
Geometry & Topology 13 (2009) 359–455 359

Kobayashi–Hitchin correspondence
for tame harmonic bundles II

TAKURO MOCHIZUKI

Let X be a smooth irreducible projective complex variety with an ample line bun-
dle L , and D be a simple normal crossing hypersurface. We establish the Kobayashi–
Hitchin correspondence between tame harmonic bundles on X �D and �L –stable
parabolic �–flat bundles with trivial characteristic numbers on .X;D/ . In particu-
lar, we obtain the quasiprojective version of the Corlette–Simpson correspondence
between flat bundles and Higgs bundles.

14J60; 53C07

1 Introduction

1.1 Main results

We explain the main results of this paper. We do not review the history or the background
on the study of Kobayashi–Hitchin correspondence and harmonic bundles, for which
we refer to Lübke and Teleman [11], Simpson [19; 20] or Mochizuki [14], for example.
The notion of regular filtered �–flat bundle and parabolic �–flat bundle are explained in
Section 2.1. (See also Sections 3.1–3.2 of [14]. But note that we use slightly different
notation and terminology.) Since they are equivalent, we will not make a distinction
between them in this introduction. The notion of filtered local system is explained in
Section 6.

1.1.1 Kobayashi–Hitchin Correspondence Let X be a smooth irreducible complex
projective variety with an ample line bundle L. Let D be a simple normal crossing
hypersurface of X . Our main purpose is to show the following theorem.

Theorem 1.1 (Theorem 5.16, Proposition 2.55, Proposition 2.56) Let .E�;D�/ be a
regular filtered �–flat bundle on .X;D/. We put E WD EjX�D . Then the following
conditions are equivalent.
� .E�;D�/ is �L –polystable with trivial characteristic numbers.
� There exists a pluri-harmonic metric h of .E;D�/ adapted to the parabolic

structure.

Such a metric is unique up to obvious ambiguity.

Published: 1 January 2009 DOI: 10.2140/gt.2009.13.359

http://www.ams.org/mathscinet/search/mscdoc.html?code=14J60,(53C07)
http://dx.doi.org/10.2140/gt.2009.13.359


360 Takuro Mochizuki

Remark 1.2 Theorem 1.1 in the case �D 0 has already been proven in our previous
paper [14]. Hence, we restrict ourselves to the case �¤ 0 in this paper.

Corollary 1.3 (Corollary 5.18) Let Cpoly
�

denote the category of �L –polystable
regular filtered �–flat bundles on .X;D/ with trivial characteristic numbers. Then we
have the natural equivalence of the categories „�1;�2

W Cpoly
�1
' Cpoly

�2
for any �i 2 C

.i D 1; 2/. The equivalence preserves tensor products, direct sums and duals.

Remark 1.4 Let �i 2 C� .i D 1; 2/. A �2 –connection D�2 D d 00 C .�2=�1/ � d
0

is induced by a �1 –connection D�1 D d 00 C d 0 , which gives the obvious functor
ObvW Cpoly

�1
�! Cpoly

�2
. Note that this is not the same as the above functor „�1;�2

.

In particular, we obtain a generalization of the Corlette–Simpson correspondence
between flat bundles and Higgs bundles in the so-called nonabelian Hodge theory.

Corollary 1.5 We have an equivalence of the following two categories:

� The category of �L –polystable regular filtered Higgs bundles on .X;D/ with
trivial characteristic numbers.

� The category of �L –polystable regular filtered flat bundles on .X;D/ with
trivial characteristic numbers.

Remark 1.6 C Simpson [18] established these results in the case dim X D 1. O Bi-
quard [1] obtained the correspondence in the case that D is smooth.

1.1.2 Bogomolov–Gieseker inequality and a formula for the characteristic num-
bers Let X , L and D be as above.

Theorem 1.7 (Corollary 3.20) Let .E�;D�/ be a �L –stable regular filtered �–flat
bundle on .X;D/. Then the following inequality holds for the parabolic characteristic
numbers for E� : Z

X

par-ch2;L.E�/�

R
X par-c2

1;L
.E�/

2 rank E
:

It is a generalization of the so-called Bogomolov–Gieseker inequality.

In the case � ¤ 0, there exist some formulas to express
R
X par-ch2;L.E�/ in terms

of the data at D , which are valid for any parabolic �–flat bundles. One of them is
comprehensible from the viewpoint of the correspondence between regular filtered
�–flat sheaves and filtered local systems. Let .E�;D�/ be a regular filtered �–flat sheaf
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on .X;D/. As is explained in Remark 1.4, we have the obvious correspondence of a
flat �–connection D�D d 00Cd 0 .�¤ 0/ and a flat connection D�f D d 00C��1d 0 . In
particular, we obtain a local system L on X �D from the flat bundle .E�;D�;f /jX�D .
Moreover, the parabolic structure of .E�;D�/ induces the filtered structure of L, and
we have the more refined claims as in the following proposition.

Proposition 1.8 (Corollary 6.5 and Corollary 6.7) Let zC.X;D/ denote the category
of filtered local systems on .X;D/, and let Csat

�
.X;D/ denote the category of saturated

regular filtered �–flat sheaves on .X;D/ for � ¤ 0. Then we have an equivalence
of categories ˆ�W zC.X;D/ �! Csat

�
.X;D/ such that par-c1

�
ˆ�.L�/

�
D par-c1.L�/

and
R
X par-ch2;L

�
ˆ�.L�/

�
D
R
X par-ch2;L.L�/. The functor ˆ� preserves the �L –

stability.

Let us also describe the formula
R
X par-ch2;L.ˆ.L�//D

R
X par-ch2;L.L�/ in terms

of the c–truncation .cE�;D�/ of saturated regular filtered �–flat bundle ˆ�.L�/. For
simplicity, we assume dim X D 2.

(1)
Z

X

par-ch2.cE�/

D
1

2

X
i2S

X
u2KMS.cE�;i/

�
Re.��1˛/C a

�2
� r.i;u/ � ŒDi �

2

C
1

2

X
i2S

X
j¤i

P2Di\Dj

X
.ui ;uj /2KMS.cE�;P/

�
Re.��1˛i/C ai

��
Re.��1

j̨ /C aj

�
� r.P;ui ;uj /:

Here, u D .a; ˛/, ui D .ai ; ˛i/ and uj D .aj ; j̨ / denote elements of the KMS–
spectrum of .cE;D�/. We put r.i;u/ WD rank iGrF;E

u .cE/ for u2KMS.cE�; i/, and
r.P;ui ;uj / WD rank P GrF;E

.ui ;uj /
.cEjP / for .ui ;uj /2KMS.cE;P / and P 2Di\Dj .

And, ŒDi �
2 denote the self-intersection number of Di .

Remark 1.9 We also have some other formulas for
R
X par-ch2

�
cE�

�
(Proposition

3.22) or some vanishings for the data of .cE�;D�/ at D (Corollary 3.20 and Proposition
3.22).

Remark 1.10 From Theorem 1.7 and Proposition 1.8, we obtain the Bogomolov–
Gieseker inequality for �L –stable filtered local systems (Corollary 6.8). This kind of
inequality is discussed by Simpson [21].
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1.1.3 Vanishing of the characteristic numbers and existence of the Corlette–
Jost–Zuo metric Due to Proposition 1.8, we obtain the vanishings par-degL.E�/DR
X par-ch2;L.E�/ D 0, when .E�;r/ corresponds to a filtered local system whose

parabolic structure is trivial, in other words, Re.˛/CaD 0 is satisfied for any element
of the KMS–spectrum uD .a; ˛/ 2KMS.i/ and for any i 2 S . We can apply such
a consideration to the canonical prolongation of a flat bundle due to P Deligne [3].
Let .E;r/ be a flat bundle on X �D . Deligne showed [3, Section II.5] that there
uniquely exists a holomorphic vector bundle zE on X satisfying (i) zEjX�D DE ,
(ii) r zE � zE˝�1;0

X
.log D/, (iii) the real parts of any eigenvalues of Resi.r/ are

contained in Œ0; 1Œ. (Note that he also studied the case in which D is not necessarily
normal crossing. See also the nice textbook by Hotta, Takeuchi and Tanisaki [8].) In that
case, we have the naturally defined parabolic structure F for which Re.˛/C aD 0 is
satisfied for any element of the KMS–spectrum .a; ˛/. Hence, we obtain the vanishing
par-degL.

zE;F/D
R
X par-ch2;L.

zE;F/D 0.

This vanishing is significant to understand the existence theorem for the Corlette–Jost–
Zuo metric from the viewpoint of Kobayashi–Hitchin correspondence. Recall the
existence of a tame pure imaginary pluri-harmonic metric for a semisimple flat bundle
.E;r/ on X �D , which we call the Corlette–Jost–Zuo metric. (See Corlette [2] for
the case D D∅ and Jost and Zuo [10] for the general case. See also Mochizuki [15].)
Since semisimplicity of .E;r/ is equivalent to the �L –polystability of . zE;F;r/ (see
Sabbah [16], for example), we can derive the existence of the Corlette–Jost–Zuo metric
from Theorem 1.1 and the above vanishing of the characteristic numbers. (See Section
5.3.3.)

1.2 Methods and difficulty

1.2.1 Perturbation of parabolic structure Let us explain our basic strategy in [14]
and this paper. See also Section 1.2.2 of [14].

Simpson [17] showed a very nice result on the existence of Hermitian-Einstein metrics
for a Higgs bundle on open manifolds, which can be generalized for flat �–connections
for any �, as he mentioned in [18]. To apply it, however, we need to construct an
initial metric whose pseudo-curvature satisfies some finiteness condition. In the one
dimensional case, a construction was done by Simpson himself. The nilpotent part of the
residue on the graded pieces made it more complicated than that for ordinary parabolic
bundles. If D is smooth, it was generalized by Biquard. However, in the normal
crossing case, it is difficult to generalize their construction without any assumption on
compatibility of the nilpotent parts of the residues.

To overcome it, we introduced the method of �–perturbation in [14]. Let us briefly
recall it for flat �–connections. (See Section 2.1.6 for more details and precise.)
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Let X be a smooth irreducible projective surface, and let D be a simple normal
crossing divisor of X . Let .E;F;D�/ be a parabolic �–flat bundle on .X;D/. On
each graded piece iGrF

a .E/, we obtain the filtration by vector subbundles such that
it gives the weight filtration of the nilpotent part of GrF

a .Resi.D�// at the generic
point of Di . Mixing it to the parabolic filtration, for any small � > 0, we take an �–
perturbation F.�/ of the parabolic structure so that .E;F.�/;D�/ is graded semisimple,
ie, the residues are essentially semisimple. A construction of an initial metric for
.E;F.�/;D�/ is not difficult, which can be done in a rather naive way (Section 3).
Hence, if .E;F.�/;D�/ is �L –stable, we obtain the existence of a Hermitian-Einstein
metric h.�/HE of .EjX�D ;D

�/ which is adapted to F.�/ for � > 0. In particular, we
obtain the Bogomolov–Gieseker inequality for .E;F.�/;D�/.

Then we can easily derive the Bogomolov–Gieseker inequality (Theorem 1.7) since
the characteristic numbers continuously depend on the parabolic weights. As for
the existence of a pluri-harmonic metric (Theorem 1.1), we need much more work.
Ideally, the limit lim�!0 h.�/HE should give the desired pluri-harmonic metric for the
given parabolic �–flat bundle .E;F;D�/. However, it is not easy to show such a
convergence. That is the main problem which we have to overcome in this paper.

Note that we also obtain formulas like (1) by using the method of �–perturbation.

1.2.2 Difficulty In [14], we gave an argument to deal with such a convergence
problem for the case � D 0. The argument doesn’t work in the case � ¤ 0. Let us
explain the difference heuristically and imprecisely in the case �D 1. Since we have
par-degL.E;F.�//D 0, the metrics h.�/HE give harmonic metrics in this case. Recall that
a harmonic metric can be regarded as a harmonic map, at least locally, and that we
know a well established argument for the convergence of a sequence of harmonic maps
if their energies are dominated. (See Eells and Sampson [6].) In our case, the energies
of h.�/HE over X �D are not finite, in general. Even if we consider the energies over a
compact subset Z �X �D , it is not clear how to derive an estimate uniformly in � .

If �D 0, the Higgs field is fixed for this convergence problem. Although the metrics
are varied, the eigenvalues of the Higgs field are fixed. Hence, we can derive the
estimate of the local L2 –norms of the Higgs field with respect to the varied metrics,
independently from � . Since such L2 –norms play the role of the energies, the local
convergence can be easily shown in the case � D 0, although we need some more
consideration for the global convergence. On the contrary, even the local convergence
is not easy to show in the case �¤ 0.

1.2.3 Convergences Our argument to attack this convergence problem consists of
three steps, which is a variant of the classical one due to S K Donaldson in [4; 5].
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Step 1 We study a similar convergence problem in the curve case where the Kobayashi–
Hitchin correspondence was established and well understood by the work of Simp-
son [18]. Let C be a smooth projective curve, and let D be a divisor of C . Let
.EC ;FC ;D

�
C
/ be a �–flat stable parabolic bundle on .C;D/, and let F.�/

C
be �–

perturbations. Note det.EC ;FC ;D
�
C
/D det.EC ;F.�/C

;D�
C
/. We can take a sequence

of harmonic metrics h.�/
C

for .EC ;F.�/C
;D�

C
/ .� � 0/ such that det h.�/

C
D det h.0/

C
,

according to the result of Simpson. We will show that the sequence fh.�/
C
j � > 0g

converges to h.0/
C

.

This is not so easy as it looks. We argue as follows. Let h.�/in .� > 0/ be initial metrics
for .EC ;F.�/C

;D�
C
/, and let s.�/ be the endomorphism determined by h.�/

C
D h.�/in � s

.�/ .
We can show the following relations:

M.h.�/in ; h
.�/

C
/� 0;

ˇ̌
log s.�/

ˇ̌
h
.�/

in

� C1;�CC2;� �M.h.�/in ; h
.�/

C
/;

D�s.�/



2

L2;h
.�/

in
;!�
�

Z ˇ̌
tr
�
s.�/ �G.h.�/in /

�ˇ̌
dvol!�

Here, M.h.�/in ; h
.�/

C
/ denote the Donaldson functionals, and !� denote appropriate

metrics of C �D . (See Lemma 2.50 for the first, Proposition 2.41 for the second, and
Lemma 4.14 for the third.)

Moreover, we show that Ci;� can be taken independently from � for some !� (Propo-
sition 2.49), and we can construct appropriate family of initial metrics h.�/in such that
G.h.�/in / are uniformly bounded with respect to !� and h.�/in (Sections 4.2–4.4). Then
we obtain the L2

1
–boundedness of the family fs.�/; .s.�//�1

ˇ̌
� > 0g. Then by using a

standard bootstrapping argument, we can show that the sequence fs.�/g is convergent
to the identity in the C1–sense, ie, fh.�/

C
g is convergent to h.0/ (Proposition 4.1).

Step 2 To argue the convergence of fh.�/HEg on X �D , we consider the convergence
of their restrictions to almost every ample curves in X . Note the Mehta–Ramanathan
type theorem for regular parabolic �–flat bundles (Proposition 2.21). Under the setting
of Step 1, it is rephrased as follows. We consider hermitian metrics zh.�/

C
WD h.�/

C
� zs.�/

for � > 0, with the following properties:

� det zh.�/
C
D det h.�/

C
.

�
R
jG.zh.�/

C
/j2 �! 0.

�


D�zs.�/



2
<1. (We do not need uniform bound.)

Then we can show that fzh.�/
C
g is convergent to h.0/

C
. (See Section 5.1 for more precise

claims.)
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Step 3 Let hC be a harmonic metric of .E;F;D�/jC . Applying the result in Step 2
to h.�/

HEjC
D zh.�/

C
, we can show that fh.�/

HE jC
g is convergent to hC almost everywhere

on C for almost every very ample C �X . Therefore, we obtain a metric hV defined
almost everywhere on X �D such that hV jC D hC almost everywhere on C for
almost every curve C �X . With some more additional argument, we can show that
hV gives the desired pluri-harmonic metric, indeed (Section 5.2).

Remark 1.11 Perhaps, the argument of this paper may be applicable in the Higgs
case, to show the existence of a pluri-harmonic metric. However, we remark that the
argument for a convergence given in [14] can be applied in a wider range. In fact, we
used it to discuss the convergence of a family of harmonic bundles induced by the
constant multiplication of Higgs fields.
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2 Preliminaries

2.1 Generality of regular filtered �–flat sheaves in complex geometry

We give a generality of regular filtered �–flat sheaves in complex geometry. Recall
that the notions of parabolic bundle, filtered bundle and their characteristic numbers
are explained also in Sections 3.1–3.2 of [14]. We will use the notation there.

2.1.1 Regular c–parabolic �–flat sheaf and regular filtered �–flat sheaf

�–connection Let Y be a complex manifold, and let E be an OY –module. Recall
that a �–connection of E is defined to be a linear map D�W E �! E˝�1;0

Y
satisfying

the twisted Leibniz rule D�.f � s/ D f � D�.s/ C � � dY .f / � s , where f and s

denote holomorphic sections of OY and E respectively. The maps D�W E ˝�p;0 �!

E ˝�pC1;0 are induced. If D� ıD� D 0 is satisfied, it is called flat.
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Regular c–parabolic �–flat sheaf Let X be a complex manifold, and let D be a
simple normal crossing divisor with the irreducible decomposition D D

S
i2S Di . Let

c 2RS . The i –th component of c is denoted by ci . Let E�D .E ; fiF
ˇ̌
i 2 Sg/ be a c–

parabolic sheaf on .X;D/. Namely, E is a torsion-free OX –coherent sheaf, and iF are
increasing filtrations of E indexed by �ci �1; ci � such that (i) iFa.E/� E˝OX .�Di/,
(ii) iFa.E/ D

T
a<b

iFb.E/, (iii) the sets Par.E�; i/ WD fa
ˇ̌

iGrFa .E/ ¤ 0g are finite,
where iGrFa .E/ WD iFa.E/=iF<a.E/. (See Section 3.1 of [14] for more details on
c–parabolic sheaf.)

A flat logarithmic �–connection of E� is defined to be a map D�W E�!E˝�1;0.log D/

satisfying the same twisted Leibniz rule as above, the flatness D� ı D� D 0 and
D�.iFa/�

iFa˝�
1;0.log D/. Such a tuple .E�;D�/ will be called a regular parabolic

�–flat sheaf. A morphism of regular filtered �–flat sheaves .E1�;D
�
1
/ �! .E2�;D

�
2
/

is defined to be a morphism of the underlying OX –modules E1 �! E2 compatible
with �–connections and the filtrations.

If the underlying c–parabolic sheaf E� is a c–parabolic bundle in codimension k , it is
called a regular �–flat c–parabolic bundle in codimension k .

Remark 2.1 We do not recall the precise definition of c–parabolic bundle. See
Definition 3.12 of [14]. Although it is not difficult, it is a little complicated to state. It
briefly means that F is a locally free OX –module, and that iGrFa .E/ are locally free
ODi

–modules. However, we need some compatibility conditions at the intersection
of divisors in the case dim X � 3. Note that it is equivalent to filtered bundle below,
and J Iyer and C Simpson [9] and C Hertling and C Sevenheck [7] gave different but
equivalent conditions.

Remark 2.2 We often omit to state “regular” in this paper, because we always assume
regularity. The nonregular case is studied in [13].

Regular filtered �–flat sheaf Let E� D
�
E; fcEg

ˇ̌
c 2 RS

�
be a filtered sheaf on

.X;D/. Namely:

� E is a torsion-free coherent OX .�D/–module.

� fcEg is an increasing filtration by coherent OX –submodules of E indexed
by RS such that (i) EjX�D D cEjX�D for any c, (ii) aE D

T
a<b bE , (iii)

ED
S

a2RS aE .

� a0ED aE˝OX .�
P

nj �Dj / as submodules of E, where a0D a�.nj j j 2S/.
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� For each c 2 RS , let iF be a filtration of cE indexed by �ci � 1; ci � given as
follows:

iFd .cE/ WD
[

ai�d
a�c

aE:

Then the tuple cE� WD .cE; f
iF j i 2 Sg/ is a c–parabolic sheaf, ie, the sets

fa
ˇ̌

iGrFa .cE/¤ 0g are finite.

See Section 3.2 of [14] for more details on filtered sheaf. Each cE� is called the
c–truncation of E� . We can reconstruct E� from cE� . It is easy to observe that the
notions of c–parabolic sheaves and filtered sheaves are essentially equivalent. If each
c–truncation is a c–parabolic bundle, E� is called a filtered bundle. If there exists a
closed subset Z �X such that (i) codimX .Z/� k , (ii) E�jX�Z is a filtered bundle,
then E� is called a filtered bundle in codimension k .

A regular flat �–connection of E� is defined to be a flat �–connection D� of E
satisfying D�.ce/� cE˝�

1;0
X
.log D/. Such a tuple .E�;D�/ is called a regular filtered

�–flat sheaf. A morphism of regular filtered �–flat sheaves .E1�;D
�
1
/ �! .E2�;D

�
2
/

is defined to be a morphism of the underlying OX .�D/–modules compatible with the
�–connections and the filtrations. It is easy to observe that the categories of regular
filtered �–flat sheaves and regular c–parabolic sheaves are equivalent, given by the
functor taking c–truncations. We will not have to distinguish them so carefully.

If the underlying filtered sheaf is a filtered bundle in codimension k , it is called a
regular filtered �–flat bundle in codimension k .

Lemma 2.3 A regular filtered �–flat sheaf on .X;D/ is a regular filtered �–flat
bundle in codimension one.

Proof We have only to check that there exists a subset W �D with codimX .W /� 2,
such that cE� jX nW is a c–parabolic bundle on .X nW;DnW / for some c. We can take
W as

S
i¤j Di\Dj �W , and hence we may assume D is smooth. Since EDEjX�D

is locally free and cE is torsion-free, we can take W 0 � D with codimX .W
0/ � 2

such that cEjX�W 0 is locally free. We may also take a subset W 00 � D nW 0 with
codimX .W

00/ � 2 such that the parabolic filtration of cEjDn.W 0[W 00/ is filtration in
the category of vector bundles. Then W DW 0[W 00 gives the desired subset.

Stability If X is an n–dimensional projective variety with an ample line bundle L,
we can define the �–stability, �–semistability, and �–polystability of regular filtered
�–flat sheaves with respect to L, in the standard manner. “�–stability with respect to
L” will be called �L –stability, in this paper.
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Remarks about the terminology and the notation We give some remarks about the
terminology “parabolic structure”. We often study a regular c–parabolic �–flat bundle
on .X;D/ for some c 2 RS . In our most arguments, a choice of c are not relevant.
In fact, c is fixed to be .0; : : : ; 0/ in many references where the parabolic structure is
investigated. However, it is sometimes convenient to avoid the case ci 2 Par.cE�; i/,
for example, when we consider a perturbation of the parabolic structure. That is the
main reason why we consider general c–parabolic structure.

In the following argument, we often assume ci 62 Par.cE�; i/ implicitly, and we
often omit to distinguish c, and use the terminology “parabolic structure” instead
of “c–parabolic structure”, when we do not have to care about the choice of c. The
author hopes that there will be no risk of confusion and that it will reduce unnecessary
complexity of the description.

Relatedly we have the remark about the notation for parabolic bundles. We often use
the symbols .cE;F/ or cE� to denote a c–parabolic bundle, when we would like to
distinguish c. The symbol “cE” is also appropriate and useful, when we regard it as a
prolongment of a locally free sheaf E on X �D . But, in some case, a vector bundle
is given not only on X �D but also on X from the beginning. And, as is said above,
we will not care about the choice of c. In such a case, we often prefer the symbols
.E;F/ or E� for simplicity of the description.

One more remark is that we will not distinguish regular c–parabolic sheaves and regular
filtered �–flat sheaves, because the notions are essentially equivalent.

2.1.2 KMS–structure, graded semisimplicity and SPW–condition We prepare
some notation and conditions. Let .E�;D�/ be a regular filtered �–flat bundle over
.X;D/. For simplicity, we consider only the case � ¤ 0. Let us take any element
c 2 RS , and the c–truncation cE� of E� . Let DI WD

T
i2I Di for any subset I � S .

We have the induced filtrations iF .i 2 I/ on cEjDI
. For a 2

Q
i2I �ci � 1; ci �, we put

I GrF
a .cE/ WD

IFa
�

cEjDI

�P
bŒa

IFb
�

cEjDI

� ; IFa
�

cEjDI

�
D

\
i2I

iFai

�
cEjDI

�
:

We obtain the following sets:

Par.cE�; I/ WD
˚
a
ˇ̌

I GrF
a .cE/¤ 0

	
; Par.E�; I/ WD

[
c2RS

Par.cE�; I/

Any elements of these sets are called parabolic weights. Due to the regularity, we have
the residue endomorphism Resi.D�/ .i 2 I/ on cEjDI

, which preserves the filtrations
jF .j 2 I/. (Such a tuple of filtrations and endomorphisms is called KMS–structure.)
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Hence we have the induced endomorphism I GrF
a Resi.D�/ of I GrF

a .ce/. We remark
that the eigenvalues of Resi.D�/ are constant on Di . In particular, we obtain the
generalized eigen decomposition:

I GrF
a .cE/D

M
˛2CI

I GrF;E
a;˛ .cE/:

We put KMS
�

cE�; I
�
WD
˚
.a;˛/2

Q
i2I .�ci�1; ci ��C/

ˇ̌
I GrF;E

a;˛ .cEjDI
/¤ 0

	
. The

sets

(2) KMS
�

cE�; I
�
; KMS

�
E�; I

�
WD

[
c2RS

KMS
�

cE�; I
�

are called the KMS–spectrum.

Remark 2.4 In our other papers [15; 14; 13], an element of the above sets (2) is called
a KMS–spectrum. We follow the suggestion of the referee in this paper.

Remark 2.5 Although we assumed that .E�;D�/ is a regular filtered �–flat bundle,
the above sets make sense for I � S with jI j � k if .E�;D�/ is a regular filtered
�–flat bundle in codimension k . In particular, we always have the sets Par.E�; i/,
KMS.E�; i/, etc., for i 2 S .

Definition 2.6 We introduce two auxiliary conditions on .E�;D�/.

� (Graded semisimple) The nilpotent parts of GrF
a Resi.D�/ 2 End

�
iGrF

a .cE/
�

are 0 for any i 2 S , c 2 RS and a 2 R.

� (SPW) There exist a positive integer m and real numbers 
i .i 2 S/ such that
Par.E�; i/ is contained in f
i Cp=m

ˇ̌
p 2 Zg for each i .

We will study .cE�;D�/ satisfying these conditions in Section 3 as a preparation for
our main theorem.

2.1.3 Saturated regular filtered �–flat sheaf We introduce a nice class of regular
filtered �–flat sheaves. Let .E�;D�/ be a regular filtered �–flat sheaf on .X;D/.

Definition 2.7 .E�;D�/ is called saturated, if there exists a subset Z � D with
codimX .Z/� 2 such that each aE are determined on aEjX�Z . Namely, for any open
subset U �X , the following holds:

(3) aE.U /D aE.U nZ/\E.U /

It is easy to see that a regular filtered �–flat bundle is saturated.
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Lemma 2.8 If .E�;D�/ is saturated, each c–truncation cE is reflexive.

Proof Recall we have already known that cE� is a filtered bundle in codimension one
(Lemma 2.3). Let cE

__ denote the double dual of cE . We have the naturally defined
injective map cE �! cE

__ . Due to the saturatedness, any sections of cE
__ naturally

gives sections of cE , ie, cE is isomorphic to cE
__ .

Lemma 2.9 A saturated regular filtered �–flat sheaf .E�;D�/ on .X;D/ is a regular
filtered �–flat bundle in codimension two.

Proof We have only to show that there exists a subset Z �D with codimX .Z/� 3

such that cE� jX�Z is a c–parabolic bundle on .X �Z;D�Z/ for any c. Because
cCbE D cE˝O.b �D/, where b �D D

P
i2S bi �Di , we have only to show such a

claim for a finite number of tuples c. Due to Lemma 2.8, there exists a subset Z0 �D

with codimX .Z
0/� 3 such that cEjX�Z 0 is locally free. Hence, we can assume that

cE is locally free from the beginning.

We have the parabolic filtration iF D fiFa j ci � 1 < a � cig of cEjDi
. We can take

the saturation i zFa of iFa . Namely, we put Ga WD cEjDi

ı
iFa , and let Ga tor denote

the torsion-part of Ga . Let �aW cEjDi
�! Ga denote the projection, and we put

i zFa WD �
�1
a .Ga tor/.

Lemma 2.10 i zFa D
iFa .

Proof By our construction, we have iFa �
i zFa , and we also know that there exists a

subset W �Di with codimDi
.W /� 1 such that iFa jDi�W D

i zFa jDi�W .

Let P be any point of Di . Let g be a germ of a section of i zFa at P , and let G be a
local section of cE on an open neighbourhood U of P in X such that the germ of the
restriction of G to Di gives g . Then GjUnW gives a section of c0E on U nW , where
c0D .c0j / is determined by c0j D cj .j ¤ i/ and ci D a. Due to the saturatedness, G is
a section of c0E on U . Thus, g is the germ of a section of iFa , and iFaD

i zFa . Hence,
we obtain Lemma 2.10.

Let us return to the proof of Lemma 2.9. Due to Lemma 2.10, the associated graded
vector bundle iGrF .cEjDi

/ is torsion free. Hence, there exists a subset Z00i �Di with
codimDi

Z00i � 2 such that iFjDinZ
00
i

is a filtration in the category of vector bundles on
D00i nZ00i . Then cE� jX�Z 00 is a c–parabolic locally free sheaf on .X �Z00;D�Z00/.
Thus we are done.

Remark 2.11 By the correspondence of saturated regular filtered flat sheaves and
filtered local systems, we can obtain more concrete picture of the saturated regular
filtered flat sheaves. See Section 6.
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2.1.4 Canonical decomposition Let X be a smooth irreducible projective variety
with an ample line bundle L. Let D be a simple normal crossing hypersurface of X .
Let .E .i/� ;D�.i// .i D 1; 2/ be �L –semistable regular c–parabolic �–flat sheaves on
.X;D/ such that �L.E .1/� / D �L.E .2/� /. Let f W .E .1/� ;D� .1// �! .E .2/� ;D� .2// be a
nontrivial morphism. Let .K�;D�K/ denote the kernel of f , which is naturally equipped
with the parabolic structure and the flat �–connection. Let I denote the image of f ,
and zI denote the saturated subsheaf of E .2/ generated by I . The parabolic structures
of E .1/� and E .2/� induce the parabolic structures of I and zI , respectively. We denote
the induced parabolic flat sheaves by .I�;D�I / and .zI�;D�zI /. The following lemma
can be shown by the same argument as the proof of Lemma 3.9 of [14].

Lemma 2.12 .K�;D�K/, .I�;D
�
I / and

�
zI�;D�zI

�
are also �L –semistable such that

�L.K�/ D �L.I�/ D �L.zI�/ D �L.E .i/� /. Moreover, I� and zI� are isomorphic in
codimension one.

Lemma 2.13 Let .E .i/� ; D� .i// .i D 1; 2/ be �L –semistable reflexive saturated regu-
lar parabolic �–flat sheaves such that �L.E .1/� /D �L.E .2/� /. Assume either one of the
following:

(1) One of .E .i/� ;D� .i// is �L –stable, and rank.E .1//D rank.E .2// holds.

(2) Both .E .i/� ;D� .i// are �L –stable.

If there is a nontrivial morphism f W .E .1/� ;D� .1// �! .E .2/� ;D� .2//, then f is an
isomorphism.

Proof If .E .1/� ;D� .1// is �L –stable, the kernel of f is trivial due to Lemma 2.12. If
.E .2/� ;D� .2// is �L –stable, the image of f and E .2/ are the same at the generic point
of X . Thus, we obtain that f is generically isomorphic in any case. Then we obtain
that f is isomorphic in codimension one, due to Lemma 3.7 of [14]. Since both E .i/�
are reflexive and saturated, we obtain that f is isomorphic.

Corollary 2.14 Let .E�;D�/ be a �L –polystable reflexive saturated regular parabolic
�–flat sheaf. Then we have the unique decomposition:

.E�;D�/D
M

j

�
E .j /� ;D� .j/

�
˝Cm.j/:

Here, .E .j /� ;D� .j// are �L –stable with �L.E .j /� / D �.E�/, and they are mutually
nonisomorphic. It is called the canonical decomposition in the rest of the paper.
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2.1.5 Prolongment of flat subbundle and a Mehta–Ramanathan type theorem
Mehta–Ramanathan type theorems are one of the most important and standard tools
in the study of stable objects on projective varieties (Proposition 2.21). In the case of
regular filtered �–flat sheaves, it can be proved in a much more elementary way.

To begin with, we recall a well known fact about regular singularity of a flat meromor-
phic connection.

Lemma 2.15 Let E be a holomorphic bundle on a disc �, and let r be a logarithmic
flat connection of E on .�;O/, ie, r.E/�E˝�

1;0
�
.log O/. Let f be a flat section

of Ej�� . Then f naturally gives a meromorphic section of E .

Corollary 2.16 We put X D�z ��
n
w and D D f0g ��n

w . Let E be a holomorphic
vector bundle on X and r be the logarithmic flat connection of E on .X;D/. Let e

be a flat section of EjX�D .

� e gives a meromorphic section of E .

� Assume that e is holomorphic on E and that ejQ ¤ 0 for some Q 2D . Then
ejQ0 ¤ 0 for any Q0 2D .

Proof We may assume that we have a holomorphic frame v of E . We have the
expression e D

P
fi.z; w/ � vi . When we fix w , then fi.z; w/ are meromorphic with

respect to z . Thus, we have the least integer j .w/ such that the orders of the poles of
fi.z; w/ are less than j .w/. We put Sj WD fw j j .w/� j g. We have D D

S
j Sj . If

Sj ¤D , the measure of Sj is 0. Hence, we obtain Sj DD for some j , which means
e is meromorphic. Thus, we obtain the first claim.

Assume that e is holomorphic and that ejQ ¤ 0 for some Q 2D . Recall that we have
the induced connection Dr of EjD . Namely, for any holomorphic section f 2EjD ,
take a holomorphic F 2E such that FjD D f , and then Dr.f / WD r.F /jD is well
defined. Because Dr.ejD/D 0, we obtain the second claim.

Corollary 2.17 We put X D�n , Di D fzi D 0g and D D
Sn

iD1 Di . Let .E;r/ be
a logarithmic connection on .X;D/, and let e be a flat section on X �D .

� e gives a meromorphic section of E .

� Assume that e is holomorphic. We put Dıi WD Di n
S

j¤i Dj . If ejQ ¤ 0 for
some Q 2Dıi , we have ejQ0 ¤ 0 for any Q0 2Dıi .
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Let X be a complex manifold, and let D be a normal crossing divisor of X . Let
.E;r/ be a flat bundle on X �D . Recall that P Deligne gave the extension zE of E

in [3], such that (i) zEjX�D DE , (ii) r. zE/� zE˝�1;0.log D/, (iii) the real parts of
the eigenvalues of Resi.r/ are contained in f0� t < 1g. Such an extension is unique,
or in other words, it is unique as the subsheaf of ��E , where � denotes the inclusion
X �D �!X . If �¤ 0, the prolongment can also be done for �–flat bundle .E;D�/
on X �D , or more precisely, for the associated flat bundle .E;D�f /.

Lemma 2.18 Let .E�;D�/ be a regular filtered �–flat bundle on .X;D/, and we
put .E;D�/ WD .E�;D�/jX�D . Let . zE;D�/ be the Deligne extension of .E;D�/.
Then we have ED zE˝OX .�D/, where OX .�D/ denotes the sheaf of meromorphic
functions on X whose poles are contained in D .

Proof We have the naturally defined flat section s on Hom.cE; zE/jX�D . Due to
Corollary 2.17, s is a meromorphic section, and hence we obtain the flat inclusion
cE �! zE˝O.N �D/ for some large integer N , which induce the morphism EDS

cE D cE ˝O.�D/ �! zE ˝O.�D/. Similarly, we obtain the inclusion zE �!
cE˝O.N �D/, and zE˝O.�D/ �! E. They are clearly mutually inverse.

Lemma 2.19 Let .E�;D�/ be a regular filtered �–flat sheaf on .X;D/, and let
. zE;D�/ be as in the previous lemma. Then we have E' zE˝O.�D/ naturally.

Proof Due to Lemma 2.3 and Lemma 2.18, there exists a subset W � D with
codimX .W /� 2 such that EjX�W '

zE˝O.�D/jX�W . Let us fix c. There exists a
large integer N such that we have cEjX�W �

zE˝O.N �D/jX�W . Since zE is locally
free, we obtain cE � zE˝O.N �D/, and thus E� zE˝O.�D/. On the other hand,
there exists a large integer N 0 such that zEjX�W � cE ˝O.N 0 �D/jX�W . Hence,
zE� cE

__˝O.N 0 �D/, where cE
__ denotes the double dual of cE . Hence, we obtain

zE ˝O.�D/ � cE
__˝O.�D/. It is easy to see cE

__˝O.�D/ ' cE ˝O.�D/.
Thus we are done.

Lemma 2.20 Let .E�;D�/ be a regular filtered �–flat sheaf on .X;D/, and we put
.E;D�/ WD .E�;D�/jX�D . Let E0 be a �–flat subbundle of E . Then we have the
corresponding regular filtered �–flat subsheaf E0� � E� such that cE

0 are saturated in
cE , ie, cE=cE

0 is torsion-free.

Proof Let zE denote the Deligne extension of .E;D�/. We have the corresponding
subbundle zE0 � zE . Therefore, we obtain �E0 WD zE0˝O.�D/ � zE ˝O.�D/ D E.
For each c, the c–truncation cE

0 is given by the intersection of cE and E0 in E. Or
equivalently, cE

0 can be given by the intersection of cE and fE0 .N �D/ in zE.N �D/
for a sufficiently large N . Thus, we obtain E0� � E� .
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Let us show the Mehta-Ramanathan type theorem for regular filtered �–flat sheaves.
Let X be a smooth irreducible projective variety with an ample line bundle L and
a simple normal crossing divisor D . Let .E�;D�/ be a regular filtered �–flat sheaf
on .X;D/. Let N be a sufficiently large number. We can take a generic hyper-plane
section Y of L˝N satisfying the properties: (i) DY WD Y \D is simply normal
crossing in Y , (ii) �1.Y nD/ �! �1.X nD/ is surjective.

Proposition 2.21 Assume dim X � 2. Then .E�;D�/ is �L –stable, if and only if
.E�;D�/jY is �L –stable.

Proof Let us fix c. If W � cE destabilizes, the restriction WjY clearly destabilizes.
Hence, the �L –stability of .cE�;D�/jY implies the �L –stability of .cE�;D�/. As-
sume .cE�;D�/jY is not �L –stable, and let W be a subsheaf of cEjY satisfying
D�.W / �W ˝�

1;0
Y
.log DY / and par-deg.W�/= rank.W / � par-deg.cE�/= rank E .

Let Q be any point of X �D . Take a path 
 connecting Q and a point P of Y nD .
By the parallel transport along the path, we obtain the vector subspace W 0

Q
�EjQ . It is

independent of choices of P and 
 , and we obtain the flat subbundle W 0 � cEjX�D .
Due to Lemma 2.20, we obtain the saturated subsheaf �W 0 � cE . By a general
argument, it can be shown that there exists a subset Z �D with codimX .Z/� 2 such
that �W 0

�jX�Z
is a parabolic subbundle of cEjX�Z . Then it is easy to check that �W 0

destabilizes.

2.1.6 Perturbation of parabolic structure We recall the method of perturbation of
parabolic structure, which is one of the main ideas in [14] and this paper.

Let X be a smooth projective surface with an ample line bundle L, and D be a simple
normal crossing hypersurface with the irreducible decomposition D D

S
i2S Di . Note

that each Di is smooth by the assumption. Let .cE;F;D�/ be a regular c–parabolic
�–flat bundle over .X;D/ for some c 2 RS . Assume � ¤ 0. We also assume
ci 62 Par.cE;F; i/ for each i 2 S , for simplicity. Let Ni denote the nilpotent part of
the induced endomorphism GrF Resi.D�/ on iGrF

a .cE/. We would like to consider
perturbation of parabolic structure, as in Section 3.4 of [14]. First, we will recall a
general construction. Then we will give two kinds of more specified perturbations.

Let � be a generic point of Di . We have the weight filtration W� of the nilpotent map
Ni;� on iGrF .cE/� , which is indexed by Z. Then we can extend it to the filtration W

of iGrF .cE/ in the category of vector bundles on Di because Di are smooth curves.
By our construction, Ni.Wk/�Wk�2 . The endomorphism Resi.D�/ preserves the
filtration W on iGrF .cE/, and the nilpotent part of the induced endomorphisms on
GrW

�
iGrF .cE/

�
are trivial. Recall that the flat �–connection D� locally induces the
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�–connection iD� of the vector bundle cEjDi
on Di . Since iGrF .iD�/ commutes

with Resi D� , it preserves the filtration W .

Let us take a refinement of the filtration iF for each i . For any a 2�ci �1; ci �, we have
the surjection �aW

iFa.cEjDi
/ �! iGrF

a .cE/. We put i zFa;k WD �
�1
a .Wk/. Thus, we

obtain the increasing filtration i zF indexed by �ci � 1; ci ��Z with the lexicographic
order. Obviously, the set zSi WD

˚
.a; k/ 2�ci � 1; ci ��Z

ˇ̌
iGr zF.a;k/ ¤ 0

	
is finite.

Let us explain an �–perturbation. Let 'i W
zSi �!�ci�1; ci � be increasing maps such that

j'i.a; k/�aj�C �� for some C >0. (Since we are interested in the family of filtrations
F.�/ .� > 0/, this condition makes sense.) Then i zF and 'i give a c–parabolic filtration
F.�/ D .iF .�/ j i 2 S/, and we obtain a regular c–parabolic �–flat bundle .cE;F.�/;D�/
called an �–perturbation of .cE;F;D�/. We mention two properties which are clear
from the construction.

� We have the following convergence in the cohomology group H�.X;R/.

lim
�!0

par-c1.cE;F
.�//D par-c1.cE;F/;

lim
�!0

par-ch2.cE;F
.�//D par-ch2.cE;F/

(See Sections 3.1.2 and 3.1.5 of [14] for par-c1.cE;F/ and par-ch2.cE;F/.)

� .cE;F.�/;D�/ is graded semisimple (Definition 2.6).

The following proposition is standard. (See Proposition 3.28 of [14], for example.)

Proposition 2.22 Assume that
�

cE;F;D�
�

is �L –stable. If � is sufficiently small,
the �–perturbation

�
cE;F.�/;D�

�
is also �L –stable.

We will use two kinds of perturbations 'i of weights.

(I) The image of 'i is contained in Q for each i 2 S . This kind of perturbation
will be used to obtain a formula to express the parabolic characteristic numbers
in terms of the boundary data (Section 3.5).

(II) For simplicity, we assume � Dm�1 and 0 < 10 rank E � � < gap.cE;F/. (See
Section 3.1 of [14] for gap.) Let i 2 S . For each a 2 Par.cE;F/, we take
a0.�; i/ 2m�1 �Z such that ja0.�; i/�aj<m�1 . Let L.�; i/ 2R be determined
by the following:

L.�; i/ � rank.E/ WD
X

.a0.�; i/� a/ � rank iGrF
a .cE/
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Then we put a.�; i/ WD a0.�; i/ � L.�; i/ and '.a; k/ WD a.�; i/C k � � . By
construction, we have the following equality:X

a;k

'.a; k/ � rank
�
iGr zFa;k.cE/

�
D

X
a

a � rank
�
iGrF

a .cE/
�

Hence, we have par-c1.cE;F/ D par-c1.cE;F.�//. For each i , we also have
some �1=m< 
i � 0 such that

Par.cE;F.�/; i/�
˚
ci C 
i Cp=m

ˇ̌
p 2 Z�0; �1< 
i Cp=m� 0

	
:

In other words, .cE;F.�/;D�/ satisfies the SPW–condition (Definition 2.6).

Remark 2.23 The construction given in this subsection is valid, when the base mani-
fold X is a curve. However, some modification would be required in the case dim X �3,
because a filtration at the generic point Di may not be extended to a filtration by vector
bundles on Di if dim Di � 2.

2.2 Generality for �–connection in the C 1–category

We give some generality for �–connections in the C1–category. They are straight-
forward generalizations of the argument for Higgs bundles or flat bundles given in
Simpson’s papers (for example [17; 19]), and hence we will often omit to give a detailed
proof. For simplicity, we will assume �¤ 0.

2.2.1 The induced operators Let X be a complex manifold, and .E;D�/ be a flat
�–connection on X . We have the decomposition of D� into the .0; 1/–part d 00

E
and the

.1; 0/–part d 0
E

. The holomorphic structure of E is given by d 00
E

. Recall that the twisted
Leibniz rule d 0

E
.f �v/D��@X .f /vCf �d

0
E
v holds for f 2C1.X / and v2C1.X;E/.

Let h be a hermitian metric of E . From d 00
E

and h, we obtain the .1; 0/–operator
ı0

E;h
determined by x@h.u; v/D h.d 00

E
u; v/C h.u; ı0

E;h
v/. From d 0

E
and h, we obtain

the .0; 1/–operator ı00
E;h

determined by �@h.u; v/ D h.d 0
E

u; v/C h.u; ı00
E;h

v/. We
remark that ı00

E;h
.f � v/D x� � x@X f � vCf � ı

00
E;h

.v/. We obtain the operators

x@E;h WD
1

1Cj�j2
.d 00E C�ı

00
E;h/; @E;h WD

1

1Cj�j2
.x�d 0E C ı

0
E;h/;

�
|
E;h
WD

1

1Cj�j2
.x�d 00E � ı

00
E;h/; �E;h WD

1

1Cj�j2
.d 0E ��ı

0
E;h/:

(4)

It is easy to see the following Leibniz rule:

x@E;h.f s/D x@X f � sCf � x@E;hs; @E;h.f s/D @X f � sCf � @E;hs:
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On the other hand, � and �| give the sections of End.E/˝�1;0 and End.E/˝�0;1

respectively. We also have the formulas:

d 00E D
x@E;hC��

|
E;h

; d 0E D �@E;hC �E;h;

ı0E;h D @E;h�
x��E;h; ı00E;h D

x�x@E;h� �
|
E;h

Remark 2.24 The index “E; h” is attached to emphasize the bundle E and the
metric h. We will often omit them if there are no risk of confusion.

Remark 2.25 We have the hermitian product .�; �/hW
�
E ˝ ��

�
˝
�
E ˝ ��

�
�!

�� induced by h. For a section A of End.E/ ˝ �p;q , let A
|
h

denote the sec-
tion of End.E/ ˝ �q;p which is the adjoint of A with respect to h in the sense
.A �u; v/h D .u;A

|
h
v/h . The above �|

h
is the adjoint of �h in this sense.

We put D�?
h
WD ı0

h
� ı00

h
D @hC �

|
h
�x�.x@hC �h/. We have the following formula:

x@hC �h D
D���D�?

h

1Cj�j2
; @hC �

|
h
D

D�?
h
Cx�D�

1Cj�j2

We recall that h is called a pluri-harmonic metric if .x@hC�h/
2D0 holds, ie, .E; x@h; �h/

is a Higgs bundle. The condition is equivalent to ŒD�;D�?
h
�D 0. In the following, a

�–flat bundle with pluri-harmonic metric is called a harmonic bundle.

Let us consider the case in which X is provided with a Kahler form ! . For a differential
operator A of E˝�� of degree one, ie, AW C1.X;E˝�i/�!C1.X;E˝�iC1/,
let A� denote a formal adjoint with respect to ! and h, ie,

R
X .Au; v/h;! dvol! DR

X .u;A
�v/h;! dvol! hold for any C1–sections u and v with compact supports. Here,

.�; �/h;! denotes the Hermitian inner product of appropriate vector bundles induced by
h and ! .

Lemma 2.26 .D�?/� D
p
�1Œƒ! ;D�� and .D�/� D�

p
�1Œƒ! ;D�?�.

Proof It follows from the relations @�D
p
�1Œƒ! ; x@E �, x@�D�

p
�1Œƒ! ; @E �, ��D

�
p
�1Œƒ! ; �

|� and .�|/� D
p
�1Œƒ! ; � �.

The Laplacian ��
h;!
W C1.X;E/ �! C1.X;E/ is defined by

��h;! WD
p
�1ƒ!D�D�?:
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Remark 2.27 For the differential operators of functions, we have

��! WD
p
�1ƒ.x@C�@/ ı .@�x�x@/D .1Cj�j2/

p
�1ƒx@@D .1Cj�j2/�00! ;

where �00! denotes the usual Laplacian
p
�1ƒ!x@@.

Lemma 2.28 When �¤ 0, we have x��1@2
h
C��1�2

h
D 0 and ��1x@2

h
Cx��1.�

|
h
/2D 0.

Proof From the flatness .D�/2 D 0, we obtain the following formulas:

.x@hC��
|
h
/2 D x@2

hC�
x@h�

|
h
C�2.�

|
h
/2 D 0(5)

.�@hC �h/
2
D �2@2

hC�@h�hC �
2
h D 0(6)

Œx@hC��
|
h
; �@hC �h�D �

�
Œx@h ; @h�C Œ�

|
h
; �h�

�
Cx@h�hC�

2@h�
|
h
D 0(7)

It is easy to see .x@2
h
/
|
h
D �@2

h
, .x@h�

|
h
/| D @h�h and .�|

h
/2 D �.�2

h
/| . Therefore, we

obtain the following equality from (5):

(8) �@2
hC
x�
�
@h�h

�
�x�2�2

h D 0

From (6) and (8), we obtain .�Cx��1/@2
h
C.��1Cx�/�2

h
D .1Cj�j2/.x��1@2

h
C��1�2

h
/D

0, which gives the first formula in the lemma. The second formula can be obtained by
taking the adjoint.

Lemma 2.29 If �¤ 0, the following holds:

x��1
� @h�

|
h
C��1

� x@h�h D 0; Œ@h ; x@h�C Œ�h ; �
|
h
�D 0

Proof It is easy to check Œ@h; x@h�
|
h
D�Œ@h; x@h�, Œ�h; �

|
h
�
|
h
D�Œ�h; �

|
h
� and .x@h�h/

|
h
D

@h�
|
h

. Hence, we obtain the following equality from (7):

(9) �Œx@h; @h�� Œ�
|
h
; �h�Cx�

�1
� @h�

|
h
Cx� � x@h�h D 0:

The claim of the lemma immediately follows from (7) and (9).

Corollary 2.30 When �¤ 0, the pluri-harmonicity of the metric h is equivalent to
the vanishings �2

h
D 0 and x@h�h D 0.
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2.2.2 Local expression Let .E;D�/ be a flat �–connection, and let h be a C1–
metric. Let vD .v1; : : : ; vr / be a holomorphic frame of E . Let H DH.h; v/ denote
the hermitian matrix valued function of h with respect to v, ie, Hi;j D h.vi ; vj /. Let
us look at the local expression of the induced operators.

Let A denote the M.r/–valued .1; 0/–form of D� with respect to v, ie, D�vD v �A,
in other words, D�vi D

P
Aj i � vj . Let B denote the .1; 0/–form of ı0

h
with respect

to v, ie, ı0
h
vD v �B , and then we have

x@h.vi ; vj /D h
�
vi ; ı

0
hvj

�
D

X
h
�
vi ;Bk;jvk

�
:

Hence, x@H DH � xB , ie, we obtain B D xH�1@ SH . Let C denote the .0; 1/–form of
ı00

h
with respect to v, ie, ı00

h
vD v �C , and then we have

� � @h.vi ; vj /D h.d 0vi ; vj /C h.vi ; ı
00
hvj /D

X
k

h.Ak;ivk ; vj /C
X

k

h.vi ; Ck;jvk/:

Hence, �@H D tAH CH xC , ie, we obtain C D x� � SH�1x@ SH � SH�1t xA SH . Thus, we
obtain the following:

�hvD v �
1

1Cj�j2
.A�� SH�1@ SH /; x@hvD v �

�

1Cj�j2
.x� � SH�1x@ SH �A

|
h
/

Here, A| denote the adjoint of A with respect to h, ie, A
|
h
D SH�1 � t xA � SH .

2.2.3 Pseudo-curvature and a Hermitian-Einstein condition Assume �¤ 0. For
a flat �–connection .E;D�/ with a hermitian metric h, the pseudo-curvature G.h;D�/
is defined as follows:

G.h;D�/ WD ŒD�;D�?h �D�
.1Cj�j2/2

�
.x@hC �h/

2

Then a hermitian metric h is a pluri-harmonic metric for .E;D�/, if and only if
G.h;D�/D 0 holds. We will often use the symbols G.h/ or Gh instead of G.h;D�/
if there are no risk of confusion.

When X is provided with a Kahler form ! , a Hermitian-Einstein condition for h is
ƒ!G.h;D�/? D 0, where “?” means the trace free part.

2.2.4 Some relations between curvature and pseudo-curvature By the construc-
tion of ı0

h
, the operator d 00C ı0

h
is a unitary connection of .E; h/. The curvature of

d 00C ı0
h

is denoted by R.d 00; h/. We have the following expression of R.d 00; h/ due
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to Œd 00; d 0�D 0:

R.d 00; h/D Œd 00; ı0h�D Œd
00; ��1d 0��

1Cj�j2

�
Œd 00; �h�(10)

D�
1Cj�j2

�

�
x@h�hC�Œ�

|
h
; �h�

�
Lemma 2.31 The following equality holds:

(11) tr R.d 00; h/D
1

1Cj�j2
tr G.D�; h/D�

1Cj�j2

�
x@ tr �h

Proof From (10), we obtain tr R.d 00; h/ D �.1C j�j2/��1 � x@ tr �h . We have the
following equality:

tr G.h;D�/D�

�
1Cj�j2

�2
�

tr
�
x@2

hC
x@h�hC �

2
h

�
D�

�
1Cj�j2

�2
�

x@ tr �h

Here, we have used tr.�2
h
/D 0, which implies tr.x@2

h
/D 0 due to Lemma 2.28. Thus

we are done.

Lemma 2.32 In the case dim X D 2, we have the following formula:

tr
�
R.d 00; h/2

�
D

1

.1Cj�j2/2
tr
�
G.h;D�/2

�
�
.1Cj�j2/2

�
x@ tr.�2

h � �
|
h
/

Proof We have the following equalities:

tr
�
G.h;D�/2

�
D
.1Cj�j2/4

�2

�
tr
�
.x@h�h/

2
�
C 2 tr

�
x@2

h � �
2
h

��
tr
�
R.h; d 00/2

�
D
.1Cj�j2/2

�2

�
tr
�
.x@h�h/

2
�
C 2� tr

�
x@h�h � Œ�h; �

|
h
�
�
C�2 tr

�
Œ�h; �

|
h
�2
��

Because tr
�
Œ�h; �

|
h
�2
�
D�2 tr

�
�2

h
�

| 2
h

�
and .x@hC ��

|
h
/2 D x@2

h
C �x@h�

|
h
C �2�

| 2
h
D 0,

we obtain the following:

�2 tr
�
Œ�h; �

|
h
�2
�
D�2 tr

�
�2
� �2

h � �
| 2
h

�
D 2 tr

�
x@2

h � �
2
h C� �

x@h�
|
h
� �2

h

�
Hence, we have the following equality:

tr
�
R.h; d 00/2

�
D

�
1Cj�j2

�

�2

��
tr
�
.x@h�h/

2
�
C 2� tr

�
x@h�h � Œ�h; �

|
h
�
�
C 2 tr

�
x@2

h � �
2
h

�
C 2� tr

�
x@h�

|
h
� �2

h

��
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We also remark the following:

tr
�
x@h�h � Œ�h; �

|
h
�
�
C tr.�2

h �
x@h�

|
h
/

D tr
�
.x@h�h/ � �h � �

|
h

�
C tr

�
x@h�h � �

|
h
� �h

�
� tr

�
�h �
x@h�

|
h
� �h

�
D x@ tr

�
�h � �

|
h
� �h

�
D�x@ tr.�2

h � �
|
h
/

Then the claim of the lemma immediately follows.

2.2.5 Change of hermitian metrics Let hi .i D 1; 2/ be hermitian metrics of
E . The endomorphism s is determined by h2 D h1�s , ie, h2.u; v/ D h1.s�u; v/ D

h1.u; s�v/, which is self-adjoint with respect to both h1 and h2 . Then we have the
relations ı0

h2
D ı0

h1
C s�1ı0

h1
s and ı00

h2
D ı00

h1
C s�1ı00

h1
s . Therefore, we have the

following relations from (4):

x@h2
D x@h1

C
�

1Cj�j2
s�1ı00h1

s; @h2
D @h1

C
1

1Cj�j2
s�1ı0h1

s

�
|
h2
D �

|
h1
�

1

1Cj�j2
s�1ı00h2

s; �h2
D �h1

�
�

1Cj�j2
s�1ı0h1

s

We also have D�?
h2
DD�?

h1
C s�1D�?

h1
s , and thus

ŒD�;D�?h2
�D ŒD�;D�?h1

�CD�.s�1/ �D�?h1
sC s�1D�D�?h1

s:

Then we obtain the following formula:

(12) ��h1;!
s D s

p
�1
�
ƒ!G.h2/�ƒ!G.h1/

�
C
p
�1ƒ!

�
D�s � s�1D�?s

�
In particular, we obtain the following formula by taking the trace:

��! tr.s/D tr
�
s
p
�1
�
ƒ!G.h2/�ƒ!G.h1/

��
�
ˇ̌
D�.s/s�1=2

ˇ̌2
h1;!

As in Lemma 3.1 of [17], we can derive the following inequality:

��! log tr.s/�
ˇ̌
ƒ!G.h1/

ˇ̌
h1
C
ˇ̌
ƒ!G.h2/

ˇ̌
h2

2.3 Analytic stability of �–flat bundle

Let X be a complex manifold with a Kahler form ! . We often impose the following
condition on them as in [17].
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Condition 2.33

(1) The volume of X with respect to ! is finite.

(2) There exists a C1–function �W X �! R�0 with the following properties:
� fx 2X j�.x/� ag is compact for any a.
� 0�

p
�1@x@� � C �! , and x@� is bounded with respect to ! .

(3) There exists a continuous increasing function aW Œ0;1Œ�! Œ0;1Œ with the
following properties:
� a.0/D 0 and a.t/D t for t � 1.
� Let f be a positive bounded function on X such that �!f � B for some

B 2 R. Then there exists a constant C.B/, depending only on B , such
that supX jf j � C.B/ � a

�R
X jf j � dvol!

�
. Moreover, �!.f / � 0 implies

�!.f /D 0.

Let .E;D�/ be a �–flat bundle on X . There are two kinds of finiteness conditions for
the pseudo-curvature of .E;D�; h/. The stronger one is

(13) sup
ˇ̌
G.h;D�/

ˇ̌
h;!

<1:

It implies the weaker one

(14) sup
ˇ̌
ƒ!G.h;D�/

ˇ̌
h;!

<1:

When we are given a hermitian metric h of E satisfying the finiteness (14), the degree
deg!.E; h/ is defined as follows:

deg!.E; h/ WD

p
�1

2�

Z
X

tr G.h;D�/

1Cj�j2
!n�1

D

p
�1

2�

Z
X

tr R.h; d 00/ �!n�1

Here, we have used (11). For any �–flat subbundle .V;D�
V
/� .E;D�/, the restriction

hV WD hjV induces deg!.V; hV /. As in Lemma 3.2 of [17], we have the Chern–Weil
formula. The proof is done in the same way.

Lemma 2.34 Assume that (14) is satisfied. Let �V denote the orthogonal projection
of E onto V . Then the following equality holds:

deg!.V; hV /D
1

2�

1

1Cj�j2

�
p
�1

Z
X

tr
�
�V ıG.h;D�/

�
�!n�1

�

Z
X

ˇ̌
D��V

ˇ̌2
h;!

�
The value is finite or �1.
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Definition 2.35 .E;D�; h/ is defined to be analytically stable with respect to ! , if
the inequality

deg!.V; hV /

rank V
<

deg!.E; h/
rank E

holds for any .V;D�
V
/� .E;D�/ such that 0< rank V < rank E .

2.4 Review of Donaldson functional

We recall the Donaldson functional by following Donaldson [4] and Simpson [17] in
our situation. We give a rather detailed review because we would like to use variants
(Lemma 2.45 and Lemma 2.48) of a main estimate (Proposition 2.41). They will be
used in the proof of Propositions 4.1 and 4.2, together with Lemma 2.50.

2.4.1 Functions of self-adjoint endomorphisms Let V be a vector space over C
with a hermitian metric h. Let S.V; h/ denote the set of endomorphisms of V which
are self-adjoint with respect to h. Let 'W R �! R be a continuous function. Then
'.s/ is naturally defined for any s 2 S.V; h/. Namely, let v1; : : : ; vr be an orthogonal
base which consists of eigen vectors of s , and let v_

1
; : : : ; v_r be the dual base. Then

we have the description s D
P
�i � v

_
i ˝ vi , and we put '.s/ WD

P
'.�i/ � v

_
i ˝ vi .

Thus, we obtain the induced map 'W S.V; h/ �! S.V; h/, which is well known to be
continuous. To see the continuity, for example, we can argue as follows: Let U.h/

denote the unitary group with respect to h. Take eD .e1; : : : ; er / be an orthogonal base
of V . Let T denote the set of endomorphisms of V which is diagonal with respect
to the base e. Then we have the continuous surjective map � W U.h/�T �! S.V; h/

given by .u; t/ 7�! u � t �u�1 . It is easy to check the continuity of the composite ' ı� .
Since the topology of S.V; h/ is the same as the induced topology via � , we obtain
the continuity. When ' is real analytic given by a convergent power series

P
aj � t

j ,
then '.s/D

P
aj � s

j . The induced map is real analytic in this case.

Let ‰W R�R �! R be a continuous function. For a self-adjoint map s 2 S.V; h/, let
v1; : : : ; vr and v_

1
; : : : ; v_r be as above. Then we put ‰.s/.A/D

P
‰.�i ; �j /Ai;jv

_
i ˝

vj for any endomorphism AD
P

Ai;j �v
_
i ˝vj of V . Thus, we obtain ‰W S.V; h/�!

S.End.V /; h/, which is also well known to be continuous. Here, S.End.V /; h/ denotes
the set of self-adjoint endomorphisms of End.V / with respect to the metric induced
by h. To see the continuity, we can use the same argument as above. When ‰ is real
analytic given by a power series

P
bm;ntm

1
tn
2

, then we have ‰.s/.A/D
P

bm;nsm �

A � sn , and the induced map is real analytic.

Let 'W R �! R be C 1 , and let d'W R2 �! R2 denote the continuous function given
by d'.t1; t2/ D .t1 � t2/

�1
�
'.t1/� '.t2/

�
.t1 ¤ t2/ and d'.t1; t1/ D '

0.t1/. In this
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case, the induced map 'W S.V; h/ �! S.V; h/ is also C 1 , and the derivative at s is
given by d'.s/. To see it, we can argue as follows: If ' is real analytic, the claim can
be checked by a direct calculation. In general, we can take an approximate sequence
'i �! ' by real analytic functions on an appropriate compact neighbourhoods of
the eigenvalues of s 2 S.V; h/. The induced maps 'i W S.V; h/ �! S.V; h/ and
d'i W S.V; h/ �! S.End.V /; h/ uniformly converge to ' and d' on an appropriate
compact neighbourhoods of s . Then we can derive that ' is the integral of the form
d' by a general fact.

The construction can be done on manifolds. Namely, let E be a C1–vector bun-
dle with a hermitian metric h. Let Sh.E/ (or simply Sh ) be the bundle of self-
adjoint endomorphisms of .E; h/, and let Sh.End.E// be the bundle of self-adjoint
endomorphisms of .End.E/; h/. Then a continuous function 'W R �! R induces
'W Sh.E/ �! Sh.E/, and ‰W R2 �! R induces ‰W Sh.E/ �! Sh.End.E//. We
have D�'.s/D d'.s/

�
D�s

�
, if ' is C 1 .

2.4.2 A closed one form Let .X; !/ and .E;D�/ be as in Condition 2.33. Following
Simpson [17], we introduce the space P .Sh/ which consists of sections s of Sh.E/

satisfying the following finiteness:

kskh;!;P WD sup
X

jsjhCkD
�sk2;h;! Ck�

�
h;!sk1;h;! <1:

Here, k � kp;h;! denote the Lp –norm with respect to .h; !/. We will omit to denote !
and h, when there are no risk of confusion. The following lemma is the counterpart of
Proposition 4.1 (d) in [17]. The proof is done in the same way.

Lemma 2.36 Suppose ' and ‰ are analytic functions on R with infinite radius of
convergence. Then 'W P .Sh/ �! P .Sh/ and ‰W P .Sh/ �! P .Sh.End.E/// are
analytic.

Let h be a metric satisfying (14). Let PC.Sh/ denote the set of self-adjoint positive
definite endomorphisms s with respect to h such that kskh;P <1 and ks�1kh;P <1.
Note kskh;P <1 and sup js�1jh<1 imply ks�1kh;P <1. We put Ph WD fh �s

ˇ̌
s 2

PC.Sh/g. It is easy to see that any h1 2 Ph also satisfies (14) due to (12). It is also
easy to see Ph D Ph1

for h1 2 Ph .

Let P.Sh/ denote the space of self-adjoint endomorphisms s with respect to h such that
kskP;h <1. It is easy to see that PC.Sh/ is open in P.Sh/. In particular, we obtain
the Banach manifold structure of PC.Sh/. By the natural bijection Ph ' PC.Sh1

/

for h1 2 Ph , we also obtain a Banach manifold structure of Ph , which is independent
of the choice of h1 2 Ph . We have the map P.Sh1

/ �! PC.Sh1
/ given by s 7�! es
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(Lemma 2.36). It gives a diffeomorphism around 0 2 P.Sh1
/ and 1 2 PC.Sh1

/.
Therefore, the map P.Sh1

/ �! Ph by s 7�! h1 � e
s gives a diffeomorphism around 0

and h1 . In particular, the tangent space Th1
Ph can be naturally identified with P.Sh1

/

for any h1 2 Ph . We also have the natural isomorphism P.Sh1
/' P.Sh/ given by

t 7�! u � t for h1 D h �u 2 Ph , which gives a local trivialization of the tangent bundle.

For any h1 2 Ph and s 2 Th1
Ph , we put

ˆh1
.s/ WD

Z
X

ˆ0h1
.s/ dvol! 2 C; ˆ0h1

.s/ WD
p
�1 tr

�
s �ƒ!G.D�; h1/

�
:

Then ˆ0 gives an L1.X; �
1;1
X
/–valued one form on Ph , and ˆ gives a one form of

Ph . The differentiability of ˆ is easy to see.

Lemma 2.37 ˆ is a closed one form.

Proof In the following argument, we use the symbol D�? instead of D�?
h

. Let
k1; k2 2 Ph . They naturally give the vector field by addition. At any point h1 2 Ph ,
they give the tangent vectors � D h�1

1
k1 and � D h�1

1
k2 in Th1

Ph DP.Sh1
/. Hence,

the following holds at hC �k1 :

ˆhC�k1
.k2/D

p
�1

Z
tr
�
.hC �k1/

�1
� k2 �G.hC �k1/

�
�!n�1

We have .hC �k1/
�1k2D .1C ��/

�1� D � � ���C .1C ��/�2�2�2� . Remark �2�

is bounded. We also have the following:

.1C ��/
�
G.hC �k1/�G.h/

�
DD�D�?.1C ��/�D�.1C ��/ � .1C ��/�1D�?.1C ��/

D �D�D�?� � �2D�� � .1C ��/�1D�?�:

Hence, we have G.hC �k1/�G.h/D �D�D�?� C �2R0.�; �; �/, where R0.�; �; �/

is an L1 –section of End.E/˝�2 , and the L1 –norm is bounded independently from � .
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Therefore, we obtain the following:

ˆhC�k1
.k2/�ˆh.k2/

D
p
�1

Z
tr
�
.hC �k1/

�1k2G.hC �k1/
�
!n�1

�
p
�1

Z
tr
�
h�1k2G.h/

�
!n�1

D
p
�1

Z
tr
�
�G.hC �k1/� �G.h/

�
!n�1

� �
p
�1

Z
tr
�
��G.hC �k1/

�
!n�1
C �R1.�; �; �/

D �

�
p
�1

Z
tr
�
�D�D�?�

�
�!n�1

�
p
�1

Z
tr
�
��G.h/

�
�!n�1

�
C �R2.�; �; �/

Here, we have Ri.�; �; �/�!0 .iD1; 2/ as �!0, due to k�kP <1 and k�kP <1.
Hence, we obtain the following equality:

dhˆ.�; �/D
p
�1

Z �
tr
�
�D�D�?�

�
� tr

�
�D�D�?�

�
� tr

�
Œ�; � �G.h/

�
!n�1

We have the following equality, due to ŒD�;D�?�DG.h/:

.�x�x@C @/ tr.�D��/C .�@Cx@/ tr.�D�?�/

D tr.D�?�D��/C tr.�D�?D��/C tr.D��D�?�/C tr.�D�D�?�/

D� tr.�D�D�?�/C tr.� � ŒG.h/; ��/C tr.�D�D�?�/

D� tr
�
�D�D�?�

�
C tr.�D�D�?�/C tr

�
Œ�; � � �G.h/

�
Hence, we obtain dhˆ.�; �/D�

p
�1

R
X

�
.�x�x@C@/ tr.�D��/C.�@Cx@/ tr.�D�?�/

�
�

!n�1 . By using k�kP <1 and k�kP <1, we obtain the vanishing of dhˆ.�; �/,
due to Lemma 5.2 of [17].

2.4.3 Donaldson functional For h1; h2 2Ph , take a differentiable path 
 W Œ0; 1��!
Ph such that 
 .0/D h1 and 
 .1/D h2 , and the Donaldson functional is defined to be

M.h1; h2/ WD

Z



ˆ:

It is independent of the choice of a base metric ! , in the case dim X D 1. We have
M.h1; h2/CM.h2; h3/DM.h1; h3/ by the construction.

Lemma 2.38 When h2 D h1 � e
s for s 2 P.Sh1

/, we have the following formula:

(15) M
�
h1; h2

�
D
p
�1

Z
X

tr
�
sƒ!G.h1/

�
dvol! C

Z
X

�
‰.s/D�s;D�s

�
!;h1

dvol!
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Here, . � ; � /!;h1
denotes the hermitian product induced by ! and h1 , and ‰ is given

as follows:

(16) ‰.t1; t2/D
et2�t1 � .t2� t1/� 1

.t2� t1/2

See Section 2.4.1 for the meaning of ‰.s/.D�s/.

Proof Let M 0.h1; h2/ denote the right hand side of (15). The following formula
immediately follows from the definition:

@

@u
M 0

�
h1ets; h1e.tCu/s

�
juD0
D

Z
X

p
�1 tr

�
sƒ!G.h1ets/

�
:

We also have the following equalities:

@2

@t@u
M 0

�
h1ets; h1e.tCu/s

�
juD0
D
@2

@t2
M 0

�
h1; h1ets

�
juD0

D
@2

@t@u
M 0

�
h1; h1e.tCu/s

�
juD0

:

The second equality can be shown formally. The first equality can be shown by the
argument on page 883 of [17]. We also have the obvious equality:

@

@u
M 0.h1ets; h1e.tCu/s/jtD0;uD0 D

@

@u
M 0.h1; h1e.tCu/s/jtD0;uD0:

Hence, we obtain the following:

@

@t
M 0.h1; h1ets/D

Z
X

p
�1 tr

�
sƒ!G.h1ets/

�
:

Thus, M 0.h1; h1es/ is the integral of ˆ0 along the path 
 .t/ D h1ets , and hence
M 0.h1; h2/DM.h1; h2/.

Remark 2.39 In [17], the formula (15) is adopted to be the definition of the functional.
We follow the original definition due to Donaldson [4].

We obtain the following corollary due to the positivity of the function ‰ .

Corollary 2.40 If sup jƒ!G.h/jh < B is satisfied, we have the following inequality:

M.h; hes/�
p
�1

Z
tr
�
sƒ!G.h/

�
� dvol! � �B

Z
jsjh � dvol! :

In particular, the upper bound of s gives the lower bound of M.h; hes/.
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2.4.4 Main estimate The following key estimate is the counterpart of Proposition 5.3
in [17]. The proof is the same.

Proposition 2.41 Fix B > 0. Let .E;D�/ be a flat �–connection. Let h be a her-
mitian metric of E such that sup jƒ!G.h;D�/jh � B . Let .E;D�; h/ be analytically
stable with respect to ! . Then there exist constants Ci � 0 (i D 1; 2) with the following
property:

� Let s be any self-adjoint endomorphism satisfying kskP;h <1, tr.s/D 0 and
sup jƒ!G.h � es;D�/j � B . Then the following inequality holds:

sup
X

jsjh � C1CC2 �M.h; hes/

Sketch of the proof The excellent argument given in [17] works in the case of flat
�–connection without any essential change. Since we would like to use some minor
variants of this proposition (Sections 2.4.5–2.4.6), we recall an outline of the proof for
the convenience of readers. To begin with, we remark that we have only to show the
following inequality for some C 0i > 0 due to Corollary 2.40:

sup
X

jsjh � C 01CC 02 �max
˚
0;M.h; hes/

	
In the following, Ci denote positive constants. As is noticed in Section 2.2.5, the
inequality

��! log tr.es/�
ˇ̌
ƒG.h/

ˇ̌
h
C
ˇ̌
ƒG.hes/

ˇ̌
hes � 2B

holds. Hence, there exist Ci > 0 .i D 3; 4/ such that the inequality

sup log tr.es/� C3CC4 �

Z
log tr.es/

holds for any s as above, due to Condition 2.33. Because

C5CC6 � jsjh � log tr es
� C7CC8 � jsjh

for some Ci > 0 .i D 5; 6; 7; 8/, there exist Ci .i D 9; 10/ such that the following
holds for any s as above:

(17) sup jsjh � C9CC10 �

Z
jsjh

Assume that the claim of the proposition does not hold, and we will derive a contradic-
tion. Under the assumption, either one of the following occurs:

Case 1 There exists a sequence fsi 2P.Sh/ j i D 1; 2; � � � g such that sup jsi jh �!1

and M.h; hesi /� 0.
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Case 2 There exist sequences fsi 2 P.Sh/g and fC2;i 2 Rg with the following
properties:

sup
X

jsi j �!1; C2;i �!1; .i �!1/

M.h; hesi / > 0; sup jsi jh � C2;iM.h; hesi /

In both the cases, we have ksikL1 �! 1 due to (17). We put `i WD ksikL1 and
ui WD si=`i . Clearly, we have kuikL1 D 1 and uniform boundedness supX jui j < C

due to (17). In the following, let L2.Sh/ (resp. L2
1
.Sh/) denote the space of L2 –

sections (resp. L2
1

–sections) of Sh . The following lemma is one of the keys in the
proof of Proposition 2.41.

Lemma 2.42 After going to an appropriate subsequence, fuig weakly converges
to some u1 ¤ 0 in L2

1
.Sh/. Moreover, we have the following inequality, for any

C1–function ˆW R�R �! R�0 such that ˆ.y1;y2/� .y1�y2/
�1 for y1 > y2 :

p
�1

Z
tr
�
u1ƒ!G.h/

�
C

Z
X

�
ˆ.u1/D

�u1;D
�u1

�
h;!
� 0:

Proof By considering ˆ � � for any small positive number � , we have only to
consider the case ˆ.y1;y2/ < .y1 � y2/

�1 for y1 > y2 . In both the cases, we have
the inequalities for some positive constant C , from the formula (15):

`i

p
�1

Z
X

tr
�
uiƒ!G.h;D�/

�
C `2

i

Z �
‰.`iui/D

�ui ;D
�ui

�
h
� `i �

C

C2;i

:

(In the case 1, we take any sequence fC2;ig such that C2;i �! 1). Let ˆ be as
above. Due to the uniform boundedness of ui , we may assume that ˆ has the compact
support. Then if ` is sufficiently large, we have ˆ.�1; �2/ < `‰.`�1; `�2/. Therefore,
we obtain the following inequality:

p
�1

Z
X

tr
�
uiƒ!G.h;D�/

�
C

Z
X

�
ˆ.ui/D

�ui ;D
�ui

�
h;!
�

C

C2;i

:

Since supX jui j is bounded independently of i , there exists a function ˆ as above which
satisfies ˆ.ui/D c � id, moreover, for some small positive number c > 0. Therefore,
we obtain the boundedness of fuig in L2

1
. By taking an appropriate subsequence,

fuig is weakly convergent in L2
1

. Let u1 denote the weak limit. Let Z be any
compact subset of X . Then fuig is convergent to u1 on Z in L2 , and henceR

Z jui j !
R

Z ju1j. Since sup jui j are uniformly bounded, we obtain
R

Z ju1j ¤ 0,
if the volume of X � Z is sufficiently small. Thus, u1 ¤ 0. Similarly, we can
show the convergence

R
tr
�
uiƒG.h;D�/

�
�!

R
tr
�
u1ƒG.h;D�/

�
. Since fuig are
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weakly convergent to u1 in L2
1

, we have the almost everywhere convergence of fuig

and fD�uig to u1 and D�u1 respectively. Therefore, the sequence fˆ.ui/D�uig

converges to ˆ.u1/D�u1 almost everywhere. Hence, we haveZ �
ˆ.u1/D

�u1;D
�u1

�
h;!
� lim

Z �
ˆ.ui/D

�ui ;D
�ui

�
h;!

due to Fatou’s lemma. Thus, we obtain the desired inequality, and the proof of Lemma
2.42 is finished.

We reproduce the rest of the excellent argument given in [17] just for the completeness.
We do not use it in the later argument. The point is that the existence of a nontrivial
section u1 as in Lemma 2.42 contradicts the analytic stability of .E;D�; h/.

Lemma 2.43 The eigenvalues of u1 are constant, and u1 has at least two distinct
eigenvalues.

Proof To show the constantness of the eigenvalues, we have only to show the constant-
ness of tr.'.u1// for any C1–function 'W R �! R. We have .x@C�@/ tr'.u1/D
tr.D�'.u1// D tr.d'.u1/D�u1/. Let N be any large number. We can take a
C1–function ˆW R�R�!R such that ˆ.y1;y1/D d'.y1;y1/ and Nˆ2.y1;y2/ <

.y1�y2/
�1 for y1 > y2 . We obtain tr.d'.u1/.D�u1//D tr.ˆ.u1/D�u1/ due to

the first condition. We obtain the following inequality from Lemma 2.42:Z
X

jˆ.u1/D
�u1j

2
� �

p
�1

N

Z
X

tr
�
u1ƒG.h/

�
:

Therefore, j.x@C�@/ tr'.u1/j2L2 D 0. Thus, the eigenvalues of u1 are constant. Since
tr.u1/D 0 and u1 ¤ 0, u1 has at least two distinct eigenvalues.

Let �1 < �2 < � � �< �w denote the constant distinct eigenvalues of u1 . Then '.u1/
and ˆ.u1/ depend only on the values '.�i/ and '.�i ; �j / respectively.

Lemma 2.44 Let ˆW R2�!R be a C1–function such that ˆ.�i ; �j /D0 for �i >�j .
Then ˆ.u1/.D�u1/D 0.

Proof We may replace ˆ with ˆ1 satisfying ˆ1.�i ; �j / D 0 for �i > �j and
Nˆ2

1
.y1;y2/<.y1�y2/

�1 for y1>y2 . Then we obtain kˆ1.u1/D
�u1k

2
L2 � C=N

due to Lemma 2.42, and hence we obtain ˆ.u1/D�u1 Dˆ1.u1/D
�u1 D 0.
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Let 
i denote the open interval ��i ; �iC1Œ. Let p
 W R �! Œ0; 1� be any decreasing
C1–function such that p
 .�i/ D 1 and p
 .�iC1/ D 0. We put �
 D p
 .u1/.
It is easy to see that �
 is L2

1
. Due to p2


 D p
 , we have �2

 D �
 . We have

D��
 D dp.u1/D�u1 . We put ˆ
 .y1;y2/D .1�p
 /.y2/ � dp
 .y1;y2/, and then
we have .1 � �
 / ıD��
 D ˆ
 .u1/ ıD�u1 . On the other hand, since we have
ˆ
 .�i ; �j /D0 .�i>�j /, we obtain ˆ
 .u1/D�u1D0 due to Lemma 2.44. Therefore,
we obtain .1��
 / ıD��
 D 0.

From .1��
 /d
00�
 D 0, we obtain a saturated coherent subsheaf V
 such that �


is the orthogonal projection on V
 due to a result of Uhlenbeck and Yau [22]. From
.1��
 /d

0�
 D 0, the bundle V
 is D�–invariant. Since we consider the case �¤0,
it is easy to see that V
 is indeed a subbundle of E . Namely, we obtain a �–flat
subbundle .V
 ;D�V
 /� .E;D

�/.

Let us show deg!.V
 ; h
 /= rank V
 � deg!.E; h/= rank E for some 
 , which contra-
dicts the stability assumption of .E;D�; h/, where h
 WD hjV
 . From Lemma 2.34,
we have

deg.V
 /D
1

2�

1

1Cj�j2

�
p
�1

Z
tr
�
�
G.h/

�
�

Z
jD��
 j

2

�
:

We have u1 D �w � idE �
P
j
 j ��
 , where j
 j denotes the length of 
 . We put

W WD �w deg.E/�
X
j
 j � deg.V
 /

D
1

2�

1

1Cj�j2

�
p
�1

Z
tr
�
u1ƒG.h/

�
C

Z X
j
 j �

ˇ̌
D��


ˇ̌2�
:

Since D��
 D dp
 .u1/D�u1 , we obtain the following:

W D
1

2�

1

1Cj�j2

�Z
p
�1 tr

�
u1ƒG.h/

�
C

Z �X
j
 jdp
 .u1/

2D�u1; D�u1

��
We can check

P
j
 j.dp
 /.�i ; �j /

2 D .�i � �j /
�1 for �i > �j by a direct argument.

Therefore, we obtain W � 0, due to Lemma 2.42. Namely we obtain

�w � deg E �
X
j
 j � deg.V
 /:

On the other hand, we have 0D tr.u1/D �w � rank E�
P
j
 j � rank V
 . Therefore, we

obtain deg.V
 /= rank V
 � deg.E/= rank E for at least one of 
 , which contradicts
the stability of .E;D�; h/. Thus, the proof of Proposition 2.41 is finished.
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2.4.5 Variant 1 of Proposition 2.41 Let C be a smooth connected projective curve,
and D be a simple divisor. Let .E;D�/ be a �–flat bundle on C �D . Let 0<�< 1=2.
Let �0 > 0 be a sufficiently smaller number than �. Let !� .0� � < �0/ be a Kahler
metric of C �D with the following conditions:

� Let P 2D . Let .U; z/ be a holomorphic coordinate around P such that z.P /D0.
Then the following holds for some positive constants Ci .i D 1; 2/:

C1 �!� � �
2
jzj2�

dz � dxz

jzj2
C �2
jzj2�

dz � dxz

jzj2
� C2 �!�

� !� �! !0 as �! 0 in the C1–sense locally on C �D .

Suppose that we are given hermitian metrics h.�/ of E with the following properties:

�
ˇ̌
ƒ!�G.h

.�/;D�/
ˇ̌
h.�/
� C1 , where the constant C1 is independent of � .

� fh.�/g converges to h.0/ as �! 0 in the C1–sense locally on C �D .
� .E;D�; h.0// is analytic stable.

Lemma 2.45 Let s.�/ be self-adjoint endomorphisms of .E; h.�// satisfying tr s.�/D 0

and the following properties:

� ks.�/kP;h.�/;!� <1. But we do not assume the uniform boundedness.

�
ˇ̌
ƒ!�G.h

.�/es.�/ ;D�/
ˇ̌
h.�/
� C1 . The constant C1 is independent of � .

Then there exist constants Ci > 0 .i D 3; 4/, which are independent of � , with the
following property:

sup js.�/jh.�/ � C3CC4 �M.h.�/; h.�/es.�//:

Sketch of a proof The argument is essentially the same as the proof of Proposition
2.41. We assume that the claim does not hold, and we will derive a contradiction. After
going to an appropriate subsequence, either one of the following holds:

Case 1 M.h.�/; h.�/es.�//� 0 and supC�D js
.�/jh.�/ �!1 as �! 0.

Case 2 M.h.�/; h.�/es.�//> 0, sup js.�/j�C .�/

2
M.h.�/; h.�/es.�//, sup js.�/jh.�/ �!1

and C .�/

2
�!1 as �! 0.

By using Lemma 2.47 (given below) and the argument given in the first part of Propo-
sition 2.41, we can show that there exist positive constants Ci .i D 5; 6/, which are
independent of � , with the following property:

sup
C�D

js.�/jh.�/ � C5CC6 �

Z
js.�/jh.�/ dvol!� :
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We put `.�/ WD ks.�/kL1 and u.�/ WD s.�/=`.�/ . The following lemma is the counterpart
of Lemma 2.42.

Lemma 2.46 We have a nontrivial L2
1

–section u1 of Sh.0/ with the following prop-
erty:

� The following inequality holds for any C1–function ˆW R�R �! R�0 such
that ˆ.y1;y2/� .y1�y2/

�1 for y1 > y2 :Z
C�D

�p
�1 tr

�
u1ƒ!0

G.h.0//
�
C
�
ˆ.u1/D

�u1;D
�u1

�
h.0/;!0

�
dvol!0

� 0

Proof The argument is essentially the same as the proof of Lemma 2.42. We have the
following for some positive constant C5 :Z

C�D

�p
�1 tr

�
u.�/ƒ!�G.h

.�//
�
C
�
ˆ.u.�//D�u.�/;D�u.�/

�
h.�/;!�

�
dvol!� �

C5

C .�/

2

From this, we obtain the following boundedness as in the proof of Lemma 2.42:Z
C�D

ˇ̌
D�u.�/

ˇ̌2
h.�/

dvol!� < C10:

Let us take a sequence of C1–isometries F�W .E; h
.�//�! .E; h.0// which converges

to the identity of E , in the C1–sense locally on C �D . Remark that the sequence
fF�.D�/g converges to D� as � ! 0 in the C1–sense locally on C � D . The
sequence fF�.u.�//g is bounded on L2

1
locally on C �D . By going to an appro-

priate subsequence, we may assume that the sequence fu.�/g is weakly convergent
in L2

1
locally on C � D , and hence it is convergent in L2 on any compact sub-

set Z � C �D . Let u1 denote the weak limit. We have
R

Z ju
.�/j �!

R
Z ju1j.

Hence
R

Z ju1j ¤ 0, when the volume of C � Z [ D is sufficiently small, due
to the boundedness of fsup ju.�/j j � > 0g. In particular, u1 ¤ 0. Similarly, we
obtain

R
C�D tr.u.�/G.h.�/// �!

R
C�D tr.u1G.h.0///. Since we can derive the al-

most everywhere convergence ˆ.u.�//D�u.�/ �! ˆ.u1/D�u1 and u.�/ �! u1 ,
we obtain

R
C�D

�
ˆ.u1/D�u1;D�u1

�
� lim

R
C�D

�
ˆ.u.�//D�u.�/;D�u.�/

�
due to

Fatou’s lemma. Thus, the proof of Lemma 2.46 is finished.

The rest of the proof of Lemma 2.45 is completely the same as the argument for
Proposition 2.41.

We have used the following lemma in the proof.
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Lemma 2.47 For any positive number B , there exist positive constants Ci .i D 1; 2/

with the following property:

� Let � be any positive number such that � < 1=2. Let f be any nonnegative
bounded C1–function on C �D such that �!� .f /�B . Then the inequality
sup.f /� C1CC2

R
f � dvol!� holds.

Proof Let .UP ; z/ be as above for P 2D , and U �
P
WD UP � fz D 0g. On U �

P
, the

inequality �!� .f /� B is equivalent to the following:

(18) �g0
.f /� B �

�
�2 jzj

2�

jzj2
C �2 jzj

2�

jzj2

�
:

Here, g0 WD dz � dxz . Because of the boundedness of f , (18) holds on UP . (See the
proof of Proposition 2.2 of [17].) Then we obtain the following inequality on UP :

�g0

�
f �B ��

�
� 0; � D jzj2�Cjzj2�:

For any point Q 2�.P; 1=2/, we have the following:�
f �B ��

�
.Q/�

4

�

Z
�.Q;1=2/

�
f �B ��

�
� dvolg0

:

Therefore, there exist some constants Ci .i D 3; 4/ which are independent of � , such
that the following holds:

f .Q/� C3CC4

Z
f � dvol!� :

Thus, we obtain the upper bound of f .Q/, when Q is close to a point of D . We can
obtain such an estimate when Q is far from D , similarly and more easily.

2.4.6 Variant 2 of Proposition 2.41 We will use another variant. Let � W C �! �

be a holomorphic family of smooth projective curves. Let D � C be a relative divisor.
Let .E;D�/ be a �–flat bundle on C� WD C�D . We denote the fiber ��1.t/ by Ct for
t 2�. We set C�t WD Ct nD . The restriction .E;D�/jC�t is denoted by .Et ;D�t /. Let
! be a metric of the relative tangent bundle of C�=� such that ! � �2jzj2��2dz � dxz

around D . Here, � denotes a small positive number, and z is a holomorphic function
such that z�1.0/D D and dz ¤ 0. The restriction of ! to C�t is denoted by !t for
t 2�. Let h be a C1–hermitian metric of E such that jƒ!t

G.D�t ; ht /jht
� C1 for

any t 2�, where a constant C1 is independent of t , and ht denotes the restriction of
h to C�t . We assume that .Et ;D�t ; ht / are analytic stable. The following lemma can
be shown by an argument similar to the proof of Lemma 2.47.
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Lemma 2.48 There exist positive constants Ci .i D 3; 4/, which are independent of
t , with the following property.

� Let s.t/ be an element of Pht
.Et / satisfying tr s.t/ D 0, ks.t/kht ;P < 1

and jƒ!t
G.D�t ; hte

s.t//j � C1 . Then the inequality sup js.t/j � C3 C C4 �

M.ht ; hte
s.t// holds.

2.5 Review of some results on Hermitian-Einstein metrics due to Simpson

2.5.1 Existence theorem and a consequence Let .X; !/ be a Kahler manifold sat-
isfying Condition 2.33, and let .E;D�; h0/ be a metrized flat �–connection satisfy-
ing (13).

Proposition 2.49 (Simpson) Assume that .E;D�; h0/ is analytically stable with
respect to ! . Then there exists a hermitian metric hD h0 � s satisfying the following
conditions:

� h and h0 are mutually bounded.

� det.h/D det.h0/.

� D�.s/ is L2 with respect to h0 and ! .

� It satisfies the Hermitian Einstein condition ƒ!G.h/? D 0, where G.h/? de-
notes the trace free part of G.h/.

� The following equalities hold:Z
Y

tr
�
G.h/2

�
�!n�2

D

Z
Y

tr
�
G.h0/

2
�
�!n�2Z

Y

tr
�
G.h/?2

�
�!n�2

D

Z
Y

tr
�
G.h0/

?2
�
�!n�2

Proof We need only a minor modification of the proof of Theorem 1, Proposition 3.5
and Lemma 7.4 of [17]. Indeed, we have only to replace D00 , D0 and F.h/ with
D� , D�? and G.h/, and to make some obvious modification of positive constant
multiplications, as was mentioned by Simpson himself. (See page 754 of [18], for
example. Remark that “Dc ” corresponds to our �D�? , and hence our G.h/ is slightly
different from his.) The author recommends the reader to read a quite excellent argument
in [17]. However, we will use a result related with the Donaldson functionals, which
follows from the proof. Hence, we recall a brief outline of the proof of Proposition
2.49. We will use the notation in Section 2.4.
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Let h0 be a metric for .E;D�/ satisfying the finiteness (14). Let us consider the heat
equation for the self adjoint endomorphisms st with respect to h0 :

(19) s�1
t

dst

dt
D�
p
�1ƒ!G.ht /

?:

A detailed argument to solve (19) is given in Section 6 of [17]. Moreover, ƒ!G.ht / is
shown to be uniformly bounded. We do not reproduce them here.

Then we would like to show the existence of an appropriate subsequence ti!1 such
that fsti

g converges to s1 weakly in L
p
2

locally on X , and we would like to show that
h1 D h0 � s1 gives the desired Hermitian-Einstein metric. For that purpose, Simpson
used the Donaldson functional M.h0; h0sti

/. As reviewed in Proposition 2.41, he
showed that there exist positive constants Ci .i D 1; 2/ such that the following holds:

(20) sup j log st j � C1CC2 �M.h0; h0st /

He also showed [17, Lemma 7.1] that M.h0; h0st / is C 1 with respect to t , and that
the following formula holds:

(21)
d

dt
M
�
h0; h0st

�
D�

Z
X

ˇ̌
ƒ!G.ht /

?
ˇ̌2
ht ;!
� 0

Because M.h0; h0/D 0 by definition, we obtain M.h0; h0st /� 0 from (21). Then we
obtain the boundedness of st from (20). For the solution of (19), we have det.st /D 1.
Hence, the boundedness of s�1

t follows. We also obtain the existence of a subsequence
ft 0ig such that jƒ!G.h0ti

/jL2 �! 0.

From the uniform boundedness of st and ƒ!G.ht /, we obtain the lower bound of
M.h0; h0st /. (See Corollary 2.40 in this paper, for example.) Moreover, we obtain
the uniform bound of

R
X jD

�ut j
2
h0

due to the positivity of ‰ given in (16), where
st D exp.ut /. Due to the boundedness of st and s�1

t , we also obtain the boundedness ofR
X jD

�st j
2
h0

. Then we obtain the L2
1

boundedness. Hence, we can take a subsequence
ft 00i g such that st 00

i
converges to some s1 weakly in L2

1
locally on X �D . By using

some more excellent additional argument given on page 895 of [17], it can be shown
that the convergence is weakly L

p
2

locally on X �D , for any p . As a result, we
obtain a Hermitian-Einstein metric. Thus, a sketch of the proof of Proposition 2.49 is
finished.

By the above argument, we can derive the following lemma, which we would like to
use in the subsequent argument (Section 4.5.2).

Lemma 2.50 Let h0 be the hermitian metric satisfying (13). Let hHE be the Hermitian-
Einstein metric obtained in Proposition 2.49. Then we have M

�
h0; hHE

�
� 0.
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Proof Recall that hHE is obtained as the limit h0 � s1 of some sequence fh0sti
g, and

we have M.h0; h0 � sti
/� 0. We use the formula (15). Let Z be any compact subset

of X . The sequence fsti
g converges to s1 in C 0 on Z . The sequence fƒ!G.hti

/g

converges to ƒ!G.hHE/ weakly in L2 on Z . Therefore, we have the convergence:

lim
ti!1

Z
Z

tr
�
uti
�ƒ!G.hti

/
�

dvol! D
Z

Z

tr
�
u1 �ƒ!G.hHE/

�
dvol! :

Here, ut are given by exp.ut /D st . Since supX jst j and supX jƒG.ht /j are bounded
independently of t , we can easily obtain the convergence:

lim
ti!1

Z
X

tr
�
uti
�ƒ!G.hti

/
�

dvol! D
Z

X

tr
�
u1 �ƒ!G.hHE/

�
dvol! :

We have the C 0 –convergence of the sequence fD�uti
g to D�u1 . Hence, we have

the following inequality due to Fatou’s lemma:Z
X

�
‰.u1/D

�u1; D�u1
�

dvol! � lim
Z

X

�
‰.uti

/D�uti
; D�uti

�
dvol! :

Then we obtain the desired inequality.

2.5.2 Uniqueness The following proposition can be shown by an argument similar to
the proof of Proposition 2.6 of [14] via the method in [17]. We state it for the reference
in the subsequent argument.

Proposition 2.51 Let .X; !/ be a complete Kahler manifold satisfying Condition
2.33, and .E;D�/ be a �–flat bundle on X . Let hi .i D 1; 2/ be hermitian metrics of
E such that ƒ!G.hi/D 0. We assume that hi .i D 1; 2/ are mutually bounded. Then
the following holds:

� We have the decomposition of �–flat bundles .E;D�/D
L
.Ea;D�a / which is

orthogonal with respect to both of hi .i D 1; 2/.

� The restrictions of hi to Ea are denoted by hi;a . Then there exist positive
numbers ba such that h1;a D ba � h2;a .

Proof Let s be determined by h2 D h1 � s . We can show D�s D 0 by the argument
explained in the proof of Proposition 2.6 of [14]. Note we are considering the case
� ¤ 0. Hence, the eigen decomposition of s is D�–flat, which gives the desired
decomposition.
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2.6 Regular filtered �–flat bundles associated to tame harmonic bundles

2.6.1 Tame pluri-harmonic metric Recall the tameness condition for pluri-harmo-
nic metric. Let X be a complex manifold with a simple normal crossing divisor
D . Let .E;D�/ be a �–flat bundle on X �D . Let h be a pluri-harmonic metric
of .E;D�/. Then we have the induced Higgs bundle .E; x@h; �h/. Let P be any
point of X , and let .UP ; z1; : : : ; zn/ be a holomorphic coordinate around P such that
D\UP D

Sl
iD1fzi D 0g. Then we have the expression:

� D

lX
iD1

fi �
dzi

zi
C

nX
jDlC1

gj � dzj :

The pluri-harmonic metric h is called tame, if the coefficients of the characteristic
polynomials det.t � fi/ and det.t �gj / are holomorphic on UP for any P . A �–flat
bundle with tame pluri-harmonic metric is called a tame harmonic bundle. Recall that
the “curve test” for tameness is valid.

Proposition 2.52 [15, Corollary 8.7] A pluri-harmonic metric h for .E;D�/ is tame,
if and only if hjC is tame for any closed curve C �X transversal with the smooth part
of D .

From a holomorphic vector bundle E with a hermitian metric h, we obtain the filtered
sheaf E�.h/ WD .cE

ˇ̌
c 2 RS / as explained in Section 3.5 of [14]. We recall the

following proposition.

Proposition 2.53 [15, Theorem 8.58, Theorem 8.59 and Corollary 8.89] Suppose
.E;D�; h/ is a tame harmonic bundle on X�D . Then .E�.h/;D�/ is a regular filtered
�–flat bundle.

In this situation, we say that h is a pluri-harmonic metric for .E�.h/;D�/. We also
say that h is a pluri-harmonic metric for .cE.h/�;D�/.

2.6.2 One dimensional case In the one dimensional case, Simpson established the
Kobayashi–Hitchin correspondence for parabolic flat bundles and the parabolic Higgs
bundles, ie, �–flat bundles in the cases � D 0; 1. His result can be generalized for
any �.

Proposition 2.54 (Simpson [18]) Let X be a smooth irreducible projective curve,
and D be a simple divisor of X . Let .E�;D�/ be a regular filtered �–flat bundle on
.X;D/. We put E D cEjX�D . The following conditions are equivalent:
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� .E�;D�/ is poly-stable with par-deg.E�/D 0.
� There exists a harmonic metric h of .E;D�/, which is adapted to the parabolic

structure of E� , ie, E� ' E�.h/.

Moreover, such a metric is unique up to obvious ambiguity. Namely, let hi .i D 1; 2/

be two harmonic metrics as above. Then we have the decomposition of Higgs bundles
.E;D�/D

L
.Ea;D�a / satisfying the following:

� The decomposition is orthogonal with respect to both of hi .
� The restrictions of hi to Ea are denoted by hi;a . Then there exist positive

numbers ba such that h1;a D ba � h2;a .

2.6.3 Projective case Let X be a smooth irreducible projective variety with an ample
line bundle L, and let D be a simple normal crossing hypersurface of X with the
irreducible decomposition D D

S
i2S Di . Let .E;D�; h/ be a tame harmonic bundle

on X �D .

Proposition 2.55 Let .E�;D�/ be the regular filtered �–flat bundle on .X;D/ asso-
ciated to .E;D�; h/.
� .E�;D�/ is �L –polystable with par-degL.E�/D 0.
� Let .E�;D�/D

L
j .Ej �;D�j /˝Cp.j/ be the canonical decomposition of �L –

polystable regular filtered �–flat bundle. Then we have the corresponding
decomposition of the metric hD

L
hi ˝ gi , where hi denote pluri-harmonic

metrics of .Ei ;D�i / adapted to the parabolic structure, and gi denote metrics of
Cp.i/ .

� We have the vanishings of characteristic numbers:Z
X

par-ch2;L.E�/D
Z

X

par-c2
1;L.E�/D 0:

Proof The first two claims can be shown by the argument in the proof of Proposi-
tion 5.1 of [14]. The third claim can be shown by an argument similar to the proof of
Proposition 5.3 of [14], which we explain briefly. We have only to consider the case
dim X D 2. Since h is pluri-harmonic, we have the following equalities due to Lemma
2.31 and Lemma 2.32 on X �D :

tr R.d 00; h/D .1Cj�j2/�1 tr G.h;D�/D 0

tr
�
R.d 00; h/2

�
D .1Cj�j2/�2

� tr
�
G.h;D�/2

�
D 0

We also have the norm estimate for the holomorphic sections of cE . (It is explained in
Section 2.5 of [14] for �D 0. Similar claims hold for any �, as shown in Section 13.3
of [15].) Then the argument in the proof of Proposition 5.3 works.
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Proposition 2.56 Let .E�;D�/ be a regular filtered �–flat bundle on .X;D/. We put
.E;D�/ WD .E�;D�/jX�D . Let ha .aD 1; 2/ be pluri-harmonic metrics of .E;D�/
on X �D which is adapted to the parabolic structure. Then we have the decomposition
.E;D�/D

L
.Ei ;D�/ with the following properties:

� The decomposition is orthogonal with respect to both of ha .aD 1; 2/. Hence,
we have the decompositions ha D

L
i ha;i .

� There exist positive numbers bi such that h1;i D bi � h2;i .

The decomposition on X �D is prolonged to .E�;D�/D
L
.Ei �;D�/ on X .

Proof Similar to Proposition 5.2 of [14].

2.7 Some integral for nonflat �–connection on a curve

This subsection is preliminary for Corollary 3.16. Let Y be a smooth projective curve,
and let D be a divisor. Let .E;F/ be a parabolic bundle on .Y;D/. Let D� be a C1

�–connection on EjY�D . In this subsection, we do not assume D� is flat, ie, .D�/2

may not be 0. However, we assume that it is flat around an appropriate neighbourhood
UP of each P 2D , and that.E;F;D�/jUP

is a parabolic �–flat bundle. In particular,
we have ResP .D

�/ 2 End.EjP /. We assume moreover that it is graded semisimple,
for simplicity, ie, the induced endomorphism on GrF .EjP / is semisimple for each
P 2D . (By using an �–perturbation in Section 2.1.6, we can drop this assumption.)

For each P 2 D , we have the generalized eigen decomposition EjP WD
L

P E˛
of ResP .D

�/. We also have the filtration PF of EjP . Let us take a holomorphic
frame v of EjUP

, which is compatible with .P E;PF /. We put ˛.vi/ WD degE.vi/ and
a.vi/ WD degF .vi/. Let h be a C1–metric of EjY�D such that h.vi ; vj /D jzj

�2a.vi /

.i D j / and 0 .i ¤ j /. Let us decompose D�D d 00Cd 0 . Let us take a .1; 0/–operator
d 0

0
such that d 00 C d 0

0
is C1 �–connection of E on Y , not only on Y �D . We

also assume d 0
0
v D 0. We put A WD d 0 � d 0

0
, which is a C1–section of End.E/˝

�1;0.log D/ on Y , and holomorphic around D . We have tr ResP .A/D tr ResP .D
�/.

Let h0 be a C1–metric of E on Y such that h0.vi ; vj / is 1 .i D j / or 0 .i ¤ j /

on UP .P 2 D/. Let s be the endomorphism determined by h D h0 � s . Then s is
described by the diagonal matrix diag

�
jzj�2a.v1/; : : : ; jzj�2a.vr /

�
with respect to the

frame v on UP .

Although D� is not necessarily flat, we obtain the operators ı0
h

, ı00
h

, x@h , @h , �h and
�

|
h

as in Section 2.2.1. We put wt.E;F;P / WD
P

a2Par.E;F;P/ a � rank
�
P GrF

a .E/
�
.
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Lemma 2.57 We have the following formula:

(22)

p
�1

2�

Z
Y

x@ tr � D
�

1Cj�j2

X
P

�
��1
� tr ResP D�Cwt.E;F;P /

�
Proof Let ı0

h0
denote the .1; 0/–operator obtained from d 00 and h0 as in Section

2.2.1. Then we have

�h D
1

1Cj�j2
.d 0�� � ı0h/D

1

1Cj�j2
.d 00�� � ı

0
h0
/C

1

1Cj�j2
.A�� � s�1ı0h0

s/:

We would like to apply Stokes’ formula to the integral of x@ tr �h . If we do so, d 0
0
��ı0

h0

does not contribute, because it is the C1–section of End.E/˝�1;0 . We have
p
�1

2�

Z
Y

x@ tr.A/D
X
P

tr ResP D�:

Since s�1ı0
h0

s is described by diag
�
�a.v1/; : : : ;�a.vr /

�
�dz=z with respect to v on

UP .P 2D/, we have
p
�1

2�

Z
Y

x@ tr.s�1ı0h0
s/D

X
P

rank EX
iD1

�a.vi/D�
X
P

wt.E;F;P /:

Therefore, we obtain the following formula:
p
�1

2�

1Cj�j2

�

Z
x@ tr �h D

X
P

�
��1 tr ResP D�Cwt.E;F;P /

�
Thus, we obtain (22).

3 Ordinary metric and some consequences

In this section, we mainly study graded semisimple regular filtered �–flat bundles
satisfying the SPW–condition (Definition 2.6). We will construct an ordinary metric
for such a regular filtered �–flat bundle in Section 3.3. We give an estimate of the
induced operators by using the preliminary results in Sections 3.1–3.2, Then we show
the existence of Hermitian-Einstein metric for such a parabolic �–flat bundle, if it is
�L –stable (Proposition 3.19).

Some results in this section are available for any regular filtered �–flat bundles which
do not necessarily satisfy graded semisimplicity and the SPW–condition. One is
Bogomolov–Gieseker inequality (Corollary 3.20). The others are formulas to express
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parabolic characteristic numbers in terms of the data at D as in Section 3.5. The
method of �–perturbation (Section 2.1.6) is used to deduce them from the results in
the case that graded semisimplicity and the SPW–condition are satisfied.

3.1 Around the intersection of the divisor

3.1.1 Some estimates We put X WD�2
z , Di WD fzi D 0g and D WDD1 [D2 . Let

.E�;D�/ be a graded semisimple regular filtered �–flat bundle on .X;D/, satisfying
the SPW–condition. We take ci 62 Par.E�;D�/ for i D 1; 2. By the assumption, there
exist a positive integer m and real numbers 
i with �1=m< 
i � 0, such that

Par
�

cE�; i
�
�
˚
ci C 
i Cp=m

ˇ̌
p 2 Z; �1< 
i Cp=m< 0

	
:

We put zX WD�2
�

, zDi WD f�i D 0g and zDD zD1[
zD2 . Let 'W zX �!X be the ramified

covering given by '.�1; �2/D .�m
1
; �m

2
/. Let Gal. zX=X / denote the Galois group of

zX=X . Recall the construction in [9]. For any a 2 R2 , let a zE denote the subsheaf of�E WD '�.E/ given as follows:

a zE WD
X

nCmd�a

'�.dE/ �
Y

iD1;2

�
�ni

i

Then it is easy to see that �E� D �a zE
ˇ̌
a 2 R2

�
is a filtered bundle, and the induced

flat �–connection �D� is regular. We put zci WD m � .
i C ci/. By the assumption,
Par

��E�; i�D ˚pCzci

ˇ̌
p 2 Z

	
.

We have the generalized eigen decompositions cEjDi
D
L

iE˛ with respect to the
residue Resi.D�/. We have the parabolic filtration iF of cE . Let v be a frame of cE

compatible with iF and iE .i D 1; 2/. We put

ai.vj / WD
idegF .vj /� .ci C 
i/ 2

1

m
�Z�0:

Let ˛i.vj / 2 C denote the complex numbers determined by vj jDi
2 iE˛i .vj / . We put

zvj WD '
�.vj / �

Y
iD1;2

�
mai .vj /

i :

Then zv WD .zvj / gives the frame of zc zE . We put ˇi.vj / WDm.� � ai.vj /C˛i.vj //. Let
� be the diagonal matrix whose .j ; j /–entries are

P
iD1;2 ˇi.vj / � d�i=�i . Let A

be determined by �D�zv D zv �A, and let A0 WD A � � . In the following, let F� 2

End.zc zE/˝�1.log zD/ be determined by F�.zv/D zv �� . We put �D�
0
WD �D��F� .

We have the expression A0 D
P

iD1;2 Ai
0
� d�i . If m is sufficiently large, we may

assume the following:
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(A) Ai
0
D O.�2

i /. Moreover, .A1
0
/j ;k DO.�2

1
� �2

2
/ in the case ˇ2.vj / ¤ ˇ2.vk/,

and .A2
0
/j ;k DO.�2

1
� �2

2
/ in the case ˇ1.vj /¤ ˇ1.vk/.

Let zh be the hermitian metric of zc zE determined by zh.zvi ; zvj /D ıi;j � j�1j
�2zc1 � j�2j

�2zc2 .

Let z� (resp. z�0 ) be the section of End. zE/˝�1 on zX � zD induced by zh and �D� (resp.�D�
0

) as in Section 2.2.1. Let z�| and z�|
0

denote the adjoint of z� and z�0 , respectively.
Denote the Euclidean metric of zX by zg .

Lemma 3.1
� Œz�; z�|� is bounded with respect to zh and zg .
� z�2 DO.z1 � z2/ � dz1 � dz2 .

Proof We have the relations z� D z�0C.1Cj�j
2/�1F� and z�|D z�

|
0
C.1Cj�j2/�1F

|
�

.
Hence, we have the following:

Œz�; z�|�D Œz�0; z�
|
0
�C .1Cj�j2/�1Œz�0;F

|
�
�C .1Cj�j2/�1Œz�

|
0
;F� �

We have the decomposition of z�0 into the sum

�.1Cj�j2/�1
X
zci � d�i=�i C z�

0
0;

where z� 0
0

is the C1–section of End.zc zE/˝�1
zX

on zX . Hence, Œz�0; z�
|
0
� is the C1–

section of End.zc zE/˝�2 on zX . Note the following:

z� 00zvD zv �
1

1Cj�j2
A0

(See Section 2.2.2, for example.) By Condition (A), Œz�0;F
|
�
� and ŒF� ; z�

|
0
� is also

bounded. We have z�2 D z�2
0
C 2Œz�0;F� �. Then we obtain the desired estimate for z�2

by Condition (A).

Lemma 3.2 We have the boundedness of G.�D�; zh/ and z�2 � z�| with respect to zh
and zg .

Proof The boundedness of z�2 � z�| follows from the estimate for z�2 . We have the
following equality:

G.�D�; zh/D .1Cj�j2/ �R.zh; d 00/� .1Cj�j2/2
�

�
x@2
zh
C z�2

��Œz�; z�|�
�

(See Section 2.2.4.) We have the vanishing of the curvature R.zh; d 00/ D 0, and the
relation ��1x@2

zh
D x��1.z�|/2 . Hence, we obtain the boundedness of G.�D�; zh/ from

Lemma 3.1.
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Since zh is Gal. zX=X /–equivariant, we obtain the induced metric h of E on X �D .
Clearly, h is given by h.vi ; vj /D ıi;j � jz1j

�2a.vi / � jz2j
�2a.vj / . Let � be the section

of End.E/˝�1;0 on X �D induced by D� and h, and let �| denote the adjoint of
� . Let gm denote the metric of X �D given by gm D

P
jzi j

2.�1C1=m/ � dzi � dxzi .

Corollary 3.3 We have the boundedness of G.D�; h/ and �2 � �| with respect to gm

and h.

3.1.2 The induced metric and the �–connection on the divisors For simplicity, we
assume ciD 
iD 0 (i D 1; 2) in this subsection. Let .a; ˛/2KMS.˘E; i/. Let � be a
C1–function on X such that �>0. We put � WD��jz1j

2 . Let Dıi WDDi � .D1\D2/.
We study the induced hermitian metric and the induced �–connection of iGrF;E

a;˛ .
˘E/jDı

i

.i D 1; 2/, depending on the choice of � . Let us consider the case i D 1. Let uj

.j D 1; 2/ be sections of 1GrF;E
a;˛ .

˘E/. We take sections u0j .j D 1; 2/ of ˘E which
induce uj . Then it can be shown that

�
�a � h0.u

0
1
;u0

2
/
�
jDı

1

is independent of the choice
of u0j , which is denoted by ha;˛.u1;u2/.

We have the frame v.a;˛/ of iGrF;E
a;˛ .

˘E/ induced by v in Section 3.1.1. By construc-
tion,

ha;˛.vi ; vj /D �
a
� ıi;j � jz2j

�2a2.vi /:

Hence, the following equality can be checked by a direct calculation:

(23) tr R.ha;˛/� a � rank GrF;E
a;˛ .

˘E/ � x@@ log �D 0

Let F0 denote the C1–section of End.˘E/˝�1;0
X
.log D/ determined by F0.vj /D

vj �˛1.vj / �@ log�. Then D��F0 is C1 around Dı
1

, whose restriction preserves the
filtration 1F and the decomposition 1E. Hence, we obtain an induced �–connection
D�a;˛ of 1GrF;E

.a;˛/
.˘E/. We have �a;˛ induced by D�a;˛ and ha;˛ .

Lemma 3.4 The following holds:

(24) x@ tr �a;˛C
�aC˛

1Cj�j2
rank

�
1GrF;E

a;˛ .
˘E/

�
� x@@ log �D 0

Proof Let D�
a;˛;1

and �a;˛;1 denote the operator, and let ha;˛;1 denote the metric in
the case where � is constantly 1. Since �a;˛;1 is holomorphic, we have x@ tr �a;˛;1 D 0.
Note that we have D�a;˛ DD�

a;˛;1
�˛ � @ log � and ha;˛ D ha;˛;1 � �

a . Then we obtain
�a;˛;1 D �a;˛C .1Cj�j

2/�1.� � aC˛/ � @ log � . Thus, we obtain (24).
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3.2 Around the smooth part of the divisor

3.2.1 Construction of the metric and some estimates Let X WD �2 and D WD

fz1 D 0g. Let � be a positive C1–function on X , and we put � WD � � jz1j
2 . Let

.E�;D�/ be a graded semisimple regular filtered �–flat bundle on .X;D/ satisfying
the SPW–condition. We take c 2 R such that c 62 Par.E�/. By the assumption, there
exist a positive integer m and real numbers 
 with �1=m< 
 � 0 such that

Par
�
cE�

�
�
˚
cC 
 Cp=m

ˇ̌
p 2 Z; �1< 
 Cp=m< 0

	
:

Let zX WD�2
�

and zD WD f�1 D 0g. Let 'W zX �!X be given by '.�1; �2/D .�m
1
; �2/.

We have the induced filtered �–flat bundle .�E�;�D�/ on . zX ; zD/ as in Section 3.1.1.
We put zc WDm � .cC 
 /. Then Par.zc zE�/ is contained in fzcCp j p 2 Zg.

We have the generalized eigen decomposition cEjD D
L

E˛ . We have the filtra-
tion F of cEjD . Let v be a frame of cE compatible with F and E. We put
a.vj / WD degF .vj /� .cC
 /. Let ˛.vj / 2C be determined by vj jD 2E˛.vj / . We put
zvj WD '

�.vj / � �
m �a.vj /
1

. Then zvD .zvj / gives the frame of zc zE . Let � be the diagonal
matrix whose .j ; j /–entries are given by the following:

˛.vj / � @ log.'��/C� �m � a.vj / �
d�1

�1

Let A be determined by �D�zvDzv �A, and let A0 WDA�� . Let F� be the C1–section
of End. zE/˝�1 on zX � zD , determined by F�zvD zv� . We put �D0 WD

�D�F� .

Let A0 DA1
0
� d�1CA2

0
� d�2 . If m is sufficiently large, the following holds:

(A) A1
0
D O.j�1j

2/. Moreover, .A2
0
/k;l D O.j�1j

2/ in the case .a.vk/; ˛.vk// ¤

.a.vl/; ˛.vl//.

Let zh1 be a Gal. zX=X /–equivariant hermitian metric of ˘zE such that zh1.vi ; vj / D

O.j�1j
2/ if .a.vi/; ˛.vi//¤ .a.vj /; ˛.vj //. We set zh WD '�.��c�
 / � zh1 .

Let z� (resp. z�0 ) be the section of End. zE/˝�1 on zX � zD induced by zh and �D� (resp.�D�
0

) as in Section 2.2.1. Let z�| and z�|
0

denote the adjoint of z� and z�0 , respectively.
Denote the Euclidean metric of zX by zg .

Lemma 3.5

� Œz�; z�|� is bounded with respect to zh and zg .

� z�2 DO.jz1j/ � dz1 � dz2 .
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Proof Similar to Lemma 3.1.

Lemma 3.6 We have the boundedness of G.�D�; zh/ and z�2 � z�| with respect to zh
and zg .

Proof It follows from Lemma 3.5. See the proof of Lemma 3.2.

We have the induced hermitian metric h of E on X �D . It is adapted to the parabolic
structure of E . Let � denote the section of End.E/˝�1

X�D
induced by h and

D� , and let �| denote the adjoint. Let gm denote the metric of X �D given by
gm D jz1j

�2C2=m � dz1 � dxz1C dz2 � dxz2 .

Corollary 3.7 We have the boundedness of G.D�; h/ and �2 � �| with respect to h

and gm .

3.2.2 The induced metric and the �–connections on the divisors For simplicity,
we assume c D 
 D 0 in this subsection. Let .a; ˛/ 2 KMS.˘E�/. We study
the induced hermitian metric and the induced �–connection of GrF;E

a;˛ .
˘E/. Let uj

.j D 1; 2/ be sections of GrF;E
a;˛ .

˘E/. We take sections u0j .j D 1; 2/ of ˘E which
induce uj . Then it can be shown that

�
�a � h0.u

0
1
;u0

2
/
�
jD is independent of the choice

of u0j , which is denoted by ha;˛.u1;u2/.

On the other hand, let Ua;˛ be the subbundle of ˘zE generated by zvj such that
.a.vj /; ˛.vj //D .a; ˛/. It is easy to see that the restriction Ua;˛j zD are independent of
the choice of the frame v, and Ua;˛j zD are orthogonal with respect to zh

j zD
. The induced

metric of Ua;˛j zD is denoted by h0a;˛ .

Lemma 3.8 Let R.ha;˛/ and R.h0a;˛/ denote the curvatures of .GrF;E
a;˛ .E/; ha;˛/

and .Ua;˛j zD ; h
0
a;˛/. Then we have the following relation:

(25) tr
�
R.h0a;˛/

�
D tr

�
R.ha;˛/

�
� a � rank GrF;E

a;˛ .E/ �
x@@ log �

Proof We take the isomorphism ˆW GrF;E
a;˛ .E/ ' Ua;˛j zD given as follows. Let

v be a section of GrF;E
a;˛ .E/. Let v0 be a section of ˘E which induces v . Then

ˆ.v/ WD .'�.v0/ � zm�a
1
/
j zD

is contained in Ua;˛j zD , and independent of the choice of v0 .
Under the isomorphism, we have h0a;˛ D ha;˛ � �

�a . Then (25) follows.

We have the induced �–connection, once we fix �. (See Biquard [1].) Let f be any
section of GrF;E

a;˛ .E/. Let zf be a lift of f to ˘E . We put D�f � ˛ � log� � f DW
G1 �.dz1=z1/CG2 �dz2 . Then G1jD is contained in F<a.E/. Hence, G2 �dz2 induces
the well defined section of GrF;E

a;˛ .E/˝�
1
D

, which is Da;˛.f /. We have the induced
section �a;˛ of End.GrF;E

a;˛ .E//˝�
1
D

.
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Lemma 3.9 We have the following relation:

(26) tr
�
R.h0a;˛/

�
D�

1Cj�j2

�

�
x@ tr �a;˛C

.a�C˛/ � x@@ log �
1Cj�j2

rank GrF;E
a;˛ .E/

�
Proof We have the relation:

(27) R.zh/D�
1Cj�j2

�
d 00z� D�

1Cj�j2

�

�
d 00z�0C

1

1Cj�j2
d 00F�

�
Let D�0a;˛ be the induced �–connection of Ua;˛j zD , and let � 0a;˛ be the section of
End.Ua;˛j zD/˝�

1
zD

induced by D�0a;˛ and h0a;˛ . Then we obtain the following equality
from (27):

(28) tr
�
R.h0a;˛/

�
D�

1Cj�j2

�

�
x@ tr � 0a;˛C

1

1Cj�j2
�˛ � x@@ log � � rank GrF;E

a;˛ .E/

�
Under the isomorphism ˆ in the proof of Lemma 3.8, we have D�0a;˛ DD�a;˛ . Because
h0a;˛ D ha;˛ � �

�a , we have � 0a;˛ D �a;˛C a�.1Cj�j2/�1@ log � . Therefore, the right
hand side of (28) is the same as (26).

3.3 An ordinary metric

3.3.1 Setting Let X be a smooth projective surface, and let D be a simple normal
crossing hypersurface with the irreducible decomposition D D

S
i2S Di . Let L be an

ample line bundle on X , and ! be a Kahler form which represents c1.L/. We take a
hermitian metric gi of O.Di/. The canonical section O �!O.Di/ is denoted by �i .

Let � be any number such that 0< � < 1=2. Let us fix a sufficiently large number N ,
for example N > 10. For some positive number C > 0, we put

(29) !� WD !C
X

i

C � �N
�
p
�1@x@j�i j

2�
gi
:

It can be shown that !� are Kahler metrics of X �D for any 0 < � < 1=2, if C is
sufficiently small.

Remark 3.10 The factor �N is added for the argument in Section 5.1 to use Proposi-
tion 2.16 of [14].

Remark 3.11 Let � be a closed 2–form on X �D which is bounded with respect to
!� . Then the following formula holds:Z

X�D

! � � D

Z
X�D

!� � �
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In particular, we also have
R
X�D !

2 D
R
X�D !

2
� . We will implicitly use it.

In the case � D 1=m for some positive integer m, it can be shown that the metric
!� satisfies Condition 2.33. By construction, the Kahler forms !� behave as follows
around any point of D :

� Let P be any point of Di \Dj , and .UP ; zi ; zj / be a holomorphic coordinate
around P such that Di \UP D fzi D 0g and Dj \UP D fzj D 0g. Then there
exist positive constants Ci .i D 1; 2/ such that the following holds on UP , for
any 0< � < 1=2:

C1 �!� �
p
�1 � �NC2

�

�
dzi � dxzi

jzi j
2�2�

C
dzj � dxzj

jzj j
2�2�

�
C
p
�1
�
dzi � dxzi C dzj � dxzj

�
� C2 �!�

� Let Q be any point of Di n
S

j¤i Dj , and .U; w1; w2/ be a holomorphic co-
ordinate around Q such that U \Di D fw1 D 0g. Then there exist positive
constants Ci .i D 1; 2/ such that the following holds for any 0< � < 1=2 on U :

C1 �!� �
p
�1 � �NC2

�

�
dw1 � d xw1

jw1j
2�2�

�
C
p
�1
�
dw1 � d xw1C dw2 � d xw2

�
� C2 �!�

3.3.2 Construction and some property Let .E�;D�/ be a graded semisimple par-
abolic �–flat bundle satisfying the SPW–condition. For simplicity, we consider only
the case �¤ 0. We take c 2 RS such that ci 62 Par.E�; i/ for each i 2 S . Let m be
as in Definition 2.6, and we set � WDm�1 . Let h0 be a C1–hermitian metric of E

on X �D as in Section 3.1 around the intersection points of D , and as in Section
3.2 around the smooth points of D . Let �0 denote the section of End.E/˝�1;0 on
X �D induced by D� and h0 , and let �|

0
denote the adjoint.

Lemma 3.12 We have the boundedness of G.D�; h0/ and �2
0
� �

|
0

with respect to h0

and !� .

Proof It follows from Corollary 3.3 and Corollary 3.7.

Corollary 3.13 The following equality holds:Z
X�D

tr
�
R.h0/

2
�
D

1

.1Cj�j2/2

Z
X�D

tr
�
G.h0/

2
�
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As a result, we have the following formula:�p
�1

2�

�2
1

.1Cj�j2/2

Z
X�D

tr
�
G.h0/

2
�
D 2

Z
X

par-ch2.E�/

Proof The second equality follows from the first equality and the equality (36) in
the proof of Proposition 4.18 of [14]. Due to Lemma 2.32, we have only to show the
vanishing

R
x@ tr
�
�2

0
� �

|
0

�
D 0, which follows from the estimate of �2

0
� �

|
0

in Lemma
3.12.

We can also show the following equality by using Lemma 4.16 of [14] and the equality
tr G.h0/D .1Cj�j

2/ � tr R.h0/:�p
�1

2�

�2 Z
X�D

�
tr G.h0/

1Cj�j2

�2

D

�p
�1

2�

�2 Z
X�D

�
tr R.h0/

�2
D

Z
X

par-c1.E�/
2

Let V �E be a �–flat subbundle. Recall �¤ 0. Because of the regularity, we have
the saturated filtered �–flat subsheaf V� � E� . Let hV be the metric of V induced
by h0 .

Lemma 3.14 deg!� .V; hV / D par-deg!.V�/ holds. In particular, deg!� .E; h0/ D

par-deg!.E�/.

Proof It can be shown by the same argument as the proof of Lemma 4.20 of [14].

3.3.3 The induced metric and the �–connection on the divisors For simplicity,
we assume ci D 
i D 0 .i 2 S/ in this subsection. We put S.Di/ WDDi \

S
j¤i Dj

and Dıi WDDi nS.Di/. Let .a; ˛/ 2KMS
�
˘E;F; i

�
. We have the naturally induced

parabolic flat bundle iGrF;E
a;˛ .

˘E/� on .Di ;S.Di//. By using the functions j�i j
2
gi

, as
explained in Section 3.2.2, we obtain the induced hermitian metric iha;˛ and the �–
connection iD�a;˛ of iGrF;E

a;˛ .
˘E/jDı

i
. (See also Section 3.1.2.) Let �i WD

x@@ log j�i j
2
gi

.

Lemma 3.15 The following equality holds:

tr
�
R.ha;˛/

�
D�

1Cj�j2

�
x@ tr
�
i�a;˛

�
���1˛ � �i � rank iGrF;E

a;˛ .
˘E/

Proof It follows from (23), (24), (25) and (26).
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Corollary 3.16 We have the following formulas:

par-degDi

�
iGrF;E

a;˛ .
˘E/�

�
D�Re.��1˛/ � rank iGrF;E

a;˛ .
˘E/ � ŒDi �

2(30)

�

X
P2S.Di /

�
Re
�
��1 tr

�
ResP .

iD�a;˛/
��
Cwt

�
iGrF;E

a;˛ .
˘E/�;P

��
0D

X
P2S.Di /

Im
�
��1 tr

�
ResP .

iD�a;˛/
��
C Im.��1˛/ � rank iGrF;E

a;˛ .
˘E/ � ŒDi �

2(31)

Proof It follows from Lemma 2.57 and Lemma 3.15.

Remark 3.17 Although we have assumed that graded semisimplicity and the SPW–
condition for .E�;D�/, the formulas (30) and (31) without the assumption, because
the general case can be reduced to the above special case by using �–perturbations
explained in Section 2.1.6.

3.4 Preliminary existence result for a Hermitian-Einstein metric

Let X be a smooth irreducible projective surface with an ample line bundle L and
a simple normal crossing divisor D . Let ! be a Kahler form representing c1.L/.
Let .E�;D�/ be a graded semisimple regular filtered �–flat bundle on .X;D/. We
assume the SPW–condition in Section 3.3.2. Let m be as in Definition 2.6, and we set
� WDm�1 . Let !� be the Kahler metric given in (29). We have an ordinary metric h0

constructed in Section 3.3.2. We also use the other notation in Section 3.3.

Lemma 3.18 We can construct a hermitian metric hin for EjX�D which satisfies the
following conditions:

� hin is adapted to E� . More strongly, hin D h0 � e
� for some function � such

that �, @� and x@@� are bounded with respect to !� .

� G.hin;D�/ is bounded with respect to hin and !� .

� Let V� be a �–flat filtered subsheaf of E� . Let V WD VjX�D and let hin;V

denote the induced metric of V . Then par-deg!.V�/D deg!� .V; hin;V / holds.

� .1Cj�j2/�1 tr G.hin;D�/ �!� D a �!2
� for some constant a. The constant a is

determined by the following condition:

(32) a �

p
�1

2�

rank E

2

Z
X�D

!2
� D a �

p
�1

2�

rank E

2

Z
X

!2
D par-deg!.E�/:
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� The following equalities hold:�p
�1

2�

�2
Z

X�D

tr
�
G.hin/

2
�

.1Cj�j2/2
D

Z
X

2 par-ch2.E�/

�p
�1

2�

�2
Z

X�D

tr
�
G.hin/

�2
.1Cj�j2/2

D

Z
X

par-c2
1.E�/:

� Let s be determined by hin D h0 � s . Then s and s�1 are bounded, and D�s is
L2 with respect to h0 and !� .

Due to the third condition, .E; hin; �/ is analytic stable with respect to !� , if and only
if .E�;D�/ is �L –stable. The metric hin is called an initial metric.

Proof By a consideration of orbifolds, we can take a real-valued bounded function
� such that (i) @� and @x@� are bounded with respect to !� , (ii) �!�� D

p
�1a�

p
�1 rank.E/�1ƒ!� tr R.h0/. We put hin WD h0 � e

� . By construction, the fourth
condition is satisfied. The other property can be reduced to the property for h0 , as in
Lemma 6.3 of [14].

Proposition 3.19 If .E�;D�; h/ is �L –stable, there exists a hermitian metric hHE of
.E;D�/ with respect to !� satisfying the following properties:

� Hermitian-Einstein condition .1Cj�2j/�1ƒ!�G.hHE/Da holds for the constant
a determined by (32).

� par-degL.E�/D deg!.E; hHE/.

� We have the following formulas:�p
�1

2�

�2 Z
X�D

tr
�
.G.hHE/

?/2
�

.1Cj�j2/2
D

Z
X

�
2 par-ch2.E�/�

par-c2
1
.E�/

rank E

�
�p
�1

2�

�2 Z
X�D

tr
�
G.hHE/

2
�

.1Cj�j2/2
D

Z
X

2 par-ch2.E�/:

Here G.hHE/
? denotes the trace free part of G.hHE/.

� hHE is adapted to E� , ie, E�.hHE/'E� . More strongly, s and s�1 are bounded
with respect to hin , and D�s is L2 with respect to hin and !� , where s is
determined by hHE D hin � s .

Proof It follows from Lemma 3.18 and Proposition 2.49.
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Bogomolov–Gieseker inequality Let Y be a smooth projective variety of any dimen-
sion. Let L be an ample line bundle on Y , and let D be a simple normal crossing
divisor.

Corollary 3.20 Let .E�;D�/ be a �L –stable regular filtered �–flat bundle on .Y;D/
in codimension two. Then Bogomolov–Gieseker inequality holds for E� . Namely, we
have the following inequality:Z

Y

par-ch2;L.E�/�

R
Y par-c2

1;L
.E�/

2 rank E
:

Proof Similar to Theorem 6.1 of [14]. Namely, since we have the Mehta–Ramanathan
type theorem (Proposition 2.21), we have only to prove the claim in the case dim Y D 2.
Due to the method of perturbation of parabolic structure explained in Section 2.1.6,
we have only to prove the inequality in the case .E�;D�/ is a graded semisimple
�L –stable regular filtered �–flat bundle on .Y;D/, satisfying the SPW–condition.
Then we can take a Hermitian-Einstein metric hHE as in Proposition 3.19, for which
we have the standard inequality (see Proposition 3.4 of [17]):

(33)
Z

Y�D

tr
��

G.hHE/
?
�2�
� 0:

Hence we obtain the desired inequality from (33).

3.5 Some formulas and vanishings of characteristic numbers

Let X be a smooth projective surface, and let D be a simple normal crossing divisor
of X . We will derive some formulas and vanishings for the characteristic numbers of
.E�;D�/.

Remark 3.21 To begin with, we remark that we have only to show such formulas for
regular filtered �–flat bundles satisfying the following conditions, due to the method
of perturbation of the parabolic structure (Section 2.1.6):

� graded semisimple, Par
�
E�; i

�
�Q, and 0 62 Par

�
E�; i

�
for any i 2 S .

We will implicitly use the conditions in the following argument.

We restrict ourselves to the case dim X D 2 just for simplicity. The formula can
be obviously generalized for

R
X par-ch2;L.E�/ of regular �–flat parabolic bundles

.E�;D�/ on .X;D/ in codimension two even in the case dim X > 2, where L denotes
an ample line bundle on X .
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We introduce a notation to simplify the description. An element .a; ˛/ 2KMS.i/ WD
KMS

�
˘E; i

�
is described as u, and we put

r.i;u/ WD rankDi

�
iGrF;E

u .˘E/
�

For any point P 2Di \Dj and .ui ;uj / 2KMS.P / WDKMS
�
˘E;P

�
, we put

r.P;ui ;uj / WD rank
�
P GrF;E

ui ;uj
.E/

�
The self-intersection number of Di is denoted by ŒDi �

2 .

Proposition 3.22 We have the following equality:

(34)
Z

X

2 par-ch2.E�/D
X
i2S

X
u2KMS.i/

�
Re.��1˛/C a

�2
� r.i;u/ � ŒDi �

2

C

X
i2S

X
j¤i

P2Di\Dj

X
.ui ;uj /2KMS.P/

�
Re��1˛i C ai

��
Re��1

j̨ C aj

�
� r.P;ui ;uj /

We also have the following equalities:Z
X

2 par-ch2.E�/(35)

D

X
i2S

X
u2KMS.i/

Re
�
��1˛C a

�
�

�
� par-degDi

�
iGrF;E

a;˛

�
˘E
�
�

�
C a � r.i;u/ � ŒDi �

2
�

0D
X
i2S

X
u2KMS.i/

Im.��1˛/ �
�
� par-degDi

�
iGrF;E

u .˘E/�
�
C a � r.i;u/ � ŒDi �

2
�

(36)

Proof Let h0 be an ordinary metric for .E�;D�/ as in Section 3.3. We use the
notation there in this proof. Let Xı WD

T
fj�i j � ıg and Yı;i WDXı \fj�i j D ıg. We

have
R.h0/D��

�1.1Cj�j2/ � d 00�0:

Hence, we have the following equality:

(37) lim
ı!0

�p
�1

2�

�2 Z
Xı

tr
�
R.h0/

2
�
D�

1Cj�j2

�
lim
ı!0

�p
�1

2�

�2 Z
@Xı

d tr
�
�0 �R.h0/

�
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By using the estimates in Sections 3.1–3.2, the contribution of Yı;i to (37) is the
following:

�
1

m

X
.a;˛/2KMS.i/

m
�
aC��1˛

�p�1

2�

Z
Di

�
tr
�
R.iha;˛/

�
� a � r

�
i; .a; ˛/

�
� �i

�
D�

X
.a;˛/2KMS.i/

.aC��1˛/ �
�
degDi

�
iGrF;E

a;˛ .
˘E/�

�
� a � r

�
i; .a; ˛/

�
� ŒDi �

2
�

By taking the real part, we obtain (35). By taking the imaginary part, we obtain (36).
The equality (34) follows from (35) and Corollary 3.16 by a formal calculation.

Let .Di ; !/ denote the intersection number of Di and ! .

Lemma 3.23 For any C1 2–form � , we have the following:Z
X

par-c1.E�/ � � D
p
�1

2�

Z
X

tr R.h0/ � �(38)

D�

X
i2S

X
.a;˛/2KMS.i/

Re.��1˛C a/ � r
�
i; .a; ˛/

�
� .Di ; �/

Namely, the cohomology class of
p
�1.2�/�1 tr R.h0/ is par-c1.E�/. In particular,

we also have the following equality:

par-deg!.E�/D�
X
i2S

X
.a;˛/2KMS.i/

Re.��1˛C a/ � r
�
i; .a; ˛/

�
� .Di ; !/

Proof Recall R.h0/D �
�1.1Cj�j2/ � d 00�0 . We obtain (38) by using the estimates

in Sections 3.1–3.2.

Remark 3.24 We considered the KMS–spectra of ˘E . But, we have the following
equality for any c 2 RS and i 2 S :˚

Re.��1˛/C a
ˇ̌
.a; ˛/ 2KMS.˘E; i/

	
D
˚
Re.��1˛/C a

ˇ̌
.a; ˛/ 2KMS.cE; i/

	
We also have such comparison for KMS.˘E;P / and KMS.cE;P / for c 2 RS and
P 2Di \Dj . Namely, the choice ˘E is not essential. (See also Section 6.)

Recall the formulas for
R
X par-ch2.E�/ and par-deg!.E�/ in Proposition 3.22 and

Lemma 3.23, respectively. Then we immediately obtain the following corollary.

Corollary 3.25 If aC Re��1˛ D 0 hold for any element of the KMS–spectrum
.a; ˛/ of .E�;D�/, the characteristic numbers par-deg!.E�/ and

R
X par-ch2.E�/

automatically vanish.
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One of the motivation of this study is to understand the Corlette–Jost–Zuo metric from
the viewpoint of the Kobayashi–Hitchin correspondence. For that purpose, we need
vanishing of

R
X par-ch2.E�/ as in the corollary, which is “the obstruction on the way

from harmonicity to pluri-harmonicity”. Corollary 3.25 clarifies this point, which we
will revisit in Section 5.3.3.

4 Continuity of some families of harmonic metrics

In this section, we will show continuity of two kinds of families of harmonic metrics
on curves, ie, Proposition 4.1 and Proposition 4.2. We will give a detailed proof of the
first one. Because the second one can be proved similarly and more easily, we just give
some remarks in the end of this section.

We have explained in Section 1.2.3 the role of Proposition 4.1 which plays for the
proof of our main result. We will use Proposition 4.2 in Section 5.2.5 to show that
some hermitian metric is C 1 .

4.1 Statements

4.1.1 Continuity for �–perturbation Let C be a smooth projective curve with a
finite subset D . Let .E;F;D�/ be a stable parabolic flat �–connection over .C;D/
with par-deg.E;F/ D 0. Let F.�/ be the �–perturbation of the parabolic structures,
explained in (II) of Section 2.1.6. We remark det.E;F/ D det.E;F.�//. We fix
a harmonic metric hdet.E/ for det.E;F;D�/, ie, hdet.E/ is a harmonic metric of
det.E;D�/jX�D , adapted to the parabolic structure. Let h.�/ be the harmonic metric
for .E;F.�/;D�/ such that det.h.�//D hdet.E/ . Let � .�/ denote the Higgs fields for the
harmonic bundles .E;D�; h.�//.

Proposition 4.1 The sequences fh.�/ j � > 0g and f� .�/g converge to h.0/ and � .0/

respectively, in the C1–sense locally on C �D .

The proof is given in Section 4.5 after the preparation given in Sections 4.2–4.4.

4.1.2 Continuity for a holomorphic family Before going into the proof of Proposi-
tion 4.1, we give a similar statement for another family. Let C �!� be a holomorphic
family of smooth projective curve, and D�!� be a relative divisor. Let .E;F;D�/ be
a parabolic flat bundle on .C;D/. Let t be any point of �. We denote the fibers by Ct

and Dt , and the restriction of .E;F;D�/ to .Ct ;Dt / is denoted by .Et ;Ft ;D�t /. We
assume par-deg.Et ;Ft /D0 and the stability of .Et ;Ft ;D�t / for each t . For simplicity,
we also assume that we are given a pluri-harmonic metric hdet.E/ for det.E;D�;F/.
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Let hH ;t be harmonic metrics for .Et ;Ft ;D�t / such that det.hH ;t /D hdet.E/ jCt
. They

give the metric hH of E . Let �H ;t be the Higgs fields induced by .Et ;D�t ; hH ;t /,
which are sections of End.Et /˝�

1;0
Ct
.logDt /. They give a section �H of End.E/˝

�
1;0
C=�.logD/, where �1;0

C=�.logD/ denotes the sheaf of logarithmic relative .1; 0/–
forms.

Proposition 4.2 hH and �H are continuous. Their derivatives of any degree along
the fiber direction are continuous.

Since Proposition 4.2 can be proved similarly and more easily, we will not give a
detailed proof. See Remark 4.16.

4.2 Preliminary from elementary calculus

For any z 2�� D fz 2 C j jzj< 1g and � > 0, we define

L�.z/ WD
jzj�� � jzj�

�
; K�.z/ WD

jzj��Cjzj�

2
; M�.z/ WD jzj

4�.1� log jzj4�/:

We also put L0.z/ WD� log jzj2 , K0.z/ WD1 and M0.z/ WD1. Then they are continuous
with respect to .z; �/ 2�� �R�0 .

Lemma 4.3 For any .z; �/ 2�� �R�0 , we have L0.z/�L�.z/.

Proof We put g.�/ WD a�� � a� C � � log a2 for 0 < a < 1 and 0 � � . Taking the
derivative with respect to � , we obtain the following:

g0.�/D�
�
a��C a�

�
log aC log a2; g00.�/D .a�� � a�/.log a/2 � 0

Because g.0/D g0.0/D 0, the claim of the lemma follows.

Lemma 4.4 .K�.z/� 1/ � .L�.z/
2 � �2 � jzj�/�1 are bounded on �� , independently

of � . We also have K�.z/� 1� 0.

Proof The second claim is clear. Let us check the first claim. For 0 < a < 1 and
0� � � 1, we set

g1.�/ WD a�� � 2C a�; g2.�/ WD .a
��
� a�/2a� D a�� � 2a�C a3�:

We have only to show that g2.�/�g1.�/. We put g.�/ WDg2.�/�g1.�/D2Ca3��3a� .
By taking the derivative with respect to � , we obtain the following:

g0.�/D 3a3�
� log a� 3a� � log aD 3.�a3�

C a�/.� log a/� 0

Because g.0/D 0, we obtain g.�/� 0. Thus we are done.
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Lemma 4.5 .1�M�.z// � .L�.z/
2 � �2 � jzj�/�1 are bounded on �� , independently of

� . We also have 1�M�.z/� 0.

Proof We have only to show the following inequalities for 0< a< 1 and 0� � < 1:

0� 1� a4�.1� log a4�/� 3.a�� � a�/2a�

To show the left inequality, we put h.�/ WD1�a4�.1�log a4�/. By taking the derivative
with respect to � , we have

h0.�/D�a4� log a4.1� log a4�/C a4� log a4
D �a4�.log a4/2 � 0:

We also have h.0/D 0. Hence, we obtain h.�/� 0.

To show the right inequality, we put as follows:

g.�/ WD a�4�
�
3.a�� � a�/2a� �

�
1� a4�.1� log a4�/

��
D 3.a�5�

� 2a�3�
C a��/C .1� log a4�/� a�4�

By taking the derivative with respect to � , we obtain the following:

g0.�/D 3
�
a�5�.�5 log a/� 2a�3�.�3 log a/C a��.� log a/

�
� 4 log a� a�4�.�4 log a/;

g00.�/D
�
75a�5�

� 16a�4�
� 54a�3�

C 3a��
�
� .log a/2

It is easy to check g00.�/ � 0 by using a�5� � a�k� .k D 3; 4/. Because g0.0/ D

g.0/D 0, we obtain g.�/� 0. Thus we are done.

Lemma 4.6 Let P .t/ be a polynomial in a variable t , and let b be any fixed positive
number. Then we have the boundedness of jzjb� �P .�L0.z// on �� , independently of
0� � � 1=2.

Proof We put u WD jzj� , and then jzjb�P .�L0.z//D ub �P .L0.u//. Hence, we have
only to show the boundedness of ub �P .L0.u// when 0< u< 1, which is easy.

4.3 A family of metrics for a logarithmic �–flat bundle of rank two on a
disc

4.3.1 Construction of a family of metrics We put X WD � D fz
ˇ̌
jzj < 1g. Let

O denote the origin, and we put X � WD X � fOg. We use the Kahler form !� WD

.�2jzj��2C 1/ � dz � dxz in this subsection. We will use the notation in Section 4.2.
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To begin with, we recall an example of a harmonic bundle on a punctured disc. Let
E DOX � v1˚OX � v2 be a holomorphic vector bundle on a disc. Let � be a Higgs
bundle such that � � v1 D v2 � dz=z and � � v2 D 0. Let h be the metric of EjX � such
that h.v1; v1/DL0 , h.v2; v2/DL�1

0
and h.vi ; vj /D 0 .i ¤ j /. Recall that the tuple

.E; x@E ; �; h/ is a harmonic bundle. Let us look at the associated �–connection. We
put u1 WD v1 and u2 WD v2 � � �L

�1
0
� v1 . Then uD .u1;u2/ gives a frame, and we

can show .x@E C��
|/ui D 0 .i D 1; 2/, D�u1 D u2 �dz=z and D�u2 D 0 by a direct

calculation. We also have the following:

h.u1;u1/DL0; h.u2;u2/D .1Cj�j
2/ �L�1

0 ; h.u1;u2/D�x�; h.u2;u1/D��

Motivated by this example, we consider the following family of the metrics h� on the
�–connection .E;D�/ given as follows:

h�.u1;u1/DL�; h�.u2;u2/D
�
1Cj�j2

�
�L�1
� ; h�.u1;u2/D�x� �M�

The �–connection D� and the metric h� induce the operators x@� and �� (Section
2.2.1). The main purpose of this subsection is to show the following proposition.

Proposition 4.7 There exists a some positive constant C such that jx@���jh�;!� � C

for any 0� � < 1=2.

Although the proof of the proposition is just a calculation, we will give the details in
the rest of this subsection.

Remark 4.8 Let h0� be the metric determined by h0�.u1;u1/DL� , h0�.u2;u2/DL�1
�

and h0�.ui ;uj / D 0 .i ¤ j /. Then there exist positive constants Ci .i D 1; 2/ such
that C1 � h

0
� � h� � C2 � h

0
� for any 0� � � 1=2. Hence, we have only to consider the

norms for h0� instead of those for h� .

4.3.2 Preliminary Let H� be the hermitian matrix valued function given by H� WD

H.h�;u/, ie,

H� WD

�
L� �x� �M�

�� �M� .1Cj�j
2/L�1

�

�
:
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Let N be determined by D�uD u �N �dz=z , and let N
|
� denote the adjoint of N with

respect to the metric H� , ie,

N D

�
0 0

1 0

�
;

N |
� D

xH�1
�

t xN xH�

D
1

1Cj�j2.1�M 2
� /

�
�x�.1Cj�j2/L�1

� M� .1Cj�j2/2L�2
�

�x�2M 2
�

x�.1Cj�j2/M�L
�1
�

�
:

Recall the calculation given in Section 2.2.2. Then x@� and �� can be described as
follows:

x@�uD u �
�

1Cj�j2

�
x� � SH�1

�
x@ SH� �N |

�

dxz

xz

�
; ��uD u

1

1Cj�j2

�
N

dz

z
�� SH�1

� @ SH�

�
Therefore, x@�.��/ is described by the following 2 � 2 matrix valued 2–form with
respect to u:

(39)
1

1Cj�j2
x@
�
�� SH�1

� @ SH�

�
C

�

.1Cj�j2/2

�h
x� � SH�1

�
x@ SH�;N

dz

z

i
�

h
N |
�

dxz

xz
; N

dz

z

i
C

h
N |
�

dxz

xz
; � SH�1

� @ SH�

i�
Here we have used Œ SH�1

� @ SH�; SH
�1
�
x@ SH� �D 0, which can be checked easily.

Lemma 4.9 To show Proposition 4.7, we have only to show the uniform boundedness
of .1; 1/–entry, .2; 2/–entry, L�� .1; 2/–entry and L�1

� � .2; 1/–entry, in the matrix
valued function (39).

Proof It follows from Remark 4.8.

In the following calculation, we often use the symbols L and M instead of L� and
M� , if there are no risk of confusion. Let us look at SH�1

� @ SH� . We have the following
equalities:

xH�1
� D

1

1Cj�j2.1�M 2
� /

�
.1Cj�j2/ �L�1

� � �M�

x� �M� L�

�
;

@ xH� D

�
@L� �� � @M�

�x� � @M� .1Cj�j
2/ � @L�1

�

�
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Then we obtain the following formula for SH�1
� @ SH� :

(40) xH�1
� @ xH� D

1

1Cj�j2.1�M 2
� /
��

.1Cj�j2/L�1@L� j�j2M @M �.1Cj�j2/
�
�L�1@M CM @L�1

�
x�.M @L�L@M / .1Cj�j2/L@L�1� j�j2M � @M

�
We also have a similar formula for SH�1

�
x@ SH� . We obtain the following formula for

x@. SH�1
� @ SH�/:

(41) x@. xH�1
� @ xH�/D

2j�j2Mx@M�
1Cj�j2.1�M 2/

�2 SH�1
� @ SH�C

1

1Cj�j2.1�M 2/
�

�
.1Cj�j2/x@@ log L� 2�1j�j2x@@M 2 �.1Cj�j2/.Mx@@L�1�L�1x@@M /

x�.Mx@@L�Lx@@M / .1Cj�j2/x@@ log L�1� 2�1j�j2x@@M 2

�
The commutator of SH�1

�
x@ SH� and N � dz=z is as follows:

(42)
h
xH�1
�
x@ xH�;N �

dz

z

i
D

.1Cj�j2/

1Cj�j2.1�M 2/
��

�.�L�1x@M CMx@L�1/ 0

2Lx@L�1 ��.�L�1x@M CMx@L�1/

�
dz

z

Let us look at the commutator of SH�1
� @ SH� and N

|
� . By direct calculations, we have

the following equality:

SH�1
� @ SH� �N

|
�

D
1

1Cj�j2.1�M 2/

�
�x�.1Cj�j2/L�2M @L .1Cj�j2/2L�3@L

x�2 �M @M �x�.1Cj�j2/L�1@M

�
C

1�
1Cj�j2.1�M 2/

�2
�

�
2j�j2x�.1Cj�j2/M 2L�1@M �2j�j2.1Cj�j2/2ML�2@M

2M 3@Mx�2j�j2 �2x�j�j2.1Cj�j2/M 2L�1@M

�
We also have the following:

N |
� �
SH�1
� @ SH�

D
1

1Cj�j2.1�M 2/

�
�x�.1Cj�j2/L�1@M .1Cj�j2/2L�1@L�1

�x�2M @M x�.1Cj�j2/M @L�1

�
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Therefore, we obtain the following formula:

(43)
�
1Cj�j2.1�M 2/

�
ŒN |
� ;
SH�1
� @ SH� �

D

�
�x�.1Cj�j2/.L�1@M �L�2M @L/ �2.1Cj�j2/2L�3@L

�2x�2M @M x�.1Cj�j2/.M @L�1CL�1@M /

�
�

2j�j2�
1Cj�j2.1�M 2/

� � x�.1Cj�j2/M 2L�1@M �.1Cj�j2/2ML�2@M
x�2M 3@M �x�.1Cj�j2/M 2L�1@M

�
The commutator of N and N

|
� is as follows:

(44) ŒN |
� ;N �D

1

1Cj�j2.1�M 2/

�
.1Cj�j2/2L�2 0

2x�.1Cj�j2/ML�1 �.1Cj�j2/2L�2

�
4.3.3 Estimate We have the following:

@L� D�K�
dz

z
; @K� D�

�2

4
L�

dz

z
; @M� D 4�2

� jzj4� �L0 �
dz

z

In particular, we have the following estimate:

M�@M� DO
�
�2
� jzj8� �L0 �

�
1C �L0

�dz

z

�
Let us look at the first term in the right hand side of (41):

(45)
2j�j2M�

x@M��
1Cj�j2.1�M 2

� /
�2 SH�1

� @ SH�

For the .1; 1/–entry and .2; 2/–entry, we have the following estimates:

M�
x@M�L

�1
� @L� DO

�
�2L0jzj

8�.1C �L0/
K�

L�

�
dxzdz

jzj2

DO

�
jzj5�.1C �L0/

L0

L�

�
!�

M�
x@M�M�@M� DO

�
�4
jzj16�.1C �L0/

2L2
0

�dzdxz

jzj2

DO
�
jzj15�.1C �L0/

2.�L0/
2
�
!�

They are bounded with respect to !� due to Lemma 4.3 and Lemma 4.6. Hence, the
.1; 1/–entry and the .2; 2/–entry of (45) are bounded independently of � . Let us look
at the .1; 2/–entry. Recall Lemma 4.9. Hence, we have only to see the following:

L� � .M�
x@M�/ �

�
L�1
� @M� �M�@L

�1
�

�
DM�

x@M�@M�CM 2
�
x@M�L

�1
� @L�
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Both terms in the right hand side can be estimated as in the previous case, by using
Lemma 4.3 and Lemma 4.6:

M�
x@M�@M� DO

�
jzj10�.1C �L0/.�L0/

2
�
�!� DO.1/ �!�

M 2
�
x@M�L

�1
� @L� DO

�
jzj11�.1C �L0/

2 L0

L�

�
�!� DO.1/ �!�

The .2; 1/–entry can be estimated similarly:

L�1
� �.M�

x@M�/
�
M�@L��L�@M�

�
DM 2

� L�1
�
x@M�@L��M� �

x@M�@M� DO.1/ �!�

Let us look at the second term in the right hand side of (41), which is the product of
.1Cj�j2.1�M 2//�1 and the following:

(46)
�
.1Cj�j2/x@@ log L� 2�1j�j2x@@M 2 �.1Cj�j2/.Mx@@L�1�L�1x@@M /
x�.1Cj�j2/.Mx@@L�Lx@@M / .1Cj�j2/x@@ log L�1� 2�1j�j2x@@M 2

�
It is easy to see the following estimate:

x@@M 2
� DO

�
�2
� jzj6�.1C �L0/

2
�
�!� DO.�2/ �!�

So it is bounded with respect to !� independently of � . We remark that L�1
� M�

x@@L�
is also bounded independently of � :

L�1
� M� �

x@@L� D
�2

4
M� �

dxz � dz

jzj2
DO.1/ �!�

Hence, we have the following, modulo the uniformly bounded term with respect to
.h�; !�/:

(47) x@. SH�1
� @ SH�/�

.1Cj�j2/

1Cj�j2.1�M 2
� /

�
x@@ log L� �M�

x@@L�1
�

0 �x@@ log L�

�
Let us look at (42). By the same argument, we have the following uniform boundedness:

L�1
�
x@M� �

dz

z
DO

�
�2
jzj4�

L0

L�

�
�
dz � dxz

jzj2
DO.1/ �!�

Hence, we have the following, modulo the uniformly bounded terms with respect to
.h�; !�/:

(48)
�
SH�1
�
x@ SH�; N �

dz

z

�
�

.1Cj�j2/

1Cj�j2.1�M 2
� /

�
�M�
x@L�1

� 0

2L�x@L
�1
� ��M�

x@L�1
�

�
�
dz

z
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Let us look at (43). We remark the following, for any k � 1:

dxz

xz

M k
� @M�

L�
DO

�
�2
jzj4.kC1/�.1C �L0/

k L0

L�

�
�
dxz � dz

jzj2
DO.1/ �!�

Hence, the terms containing @M in the right hand side of (43) can be ignored. Hence,
we obtain the following, modulo the uniformly bounded terms with respect to .h�; !�/:

(49)
�
N |
�

dxz

xz
; SH�1

� @ SH�

�
�

.1Cj�j2/

1Cj�j2.1�M 2
� /

dxz

xz

�
x�L�2

� M�@L� �2.1Cj�j2/L�3
� @L�

0 x�M�@L
�1
�

�

In all, (39) is equal to the following, modulo uniformly bounded terms due to (44),
(47), (48) and (49):

(50)
1

1Cj�j2.1�M 2
� /

�
��x@@ log L� ��

2M� �
x@@L�1

�

0 �x@@ log L�

�
C

1

1Cj�j2.1�M 2
� /

j�j2

1Cj�j2
dxz � dz

jzj2

�
� �M� �K� �L

�2
� 0

2K� �L
�1
� �� �M� �K� �L

�2
�

�
C

1

1Cj�j2.1�M 2
� /

�2

1Cj�j2
dxz � dz

jzj2

�
�x� �M� �K� �L

�2
� 2.1Cj�j2/L�3

� �K�

0 x� �M� �K� �L
�2
�

�
�

�

1Cj�j2.1�M 2
� /

dxz � dz

jzj2

�
L�2
� 0

2x�.1Cj�j2/�1M� �L
�1
� �L�2

�

�

The summation of the last three term in (50) is as follows:

1

1Cj�j2.1�M 2
� /

dxz � dz

jzj2

�
��L�2

� 2�2L�3
� K�

2j�j2.1Cj�j2/�1.K� �M�/L
�1
� �L�2

�

�

By a direct calculation, we can show the following equalities:

x@@ log L� D�
1

L2
�

dxz � dz

jzj2
; x@@L�1

� D
2

L3
�

dxz � dz

jzj2
�
�2

2

1

L�

dxz � dz

jzj2
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Therefore, (50) can be rewritten as follows:

(51)
1

1Cj�j2.1�M 2
� /

�

�
0 2�2L�3

� .K� �M�/

2j�j2.1Cj�j2/�1L�1
� .K� �M�/ 0

�
dxzdz

jzj2

C
1

1Cj�j2.1�M 2
� /

�
0 �2�2M�.2L�/

�1

0 0

�
dxzdz

jzj2

Due to M�DO.jzj4�.1C�L0//, the second term in (51) can be ignored. Due to Lemma
4.5 and Lemma 4.4, we have the uniform boundedness of .M� �1/ �L�2

� �dz �dxz=jzj2

and .K��1/ �L�2
� �dz �dxz=jzj2 . Thus, the proof of Proposition 4.7 is finished.

4.4 A family of metrics of a parabolic �–flat bundle on a disc

4.4.1 Simple case We put X WD � D fz 2 C j jzj < 1g and X � WD �� fOg. Let
Vl be a vector space over C with a base eD .e1; : : : ; el/, and let Nl be the nilpotent
endomorphism of Vl given by Nl � eiC1 D ei for i D 1; : : : ; l �1 and Nl � el D 0. We
put El WDOX ˝Vl . Then ei naturally induce the frame of El , which we denote by
vD .v1; : : : ; vl/. The fiber EjO is naturally identified with V , and we have vjO D e.
We have the logarithmic �–connection D�

l
of El given by D�

l
vi D viC1 � dz=z for

i D 1; : : : ; l � 1 and D�
l
vl D 0. The residue Res.D�/ is given by Nl . We have the

weight filtration W of EjO with respect to Nl .

We have the trivial parabolic structure F of El . Take a sufficiently small positive
number � . We consider the �–perturbation F .�/ given by F .�/

k�
DWk for k D �l C

1;�l C 3 : : : ; l � 1 in this case.

Let us fix a sufficiently small positive number �0 such that rank E � �0 < �=10. In
the previous subsection, we have constructed a family of metrics h.�/

2
.0 � � � �0/.

It induces a metric of Syml�1.E2;D
�
2
/ ' .El ;Dl/, which we denote by h.�/

l
. The

following property can be shown by reducing to the case l D 2.

� h.0/
l

is a harmonic metric.

� h.�/
l
�! h.0/

l
as �! 0 in the C1–sense locally on X � .

� There exists a constant C > 0 such that jƒ!�G.h
.�/

l
/j

h
.�/

l

< C .

� h.�/
l

is adapted to the parabolic structure F .�/ .

� We set t� WD det.h.�/
l
/
ı

det.h.0/
l
/. Then t� and t�1

� are bounded, independently
of � .
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Lemma 4.10 Let H� denote the Hermitian matrix valued function whose .i; j /–
entries are given by

�
h.�/

l
.vi ; vj /

�
. Then we have the following estimate on f0< jzj<

1=2g with respect to h.�/
l

:

SH�1
� �

�
x@C�@

�
SH� DO.1/ �

dz

z
CO.1/ �

dxz

xz

Proof We show the estimate only for SH�1
� @ SH� . The term SH�1

�
x@ SH� can be shown in

the same way. We have only to check the case l D 2. As in Lemma 4.9, we have only
to look at the .1; 1/–entry, .2; 2/–entry, L�� .1; 2/–entry and L�1

� � .2; 1/–entry in
the matrix valued function (40). As is seen in Section 4.3.3, the term containing @M�

is bounded with respect to !� , and the estimate is uniform for � . Hence, we can ignore
them. Therefore, we have only to show that L�1

� @L� D�L�@L
�1
� is O.1/ �dz=z , but

it can be checked by a direct calculation.

4.4.2 General case Let .E;F;D�/ be a parabolic flat �–connection on .X;O/.
Take a positive number � such that 10 � � < gap.E;F/. We will use the metrics

(52) !� D �
2
jzj�

dz � dxz

jzj2
Cjzj2�

dz � dxz

jzj2
:

Here, � will be m�1 for some m 2 Z>0 such that 10 rank.E/ � � < �. We take the
�–perturbation F.�/ as in (II) of Section 2.1.6. Let a.�/ be the numbers which are
denoted by a.�; i/ in the explanation there.

We have the endomorphism Res.D�/ of GrF
a .E/. It induces the generalized eigen de-

composition GrF
a .E/D

L
˛2C GrF;E

a;˛ .E/. On GrF;E
u .E/, the endomorphism Res.D�/

is decomposed as ˛ � idCNu , where uD .a; ˛/2R�C. Let W be the weight filtration
of Nu on GrF;E

u .E/. They induce the filtration W of GrF
a .E/.

For u 2R�C, we put Vu WDGrF;E
u .E/ with the induced nilpotent map Nu . Then we

can take an isomorphism

.Vu;Nu/'

m.u/M
iD1

�
Vl.u;i/;Nl.u;i/

�
;

where .Vl ;Nl/ are as in Section 4.4.1. We put

.Eu;D
�
u/ WD

M
.El.u;i/;D

�
l.u;i//:

Let h
0 .�/
u denote the metric of Eu induced by h.�/

l.u;i/
.i D 1; : : : ;m.u//. (See Section

4.4.1).
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Let Q.u/ denote the logarithmic �–flat bundle of rank one for uD .a; ˛/, which is
given by OX �e with the �–connection D�eD e �˛ �dz=z . It is equipped with the family
of the harmonic metrics h

00 .�/
u;� .e; e/D jzj

�2a.�/ . Then we obtain the vector bundle E0

with the �–connection D�
0

and the parabolic structure F , as follows:

.E0;D
�
0 /D

M
u

.Eu;D
�
u/˝Q.u/; Fb.E0 jO/D

M
a�b

E.a;˛/jO ˝Q.a; ˛/jO :

The metrics h
0 .�/
u and h

00 .�/
u induce a metric h.�/u of Eu˝Q.u/. Let h.�/

0
denote the

direct sum of them. We can take a holomorphic isomorphism ‰W E0 �!E satisfying
the following conditions:

� It preserves the filtration F .

� GrF .‰/ ıGrF Res D� D GrF Res D�
0
ıGrF .‰/.

We identify E0 and E via ‰ . The naturally induced metric of E is denoted by the
same symbol h.�/

0
.

Lemma 4.11 The family of the hermitian metrics fh.�/
0
j 0� � � �0g has the following

properties:

� G.D�; h.�/
0
/ is uniformly bounded with respect to .!�; h.�/0

/.

� fh.�/
0
j � > 0g converges to h.0/

0
in the C1–sense locally on X � .

� h.�/
0

is adapted to the perturbed parabolic structure F .�/ .

� Let t� be determined by det.h.�/
0
/
ı

det.h.0/
0
/. Then t� and t�1

� are bounded,
independently from � .

Proof We check only the first claim. The other claims are easy to see. Let f be
determined by f � dz=z DD��D�

0
, and we put f |

� WD f
|

h.�/
. We put D�?� WDD�?

h.�/

and D�?
0;�
WDD�?

0;h.�/
. Then we have the following:

G.D�; h.�/
0
/D ŒD�;D�?� �D

h
D�0 Cf

dz

z
; D�?0;� Cf

|
�

dxz

xz

i
DG.D�0 ; h

.�/

0
/CD�?0;� .f /

dz

z
CD�0 .f

|
� /

dxz

xz
C Œf; f |

� �
dz � dxz

jzj2

We have the decomposition f D
P
fu;u0 , where fu;u0 2Hom.Eu˝Q.u/;Eu0˝Q.u0//.

We have fu;u0 jO D 0 unless ˛ D ˛0 and a> a0 . Hence, there exist positive constants
C and N such that the following holds for 0< � < �0 :

jf j
h
.�/

0

� C � jzj10�LN
�
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Here N � � is sufficiently smaller than �. Hence, we have the following:

jf j
h
.�/

0

� C � jzj9�;
ˇ̌
Œf; f |

� �
ˇ̌
h.�/
� C � jzj18�

We have the induced frames vu of Eu˝Q.u/. They induce the frame v of E0 . Let
B and A0 be determined by f vD v �B �dz=z and D�

0
vD v �A0 �dz=z . Then we have

the following:

ŒD�0 ; f
|�vD v

�
DB|

�

dxz

xz
C ŒA0;B

|
� �

dz � dxz

jzj2

�
Here we put DD x@C�@ and B

|
� D
SH�1
� �

t xB � SH� , where H� DH.h.�/
0
;u/. Since

B
|
� is sufficiently small with respect to .!�; h.�/0

/, ŒA0;B
|
� � is also sufficiently small.

Corresponding to the decomposition f D
P
fu;u0 , we have B D

P
Bu;u0 . Then the

following holds:
.B|
� /u;u0 D

SH�1
u0;�

t xBu0;u
SHu;�

Here Hu;� WDH.h.�/u ; vu/. Hence, we obtain the following:

.DB|
� /u;u0

dxz

xz
D SH�1

u0;� �.D
t xBu0;u/� SHu;��

SH�1
u0;�D SHu0;� �.B

|
� /u;u0C.B

|
� /u;u0 �

SH�1
u;�D SHu;�

Since B is holomorphic, we have SH�1
u0;� � .D

t xBu0;u/ � SHu;� � dxz=xz D 0. We put H 0u � WD

H.h
0 .�/
u ; vu/. Then we have Hu;� D jzj

�2aH 0u;� , and the following holds with respect
to h.�/

0
due to Lemma 4.10:

SH�1
u;�D SHu;� D�a

�
�

dz

z
C

dxz

xz

�
C SH 0 �1

u;� D SH 0u;� DO.1/
dz

z
CO.1/

dxz

xz

Since .B|
� /u;u0 is small with respect to .!�; h.�/0

/, .B|
� /u;u0 � SH

�1
u;� @
SHu;� is also small.

Therefore, D�
0
f | �dxz=xz is small with respect to .!�; h.�/0

/. It also follows that D�?
0;�
f �

dz=z is small. Thus we are done.

4.5 Proof of Proposition 4.1

4.5.1 Construction of a family of initial metrics Let � be a small positive number
such that �<gap.E;F/=10. Let �0 be a small positive number such that 10 rank E��0<

�. For any 0� � < �0 , let us take !� be the Kahler forms of C �D with the following
properties:

� Let .UP ; z/ be a holomorphic coordinate around P 2D such that z.P /D 0,
and then !� is given by (52).

� !� �! !0 for � �! 0 in the C1–sense locally on X �D .
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Lemma 4.12 We can construct a family of metrics h.�/
0

of EjC�D with the following
properties:

� h.�/
0

is adapted to the perturbed parabolic structure F.�/ .

� h.�/
0
�! h.0/

0
in the C1–sense locally on C �D .

� G.h.�/
0
/ is uniformly bounded with respect to .!�; h.�/0

/.

� We put t� WD det.h.�/
0
/
ı

det.h.0/
0
/. Then t� and t�1

� are bounded independently
from � .

Proof We construct a C1–metric of E on
S

P2D.UP � fPg/, by applying the
construction given in Section 4.4.2 to .E;F;D�/jUP

for each P 2 D , and then we
prolong it to a C1–metric of E on C �D .

Let R.det h.0/
0
/ be the curvature of the metrized holomorphic bundle det.E; d 00; h.0/

0
/,

where d 00 denote the .0; 1/–part of D� . Since det h.0/
0

gives the harmonic metric
around D due to our construction, R.det h.0/

0
/ vanishes around D . We also haveR

R.det h.0/
0
/D �2�

p
�1 � par-deg.E;F/D 0. Let us take the C1–function �0 on

C satisfying rank.E/x@@�0CR.det.h.0/
0
// D 0. We put h.0/in WD h.0/

0
�exp.�0/. Then

R.det h.0/in /D 0, ie, det h.0/in is a harmonic metric of det.E;D�/. Let �� be the func-
tions determined by det.h.0/in / D det.h.�/

0
/ � exp.rank.E/ � ��/. The following claims

immediately follows from Lemma 4.12.

� j��j are bounded on C , independently from � .

� �� �! 0 in the C1–sense locally on C �D .

We put h.�/in WD h.�/
0
� exp

�
��
�
, which is the metric of EjC�D .

Lemma 4.13 The following claims are easy to check.

� h.�/in is adapted to the parabolic structure F.�/ .

� h.�/in �! h.0/in in the C1–sense locally on C �D .

� G.h.�/in / is uniformly bounded with respect to .!�; h.�/in /.

� det h.�/in is harmonic, and we have det h.�/in D det h.0/in .

In other words, they give initial metrics for .E;F.�/;D�/ in the sense of Lemma 3.18,
and their pseudo-curvatures satisfy uniform finiteness.
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4.5.2 L2
1

–finiteness of the sequence Due to Proposition 2.49, we obtain the har-
monic metrics h.�/ for .E;F.�/;D�/ such that det h.�/ D det h.0/in . Due to Lemma 2.50,
we have the following inequalities for any � :

(53) M!� .h
.�/

in ; h
.�//� 0:

Let s.�/ be determined by h.�/ D h.�/in s.�/ . Due to Lemma 2.45, (53) and det s.�/ D 1,
there exists a positive constant A which is independent on � , with the following
property:

(54)
ˇ̌
s.�/
ˇ̌
h
.�/

in

�A;
ˇ̌
.s.�//�1

ˇ̌
h
.�/

in

�A

Let D�?in be the operator obtained from D� , !� and h.�/in as in Section 2.2.1. We have
the following equalities:

��!� tr s.�/ D�
p
�1 tr

�
s.�/ƒ!�G.h

.�/

in /
�
C
p
�1 tr

�
ƒ!�D

�s.�/ � .s.�//�1
�D�?in s.�/

�
See Remark 2.27 for ��!� .

Lemma 4.14 We have
R
��!� tr s.�/ dvol!� D 0.

Proof Note that D�s.�/ is L2 with respect to h.�/ and !� according to Proposition
2.49. Then it is easy to obtain the vanishing

R
��!� tr s.�/ dvol!� D0 by Stokes’ formula

and Lemma 5.2 of [17].

Then there exists a positive constant A0 such that the following holds:

(55)
Z ˇ̌

D�s.�/ � .s.�//�1=2
ˇ̌2
h
.�/

in
;!�

dvol!� �A0

In particular, we obtain kD�s.�/k
L2;!�;h

.�/

in

is bounded for 0< � < �0 .

Remark 4.15 A rather detailed review surrounding the Donaldson functional in Sec-
tion 2.4 and Section 2.5 is preparation to obtain the boundedness (54).

4.5.3 End of the proof of Proposition 4.1 Let Q be a point of C �D . Let .U; z/
be a holomorphic coordinate around Q such that z.Q/D 0 and U '�D fz j jzj< 1g.
We use the standard metric g D dz � dxz of U . The harmonic bundles .E;D�; h.�//
induce the Higgs bundles .E; x@�; ��/. We have �� D f� � dz on U . On the other hand,
we also obtain x@in;� and �in;� from .E;D�; h.�/in /, although x@in;�

�
�in;�

�
D 0 may not
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be satisfied. Let ı0in;� be the .1; 0/–operator obtained from h.�/in and d 00 , as in Section
2.2.1. Then we have the following relation:

(56) �� D �in;� �
�

1Cj�j2

�
.s.�//�1

� ı0in;�s
.�/
�

Due to (54), (55) and (56), there exists a constant C0 > 0 such that
R

U jf�j
2
h.�/

dvolg <
C0 holds for any 0< � < �0 . Hence, the following inequality holds for some constants
Ci > 0 .i D 1; 2; 3/ and for any 0< � < �0 :

(57)
Z

U

log jf�j2h.�/ dvolg � C1C

Z
U

C2 � jf�j
2
h.�/

dvolg � C3

Recall the fundamental inequality for the Higgs field of a harmonic bundle [18]:

(58) �g log jf�j2h.�/ � �

ˇ̌
Œf�; f

|
� �
ˇ̌2
h.�/

jf�j
2
h.�/

� 0:

Due to (57) and (58), there exists a constant C4 > 0 such that the following holds for
any Q0 2 U.1=2/ WD fjzj< 1=2g:ˇ̌

f�.Q
0/
ˇ̌2
h
.�/

in

� C4:

By using (56), we obtain that ı0in;�s
.�/ is uniformly bounded with respect to .!�; h.�/in /

on U.1=2/.

Since �|
� is the adjoint of �� , we obtain the uniform boundedness of �|

� on U.1=2/. Let
ı00in;� be the operator obtained from h.�/in and d 0 as in Section 2.2.1, where d 0 denotes
the .1; 0/–part of D� . Then we also obtain the uniform boundedness of ı00in;�s

.�/ on
U.1=2/. Hence, D�?in;�s

.�/ is uniformly bounded on U.1=2/, where

D�?in;� D ı
0
in;� � ı

00
in;�:

d 00 D x��1
�
ı00in;�C .1Cj�j

2/�
|
in;�

�
Because

d 0 D �ı0in;�C .1Cj�j
2/�in;�;and

we also obtain D�s.�/ are uniformly bounded on U.1=2/. Recall the formula

D�D�?in s.�/ D s.�/ �G.h.�/in /CD�s.�/ � .s.�//�1
�D�?in s.�/:

Thus D�D�?in s.�/ is also uniformly bounded on U.1=2/. Therefore, fs.�/g is L
p
2

–
bounded for any p > 1 and U.1=2/. By taking an appropriate subsequence .�i/, s.�i /

weakly converges to some zs in L
p
2

locally on C �D .
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It is easy to see that h.0/in � zs is a harmonic metric. We have det zs D 1. We also have the
boundedness of zs and zs�1 with respect to h.0/in . Thus, we have h.0/in � zs D h.0/ , ie, the
sequence fh.�i /g converges to h.0/ weakly in L

p
2

locally on C �D .

Although we take a subsequence in the above argument, we can conclude that h.�/

converges to h.0/ weakly in L
p
2

locally on C �D , due to a general argument. We can
also obtain the C1–convergence by a standard bootstrapping. In the above argument,
the convergence of f� .�/g is also proved.

Remark 4.16 As for the proof of Proposition 4.2, we take a C1–metric hin of
.E;F;D�/ such that each restriction hin jCt

is an initial metric. Let s be determined
by hH D hin � s . By applying the same argument, we obtain the continuity of s .
Similarly for �H .

5 Existence of a pluri-harmonic metric

We will prove our main existence theorem (Theorem 5.16) of a pluri-harmonic metric
for a �L –stable parabolic �–flat bundle with trivial characteristic numbers, which is
adapted to the parabolic structure. (See Section 3.3 of [14] for adaptedness.) As we
recalled in Proposition 2.54, if the dimension of the base space is 1, it was established
by Simpson [18].

For the 2–dimensional case, as mentioned in the introduction, the problem is reduced
to the convergence of a sequence of Hermitian-Einstein metrics for �–perturbations.
To show it, we use a variant of the classical argument by Donaldson in [4; 5]. Namely,
we study the convergence of their restrictions to generic curves in Sections 5.1–5.2 by
using the result in Section 4 for which the Donaldson functionals played the essential
roles. (See also Section 1.2.3 for an outline of the argument.)

The n–dimensional case .n � 3/ can be reduced to the 2–dimensional case (Sec-
tion 5.3.1). It may remind readers that Mehta and Ramanathan [12] established the
Kobayashi–Hitchin correspondence for stable bundles with trivial Chern classes in the
n–dimensional case (n� 3) by reducing it to the 2–dimensional case.

As a consequence of Theorem 5.16, we explain an equivalence of �L –polystable
regular filtered �–flat bundles for various � in Section 5.3.2, and the existence of
Corlette–Jost–Zuo metric in Section 5.3.3.

5.1 Preliminary

Let C be a smooth projective curve with a finite subset D . Let .E;F;D�/ be a stable
parabolic �–flat bundle on .C;D/ with par-deg.E;F/ D 0. For each P 2 D , let
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.UP ; z/ be a holomorphic coordinate around P such that z.P /D 0. Let F.�/ be an
�–perturbation as in (II) of Section 2.1.6 for � D m�1 . We have harmonic metrics
h.�/

0
for .E;F.�/;D�/. We assume det h.�/

0
D det h.0/

0
. As shown in Proposition 4.1, the

sequence fh.�/
0
g converges to h.0/

0
in the C1–sense locally on C �D . Let N be a

large positive number, for example N > 10. In this subsection, we use Kahler metrics
g� .� � 0/ of C �D which are as follows on UP for each P 2D :�

�NC2
jzj2�Cjzj2

�dz � dxz

jzj2

We assume that the sequence fg�g converges to g0 for � �! 0 in the C1–sense
locally on C �D .

Proposition 5.1 Let h.�/ .� > 0/ be hermitian metrics of EjC�D with the following
properties:

(1) Let s.�/ be determined by h.�/ D h.�/
0
� s.�/ . Then s.�/ is bounded with respect to

h.�/
0

, and we have det s.�/ D 1. It also satisfies the finiteness kD�s.�/k
2;h

.�/

0
;g�
<

1. (The estimates may depend on � .)

(2) kG.h.�//k2;h.�/;g� <1 and lim�!0 kG.h
.�//k2;h.�/;g� D 0.

Then the following claims hold.

� The sequence fs.�/g is weakly convergent to the identity in L2
1

locally on C �D .

� js.�/j
h
.�/

0

and j.s.�//�1j
h
.�/

0

are bounded on C �D uniformly in � .

Proof In some sense, the proposition means that the sequence fs.�/g cannot bubble
off, which heuristically follows from the assumption that the energies go to 0.

To begin with, we remark that we have only to show the existence of a subsequence
fs.�i /g with the desired properties as above. We put

ks.�/k
1;h

.�/

0

WD sup
P2C�D

ˇ̌
s.�/
jP

ˇ̌
h
.�/

0

:

For any point P 2 C �D , let SE.s.�//.P / denote the maximal eigenvalue of s.�/
jP

.
There exists a constant 0< C1 < 1 such that

C1 � js
.�/

jP
j
h
.�/

0

� SE.s.�//.P /� js.�/
jP
j
h
.�/

0

:

We have det s.�/
jP
D 1. Hence, it is easy to see log tr s.�/

jP
� log rank.E/� 0. We also

have SE.s.�//.P /� 1 for any P .

Geometry & Topology, Volume 13 (2009)



Kobayashi–Hitchin correspondence for tame harmonic bundles II 433

Let us take b� > 0 satisfying 2 � b� � sup SE.s.�//.P / � 2C � . We put zs.�/ D b�s
.�/

and zh.�/ WD h.�/
0
� zs.�/ . Then zs.�/ are uniformly bounded with respect to h.�/

0
. We

remark G.zh.�//DG.h.�//. We also remark that h.�/ and zh.�/ induce the same metric
of End.E/.

Lemma 5.2 After going to an appropriate subsequence,
˚
zs.�i /

	
converges to a positive

constant multiplication, weakly in L2
1

locally on C �D .

Proof We have the following (Section 2.2.5):

(59) ��
g0;h

.�/

0

zs.�/ D zs.�/
p
�1ƒg0

G.zh.�//C
p
�1ƒg0

D�zs.�/.zs.�//�1D�?
h
.�/

0

zs.�/

We can show
R
��g0

tr zs.�/ � dvolg0
D 0 by the same argument as the proof of Lemma

4.14. We obtain the following inequality from (59) and the uniform boundedness of
zs.�/ :Z ˇ̌

D�zs.�/ � .zs.�//�1=2
ˇ̌2
g0;h

.�/

0

dvolg0
�A �

Z ˇ̌
trƒg0

G.zh.�//
ˇ̌
� dvolg0

DA �

Z ˇ̌
trƒg�G.

zh.�//
ˇ̌
� dvolg� �A0 �



G.zh.�//




2;zh.�/;g�

In particular, we obtain the uniform estimate

D�zs.�/


2

2;g0;h
.�/

0

�A00 �


G.zh.�//




2;zh.�/;g�

:

Therefore, the sequence fzs.�/g is L2
1

–bounded on any compact subset of C �D . By
taking an appropriate subsequence, it is weakly L2

1
–convergent locally on C �D .

Let zs.1/ denote the weak limit. We obtain D�zs.1/ D 0. We also know that zs.1/ is
bounded with respect to h.0/

0
. Therefore, zs.1/ gives an automorphism of .E;F;D�/.

Due to the stability of .E;F;D�/, zs.1/ is a constant multiplication.

We would like to show zs.1/ ¤ 0. Let us take any point Q� 2 C �D satisfying the
following:

SE.s.�//.Q�/�
9

10
� sup
P2C�D

SE.s.�//.P /

Then we have log tr zs.�/.Q�/� log.9=5/. By taking an appropriate subsequence, we
may assume the sequence fQ�g converges to a point Q1 . There are two cases (i)
Q1 2 D , (ii) Q1 62 D . We argue only the case (i). The other case can be argued
similarly and more easily.

We use the coordinate neighbourhood .U; z/ such that z.Q1/ D 0. For any point
P 2U , we put �.P; r/ WD

˚
Q2U

ˇ̌
jz.P /�z.Q/j< r

	
. When � is sufficiently small,
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Q� is contained in �.Q1; 1=2/D fjzj< 1=2g. Let g D dz � dxz denote the standard
metric of U . We have the following inequality on U �fQ1g (see Section 2.2.5):

��g log tr zs.�/ �
ˇ̌
ƒgG.zh.�//

ˇ̌
zh.�/

Let B.�/ be the endomorphism of E determined as follows:

G.zh.�//DG.h.�//D B.�/
dz � dxz

jzj2

Then we have the following estimate for some constant A> 0 which is independent
of � : Z ˇ̌

B.�/
ˇ̌2
zh
.�/

0

�
�NC1

jzj2�Cjzj2
��1 dvolg
jzj2

�A

Z ˇ̌
G.zh.�//

ˇ̌2
zh.�/;g�

dvolg�

Here A denotes a constant independent of � . Due to Proposition 2.16 in [14], there
exist functions v.�/ such that the following inequalities hold for some constant A0 > 0

which is independent of � :

x@@v.�/D
ˇ̌
B.�/

ˇ̌
zh.�/

dz � dxz

jzj2
;

ˇ̌
v.�/.z/

ˇ̌
�A0 �

�
�.N�1/=2

jzj�Cjzj1=2
�
�


G.zh.�//




2;zh.�/;g�

Then we have ��g
�
log tr zs.�/�v.�/

�
�0 on U�fQ1g. Since log tr zs.�/�v.�/ is bounded

from above, the inequality holds on U . Therefore, we obtain the following:

log tr zs.�/.Q�/� v
.�/.Q�/�A00 �

Z
�.Q�;1=2/

�
log tr zs.�/� v.�/

�
� dvolg

Here A00> 0 denotes a constant. Due to the uniform boundedness of v.�/ , we obtain the
following inequalities, for some positive constants Ci .i D 1; 2/ which are independent
of � :

log.9=5/� log tr zs.�/.Q�/� C1 �

Z
�.Q�;1=2/

log tr zs.�/ � dvolgCC2

Recall that log tr zs.�/ are uniformly bounded from above. Therefore, there exists a
positive constant C3 such that the following holds for any sufficiently small � > 0:Z

�.Q�;1=2/

�min.0; log tr zs.�// � dvolg � C3

Due to Fatou’s lemma, we obtain the following:Z
�.Q1;1=2/

�min
�
0; log tr zs.1/

�
� dvolg � C3
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It means zs.1/ is not constantly 0 on �.Q1; 1=2/. In all, we can conclude that zs.1/

is a positive constant multiplication. Thus, the proof of Lemma 5.2 is accomplished.

Let fzs.�i /g be a subsequence as in Lemma 5.2. It is almost everywhere convergent to a
constant multiplication. Then we obtain that the sequence fdet zs.�i /D brank E

�i
� iddet.E/g

converges to a positive constant. In particular, fb�i
g is convergent. Therefore, the

sequence fs.�i /g is convergent to the identity. Moreover, SE.s.�// are bounded on
C �D uniformly in � . Hence, js.�i /j

h
.�/

0

are bounded on C �D uniformly in � .

Because det.s.�i // D 1, we also obtain the uniform boundedness of j.s.�i //�1j
h
.�/

0

.
Thus the proof of Proposition 5.1 is finished.

Corollary 5.3

� The sequence fh.�/g is convergent to h.0/
0

weakly in L2
1

locally on C �D .

� The sequence fD�s.�/g is weakly convergent to 0 in L2 locally on C �D .

� The sequence f� .�/g converges to � .0/ is weakly convergent to 0 in L2 locally
on C �D .

� In particular, the sequences are convergent almost everywhere.

5.2 The surface case

5.2.1 Statement Let X be a smooth irreducible projective surface with an ample
line bundle L, and let D be a simple normal crossing hypersurface with the irreducible
decomposition D D

S
i2S Di . We put X � WD X �D . Let c be any element of

RS . Let .E;F;D�/ be a �L –stable c–parabolic �–flat bundle on .X;D/ with trivial
characteristic numbers par-degL.E;F/D

R
X par-ch2.E;F/D 0. Recall that it implies

par-c1.E;F/D 0, due to Bogomolov–Gieseker inequality and Hodge index theorem.
(See Corollary 6.2 of [14].) Recall that the problem can be reduced to the classical
Hodge–de Rham theory in the rank one case.

Lemma 5.4 There exists a pluri-harmonic metric hdet.E/ for the determinant bundle
det.E;F;D�/. It is unique up to constant multiplications.

Proof We take an ordinary metric h1 for det.E;F;D�/. By construction, we may
assume that R.h1/ is C1 .1; 1/–form on X . By Lemma 3.23 and par-c1.E;F/D 0,
the cohomology class of R.h1/ is 0. Hence, we can take a C1–function � on X

such that x@@� D R.h1/. We set hdet.E/ WD h1 � e
�� . Then we have G.hdet.E// D

.1Cj�j2/ �R.h1 �e
��/D 0 due to Lemma 2.31. The uniqueness is also easy, or already

contained in Proposition 2.55.
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The purpose of this subsection is to show the following existence theorem.

Theorem 5.5 There exists a tame pluri-harmonic metric h of .E;D�/jX � with
det.h/D hdet E which is adapted to the parabolic structure.

The proof will be given in the rest of this subsection.

5.2.2 A sequence of Hermitian-Einstein metrics for the �–perturbations Let
F.�/ be an �–perturbation as in (II) of Section 2.1.6. If � is sufficiently small,
.E;F.�/;D�/ is also �L –stable. We also have par-c1.E;F.�// D par-c1.E;F/ D 0.
Since .E;F.�/;D�/ is graded semisimple and satisfies the SPW–condition by the
construction in (II) of Section 2.1.6, we can apply Proposition 3.19, and we can take the
hermitian metric h.�/ of EjX�D such that (i) adapted to F.�/ , (ii) det h.�/ D hdet.E/ ,
(iii) ƒ!�G.h

.�//D 0, where !� are given as in (29).

Since hdet.E/ is pluri-harmonic, we also have tr G.h.�//D 0. Therefore, we have the
following convergence:�p

�1

2�

�2 Z ˇ̌
G.h.�//

ˇ̌2
h.�/;!�

dvol!� D
�p
�1

2�

�2 Z
tr
�
G.h.�//2

�
(60)

D 2
�
1Cj�j2

�2
� par-ch2.E;F

.�// �! 0

Let us study the convergence of h.�/ as �! 0.

5.2.3 Convergence on almost every curve Let Lm be sufficiently ample. We put
Pm WD P .H 0.X;Lm/_/. For any s 2 Pm , we put Xs WD s�1.0/. Recall Proposition
2.21, and let U denote the nonempty Zariski open subset of Pm which consists of the
points s with the following properties:

� Xs is smooth, and Xs [D is a simple normal crossing hypersurface.

� .E;F;D�/jXs
is �L –stable.

In the following, � are assumed to be sufficiently small, such that .E;F.�/;D�/jXs
are

�L –stable for any s 2 U .

We set X �s WDXsnD and Ds WDXs\D . We have the metric !�;s of X �s , induced by !� .
The induced volume form is denoted by dvols . We put .Es;Fs;D�s / WD .E;F;D�/jXs

.
We have the metric h.�/

jX �s
of Es jX �s

. Since .Es;F.�/s ;D
�
s / are also stable for any point

s 2 U , we have the harmonic metric h.�/s of .Es;F.�/s ;D
�
s / with det h.�/s D hdet E jX �s

.
Let u.�/s be the endomorphism of EjX �s determined by h.�/

jX �s
D h.�/s � u

.�/

s . Let � .�/s

denote the associated Higgs field. For a point x 2X � , we put Ux WD fs 2 U jx 2Xsg.
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We put Z WD fx 2X �
ˇ̌
UxD∅g. We remark that Z is a finite set. Let us fix a sequence

�i �! 0. We often use the symbol “�” instead of “�i ”, to simplify the description. We
set D�s WDD�

jX �s
.

Lemma 5.6 For almost every s 2 U , the following holds:

� We have the following convergence as � �! 0:

(61)
Z

Xs

ˇ̌
G.h.�/

jXs
/
ˇ̌2
h
.�/
s ;!�

dvols �! 0

� For each � , we have the finiteness:

(62)


D�s u.�/s




L2;h

.�/
s ;!�

<1

Let �U denote the set of s for which both (61) and (62) hold.

Proof It can be shown by the argument in the proof of Lemma 9.3 of [14]. (Z2 should
be corrected to

˚
.x; s; t/ 2 X �U1 � B

ˇ̌
.ts2C .1� t/s/.x/ D 0

	
.) We give only a

brief explanation. The first claim is heuristically clear from (60). Let us explain the
second claim. Let h.�/in be an initial metric for .E;F.�/;D�/ as in Lemma 3.18. Let
w.�/ be determined by h.�/ D h.�/in �w

.�/ . According to Proposition 3.19, h.�/in and h.�/

are mutually bounded, and D�w.�/ is L2 with respect to h.�/ and !� . Hence, we
obtain (i) h.�/

jX �s
and h.�/

injX �s
are mutually bounded, (ii) D�s w

.�/

jX �s
is L2 with respect to

h.�/
jX �s

and !� for almost all s . Let v.�/s be determined by h.�/s D h.�/
injX �s

� v.�/s . Applying
Proposition 3.19 to .Es;Fs;D�s /, and using the uniqueness of a harmonic metric, we
obtain (i) h.�/s and h.�/

injX �s
are mutually bounded, (ii) D�s v

.�/

s is L2 with respect to h.�/s

and !s . Because u.�/s D .w
.�/

jX �s
/�1 � vs , the second claim follows.

Recall h.0/s is a harmonic metric for .Es;Fs;D�s / such that det.h.0/s /D hdet.E/jX �s , and
� .0/s denotes the associated Higgs field. We obtain the following claims from Corollary
5.3 and Lemma 5.6.

Corollary 5.7 For any s 2 �U , the sequence fh.�/
jX �s
g converges to h.0/s weakly in L2

1

locally on X �s , and f� .�/
jX �s
g converges to � .0/s weakly in L2 locally on X �s . In particular,

they are almost everywhere convergent.
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5.2.4 Construction of a metric defined almost everywhere Let us take any Kahler
form !Pm

of Pm . We put Z WD f.s;x/ 2 U �X � jx 2Xsg. Then we have the induced
metric of Z . The induced volume form is denoted by dvolZ . Let T denote the set
of .s;x/ 2 �U �X such that (i) .s;x/ 2 Z , (ii) lim�!0 h.�/

jx
D h.0/

sjx
, where h.0/s is as in

Corollary 5.7.

Lemma 5.8 The measure of Z � T is 0 with respect to dvolZ .

Proof Let us consider the naturally defined fibration Z �!U . Then the claim follows
from Corollary 5.7 and Fubini’s theorem.

Lemma 5.9 For almost every x 2X � and almost every s 2 Ux , the sequence fh.�/
jx
g

converges to h.0/
s jx

.

Proof Let us consider the naturally defined fibration T �! X � . Then the claim
follows from Lemma 5.8 and Fubini’s theorem.

Let V denote the set of x 2X � such that the sequence fh.�/
jx
g converges to h.0/

s jx
for

almost s 2 Ux . For any x 2 V , let �Ux denote the set of s such that fh.�/
jx
g converges

to h.0/
s jx

.

Lemma 5.10 For any x 2 V and for any si 2
�Ux .i D 1; 2/, we have h.0/

s1 jx
D h.0/

s2 jx
.

Proof Both of them are the same as the limit lim�!0 h.�/x .

Let us take any x 2 V and any s 2 �Ux . Then the metric hx of Ejx is given by
hx WD h.0/

s jx
. Due to Lemma 5.10, it is well defined. Thus, we obtain the metric

hV WD .hx jx 2 V/ of EjV .

5.2.5 The C 1 –property We would like to show that hV is C 1 on X ��Z , in other
words, we would like to show the existence of a C 1 –metric h of EjX ��Z such that
hD hV on V . Let us begin with a preparation.

Lemma 5.11 Let x 2X ��Z . Let us take any s 2 Ux . Then there exists a Lefschetz
fibration 'W zX �! P1 with the following properties:

� x is not a singular point of ' .

� '�1.0/DXs .

� Almost every t 2 P1 belongs to �U .
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Proof Let M denote the set of the lines ` of Pm which contain s . We put

�Pm WD
˚
.`; s0/ 2M�Pm

ˇ̌
s0 2 `

	
�M�Pm:

It is the blow up of Pm at s . We have the projection �2W
�Pm �! Pm . We put

U� WD ��1
2
.U/ and �U� WD ��1

2
.�U/. Since U � �U has measure 0, the measure of�Pm�

�U� is also 0. Let us consider the projection �1W
�Pm �!M, and apply Fubini’s

theorem. Then for almost every ` 2M and for almost every s1 2 `, we have s1 2
�U� .

Thus we are done.

Let x be any point of X � �Z . Let us take a Lefschetz fibration �i W
zXi �! P1

.i D 1; 2/ with the following properties:

� Both of them satisfy the properties in Lemma 5.11.

� Around x , the fibers of �1 and �2 are transversal. Then two fibrations give
the holomorphic coordinate .z1; z2/ of an appropriate neighbourhood Ux of x ,
such that fzi D ag D ��1

i .a/\Ux .

For any ti 2 P1 , let Xti
WD ��1

i .ti/. If ti are close to 0, .E;F;D�/jXti
are sta-

ble, and hence there exist tame harmonic metrics hti
for .E;F;D�/jXti

such that
det.hti

/D hdet.E/jXti
. Let �ti

denote the operator obtained from D�
jXti

and hti
as in

Section 2.2.1.

Let us take an appropriate neighbourhoods Bi �P1 of 0. Recall Proposition 4.2. Then
fht1

ˇ̌
t1 2 B1g are C1–along z2 , and it is continuous with respect to .z1; z2/. The

family f�t1
j t1 2B1g has a similar property. Thus, we obtain a continuous metric h.1/

and the continuous section � .1/ of End.E/˝�1;0 around x . Similarly fht2
j t2 2B2g

is C1 along z1 and it is continuous with respect to .z1; z2/. The family f�t2

ˇ̌
t2 2B2g

has a similar property. Thus, we obtain a continuous metric h.2/ and the continuous
section � .2/ of End.E/˝�1;0 around x .

We remark that h.1/ D hV D h.2/ on Ux \V due to our construction of hV . Since h.i/

are continuous, we obtain h.1/ D h.2/ on Ux . Then we obtain that h.i/ are C 1 on Ux ,
due to the continuity of � .i/ .

Therefore, we obtain the C 1 –metric h of E on X ��Z with the following properties:

� hjV D hV .

� For any s 2 U , we have hjX �s D hs and �h jX �s
D �hs

.
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5.2.6 Pluri-harmonicity We would like to show that h is pluri-harmonic. By the
formalism explained in Section 2.2.1, the operators x@h and �h are given on X�.D[Z/

from h and D� . Let us take any C1 metric h0 of E on X �D , and let s0 be the
endomorphism determined by hD h0 � s0 . Then s0 is C 1 , and we have the following
relation:

x@h D
x@h0 C

�

1Cj�j2
s0 �1ı00h0s

0; �h D �h0 �
�

1Cj�j2
s0 �1ı0h0s

0

Then we obtain x@h�h as a distribution:

x@h�h D
x@h0�h0 �

�

1Cj�j2
x@h0
�
s0 �1ı0h0s

0
�
C

�

1Cj�j2

�
s0 �1ı00h0s

0; �h0
�

�

�
�2

1Cj�j2

�2�
s0 �1ı00h0s

0; s0 �1ı0h0s
0
�

Similarly, we obtain G.h/ as a distribution.

Lemma 5.12 x@h�h D 0.

Proof For any point x 2X ��D , let us take the holomorphic coordinate .z1; z2/ as
before. We remark that the curves

fzi D ag .i D 1; 2/; fz1C z2 D bg; fz1C
p
�1z2 D cg

can be regarded as parts of Xs0 for some s0 2 U . We have the expression � D

f1 � dz1C f2 � dz2 , where fi are continuous sections of End.E/. We have already
known @f1=@xz1 D @f2=@xz2 D 0. Thus, we have only to show @fi=@xzj D 0 for i ¤ j .
Let us consider the change of the coordinate given by w1D z1C z2 and w2D z1� z2 .
Then we have the following:

f1 � dz1Cf2 � dz2 D
1

2
.f1Cf2/ � dw1C

1

2
.f1�f2/ � dw2

Thus, we obtain the following:

(63) 0D
@

@ xw1

.f1Cf2/D
1

2

�
@

@xz1

C
@

@xz2

�
.f1Cf2/D

1

2

�
@f2

@xz1

C
@f1

@xz2

�
Let us consider the change of the coordinate given by u1 D z1C

p
�1z2 and u2 D

z1�
p
�1z2 . Then we have the following:

f1 � dz1Cf2 � dz2 D
1

2

�
f1C

1
p
�1
f2

�
du1C

1

2

�
f1�

1
p
�1
f2

�
du2

Geometry & Topology, Volume 13 (2009)



Kobayashi–Hitchin correspondence for tame harmonic bundles II 441

Thus, we obtain the following:

0D
@

@xu1

�
f1C

1
p
�1
f2

�
D

1

2

�
@

@xz1

�
1
p
�1

@

@xz2

��
f1C

1
p
�1
f2

�
(64)

D
1

2

�
1
p
�1

@f2

@xz1

�
1
p
�1

@f1

@xz2

�
From (63) and (64), we obtain @fi=@xzj D 0 for i ¤ j . Thus, we obtain x@h�h D 0, and
the proof of Lemma 5.12 is accomplished.

Lemma 5.13 h is a harmonic metric for .E;D�/ with respect to !0 on X � �Z .
(Recall Z D fx 2X � j Ux D∅g.)

Proof Due to Lemma 5.12, we have ƒ!G.h/Dƒ!.x@h�h/D 0. Hence, we have only
to show that h is C1 . We obtain the following formula in the level of distribution, by
the formalism explained in Section 2.2.5:

��h0;!.s
0/D s0

�
�ƒ!G.h0/

�
C
p
�1ƒ!D�s0 � s0 �1

�D�?h0 s0

The right hand side is C 0 . Hence, by using the elliptic regularity and the standard
bootstrapping, we obtain that s0 is C1 . Thus, we obtain Lemma 5.13.

Lemma 5.14 h is pluri-harmonic metric of EjX ��Z .

Proof We have already shown x@h�h D 0 in Lemma 5.12. According to Corollary
2.30, we have only to show �2

h
D 0. Due to Corollary 5.7 and �h jXs

D �s , we
know that the sequence f� .�/g converges to �h almost everywhere. In particular,
we obtain the almost everywhere convergence of f� .�/2g to �2

h
. On the other hand,

we know the almost everywhere convergence G.h.�// �! 0, due to (60). We have
G.h.�//D x@.�/2Cx@.�/� .�/C � .�/2 , which is the decomposition into .2; 0/, .1; 1/ and
.0; 2/–forms. Therefore, we obtain �2

h
D 0, almost everywhere. Thus, we obtain

Lemma 5.14.

Lemma 5.15 h gives a pluri-harmonic metric of EjX � .

Proof We have only to check that h gives a C1–metric of EjX � . Let Q be a point of
Z . Let .U; z1; z2/ be a holomorphic coordinate around Q such that z1.Q/D z2.Q/D

0. The pluri-harmonic metric h of .E;D�/jU�fQg is given. We would like to show
that h is naturally extended to the pluri-harmonic metric of .E;D�/jU .

We have � D f1 �dz1Cf2 �dz2 defined on U �fQg. Let us consider the characteristic
polynomials det.t�fi/ for i D 1; 2. The coefficients are holomorphic on U �fQg, and
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thus on U due to the theorem of Hartog’s. Hence, the eigenvalues of fi are bounded
on U . Let us consider the restriction of .E;D�; h/ to the discs C.aj / WD fzj D aj g

.aj ¤ 0/ for j D 1; 2. Then it can be shown that the norms jfi jC.aj /jh � C .i ¤ j /

can be dominated independently from aj . (See Lemma 2.7 in [19], for example.)
Thus, fi are bounded with respect to h on U �fQg. In other words, � is bounded on
U �fQg.

Let E0 WDEjU�fz1�z2D0g . Let us consider the sheaf ˘E0 on U of sections g satisfying
the growth condition jgjh DO.

Q
jzi j
��/ for any � > 0 (Section 2.6.3). By using the

result of the asymptotic behaviour of tame harmonic bundle at � [15], ˘E0 is locally
free on U . Since ˘E0 and EjU�fQg are naturally isomorphic on U � fQg, they are
isomorphic on U . Let h0 be any C1–metric of EjU , and let s0 be the endomorphism
determined by hD h0 � s0 . Due to the norm estimate given in [15], the metrics h and
h0 are mutually bounded. Hence, s0 and .s0/�1 are bounded on U . Let ı0

h0
and ı00

h0

be obtained from D� and h0 as in Section 2.2.1. Due to the boundedness of � , we
have the boundedness of .s0/�1ı0

h0
s0 on U �fQg. Due to the boundedness of �| , we

have the boundedness of .s0/�1ı00
h0

s0 on U �fQg. Then we can deduce that s0 �1D�s0

is also bounded on U � fQg. (See Section 2.2.5. for example.) Since we have the
formula ��

h0;!0
s0 D s0.�ƒ!0

G.h0//Cƒ!0
D�

h0
s0 � s0 �1 �D�?

h0
s0 , we can conclude that

s0 is C1 due to the standard bootstrapping. Namely, h is extended to the C1–metric
of EjU .

5.2.7 The end of the proof of Theorem 5.5 Now, we have only to show that h is
tame and adapted to the parabolic structure. Since hjXs

Dhs for any s2U , the tameness
immediately follows from the curve test. (See Proposition 2.52.) Hence, we obtain
the harmonic bundle

�
.E;D�/jX � ; h

�
. We have the locally free sheaf zE WD c.EjX �/

with the induced parabolic structure F (Section 2.6.3). We would like to show that
.E;F;D�/ and . zE;F;D�/ are isomorphic. For that purpose, we see that the identity
EjX � �!EjX � can be prolonged to the homomorphism ‰W E �! zE . Let Q be any
smooth point of Di � D . We take a holomorphic coordinate .UQ; z1; z2/ with the
following properties:

� The curve z�1
1
.0/ is the same as UQ\D .

� The curves C.b/ WD z�1
2
.b/ are parts of Xs.b/ for s.b/ 2 U .

Let f be a holomorphic section of EjU . Let ci be the i –th component of c. Since
the restriction hjXs.b/

is the same as hs.b/ , we have jfjC.b/jh DO.jz1j
�ci��/ for any

� > 0. Then we obtain jf jh D O.jz1j
�ci��/ for any � > 0, due to the result given

in [15]. Thus, f naturally gives the section of zE on U . Therefore, we obtain the
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morphism E �! zE on X �
�
[i¤j Di \Dj

�
. It is naturally extended to the morphism

E �! zE .

Recall that the restriction of zE D cE.h/ to Xs is the same as c.EjX �s /.hs/. (See
Corollary 8.52 of [15].) Therefore, the restrictions of ‰ to Xs are isomorphic, by
construction. Hence, ‰ is isomorphic on X �

�S
i¤j Di \Dj

�
, and thus on X . By a

similar argument, we can show that the parabolic structures are also the same. Thus,
the proof of Theorem 5.5 is finished.

5.3 Correspondences

5.3.1 Kobayashi–Hitchin correspondence in the higher dimensional case Let X

be an n–dimensional smooth irreducible projective variety with an ample line bundle L,
and let D be a simple normal crossing hypersurface with the irreducible decomposition
DD

S
i2S Di . Let .E�;D�/ be a �L –stable regular filtered �–flat bundle on .X;D/

in codimension two with trivial characteristic numbers

par-degL.E�/D
Z

X

par-ch2;L.E�/D 0:

We put .E;D�/ WD .E�;D�/jX�D . Recall par-c1.E�/ D 0 due to the Bogomolov–
Gieseker inequality, the Hodge index theorem and a theorem of Lefschetz. For each
c 2 RS , we have the determinant line bundle det.cE/ of torsion-free sheaf cE , on
which we have the induced parabolic structure and the induced flat �–connection.
Thus, we obtain the canonically determined regular filtered �–flat bundle

�
det E�;D�

�
on .X;D/ of rank one. We also have par-c1.det E�/ D par-c1.E�/ D 0. Therefore,
we can take a pluri-harmonic metric hdet E of .det.E/;D�/ which is adapted to the
parabolic structure of det E� by using classical Hodge–de Rham theory. (See Lemma
2.26, for example.) By the assumption, we have a subset Z �D with codimX .Z/� 3

such that .E�;D�/jX�Z is a regular filtered �–flat bundle.

Theorem 5.16 There exists the unique tame pluri-harmonic metric h of .E;D�/ with
the following properties:

� det.h/D hdet E .

� It is adapted to the parabolic structure of E� on X �Z . Namely,

.E�.h/;D�/jX�Z ' .E�;D�/jX�Z ;

where .E�.h/;D�/ denotes the regular filtered �–flat bundle on .X;D/ obtained
from .E;D�; h/. (See Section 2.6.)
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Proof Due to Mehta–Ramanathan type theorem (Proposition 2.21), the uniqueness
can be easily reduced to the dim X D 1 case, by considering the restriction to the
generic curves C �X . We have already known it (Proposition 2.56).

We will use the induction on the dimension n to show the existence. The case nD 2

has already been shown (Theorem 5.5). Assume that Lm is sufficiently ample. We put
Pm WD P .H 0.X;Lm/_/. For any s 2 Pm , we put Xs WD s�1.0/. Recall Proposition
2.21. Let U be the nonempty Zariski open subset of Pm which consists of s 2 Pm

with the following properties:

� Xs is smooth, and Ds WDXs \D is a normal crossing divisor.

� The codimension of Z \Xs in Xs is larger than 3.

� .E;D�/jXs
is �L –stable.

We use the existence hypothesis in the .n�1/–dimensional case of the induction. Then
we may have the tame pluri-harmonic metric hs of .E;D�/jXsnD with det.hs/ D

hdet E jXsnD which is adapted to the parabolic structure on Xs nW . We also use the
uniqueness result in the .n� 2/–dimensional case. Then we can show the existence
of a finite subset Z0 � X �D and a metric h of EjX�D such that hs jP D hjP . By
the arguments given in Sections 5.2.5–5.2.7, we can show that h is the desired metric.
The only different point is the argument to show the vanishing of G.h/D 0. Due to
dim Xs � 2, it can be shown more easily.

Theorem 5.17 Let .E�;D�/ be a saturated �L –stable regular filtered �–flat sheaf on
.X;D/ with the trivial characteristic numbers par-degL.E�/D

R
X par-ch2;L.E�/D 0.

We put .E;D�/ WD .E�;D�/jX�D . Then there exists a pluri-harmonic metric h of
.E;D�/ such that the induced regular filtered �–flat bundle .E�.h/;D�/ is isomorphic
to .E�;D�/. (See Proposition 2.53 for an induced regular filtered �–flat bundle.) Such
a metric is unique up to positive constant multiplications. In particular, E� is a filtered
bundle.

Proof Since a saturated regular filtered �–flat sheaf is a regular filtered �–flat bundle
in codimension two (Lemma 2.9), we may apply Theorem 5.16. Then there exists
a pluri-harmonic metric h and a subset W � D with codimX .W / � 3 such that
the induced regular filtered �–flat bundle .E�.h/;D�/ is isomorphic to .E�;D�/ on
X �W . Since both of .E�.h/;D�/ and .E�;D�/ are saturated, they are isomorphic
on X .
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5.3.2 An equivalence of some categories We say that a �L –polystable regular
filtered �–flat bundle .E�;D�/ has trivial characteristic numbers, if each �L –stable
direct summand .E1�;D

�
1
/ satisfy par-degL.E1�/ D

R
X par-ch2;L.E1�/ D 0. Let

Cpoly
�

denote the category of �L –polystable regular filtered �–flat bundles .E�;D�/ on
.X;D/ with trivial characteristic numbers. Morphisms f W .E1�;D

�
1
/ �! .E2�;D

�
2
/

are defined to be an OX –homomorphism f W E1 �! E2 satisfying D�
2
ıf D f ıD�

1

and f .cE1/� cE2 for any c. By Lemma 2.12 and Corollary 2.14, the category Cpoly
�

is semisimple, ie, any object is a direct sum of simple objects.

Corollary 5.18 Let �i .i D 1; 2/ be two complex numbers. We have a functor
„�1;�2

W Cpoly
�1
�! Cpoly

�2
, which gives an equivalence of the categories. (See the proof

for the construction.) It preserves direct sums, tensor products and duals.

Proof Let .E�1
� ;D

�1/ be an object of Cpoly
�1

. We put E�1 WD E�1

jD
. We have a

pluri-harmonic metric h of .E�1 ;D�1/, which is adapted to the parabolic structure.
Then we obtain the operators x@h; @h; �h; �

|
h

, as in Section 2.2.1. Note that the holo-
morphic structure of E�1 is given by x@hC�1�

|
h

. The .0; 1/–operator x@hC�2�
|
h

also gives a holomorphic structure of C1–bundle E�1 . To distinguish them, we
use the notation E�2 , when we consider the holomorphic structure x@hC�2�

|
h

. We
put D�2 WD x@hC �hC�2.@hC �

|
h
/, which gives a flat �2 –connection of E�2 . The

metric h is pluri-harmonic for .E�2 ;D�2/. Since the corresponding Higgs bun-
dle for .E�1 ;D�1 ; h/ and .E�2 ;D�2 ; h/ are the same, we obtain the tameness of
.E�2 ;D�2 ; h/. Therefore, we obtain the prolongment .E�2

� ;D
�2/, which are �L –

polystable regular filtered �2 –flat bundle on .X;D/ with trivial characteristic numbers
(Proposition 2.55).

We remark that .E�2
� ;D

�2/ is independent of the choice of h, due to the uniqueness
in Proposition 2.56. Therefore, we put „�1;�2

.E�1 ;D�1/ WD .E�2 ;D�2/. It is easy to
see that „�1;�2

gives a functor. (Note that the categories are semisimple.) It is also
easy to see that „�2;�1

ı„�1;�2
.E�1 ;D�1/ is naturally isomorphic to .E�1 ;D�1/. The

compatibility with the direct sums, duals and tensor products are obtained from the
corresponding compatibility of the prolongments for tame harmonic bundles [15].

5.3.3 Corlette–Jost–Zuo metric Let .E;r/ be a simple flat bundle on X �D , ie,
the associated representation of the fundamental group of X �D is assumed to be
simple. Recall that there exists a Corlette–Jost–Zuo metric of .E;r/ which is a pure
imaginary tame pluri-harmonic metric. (See Corlette [2] for the case D D∅ and Jost
and Zuo [10] for the general case. See also Mochizuki [15].) Let us show the existence
theorem for Corlette–Jost–Zuo metric from the viewpoint of the Kobayashi–Hitchin
correspondence.
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Let . zE;r/ be the Deligne extension. It is equipped with the canonical parabolic
structure F determined by the condition aCRe.˛/D 0 for any .a; ˛/ 2KMS. zE;F/.
Let L be any ample line bundle on X . As remarked in Corollary 3.25, we have the
vanishings

(65) par-degL.
zE;F/D 0;

Z
X

par-c2;L.
zE;F/D 0:

Simplicity of .E;r/ is equivalent to �L –stability of . zE;F/, which follows from the
fact that the first formula in (65) also holds for any flat subbundle of .E;r/. Hence,
we have a tame pluri-harmonic metric h of .E;r/, adapted to F. It is unique up
to positive constant multiplication. Let .E�� ;D�/ denote the regular filtered �–flat
bundle associated to the tame harmonic bundle .E;r; h/. By construction, . zE;F/ is
the same as ˘E1 with the induced parabolic structure. Recall the correspondence of
KMS–spectrum due to Simpson [18]:

KMS
�
E0; i

�
 !KMS

�
E1; i

�
; .b; ˇ/ !

�
bC 2 Re.ˇ/; ˇ� b� x̌

�
Hence, we can check KMS.E0; i/�R�.

p
�1R/, ie, the eigen values of the residues

of the Higgs field is purely imaginary. It means that h is a Corlette–Jost–Zuo metric.

6 Filtered local system

We established the correspondence between regular filtered flat bundles and regular
filtered Higgs bundles which are �L –stable with trivial characteristic numbers. One
more important piece in the nonabelian Hodge theory is filtered local system, which is
the topic in this section.

In Section 6.1, we define filtered local system which is a straightforward generalization
of Simpson’s definition in the one dimensional case. In Section 6.2, we construct a
functor which gives an equivalence of the categories of filtered local systems and satu-
rated regular filtered �–flat sheaves. We show that it preserves parabolic characteristic
numbers and stability conditions.

Note that filtered bundle corresponds to filtered local system which satisfies some
compatibility condition around the intersection of the divisors, like a locally abelian
condition in [9].

6.1 Definition

6.1.1 Filtered structure Let X be a complex manifold, and let D be a simple
normal crossing hypersurface with the irreducible decomposition D D

S
i2S Di . We
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set DŒ2� WD
S

i¤j Di \Dj and Dıi WDDi n
S

j¤i Dj . Let L be a local system on
X �D . A filtered structure of L at D is a tuple of increasing filtrations iF .i 2 S/

of LjUinD indexed by R, where Ui denotes an appropriate open neighbourhood of
Di . Let U 0i be an open neighbourhood of Di such that U 0i � Ui , then we have the
induced filtration iFjU 0

i
nD , and the filtration iF can be reconstructed from iFjU 0

i
nD .

Hence, we define two filtered structures .iF ;Ui j i 2 S/ and .iF 0;U 0i j i 2 S/ are
equivalent, if there exists an open neighbourhood U 00i of Di such that U 00i � Ui \U 0i
and iFjU 00

i
D iF 0

jU 00
i

. A local system L equipped with an equivalence class of filtered
structures .iF ;Ui/ is called a filtered local system, and it is denoted by L� . We do not
have to care about the choice of open neighbourhoods Ui .

Morphisms of filtered local systems f W L1� �! L2� are defined to be a morphism
f W L1 �! L2 of local systems preserving the filtered structures in an obvious sense.
We denote by zC.X;D/ the category of filtered local systems on .X;D/.

6.1.2 Characteristic numbers We put

U �i WD Ui nD

iGrFa .LjU�i / WD
iFa.LjU�

i
/
ı

iF<a.LjU�
i
/and

Since the local monodromy around Di preserves the filtration iF , we obtain the induced
endomorphism of iGrFa .LjU�i /, and thus the generalized eigen decomposition:

iGrFa .LjU�i /D
M
!

iGrF ;E
.a;!/

.LjU�
i
/

We consider the following sets:

Par
�
L�; i

�
WD
˚
a 2 R

ˇ̌
iGrFa

�
LjU�

i

�
¤ 0

	
KMS

�
L�; i

�
WD
˚
.a; !/ 2 R�C�

ˇ̌
iGrF ;E

.a;!/

�
LjU�

i

�
¤ 0

	
The parabolic first Chern class is defined as follows:

wt.L�; i/ WD
X

a2Par.L�;i/

a � rank iGrFa .LjU�i /

par-c1.L�/ WD �
X
i2S

wt.L�; i/ � ŒDi � 2H 2.X;R/

Here ŒDi � denotes the cohomology class of Di .

Let Irr.Di \Dj / denote the set of the irreducible components of Di \Dj . For each
P 2 Irr.Di \Dj /, let UP be an appropriate open neighbourhood of P in X such that
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UP � Ui \Uj . We put U �
P
WD UP nD . We have the two filtrations iF and jF of

LjU�
P

. The naturally induced graded local system is denoted as follows:

P GrF.ai ;aj /
.LjU�

P
/ WD

iFai
\ jFajP

.bi ;bj /Œ.ai ;aj /
iFbi
\ jFbj

P GrF .LjU�
P
/D

M
.ai ;aj /2R2

P GrF.ai ;aj /
.LjU�

P
/

Here .bi ; bj /Œ .ai ; aj / means “bi � ai , bj � aj and .bi ; bj /¤ .ai ; aj /”. We have the
two endomorphisms induced by the local monodromies around UP \Di and UP \Dj ,
which are commutative. Hence, we obtain the generalized eigen decomposition:

P GrFa .LjU�P /D
M

!2.C�/2

P GrF ;Ea;! .LjU�P /

The sets Par.L�;P / and KMS.L�;P / are defined as follows:

Par.L�;P / WD
˚
.ai ; aj / 2 R2

ˇ̌
P GrF.ai ;aj /

.LjU�
P
/¤ 0

	
KMS.L�;P / WD

˚
.a;!/ 2 R2

� .C�/2
ˇ̌

P GrF ;E
.a;!/.LjU�P /¤ 0

	
The parabolic second Chern character is defined as follows:

par-ch2.L�/ WD
1

2

X
i2S

X
a2Par.L�;i/

a2
� rank iGrFa .L/ � ŒDi �

2

C
1

2

X
i2S

X
j¤i

X
P2Irr.Di\Dj /

X
.ai ;aj /2Par.L�;P/

ai � aj � rank P GrF.ai ;aj /

�
LjU�

P

�
� ŒP �

If X is a smooth projective variety with an ample line bundle L, we set

par-degL.L�/ WD
Z

X

par-c1.L�/ � c1.L/
dim X�1; �L.L�/ WD

par-degL.L�/
rankL

:

Then the notion of �L –stability, �L –semistability, and �L –polystability for filtered
local systems on .X;D/ are defined in the standard manner. We also putZ

X

par-c2
1;L.L�/ WD

Z
X

par-c1.L�/2 � c1.L/
dim X�2Z

X

par-ch2;L.L�/ WD
Z

X

par-ch2;L.L�/ � c1.L/
dim X�2:
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6.2 Correspondence

In this subsection, we explain the correspondence of filtered local systems on .X;D/
and saturated regular filtered �–flat sheaves (�¤ 0) as in Proposition 1.8. See Section
2.1.3 for saturated regular filtered �–flat sheaves. Since we have the obvious equivalence
between flat �–connection and flat 1–connection, we argue only the case �D 1, ie
ordinary flat connections.

Let Csat
1
.X;D/ denote the category of saturated regular filtered flat sheaves on .X;D/.

We explain in Section 6.2.1 the construction of a functor ˆW zC.X;D/ �! Csat
1
.X;D/.

Since it is given by Simpson in [18] essentially in the curve case, we give only an
outline. In Section 6.2.2, we will check that it gives an equivalence of the categories.
Then we will check that it preserves the characteristic numbers in Sections 6.2.3–6.2.4.
which implies that the �L –stability condition is also preserved.

6.2.1 Construction of ˆ First, we give a construction of ˆ. Let L� be a filtered
local system on .X;D/. Let .E;r/ be the corresponding flat bundle on X �D . We
have the Deligne extension . zE;r/ on .X;D/. We put E WD zE˝O.�D/. We have
only to give a way of the construction of the OX –coherent submodules aE � E such
that raE � aE˝�1;0.log D/ and

S
a2RS aE D E.

Let us consider the case X D�nDf.z1; : : : ; zn/ j jzi j<1g and DDfz1D0g. Then the
construction is essentially the same as that given by Simpson [18] in the case dim X D 1

We briefly recall it. Let H.L/ denote the space of the multivalued flat sections of
L. We have the induced filtration FH.L/ and the generalized eigen decomposition
H.L/ D

L
! E!.H.L//, which are compatible in the sense Fa D

L
! Fa \ E! .

Let u D .u1; : : : ;ur / be a frame of H.L/, compatible with .F ;E/. Then for each
ui , the numbers !.ui/ 2 C� and a.ui/ 2 R are determined by ui 2 E!.ui / and
ui 2 Fa.ui / �F<a.ui / . The complex number ˛.ui/ is determined by the conditions
exp.�2�˛.ui//D !.ui/ and 0 � Re˛.ui/ < 1. Let M u denote the endomorphism
of H.L/ or L, which is the unipotent part of the monodromy around D , and we put
N WD�.2�

p
�1/�1 log M u . We regard ui as a multivalued C1–section of E . Then

it is standard that vi WD exp
�
log z1.˛.ui/CN /

�
�ui gives a holomorphic section of E .

Moreover, vD .v1; : : : ; vr / gives a frame of the Deligne extension zE . For any real
number b , we put

n.b;ui/ WDmax
˚
n 2 Z

ˇ̌
a.ui/�Re˛.ui/C n� b

	
; vi.b/ WD z

�n.b;ui /
1

� vi :

Let bE denote the OX –submodule of E generated by v1.b/; : : : ; vr .b/. It is easy to
check that bE is locally free and independent of a choice of u. It is also easy to see
ED

S
b2R bE . Thus, we obtain the filtration in the case X D�n and D D fz1 D 0g.
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It can be checked that the filtration is independent of a choice of the coordinate
.z1; z2; : : : ; zn/ satisfying D D fz1 D 0g.

Let us consider the general case. For any b 2 RS , we have already obtained bE on
X �DŒ2� . The subsheaves bE of E are determined by the condition (3).

Lemma 6.1 bE is a coherent OX –module. Hence, we obtain the saturated regular
filtered flat sheaf .E�;r/ on .X;D/.

Proof We may assume that X D �n and D D
S`

iD1fzi D 0g. Let H.L/ denote
the space of multivalued flat sections of L. We have the monodromy endomorphisms
Mi .i D 1; : : : ; `/ along the loop around Di in the counter clockwise direction. They
induce the decomposition

(66) H.L/D
M

!2.C�/`
E!H.L/;

where each E!H.L/ is preserved by Mi .i D 1; : : : ; `/, and the eigenvalues of
Mi on E!H.L/ are !i . We also have the filtrations iF .i D 1; : : : ; `/ of H.L/,
corresponding to the divisor Di . Each iF is compatible with the decomposition (66).

Fix j such that 1 � j � `. We take a frame uD .u1; : : : ;ur / of H.L/ compatible
with the filtration jF and the decomposition (66). For each up , the tuple !.up/ 2

.C�/` is determined by up 2 E! . Let ˛i.up/ 2 C .i D 1; : : : ; `/ be determined
by exp

�
�2�˛i.up/

�
D !i.up/ and 0 � Re˛i.up/ < 1. We also have the numbers

aj .up/ 2 R such that up 2
jFaj .up/�

jF<aj .up/ . We put

n.bj ;up/ WDmax
˚
n 2 Z

ˇ̌
aj .up/�Re j̨ .up/C n� bj

	
:

Let Ni WD �.2�
p
�1/�1 log M u .i D 1; : : : ; `/, where Ni denotes the logarithm of

the unipotent part of Mi . We take a sufficiently large integer I . Then we put

vp WD z
n.bj ;up/

j �

Y
i¤j

zI
i

Ỳ
iD1

exp
�
log zi � .˛i.up/CNi/

�
�up:

If I is sufficiently large, vp gives the section of bE on X . By the correspondence,
we obtain the following morphism, for j D 1; : : : ; `:

ĵ W

rM
pD1

OX � vp �! bE

The morphisms ĵ .j D 1; : : : ; `/ induce the morphism ˆ WO˚`�r �! bE . The image
of ˆ is OX –coherent, and it is the same as bE on X �DŒ2� . Then it is easy to show
that bE is the same as the double dual of the image of ˆ which is OX –coherent.
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Let f W L1� �! L2� be a morphism. Let .Ei �;ri/ WD ˆ.Li/. We have the in-
duced map zf W E1 �! E2 . It is easy to see that cE1 jX�DŒ2� �! cE2 jX�DŒ2� is
induced. Due to saturatedness of .E2�;r/, we obtain maps cE1 �! cE2 , and thus
ˆ.f /W .E1�;r1/ �! .E2�;r2/.

6.2.2 Equivalence Let us show that ˆ is gives an equivalence of the categories. To
begin with, we consider the case X D�n and D D fz1 D 0g. Let Cvb

1
.X;D/ denote

the category of regular filtered flat bundles on .X;D/, which is the subcategory of
Csat

1
.X;D/. By the construction, the image of ˆ is contained in Cvb

1
.X;D/. The

following lemma can be shown as in [18].

Lemma 6.2 The functor ˆ gives the equivalence of zC1.X;D/ and Cvb
1
.X;D/. It is

also compatible with direct sums, duals, and tensor products.

Lemma 6.3 In the case X D�n and DDfz1D0g, we have Cvb
1
.X;D/'Csat

1
.X;D/

naturally. In particular, ˆ gives the equivalence zC1.X;D/' Csat
1
.X;D/.

Proof Let .E�;r/ be a saturated regular filtered flat sheaf on .X;D/. We put
.E;r/ WD .E�;r/jX�D , and let L denote the underlying local system on X �D . Let
H.L/ denote the space of multivalued flat sections of L.

Recall that there exists a subset W �D with codimX .W /� 3 such that .E�;r/jX�W

is a regular filtered flat bundle on .X �W;D �W / (Lemma 2.9). Let P be any
point of D�W , and let .UP ; z1; : : : ; zn/ be a holomorphic coordinate neighbourhood
such that z�1

1
.0/ D UP \D and UP \W D ∅. Due to Lemma 6.2, we have the

unique filtration F of H.LjUPnD/'H.L/ corresponding to .E�;r/jUP
. Due to the

uniqueness, it is independent of the choice of P and UP .

Let u D .u1; : : : ;ur / be a frame of H.L/ compatible with the filtration F and the
generalized eigen decomposition with respect to the monodromy around D . For
any real number b 2 R, we construct v.b/D

�
v1.b/; : : : ; vr .b/

�
as above. Then for

any P 2 D �W , v.b/ gives a holomorphic frame of bEjUP
compatible with the

filtration due to Lemma 6.3. Hence, each vi.b/ gives a section of bEjX�W . Due to
the saturatedness of .E�;r/, vi.b/ gives a section of bE on X . It is easy to see that
v.b/ gives a frame of bE , and in particular, bE is locally free. Hence, .E�;r/ is a
regular filtered flat bundle on .X;D/.

It is easy to see that ˆ is equivalent for general .X;D/. Let us see the fully faithfulness
of ˆ. The faithfulness is obvious. Let f W ˆ.L1�/ �! ˆ.L2�/ be a morphism in
Csat

1
.X;D/. We have the map gW L1 �! L2 corresponding to f . We would like to
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check that g preserves the filtrations iF . Let P be any point of Dıi , and .U; z1; : : : ; zn/

be any coordinate neighbourhood such that U \D D z�1
1
.0/. Applying Lemma 6.3,

we obtain that g preserves the filtration iF on U nDi . Thus, we obtain the fully
faithfulness.

Let us show the essential surjectivity. Let .E�;r/ be a saturated filtered flat sheaf on
.X;D/. Let L denote the local system corresponding to .E�;r/jX�D . We have only to
construct the appropriate filtrations iF of LjUinD on appropriate neighbourhoods of Di .
Let P be any point of Dıi , and .UP ; z1; : : : ; zn/ denote any coordinate neighbourhood
around P such that z�1

1
.0/ D UP \D . Due to Lemma 6.2, we obtain the unique

filtration iF of LjUPnD . We obtain the filtration iF on
S

P2Dı
i

UP by gluing them,
due to the uniqueness. Thus, we obtain that ˆ is essentially surjective, and hence
equivalent.

6.2.3 The parabolic first Chern class We have the Z–action on R�C given by
n � .a; ˛/D .aCn; ˛�n/. It induces the action of Z on KMS.E�; i/. The following
lemma is clear from the construction of ˆ.

Lemma 6.4 We have the bijective correspondence of the sets KMS.ˆ.L�/; i/=Z and
KMS.L�; i/, which is given by .a; ˛/ 7�! .b; !/D

�
aCRe˛; exp.�2�

p
�1˛/

�
for

.a; ˛/ 2KMS.ˆ.L�/; i/. Moreover, rank iGrF;E
.a;˛/
D rank iGrF ;E

.b;!/
.

Corollary 6.5 ˆ preserves the parabolic first Chern classes, ie,

par-c1.L�/D par-c1.ˆ.L�//:

In particular, when X is a smooth irreducible projective variety with an ample line
bundle L, the �L –stability of L� and �L –stability of ˆ.L�/ are equivalent.

Proof Recall Lemma 3.23. It is shown for the case in which .E�;r/ is graded
semisimple and X is two dimensional. However, the graded semisimplicity condition
is not necessary as is explained in Remark 3.21. The assumption dim X D 2 is also not
necessary, due to the Lefschetz theorem. Then the claim of the corollary follows from
Lemma 3.23 and the correspondence of the KMS–spectrums given in Lemma 6.4.

6.2.4 The second parabolic Chern character

Lemma 6.6 Let X D �n D f.z1; : : : ; zn/ j jzi j < 1g, and D D D1 [ D2 , where
Di D fzi D 0g. Let .E�;r/ be a saturated regular filtered flat sheaf on .X;D/.

(1) .E�;r/ is a regular filtered flat bundle on .X;D/.
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(2) Let c be any element of R2 , and let cE denote the c–truncation. Let L� be the
corresponding filtered local system on .X;D/. Then we have the equality:

rank 2GrF ;E
.b;!/.L/D rank 2GrF;E

.a;˛/.cE/:

Here the meaning of the notation is as follows:
� bD .b1; b2/ and !D .!1; !2/ denote elements of R2 and .C�/2 respec-

tively.
� aD .a1; a2/ and ˛D .˛1; ˛2/ denote elements of R2 and C2 respectively,

determined by the conditions ci � 1< ai � ci , exp.�2�
p
�1˛i/D !i and

ai CRe˛i D bi .

Proof Let L� D .L; 1F ; 2F/ be as above. Let u be a frame of H.L/ compatible
with the filtrations kF .k D 1; 2/ and the generalized eigen decompositions of H.L/.
For each uj and the divisor Dk , the numbers ˛k.uj / and ak.uj / are determined as
before. For the monodromies around Dk , we obtain the nilpotent endomorphism Nk as
before. The holomorphic section vj is given by vj WD exp

�P
log zk.˛k.uj /CNk/

�
.

Let nk.uj / be the numbers determined by the condition ck � 1< nk.uj /C ak.uj /�

Re˛k.uj /� ck . We put

zvj WD
Y

kD1;2

z
�nk.uj /

k
� vj :

Then zvD .zv1; : : : ; zvr / gives the frame of cEjX�.D1\D2/ . Due to the saturatedness,
zvD .zv1; : : : ; zvr / gives the frame of cE , and hence cE are locally free. Thus, the first
claim is proved. The frame zv is compatible with iE and iF , and we have kdegF .zvj /D

ak.uj /�Re˛k.uj /C nk.uj / and zvj jDk
2 kE.˛k.uj /� nk.uj //. Thus, the second

claim follows.

Let X be a smooth irreducible complex projective variety with an ample line bundle
L, and let D be a simple normal crossing hypersurface.

Corollary 6.7 Let .E�;r/ be a saturated regular filtered flat sheaf on .X;D/, and let
L� denotes the corresponding filtered local system. Then the following holds:Z

X

par-ch2;L.L�/D
Z

X

par-ch2;L.E�/

Corollary 6.8 Let L� be a �L –stable filtered local system on .X;D/. Then the
Bogomolov–Gieseker inequality for L� holds:Z

X

par-ch2;L.L�/�
R
X par-c2

1;L
.L�/

2 rankL
:
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Proof Recall that saturated regular filtered flat shaves are regular filtered flat bundles in
codimension two (Lemma 2.9). Hence, the claim follows from Corollary 6.5, Corollary
6.7 and Corollary 3.20.

Corollary 6.9 Let Cpoly
1

be the category of �L –polystable regular filtered flat bundles
on .X;D/ with trivial characteristic numbers, and let zC poly

1
be the category of �L –

polystable filtered local systems on .X;D/ with trivial characteristic numbers. Then
the functor ˆ naturally induces an equivalence of these categories.

Proof We have only to remark that saturated �L –stable regular filtered flat sheaves
with trivial characteristic numbers are regular filtered bundles (Theorem 5.17).

Remark 6.10 By a result in [15] and the existence of a pluri-harmonic metric for
ˆ.L�/, the filtrations iF for �L –stable filtered local systems L� with trivial charac-
teristic numbers satisfy some compatibility around the intersection points of D .
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