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Hyperbolic cusps with convex polyhedral boundary

FRANCOIS FILLASTRE
IVAN IZMESTIEV

We prove that a 3—dimensional hyperbolic cusp with convex polyhedral boundary
is uniquely determined by the metric induced on its boundary. Furthermore, any
hyperbolic metric on the torus with cone singularities of positive curvature can be
realized as the induced metric on the boundary of a convex polyhedral cusp.

The proof uses the discrete total curvature functional on the space of “cusps with
particles”, which are hyperbolic cone-manifolds with the singular locus a union of
half-lines. We prove, in addition, that convex polyhedral cusps with particles are rigid
with respect to the induced metric on the boundary and the curvatures of the singular
locus.

Our main theorem is equivalent to a part of a general statement about isometric
immersions of compact surfaces.

57TM50; 53C24

1 Introduction

In Section 1.1 we state the results, Section 1.2 puts them in a more general context,
and Section 1.3 gives a sketch of the proof and a plan of the paper. Precise definitions
will be given in Section 2.

1.1 Statements

Let M ~ T x[0,4+00) be a convex hyperbolic 3—manifold with a cusp and with
piecewise geodesic boundary. We call it a convex polyhedral cusp; see Definition 2.1
for a precise definition. The induced metric on dM is a hyperbolic metric on the
torus T with conical singularities of positive singular curvature. The main result of
this paper is that the metric on M is uniquely determined by the metric on dM :

Theorem A Let g be a hyperbolic metric with conical singularities of positive singular
curvature on the 2—torus T . Then there exists a convex polyhedral cusp M such that
oM with the induced metric is isometric to (T, g). Furthermore, M is unique up to
isometry.
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This theorem can be viewed as a statement about isometric immersions. A convex
parabolic polyhedron is a pair (P, G), where P is a convex polyhedron in H?, and
G is a discrete subgroup of Iso™ (H?) that acts freely cocompactly on a horosphere
and leaves P invariant. Figure 1 shows an example of a convex parabolic polyhedron,
whose vertices form an orbit of the group G . For any convex parabolic polyhedron
(P, G), the quotient P/G is a convex polyhedral cusp. Conversely, the universal
cover of a convex polyhedral cusp is isometric to a convex parabolic polyhedron. Thus
Theorem A says that each hyperbolic metric on T with conical singularities of positive
singular curvature can be uniquely realized as the boundary of a convex parabolic
polyhedron:

Theorem A' Let g be a hyperbolic metric with conical singularities of positive singu-
lar curvature on the torus T . Then there exists a unique up to ambient isometry convex
parabolic polyhedron (P, G) such that 0P /G is isometric to (T, g).

This is a part of a general statement about polyhedral realization of metrics on compact
surfaces; see Section 1.2.

Figure 1: A simplest convex parabolic polyhedron in the Klein projective model

The uniqueness part of Theorem A is a rigidity statement: two convex polyhedral cusps
with isometric boundaries are isometric. Compare this with the Cauchy—Alexandrov
theorem on rigidity of convex polytopes [9; 2]. We prove also the corresponding
infinitesimal rigidity result: any nontrivial first-order deformation of the metric on M
in the class of complete hyperbolic metrics induces a nontrivial first-order deformation
of the metric on dM .
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Theorem B Convex polyhedral cusps are infinitesimally rigid.
Theorem B' Convex parabolic polyhedra are parabolically infinitesimally rigid.

For definition of parabolic infinitesimal rigidity see Section 5.3.

Our method involves study of convex polyhedral cusps with particles. These are cone-
manifolds that are very much like convex polyhedral cusps but have cone singularities
along half-lines (the particles) that start at the cone singularities of the boundary.

For cusps with particles we prove a global rigidity statement:

Theorem C Two convex polyhedral cusps with particles with the same metric on the
boundary and the same singular curvatures are isometric.

1.2 Related work

1.2.1 Towards a general realization statement Theorem A'is similar to a famous
theorem of A D Alexandrov:

Theorem 1.1 (A D Alexandrov [1; 2]) Let g be a metric of constant curvature K
with conical singularities of positive singular curvature on the 2—sphere S. Then
(S, g) can be realized as a convex polyhedral surface in the 3—dimensional Riemannian
space-form of curvature K. The realization is unique up to an ambient isometry.

Clearly, the positivity condition on the singular curvatures is necessary if one wants to
realize the given metric on a convex polyhedral surface in a Riemannian space-form. In
Lorentzian space-forms, convex space-like polyhedral surfaces can have singularities
of negative singular curvature.

Theorem 1.2 (Rivin [24], Rivin—Hodgson [16]) Let g be a spherical metric with
negative cone singularities on S and lengths of closed geodesics greater than 25 . Then
(S, g) can be uniquely realized as a convex polyhedral surface in de Sitter space.

Actually, the uniqueness statement proved in [16] is slightly weaker; see Schlenker [29].

Given a surface of genus higher than one equipped with a cone metric, one can try to
realize its universal cover as the boundary of a so called convex Fuchsian polyhedron.
Corresponding realization theorems are proved by the first author [12] for hyperbolic
space and by Schlenker [26] and the first author [11] for Lorentzian space-forms.

The remaining case of metrics on the torus has two parts: hyperbolic metric with
positive cone singularities and spherical metric with negative cone singularities. The
former is done in the present paper, whereas the latter is the subject of a forthcoming
paper [14]. Putting all together leads to a solution of the following problem.
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Problem 1 Let g be a metric of constant curvature K with conical singularities of a
constant sign ¢ € {—, 4+} on a compact surface S. In the case K =1, & = — we require
the lengths of contractible geodesics to be > 2. Can the universal cover of (S, g) be
uniquely realized in Mg as a convex polyhedral surface invariant under the action of a
representation of 71 (S) in a subgroup of Iso™ (M ) acting freely cocompactly on a
totally umbilical surface?

Here M 1—; is the Riemannian space-form of curvature K, and M is the Lorentzian
space-form of curvature K. See also the introduction in [12].

As an extension of Problem 1, one can allow the surface S to have boundary, and,
in the case K = —1 the metric g to have cusps. The case of a hyperbolic metric
with positive cone singularities, cusps and geodesic boundary was done by the first
author [13]. The case of a Euclidean metric on a disk with positive cone singularities
and convex piecewise geodesic boundary is Alexandrov’s convex cap theorem; see
Alexandrov [2], Volkov [34] and Izmestiev [18].

A more traditional way to state Theorem 1.2 is in terms of the dual metric of a convex
hyperbolic polyhedron, which is obtained with the help of the Gauss map [16]. If
the combinatorics of the polyhedron is known, then the dual metric is defined by the
values of the dihedral angles. This implies Andreev’s Theorem [4] about compact
acute-angled hyperbolic polytopes; see Hodgson [15].

A motivation for Alexandrov’s theorem was its smooth counterpart known as Weyl’s
problem. There, g is a Riemannian metric on the 2—sphere S with Gaussian curvature
of g greater than K everywhere. The case of smooth metrics on surfaces of genus
higher than one was done by Schlenker [20]. The case of smooth metrics on the torus
(the smooth analog of our Theorem A and of the result in our forthcoming paper [14])
is not done, as far as we know. However, Theorems 0.1 and 0.2 from Schlenker [30]
imply that a different realization is possible: metrics on the torus with appropriate
bounds on the Gaussian curvature can be realized as the induced metric, respectively
dual metric, of the boundary of a solid torus equipped with hyperbolic metric.

1.2.2 Hyperbolic manifolds with convex polyhedral boundary Here we restrict
our attention to the hyperbolic cases of theorems above. A reformulation of Theorem
1.1 is that each hyperbolic cone metric on the sphere with singularities of positive
curvature can be uniquely extended to a hyperbolic metric with a convex polyhedral
boundary on the ball.

In the same way, the hyperbolic realization theorem for genus > 1 by the first author [12]
says that the metric inside a ‘“Fuchsian manifold” with convex polyhedral boundary
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is uniquely determined by the metric on the boundary. Both are special cases of the
following statement.

Problem 2 Let M be a compact connected 3—manifold with boundary, and let M
admit a complete hyperbolic convex cocompact metric. Can each hyperbolic cone metric
on dM with singularities of positive curvature be uniquely extended to a hyperbolic
metric on M with convex polyhedral boundary?

In the case of smooth strictly convex boundary the analog was proved in Schlenker [30]
(the case of the ball should follow from the works of Alexandrov and Pogorelov). In both
polyhedral and smooth cases the same problem can be posed for geometrically finite
manifolds. Theorem A provides the simplest polyhedral case of such generalization.
Similar questions can be posed about the dual metric on the boundary. In the smooth
compact case the dual metric is simply the third fundamental form, and the problem
was solved also by Schlenker [28; 30] and Labourie and Schlenker [20].

1.2.3 Manifolds with particles The term “manifold with particles” comes from the
physics literature, where the manifolds are Lorentzian and the singularities are along
time-like geodesics. The definition can be naturally extended to certain hyperbolic cone-
manifolds with singularities along infinite lines; see eg Krasnov and Schlenker [19],
Moroianu and Schlenker [23] and Bonsante and Schlenker [7]. By analogy, we have
adopted the same terminology for our “cusps with particles”.

Theorem C states that a convex polyhedral cusp with particles is uniquely determined
by the metric on its boundary and the singular curvatures along the particles. One can
ask what boundary metric and particles curvatures can be realized.

Problem 3 Let g be a hyperbolic cone metric on T with # singularities of positive
curvature. What are the necessary and sufficient conditions on the numbers k1, . .., &y
so that there exists a cusp with particles of curvatures kq,...,k; and with convex
polyhedral boundary isometric to g?

One obvious condition on (k;) is Y 7_; ki = 0; see Lemma 2.11.

1.2.4 Weakly convex star-shaped parabolic polyhedra A star-shaped parabolic
polyhedron is a pair (P, G), where P C H?3 is the cone with the apex ¢ € JH3 over a
polyhedral surface that projects bijectively onto horospheres with center ¢, and G is a
discrete subgroup of Iso™ (H?) that acts freely cocompactly on horospheres with center
¢ and leaves P invariant. Clearly, every convex parabolic polyhedron is star-shaped,
but the converse does not hold.
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A star-shaped parabolic polyhedron is called weakly convex if its vertices are vertices
of some convex polyhedron.

By using the argument of Schlenker [27], we prove the following theorem.

Theorem D Weakly convex star-shaped parabolic polyhedra are parabolic infinitesi-
mally rigid.

1.3 Sketch of the proof and plan of the paper

We prove Theorem A by the variational method. The variational method consists
in identifying the object we are looking for with a critical point of a functional. If
a concave functional on a convex domain attains its maximum in the interior, then
the maximum point is the unique critical point. This yields both the existence and
uniqueness statement for the desired object.

The domain that we consider is the space M (T, g) of convex polyhedral cusps with
particles and with boundary (T, g). A cusp with particles is glued from semi-ideal
pyramids with the common ideal apex so that the pyramids allow a consistent truncation
by horospheres. A truncation yields a collection (/;);cx of truncated particle lengths,
one for each singular point i € . Change of a truncation results in adding a common
constant to all of the /;. We call the corresponding equivalence class [/] the particle
lengths.

Section 3 contains two important results. First, we show that for a given metric g on
the boundary, a convex polyhedral cusp with particles is uniquely determined by its
particle lengths [/]. That is to say, no two convex cusps with particles with different
face structures have the same particle lengths. Second, we show that M(T, g) is
a compact convex subset of R¥/(1), where (1) is the vector 1—space spanned by
(1,1,...,1) eR~,

The functional on M(T, g) is given by the formula
S(M) ==2Vol(M) + Y hiki + _ Le(r —6,).

Here the first sum ranges over all singularities of the metric g, and «; denotes the
singular curvature at the i —th particle. The sum does not depend on the choice of a
truncation due to ) k; = 0. The second sum is of a similar nature: here £, is the length
of a boundary edge e, and 6, is the dihedral angle at this edge. Functional S is the
discrete analog of the total scalar curvature, which is also known as the Hilbert—Einstein
functional.
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Schlifli’s formula implies
aS

oh;
Thus a critical point of S corresponds to a convex polyhedral cusp with vanishing
curvatures of particles. An explicit computation of derivatives shows that the Hessian of
S is negatively semidefinite. Although at some points the Hessian might be degenerate,
it turns out that the functional § is strictly concave on M(T, g). The functional S is
investigated in Section 4.

Ki.

Proofs of Theorem A and Theorem D are given is Section 5. All of them use either the
nondegeneracy of the Hessian or the strict concavity of S'.

1.4 Remarks

In the physics literature, the functional ) A;k; for a manifold built up from Euclidean
simplices is known as the Regge functional. In mathematics, the boundary term
> Le(w — 6,) appeared in the works of Steiner and Minkowski. Minkowski also
showed that this is the correct discrete analog of the total mean curvature of the
boundary of a convex body. In the smooth case, Blaschke and Herglotz [5] suggested
to use the Hilbert—Einstein functional to approach Weyl’s problem, which is a smooth
analog of Alexandrov’s theorem in R3: show that any convex Riemannian metric on
the sphere is uniquely realized as the boundary of a convex body. Recently, Michael
Anderson [3] proposed an approach to the geometrization of 3—manifolds via scalar
curvature type functionals.

The variational method used in the present paper was earlier applied by the second
author [18] to prove the existence and uniqueness of a Euclidean convex cap with
given metric on the boundary. Functional .S was also used by Bobenko and the second
author [6] to give a new proof of Alexandrov’s theorem in R3. In [6], the matter was
complicated by the fact that .S was neither concave nor convex.

An alternative method of proving realization statements like Theorems 1.1 and 1.2
(see also the first author’s papers [12; 11]) is the deformation method, also known as
Alexandrov’s method. The idea is to consider the map between the space of convex
polyhedral surfaces and the space of cone metrics that associates to a surface its induced
metric. The key point is to prove the local rigidity: a deformation of a surface always
induces a deformation of a metric. In other words, the map “induced metric” is a
local homeomorphism. Then, by topological arguments, this map is shown to be a
global homeomorphism. Note a different role of the infinitesimal rigidity in the two
approaches. Being a key lemma in the deformation method, it is a byproduct in the
variational method (nondegeneracy of the Hessian at a critical point).
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The variational method is constructive: a computer program can be written that finds
the critical point of a functional numerically. For Alexandrov’s theorem in R3, such a
program was created by Stefan Sechelmann [31].

Acknowledgments We are grateful to Cyril Lecuire and Jean-Marc Schlenker for
useful and interesting conversations and to the referee for valuable suggestions. We
thank Stefan Sechelmann for making Figure 1.

Visits of the first author to the TU Berlin and of the second author to the University of
Neuchatel have facilitated the collaboration. We thank both institutions for hospitality.

The first author was partially supported by Schweizerischer Nationalfonds 200020-
113199/1. The second author was supported by the DFG Research Unit 565 “Polyhedral
Surfaces”.

2 Definitions and preliminaries

In Section 2.1 we define convex polyhedral cusps. These are hyperbolic cusps whose
metric in the neighborhood of boundary points is modelled on convex polyhedral cones.
A convex polyhedral cone is the intersection of finitely many halfspaces in H? whose
boundary planes pass through one point. Then we define convex parabolic polyhedra
and show that they are universal covers of convex polyhedral cusps. In Section 2.2
we define hyperbolic cusps with particles as cone-manifolds glued from semi-ideal
pyramids. Finally, Section 2.3 contains some hyperbolic geometry needed in the sequel.

2.1 Cusps and parabolic polyhedra

Definition 2.1 A hyperbolic cusp with boundary is a complete hyperbolic manifold
of finite volume homeomorphic to T x [0, +00). We say that the cusp has a convex
polyhedral boundary if every point on the boundary has a neighborhood isometric to a
neighborhood of a point on the boundary of a convex polyhedral cone in H?.

We call hyperbolic cusps with convex polyhedral boundary briefly convex polyhedral
cusps. Clearly, the induced metric on the boundary of a convex polyhedral cusp is
a hyperbolic metric with cone singularities of positive curvature. It is easy to define
vertices, edges and faces of a convex polyhedral cusp. Vertices are exactly the cone
singularities of the metric on the boundary. Every edge is a geodesic joining the vertices.
Edges cut the boundary dM of the cusp M into faces, which are maximal connected
open subsets of dM that bound M geodesically.
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Definition 2.2 A convex parabolic polyhedron in H? is a pair (P, G), where P C H3
is the convex hull of a discrete set of points, and G is a discrete subgroup of Iso™t (H?)
that acts freely cocompactly on a horosphere in H?3 and leaves P invariant.

Clearly, the vertex set of P is G—invariant. Since it is discrete, it is the union of finitely
many orbits of the group G . The simplest example of a convex parabolic polyhedron
is the convex hull of one orbit; see Figure 1.

The group G has a unique fixed point ¢ in 9H?. Clearly, c lies in the closure of P.
We call ¢ the center of the polyhedron P.

Lemma 2.3 Let (P, G) be a convex parabolic polyhedron. Then the quotient space
P/G is a convex polyhedral cusp.

Proof The group G acts on a horosphere by orientation preserving Euclidean isome-
tries. Since this action is by assumption free and cocompact, we have G = Z? and
B/G ~ T x[0,+00) for any horoball B centered at ¢. Since the vertex set of P is
the union of finitely many orbits, there are horoballs B; and B, centered at ¢ such
that By C P C B,. It is easy to see that any geodesic passing through ¢ intersects
the boundary of P at exactly one point. It follows that P/G is homeomorphic to
T %[0, 4+00). From P C B; it also follows that P/G has finite volume. The manifold
P/G is complete since it is a closed subset of a complete manifold B,/ G . Finally,
P /G has convex polyhedral boundary because P has. m|

Let M be a convex polyhedral cusp. By definition it is locally convex, hence it is convex
[8, Corollary 1.1.3.7.]. It follows that the developing map D: M — H? is an isometric
embedding [8, Proposition 1.1.4.2.]. The action of the fundamental group 7; M =~ 72
on M by deck transformations yields a representation p: 7wy M — Iso™ (H?).

Lemma 2.4 The pair (D(ﬂ ), p(r1 M)) is a convex parabolic polyhedron.

Proof Clearly, D(]\? ) is a convex polyhedron homeomorphic to the half-space. Its
vertices form a discrete set, because they correspond to vertices of M , whose number
is finite.

The thin part of M contains a totally umbilic torus C with Euclidean metric. It follows
that the developing map maps the universal cover of C to a horosphere. The group
p(y M) acts on D(C) freely with a compact orbit space C. The lemma follows. O

Corollary 2.5 Every face of a convex polyhedral cusp is a convex hyperbolic polygon.

Lemma 2.3 and Lemma 2.4 imply that (P, G) — P/G is a one-to-one correspondence
between the equivariant isometry classes of convex parabolic polyhedra and isometry
classes of convex polyhedral cusps. Thus Theorem A is equivalent to Theorem A'.
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2.2 Cusps with particles

Definition 2.6 A semi-ideal pyramid in H?3 is the convex hull of a convex polygon A
and a point a € dH3 such that a is not coplanar to 4. The point a is called the apex
of the pyramid, the polygon A its base.

A convex polyhedral cusp can be decomposed into semi-ideal pyramids with a common
apex. Indeed, let M be a cusp and let (P, G) be the corresponding parabolic polyhe-
dron. If ¢ € 9H3 is the center of P, then P is composed from semi-ideal pyramids
with the apex ¢ over the faces of P. Clearly, this decomposition of P descends to a
decomposition of M = P/G. In the example on Figure 1, the decomposition of M
consists of a single isosceles quadrangular pyramid whose faces are identified according
to the standard gluing of a torus from a parallelogram.

Let us see when a gluing of pyramids defines a convex polyhedral cusp.

Definition 2.7 A cuspidal complex is a collection of semi-ideal pyramids glued iso-
metrically along some pairs of faces so that combinatorially the gluing is represented
by the cone with an ideal apex over a polyhedral decomposition of the torus.

If the pyramids of a cuspidal complex fit well around their lateral edges, then the result
of the gluing is a hyperbolic manifold with polyhedral boundary. This manifold can be
noncomplete as the following example shows. In the Poincaré half-space model, take a
semi-ideal pyramid with vertices (1,0, 1), (0,1,1), (2,0,2), (0,2, 2), and the point
at infinity as the apex. Clearly, the semi-ideal triangles in each pair of opposite sides of
the pyramid are isometric. When we identify them, we get a noncomplete manifold
homeomorphic to T x [0, +00).

For a semi-ideal pyramid A, choose a horoball B centered at the apex of the pyramid
and disjoint with its base. The body A \ B is called a truncated semi-ideal pyramid or
a horoprism.

Definition 2.8 A cuspidal complex is called compatible if every pyramid of the
complex can be truncated so that the gluing isometries restrict to the faces of the
truncated pyramids.

Lemma 2.9 The manifold defined by a cuspidal complex is complete if and only if
the complex is compatible.
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Proof If the manifold is complete, then its thin part contains a cusp with totally
umbilic Euclidean boundary. Cutting this cusp off defines a compatible truncation of
the pyramids.

Conversely, assume that the complex is compatible. For every pyramid A; consider
the corresponding horoball sectors A; N B;. It is easy to see that the developing map
maps the union | J;(A; N B;) to a horoball in H3. Thus the manifold | J;(A; N B;) is
complete and so is the whole manifold defined by the complex. |

In general, a compatible cuspidal complex defines a cone-manifold whose singular
locus is contained in the union of half-lines that come from the lateral edges of the
semi-ideal pyramids. We call these half-lines particles.

Definition 2.10 A polyhedral cusp with particles is a hyperbolic cone-manifold defined
by a compatible cuspidal complex. A polyhedral cusp with particles is called convex
if and only if the total dihedral angle at every boundary edge is at most w. For a
boundary singularity i, denote by w; the total dihedral angle around the i —th particle.
The curvature of the i —th particle is defined as

Ki = 27‘[—6(),'.

A truncated polyhedral cusp with particles is defined in the same way as a polyhedral
cusp with particles, using horoprisms instead of semi-ideal pyramids.

Lemma 2.11 The curvatures of a convex polyhedral cusp with particles satisty

ZK;' =0.

iex

Proof Truncate the cusp. The induced metric on the surface of truncation is a flat
metric with conical singularities on the torus. Clearly, the curvatures of the singularities
are exactly the «;. The lemma follows from the Gauss—Bonnet formula. |

We are interested in the cusps whose boundary is isometric to (T, g), where g is
a hyperbolic metric with conical singularities of positive singular curvatures on the
torus T.

Definition 2.12 We denote by M(T, g) the set of convex polyhedral cusps with
particles M with oM = (T, g). By Mu(T, g) we denote the set of truncated convex
polyhedral cusps with particles with the boundary (T, g).
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Formally speaking, an element of M(T, g) is a pair (M, f), where f: oM — (T, g)
is an isometry. It will be convenient to identify dM with the given metric torus (T, g),
so that we can omit mentioning f .

Theorem A is equivalent to say that in M(T, g) there is a unique cusp with vanishing
curvatures of particles. Note that we don’t fix an isometry between dM and (T, g) in
Theorem A. In this case, it does not really matter because the uniqueness is stated.

As in the case of a convex polyhedral cusp, the boundary of a convex polyhedral cusp
with particles consists of vertices, edges and faces. Unlike the case without particles,
faces of a cusp with particles can be non—simply connected, and there can be isolated
vertices, as the following example shows.

Example In the Poincaré half-space model, take the point ¢ = (0, 0, 1) and points b, ¢
on the Euclidean unit sphere centered at 0 so that » and ¢ lie at an equal distance from
a and the angle at the vertex a in the spherical triangle abc is < 5. The semi-ideal
pyramid with the base abc and the apex at the point at infinity has dihedral angles 7
at the edges ab and ac and an angle < 7 at bc. Take four copies of this pyramid
and glue them cyclically around the edge aco. The result is a semi-ideal quadrangular
pyramid with a particle. By identifying the pairs of its opposite sides, we obtain a
convex polyhedral cusp with particles. Its boundary contains two vertices, two loop
edges and a single face that looks as a punctured square.

More technically, an element of M (T, g) is defined by a subdivision of (T, g) and
by lengths of lateral edges of horoprisms over the faces of the subdivision. This is
spelled out in the following definition.

Definition 2.13 Let M, € M(T, g) be a truncated convex polyhedral cusp with
particles. Let T be a triangulation of (T, g) that refines the natural decomposition of
the boundary dM,,, and let /; be the length of the truncated particle with the endpoint
i € ¥, where X is the set of singularities of g. We associate to My, the pair (7, h),
where & stands for (/;);ex.

Similarly, to every M € M(T, g) we associate a pair (T, []), where (T, h) represents a
truncation of M , and [/] is the equivalence class under the relation 1 ~ /" < h} = h;+c
for all i and some constant c.

The equivalent class [/4] is called the particle lengths of M . The cusp M is isosceles
if it is made of isosceles semi-ideal pyramids, ie if [#] =0, ..., 0].

By a triangulation we mean a decomposition of (T, g) into open hyperbolic triangles
by geodesic arcs (edges of the triangulation) with endpoints in 3. We don’t impose
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any restrictions on the combinatorics, so that there may be loops and multiple edges,
and two triangles may have two edges in common, and two edges of a triangle may be
identified. An edge with endpoints i and j is denoted by i, a triangle with vertices
i, j and k is denoted by i jk. Because of what we just said, different edges or triangles
may obtain the same notation, and some letters in the notation may repeat. But this
should not lead to confusion.

2.3 Some hyperbolic trigonometry

Lemma 2.14 (Cosine law for semi-ideal triangles) Let B be a horodisk in the
hyperbolic plane and let i, j be two points not in B. Let h;, h;j, A be the distances
dist(i, B), dist(j, B), dist(i, j), respectively, and let p; be the angle between the
geodesic segment ij and the perpendicular from i to B. Then

cosh A — ehi—hi

1 —
M cos pi sinh A
Proof Go to the limit in the cosine law for the triangle with vertices i, j and third
vertex approaching the center of the horodisk. O

Lemma 2.15 Let B be a horodisk in the hyperbolic plane, and L be a line disjoint
with B. Then for every x € L we have

dist(x, B) = log cosh(dist(x, a)) + dist(a, B),

where a is the point on L nearestto B.

Proof Consider the semi-ideal triangle with vertices a, x and the center c(B) of B.
Apply Equation (1), taking a for i, x for j. We have cos p; =0 and A = dist(x, a).
Hence

cosh(dist(x,a)) = eMihi = exp(dist(x, B) —dist(a, B)),

and the claim follows. |
Lemma 2.16 Let i, j,k be three collinear points in H? such that j lies between i

and k. For a horodisk B that contains none of the points i, j, k, denote by h;, hj, hy
the distances dist(i, B), dist(j, B), dist(k, B), respectively. Then

h; sinhpu 4. n sinhA 5
=—— ¢4+ ————¢"F,
sinh(A + ) sinh(A + )
where A = dist(Z, j), u = dist(j, k).
Proof Let c be the center of B, and let pj, m — p; be the angles between the geodesic

ik and the perpendicular from j to dB. Compute cos p; by the Equation (1) from the
semi-ideal triangles ijc and jkc and equate the two expressions. O
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3 The space of convex polyhedral cusps with particles

In Section 3.1 we show that a convex polyhedral cusp with particles is uniquely
determined by the particle lengths [/] introduced in Definition 2.13. This identifies the
space of cusps M (T, g) with a subset of R”~1, where n is the number of singularities
of g. Section 3.2 contains several lemmas that are later used in Section 3.3 to prove
Proposition 3.15. The proposition says that M(T, g) is a compact convex subset of
R

Everywhere in this section we mean by a cusp a cusp with particles with polyhedral
boundary.

3.1 Particle lengths define a cusp

Recall that a truncated convex cusp was defined as a union of horoprisms. A horoprism is
a semi-ideal pyramid with a neighborhood of the ideal vertex cut off along a horosphere.
A horoprism has a hyperbolic base and a Euclidean base. The lateral edges of a
horoprism are orthogonal to its Euclidean base. The lengths of lateral edges are called
heights of the horoprism. Clearly, a horoprism is uniquely determined by the hyperbolic
base and the heights. In what follows, we consider only triangular horoprisms.

Cutting a truncated convex cusp into triangular horoprisms produces a pair (7, /),
where T is a geodesic triangulation of (T, g), and & = (h;);cx is the collection of
heights of the horoprisms, which at the same time are the truncated particle lengths in
the cusp. Occasionally, there is some freedom in the choice of 7', since it may be any
refinement of the canonical face decomposition of the cusp boundary.

Our goal is to prove:

Proposition 3.1 A truncated convex cusp is uniquely determined by its truncated
particle lengths.

In other words, if (7', /#) and (T’, h) are pairs associated with the truncated convex
cusps My, M/, respectively, then My = M|

tr» tre

The following definition introduces a concept that will be used through the whole
section.

Definition 3.2 The distance function of a truncated convex cusp My isamap (T, g) —

R that associates to every point on the hyperbolic boundary of M;; its distance from
the Euclidean boundary.

Geometry & Topology, Volume 13 (2009)



Hyperbolic cusps with convex polyhedral boundary 471

Due to Lemma 2.15 we know that in the interior of every face F of M, the distance
function has the form

2 x > log cosh(dist(x, a)) + b,
where b > 0 and « is a point in F or in the hyperbolic plane spanned by F.
We call a function of the form (2) on a subset of the hyperbolic plane a distance-like

function.

Definition 3.3 A function f: (T, g) — R is called piecewise distance-like function,
briefly PD function, if there exists a geodesic triangulation 7 of (T, g) such that f is
distance-like on every triangle of 7.

A PD function f is called Q—concave if for every geodesic arc y on (T, g) at every
kink point of the restriction f|, the left derivative is greater than the right derivative.
Figure 2 shows an example of a Q—concave PD function on the line.

Recall that a triangle ijk of T may have identifications on the boundary; so we mean
by a distance-like function on ijk a function induced from a distance-like function on
its development.

Figure 2: The graph of a Q—concave PD function
The following lemma is straightforward.
Lemma 3.4 The distance function of a truncated convex cusp is a Q—concave PD
function. Conversely, every positive Q—concave PD function is the distance function of

a unique truncated convex cusp.

Thus we can identify the space M(T, g) with the space of positive Q—concave PD
functions on (T, g).
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Definition 3.5 Let 7" be a geodesic triangulation of (T, g), and let h: X —>Rbea
function on the singular set of (T, g). By &7: (T, g) = R we denote the PD extension
of the function /2 with respect to the triangulation 7 .

The function iz; does not always exist, but it is easy to see that if it does, then it is
well-defined and unique.

Extending a function 4: ¥ — R to a positive Q—concave PD function is equivalent
to constructing a truncated convex cusp with truncated particle lengths /. Therefore
Proposition 3.1 will follow from:

Lemma 3.6 Let /i be a function on X and let T, T " be two geodesic triangulations of
(T, g). If both functions ht and hp, exist and are Q—concave, then they are equal.

Proof Let x be an intersection point of an edge e of T and an edge ¢’ of 7. Then
the function il;: is distance-like on e, and the function E}// is PD Q—concave on e.
By Lemma 3.10, this implies }TTJ/(x) ;jz; (xx). Considering the edge ¢’ instead of e,
we get an inverse inequality. Hence /i (x) = ii7/(x). The union of edges of 7" and
T’ subdivides (T, g) into hyperbolic polygons such that both functions hy and hy
are distance-like on every polygon of the subdivision. As we just proved, . hT(x) and

hT/(x) take equal values at the vertices of the polygons. It follows that hT = hT/

Proposition 3.1 is proved. It implies that the map

Mtr(T9g) - RE
(T h) — h

is an embedding. Changing a truncation of a convex cusp results in adding a common
constant to all of the truncated particle lengths. Thus we have an embedding

M(T, g) — R¥/(1)
(T.[h]) + [h],
where [/] is an equivalence class under (h1,...,hy) ~ (hy+c,..., hy +¢).

For a geodesic triangulation 7" of (T, g), denote by M . (T, g) the space of truncated
convex cusps that have a representative of the form (T, h). In other words, M, €
Mt{ (T, g) if and only if M, can be cut into horoprisms over the triangulation 7". We
have a decomposition

M(T, g) = UM (T, g).

Clearly, we have a similar decomposition for M(T, g), where

MT(T, g) = MI(T. g)/(1).
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Let us denote by Ji the distance function of the truncated convex cusp with truncated
particle lengths /4 = (h;);ex . In other words, / is the unique Q—concave PD extension
of the function A: i — h;.

3.2 Lemmas

We put here lemmas used in the proof of Section 3.3.

Lemma 3.7 The distance function /i of a truncated convex cusp satisfies the inequality
|h(x) —h(y)| < dist(x, y)

for any x, y € T, where dist denotes the shortest path distance for the metric g. In
particular,
max 4 —minh < diam(7, g).
12 u! (T, g)
Proof This follows from the fact that the gradient of the distance function is always
smaller than 1. O

Lemma 3.8 The space Mg (T, g) is nonempty only for finitely many geodesic trian-
gulations T of (T, g).

Proof The proof proceeds in two steps. First, we show that there is a constant L
depending on the metric g, such that no triangulation associated with a cusp with
boundary (T, g) has an edge of length greater than L. Second, we note that there are
only finitely many geodesic arcs of length < L between points of . Then the number
of geodesic triangulations with edges of length < L is also finite and we are done.

Let / be the distance function of a truncated convex cusp, and let e be an edge
of an associated triangulation. The restriction of Ji to e is a function of the form
log cosh(x —a) + b, where x is the arc length parameter on e. It can easily be shown
that for any C € R there exists an L € R such that

max h —minh > C,
e e

as soon as the length of e is greater than L. Put C = diam (T, g). Then the length of
e cannot be greater than L due to Lemma 3.7.

The lengths of geodesic arcs between the points of 3 form a discrete subset of R by
the argument from [17, Proposition 1]. O

Remark Lemma 3.7 and Lemma 3.8 hold also for nonconvex polyhedral cusps with
particles.
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Definition 3.9 For two points i, j on the real line and two real numbers A;, h;, let

—~

hij: R—->R

denote the distance-like function that takes values 5;,/; at i and j, respectively.
Note that the function iT,; exists if and only if |h; —hj| < dist(i, j).

Lemma 3.10 For any Q—concave PD function h on R such that 71(1') =h;, i[(j) = h;j
the following holds:

Z(x) > E}(x) forall x €[i, j],

h(x) < hij(x) forallx ¢[i, j].

Proof Consider the function /i — hij. There are numbers x| < Xp < --+ < X, and
ag, b, ..., ay, by such that

Zl[xm,xmm = log cosh(x — am) + bm

for all m from 0 to n, where we put xo = —00, X,4+1 = +00. Since logcoshx is a
convex function, (E —lle;; ), %411 18 @ monotone function for every m. Besides, since
h is Q—concave, h — h;j is Q—concave too. Thus, if # —h;; is monotone decreasing
(or constant) on [X;—1,Xm], then it is also monotone decreasing (or constant) on
[Xm, Xm+1]. Together with

(h=hij) @) = (h=hij)(j) =0
this implies that the function h —il;; is nonnegative on the interval [i, j] and nonpositive

outside of it. The lemma follows. O

Definition 3.11 Let fz(x) = log cosh(dist(x, @)) + b be a distance-like function on
a subset of H?. We call the distance dist(x, @) the slope of h at x and denote it by
slope, (/).

For a PD function / on the torus, slope,, (l‘zv) is defined in an obvious way, provided
that / is locally distance-like at x. Clearly, slope, (/) depends only on the gradient
norm of / at x, and it tends to oo as the gradient norm tends to 1.

Lemma 3.12 The slopes of the convex cusps with the boundary (T, g) are uniformly
bounded. That is, there exists a constant D € R such that

slope,, (}7) <D

for every Q—concave PD function I on (T, g) atevery point x € T .
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Proof Let us show that the lemma holds for log cosh D = diam(T, g). Assume the
converse, and let / and x be such that slope, (ﬁ) > D. On the geodesic that starts at x
and runs in the direction of —grad, (}7) take the point y at a distance D from x. If we
end up at a singular point before running the distance D, then perturb the point x so
that slope (h) is still greater than D . On the geodesic arc x y, consider functions h and
fixt x+, Where Dyt x+ 1s the distance-like function that coincides with hina neighborhood
of x. By Lemma 3.10, we have

h(y) < hxs ().

Due to slope, (i{) > |xy|, the function };;:L is monotone decreasing on xy. The
convexity of log cosh x implies

E(x) —l?;:r(y) > logcosh |xy| =logcosh D = diam(T, g).

Therefore /1 (x)— h (y) = diam(T, g) > dist(x, y) which contradicts Lemma 3.7. O

Let us generalize Definition 3.9 to the situation when 7, j € X are singular points of
(T, g) joined by a geodesic arc y. Then £;; is the distance-like function on y that
takes values h; and h; at i and j, respectively. Note that there are many arcs that join
i and j, so we need to specify y when we talk about h, j-Ifhe My(T,g) and y
is an edge of a triangulation associated with /, then h ij = h|y Also we might want
to extend function h, j beyond the point i . For this we consider a geodesic extension
of y beyond i. This is a geodesic ray from i that forms the angle & with ij. We
measure the angles around i modulo the cone angle «; at i, so the geodesic extension
is defined for «; < w as well. In general, there are two geodesic extensions (“to the
left” and “to the right”), and they coincide only if «; = 27” for some n.

Lemma 3.13 Let i, j,k,/ € . Choose geodesic arcs ik and jl and a geodesic
extension of ik beyond i. Suppose that the extension of ik intersects the arc jl at a
point m; see Figure 3. Then for every h € My (T, g) the following inequality holds:

3) hix(m) = hj(m).

In particular, let i, j € ¥ be such that there is a closed geodesic arc based at j that
bounds a disk in T such that i is the only singularity inside this disk. Then for every
h e My (T, g) the following holds:

4) hi = hj —logcosh {;j,

where {;; is the length of the geodesic arc ij that lies inside the disk. See Figure 3.
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Figure 3: To Lemma 3.13

Proof Consider the restriction of the Q—concave PD function h to the piecewise
geodesic arc kim. This is a PD function, and since the arc kim can be approximated
by geodesic arcs, it is also Q—concave. Then by Lemma 3.10 we have

h (m) < };,T/;(m).
By Lemma 3.10 applied to the arc j/, we have
him) = hjg(m).
Inequality (3) follows.
Let us derive (4) from (3). Consider the function
f(x) =logcosh(dist(x, 7)) + h;

on the singular disk bounded by the arc jj. We have h; = f(i). If also hj = f(j),
then we have . .

hij(m) = f(m) = h;j(m),
where m is the first intersection point of the geodesic extension of ij beyond i with
the arc jj. It is easy to see that h, j(m) is a monotone decreasing, and hi jj(m)isa
monotone increasing function of /; . Thus, since we have hij j(m) > hji jj(m) due to (3),
we must have /j < f(j), and this is exactly the inequality (4). ad

Lemma 3.14 Leti, j, k be three points on the real line such that j lies between i
and k. Then the function h,j (k) is a concave function of h;, hj, and the function
,k(]) is a convex function of h;, hy,.

Proof By Lemma 2.16,
hix(j) = log(ae™i + be"k)

with positive ¢ and b. The Hessian can easily be computed and shown to be positive
semidefinite. For /;; (k) one has a similar expression with one positive and one negative
coefficient. a
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3.3 Description of M(T, g2)

Here we prove the main result of this section. Recall that the space M (T, g) is
identified with a subset of RZ by associating to a truncated cusp the truncated particle
lengths & = (h;);ex . The space M(T, g) is thus identified with a subset of R¥ /(1).

Proposition 3.15 The space M (T, g) of convex polyhedral cusps with particles with
boundary (T, g) has the following properties:

(1) It is a compact convex subset of R* /(1) with nonempty interior.

(2) If all faces of a convex cusp M € M(T, g) are strictly convex hyperbolic
polygons (after developing on H? ), then M is an interior point of M(T, g).

(3) For a geodesic triangulation T of (T, g), let MT(T,g) c M(T,g) be the
space of cusps whose faces are unions of triangles from T . Then the decomposi-
tion

5) M(T, g) = JMT(T, )
T

is finite, and every MT (T, g) is a compact set with piecewise analytic boundary.

Proof M(T, g) # @: We claim that [0,...,0] € M(T, g), that is there exists an
isosceles cusp with particles with boundary (T, g). Furthermore, faces of this cusp
are the faces of the Delaunay tesselation of (T, g), where the Delaunay tesselation
of a surface with a cone metric is defined as the dual of the Voronoi tesselation; see
Thurston [32, Proposition 3.1]. To show this, let 7p be a Delaunay triangulation, that
is a refinement of the Delaunay tesselation of (T, g). Inscribe a triangle i jk of Tp in
a horosphere with center ¢. This gives an isosceles semi-ideal pyramid cijk. Let i/
be a triangle of Tp adjacent to ijk. Develop ij! into the hyperbolic plane spanned
by ijk. By the main property of Delaunay tesselations, the point / lies outside or on
the circumcircle of i jk. Hence, / lies outside or on the horosphere through 7, j and
k . It follows that the truncated length of ¢/ is larger than the truncated length of ci, ¢j
and ck . In order to make the pyramid cij/ isosceles, one has to rotate the triangle 7 j/
around the edge ij towards c. As a result, the total dihedral angle of the pyramids
cijk and cijl at the edge ij becomes < 7.

Property (3): The finiteness of the decomposition (5) is proved in Lemma 3.8. A
point [4] € R* /(1) lies on the boundary of M7 (T, g) if and only if the function I is
distance-like across some of the edges of 7. Clearly, for every edge this condition is
analytic. It remains to show that M7 (T, g) is compact. Embed a triangle i jk € T
into H3. The hyperbolic plane spanned by ijk divides the sphere at infinity in two
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open hemispheres. The space of semi-ideal pyramids with the base ijk is naturally
homeomorphic to any one of these hemispheres. For a point ¢ € dH? not coplanar with
ijk, call the slope to the pyramid cijk the maximum distance between the projection
of ¢ on the plane spanned by ijk and a point of the triangle i j k. Clearly, the slope
of cijk is the maximum slope of the corresponding distance function on ijk; see
Definition 3.11. For any D € R, the space of semi-ideal pyramids with slope < D is
compact. By Lemma 3.12, there exists D such that all pyramids in convex cusps with
boundary (T, g) have slopes < D. The conditions ¢;; < forall ij € T are closed
ones. Thus MT (T, g) is compact as a closed subset of a compact space.

Property (2): Let (T, h) be a pair associated with a truncation of M . There are two
types of edges of 7T : true edges that are edges of the cusp M and flat edges that were
added to refine the face decomposition to a triangulation. We want to show that there
exists an & > 0 such that 4’ € M (T, g) for all /" in R* at a distance < ¢ from h.
That is, for every such 4’ we want to find a triangulation 7" such that the function /7.,
exists and is Q—concave.

We obtain a triangulation T’ from the triangulation T by the flip algorithm. Let ij be
an edge of 7" such that h’T is not Q—concave across 7 j . We call such an edge a bad edge
of T'. If ij belongs to two different triangles ijk and ij/ of T and the quadrilateral
ikjl is strictly convex, then the edge ij can be flipped, that is replaced by the diagonal
kl. The flip algorithm produces a sequence of triangulations 7° = 7, T!, T2, ..,
where T"*! is obtained from 77" by flipping a bad edge of T”. If the algorithm
terminates at a triangulation 7" that has no bad edges, then we are done. But some
things might go wrong. First, the PD function /., might not exist for some n. Second,
it might be impossible to flip a bad edge; see Figure 4. And third, the algorithm might
run infinitely. Let us show that none of these occurs in our particular case.

J j

k

Figure 4: The two situations where the edge ij cannot be flipped

Clearly, the function },17; exists, if ¢ is sufficiently small. It is also easy to see that,
for small ¢, a true edge of 7' can never become bad and thus will never be flipped.
Thus the flip algorithm is performed independently inside every face. This implies
that every triangle of 7" is contained in a face of M, and thus the function /7.,
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exists, for small ¢. Since every face is a convex polygon, situations on Figure 4 cannot
occur, and a bad edge can always be flipped. The algorithm is finite since the function
h/T,, +1 is pointwise greater or equal than /7., and since every face has finitely many
triangulations.

Property (1): The space M(T, g) is compact since it is the union of finitely many
compact spaces, by Property (3). The Delaunay cusp constructed at the beginning of
the proof has convex faces and thus is an interior point of M(T, g) due to Property (2).
It remains to prove the convexity of M(T, g). We will show that M (T, g) is convex,
that is for every 1%, h' € M(T, g) and every 0 < A < 1 the point

W= (1 =0)h° + Ak
also belongs to M (T, g). Then M(T, g) is convex as a projection of M(T, g).

Since M(T, g) is closed, it suffices to prove h* € My (T, g) for all sufficiently
small A. Our proof of it uses the flip algorithm described in the proof of Property (2).

Let T be a triangulation associated with hO. If A is sufficiently small, then the function
h;& exists. The true edges of 7" will never be flipped, thus the flip algorithm is performed
independently inside every face of A9 . It follows that for every triangulation 7" that
appears during the algorithm, the function h)%n exists. Every face can be triangulated
in only finitely many ways, since otherwise infinitely many triangulations would be
associated with 4%, which contradicts Lemma 3.8. Hence the algorithm cannot run
infinitely. It remains to show that a bad edge can always be flipped.

Assume that ij is a bad edge in the situation on the left of Figure 4. Badness means
(©6) Iy, (m) < Iy (m),

where m is the intersection point of the lines ik and j/. On the other hand, by Lemma
3.13 for both 4% and 4! the opposite inequality (3) holds. By Lemma 3.14, ﬁ;;;(m)
is a concave and ﬁ;}(m) is a convex function on /; and /. This implies that the
inequality (6) is false and ij is not bad. If ij cannot be flipped because of the situation
on the right of Figure 4, then the same argument applies since the inequality (4) is a
convex condition on /; and /; . ]

Remarks A similar analysis of the space of “generalized” convex polytopes and
“generalized” convex caps was made in [6] and [18]. In the former case the distance
function was the (square of) the distance from a point to a plane in R?, in the latter case
it was the distance from a variable point in a plane to another plane in R3. Thus, instead
of log cosh, the distance-like functions in [6] and [18] were modelled on x2 and on ax
with a real parameter a € [—1, 1], respectively. In both cases one succeeded to describe
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the space of “generalized” objects explicitly by linear and quadratic inequalities on
coordinates.

The arguments from [6] and [18] cannot be carried out in the present paper because
the function }E from Definition 3.9 does not always exist. As a result, we have less
information on M(T, g). For example, we have no description of cusps with particles
that are boundary points of M(T, g).

It is now easy to prove Theorem A in the special case when the metric g has only
one singularity. Indeed, the isosceles cusp over the Delaunay tesselation of (T, g)
is convex; see the first paragraph of the proof of Proposition 3.15. The curvature «
of its only particle vanishes due to ) ; k; = 0. Thus it is a convex polyhedral cusp.
This cusp is unique, since the space M(T, g) consists of a single point. In the case
of one singularity the results of the subsequent sections have no real meaning. If
there are two singularities, then the space M(T, g) is a segment in R, there can be
different triangulations 7" such that M7T (T, g) is nonempty, and the things become
more interesting.

4 The discrete total curvature

In this section we define the discrete total curvature function S on the space M(T, g),
compute its derivatives and show that S is strictly concave.

4.1 Derivatives of the discrete total curvature

Definition 4.1 Let M € M(T, g) be a convex polyhedral cusp with particles. The
discrete total curvature of M 1is defined as

S(M) =—=2Vol(M) + > hiki + Y Le(w—6,).
iex ecE(M)

Here (h;);ex are the truncated particle lengths for an arbitrary truncation of M, £,
is the length of the edge e, and 8, is the dihedral angle of M at e. The second sum
ranges over the set £(M) of edges of M .

Choosing a different truncation of M does not change the values of «;, £, and 6, . The
truncated particle lengths /; are all changed by the same amount. Thus, by Lemma
2.11, the value S(M) is well-defined.
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Lemma 4.2 The function S is twice continuously differentiable on M (T, g). Its first
partial derivatives are:

o

The second partial derivatives of S have the properties:

® %S (>0 ifij € EM),
oh;oh; | =0 otherwise,
028 928
©) — =

ahiz i 8hiahj‘

Recall that M(T, g) c R¥/(1). So, by 3 h we mean the directional derivative in the
direction of [e;] = ¢; + (1), where ¢; is the i —th basis vector of R,

Proof Let T be a triangulation of (T, g) such that M € MT (T, g). Cut M into
semi-ideal triangular pyramids according to the triangulation 7T". If M is an interior
point of MT (T, g), then the triangulation T is associated to all cusps near M . By a
generalization of the Schlifli formula [22, page 294; 25, Theorem 14.5], we have

1 1
d Vol(M) = - > hidii — 3 > Ledb..
i e

This implies (7) in the case when M is an interior point of some M7T (T, g). In
the general case, let £ € R¥ be such that [ + t&] € M(T, g) for all sufficiently
small 7. Due to the piecewise analyticity of the boundaries of MT (T, g), there exists
a triangulation T" such that [# +t£] € MT (T, g) for all sufficiently small ¢. Therefore
the previous argument shows that

Zét’fz

iex

The same argument can be applied to show that S € C*(M(T, g)). Thus we can
concentrate on computing the derivatives SZ’ for M in the interior of some M7 (T, g).
This is reduced to computing the derivatives in a single semi-ideal pyramid. Introduce

notation for the angles as on Figure 5.
The angle w;jj can be viewed as a function of the angles p;; and p;x . Thus we have

(10) dw;jk _ dw;jk 3,01’1.
oh;  opy ok

Geometry & Topology, Volume 13 (2009)



482 Francois Fillastre and Ivan Izmestiev

Figure 5: Angles and lengths in two adjacent horoprisms (truncated semi-
ideal pyramids). The curved triangles are the Euclidean bases of the horo-
prisms.

From (1) we compute

dpij ehi—hi

dh;  sinh&;;sinp;;

From the link of the vertex i in the pyramid over i jk with the help of spherical sine
and cosine laws we compute

dwjjk _ cotayj
dpij — sinpij’
Substituting in (10), we obtain
dw;jk . ehi—hi cot
oh;j sinh £;; sin? Pij
0K; dw;  ehi—hi (cotarjj 4 cotaj;)
(11) — == - — .
oh;j oh;j sinh ¢;; sin” p;;j

Note that cota;; +cotaj; > 0 if a;j +aj; < 7, and vanishes if «;; +«a;; = . Since
oij + aj; = 0;j, this implies (8).

The Equation (9) is equivalent to

which is true due to 3 ; kj = 0. ]
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Remarks Note that the Equation (11) holds only if there is a unique edge between
the vertices i and j. In the case of multiple edges, one has to sum up the right hand
side of (11) over all edges between i and ;.

In general, S is not of class C*. For example, if 6;; = 7 and 6;; # 7 on Figure 5,

then
0 0k; 0 0k;

——— =0, t
dhy Ih; W on; oy,

£0

4.2 Concavity of the discrete total curvature

Let I'(M) be an embedded graph in (T, g) with vertex set ¥ and edge set £(M) that
consists of the edges of the convex polyhedral cusp with particles M .

Lemmza 4.3 The Hessian of the function S is negatively semidefinite. The nullspace
of (—al?ab;,) is spanned by the vectors vK = [h,'K]ieE defined as
i J

nK — 1, fori € K;
! 0, fori ¢ K,

where K C X is a connected component of I'(M).

2
Proof Denote a;; = al?—ash Due to (9), we have
1 J

2
Za,yx,-x,- =— Zaij(xi —Xj)°.
i,j i<j
Since a;; = 0 by (8), the Hessian is negatively semidefinite. By (8) again, the Hessian
vanishes on the vector x if and only if x; is constant over every connected component
of I'(M). |

As a consequence, S is a concave function on M(T, g). Points where the Hessian
is degenerate can exist indeed, as the example in Section 2.2 shows. However, in an
important special case we can show that the Hessian is nondegenerate.

Lemma 4.4 If M € M(T, g) is a convex polyhedral cusp, then the Hessian of S is
nondegenerate at M .

Proof The developing map maps M to a convex parabolic polyhedron; see Lemma
2.4. Since the 1-skeleton of a convex polyhedron is connected, the graph I'(M) is
also connected. By Lemma 4.3, the nullspace of the Hessian is spanned by the vector
v¥ which projects to zero in R¥/(1). ad
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Note that convex polyhedral cusps correspond to critical points of S due to (7).

Corollary 4.5 If M € M(T, g) is such that x;(M) =0 forall i € X, then
S(M)>S(M")
for every M' € M(T, g) different from M .

Although the Hessian of S can degenerate at some points in M (T, g), the following
lemma holds.

Lemma 4.6 The function S is strictly concave on M(T, g), that is
S[th+ (1 —1)h'] > tS[h]+ (1 —1)S[h']
for all [h] # [h'] and all ¢ € (0, 1).

Proof Assume this is not the case. Then there exist [/] # [A'] such that S is linear
on the segment joining [/] and [A’]. By choosing a subsegment, if necessary, we can
assume [/1],[i'] € MT (T, g) for some triangulation 7. This implies that the graph
' = T[h]UT[/'] is embedded in (T, g).

Due to the linearity of S between [h] and [/], the vector [’ — h] belongs to the
nullspace of the Hessian at both [A] and [A’]. Lemma 4.3 implies that the coordinate
difference /1 — h; is constant over every connected component of the graph I'. Thus if
" is connected, then we have [h] = [A'], which is a contradiction.

Let " be disconnected. Then its complement contains a non—simply connected com-
ponent F C (T, g). Both functions /i and I’ are distance-like functions on F (see
Section 3.1). By developing F on a hyperbolic plane in H?3, one easily sees that any
two distance-like functions of F differ by a constant. This implies that the coordinate
difference &} — h; is constant over all vertices of F. Since this is true for every non—
simply connected face of T, the difference i} — h; is constant over the whole X, and
we have [h] =[], which is a contradiction. O

5 Proofs of main theorems

5.1 Proof of Theorem A

Existence Let M be a convex polyhedral cusp with particles and with boundary
(T, g). We will show that if some of its singular curvatures is not zero, then there
exists a cusp with a larger discrete total curvature:

(12)  FeS:kM)#0 = IM e M(T,g):S(M')> S(M).
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Since the space M(T, g) is nonempty and compact by Proposition 3.15, the function
S attains its maximum at some point M € M(T, g). All of the curvatures of the cusp
M must vanish due to (12). Thus (12) implies the existence part of Theorem A.

The proof of (12) is based on:

Lemma 5.1 (Volkov) Let M be a convex polyhedral cusp with particles, and let
ki(M) <0 foran i € X. Then every face containing the vertex i has angle < 7 ati.

Proof Consider the link of the vertex i in M . This is a convex spherical polygon of
perimeter < 27 with a cone singularity of negative curvature. The lemma says that its
boundary cannot contain a geodesic of length > 7. This is proved by Volkov in [33];
see also Izmestiev [18, Lemma 9]. O

Let us prove (12). Since ) ; k; = 0, we may assume «; < 0. Due to (7), it suffices to
show that the particle length /; can be decreased; in other words, that there exists a
cusp M' € M(T, g) with truncated particle lengths

h; = hi—e,
h} = hj forevery j #1i,

for a sufficiently small ¢. To prove the existence of M’, we have to find a polyhedral
decomposition F’ of (T, g) such that the horoprisms over the faces of F’ with heights
h’ exist and their total dihedral angles at the edges of " are < 7.

Consider the face decomposition of dM . When we decrease /;, nothing happens to the
horoprisms over the faces that don’t contain i. Let F be a face of M that contains i .
By Lemma 5.1, the angle of F ati is <m. Let j, k € X be the vertices of F adjacent
to i. Draw in F the shortest path y joining j with k and homotopic to the path jik;
see Figure 6. Together y and jik bound a polygon P that has only three angles < 7,
namely those at 7, j and k. It is not hard to see that subdividing the polygon P by
diagonals from i yields a desired decomposition of (T, g), Figure 6.

Uniqueness By Corollary 4.5, if M and M’ are two convex polyhedral cusps with
boundary (T, g), then S(M) > S(M') and S(M') > S(M), which is a contradiction.

5.2 Proof of Theorem C

Theorem C follows from Lemma 4.6 and the following proposition; see Luo [21,
Lemma 6.1] and Izmestiev [18, Proposition 5].
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Figure 6: Subdivision of the face F' when the height /; decreases

Lemma 5.2 Let f € C'(X) be a strictly convex or strictly concave function on a
compact convex subset X of a vector space V. Then the map grad /: X — V* isa
homeomorphism onto the image.

Consider the function S on M(T, g). Since S is strictly concave and grad S = «,
Theorem C follows.

Note that cusps with particles are in general not infinitesimally rigid.

5.3 Proofs of Theorems B, B' and D

The proofs are based on the fact that the Hessian of .S is equal to the Jacobian of the
map [h]+— k:
82S i 0K i
dh;oh; — dhj’
(See (7).) Lemma 4.4 implies that for a cusp with zero curvatures the Jacobian has
full rank, that is any nontrivial first-order variation of the particle lengths [/] induces a
nontrivial first-order variation of the curvatures « .

Recall that a Killing field of hyperbolic space is a vector field of H? such that the
elements of its local 1—parameter group are isometries. An infinitesimal isometric
deformation of a polyhedral surface S is a Killing field on each face of a triangulation
of S such that two Killing fields on two adjacent triangles are equal on the common edge.
The triangulation is required to have the same set of vertices as S. An infinitesimal
isometric deformation is determined by its values at the vertices of S'. It is called trivial
if it is the restriction to S of a global Killing field. If all the infinitesimal isometric
deformations of S are trivial, then S is said to be infinitesimally rigid.

Let (P, G) be a convex parabolic polyhedron. An infinitesimal isometric deformation
Z of dP is called a parabolic deformation if

(13) Z(g(i)) = dg.(Z(i) + £(i)),
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where i is a vertex of P and g € G. The vector g is a parabolic Killing field. It is
obtained as follows. Let g; be a path of hyperbolic isometries, leaving invariant the
horospheres of same center ¢ as (P, G) and such that go = g. Then

0
g:=dg ' — :
g g Py 8t =0
In particular a parabolic Killing field is a Killing field of H? tangent to all the horo-
spheres of center ¢, and its restriction to each horosphere gives an Euclidean Killing
field. A convex parabolic polyhedron is parabolic infinitesimally rigid if all its parabolic
deformations are trivial.

Equation (13) arises naturally under the point of view of isometric immersions of
surfaces in the hyperbolic space. Due to Lemma 2.4 each convex parabolic polyhedral
surface (dP, G) is given by a pair (¢, p), where p is a cocompact representation of
71(T) in a group of parabolic isometries of H? and ¢ is a convex polyhedral isometric
immersion of the universal cover of (T, g) in the hyperbolic space, equivariant under
the action of p: for x € R? and y € m;(T),

p(yx) = p(y)(p(x)).

If we derivate a path (¢;, p;) of such pairs with respect to ¢, the property of equivariance
above leads to Equation (13), where Z arises from the derivative of ¢;, and g from the
derivative of p;(y) (here g = po(y)). See Fillastre [11] for analogous considerations.

At each vertex i of a convex parabolic polyhedron (P, G) with center ¢ we can
decompose T;H? into a vertical direction that is the direction given by the derivative
at i of the ray ci, and a horizontal plane, which is orthogonal to the vertical direction.
For a vector field V' we denote by V), its vertical component and by V}, its horizontal
component. If Z is a parabolic deformation we have by definition:

(14) Zy(g(i)) =dg.Zy(i).

Roughly speaking, the proof of Theorem B' goes as follows. The radii of a convex
parabolic polyhedron are the particle lengths of the corresponding cusp. It follows
that each convex parabolic polyhedron is defined by its radii. Hence each parabolic
deformation corresponds to a first-order deformation 7 = (1, ..., /) of the radii of
the polyhedron such that the corresponding first-order deformation of the singular
curvatures Kk = (k1,...,Kp) is zero: 7 belongs to the nullspace of the Hessian of the
discrete total curvature of the cusp. But we know that in this case the nullspace is
reduced to a trivial deformation. Such proofs have already been used in cases where
no group acts on the deformation [10; 18].

Geometry & Topology, Volume 13 (2009)



488 Francois Fillastre and Ivan Izmestiev

We denote by A(M) the Hessian of the discrete total curvature S at the point M .

Lemma 5.3 Let Z be a parabolic deformation of (0P, G). Then Z, induces a first-
order deformation i of the radii of (P,G) such that i belongs to the nullspace of
A(P/G).

Proof By definition Z, gives a first-order deformation 7 of the radii of the vertices
of P. Moreover by Equation (14) this deformation is well-defined on P/G. As Z,
is an infinitesimal deformation of a polyhedral surface of the hyperbolic space, the
angles around the particles of P/G must remain equal to 27 under the deformation,
that means that k = 0, hence 7 belongs to A(P/G) by (7). ad

The converse holds:

Lemma 5.4 Let 7 € A(P/G). Then there exists a unique parabolic deformation Z
of (0P, G) such that (i) = | Z,(i)|.

Proof In a fundamental domain on 9P for the action of G, for each vertex i, we
define a vector Z, (i) as the unique vertical vector at { which has norm and direction
given by 7;. We define this vector for the other vertices of P using the action of G,
that defines a vector field Z, on 0P.

The deformation 7 also acts on the projection of the vertices onto a horosphere H
of same center ¢ than (P, G). We consider horoprisms given by H together with
a triangulation of the faces of dP. Into each horoprism the deformation 7 gives a
horizontal deformation that we call Z;. We can extend Zj; to 0P by gluing the
horoprisms. The vector field Z is well-defined because 7 € A(P/G). Actually we
abuse of notation a little, as the vector Zj, at a vertex i should be defined as the image
under the differential of the orthogonal projection from H to the horosphere concentric
to H and passing by i of the vector defined on H that we also denote by Zj,.

We define the vector field Z := Z, + Zj on dP. It is an infinitesimal isometric
deformation as it corresponds to a first-order deformations of the particle lengths for a
nonvarying boundary metric.

It remains to prove that Z; verifies (13). It will follow that Z verifies (13) because
of (14). Consider a fundamental domain on dP for the action of G. Its projection
onto H defines a lattice on H (and hence on R?). Applying Z}, on this fundamental
domain leads to a first-order deformation of the lattice on H . Consider a generator g
of G given by an edge of the lattice. Let i be a vertex of the lattice (up to project onto
H). Up to compose by a global Killing field suppose that we have Zj(i) = 0. At
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the vertex g (i), there will be a horizontal first-order displacement, which is given by
the deformation of the lattice. Then Z;(g(i)) is the restriction to g(i) of a Euclidean
Killing field. O

Proof of Theorem B' Let Z be a parabolic deformation of a convex parabolic
polyhedron (P, G'). By the lemmas above Z corresponds to a vector 7 of the nullspace
of A(P/G), and by Lemma 4.4 we know that this nullspace is reduced to the trivial
deformation 1. i

A hyperbolic metric m of a convex polyhedral cusp M can be defined as a section of
the bundle of scalar products over M . A first-order deformation 72 of m can be defined
as a section of the bundle of symmetric bilinear forms over M . Such a deformation is
trivial if it is given by the Lie derivative of g under the action of a vector field of M .
We will only consider deformations 72 such that the metric remains hyperbolic, ie
the first-order variation of the sectional curvature of m induced by 1 vanishes. The
deformation m1 is trivial on dM if its restriction to dM is zero.

Definition 5.5 A convex polyhedral cusp M is called infinitesimally rigid if every
deformation /1 of M which is trivial on dM is trivial on the whole M .

Proof of Theorem B It is known that a first-order deformation of a hyperbolic
manifold with convex boundary which is trivial on the boundary is equivalent to
an equivariant infinitesimal isometric deformation of the image of the boundary by the
developing map. Moreover one is trivial when the other is; see eg Schlenker [30]. It
follows that Theorem B is equivalent to Theorem B'. a

Proof of Theorem D We sketch the proof as it is word by word the same as in the
Section 4 of [27], even if this reference concerns Euclidean polytopes. The idea of
the proof is the same as for convex parabolic polyhedra above: it is sufficient to prove
that the matrix A associated to each weakly convex star-shaped parabolic polyhedra
is negatively definite (the definition of the discrete total curvature doesn’t use the
convexity). And this follows directly from the case of convex parabolic polyhedra as:

(1) a weakly convex star-shaped parabolic polyhedron P is obtained from a con-
vex parabolic polyhedra P’ by removing a finite number of simplices (in a
fundamental domain) [27, Lemma 4.1];

(2) each time we remove a simplex, the matrix A’ associated to P’ changes by the
addition of a negatively semidefinite matrix [27, Lemmas 4.3 and 4.4];

(3) atthe end A is negatively definite as A’ is [27, Lemma 4.5]. O
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