d@(uoo)]]]))“uoo). Let N be any large number. We can take a
C®—function ®: RxR — R such that ®(y;, y1) =de(y;, y1) and N D2 (yy, y5) <
(y1 —y2)~ ! for y; > y,. We obtain tr(dgo(uoo)(ID)kuoo)) = tr(P(too) D o) due to
the first condition. We obtain the following inequality from Lemma 2.42:

/ |0 (1100)D oo |? < ——/ tr(uco AG(h)).
X

Therefore, |(d+19) tr @ (itoo) |22 = 0. Thus, the eigenvalues of #, are constant. Since
tr(ueo) = 0 and uso # 0, U has at least two distinct eigenvalues. ad

Let k1 < kp <--- < ky denote the constant distinct eigenvalues of #so. Then ¢ (1)
and ®(u~) depend only on the values ¢(k;) and @(k;, kj) respectively.

Lemma 2.44 Let ®: R — R be a C® —function such that ®(k;, k;) = 0 for k; > k; .
Then ®(u100) (D o) = 0.

Proof We may replace CI> with ®; satisfying ®;(k;,«j) = 0 for «; > k; and
N ®3(p1, y2) <(y1—y2)~" for y1 > y,. Then we obtain ||q>1(uoo)D)‘uoo||iz =C/N
due to Lemma 2.42, and hence we obtain q)(uoo)]D) Uoo = Dy (uoo)]D) Uoo=0. O
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Let y; denote the open interval |«;,«;4+1[. Let p,: R — [0, 1] be any decreasing
C*°—function such that py(K,) =1 and py(K,.H) = 0. We put my, = py (o).
It is easy to see that m), is L Due to p = py, we have n% =m,. We have
]D)}‘ny = dp(use)D* uoo We put dy,(y1, yz) = (1—py)(¥2)-dpy(y1.y2), and then
we have (1 —my) o D* my = Dy (Uso) © D*uos. On the other hand, since we have
@, (ki,kj) =0 (ki >«Kj), we obtain O, (U00)D* U oo = 0 due to Lemma 2.44. Therefore,
we obtain (1 — ) OD)‘JTJ, =0.

From (1 — 7y )d"m, = 0, we obtain a saturated coherent subsheaf V,, such that 7,
is the orthogonal projection on V), due to a result of Uhlenbeck and Yau [22]. From
(1—my)d'm, =0, the bundle V,, is D*—invariant. Since we consider the case A #0,
it is easy to see that V), is indeed a subbundle of E. Namely, we obtain a A—flat
subbundle (Vy,D%,y) C (E,D%).

Let us show deg,, (Vy. hy)/rank V), > deg,, (E, h)/rank E for some y, which contra-
dicts the stability assumption of (E,D*, /), where hy := hyy, . From Lemma 2.34,
we have

deg(Vy) = L 1+Ik|2 (\/_/tr my G(h)) /|]D>kn,,|2)

We have uoo = ky -idg — ) |y| - 7y, where |y| denotes the length of y. We put

W =Ky deg(E) =Y lyl-deg(Vy)
1

2n1+IA|2 (J_/tr Uoo NG (1)) /Z|y| D7y | )

Since ]D))“Jr,, =dp, (#00)D 150, We obtain the following:

2larl+|k|2 ([ VT (1o AG(R)) /(Z|y|dpy(uoo) D e, D uoo))

We can check Y. |y|(dpy)(ki, kj)? = (ki —kj)~! for k; > k; by a direct argument.
Therefore, we obtain W < 0, due to Lemma 2.42. Namely we obtain

Ky -deg E < Z ly|-deg(Vy).
On the other hand, we have 0 = tr(uoo) = ky -rank E — ) |y|-rank V,,. Therefore, we

obtain deg(V))/rank V), > deg(E)/rank E for at least one of y, which contradicts
the stability of (E,DD*, k). Thus, the proof of Proposition 2.41 is finished. O
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2.4.5 Variant 1 of Proposition 2.41 Let C be a smooth connected projective curve,
and D be a simple divisor. Let (E,D%) be a A—flatbundle on C —D. Let 0 < <1/2.
Let €9 > 0 be a sufficiently smaller number than 1. Let we (0 < € < €g) be a Kahler
metric of C — D with the following conditions:

e Let PeD. Let (U, z) be aholomorphic coordinate around P such that z(P)=0.
Then the following holds for some positive constants C; (i = 1,2):
dz-dz dz-dz

212 212

e we—> wp as € — 0 in the C*°—sense locally on C — D.

Ci-we < €|z + 02|z

<Gy we

Suppose that we are given hermitian metrics 4 of E with the following properties:
. }AweG(h‘E), D)‘)}h(é) < C1, where the constant C; is independent of €.
e {h©} converges to ¥ as € — 0 in the C*°—sense locally on C — D.
o (E,D* h©) is analytic stable.

Lemma 2.45 Let 5 be self-adjoint endomorphisms of (E, h‘®) satisfying trs'© =0
and the following properties:

o |15l p s o, <o0o. But we do not assume the uniform boundedness.

. }AweG(h‘f)es(e),]D}‘)!h(E) < Cy. The constant C; is independent of €.

Then there exist constants C; > 0 (i = 3,4), which are independent of €, with the
following property:

(€)
sup |50 < C3 + Cq- M(h©, K9 ).

Sketch of a proof The argument is essentially the same as the proof of Proposition
2.41. We assume that the claim does not hold, and we will derive a contradiction. After
going to an appropriate subsequence, either one of the following holds:

©
Casel M(h'©, h©e*") <0 and supc_p ||, —> 00 as € — 0.

Case2 M(h©, h©e5”) >0, sup[s©| = CO M7, h©@e’), sup [s© e —> 00

and Cz(e)—>oo as € = 0.

By using Lemma 2.47 (given below) and the argument given in the first part of Propo-
sition 2.41, we can show that there exist positive constants C; (i = 5, 6), which are
independent of €, with the following property:

sup |S(e)|h(e) <Cs5+ Cq / |S(e)|h(e) dvoly, .
C-D
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We put £ := |51 and u© :=s© /£©. The following lemma is the counterpart
of Lemma 2.42.

Lemma 2.46 We have a nontrivial L% —section U, of Sy with the following prop-
erty:

» The following inequality holds for any C°° —function ®: R x R — Rx> ¢ such
that @(y1, y2) < (1 —y2)~" for y1 > ya:

/ (v—l tr(uokooG(hW))) 4+ ((I)(uoo)]]]))»uoo, D)‘Moo)hw) wo) dvoly, =0
Cc-D ’

Proof The argument is essentially the same as the proof of Lemma 2.42. We have the
following for some positive constant Cs:

v C
/C D< —1tr(u Ay G(h')) + (P D u', D)‘M(E))h(e),%) dvoly, < C_é)
) 2

From this, we obtain the following boundedness as in the proof of Lemma 2.42:
/ ID*u©|% ., dvols, < Cio.
C-D

Let us take a sequence of C*°—isometries F¢: (E,h'“) — (E, h'®) which converges
to the identity of E, in the C°—sense locally on C — D. Remark that the sequence
{F.(D")} converges to D* as € — 0 in the C®—sense locally on C — D. The
sequence {Fc(u‘©)} is bounded on L% locally on C — D. By going to an appro-
priate subsequence, we may assume that the sequence {u‘®} is weakly convergent
in L% locally on C — D, and hence it is convergent in L? on any compact sub-
set Z C C — D. Let ug denote the weak limit. We have [, [u©| — [, |ucol.
Hence [, |uco| # 0, when the volume of C — Z U D is sufficiently small, due
to the boundedness of {sup |u®| | € > 0}. In particular, us # 0. Similarly, we
obtain [_, tr(u@G(h'?)) — [-_ptr(eoG(h®)). Since we can derive the al-
most everywhere convergence ®(u©)D*1© —> ®(11o)D o and u© —> ung,
we obtain [-_, (@(uoo)]D))‘uoo, ]D)‘uoo) <lim [~_, (@(u“’)D)‘u‘é’, D)‘u(f’) due to
Fatou’s lemma. Thus, the proof of Lemma 2.46 is finished. O

The rest of the proof of Lemma 2.45 is completely the same as the argument for
Proposition 2.41. |

We have used the following lemma in the proof.
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Lemma 2.47 For any positive number B, there exist positive constants C; (i = 1,2)
with the following property:

e Let € be any positive number such that ¢ < 1/2. Let f be any nonnegative
bounded C*°—function on C — D such that A,_(f) < B. Then the inequality
sup(f) < Cy + C, [ f -dvoly, holds.

Proof Let (Up,z) be as above for P € D, and Up := Up —{z = 0}. On U, the
inequality A, (f) < B is equivalent to the following:

Ry
18 A <B- (e +n*—).
a8) W =8 e R
Here, g¢ := dz-dz. Because of the boundedness of f, (18) holds on Up. (See the
proof of Proposition 2.2 of [17].) Then we obtain the following inequality on Up:

Ago(f—B-¢) <0, ¢ =Iz|* +|z|*".

For any point Q € A(P, 1/2), we have the following:

/4

4
(f—B.¢)(Q)§_/A(Q 1/2)(]”—B.¢)).dvolgo.

Therefore, there exist some constants C; (i = 3,4) which are independent of €, such
that the following holds:

f(Q) =G +C4[f-dvolw€ .

Thus, we obtain the upper bound of f(Q), when Q is close to a point of D. We can
obtain such an estimate when Q is far from D, similarly and more easily. a

2.4.6 Variant 2 of Proposition 2.41 We will use another variant. Let 7: C — A
be a holomorphic family of smooth projective curves. Let D C C be a relative divisor.
Let (E,D*) be a A—flat bundle on C* := C —D. We denote the fiber 77~ () by C; for
t € A. Weset Cf :=C; \ D. The restriction (E,ID)X)W is denoted by (Et,ID)i‘). Let
o be a metric of the relative tangent bundle of C*/A such that o ~ n?|z|?>"2dz-dz
around D. Here, 1 denotes a small positive number, and z is a holomorphic function
such that z71(0) = D and dz # 0. The restriction of @ to C} is denoted by w, for
t € A. Let h be a C°°—hermitian metric of E such that |Aw,G(]D>)‘, he)ln, < Cy for
any ¢ € A, where a constant C; is independent of ¢, and /; denotes the restriction of
h to C}. We assume that (E;, ]D)?‘, h¢) are analytic stable. The following lemma can
be shown by an argument similar to the proof of Lemma 2.47.
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Lemma 2.48 There exist positive constants C; (i = 3,4), which are independent of
t, with the following property.

o Let s be an element of Py, (E;) satisfying trs® = 0, [[s, p < oo
and |Aw, G(D* hies)| < C,. Then the inequality sup|s®| < Cs + Cs -
M(hs, hees) holds. O

2.5 Review of some results on Hermitian-Einstein metrics due to Simpson

2.5.1 Existence theorem and a consequence Let (X, w) be a Kahler manifold sat-
isfying Condition 2.33, and let (£, D*, hgy) be a metrized flat A—connection satisfy-
ing (13).

Proposition 2.49 (Simpson) Assume that (E, D*, hg) is analytically stable with
respect to w. Then there exists a hermitian metric h = hy - s satistying the following
conditions:

e h and hg are mutually bounded.

e det(h) = det(hy).

o D*(s) is L? with respect to ho and .

e It satisfies the Hermitian Einstein condition A,G(h)* = 0, where G(h)1 de-
notes the trace free part of G(h).

e The following equalities hold:
/ r(G(h)?) 0" = f tr(G(ho)?) "2
Y Y
/ tr(G(h)+?) 0" % = / tr(G(ho)*:?) - 0" 2
Y Y

Proof We need only a minor modification of the proof of Theorem 1, Proposition 3.5
and Lemma 7.4 of [17]. Indeed, we have only to replace D”, D’ and F(h) with
D*, D** and G(h), and to make some obvious modification of positive constant
multiplications, as was mentioned by Simpson himself. (See page 754 of [18], for
example. Remark that “ D¢” corresponds to our —D** | and hence our G(h) is slightly
different from his.) The author recommends the reader to read a quite excellent argument
in [17]. However, we will use a result related with the Donaldson functionals, which
follows from the proof. Hence, we recall a brief outline of the proof of Proposition
2.49. We will use the notation in Section 2.4.
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Let hg be a metric for (E,D%) satisfying the finiteness (14). Let us consider the heat
equation for the self adjoint endomorphisms s; with respect to /¢ :

(19) s;l% = —V=1AuG(h)* .

A detailed argument to solve (19) is given in Section 6 of [17]. Moreover, A, G(h;) is
shown to be uniformly bounded. We do not reproduce them here.

Then we would like to show the existence of an appropriate subsequence #; — co such
that {s;, } converges to so, weakly in Lé’ locally on X', and we would like to show that
hoo = hg - Seo gives the desired Hermitian-Einstein metric. For that purpose, Simpson
used the Donaldson functional M (hg, hosy; ). As reviewed in Proposition 2.41, he
showed that there exist positive constants C; (i = 1, 2) such that the following holds:

(20) sup |logs¢| < Cy + Cy - M (hg, host)

He also showed [17, Lemma 7.1] that M (hg, hos,) is C! with respect to ¢, and that
the following formula holds:

d

1) d—M(ho»host /}AwG(h )l}h o=

Because M (hg, ho) = 0 by definition, we obtain M (hg, hgs;) <0 from (21). Then we
obtain the boundedness of s; from (20). For the solution of (19), we have det(s;) = 1.

Hence, the boundedness of 57! follows. We also obtain the existence of a subsequence
{t{} such that |A, G (hy,)| 2 —> 0.

From the uniform boundedness of s; and A, G (%), we obtain the lower bound of
M (hg, hos;). (See Corollary 2.40 in this paper, for example.) Moreover, we obtain
the uniform bound of | b |ID))‘u (2 7o due to the p0s1t1v1ty of W given in (16), where
Sy = exp(u ¢). Due to the boundedness of s; and s, t , we also obtain the boundedness of
/ Y UD))‘st | ho Then we obtain the L% boundedness. Hence, we can take a subsequence

{t/'} such that Sy converges to some Soo weakly in L% locally on X — D. By using
some more excellent additional argument given on page 895 of [17], it can be shown
that the convergence is weakly Lg locally on X — D, for any p. As a result, we
obtain a Hermitian-Einstein metric. Thus, a sketch of the proof of Proposition 2.49 is
finished. O

By the above argument, we can derive the following lemma, which we would like to
use in the subsequent argument (Section 4.5.2).

Lemma 2.50 Let ho be the hermitian metric satisfying (13). Let hyg be the Hermitian-
Einstein metric obtained in Proposition 2.49. Then we have M (ho, hHE) <0.
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Proof Recall that /iyg is obtained as the limit /¢ - 5o of some sequence {/¢sy, }, and
we have M (ho, ho-sy;) < 0. We use the formula (15). Let Z be any compact subset
of X . The sequence {s;,} converges to soo in C° on Z. The sequence {A,G(/y,)}
converges to A, G(hyg) weakly in L2 on Z. Therefore, we have the convergence:

lim tr(uy; - AwG(hy;)) dvol, = / tr(too - AwG(fiug)) dvoly, .
limoo Jz z

Here, u, are given by exp(u,) = s;. Since supy |s;| and supy |AG(h;)| are bounded

independently of ¢, we can easily obtain the convergence:

lim tr(u,l. -AwG(h,,.)) dvol, = / tr(uc,o . AwG(hHE)) dvoly, .
ti—>00 X X

We have the C°—convergence of the sequence {D*u 4} to D*uo. Hence, we have

the following inequality due to Fatou’s lemma:

/(\If(uoo)D)‘uoo, D00 dvoly, fli_m/ (W (us)D*up, D uy)dvols, .
X X

Then we obtain the desired inequality. O

2.5.2 Uniqueness The following proposition can be shown by an argument similar to
the proof of Proposition 2.6 of [14] via the method in [17]. We state it for the reference
in the subsequent argument.

Proposition 2.51 Let (X,w) be a complete Kahler manifold satisfying Condition
2.33, and (E,D*) be a A—flat bundle on X . Let h; (i = 1,2) be hermitian metrics of
E such that A, G(h;) = 0. We assume that h; (i = 1,2) are mutually bounded. Then
the following holds:

o We have the decomposition of »—flat bundles (E,D*) = P(E,, ]D)Z;) which is
orthogonal with respect to both of h; (i =1,2).

e The restrictions of h; to E, are denoted by h;,. Then there exist positive
numbers b, such that hy 4 =bg-hj 4.

Proof Let s be determined by /i, = h; -s. We can show D*s = 0 by the argument
explained in the proof of Proposition 2.6 of [14]. Note we are considering the case
A # 0. Hence, the eigen decomposition of s is D*—flat, which gives the desired
decomposition. O
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2.6 Regular filtered A —flat bundles associated to tame harmonic bundles

2.6.1 Tame pluri-harmonic metric Recall the tameness condition for pluri-harmo-
nic metric. Let X be a complex manifold with a simple normal crossing divisor
D. Let (E,D) be a A-flat bundle on X — D. Let A be a pluri-harmonic metric
of (E,D*). Then we have the induced Higgs bundle (E,d;,0,). Let P be any
point of X', and let (Up, z1, ..., z,) be a holomorphic coordinate around P such that
DNUp = Ule {zi = 0}. Then we have the expression:

G—Zf, dZ’+ Z g;-dzj.

i=1 j=Il+1

The pluri-harmonic metric /4 is called tame, if the coefficients of the characteristic
polynomials det( — f;) and det( — g;) are holomorphic on Up for any P. A A—flat
bundle with tame pluri-harmonic metric is called a tame harmonic bundle. Recall that
the “curve test” for tameness is valid.

Proposition 2.52 [15, Corollary 8.7] A pluri-harmonic metric h for (E,D") is tame,
if and only if h|c is tame for any closed curve C C X transversal with the smooth part
of D. O

From a holomorphic vector bundle £ with a hermitian metric /1, we obtain the filtered
sheaf Ex(h) := (. E ‘ ¢ € RS) as explained in Section 3.5 of [14]. We recall the
following proposition.

Proposition 2.53 [15, Theorem 8.58, Theorem 8.59 and Corollary 8.89] Suppose
(E,D*, h) is a tame harmonic bundle on X — D . Then (E«(h), D*) is a regular filtered
A—flat bundle. O

In this situation, we say that /4 is a pluri-harmonic metric for (E(h), D*). We also
say that / is a pluri-harmonic metric for (. E (h), D).

2.6.2 Onme dimensional case In the one dimensional case, Simpson established the
Kobayashi—Hitchin correspondence for parabolic flat bundles and the parabolic Higgs
bundles, ie, A—flat bundles in the cases A = 0, 1. His result can be generalized for
any A.

Proposition 2.54 (Simpson [18]) Let X be a smooth irreducible projective curve,

and D be a simple divisor of X . Let (Ey, D*) be a regular filtered ) —flat bundle on
(X, D). We put E = .E|x_p. The following conditions are equivalent:
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o (E4,D%) is poly-stable with par-deg(Ex) = 0.
e There exists a harmonic metric h of (E,D*), which is adapted to the parabolic
structure of E, ie, Ex ~ E.(h).

Moreover, such a metric is unique up to obvious ambiguity. Namely, let h; (i = 1,2)
be two harmonic metrics as above. Then we have the decomposition of Higgs bundles
(E,D*) = PB(E,, ID);‘) satisfying the following:

e The decomposition is orthogonal with respect to both of h; .

e The restrictions of h; to E, are denoted by h;,. Then there exist positive
numbers b, such that hy 4 =bg-h; 4. O

2.6.3 Projective case Let X be a smooth irreducible projective variety with an ample
line bundle L, and let D be a simple normal crossing hypersurface of X with the
irreducible decomposition D = | J;c¢ D;. Let (E, D*, h) be a tame harmonic bundle
on X —D.

Proposition 2.55 Let (Ey, D*) be the regular filtered \—flat bundle on (X, D) asso-
ciated to (E,D*, h).

o (E«,D*) is s —polystable with par-deg; (E«) = 0.

o Let (E4,D*) = @j (Ej «, IDDJ).‘) ® CPY) be the canonical decomposition of jiy —
polystable regular filtered A—flat bundle. Then we have the corresponding
decomposition of the metric h = @ h; ® g;, where h; denote pluri-harmonic
metrics of (E;, ID)?‘) adapted to the parabolic structure, and g; denote metrics of
cpr@)

e We have the vanishings of characteristic numbers:

prar-chz’L(E*) = /Xpar—ciL(E*) =0.

Proof The first two claims can be shown by the argument in the proof of Proposi-
tion 5.1 of [14]. The third claim can be shown by an argument similar to the proof of
Proposition 5.3 of [14], which we explain briefly. We have only to consider the case
dim X = 2. Since 4 is pluri-harmonic, we have the following equalities due to Lemma
2.31 and Lemma 2.32 on X — D:

trRd", h) =1+ A») e GHh, DY) =0
twr(R(@", h)?) = (1+|A?) 72 u(G(h,DY?) =0

We also have the norm estimate for the holomorphic sections of ¢ E. (It is explained in
Section 2.5 of [14] for A = 0. Similar claims hold for any A, as shown in Section 13.3
of [15].) Then the argument in the proof of Proposition 5.3 works. O
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Proposition 2.56 Let (Ey, D*) be a regular filtered A —flat bundle on (X, D). We put
(E.D*) := (E4, ]D))‘)|X_D. Let hy (a = 1,2) be pluri-harmonic metrics of (E,D")
on X — D which is adapted to the parabolic structure. Then we have the decomposition
(E,D*) = PB(E;, D*) with the following properties:

e The decomposition is orthogonal with respect to both of h, (a = 1,2). Hence,
we have the decompositions hg = @; ha,; .

e There exist positive numbers b; such that hy ; =b; -hy ;.
The decomposition on X — D is prolonged to (E4, D*) = PDE; x, D) on X .
Proof Similar to Proposition 5.2 of [14]. m|

2.7 Some integral for nonflat A —connection on a curve

This subsection is preliminary for Corollary 3.16. Let Y be a smooth projective curve,
and let D be a divisor. Let (E, F) be a parabolic bundle on (Y, D). Let D* be a C®
A—connection on Ejy_p. In this subsection, we do not assume D* is flat, ie, (D*)2
may not be 0. However, we assume that it is flat around an appropriate neighbourhood
Up of each P € D, and that(E,F, ID))‘)‘ Up 18 a parabolic A—flat bundle. In particular,
we have Resp (ID))‘) € End(E|p). We assume moreover that it is graded semisimple,
for simplicity, ie, the induced endomorphism on Grf(E |p) is semisimple for each
P € D. (By using an e—perturbation in Section 2.1.6, we can drop this assumption.)

For each P € D, we have the generalized eigen decomposition E|p := P PR,
of Resp (]D))‘). We also have the filtration *F of E |p. Let us take a holomorphic
frame v of E|y,, which is compatible with (PE, PF). We put a(v;) := degE (vi) and
a(v;) := degf (v;). Let h be a C*°-metric of E\y_p such that h(v;,v;) = |z|~2a(i)
(i=j)and 0 (i # j). Let us decompose D* = d” +d’. Let us take a (1, 0)—operator
dj such that d” + dg is C*° A—connection of E on Y, not only on ¥ — D. We
also assume dyv = 0. We put 4 := d’ —d, which is a C*°—section of End(E) ®
Q!%(log D) on Y, and holomorphic around D. We have trResp(A4) = trResp(D*).

Let iy be a C*°—metric of £ on Y such that hg(v;,v;) is 1 (i = j) or 0 (i # j)
on Up (P € D). Let s be the endomorphism determined by /& = hg-s. Then s is
described by the diagonal matrix diag(|z|_2“(“1), e, |Z|_2“(”’)) with respect to the
frame v on Up.

Although D? is not necessarily flat, we obtain the operators 8,5 6y 9, 9, Oy and
0}: as in Section 2.2.1. We put wt(E,F, P) := ZaePar(E,F,P) a -rank(PGrf(E)).
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Lemma 2.57 We have the following formula:
«/ / A

(22) FRYE

Z(k '.trResp ]D)}‘-l—wt(E F, P))

Proof Let 8;10 denote the (1, 0)—operator obtained from d” and /¢ as in Section
2.2.1. Then we have

(d' —1-8)) = (do—h-8,) + (A—L-57'8, ).

1
g, = L
h TNE

1+ |A|? 1+ A2

We would like to apply Stokes’ formula to the integral of d tr 6. If we do so, d _)‘5;10
does not contribute, because it is the C°—section of End(E) ® 2:°. We have

J=1 [ -
—/ 8tr(A)=ZtrResP}D))‘.
21 Y P

Since s_18;los is described by diag(—a(v)....,—a(v,))-dz/z with respect to v on
Up (P € D), we have

rank E

/ atr(s_ISh s) = Z Z —a(vi) = — Zwt(E F, P).

i=1

Therefore, we obtain the following formula:

«/ 11+ A2
+||/ar9,,

k LtrResp D* + wt(E, F, P))

Thus, we obtain (22). m|

3 Ordinary metric and some consequences

In this section, we mainly study graded semisimple regular filtered A—flat bundles
satisfying the SPW—condition (Definition 2.6). We will construct an ordinary metric
for such a regular filtered A—flat bundle in Section 3.3. We give an estimate of the
induced operators by using the preliminary results in Sections 3.1-3.2, Then we show
the existence of Hermitian-Einstein metric for such a parabolic A—flat bundle, if it is
1 —stable (Proposition 3.19).

Some results in this section are available for any regular filtered A—flat bundles which
do not necessarily satisfy graded semisimplicity and the SPW—condition. One is
Bogomolov—Gieseker inequality (Corollary 3.20). The others are formulas to express
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parabolic characteristic numbers in terms of the data at D as in Section 3.5. The
method of e—perturbation (Section 2.1.6) is used to deduce them from the results in
the case that graded semisimplicity and the SPW—condition are satisfied.

3.1 Around the intersection of the divisor

3.1.1 Some estimates We put X := A2, D; :={z; =0} and D := D; U D,. Let
(E«, D*) be a graded semisimple regular filtered A—flat bundle on (X, D), satisfying
the SPW—condition. We take ¢; & Par (E«, D*) for i = 1, 2. By the assumption, there
exist a positive integer m and real numbers y; with —1/m < y; <0, such that

Par(cEx.i) C{ci+yi+p/m|peZ —1 <y +p/m<0}.

We put X := Ag, Dj:={¢; =0} and D= D, U52~. Let ¢: X —> X be the ramified
covering given by ¢({1,¢2) = (1", £5"). Let Gal(X /X) denote the Galois group of
X /X . Recall the construction in [9]. For any a € R?, let aE denote the subsheaf of
E := ¢*(E) given as follows:

Ei= ) ¢*@E) [T &
n+md=<a i=1,2

Then it is easy to see that E. = E ‘ ae R2) is a filtered bundle, and the induced
flat A—connection D* is regular We put ¢; := m - (y; + ¢;). By the assumption,

Par (Ex, 1) ={p+3|pel}.

We have the generalized eigen decompositions E|p, = P E, with respect to the
residue Res; (}D))‘). We have the parabolic filtration ‘F of (E. Let v be a frame of . E
compatible with ‘F and 'E (i = 1,2). We put

. 1
ai(vj) :="deg" (vj) — (ci +vi) € A
Let «;(vj) € C denote the complex numbers determined by v;|p, € ‘ Eg; (v;)- We put
~ i (vj)
b= ) [] &
i=1,2

Then v := (v;) gives the frame of <E . We put Bi(vj) :=m(A-a;(vj) + a;i(vj)). Let
I' be the diagonal matrix whose (j, j)—entries are Zi=1’2 Bi(vj)-dgi/Ci. Let A
be determined by D*V = ¥- 4, and let Ag := A —T. In the following, let Fr €
End(zg) ® Q! (log D) be determined by Fr(v) =v-T'. We put ﬁé :=D*— Fp.

We have the expression Ay = Zi=1’2 Af) -d¢;. If m is sufficiently large, we may
assume the following:
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(A) A’ = O(§ ). Moreover, (A} o)k = 0(§1 §2) in the case B2(vj) # Ba2(vk),
and (43)j .k = O} -£3) in the case B (v;) # B1(vg).
Let /1 be the hermitian metric of £ determined by h (i, 0j) =61, 181 | 72611, 22,

Let 6 (resp. 90) be the section of End(E Y®Q! on X — D induced by /i and D* (resp.
]D))‘) as in Section 2.2.1. Let 6T and 9 denote the adjoint of 6 and 6y, respectively.
Denote the Euclidean metric of X by g.

Lemma 3.1
. [5 §T] is bounded with respect to h and g.
° 5220(21'22)-d21-d22.

Proof We have the relations 6 = o + (14 |A1?>)~' Fr and ot = gg—i-(l + A%t F;.
Hence, we have the following:

[0, 6% = [00. 031+ (1 + 2"~ [Bo. {1+ (1 + 147" [0]. Fr]
We have the decomposition of 50 into the sum
MU+ MDY G-/ + 65,
where 9/ is the C*®°—section of EndGE) ® Q on X . Hence, [50, 5;] is the C®°—
section of EndzE) ® 2 on X . Note the followmg
: A
T+

(See Section 2.2.2, for example.) By Condition (A), [90, FT] and [FT, QT] is also
bounded. We have 62 = 92 + 2[90, Fr]. Then we obtain the desired estimate for 62
by Condition (A). a

S
OpV="v-

Lemma 3.2 We have the boundedness of G(]]A)S)‘, l~z) and 62 -0 with respect to n
and g.

Proof The boundedness of 626 follows from the estimate for §2. We have the

following equality:

(1+A[»)?
A

(See Section 2.2.4.) We have the vanishing of the curvature R(/, d"”) = 0, and the

relation k_lg% =11 (@"r)z. Hence, we obtain the boundedness of G(ﬁ)‘, fz) from
Lemma 3.1. O

G(D* h)y =1+ |r]?) Rh,d")— (5§-+§2—A[§, 1)
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Since 7 is Gal(f / X)—equivariant, we obtain the induced metric # of £ on X — D.
Clearly, & is given by h(v;,vj) =6;j - |21 |72a(i) . |7,]72a(;) et § be the section
of End(E) ® 2% on X — D induced by D* and /, and let 6T denote the adjoint of
6. Let g, denote the metric of X — D given by g, = 3 |z [2C1HY™ . dz; . dz;.

Corollary 3.3 We have the boundedness of G(D*, i) and 62 - 0T with respect to g,
and h. m|

3.1.2 The induced metric and the A —connection on the divisors For simplicity, we
assume ¢; =y; =0 (i = 1, 2) in this subsection. Let (a, ) e CMS(PE,i). Let p be a
C*°—function on X such that p>0. We put x:= p-|z|?. Let D} := D;— (D1 N Dy).
We study the induced hermitian metric and the induced A—connectlon of ’GrF E (°E )| D°
(i = 1,2), depending on the choice of p. Let us consider the case i = 1. Let ulj
(j = 1,2) be sections of lGrfz E(°E). We take sections u/ (j =1,2) of °E which
induce u; . Then it can be shown that ( @ ho(ul,u 2)) D is 1ndependent of the choice
of u , which is denoted by /14,4(111,u3).

We have the frame v, o) of "Grf, ’OI(E (°E) induced by v in Section 3.1.1. By construc-
tion,

ha.a(Vi,vj) = p* -8 j - |22 72920

Hence, the following equality can be checked by a direct calculation:
(23) tr R(hg.q) —a-rankGrf;)IlE@E) -99logp =0

Let Fy denote the C*°—section of End(°E) ® Qb 5% (log D) determined by Fo(v;) =
vj -a1(vj)-dlog x. Then D* — Fy is C* around D7, whose restriction preserves the
filtration 'F and the decomposition 'E. Hence, we obtain an induced A—connection

Déa of ! Gr )(OE) We have 6, o induced by Da o and fg o
Lemma 3.4 The following holds:

_ A _
24) 0trbg,0 + ﬁ rank(lGrisGI!E (OE)) -ddlogp =0

Proof Let ID)A and 0, 4,1 denote the operator, and let /1, o 1 denote the metric in
the case where ,0’1s constantly 1. Since 0, 4,1 is holomorphic, we have dtr Oa,0,1 =0.
Note that we have ]D))‘ = ]D))‘ ,—«a-dlogpand hgy = hgq,1-p*. Then we obtain
Oa.0.1 = Oa,o + (1 + |A|2) (k a +a)-dlog p. Thus, we obtain (24). ]
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3.2 Around the smooth part of the divisor

3.2.1 Construction of the metric and some estimates Let X := A? and D :=
{z; = 0}. Let p be a positive C>®—function on X, and we put x := p-|z;|*>. Let
(E«, D*) be a graded semisimple regular filtered A—flat bundle on (X, D) satisfying
the SPW—condition. We take ¢ € R such that ¢ & Par (Ey). By the assumption, there
exist a positive integer m and real numbers y with —1/m < y <0 such that

Par(cEx) C{c+y+p/m|peZ -1 <y+p/m<0}.

Let X := A? and D :={¢; =0}. Let ¢: X —> X be given by ¢({1, &) = (EM,85).
We have the induced filtered A—flat bundle (E*, ﬁk) on (X~ , 5) as in Section 3.1.1.

We put ¢ :=m-(c + ). Then Par(zE4) is contained in {¢+ p | p € Z}.

We have the generalized eigen decomposition E|p = @ E,. We have the filtra-
tion F of (E|p. Let v be a frame of (E compatible with F and E. We put
a(vj) = degF(vj) —(c+y). Let a(vj) € C be determined by vj|p € Eg(y;). We put
vj =% (vj)- Z{”'“(”f ). Then ¥ = (vj) gives the frame of zE. Let T be the diagonal
matrix whose (j, j)—entries are given by the following:

s
o

Let A be determined by D*¥=¥-4, and let Ag:=A-T". Let Fr be the C°°—sect10n
of End(E) ® Q! on X — D, determined by Frv = vI. We put ]D)o =D- Fr.

a(vj)-dlog(e™ x) +A-m-a(v))-

Let Ag = A(l) -dly + A(z) -d¢,. If m is sufficiently large, the following holds:
(A) Ay = O0(|&1]*). Moreover, (AQ)k; = O(|¢1]?) in the case (a(vg), a(vg)) #
(avp), a(vp)).
Let /11 be a Gal(X / X)—equivariant hermitian metric of °F such that /; (vi,vj) =
O(&1 1) if (a(ui). a(v)) # (a(v)). a(vy)). We set i :=*(x ™) Iy

Let § (resp. fo) be the section of End(E )®S! on X — D induced by /i and D* (resp.
ID)’\) as in Section 2.2.1. Let 6T and 9 denote the adjoint of 6 and 6y, respectively.
Denote the Euclidean metric of X by g.

Lemma 3.5

. [5, §T] is bounded with respect to h and g.
e 62=0(z]) dzy -dz.
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Proof Similar to Lemma 3.1. O

Lemma 3.6 We have the boundedness of G(ﬁk, }7) and 6% - 61 with respect to n
and g.

Proof It follows from Lemma 3.5. See the proof of Lemma 3.2. |

We have the induced hermitian metric /2 of £ on X — D. It is adapted to the parabolic
structure of E. Let 6 denote the section of End(F) ® Q}(_ p induced by 4 and
D*, and let 67 denote the adjoint. Let g, denote the metric of X — D given by
m = |ZI|_2+2/m -dzy-dzy +dzy - dz,.

Corollary 3.7 We have the boundedness of G(D*, h) and 6% -6 with respect to h
and g, . O

3.2.2 The induced metric and the A—connections on the divisors For simplicity,
we assume ¢ = y = 0 in this subsection. Let (a,a) € KMS(°E4). We study
the induced hermitian metric and the induced A—connection of Grf;, ECE). Let u;
(j = 1,2) be sections of Gri E(°E). We take sections u} (j = 1,2) of °E which
induce u;. Then it can be shown that ( x4 -ho(uf, u’z))| p is independent of the choice
of ug , which is denoted by /4,4 (11, us).

On the other hand, let U, be the subbundle of °F generated by v; such that
(a(vj),a(vj)) = (a,a). Itis easy to see that the restriction Uy o|p are independent of
the choice of the frame v, and U, o|p are orthogonal with respect to n D The induced
metric of Uy g5 is denoted by Ay, .

Lemma 3.8 Let R(/4,4) and R(hy,) denote the curvatures of (Gri’glE (E), haa)
and (Ug,| D, hy o) - Then we have the following relation:

(25) tr(R (o)) = tr(R(haa)) —a-rank Grl o (E) - 90 log p

Proof We take the isomorphism &: Grfz ’OIF (E) ~ Ua b given as follows. Let
v be a section of Grfz ;,ICE (E). Let v’ be a section of °E which induces v. Then
D) :=(p*(v')- z;""’)| 5 is contained in Uy |5, and independent of the choice of v'.
Under the isomorphism, we have hﬁw = hg,o-p . Then (25) follows. O

We have the induced A—connection, once we fix x. (See Biquard [1].) Let f be any
section of Grf’f(E). Let fbe aliftof f to °E. We put D* f —a -logx - f =:
G1+(dz1/z1)+Gy-dzy. Then Gy|p is contained in F<4(E). Hence, G;-dz; induces
the well defined section of Gr(i ’OI[E(E ) ® L, which is Dg (f). We have the induced
section 6,4 of End(Gri;iE(E)) ® Qb.
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Lemma 3.9 We have the following relation:

C1+A |2(8 i (ak+a)~5810g,0
A aat 1+]A12

26)  tr(R(hq)) = rank Gr?” E(E))

Proof We have the relation:

1+|)\|2 " 1+|)‘|2( na 1 " )
S L d"8 d"F
A T et T

27 R(h) =
ey RB)=-—5
Let D)‘/ be the induced A—connection of U, q(5, and let 6, , be the section of
End(Ua D) ® Q! 5 induced by ]D)a o and h;,a . Then we obtain the following equality
from (27):

14+ |A1% (=
@8) (RO, o)) = — 1 (Btr%,a—l-

3 'a-galogp-rankGrf’iE(E))

1
14 [A]2
Under the isomorphism @ in the proof of Lemma 3.8, we have ]D)Z;,’a = ]D)f;,a. Because
hy o =haw-p~?, wehave 0, , = 044 +al(l+ |A|?)~1dlog p. Therefore, the right
hand side of (28) is the same as (26). m|

3.3 An ordinary metric

3.3.1 Setting Let X be a smooth projective surface, and let D be a simple normal
crossing hypersurface with the irreducible decomposition D = | J;cg D;. Let L be an
ample line bundle on X, and w be a Kahler form which represents ¢;(L). We take a
hermitian metric g; of O(D;). The canonical section O —> O(D;) is denoted by o;.

Let € be any number such that 0 < € < 1/2. Let us fix a sufficiently large number N
for example N > 10. For some positive number C > 0, we put

(29) we:=w+ Y C-eN-v/=100]0; |3
i

It can be shown that w, are Kahler metrics of X — D forany 0 <e < 1/2,if C is
sufficiently small.

Remark 3.10 The factor €V is added for the argument in Section 5.1 to use Proposi-
tion 2.16 of [14]. O

Remark 3.11 Let t be a closed 2—form on X — D which is bounded with respect to
we . Then the following formula holds:

/ a)-r=/ We+ T
X—-D X—-D
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In particular, we also have [y, o? = [y_, »Z. We will implicitly use it. ]

In the case € = 1/m for some positive integer m, it can be shown that the metric
we satisfies Condition 2.33. By construction, the Kahler forms w, behave as follows
around any point of D:

e Let P be any point of D; N Dj, and (Up, z;, zj) be a holomorphic coordinate
around P such that D; NUp = {z; =0} and D; NUp = {z; = 0}. Then there
exist positive constants C; (i = 1,2) such that the following holds on Up, for
any 0 <e <1/2:

dzi-dz  dzi-dz:
Cl-(uefv—l-eN‘H-( o Zl—i— 5 ZJ)—I—«/—I(dZ,'-dZ'—f—de-dfj)

|Zl.|2—2€ |Zj|2—2e

<Cy-we

e Let Q be any point of D; \Uj# Dj, and (U, w;, w,) be a holomorphic co-
ordinate around Q such that U N D; = {w; = 0}. Then there exist positive
constants C; (i = 1, 2) such that the following holds for any 0 <€ < 1/2 on U :

dw;-dw
Cl cWe = V—1'6N+2'(%) —|—v—1(dw1 dlﬂ] +dw2'dw2)
1

< (- we

3.3.2 Construction and some property Let (E4,D*) be a graded semisimple par-
abolic A—flat bundle satisfying the SPW—condition. For simplicity, we consider only
the case A # 0. We take ¢ € RS such that ¢; & Par(E4,i) foreach i € S. Let m be
as in Definition 2.6, and we set € :=m™!. Let ho be a C°°—hermitian metric of E
on X — D as in Section 3.1 around the intersection points of D, and as in Section
3.2 around the smooth points of D. Let 6, denote the section of End(E) ® Q1% on
X — D induced by D* and /g, and let 9; denote the adjoint.

Lemma 3.12 We have the boundedness of G(D*, ho) and 03 . 9; with respect to hg
and wc .

Proof It follows from Corollary 3.3 and Corollary 3.7. O

Corollary 3.13 The following equality holds:

n_ 1 2
/X R0 = /X (Gl
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As a result, we have the following formula:
) i

tr(G(ho)? 22/ ar-ch, (E

(5) o fyp o007 =2 [ parenae)

Proof The second equality follows from the first equality and the equality (36) in
the proof of Proposition 4.18 of [14]. Due to Lemma 2.32, we have only to show the
vanishing [ 9 tr(@é . 93 ) = 0, which follows from the estimate of 93 . Q(J)r in Lemma
3.12. O

We can also show the following equality by using Lemma 4.16 of [14] and the equality
trG(ho) = (14 |A|?)-tr R(ho):

V=1)\? Gho\2 [ ~=T\2
(7) /X—D (t1r+(|)h(|)2)) :(7) /X_D(trR(ho))z=/Xpar—c1(E*)2

Let V C E be a A—flat subbundle. Recall A # 0. Because of the regularity, we have
the saturated filtered A —flat subsheaf V. C E.. Let /iy be the metric of V' induced
by ho .

Lemma 3.14 deg,_(V,hy) = par-deg,, (V) holds. In particular, deg,, (E,ho) =
par-deg,, (E4).

Proof It can be shown by the same argument as the proof of Lemma 4.20 of [14]. O

3.3.3 The induced metric and the A—connection on the divisors For simplicity,
we assume ¢; = y; = 0 (i € .5) in this subsection. We put S(D;) := D; N Uj# Dj
and D} := D; \ S(D;). Let (a,) € CMS(®E,F,i). We have the naturally induced
parabolic flat bundle iGri;}lE (°E)« on (D;, S(D;)). By using the functions |o; |§,I, , as

explained in Section 3.2.2, we obtain the induced hermitian metric "1, 4 and the A—

connection "]D)f;,a of iGri;)IlE(OE)|Dlg>. (See also Section 3.1.2.) Let 7; := 99 log |o,~|§,l,.
Lemma 3.15 The following equality holds:

tr(R(ha,e)) = ! +}\|)\|25tr("9a,a) 2oy -rankiGri;)];E(°E)
Proof It follows from (23), (24), (25) and (26). O
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Corollary 3.16 We have the following formulas:
(30) par-degp, (iGri;)];E (OE)*) = —Re(A o) -ranliiGrf;;)I[E (°E)-[Di)?
- Z (Re(k‘1 tr(Resp (iDé,a))) + wt("Grf”oIlE (P°E)«, P))

PeS(D;)
Gn 0= Y Im(rl tr(Res P(iﬂ)g,a))) +Im(A ') -rank ‘Gl (°E) - [ Di]?
PeS(D;)
Proof It follows from Lemma 2.57 and Lemma 3.15. O

Remark 3.17 Although we have assumed that graded semisimplicity and the SPW-
condition for (E, ID))‘) , the formulas (30) and (31) without the assumption, because
the general case can be reduced to the above special case by using €—perturbations
explained in Section 2.1.6. a

3.4 Preliminary existence result for a Hermitian-Einstein metric

Let X be a smooth irreducible projective surface with an ample line bundle L and
a simple normal crossing divisor D. Let @ be a Kahler form representing ¢ (L).
Let (E4, D*) be a graded semisimple regular filtered A—flat bundle on (X, D). We
assume the SPW—-condition in Section 3.3.2. Let m be as in Definition 2.6, and we set
e :=m~!. Let we be the Kahler metric given in (29). We have an ordinary metric /
constructed in Section 3.3.2. We also use the other notation in Section 3.3.

Lemma 3.18 We can construct a hermitian metric h;, for E|xy_p which satisfies the
following conditions:

* hip is adapted to E«. More strongly, hin = hg - e* for some function x such
that x, dx and ddx are bounded with respect to we .
o G(hin, ]D))“) is bounded with respect to h;, and we.

e Let V4 be a A—lat filtered subsheaf of Ex. Let V := V|x_p and let h;, y
denote the induced metric of V. Then par-deg,, (V) = deg,, (V, hin,y) holds.

o (1+AM») 'trG(hin, DY) we = a-w? for some constant a. The constant a is
determined by the following condition:

v —lrank E v—lrank E
(32) a- S / a)e2 =a-—— / w? = par-deg,, (Ex).
T 2 X—-D 2w 2 X
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e The following equalities hold:

( E)z /X w(Ghin))?

2
27 ) v G 1) ‘/Xpar'cl(E*)‘

e Let s be determined by h;, = hg-s. Then s and s~ 1 are bounded, and Dhs is
L? with respect to hy and we .

Due to the third condition, (E, hi,, 6) is analytic stable with respect to we, if and only
if (B4, D*) is puy —stable. The metric h;, is called an initial metric.

Proof By a consideration of orbifolds, we can take a real-valued bounded function
X such that (i) dx and 85)( are bounded with respect to we, (i1) Ay, X = V—la—
«/—_lrank(E)_lAwe tr R(hg). We put hj, := hg - eX. By construction, the fourth
condition is satisfied. The other property can be reduced to the property for /1, as in
Lemma 6.3 of [14]. O

Proposition 3.19 If (E«, D*, h) is jup —stable, there exists a hermitian metric hyg of
(E,D*) with respect to we satisfying the following properties:

e Hermitian-Einstein condition (1+|A?|)~! Ay, G(hyg) = a holds for the constant
a determined by (32).

e par-deg; (Ex) =deg,(E, hug).

e We have the following formulas:

v=1\? w((Ghup)H)?) par-c2(Es)
(7) [ e ‘L(zpar'Chz(E*)_ rank E )

(«/—_1)2/ tr(G (hug)?)

2 -p (I+[A]?)?

Here G(hyg)™ denotes the trace free part of G(hug).

= / 2 par-ch, (Ex).
X

o hyg is adapted to Ey, ie, E4(hyg) ~ E«. More strongly, s and s~ ! are bounded
with respect to hj,, and D*s is L? with respect to hi, and we, where s is
determined by hyg = hin - s.

Proof It follows from Lemma 3.18 and Proposition 2.49. O
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Bogomolov-Gieseker inequality Let Y be a smooth projective variety of any dimen-
sion. Let L be an ample line bundle on Y, and let D be a simple normal crossing
divisor.

Corollary 3.20 Let (E«, D%) be a juz —stable regular filtered A—flat bundle on (Y, D)
in codimension two. Then Bogomolov—Gieseker inequality holds for E, . Namely, we
have the following inequality:

Jy Par'C%,L(E*)
2rank E

/ par-chy 7 (E4) <
Y

Proof Similar to Theorem 6.1 of [14]. Namely, since we have the Mehta—Ramanathan
type theorem (Proposition 2.21), we have only to prove the claim in the case dim Y = 2.
Due to the method of perturbation of parabolic structure explained in Section 2.1.6,
we have only to prove the inequality in the case (E, D*) is a graded semisimple
wr —stable regular filtered A—flat bundle on (Y, D), satistfying the SPW-condition.
Then we can take a Hermitian-Einstein metric sgg as in Proposition 3.19, for which
we have the standard inequality (see Proposition 3.4 of [17]):

(33) /Y . tr ((G(hup)*)?) = 0.

Hence we obtain the desired inequality from (33). O

3.5 Some formulas and vanishings of characteristic numbers

Let X be a smooth projective surface, and let D be a simple normal crossing divisor

of X. We will derive some formulas and vanishings for the characteristic numbers of
A

(E* 5 ]D) ) .

Remark 3.21 To begin with, we remark that we have only to show such formulas for
regular filtered A—flat bundles satisfying the following conditions, due to the method
of perturbation of the parabolic structure (Section 2.1.6):

e graded semisimple, Par (E*, i) C Q, and 0 & Par (E>,< i) forany i € S.

We will implicitly use the conditions in the following argument.

We restrict ourselves to the case dim X = 2 just for simplicity. The formula can
be obviously generalized for [, par-ch, y (E4) of regular A—flat parabolic bundles
(E«,D*) on (X, D) in codimension two even in the case dim X > 2, where L denotes
an ample line bundle on X . m|
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We introduce a notation to simplify the description. An element (a,®) € KMS(Q) :=
KMS(®E,i) is described as u, and we put

r(i,u) := rankp, ("Gr,}f’IE (°E))
For any point P € D; N Dj and (u;,u;) € KMS(P) := ICMS(°E, P), we put
r(P,uj,uj):= rank(PGr,i”ILE” (E))

The self-intersection number of D; is denoted by [D;]?.
Proposition 3.22 We have the following equality:

(34) /X 2parchy(Ex) =) Y (Re(t o) +a)? - r(i,u) - [D;?

ieS ueKMS(@i)

+Z Z Z (Rek_lozi—l—ai)(Re)\_laj +aj)-r(P,u,-,uj)
ieS VES (uj,uj)EKMS(P)
PeD;ND;

We also have the following equalities:
(35) / 2 par-ch, (Ex)
X

= Z Z Re(A'a +a)- (— par-degp, (iGri;)ItE (°E),) +a-r(iu)- [Di]2>
ieS uekkMS(i)

36 0=>" > Im( 'a)- (— par-degp, (‘Grl ™ (°E)«) +a-r(i.u)- [D,-]z)
ieS uekKMS(@i)

Proof Let sy be an ordinary metric for (Ex, ]D))‘) as in Section 3.3. We use the
notation there in this proof. Let X5 :=("\{|o;| > 6} and Yj; := X5 N {|o;| =6}. We
have

R(ho) = =2~ (1 +[A|?)-d" 6.

Hence, we have the following equality:

(V1Y >
(37) 512})(7) /X Str(R(ho))

1+ A% («/—1 2/
_ 1 -R
5 821}) e - d tr(«90 (h()))
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By using the estimates in Sections 3.1-3.2, the contribution of Ys; to (37) is the
following:

Loy m(aﬂ—la)f[[)i(tr(mlhaﬂ))—a.r(i,(a,a))-n)

m
(a,0) EKMS(i)

=— Z (a+k_1a).(degDi (iGriz)I[E(oE)*)—a-r(i,(a,oz))-[Di]z)
(a,0)eEKMS(i)

By taking the real part, we obtain (35). By taking the imaginary part, we obtain (36).
The equality (34) follows from (35) and Corollary 3.16 by a formal calculation. O

Let (D;, w) denote the intersection number of D; and .

Lemma 3.23 For any C*° 2—form t, we have the following:

(38) /par-cl(E*)-f=—”_1f tr R(ho) T
X 2r Jx
==Y > Re('a+a)-r(i.(ax) (D7)
i€S (a,0)eKMS(i)

Namely, the cohomology class of ~/—1(2m)~! tr R(hg) is par-c;(E4). In particular,
we also have the following equality:

par-deg,(Bx) ==Y Y Re(A'a+a)-r(i.(a.0)) (Di )

ieS (a,0)eKMS(i)

Proof Recall R(ho) =A~1(14+|A|?)-d"6y. We obtain (38) by using the estimates
in Sections 3.1-3.2. O

Remark 3.24 We considered the KMS—spectra of °E. But, we have the following
equality forany ce RS and i € S':

{Re(A™'a) +a|(a.0) e KMS(PE, i)} = {Re(\"'at) +a | (a,0) € KMS(E, i)}

We also have such comparison for K MS(°E, P) and KMS(.E, P) for ¢ € RS and
P € D; N Dj. Namely, the choice °F is not essential. (See also Section 6.) m|

Recall the formulas for [, par-ch,(E4) and par-deg, (E«) in Proposition 3.22 and
Lemma 3.23, respectively. Then we immediately obtain the following corollary.

Corollary 3.25 If a + ReA~la = 0 hold for any element of the KMS—spectrum
(a,) of (E4,D*), the characteristic numbers par-deg,,(Ex) and [y par-ch,(Ex)
automatically vanish. m|
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One of the motivation of this study is to understand the Corlette—Jost—Zuo metric from
the viewpoint of the Kobayashi—Hitchin correspondence. For that purpose, we need
vanishing of [ par-ch,(Es) as in the corollary, which is “the obstruction on the way
from harmonicity to pluri-harmonicity”. Corollary 3.25 clarifies this point, which we
will revisit in Section 5.3.3.

4 Continuity of some families of harmonic metrics

In this section, we will show continuity of two kinds of families of harmonic metrics
on curves, ie, Proposition 4.1 and Proposition 4.2. We will give a detailed proof of the
first one. Because the second one can be proved similarly and more easily, we just give
some remarks in the end of this section.

We have explained in Section 1.2.3 the role of Proposition 4.1 which plays for the
proof of our main result. We will use Proposition 4.2 in Section 5.2.5 to show that
some hermitian metric is C!.

4.1 Statements

4.1.1 Continuity for e—perturbation Let C be a smooth projective curve with a
finite subset D. Let (E,F,D") be a stable parabolic flat A—connection over (C, D)
with par-deg(E,F) = 0. Let F© be the e—perturbation of the parabolic structures,
explained in (IT) of Section 2.1.6. We remark det(E,F) = det(E,F©). We fix
a harmonic metric hge gy for det(E ,F,ID))‘), ie, hge(E) 18 @ harmonic metric of
det(E, ]D))‘)‘ x—p» adapted to the parabolic structure. Let 4© be the harmonic metric
for (E,F©,D*) such that det(h©) = hge(g)- Let 0 denote the Higgs fields for the
harmonic bundles (E,D*, h©).

Proposition 4.1 The sequences {h'® |e > 0} and {0‘®} converge to h'® and 6
respectively, in the C*° —sense locally on C — D.

The proof is given in Section 4.5 after the preparation given in Sections 4.2—4.4.

4.1.2 Continuity for a holomorphic family Before going into the proof of Proposi-
tion 4.1, we give a similar statement for another family. Let C —> A be a holomorphic
family of smooth projective curve, and D —> A be a relative divisor. Let (£, F, D*) be
a parabolic flat bundle on (C, D). Let ¢ be any point of A. We denote the fibers by C;
and Dy, and the restriction of (E,F,D*) to (C;, D;) is denoted by (E;, Fy, ID)?‘). We
assume par-deg(E;, F;) =0 and the stability of (E;, Fy, D?‘) for each ¢. For simplicity,
we also assume that we are given a pluri-harmonic metric /e (g) for det(E, D*, F).
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Let h g ; be harmonic metrics for (E;, Fy, ]D)g‘) such that det(h g 1) = haew(E) |, - They
give the metric Ay of E. Let O, / be the Higgs fields induced by (E;, ]D?‘, hery),
Wthh are sections of End(E ) ® Qb c (log Dy). They give a section 6 of End(E) ®

A(log D), where Q) A(log D) denotes the sheaf of logarithmic relative (1,0)—
forms

Proposition 4.2 /g and 0g are continuous. Their derivatives of any degree along
the fiber direction are continuous.

Since Proposition 4.2 can be proved similarly and more easily, we will not give a
detailed proof. See Remark 4.16.

4.2 Preliminary from elementary calculus

Forany z € A* ={z e C||z| < 1} and € > 0, we define

2]~ —|z[¢ |z[7€ + |=]¢

Le(z)i=——", Ke(s)i=—"7—-,
€ 2

We also put Lo(z):=—1log|z|?, Ko(z):=1 and My(z):= 1. Then they are continuous
with respect to (z,€) € A* xR> .

Me(2) = |z]*¢ (1 = log |2|*).

Lemma 4.3 For any (z,€) € A* xRx>(, we have Lo(z) < L¢(z2).

Proof We put g(e) :=a € —a +¢-loga® for 0 <a < 1 and 0 < €. Taking the
derivative with respect to €, we obtain the following:

g'(e)=—(a"¢+a)loga+loga®, g"(e)=(a€—a)(loga)* >0

Because g(0) = g’(0) = 0, the claim of the lemma follows. O

Lemma 4.4 (K.(z) —1)-(Le(2)?-€2-|z|€)™! are bounded on A*, independently
of €. We also have K¢(z) — 1> 0.

Proof The second claim is clear. Let us check the first claim. For 0 < a < 1 and
0<e<I1, we set

gi(€) i =a¢ —2+4af, ga(€):=(a"¢—a%)%a =a"€—2a° + a*¢.

We have only to show that g>(€) > g; (). We put g(€):=g,(€)—g1(€) =2+a3¢—3ac.
By taking the derivative with respect to €, we obtain the following:

g’ () = 3a*¢ -loga —3a€ -loga = 3(—a>€ + a€)(—loga) > 0

Because g(0) = 0, we obtain g(e) > 0. Thus we are done. ad
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Lemma4.5 (1—M.(z))-(Le(2)?-€2-|z|€)™! are bounded on A*, independently of

€. We also have 1 — M.(z) = 0.

Proof We have only to show the following inequalities for 0 <a <1 and 0 <€ < 1:
0<1—a*(1—loga*®) <3(a € —a)*a*

To show the left inequality, we put /(€) := 1—a*¢(1—log a*¢). By taking the derivative
with respect to €, we have

I (€) = —a*€loga*(1 —log a*€) + a*¢ loga* = ea*¢(loga*)? > 0.
We also have /#(0) = 0. Hence, we obtain /i(¢) > 0.
To show the right inequality, we put as follows:
gle):=a*(3(a ¢ —a)?a® — (1 —a**(1—log a4€)))
=3¢ —2a"3 +a7¢) + (1 —loga*®) —a*¢
By taking the derivative with respect to €, we obtain the following:
g'(e) = 3(a_5€(—5 loga) —2a~%¢(—31loga) +a (- log a))
—4loga—a *¢(—4loga),
g"(e) = (75a7°€ = 16a~*¢ — 54a73¢ + 3a¢) - (log a)*
It is easy to check g”(¢) > 0 by using a~¢ > a~%¢ (k = 3,4). Because g/(0) =

g(0) =0, we obtain g(¢) > 0. Thus we are done. ad

Lemma 4.6 Let P(t) be a polynomial in a variable ¢, and let b be any fixed positive
number. Then we have the boundedness of |z|%€ - P(e Lo(z)) on A*, independently of
0<e=<1/2.

Proof We put u := |z|€, and then |z|?¢ P(e Lo(z)) = u® - P(Lo(u)). Hence, we have
only to show the boundedness of ub . P(Ly(u)) when 0 <u < 1, whichiseasy. 0O

4.3 A family of metrics for a logarithmic A —flat bundle of rank two on a
disc

4.3.1 Construction of a family of metrics We put X := A = {z } |z] < 1}. Let
O denote the origin, and we put X* := X — {O}. We use the Kahler form we :=
(€?|z|72 4+ 1) - dz - dZ in this subsection. We will use the notation in Section 4.2,
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To begin with, we recall an example of a harmonic bundle on a punctured disc. Let
E = Oy -v; & Oy - v, be a holomorphic vector bundle on a disc. Let 6 be a Higgs
bundle such that 6 -vy =v,-dz/z and 6 -vy = 0. Let & be the metric of E|y= such
that 2(vy,v1) = Lo, h(vy,v2) = Lo_1 and A (v;,vj) =0 (i # j). Recall that the tuple
(E, 3. 0, h) is a harmonic bundle. Let us look at the associated A—connection. We
put u; :=v; and uy := v, —)wLO_l -vy. Then u = (u1, u,) gives a frame, and we
can show (0 +A0N)u; =0 (i =1,2), D*u; = uy-dz/z and D*u, = 0 by a direct
calculation. We also have the following:

h(uy,uy)=Lo, h(uy,u)=1+AH-Ly", h(uy,uy)=—k, h(uy,u;)=—h

Motivated by this example, we consider the following family of the metrics /¢ on the
A—connection (E,D*) given as follows:

he(ui,uy) = Le, he(ua,uz) = (1+A*)-L7",  he(ur,uz) =—k M

The A—connection D* and the metric /. induce the operators d¢ and 6. (Section
2.2.1). The main purpose of this subsection is to show the following proposition.

Proposition 4.7 There exists a some positive constant C such that |9 6c| hewe =C
forany 0 <e <1/2.

Although the proof of the proposition is just a calculation, we will give the details in
the rest of this subsection.

Remark 4.8 Let /. be the metric determined by /4. (uy,u1) = Le, hl.(uz,up) = L
and /. (u;j,uj) =0 (i # j). Then there exist positive constants C; (i = 1,2) such
that Cy -h. < he < Cy-h!, forany 0 < e < 1/2. Hence, we have only to consider the
norms for /1, instead of those for /. ]

4.3.2 Preliminary Let H. be the hermitian matrix valued function given by H, :=

H(he,u), ie,
oo L. —A- M,
T\ Mo+ pPL )
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Let N be determined by D*u=wu-N -dz/z, and let N;r denote the adjoint of N with
respect to the metric He, ie,

00
N} = H-V'N H,
~ 1 (—X(1+|_A|2)L21Me _ P2 )
LR - M) —A2 M2 MU+ ML

Recall the calculation given in Section 2.2.2. Then 56 and 6. can be described as
follows:

BGU—u-l_H)\lz()\-HE aHE—NE?), QEU—UW(N7—)\HE BHE)

Therefore, d¢(6e) is described by the following 2 x 2 matrix valued 2—form with
respect to u:

v

I
N S TE 3(-1H o

+m(ﬁ 7w N ) W ) [ a o))

Here we have used [ —19H,, H 19 H,] = 0, which can be checked easily.
Lemma 4.9 To show Proposition 4.7, we have only to show the uniform boundedness

of (1, 1)—entry, (2,2)—entry, Lex (1,2)—entry and L7 x (2, 1)—entry, in the matrix
valued function (39).

Proof It follows from Remark 4.8. O

In the following calculation, we often use the symbols L and M instead of L and
M, if there are no risk of confusion. Let us look at H_ 19 H, . We have the following
equalities:

A1 1 ((1+lk|2)-LE_1 A-Me)
¢ 1+ |A2(1—M2) A M, Le )’
— . aLE —)\‘aME

OH. = (—X-aME (1+[A})-aL! )
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Then we obtain the following formula for H !9 He:

1
[+ AR2O—M2)
(14 AMHLTNIL — AP MM (1 + [A*)(—L~"0M + MIL™")
AMMAIL — LOM) (14 AP LOL™! —|A]2M -OM

(40) H:'9H,. =

\_Ve also have a similar formula for ﬁé_ lgﬁe. We obtain the following formula for
(H'0H,):

AMEMOM
(1+ [A2(1 = M2))?

(1+]A*)d0log L — 271 [A[290M 2 A(1+|A|>)(MBIL™" — L~190M )
AM(MOIIL — LIOM) (14 |A|?)00log L=1 =271 |A|200M 2

1) d(H 'oH.) = dHe +

T+ 2= M2

The commutator of ﬁe_ 1555 and N -dz/z is as follows:

o dz (1+ 4]
1 o =
(42) [HE 9H., N Z] AR =D
M=L7'OM + M3L™) 0 ~ dz
2L0L7! ~AM=L7YOM +MIL™") ) =

Let us look at the commutator of H '3 H and N:. By direct calculations, we have
the following equality:

ﬁe_laﬁe * NET

_ 1 —X(1t|k|2)L_2M8L (1+ 3L 730L
1 A2(1—=M2) A2 MM A1+ AP L 'oM
1
(1+ A2(1 = M2))?
y 2MPA(1 4 [MP)MALTIOM  =2[A2(1 4 AP M L™20M
2M3IM A2 |A|? MM+ AP M2LOM

We also have the following:

NET'EG_IGEE

B 1 M1+ AHLTTOM (14 [A[H2L™ 1oL
1 A2(1—=M2) —A2M oM A1+ [AH)MIL™!
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Therefore, we obtain the following formula:

@3) (1+A2(1=M>) NS, B Y9H
=AU APNLTOM — L2 ML) —2(14|A|?)2L730L
- —2A2 MM A1+ A2 (MIL™ + L=19M)
B 2|12 A+ AHMALTIOM  —(1+ A2 ML™20M
(1+[A2(1 = M2)) A2M3oM A1+ |A)M2L oM

The commutator of N and N: is as follows:

1 (1+[A[»)2L™2 0
+ _ _
@H - INE N = T mra - (2x(1+|k|2)ML‘1 —<1+|)»|2>2L‘2)

4.3.3 Estimate We have the following:

d 2 g d
e=-K 2 0Ke=-SL. 7 M. =4et |z* Ly 2
z 4 z z

In particular, we have the following estimate:
M M, = 0(62 2% Lo (1 + eL@%)
Let us look at the first term in the right hand side of (41):
2IM|2 M AM,
(1+142(1 - M2))°
For the (1, 1)—entry and (2, 2)—entry, we have the following estimates:

dzdz
|z|?

(45) H '9H,

MM L7 0L = O €2 Lo|z|3(1 4 €L )—)

dzdz
|z|?

= O(|=1"(1 + €Lo) (¢ Lo)? ) e

(
0(|Z|5E(1 —I—eLO)—)a)E
(¢

MMM M, = O(e*)2)15¢(1 +eL0)2L§)

They are bounded with respect to we due to Lemma 4.3 and Lemma 4.6. Hence, the
(1, 1)—entry and the (2, 2)—entry of (45) are bounded independently of €. Let us look
at the (1,2)-entry. Recall Lemma 4.9. Hence, we have only to see the following:

Lex (McdMe) - (L7'OMe — MAL,') = MOMOMe + MZOM L, 0L,
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Both terms in the right hand side can be estimated as in the previous case, by using
Lemma 4.3 and Lemma 4.6:

MegMeaMe = 0(|Z|106(1 +€L0)(€L0)2) cwe = 0(1) - we

- L
MEIM L7 L, = 0(|z|“€(1 +6L0)2L—0) cwe = 0(1) - we

€

The (2, 1)—entry can be estimated similarly:
L' X (McdMe) (ML — LedMe) = MEL7'OMALe— M- 0McdMe = O(1) - we

Let us look at the second term in the right hand side of (41), which is the product of
(14 |A|2(1 = M?))~! and the following:

46) (1+[A[*)ddlog L —27"|A[290M 2 A(1+[A[>)(MBIL™" — L~190M)
A1+ AP (MIIL — LIdM) (1 + |A|?)ddlog L~ —271|A|200M 2

It is easy to see the following estimate:
00MZ = O(€*-1z|°¢(1 + €Ly)?) - 0 = O(€?) - we

So it is bounded with respect to we independently of €. We remark that LE_1 ML
is also bounded independently of €:

_ = €2 dz-dz
L7'M-00L = ZMG TR O(1) - we

Hence, we have the following, modulo the uniformly bounded term with respect to

(he, we):

(47) A(H;19H,) =

(141 (5alog Le AMIIL! )
L+ |A12(1—M2) 0 —ddlog L

Let us look at (42). By the same argument, we have the following uniform boundedness:

- dz L dz-dz
-1 _ 2|14 =0 _
Le 8Me‘7—0(6 |Z| GL_G).W_O(I).CUE

Hence, we have the following, modulo the uniformly bounded terms with respect to
(he, we):

= dz (14 [A1%) AMIL]! 0 dz
! az eV le _ .
(48) [HE dHe, N } 14+ 221 —=M2) \ 2LOL' —AMIL,!

V4 z
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Let us look at (43). We remark the following, for any k > 1:

dz MFoM. 0(

Lo\ dz-d
2|zt L er )k 22} % _ (1) e
Z L¢ L

€ |Z|2

Hence, the terms containing dM in the right hand side of (43) can be ignored. Hence,
we obtain the following, modulo the uniformly bounded terms with respect to (f¢, we):

dz — . _
(49) [NJTZ, H;laHe]
z

_ (+AP) 47 (AL72MOL, —2(1j|k|2)L6_38L6)
L+ AP -M2) Z 0 AMOL!

In all, (39) is equal to the following, modulo uniformly bounded terms due to (44),
(47), (48) and (49):

(50) 1 —Addlog Le —A2ME-5aL;1)
1+ A2(1—M2) 0 Addlog L
N 1 A2 dZ-dz (A-Mc-Ke-L72 0
T+ A2 =M 1+[A2 |z 2Ke-L7' —A-Mc-Ke- L2
N 1 A2 dz-d:z (—X-MG-KE~LE_2 2(_1+|A|2)L;3~K€)
T+ A2 =M2)1+|A2 |z 0 A-M-Ke-L7?

A dE-dz( L;? 0 )
T+ A2 =M2) z2 \ 22+ A" M- LT —L7?

The summation of the last three term in (50) is as follows:

1 dz-d: ( —AL;? 2A2L6_3K6)
T+ A2 =M2) |22 \2RPA+AD) T (Ke—=MoLT! AL

By a direct calculation, we can show the following equalities:

1 dz-dz

2 dz-dz €% 1 dz-dz
L2 |z|?

L3 |22 2 Le |22

30 logLe = — §8L€_1 =
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Therefore, (50) can be rewritten as follows:

R YT vy
5 ( 0 202173 (Ke —ME)) dzdz
2P+ ML (Ke — Me) 0 2|2
. 1 (0 A€M (2Le)™! ) dzdz
L+ A2 —=M2) \ 0 0 |z|2

Due to M = O(|z|*¢(14€Ly)), the second term in (51) can be ignored. Due to Lemma
4.5 and Lemma 4.4, we have the uniform boundedness of (M —1)-L_%-dz-dZ/|z|?
and (K¢ —1)-L;2-dz-dZ/|z|*. Thus, the proof of Proposition 4.7 is finished. i

4.4 A family of metrics of a parabolic A —flat bundle on a disc

4.4.1 Simple case Weput X := A={z€C||z| <1} and X* := A—{0}. Let
V; be a vector space over C with a base e = (eq,...,¢;), and let NV; be the nilpotent
endomorphism of V; givenby N;j-e;41 =e¢; fori =1,...,1—1 and N;-¢; =0. We
put E; := Ox ® V;. Then ¢; naturally induce the frame of E;, which we denote by
v=(vy,...,v;). The fiber E|q is naturally identified with V', and we have v|p =e.
We have the logarithmic A—connection ID)I)‘ of E; given by ID);“ Vi = Vjyq -dz/z for
i=1,...,]—1 and ]D)lkvl = 0. The residue Res(D*) is given by N;. We have the
weight filtration W of E|o with respect to N;.

We have the trivial parabolic structure F of E;. Take a sufficiently small positive
number €. We consider the e—perturbation F© given by F ;:E) = Wy for k = -1 +
1,—/+3...,]—1 in this case.

Let us fix a sufficiently small positive number €y such that rank £ - €5 < 1/10. In
the previous subsection, we have constructed a family of metrics h(;) (0 <€ <¢p).
It induces a metric of Syml_l(Ez, ID);“) ~ (E;,Dy;), which we denote by hf). The
following property can be shown by reducing to the case / = 2.

e hy” is a harmonic metric.

. h}e) — h;o) as € — 0 in the C*°—sense locally on X *.

¢ There exists a constant C > 0 such that |Aw6G(h;E))| po <C.

1

o h§? is adapted to the parabolic structure F©.

e Weset t := det(h;‘)) / det(h}o)). Then ¢¢ and 77! are bounded, independently
of €.
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Lemma 4.10 Let H. denote the Hermitian matrix valued function whose (i, j)—
entries are given by (hf)(vi, vj)). Then we have the following estimate on {0 < |z| <
1/2} with respect to hf) :
H'-(0+219)He = 0(1)- % +0(1)- %

Proof We show the estimate only for H_ '9 H,. The term H_. 'dH can be shown in
the same way. We have only to check the case / = 2. As in Lemma 4.9, we have only
to look at the (1, I)—entry, (2,2)—entry, Lex (1,2)-entry and LZ!x (2, 1)—entry in
the matrix valued function (40). As is seen in Section 4.3.3, the term containing M,
is bounded with respect to w¢, and the estimate is uniform for €. Hence, we can ignore
them. Therefore, we have only to show that LZ719Le = —L AL is O(1)-dz/z, but
it can be checked by a direct calculation. a

4.4.2 General case Let (E,F,D*) be a parabolic flat A—connection on (X, O).
Take a positive number 7 such that 107 < gap(E, F). We will use the metrics

dz-dz dz-dz

_ 2|, |€
(52) We = € |Z| |Z|2 |Z|2

+ |z|*"

Here, € will be m~! for some m € Z- such that 10rank(E) -€ < 5. We take the
e—perturbation F© as in (IT) of Section 2.1.6. Let a(e) be the numbers which are
denoted by a(e, i) in the explanation there.

We have the endomorphism Res(D*) of Gr5 (FE). It induces the generalized eigen de-
composition Gr5 (E)=Byec Gr[IZ’OIlE (E). On Grfj’]E (FE), the endomorphism Res(D*)
is decomposed as «-id +N,,, where u = (a, ®) € RxC. Let W be the weight filtration
of N, on Gr,f ‘E(E). They induce the filtration W of Grf (E).

For u e RxC, weput V,, := Gr,f ‘B (E) with the induced nilpotent map N, . Then we
can take an isomorphism

m(u)

Ve Nu) =~ P Vicwiy Niw,iy)-

i=1

where (V;, N;) are as in Section 4.4.1. We put
(Ew. D)) = P (Eiu,iy-Djy.)-

Let h:,(e) denote the metric of E, induced by h;a ) (i=1,...,m(u)). (See Section
44.1).
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Let Q(u) denote the logarithmic A—flat bundle of rank one for u = (@, o), which is
given by Ox-e with the A—connection D*e = e-a-dz/z. It is equipped with the family
of the harmonic metrics hZ,(f) (e,e) = |z|722(€)  Then we obtain the vector bundle E,
with the A—connection ]D)é and the parabolic structure F', as follows:

(Eo.D}) = EP(E..DH® Q). Fy(Eg|0) =D Eq@aio® Qa.a)0.

a<b

The metrics h;,(e) and hZ(E) induce a metric 4 of E, ® Q(u). Let h’ denote the
direct sum of them. We can take a holomorphic isomorphism W: Ey — E satisfying
the following conditions:

e It preserves the filtration F'.

o Grf (¥) o Grf ResD* = Grf Res }D)g)‘ o Grf' (V).

We identify Ey and E via W. The naturally induced metric of E is denoted by the
same symbol /1.

Lemma 4.11 The family of the hermitian metrics {hg) | 0 <€ <€y} has the following
properties:

» G(D*, hy’) is uniformly bounded with respect to (we. hy’).

o {hy’ |e>0} converges to hy’ in the C™—sense locally on X*.

. hg) is adapted to the perturbed parabolic structure F© .

e Let tc be determined by det(hy’)/ det(hy"). Then t¢ and ;' are bounded,
independently from €.

Proof We check only the first claim. The other claims are easy to see. Let f be
determined by [ -dz/z = D* —]D)é‘, and we put f: = fhl). We put ]D)é‘* = ]D)z(:)
and ID))‘ = Dé‘ o - Then we have the following:
. dz dz
GO, 1)) =[D* D} = [D) + A AR ]

dz dz

= G(DY. h§) + D} (f)—+ID>A(fJ)—+[f === E

We have the decomposition f' =) fy ., where f, v e Hom(E,®Q(u), E,®Qu')).
We have f, /|0 =0 unless & = o’ and a > a’. Hence, there exist positive constants
C and N such that the following holds for 0 < € < €q:

10 N
|/l < €127 L
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Here N - € is sufficiently smaller than n. Hence, we have the following:
[flyo = C12P" 1A A

We have the induced frames v, of E, ® Q(u). They induce the frame v of Ey. Let
B and A be determined by fv=v-B-dz/z and D(})‘V =vV-Ag-dz/z. Then we have
the following:

18
h© SC'|Z| 7

dz dz-dz
[ID))‘,fT]v=v(DBT—+[AO,BT] lez)

Here we put D =9+ Ad and BJr H7'-'B-H,, where H. = H(h,u). Since
BZ is sufficiently small with respect to (we, g’), [Ag, B : ] is also sufficiently small.
Corresponding to the decomposition f =) f, ./, we have B =) B, . Then the
following holds:

(BZ)u,u’ = ﬁl;’letgu’,uﬁu,e
Here Hy ¢ := H(h{,v,). Hence, we obtain the following:

Az —_ - o
(DBZ)u,u’?= u/,le'(DtBu’,u)'Hu,e_Hu/}GDHu’,e'(B:)u,u’+(B;r)u,u"Hu,éDHu,e

Since B is holomorphic, we have H (D’Bu/ MK Hu e-dz/z=0. Weput H), =
H (h/(e) vy). Then we have H, = |Z| 2ap’ _, and the following holds with respect
to hg) due to Lemma 4.10:

ue’

— — d d d dz
H 'DH,.=—a (A—Z Z) + HJ'DH,, = 00) = + o=
’ z z z
Since (B Ju,w is small with respect to (a)e,h“)) (B Yuu’ E—laﬁ u,e 1s also small.
Therefore, ]D)‘ f1-dz/Z is small with respect to (we, h(S)) It also follows that ]D))‘ f

dz/z is small Thus we are done. O

4.5 Proof of Proposition 4.1

4.5.1 Construction of a family of initial metrics Let 1 be a small positive number
such that n <gap(E, F)/10. Let €y be a small positive number such that 10 rank E-€g <
n. For any 0 < € < €¢, let us take w¢ be the Kahler forms of C — D with the following
properties:

e Let (Up, z) be a holomorphic coordinate around P € D such that z(P) =0,
and then we is given by (52).

e we —> wgy for € —> 0 in the C*®—sense locally on X — D.
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(€)

Lemma 4.12  We can construct a family of metrics h,

properties:

of E\c_p with the following

. hg) is adapted to the perturbed parabolic structure F©
. hg) — hg” in the C*° —sense locally on C — D.
. G(hg)) is uniformly bounded with respect to (we, hg)).

o We put te := det(hy’) / det(hy”). Then t¢ and 17" are bounded independently
from €.

Proof We construct a C*®°—metric of E on |Jpcp(Up — {P}), by applying the
construction given in Section 4.4.2 to (E,F, D)‘)|UP for each P € D, and then we
prolong it to a C*°—metric of £ on C — D. O

Let R(dethg)) ) be the curvature of the metrized holomorphic bundle det(E,d”, h\"),
where d” denote the (0, 1)—part of D*. Since dethg” gives the harmonic metric
around D due to our construction, R(dethg”) vanishes around D. We also have
J R(dethy”) = =27 +/—1-par-deg(E,F) = 0. Let us take the C>—function xo on
C satisfying rank(E)ddyo + R(det(hg”)) = 0. We put h:.(:l) = hg”-exp()(o). Then

R(dethg(;l)) =0, ie, dethg(:l) is a harmonic metric of det(E,D%). Let x. be the func-

tions determined by det(h}))) = det(/;’) - exp(rank(E) - x¢). The following claims

n
immediately follows from Lemma 4.12.

* |xe| are bounded on C, independently from e.
e x¢—> 0inthe C*—sense locally on C — D.

We put h;) := hg - exp(xe), which is the metric of Ejc_p.

Lemma 4.13 The following claims are easy to check.

(e) - . €
* h, is adapted to the parabolic structure F©,

(© o ;
* h) —> h;, inthe C*°—sense locally on C — D.

G INE— : ©

* G(h};,)) is uniformly bounded with respect to (we, h}5)) .
o deth;) is harmonic, and we have dethﬁl) = dethi.(;;.

In other words, they give initial metrics for (E,F©, ]D))“) in the sense of Lemma 3.18,
and their pseudo-curvatures satisfy uniform finiteness. O
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4.5.2 Lf—ﬁniteness of the sequence Due to Proposition 2.49, we obtain the har-
monic metrics £© for (E,F©, D) such that det h© = det 4} . Due to Lemma 2.50,
we have the following inequalities for any e:

(53) Mo, (h)

in’

h(e)) 5 0.

Let s be determined by /© = A{")s”. Due to Lemma 2.45, (53) and dets© =1,
there exists a positive constant A which is independent on €, with the following

property:
54) |S(€)|h(e) < A4, |(S(€))_1 |h(e) <4

Let ID)Z?‘”* be the operator obtained from D*, we and h;;) as in Section 2.2.1. We have
the following equalities:

Aﬁ‘ue trs@ = —v—1tr(s“Ao, G(hS))) + V-1 tr(Awe]D))‘s(e) (s~ -D?‘n*s(e))

See Remark 2.27 for A} .
Lemma 4.14 We have [ A} _trs© dvol,, = 0.

Proof Note that D*s© is L2 with respect to #© and w, according to Proposition
2.49. Then it is easy to obtain the vanishing | Aé)e tr s dvol,, = 0 by Stokes’ formula
and Lemma 5.2 of [17]. O

Then there exists a positive constant A’ such that the following holds:
(55) / D5 ()20, dvoly, < A’

o 18 bounded for 0 < € < €.

n

In particular, we obtain [|D*s© ||L2,w€,h§

Remark 4.15 A rather detailed review surrounding the Donaldson functional in Sec-
tion 2.4 and Section 2.5 is preparation to obtain the boundedness (54). |

4.5.3 End of the proof of Proposition 4.1 Let Q be a point of C — D. Let (U, z)
be a holomorphic coordinate around Q such that z(Q)=0and U ~ A ={z||z| < 1}.
We use the standard metric g = dz-dZ of U. The harmonic bundles (E,D*, 1)
induce the Higgs bundles (E, d¢, 0¢). We have 6 = fi-dz on U. On the other hand,
we also obtain 5,71,6 and 0, ¢ from (E, D* h{9), although gin,é (6;,,,6) = 0 may not

>in
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be satisfied. Let §; n,e be the (1, 0)—operator obtained from h(g) and d”, as in Section

2.2.1. Then we have the following relation:

A

(56) eezein,e_ 1+|}\|2

(( (é)) 1 5”16 <e))

Due to (54), (55) and (56), there exists a constant Cy > 0 such that fU | fel i&) dvolg <
Co holds for any 0 < € < €. Hence, the following inequality holds for some constants
Ci;i>0(i=1,2,3) and forany 0 < € < €p:

(57) / log | felj ) dvolg < Cy + / Cy - | feljo dvolg < Gy
U U
Recall the fundamental inequality for the Higgs field of a harmonic bundle [18]:

112
(58) Aglog|fel}e < e Sl fZ“”(“ <0
fel2o

Due to (57) and (58), there exists a constant C4 > 0 such that the following holds for
any Q' € U(1/2) :={|z| < 1/2}:

‘fe(Q,)‘f,l(;) < Cy.

By using (56), we obtain that §/, _s‘ is uniformly bounded with respect to (we, /}))
on U(1/2).

Since QET is the adjoint of 6., we obtain the uniform boundedness of 0: on U(1/2). Let

37, ¢ be the operator obtained from h{;) and d’ as in Section 2.2.1, where d’ denotes

the (1,0)—part of D*. Then we also obtain the uniform boundedness of 87, 5 on
U(1/2). Hence, ]D)l?‘n*es(e) is uniformly bounded on U(1/2), where

A x
Dtne _Sl/ne_szﬂne
Because d" =" (5,",, cH(1+ A2 )9”1 ¢
and d' =8} + (14 A2 Oime,

we also obtain D*s© are uniformly bounded on U(1/2). Recall the formula
]D))»D)»* © — @, G(h(e)) —i—]D))” (e) (S(e)) 1 DA* ©

Thus ]D))‘D?‘n*s“) is also uniformly bounded on U(1/2). Therefore, {s“} is Ly-
bounded for any p > 1 and U(1/2). By taking an appropriate subsequence (¢;), s’
weakly converges to some 3 in Lg locally on C — D.
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It is easy to see that A -3 is a harmonic metric. We have dets = 1. We also have the

boundedness of 5 and 3! with respect to 4. Thus, we have A} -5 =h'®, ie, the
sequence {1} converges to 1 weakly in L2 locally on C — D.

Although we take a subsequence in the above argument, we can conclude that /€
converges to 1 weakly in Lé’ locally on C — D, due to a general argument. We can
also obtain the C°°—convergence by a standard bootstrapping. In the above argument,
the convergence of {6} is also proved. ]

Remark 4.16 As for the proof of Proposition 4.2, we take a C°°—metric h;, of
(E,F, ID)}‘) such that each restriction /1;,| ¢, is an initial metric. Let s be determined
by hg = hi, -s. By applying the same argument, we obtain the continuity of s.
Similarly for O . O

5 Existence of a pluri-harmonic metric

We will prove our main existence theorem (Theorem 5.16) of a pluri-harmonic metric
for a ur —stable parabolic A—flat bundle with trivial characteristic numbers, which is
adapted to the parabolic structure. (See Section 3.3 of [14] for adaptedness.) As we
recalled in Proposition 2.54, if the dimension of the base space is 1, it was established
by Simpson [18].

For the 2—dimensional case, as mentioned in the introduction, the problem is reduced
to the convergence of a sequence of Hermitian-Einstein metrics for e —perturbations.
To show it, we use a variant of the classical argument by Donaldson in [4; 5]. Namely,
we study the convergence of their restrictions to generic curves in Sections 5.1-5.2 by
using the result in Section 4 for which the Donaldson functionals played the essential
roles. (See also Section 1.2.3 for an outline of the argument.)

The n—dimensional case (n > 3) can be reduced to the 2—dimensional case (Sec-
tion 5.3.1). It may remind readers that Mehta and Ramanathan [12] established the
Kobayashi-Hitchin correspondence for stable bundles with trivial Chern classes in the
n—dimensional case (n > 3) by reducing it to the 2—dimensional case.

As a consequence of Theorem 5.16, we explain an equivalence of wy —polystable
regular filtered A—flat bundles for various A in Section 5.3.2, and the existence of
Corlette—Jost—Zuo metric in Section 5.3.3.

5.1 Preliminary

Let C be a smooth projective curve with a finite subset D. Let (E,F,D%) be a stable
parabolic A—flat bundle on (C, D) with par-deg(E,F) = 0. For each P € D, let
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(Up, z) be a holomorphic coordinate around P such that z(P) = 0. Let F© be an
e—perturbation as in (II) of Section 2.1.6 for € = m~1. We have harmonic metrics
h$ for (E,F©,D*). We assume det/ = deth()”. As shown in Proposition 4.1, the
sequence {hg)} converges to hg” in the C*°—sense locally on C — D. Let N be a
large positive number, for example N > 10. In this subsection, we use Kahler metrics
ge (€= 0) of C — D which are as follows on Up foreach P € D:

dz-dz

2|2

(€N+2|Z|2€ + |Z|2)

We assume that the sequence {g.} converges to go for ¢ — 0 in the C°°—sense
locally on C — D.

Proposition 5.1 Let h“ (e > 0) be hermitian metrics of E\c_p with the following
properties:

(1) Let s be determined by h'® = hg) -5, Then s is bounded with respect to
hy’, and we have det s = 1. It also satisfies the finiteness [DAs© I, p© g <
s 18 €
oo. (The estimates may depend on €.) 0

2) 1G]

2.1 ,g, <00 and limeo [G(A) |5 per g, = 0.

Then the following claims hold.

e The sequence {s'®} is weakly convergent to the identity in L% locallyon C—D.

. |s(€)|hff) and |(s©)~! |h((f’ are bounded on C — D uniformly in €.

Proof In some sense, the proposition means that the sequence {s‘'} cannot bubble
off, which heuristically follows from the assumption that the energies go to 0.

To begin with, we remark that we have only to show the existence of a subsequence
{s‘“/’} with the desired properties as above. We put

Il = sup [s9] .
o0:hy PeC—D} lP‘hO

(€)

For any point P € C — D, let SE(s‘“)(P) denote the maximal eigenvalue of S\p-

There exists a constant 0 < C; < 1 such that

() (€) (€)
CrIsiplye = SEG)P) = s3]0

We have detsl‘;,) = 1. Hence, it is easy to see log trsl(;i > logrank(E) > 0. We also
have SE(s)(P) > 1 for any P.
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Let us take be > 0 satisfying 2 < b -sup SE(s‘“)(P) <2+ €. We put 3¢ = bes©
and h© := = hg’ -5, Then 5 are uniformly bounded with respect to hg’. We
remark G(h'©) = G(h(e)) We also remark that #© and 4‘© induce the same metric
of End(E).

Lemma 5.2 After going to an appropriate subsequence, {E(ei )} converges to a positive
constant multiplication, weakly in L% locally on C — D.

Proof We have the following (Section 2.2.5):
(59) A; h(e)g‘(e) —3© /—1Ag0G(E(E)) + /_1AgODk'j’(e)(‘E(e))—lDz(:)g'(e)
0 0

B
We can show [ AQ,O tr5© - dvolg, = 0 by the same argument as the proof of Lemma

4.14. We obtain the following inequality from (59) and the uniform boundedness of
3’(6) .

/ IDA5© . (5) 1/ 2|§0,h§f> dvolg, < 4- / |tr A gy G(h€)| - dvolg,
=4 -/|trAgEG(ﬁ(€’)‘ -dvolg, < A | GH)|, o .
In particular, we obtain the uniform estimate
[D53 gt = A" NGE, e,

Therefore, the sequence {5©} is L%—bounded on any compact subset of C — D. By
taking an appropriate subsequence, it is weakly L%—convergent locally on C — D.
Let 5° denote the weak limit. We obtain D*3© = 0. We also know that 5 is
bounded with respect to hg)). Therefore, 5 gives an automorphism of (E,F, D*).
Due to the stability of (E,F,D*), 5 is a constant multiplication.

We would like to show 5 = 0. Let us take any point Q. € C — D satisfying the
following:
SEG)Q) = o- sup SEG)(P)
10 pec-p

Then we have log tr5©(Q¢) > log(9/5). By taking an appropriate subsequence, we
may assume the sequence {Q.} converges to a point Q. There are two cases (i)
Ox € D, (i) Qoo &€ D. We argue only the case (i). The other case can be argued
similarly and more easily.

We use the coordinate neighbourhood (U, z) such that z(Qs,) = 0. For any point
PeU,weput A(P,r):= {Q eU ‘ lz(P)—z(0)| < r}. When ¢ is sufficiently small,
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Q¢ is contained in A(Qoo, 1/2) ={|z| < 1/2}. Let g = dz-dz denote the standard
metric of U. We have the following inequality on U — {Q} (see Section 2.2.5):

A)‘ logtr5©@ < |Ag G(h“ ))}h(e)

Let B© be the endomorphism of E determined as follows:

dz-dz

G(Z(E)) G(h(e)) — B(e) | |2

Then we have the following estimate for some constant A > 0 which is independent
of e:

_1dvol ~
[ 1B 11z 4121 EERER [16G) o, avol,

Here A denotes a constant independent of €. Due to Proposition 2.16 in [14], there
exist functions v‘© such that the following inequalities hold for some constant 4" > 0
which is independent of €:

dz-dz

8 (e) _ }B(e) =6 ||2 ,

‘U(E)(Z)}SA/‘(E(N_l)/2|Z|E+|Z|1/2)'HG(Z(G))HZ’E(G),&

Then we have Ag (logtr3@—v©) <0 on U—{Qco}. Since log tr 5@ —v is bounded
from above, the inequality holds on U . Therefore, we obtain the following:

logtr§©(Q¢) —v©(Qe) < A”-/ (logtr3® —v@) - dvolg
A(Qe,1/2)

Here A” > 0 denotes a constant. Due to the uniform boundedness of v‘¢’, we obtain the
following inequalities, for some positive constants C; (i = 1, 2) which are independent
of €:

log(9/5) <logtr5°(Q¢) < Cy - / log tr5? - dvolg +C;
A(Qe,1/2)

Recall that logtr5‘® are uniformly bounded from above. Therefore, there exists a
positive constant C3 such that the following holds for any sufficiently small € > 0:

/ —min(0, log tr5°’) - dvol, < C3
A(Qe,1/2)
Due to Fatou’s lemma, we obtain the following:

/ —min(0, log tr5*) - dvolg < C3
A(Qco,1/2)
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It means 5 is not constantly 0 on A(Qso, 1/2). In all, we can conclude that 5
is a positive constant multiplication. Thus, the proof of Lemma 5.2 is accomplished. O

Let {3’} be a subsequence as in Lemma 5.2. It is almost everywhere convergent to a
constant multiplication. Then we obtain that the sequence {det5‘“’ = bra“kE “idger(E) )
converges to a positive constant. In particular, {b¢,} is convergent. Therefore, the
sequence {s“i’} is convergent to the identity. Moreover, SE(s‘°) are bounded on
C — D uniformly in €. Hence, |s‘ )| © are bounded on C — D uniformly in €.

Because det(s’) = 1, we also obtain the uniform boundedness of |(s‘’)™ 1| ©-
Thus the proof of Proposition 5.1 is finished. 0

Corollary 5.3

)

e The sequence {h“} is convergent to h’ weakly in L?} locally on C — D.

e The sequence {D*s©} is weakly convergent to 0 in L? locally on C — D.

o The sequence {#‘©} converges to 8 is weakly convergent to 0 in L? locally
onC—D.

e In particular, the sequences are convergent almost everywhere. |

5.2 The surface case

5.2.1 Statement Let X be a smooth irreducible projective surface with an ample
line bundle L, and let D be a simple normal crossing hypersurface with the irreducible
decomposition D = | J;cg Di. We put X* := X — D. Let ¢ be any element of
RS. Let (E,F,D*) be a juz —stable c—parabolic A—flat bundle on (X, D) with trivial
characteristic numbers par-deg; (E,F) = [, v par-chy (£, F) = 0. Recall that it implies
par-c; (£, F) = 0, due to Bogomolov—Gieseker inequality and Hodge index theorem.
(See Corollary 6.2 of [14].) Recall that the problem can be reduced to the classical
Hodge—de Rham theory in the rank one case.

Lemma 5.4 There exists a pluri-harmonic metric hqe ) for the determinant bundle
det(E,F,D*). It is unique up to constant multiplications.

Proof We take an ordinary metric /; for det(E,F, D). By construction, we may
assume that R(h) is C* (1, 1)—form on X . By Lemma 3.23 and par-c,(E,F) =0,
the cohomology class of R(/7) is 0. Hence, we can take a C°°—function y on X
such that 58)( = R(h1). We set hye(g) := hi-e”X. Then we have G(hge(E)) =
(1+]A]%)- R(h;-e~X) =0 due to Lemma 2.31. The uniqueness is also easy, or already
contained in Proposition 2.55. m|
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The purpose of this subsection is to show the following existence theorem.

Theorem 5.5 There exists a tame pluri-harmonic metric h of (E ,ID)X)| x+ with
det(h) = hgee  which is adapted to the parabolic structure.

The proof will be given in the rest of this subsection.

5.2.2 A sequence of Hermitian-Einstein metrics for the e¢—perturbations Let
F© be an e—perturbation as in (II) of Section 2.1.6. If € is sufficiently small,
(E,F©,D%) is also 7 —stable. We also have par-c,(E,F©) = par-c,(E,F) = 0.
Since (E,F©,D*) is graded semisimple and satisfies the SPW—condition by the
construction in (II) of Section 2.1.6, we can apply Proposition 3.19, and we can take the
hermitian metric 4 of E|y_p such that (i) adapted to F©, (ii) deth'® = hgey(gy,
(iii) Ap,G(h@) =0, where w, are given as in (29).

Since hge(f) is pluri-harmonic, we also have tr G(h'“)) = 0. Therefore, we have the
following convergence:

—1\?2 ~1)\2
©0 (g) /‘G(h(e))‘z«),we dvoly, = (g) /tr(G(h‘e’)z)

=2(1+ |)\.|2)2 -par-ch, (E,F€) — 0

Let us study the convergence of A€ as € — 0.

5.2.3 Convergence on almost every curve Let L™ be sufficiently ample. We put
P :=P(H°(X, L™)V). For any s € P,,, we put Xy := s~ 1(0). Recall Proposition
2.21, and let U denote the nonempty Zariski open subset of P, which consists of the
points s with the following properties:

e X is smooth, and X U D is a simple normal crossing hypersurface.
. (E,F,]D))‘)|XS is juy —stable.

In the following, € are assumed to be sufficiently small, such that (E, F©, ]D))‘)| X, are
nr —stable for any s e .

We set X[ := X\ D and Ds:= X;ND. We have the metric we s of X", induced by we.
The induced volume form is denoted by dvols. We put (Ey, Fy, ID)g‘) = (E,F, ID))‘)|XS.
We have the metric hl( « of Eg| xy. Since (E;, Fy” ]DD)‘) are also stable for any point
s €U, we have the harmonic metric h of (Ej, F(e) ,D}) with deth(® = = hge | X7 -
Let u{ be the endomorphism of E|yx determined by h(e)* =h® - ul?. Let 6

| X,
denote the associated Higgs field. For a point x € X *, we put Z/{x ={sel|x e Xs}.
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Weput Z:={xeX* ] Ux = 2}. Weremark that Z is a finite set. Let us fix a sequence
€; —> 0. We often use the symbol “¢” instead of “¢;”, to simplify the description. We

k A
set D¢ ID>|X*

Lemma 5.6 For almost every s € U, the following holds:
e We have the following convergence as € —> 0:

(61) / [elt )|h<é) dvoly —> 0
e For each ¢, we have the finiteness:

(62) |D2ue

N

L25h§€) »We <

Let U denote the set of s for which both (61) and (62) hold.

Proof It can be shown by the argument in the proof of Lemma 9.3 of [14]. (£, should
be corrected to {(x,s.7) € X x Uy x B| (ts2 + (1 —1)s)(x) = 0}.) We give only a
brief explanation. The first claim is heuristically clear from (60). Let us explain the
second claim. Let h“) be an initial metric for (E,F©,D*) as in Lemma 3.18. Let
w'® be determined by h©@ = h{)-w'®. According to Proposition 3.19, /};) and 7
are mutually bounded, and ]D)kw“) is L2 with respect to 4© and w.. Hence, we
obtain (i) h(e’* and h(6 ;- are mutually bounded, (ii) D*w |(€)* is L2 with respect to
hl(é) « and a)e for almost aﬁ s. Let v{® be determined by h‘e) = h(e)l -v{®. Applying
Proposition 3.19 to (Ej§, Fy, ]D ), and using the uniqueness of a harmonic metric, we

obtain (i) 4{® and h(6)| x are mutually bounded, (i) D*v(® is L2 with respect to /1
(€)

| Xs*) 1 - vy, the second claim follows. O

and wy. Because u® = (w

Recall 4 is a harmonic metric for (Eg, Fy, D) such that det(h*) = hey(E)| x7 » and
0{” denotes the associated Higgs field. We obtain the following claims from Corollary
5.3 and Lemma 5.6.

Corollary 5.7 For any s € U, the sequence {h‘( )}*} converges to h{¥ weakly in L2

locally on X;*, and {9&)*} converges to 0{” weakly in L? locally on X*. In part1cular
they are almost everywhere convergent. O
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5.2.4 Construction of a metric defined almost everywhere Let us take any Kahler
form wp,, of P,,,. We put Z :={(s,x) e x X* | x € Xs}. Then we have the induced
metric of Z. The induced volume form is denoted by dvolz. Let 7 denote the set
of (s,x) €U x X such that (i) (s, x) € Z, (ii) lime_s¢ hl(;) h(s(l);, where A" is as in
Corollary 5.7.

Lemma 5.8 The measure of Z —T is 0 with respect to dvolz.

Proof Let us consider the naturally defined fibration Z — U{. Then the claim follows
from Corollary 5.7 and Fubini’s theorem. O

Lemma 5.9 For almost every x € X * and almost every s € Uy, the sequence {h“)}
converges to h(sol)x

Proof Let us consider the naturally defined fibration 7 —> X ™. Then the claim
follows from Lemma 5.8 and Fubini’s theorem. m|

Let V denote the set of x € X'* such that the sequence {hr)} converges to h“’l)x for
almost s € Ux. For any x € V, let Uy denote the set of s such that {h“)} converges

©

to hslx

Lemma 5.10 Forany x € V and for any s; € Uy (i = 1,2), we have h;‘;’l = h;(;)lx'
Proof Both of them are the same as the limit lime_o /<. O

Let us take any x € V and any s € Uy. Then the metric hy of E |x 1s given by
hy = h;°|) - Due to Lemma 5.10, it is well defined. Thus, we obtain the metric
hy = (hx |x €V) of Ey.

5.2.5 The C'-property We would like to show that /1y, is C! on X* — Z, in other
words, we would like to show the existence of a C ! —metric / of E |x*—z such that
h = hy on V. Let us begin with a preparation.

Lemma 5.11 Let x € X* — Z. Let us take any s € Uy . Then there exists a Lefschetz
fibration ¢: X —> P! with the following properties:

e Xx is not a singular point of ¢.
« ¢ H0)=

e Almost every t € P! belongs to U.
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Proof Let M denote the set of the lines £ of P, which contain s. We put
P = {(l,s") € Mx Py |s" €L} C MxPp.

It is the blow up of IP’m at s. We have the projection 75: Py —> Pm. We put
Z//l\* =7, Y(U) and u* = T, 1(Z/l) Since U — U has measure 0, the measure of

—U* is also 0. Let us consider the projection my: P —> M, and apply Fubini’s
theorem Then for almost every £ € M and for almost every s; € £, we have s; € U*. U*
Thus we are done. O

Let x be any point of X* — Z. Let us take a Lefschetz fibration ;: X; — P!
(i = 1,2) with the following properties:

e Both of them satisfy the properties in Lemma 5.11.

e Around x, the fibers of m; and m, are transversal. Then two fibrations give
the holomorphic coordinate (z1, z») of an appropriate neighbourhood Uy of x,
such that {z; = a} = Jrl._l(a) NUy.

For any #; € P!, let Xy =7 ~1(;). If t; are close to 0, (E,F,D* )lXt are sta-
ble, and hence there exist tame harmonic metrics /4, for (E.F, ]I]))‘)| X, such that
det(hy;) = hge(E))| x,, - Let 8;; denote the operator obtained from ID)‘ X, and 4 asin
Section 2.2.1.

Let us take an appropriate neighbourhoods B; C P! of 0. Recall Proposition 4.2. Then
{hy, } t1 € By} are C®—-along z,, and it is continuous with respect to (z1, z5). The
family {6;, | #; € By} has a similar property. Thus, we obtain a continuous metric /"
and the continuous section 8 of End(E) ® 10 around x. Similarly {/;, |t € By}
is C° along z; and it is continuous with respect to (zy, z2). The family {6;, | t, € By}
has a similar property. Thus, we obtain a continuous metric #® and the continuous
section 8 of End(E) ® Q!0 around x.

We remark that 2V = hy, = h® on U, NV due to our construction of /4y . Since 7"
are continuous, we obtain 2/ = 1® on U,. Then we obtain that #’ are C! on Uy,
due to the continuity of 6.

Therefore, we obtain the C ! —metric 4 of E on X * — Z with the following properties:

° h|v =hV.

e Forany s €U, we have hjy» = hs and 0| x> = O, .
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5.2.6 Pluri-harmonicity We would like to show that /4 is pluri-harmonic. By the
formalism explained in Section 2.2.1, the operators 9, and 6, are given on X —(DUZ)
from & and D*. Let us take any C® metric #’ of E on X — D, and let s’ be the
endomorphism determined by /1 = A’ -s’. Then s’ is C!, and we have the following
relation:

A A

q =§/+ / 15// / 0, = 0, — / 15///
TR PTG
Then we obtain 5;, 0, as a distribution:
gheh :gh,gh,_Lgh,(sl—l(s/ S,)—i-L[S/_l(S” s Qh’]
14 [A[2 W 1+ A2 he

)\’2 2 1 1
/I — " / /— / /
(e AR R

Similarly, we obtain G(/) as a distribution.
Lemma 5.12 3,0, = 0.

Proof For any point x € X™* — D, let us take the holomorphic coordinate (zy, z;) as
before. We remark that the curves

{Ziza} (i=1,2), {Zl-i-Zz:b}, {Zl‘i“/__lZZ:c}

can be regarded as parts of Xy for some s’ € U. We have the expression 6 =
fi1-dzy + f2-dz;, where f; are continuous sections of End(E). We have already
known df1/0z; = df»/0z, = 0. Thus, we have only to show df;/0z; =0 for i # j.
Let us consider the change of the coordinate given by wi =z1 4+ 2z and wy =z —z5.
Then we have the following:

Juode 4 foedzs = 3 (i + fo)-dwy + 3 (i = fo)dus

Thus, we obtain the following:

6 0= it = (gt ) i =5 (24 )
w1 2\ 0z

822

Let us consider the change of the coordinate given by uy = z1 + v—1z; and u,; =
— +/—1z,. Then we have the following:

f1'd21+f2'd22=%(f1+\/1_—1f2)d741+ (fl \/l_—lfz)duz
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Thus, we obtain the following:
ad 1 1 ad 1 4 1
64 0= — : - )l == - - -
o= (nr m) =3 (- ) (o m)
1 ( 1 d9f 1 9f; )
2 \/—10z7; —102
From (63) and (64), we obtain df;/0z; = 0 for i # j. Thus, we obtain 9,6, =0, and
the proof of Lemma 5.12 is accomplished. |

Lemma 5.13 / is a harmonic metric for (E,D*) with respect to wy on X* — Z.
(Recall Z = {x € X* |Uyx = 2}.)

Proof Due to Lemma 5.12, we have A, G (h) = Ao (9,60),) = 0. Hence, we have only
to show that / is C°°. We obtain the following formula in the level of distribution, by
the formalism explained in Section 2.2.5:

A o(s) =5 (~A0G(H)) + V=TAuD*s -5/ 71 D) x5’

The right hand side is C°. Hence, by using the elliptic regularity and the standard
bootstrapping, we obtain that s’ is C°. Thus, we obtain Lemma 5.13. a

Lemma 5.14 / is pluri-harmonic metric of E|y+_z.

Proof We have already shown 5;, 05 = 0 in Lemma 5.12. According to Corollary
2.30, we have only to show 95 = 0. Due to Corollary 5.7 and 6|y, = ts, we
know that the sequence {6‘“} converges to 6, almost everywhere. In particular,
we obtain the almost everywhere convergence of {62} to 9;. On the other hand,
we know the almost everywhere convergence G(h©) —> 0, due to (60). We have
G(h®) = 9©2 +§©0© 4 @2 which is the decomposition into (2,0), (1, 1) and
(0,2)—forms. Therefore, we obtain 9; = 0, almost everywhere. Thus, we obtain
Lemma 5.14. O

Lemma 5.15 / gives a pluri-harmonic metric of E|x+ .

Proof We have only to check that / gives a C°°—metric of E|y~. Let Q be a point of
Z . Let (U, z1, z2) be a holomorphic coordinate around Q such that z{(Q) = z,(0) =
0. The pluri-harmonic metric / of (E, ]D)‘)|U_{Q} is given. We would like to show
that / is naturally extended to the pluri-harmonic metric of (FE, ]D)k)w.

We have 6 = f1-dz; + f>-dz, defined on U —{Q}. Let us consider the characteristic
polynomials det(z — f;) for i =1, 2. The coefficients are holomorphic on U —{Q}, and
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thus on U due to the theorem of Hartog’s. Hence, the eigenvalues of f; are bounded
on U. Let us consider the restriction of (E,D*, /) to the discs C(aj):={zj = a;}
(aj #0) for j =1,2. Then it can be shown that the norms | f;|c@a;)ln = C (@ # J)
can be dominated independently from a;. (See Lemma 2.7 in [19], for example.)
Thus, f; are bounded with respect to 2 on U —{Q}. In other words, 6 is bounded on

U—-{0}.

Let E':= E|y—{z,.z,=0} - Let us consider the sheaf °E’ on U of sections g satisfying
the growth condition |g|;, = O(]] |zi|~€) for any € > 0 (Section 2.6.3). By using the
result of the asymptotic behaviour of tame harmonic bundle at A [15], °E’ is locally
free on U. Since °E’ and E|y_{g; are naturally isomorphic on U —{Q}, they are
isomorphic on U . Let /" be any C°°—metric of E|7, and let s’ be the endomorphism
determined by 4 = A’ -s’. Due to the norm estimate given in [15], the metrics /# and
h' are mutually bounded. Hence, s’ and (s’)~! are bounded on U . Let 8, and &y,
be obtained from D* and /4’ as in Section 2.2.1. Due to the boundedness of 0, we
have the boundedness of (s’)_IS;l/s/ on U —{Q}. Due to the boundedness of 87, we
have the boundedness of (s/)_IS;Z/,s/ on U —{Q}. Then we can deduce that s’ ~' D%y’
is also bounded on U — {Q}. (See Section 2.2.5. for example.) Since we have the
formula Az,’wos’ =5'(—Aw,G(I)) + AwOID)z/s/ -5/l ~]D>,)l‘,*s/, we can conclude that
5" is C* due to the standard bootstrapping. Namely, / is extended to the C°°—metric
of E|U . O

5.2.7 The end of the proof of Theorem 5.5 Now, we have only to show that / is
tame and adapted to the parabolic structure. Since /|y, = hg for any s €U, the tameness
immediately follows from the curve test. (See Proposition 2.52.) Hence, we obtain
the harmonic bundle ((E , ]D))‘)| X+, h). We have the locally free sheaf E:= (E1x+)
with the induced parabolic structure F (Section 2.6.3). We would like to show that
(E,F, ID)}‘) and (E ,F, ]D}‘) are isomorphic. For that purpose, we see that the identity
E|x+ —> E|x+ can be prolonged to the homomorphism W: E —> E. Let Q be any
smooth point of D; C D. We take a holomorphic coordinate (Ug, z1, z) with the
following properties:

e The curve Zl_l (0) is the same as Ug N D.
e The curves C(b) := 22_1 (b) are parts of X ) for s(b) €U.

Let f be a holomorphic section of E|;. Let ¢; be the i —th component of ¢. Since
the restriction /|y, ,, is the same as /5y, we have | ficp)ln = O(|z1]7 7€) for any
€ > 0. Then we obtain | | = O(|z1|7¢ ™€) for any € > 0, due to the result given
in [15]. Thus, f naturally gives the section of E on U. Therefore, we obtain the
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morphism E —> E on X — (U;; D; N D;). It is naturally extended to the morphism

Recall that the restriction of E = E (h) to X is the same as ¢(E|xx)(hs). (See
Corollary 8.52 of [15].) Therefore, the restrictions of W to X are isomorphic, by
construction. Hence, W is isomorphic on X — (Ul—#]— D;N Dj), and thuson X. By a
similar argument, we can show that the parabolic structures are also the same. Thus,
the proof of Theorem 5.5 is finished. |

5.3 Correspondences

5.3.1 Kobayashi-Hitchin correspondence in the higher dimensional case Let X
be an n—dimensional smooth irreducible projective variety with an ample line bundle L,
and let D be a simple normal crossing hypersurface with the irreducible decomposition
D =J;cg Di. Let (Ex, D*) be a pz —stable regular filtered A—flat bundle on (X, D)
in codimension two with trivial characteristic numbers

par-deg; (Ex) = / par-ch, ; (Ex) = 0.
X

We put (E,ID))‘) = (E*,ID))‘)|X_D. Recall par-c;(Ex) = 0 due to the Bogomolov—
Gieseker inequality, the Hodge index theorem and a theorem of Lefschetz. For each
¢ € RS, we have the determinant line bundle det(.E) of torsion-free sheaf E, on
which we have the induced parabolic structure and the induced flat A—connection.
Thus, we obtain the canonically determined regular filtered A—flat bundle (det E., ]D))‘)
on (X, D) of rank one. We also have par-c;(detE) = par-c; (Ex) = 0. Therefore,
we can take a pluri-harmonic metric /4o g of (det(E), D*) which is adapted to the
parabolic structure of det E4 by using classical Hodge—de Rham theory. (See Lemma
2.26, for example.) By the assumption, we have a subset Z C D with codimy (Z) > 3
such that (E., ID))‘)| x—z is aregular filtered A—flat bundle.

Theorem 5.16 There exists the unique tame pluri-harmonic metric h of (E, D) with
the following properties:
e det(h) = hge E -
e [t is adapted to the parabolic structure of E« on X — Z . Namely,
(Ex(h). DY) x—7 = (E+. D) x—27.

where (Ex(/), D*) denotes the regular filtered A —flat bundle on (X, D) obtained
from (E,D*, h). (See Section 2.6.)
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Proof Due to Mehta—Ramanathan type theorem (Proposition 2.21), the uniqueness
can be easily reduced to the dim X = 1 case, by considering the restriction to the
generic curves C C X. We have already known it (Proposition 2.56).

We will use the induction on the dimension n to show the existence. The case n = 2
has already been shown (Theorem 5.5). Assume that L™ is sufficiently ample. We put
P :=P(H°(X, L™)V). For any s € P,,, we put X := s~ 1(0). Recall Proposition
2.21. Let U be the nonempty Zariski open subset of PP, which consists of s € P,
with the following properties:

e X is smooth, and Dg := X N D is a normal crossing divisor.
e The codimension of Z N X in Xj is larger than 3.

o (E,D%)y, is z-stable.

We use the existence hypothesis in the (n — 1)—dimensional case of the induction. Then
we may have the tame pluri-harmonic metric sy of (FE, ID))“)| x,\p With det(hy) =
hget E| x,\p Which is adapted to the parabolic structure on X5\ W. We also use the
uniqueness result in the (n — 2)—dimensional case. Then we can show the existence
of a finite subset Z’ C X — D and a metric & of E|x_p such that sy p = h|p. By
the arguments given in Sections 5.2.5-5.2.7, we can show that / is the desired metric.
The only different point is the argument to show the vanishing of G(%) = 0. Due to
dim X > 2, it can be shown more easily. O

Theorem 5.17 Let (E«, D*) be a saturated |1 —stable regular filtered A —flat sheaf on
(X, D) with the trivial characteristic numbers par-deg; (Ex) = [ x parch, 1 (Ex) =0.
We put (E, D) = (Ex, ]D)}‘)|X_D. Then there exists a pluri-harmonic metric h of
(E, D) such that the induced regular filtered A —flat bundle (E(h), D) is isomorphic
to (E«, D*). (See Proposition 2.53 for an induced regular filtered A —flat bundle.) Such
a metric is unique up to positive constant multiplications. In particular, E is a filtered
bundie.

Proof Since a saturated regular filtered A—flat sheaf is a regular filtered A—flat bundle
in codimension two (Lemma 2.9), we may apply Theorem 5.16. Then there exists
a pluri-harmonic metric s and a subset W C D with codimy (W) > 3 such that
the induced regular filtered A—flat bundle (E (%), D*) is isomorphic to (E«, D*) on
X — W. Since both of (E«(h), D*) and (E«, D*) are saturated, they are isomorphic
on X. O
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5.3.2 An equivalence of some categories We say that a py—polystable regular
filtered A—flat bundle (E*, D*) has trivial characteristic numbers, if each 17 —stable
direct summand (E; ., 1) satisfy par-degy (E14) = [y par-ch, ; (E14) = 0. Let
Cp °lY denote the category of iz —polystable regular filtered A—flat bundles (E4, D*) on
(X D) with trivial characteristic numbers. Morphisms f: (E; *,]D) )—> (Ez «, 2)
are defined to be an Oy —homomorphism f: E; — E, satisfying ]D) of=f o]D))‘
and f(cEq1) C ¢E, for any c¢. By Lemma 2.12 and Corollary 2.14, the category Cpoly
is semisimple, ie, any object is a direct sum of simple objects.

Corollary 518 Let A; (i = 1,2) be two complex numbers. We have a functor
Erph: Ci(l)ly — Ckpzly, which gives an equivalence of the categories. (See the proof

for the construction.) It preserves direct sums, tensor products and duals.

Proof Let (E ,D*1) be an object of Cp()ly. We put EM := Ef“. We have a
pluri-harmonic metric / of (E A DAy, Whllch is adapted to the parabolic structure.
Then we obtain the operators 9, ., 0. 9;: , as 1n Section 2.2.1. Note that the holo-
morphic structure of E* is given by 9j, + A; 9 The (0, 1)—operator 9, +)\29
also gives a holomorphic structure of C*° bundle EM . To distinguish them we
use the notation E*2, when we con51der the holomorphic structure A + )\29 We
put D22 := 9, + 0, + A, (9, + 0 ), which gives a flat A,—connection of E)‘2 The
metric 4 is pluri-harmonic for (E)‘2 ]D))‘Z) Since the corresponding Higgs bun-
dle for (E*,D*! k) and (E*2,D*2 h) are the same, we obtain the tameness of
(E*2,D*2 ). Therefore, we obtain the prolongment (Eiz,]D))“Z), which are puy—
polystable regular filtered A,—flat bundle on (X, D) with trivial characteristic numbers
(Proposition 2.55).

We remark that (E?,Z2 ,DA2) is independent of the choice of /, due to the uniqueness
in Proposition 2.56. Therefore, we put E;, 1, (E* DAy := (E*2, D*2). It is easy to
see that Ey », gives a functor. (Note that the categories are semisimple.) It is also
easy to see that 83, 3, 0E,, .2, (E*1,D*) is naturally isomorphic to (E* D). The
compatibility with the direct sums, duals and tensor products are obtained from the
corresponding compatibility of the prolongments for tame harmonic bundles [15]. O

5.3.3 Corlette—Jost—Zuo metric Let (£, V) be a simple flat bundle on X — D, ie,
the associated representation of the fundamental group of X — D is assumed to be
simple. Recall that there exists a Corlette—Jost—Zuo metric of (£, V) which is a pure
imaginary tame pluri-harmonic metric. (See Corlette [2] for the case D = & and Jost
and Zuo [10] for the general case. See also Mochizuki [15].) Let us show the existence
theorem for Corlette—Jost—Zuo metric from the viewpoint of the Kobayashi—Hitchin
correspondence.
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Let (E , V) be the Deligne extension. It is equipped with the canonical parabolic
structure F determined by the condition @ + Re(er) = 0 for any (a,a) € KMS(E,F).
Let L be any ample line bundle on X'. As remarked in Corollary 3.25, we have the
vanishings

(65) par—degL(E, F) =0, / par—cz’L(E,F) =0.
X

Simplicity of (E, V) is equivalent to w —stability of (E , F), which follows from the
fact that the first formula in (65) also holds for any flat subbundle of (E, V). Hence,
we have a tame pluri-harmonic metric & of (E, V), adapted to F. It is unique up
to positive constant multiplication. Let (53:, D*) denote the regular filtered A—flat
bundle associated to the tame harmonic bundle (E, V., 4). By construction, (£, F) is
the same as °S! with the induced parabolic structure. Recall the correspondence of
KMS-spectrum due to Simpson [18]:

KMS(E°,i) «— KMS(E',i), (b, B) «<— (b+2Re(B), B—b—B)
Hence, we can check KMS(E°, i) C Rx (+/—1R), ie, the eigen values of the residues
of the Higgs field is purely imaginary. It means that / is a Corlette—Jost—Zuo metric.

6 Filtered local system

We established the correspondence between regular filtered flat bundles and regular
filtered Higgs bundles which are pjy —stable with trivial characteristic numbers. One
more important piece in the nonabelian Hodge theory is filtered local system, which is
the topic in this section.

In Section 6.1, we define filtered local system which is a straightforward generalization
of Simpson’s definition in the one dimensional case. In Section 6.2, we construct a
functor which gives an equivalence of the categories of filtered local systems and satu-
rated regular filtered A—flat sheaves. We show that it preserves parabolic characteristic
numbers and stability conditions.

Note that filtered bundle corresponds to filtered local system which satisfies some
compatibility condition around the intersection of the divisors, like a locally abelian
condition in [9].

6.1 Definition

6.1.1 Filtered structure Let X be a complex manifold, and let D be a simple
normal crossing hypersurface with the irreducible decomposition D = | J;cg D;i. We
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set D21 := Uiz DiN Dj and D7 := Di\J;4; Dj. Let L be a local system on
X — D. A filtered structure of £ at D is a tuple of increasing filtrations ‘F (i € S)
of Liy;\p indexed by R, where U; denotes an appropriate open neighbourhood of
D;. Let U/ be an open neighbourhood of D; such that U/ C U;, then we have the
induced ﬁltratlon ~7:|U’\ p. and the filtration “F can be reconstructed from f\U’\ D-
Hence, we define two filtered structures (“F,U; |i € S) and (‘F, U/li € S) are
equivalent, if there exists an open neighbourhood U; ! of D; such that U "cuinU/
and ]:|U” = .]:|U” A local system £ equipped w1th an equivalence class of ﬁltered
structures (“F, U;) is called a filtered local system, and it is denoted by L. We do not
have to care about the choice of open neighbourhoods U; .

Morphisms of filtered local systems f: L1, —> L34 are defined to be a morphism
f: L1 —> L, of local systems preserving the filtered structures in an obvious sense.
We denote by C(X, D) the category of filtered local systems on (X, D).

6.1.2 Characteristic numbers We put
U*:=U\D
and 'Gr (Liy) = FalLyy) [ F<aLiy»)

Since the local monodromy around D; preserves the filtration IF . we obtain the induced
endomorphism of ’Grff (£|Ui*)’ and thus the generalized eigen decomposition:

'Gry (Liup) = D Gry ) (Liuy)

0]

We consider the following sets:
Par(Ls.i):={a €R| iGrF(£|U*) # 0}
KMS(Ly.i) := {(a,w) eRx C* | Gr(a w)(EIU*) # 0}

The parabolic first Chern class is defined as follows:

wt(Ly, 1) := Z a-rankiGrf(£|L,i*)
acPar (Ly,i)
par-c; (L4) :=— Y Wi(Lx.i)-[D;] € H*(X.R)
ies

Here [D;] denotes the cohomology class of D;.

Let Irr(D; N Dj) denote the set of the irreducible components of D; N D; . For each
P eIrr(D; N Dj), let Up be an appropriate open neighbourhood of P in X such that
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Up CcUiNUj. Weput Up := Up \ D. We have the two filtrations IF and /F of
[,|U; . The naturally induced graded local system is denoted as follows:

Fai NI Fa;
Z(bi,bj)i(ai,aj) i]:bi mj]:bj
oty = D T61G .6 Livp)

(ai,aj)eRz

PG F =
Crlay.ap Lrug) -=

Here (b;,bj) = (ai,aj) means “b; <a;, bj <a; and (b;, b;) # (a;,a;j)”. We have the
two endomorphisms induced by the local monodromies around Up N D; and Up N D,
which are commutative. Hence, we obtain the generalized eigen decomposition:

Pal (L= P TGl F Ly
w€e(C*)2
The sets Par(Ly, P) and KMS (L4, P) are defined as follows:
Par(Ly, P):={(ai,a;) € R* | PGl (Liyz) # 0}
KMS(Lx, P):={(a.@) € R x (C*)? | PG5 (L1ys) # 0}

(a,0)

The parabolic second Chern character is defined as follows:

1 .
par-chy (L) 1= - > ) dPrank’Gr (0)-[Di]?
i€S aePar (Lx,i)

HYyY Y S kG, (Cs) [P

i€S j#i Pelr(D;NDj) (a;,aj)ePar(Lx,P)
If X is a smooth projective variety with an ample line bundle L, we set

im X — ar-degy (L
pardeg (£ = [ pare; (o) (L1, g (£ = PEEELIED,
X rank £

Then the notion of 7 —stability, py —semistability, and py —polystability for filtered
local systems on (X, D) are defined in the standard manner. We also put

/Xpar-cf’L(ﬁ*) ;=/Xpar_cl(ﬁ*)z,cl(L)dimX—z

/ par-chy, 1 (L+) := / par-chy 1 (L) -1 (L) ¥ 2.
X X
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6.2 Correspondence

In this subsection, we explain the correspondence of filtered local systems on (X, D)
and saturated regular filtered A—flat sheaves (A # 0) as in Proposition 1.8. See Section
2.1.3 for saturated regular filtered A—flat sheaves. Since we have the obvious equivalence
between flat A—connection and flat 1—connection, we argue only the case A = 1, ie
ordinary flat connections.

Let Ciat(X , D) denote the category of saturated regular filtered flat sheaves on (X, D).
We explain in Section 6.2.1 the construction of a functor ®: C (X,D) — C?"“(X , D).
Since it is given by Simpson in [18] essentially in the curve case, we give only an
outline. In Section 6.2.2, we will check that it gives an equivalence of the categories.
Then we will check that it preserves the characteristic numbers in Sections 6.2.3-6.2.4.
which implies that the 7 —stability condition is also preserved.

6.2.1 Construction of ® First, we give a construction of ®. Let L, be a filtered
local system on (X, D). Let (£, V) be the corresponding flat bundle on X — D. We
have the Deligne extension (E, V) on (X, D). We put E := E® O(xD). We have
only to give a way of the construction of the Oy —coherent submodules , £ C E such
that Vo £ C o E ® 21'%°(log D) and | J,cgs o E =E.

Let us consider the case X = A" ={(z1,...,z,) | |zi| <1} and D ={z; =0}. Then the
construction is essentially the same as that given by Simpson [18] in the case dim X =1
We briefly recall it. Let H(L) denote the space of the multivalued flat sections of
L. We have the induced filtration F H (L) and the generalized eigen decomposition
H(L) = @, Ew(H(L)), which are compatible in the sense F, = P, Fa N E, .
Let u = (uy,...,u,) be a frame of H(L), compatible with (F,E). Then for each
u;, the numbers w(u;) € C* and a(u;) € R are determined by u; € E,,,) and
ui € Faw;) — F<a(u;)- The complex number «(u;) is determined by the conditions
exp(—2ma(u;)) = w(u;) and 0 < Rea(u;) < 1. Let M* denote the endomorphism
of H(L) or L, which is the unipotent part of the monodromy around D, and we put
N :=—Qn~/—1)"1log M*. We regard u; as a multivalued C*°—section of E. Then
it is standard that v; := exp(log z; (e¢(u;) + N)) - u; gives a holomorphic section of E.
Moreover, v = (vy,...,v;) gives a frame of the Deligne extension E. For any real
number b, we put

n(b,u;) :=max{n € Z|a(u;) —Rea(u;) +n < b}, vi(b):= Zl_n(b’”i) -V

Let p E denote the Oy —submodule of E generated by vy (b), ..., v,(d). It is easy to
check that 4 E is locally free and independent of a choice of u. It is also easy to see
E = Jpcg b E - Thus, we obtain the filtration in the case X = A” and D = {z; = 0}.
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It can be checked that the filtration is independent of a choice of the coordinate
(z1,22,...,zpn) satistying D = {z; = 0}.

Let us consider the general case. For any b € RS, we have already obtained p E on
X — D21, The subsheaves pE of E are determined by the condition (3).

Lemma 6.1 yE is a coherent Oy —module. Hence, we obtain the saturated regular
filtered flat sheat (E«, V) on (X, D).

Proof We may assume that X = A” and D = Uf=1{zi = 0}. Let H(L) denote
the space of multivalued flat sections of £. We have the monodromy endomorphisms

M; (i =1,...,¢) along the loop around D; in the counter clockwise direction. They
induce the decomposition
(66) HL) = @ EoH(L).

we(C*)¢

where each E, H(L) is preserved by M; (i = 1,...,£), and the eigenvalues of
M; on E, H(L) are w;. We also have the filtrations ‘F (i = 1,...,£) of H(L),
corresponding to the divisor D;. Each “F is compatible with the decomposition (66).
Fix j such that 1 < j <{. We take a frame u = (uq,...,u,) of H(L) compatible
with the filtration /7 and the decomposition (66). For each up, the tuple w(up) €
(C*)t is determined by up € Ey. Let j(up) € C (i =1,...,{) be determined
by exp(—2na,~ (up)) = w;(up) and 0 < Rew;(up) < 1. We also have the numbers
aj(up) € R such that u, € j]-'a]. (up) — j]-'<a]. (up)- We put

n(bj,up) :=max{n € Z|aj(up) —Rea;(up) +n < bj}.

Let N; := —(2n+/—1)"llogM* (i =1,...,£), where N; denotes the logarithm of
the unipotent part of M;. We take a sufficiently large integer /. Then we put

¢
b,
vp = 27( . [ 12 [Texp(logzi - (@iup) + Ni)) - up.

i#j  i=1
If I is sufficiently large, v, gives the section of , £ on X. By the correspondence,
we obtain the following morphism, for j =1,...,¢:

,
oF :@(’)X-vp—n,E
p=1

The morphisms ®; (j =1,...,{) induce the morphism & : O®tr 5 | E . The image
of ® is Oy —coherent, and it is the same as b £ on X — D2 Then it is easy to show
that p £ is the same as the double dual of the image of ® which is Oy —coherent. O
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Let f: L1+ — L4 be a morphism. Let (E;«, V;) := ®(L;). We have the in-
duced map f: E; — E;. Itis easy to see that (Ey| y_po —> ¢Ey | y_p is
induced. Due to saturatedness of (E, «, V), we obtain maps E; —> ¢E;, and thus
O(f): (Er, V1) —> (Ez24, V2).

6.2.2 Equivalence Let us show that ® is gives an equivalence of the categories. To
begin with, we consider the case X = A” and D = {z; = 0}. Let Clvb (X, D) denote
the category of regular filtered flat bundles on (X, D), which is the subcategory of
Ciat(X , D). By the construction, the image of & is contained in Ci’b (X, D). The
following lemma can be shown as in [18].

Lemma 6.2 The functor ® gives the equivalence of Ci (X, D) and C}’b (X, D). Itis
also compatible with direct sums, duals, and tensor products. |

Lemma 6.3 Inthe case X = A" and D = {z; =0}, we have C}’b(X, D) ~C{*(X, D)
naturally. In particular, ® gives the equivalence Ci(X,D) ~ C(X, D).

Proof Let (E«, V) be a saturated regular filtered flat sheaf on (X, D). We put
(E,V):=(E«, V)| x_p,and let L denote the underlying local system on X — D. Let
H(L) denote the space of multivalued flat sections of L.

Recall that there exists a subset W C D with codimy (W) > 3 such that (E«, V)| x_w
is a regular filtered flat bundle on (X — W, D — W) (Lemma 2.9). Let P be any
point of D— W, and let (Up, zy,...,zy) be a holomorphic coordinate neighbourhood
such that 21_1(0) =UpNDand UpNW = &. Due to Lemma 6.2, we have the
unique filtration F of H (L y,\p) >~ H(L) corresponding to (Ex, V) y, . Due to the
uniqueness, it is independent of the choice of P and Up.

Let u = (uyq,...,u,) be a frame of H(L) compatible with the filtration F and the
generalized eigen decomposition with respect to the monodromy around D. For
any real number b € R, we construct v(b) = (vl b),..., v (b)) as above. Then for
any P € D— W, v(b) gives a holomorphic frame of ; E|y, compatible with the
filtration due to Lemma 6.3. Hence, each v;(b) gives a section of  E|y_p . Due to
the saturatedness of (Ex, V), v;(b) gives a section of 5 £ on X . It is easy to see that
v(b) gives a frame of p E, and in particular, p E is locally free. Hence, (E«, V) is a
regular filtered flat bundle on (X, D). ad

It is easy to see that ® is equivalent for general (X, D). Let us see the fully faithfulness

of ®. The faithfulness is obvious. Let f: ®(L;4) —> P(L,4) be a morphism in
C{* (X, D). We have the map g: L; — L, corresponding to f". We would like to
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check that g preserves the filtrations ‘7. Let P be any point of D7, and (U,zy,...,2x)
be any coordinate neighbourhood such that U N D = 21_1 (0). Applying Lemma 6.3,
we obtain that g preserves the filtration ‘& on U \ D;. Thus, we obtain the fully
faithfulness.

Let us show the essential surjectivity. Let (E«, V) be a saturated filtered flat sheaf on
(X, D). Let L denote the local system corresponding to (Ex, V)| x_p . We have only to
construct the appropriate filtrations ‘F of L y,\ p on appropriate neighbourhoods of D; .
Let P be any point of D;, and (Up, z1,...,zy) denote any coordinate neighbourhood
around P such that 21_1 (0) = Up N D. Due to Lemma 6.2, we obtain the unique
filtration ‘F of L|y,\p. We obtain the filtration ‘7 on | Jpcpo Up by gluing them,
due to the uniqueness. Thus, we obtain that ® is essentially lsurjective, and hence
equivalent.

6.2.3 The parabolic first Chern class We have the Z—action on R x C given by
n-(a,a) = (a+n,a—n). It induces the action of Z on X MS(Ex, ). The following
lemma is clear from the construction of ®.

Lemma 6.4 We have the bijective correspondence of the sets CMS(®(L«),1)/Z and
KMS(Lx, i), which is given by (a,®) — (b, ) = (a + Rea, exp(—2n \/—_loz)) for
(a,0) e CMS(P(L+),i). Moreover, rankiGrg’ﬁ) = rank"Gré”E). ad
Corollary 6.5 @ preserves the parabolic first Chern classes, ie,

par-¢; (L) = par-c; (D(Ly)).
In particular, when X is a smooth irreducible projective variety with an ample line

bundle L, the ju1 —stability of L, and iy —stability of (L) are equivalent.

Proof Recall Lemma 3.23. It is shown for the case in which (E«, V) is graded
semisimple and X is two dimensional. However, the graded semisimplicity condition
is not necessary as is explained in Remark 3.21. The assumption dim X = 2 is also not
necessary, due to the Lefschetz theorem. Then the claim of the corollary follows from
Lemma 3.23 and the correspondence of the KMS—spectrums given in Lemma 6.4. O

6.2.4 The second parabolic Chern character

Lemma 6.6 Let X = A" = {(z1,...,z4) ||zi| < 1}, and D = Dy U D,, where
D; ={z; =0}. Let (E«, V) be a saturated regular filtered flat sheaf on (X, D).

(1) (E«, V) is a regular filtered flat bundle on (X, D).
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(2) Let ¢ be any element of R?, and let . E denote the c—truncation. Let L4 be the
corresponding filtered local system on (X, D). Then we have the equality:
F.E F.E
rankgGr(b’w) (L) = rankgGr(a’a)(cE).
Here the meaning of the notation is as follows:
e b= (b;,by) and = (w;,w,) denote elements of R? and (C*)? respec-
tively.
e a=(aj,a;) and @ = (a1, ) denote elements of R% and C? respectively,
determined by the conditions ¢; — 1 < a; < ¢;, exp(—2nv/—la;) = w; and
a; +Rea; = b;.

Proof Let £, = (£,'F,2%F) be as above. Let u be a frame of H(L) compatible
with the filtrations ¥F (k = 1,2) and the generalized eigen decompositions of H(L).
For each u; and the divisor Dy, the numbers o (¢;) and ay (u;) are determined as
before. For the monodromies around Dy, , we obtain the nilpotent endomorphism Ny, as
before. The holomorphic section v; is given by v; := exp ( > log zx (ax (uj) + Nk)).
Let ny (u;) be the numbers determined by the condition ¢ — 1 < ng (u;) + ax(u;) —
Re o (1)) < cx. We put
f)}' = 1_[ Z;nk(uj)-vj.

k=1,2
Then V = (v1,...,0,) gives the frame of ¢ E|x_(p,np,)- Due to the saturatedness,
v=(v1,...,0,) gives the frame of . E, and hence (E are locally free. Thus, the first

claim is proved. The frame ¥ is compatible with ‘E and F, and we have ¥deg? (vj) =
ar(uj) —Reay(uj) +ng(uj) and v;| p, € kIE(ak(uj) —ny(uj)). Thus, the second
claim follows. a

Let X be a smooth irreducible complex projective variety with an ample line bundle
L, and let D be a simple normal crossing hypersurface.

Corollary 6.7 Let (E«, V) be a saturated regular filtered flat sheaf on (X, D), and let
Ly denotes the corresponding filtered local system. Then the following holds:

/par-chz,L(E*)=/ par-ch, 1 (Ex) |
X X

Corollary 6.8 Let L. be a pup —stable filtered local system on (X, D). Then the
Bogomolov—Gieseker inequality for L4 holds:

Jx par-ciL(/J*)
2rank £ '

| pareh 20 <
X
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Proof Recall that saturated regular filtered flat shaves are regular filtered flat bundles in
codimension two (Lemma 2.9). Hence, the claim follows from Corollary 6.5, Corollary
6.7 and Corollary 3.20. a

Corollary 6.9 Let C?Oly be the category of py —polystable regular filtered flat bundles
on (X, D) with trivial characteristic numbers, and let Elp ° e the category of iy —
polystable filtered local systems on (X, D) with trivial characteristic numbers. Then
the functor ® naturally induces an equivalence of these categories.

Proof We have only to remark that saturated py —stable regular filtered flat sheaves
with trivial characteristic numbers are regular filtered bundles (Theorem 5.17). m|

Remark 6.10 By a result in [15] and the existence of a pluri-harmonic metric for
®(L4), the filtrations *F for py —stable filtered local systems L4 with trivial charac-
teristic numbers satisfy some compatibility around the intersection points of D. O
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