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A mathematical theory of the topological vertex

JUN L1
CHIU-CHU MELISSA L1U
KEFENG LiIU
JIAN ZHOU

We have developed a mathematical theory of the topological vertex—a theory that was
originally proposed by M Aganagic, A Klemm, M Marifio and C Vafa on effectively
computing Gromov—Witten invariants of smooth toric Calabi—Yau threefolds derived
from duality between open string theory of smooth Calabi—Yau threefolds and Chern—
Simons theory on three-manifolds.

14N35, 53D45; 57TM27

1 Introduction

In [1], M Aganagic, A Klemm, M Marifio and C Vafa proposed a theory on computing
Gromov—Witten invariants in all genera of any smooth toric Calabi—Yau threefold;
their theory is derived from duality between open string theory of smooth Calabi—Yau
threefolds and Chern—Simons theory on 3—manifolds. The following is a summary of
their theory:

(O1) There exist certain open Gromov—Witten invariants that count holomorphic
maps from bordered Riemann surfaces to C3 with boundaries mapped to three
specific Lagrangian submanifolds L;, L, and Lj3. Such invariants depend on
the topological type of the domain (classified by the genus and the number of
boundary circles), the topological type of the map and the “framing” n; € Z
of the Lagrangian submanifolds L; (i = 1,2, 3). The topological type of the
map is described by a triple of partitions i = (', u2, u3) where u’ consists
of the degrees (“winding numbers”) of the boundary circles in L; = S! x C.
The topological vertex

Ci(A;m)
is a generating function of such invariants. Here we fix the winding numbers
i= (u', u?, 1), the framings m = (1, n,,n3) and sum over the genus of the
domains.
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(0O2) The Gromov—Witten invariants of any smooth toric Calabi—Yau threefold can be
expressed in terms of Cj; (A;m) by explicit gluing algorithms.

(O3) By the duality between Chern—Simons theory and Gromov—Witten theory, the
topological vertex is given by

Cz(A:im) = PO CITDWE(g), g = eV

where W; () is a combinatorial expression related to the Chern-Simons link
invariants (cf Section 2.1).

As was demonstrated in the work of many, for instance Peng [34] and Konishi [17;
16], this algorithm is extremely efficient in deriving the structure result of the Gromov—
Witten invariants of toric Calabi—Yau threefolds.

The purpose of this paper is to provide a mathematical theory for this algorithm. To
achieve this, we need to provide a mathematical definition of the open Gromov—Witten
invariants referred to in (O1), we need to establish the gluing algorithms (O2) and we
need to prove the duality (O3).

Based on relative Gromov—Witten theory (see Li and Rua [18], Ionel and Parker [12;
13] and Li [19; 20]), in this paper, we shall complete the first two steps as outlined.
The following is a summary of our theory:

(R1) We introduce the notion of formal toric Calabi—Yau (FTCY) graphs, which is
a refinement and generalization of the graph associated to a toric Calabi—Yau
threefold. Associated to an FTCY graph I', we construct a relative FTCY
threefold Y™ = (¥, D).

(R2) We define formal relative Gromov—Witten invariants for relative FTCY three-
folds (Theorem 4.8). These invariants include as special cases Gromov—Witten
invariants of smooth toric Calabi—Yau threefolds.

(R3) We show that the formal relative Gromov—Witten invariants in (R2) satisfy the
degeneration formula of relative Gromov—Witten invariants of projective varieties
(Theorem 7.5).

(R4) Any smooth relative FTCY threefold can be degenerated to indecomposable ones.
By degeneration formula, the formal relative Gromov—Witten invariants in (R2)
can be expressed in terms of the generating function C 7 (A;n) of indecomposable
FTCY threefolds (Proposition 7.4). This degeneration formula coincides with
the gluing algorithms described in (02).
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(R5) We evaluate C i (A;m) (Proposition 6.5, Theorem 8.1):
~ 1y3 R
Cp(him) = g2 &= MW ()

in terms of Wﬁ (¢), a combinatorial expression defined by (2-7) in Section 2.1.

In (R4), we shall define C; ()\, n) as local relative Gromov—Witten invariants of a
formal Calabi—Yau (Z D) that is the infinitesimal neighborhood of a configuration
C; UC, U3 of three P!’s meeting at a point pg in a relative Calabi—Yau threefold
(Z, D) the stable maps have ramification partition u around the relative divisor D.
Since Z is formal, we shall define the local invariants C~ via localization formula; C
can be expressed in terms of a generating function Gv ()\ w) of three-partition Hodge
integrals:

3
(1-1) 6/1 = q%Z?:lkvi(nf—wiH/wi) Z G‘;(}\;w) 1_[ Xui (Ui)
vl |=|uf] i=1

(See Section 2 for precise definitions involved in the right hand side of (1-1); w =
(wy, wyp, ws) are equlvarlant parameters.) The most technical part of this paper isto
show that local invariants C = exist as topological invariants; namely C* =C; (A is
independent of equivariant parameters w (Theorem 5.2, invariance of the topologlcal
vertex). By the invariance of the topological vertex, to evaluate 5‘1 it suffices to
evaluate G'()t' w) at some w. It turns out that at w = (1, 1, —2) we can reduce the
evaluation of Gy 2 ,,3(1, 1, =2) to the evaluation of two-partition Hodge integrals

gut -1, — 2) (the first partition is empty). We then use a formula of two-partition
Hodge integrals proved by the last three authors [23] to derive the combinatorial
expression Wﬁ in (RS). Inverting (1-1), we obtain a formula of three-partition Hodge
integrals (Theorem 8.2):

L] X ’(Iu’ ) i 1 Wy 13
Gioawm =), H" HEF ) g ).
i |=|ui|i=1
This generalizes the formula of two-partition Hodge integrals proved in [23].
Our results (R1)-(R5), together with a conjectural identity Wﬁ () =Wy (q) (Conjec-
ture 8.3), will provide a complete mathematical theory of the topological vertex theory.

The conjecture holds when one of the partitions, say 3, is empty (Corollary 8.8); it
also holds for all low degree cases we have checked.

An important class of toric Calabi—Yau threefolds consists of local toric surfaces in a
Calabi—Yau threefold. Such threefolds are the total spaces of the canonical line bundles
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of projective toric surfaces (eg Op2(—3)). For these threefolds, only C !, 2,z (Asm) (or
two-partition Hodge integrals) are required to evaluate their Gromov—Witten invariants.
The algorithm in this case was described by Aganagic, Marifio and Vafa [2]; an explicit
formula was given by Igbal [14] and derived by Zhou [37] by localization, using the
formula of two-partition Hodge integrals.

It is worth mentioning that, assuming the existence of Cj (A;n) and the validity of open
string virtual localization, Diaconescu and Florea related C i (A;ny,n,,n3) (at certain
fractional »;) to three-partition Hodge integrals, and derived the gluing algorithms in
(02) by localization [5].

Maulik, Nekrasov, Okounkov and Pandharipande conjectured a correspondence between
the Gromov—Witten and Donaldson-Thomas theories for any nonsingular projective
threefold [26; 27]. This correspondence can also be formulated for certain noncompact
threefolds in the presence of a torus action; the correspondence for toric Calabi—Yau
threefolds is equivalent to the validity of the topological vertex [26; 31]. For non—
Calabi—Yau toric threefolds the building block is the equivariant vertex (see Maulik,
Nekrasov, Okounkov and Pandharipande [26; 27] and Pandharipande and Thomas [33;
32] which depends on equivariant parameters. During the revision of this paper, Maulik,
Oblomkov, Okounkov and Pandharipande announced a proof of GW/DT correspondence
for all toric threefolds [28]. The results in [28] yield a proof of Conjecture 8.3.

The rest of this paper is organized as follows. In Section 2, we recall some definitions and
previous results, and introduce some generating functions. The item (R1) is carried out
in Section 3; the item (R2) is carried out in Section 4; it gives a mathematical definition
of topological vertex when the relative FTCY threefold is indecomposable. We will
prove the invariance, Theorem 5.2, in Section 5. In Section 6, we express the topological
vertex in terms of three-partition Hodge integrals and double Hurwitz numbers. In the
next two sections, we establish (R3) and (R4), and derive the combinatorial expression
in (R5). Some examples of the identity W;(¢) = Wﬁ (g) are listed in Section 8.4. The
Appendix contains a list of notation in this paper.
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author is supported by the NSF and the Guggenheim foundation. The fourth au-
thor is supported by NSFC grants 10425101 and 10631050 and a 973 Project grant
NKBRPC(2006cB805905).
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2 Definitions and previous results

In this section, we will introduce some notation, recall some known results, and define
some generating functions. Generating functions in this paper are formal power series.

2.1 Partitions and representations of symmetric groups

We begin with the partitions and representations of symmetric groups. Recall that a
partition p of a nonnegative integer d, written as u - d or || = d, is a sequence of
positive integers

w= (1> >--->pp>0) suchthat d =g +...4 iy

We call £() = h the length of the partition . For convenience, we denote by & the
empty partition; thus |@| = £(2) = 0. The order of Aut(u), the group of permutations
of 1y, My, -+ that leave pu fixed, is

Aut()| = [ mj(w)!,  where mj(u) =#{i : i = j}.
j>0

The transpose of ju is the partition p’ defined by m; (') = ;i — pi+1. Note that
W= lul WD =p, L) = pr

A partition p corresponds to a conjugacy class in S; in the obvious way. Here Sy is
the permutation group of d = || elements. With this understanding, the cardinality
z,, of the centralizer of any element in this conjugacy class is

zp = aylAut(n)|,  where ay = -+ ly(u)-
We let P be the set of all partitions; P2 = P x P the product, and let
Py =P—{2}, P2 =P’ —{(2,9)}, PL=P—{(2 2 0).
Given a triple of partitions 1 = (u!, u?, u3) € P3, we define
3 3
() =Y L)), Au(i) = [T Aut(u).
i=1 i=1

For any partition v, we let x, denote the irreducible character of S),| indexed by v,
and let x,(u) be the value of x, on the conjugacy class determined by the partition
w. Recall that the Schur functions s, are related to the Newton functions p;(x) =
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i i
X;+x5+--- by

s = 322 0 = ),

Zy

v

where Pv(X) = py(x) - Pwm(x)'

The Littlewood—Richardson coefficients CZ,, , which are nonnegative integers, and the
skew Schur functions s,,, are related by the rules

2-1) SuSy = ZCZuSn and  sp/, = ch’lusv
n v

where

(2-2) ¢hy =0 unless [n]=|u|+|v].

The ranges of summations in (2-1), and of all other summations involving Littlewood—
Richardson coefficients cZu , are determined by (2-2).

In order to define the combinatorial expressions W;(g) and Wﬁ(q) in (O3) and
(R5) in the introduction (Section 1), we need to introduce more notation. We define
[m] = g™/% —¢=™/2  and define

£(u)
2-3) kw =) i =20 + 1.

i=1
Note that for transpose partitions, it satisfies «,r = —k, .
We next define

o ()
(i —pj+Jj —il 1
@4 Wul@=q*"* ] - [T =
| <i<j <8 [/ —1i] Falieliliell Ut S 4 V0)
Recall that any symmetric function f can be written as a polynomial f(e;,es,...) in
the elementary symmetric functions ey, ey, .... Let E(f) =1+ Y o est". We write
f(e1,ez,...) as f(E(t)). With this notation, we define
2-5) Wiw(@) = 4"V Wi(g) -5 (Eulg. 1),
where
£(w)

1 +qHi—Jiy > "
Sug)=T] - L—" 1+ ——— ).
w0 =550 " L

=1
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We introduce
(T oM (w3
pl(p3)! npl n(p3)
n

Definition 2.1 For i = (u!, n?, u3), we define

Koa)24k 3/2 wl(ud) W(MZ)tpl (q)Wuz(/ﬁ)t (q)
(2_6) Wﬁ(Q) - q u? w3 z Cpl(p3)t W ( ) N
pl,p3 w2t

As a convention, we define the double of a partition u = (g > up > ---) to be
2= Q2u1 =2uzy=---).

Definition 2.2 For p = (p', p2, p3), we define
Y —(k,1—2k,2—% 2 + ! 3
Wi@) =4 o1 22 72803)] Z CFvl)’pchnl)’vlcrl;%ﬂ)"
V+,171,V1,7]3,U3
_ K3 1
. q( 26,4+ —3 )/ZWU+’V3 (q) Z Z—an (/L)an (2#) .
wkln'

2-7)

Wi and Wﬁ are rational functions in ¢'/2

Zhou [36]):

. We have the following identities (see

Wiw,o(@) = Wapuw (@) = Wz, (@) = ¢ Wy 0y (@)
W (@) =Wy u(@), Wu,e(q) =Wu(q).

2.2 Double Hurwitz numbers

We now come to the generating function of double Hurwitz numbers. Let u*, u~ be
partitions of d ; let H; ut - be the weighted counts of Hurwitz covers of the sphere of

El

the type (™, u™) by possibly disconnected Riemann surfaces of Euler characteristic
x. We form the generating function

B H?
. ()= )\—XH(;ﬁ)H(u ) Xt p )
o ng (—x + L(ut) 4+ £(p))!

By Burnside formula,

2-8) S ()= e X () 3o (1)
S Zy+ Zu—
vd
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Using the orthogonality of characters

Z Xu(0) xv(p)

- ::8uv,
ot-d p

it is straightforward to check that (2-8) implies the following two identities:

(2-9) Oy, Ot =) @8 (h)2®) - (ho)
vd
and
St
71 °* (0)= MmT
(2-10) e @ =2

Equation (2-9) is a sum formula for double Hurwitz numbers; Equation (2-10) gives
the initial values for the double Hurwitz numbers.

We now introduce a differential equation. It has the property that its unique solution
satisfying the initial condition (2-10) is a generating function of @; o This equation
is similar to [9, Lemma 2.2] and [10, Lemma 3.1] (see also Goulden [8]).

We let p* = ( pli, pzi, ...) be formal variables, and for a partition u we let pi =
pil e plfz w" We then define a generating function

o0
O MpTp =1+ D O Mt
d=1|u¥|=d

and differential operators

e 9 > 92
C*= Y GHlpfpiso— 5= 3 jkpjis o=
k=1 Ptk jk=1 Pj oDk

They form a cut-and-join equation for double Hurwitz numbers:

a0 1 1
= (CT4+JNH®*=—(C™ +J7)D".
o 2( +J7) 2( +J7)

The generating function ®°*(A; p™, p™) is the unique solution to this system satisfying
the initial value

iy

0 pt ) =14 )
“w

UePt
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2.3 Three-partition Hodge integrals

We shall introduce three-partition Hodge integrals in this subsection.

For the three-partition Hodge integrals we need to work with the Deligne—Mumford
moduli stack M g,n Of stable n—pointed nodal curves of genus g. Over this moduli
stack, we let 7: /\7lg,n+1 — /\7lg,n be the universal curve; let s;: /Vlg,n — /\7lg’n+1 be
the section of the i —th marked points of the family, and let w, be the relative dualizing
sheaf. The commonly known A classes and the ¥ —classes are defined using these
morphisms: the A class A; is the j—th Chern class A; = ¢;j(E) of the Hodge bundle
E = m«wy, and the ¥ class ; is the first Chern class ¥; = ¢ (IL;) of the pull back
line bundle L; = s/ w, . A Hodge integral is then an integral of the form

/ gt gk ke
Mg :
We now introduce three-partition Hodge integrals. Let wy, w,, w3 be formal variables.
In this subsection, and in Sections 6, 7 and 8, we shall follow the convention:
(2-11) w=(wj,wy,w3), wi+wr+wz=0 w4=wy.
For i = (u', pu?, ) € P2, we let
1 _ 2 _ 1 3 _ 1 2
d[i =0, dﬁ =L(p), dﬂ =l(pn) +€(p).

We define the three-partition Hodge integral

G

= i u‘i—l .
(w) = (—/—Dt@ 2 eiﬁ[) [T, (jwigr +aw;)
A = |Aut(ﬁ)| i1 i i) ‘L;.'_l Mg o)
i=1j=1 (/,Lj— ),wi .
VA )—
Xli[ Ay wiyw; P!
L(uh)

i=1 Hj:l (wi (w; _M§wdé+1))

where Ay (u) = uf —MuET e (=18,
It is clear from the definition that G4 ; (W) obeys the cyclic symmetry:

(2-12) Ggut 2 3(Wr,wa, w3) =Gg 2 43 41 (wy, w3, wy).

. L(jd . . .
Since v/ —1 W Gg4 (W) is a homogeneous degree 0 rational function in wy, w, w3
with Q—coefficients (where deg w; = deg w, = deg w3 = 2), we will substitute w by
w = (1, 7,—t — 1). For such weights, we will write

G u(v) =G, p(l,T,—T—1).
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Then (2-12) becomes
1 —1
Gt (@) = Gz (<1=7) = Cesr (757

We let A and p’ = ( p’i, p;, ...) be formal variables; given a partition p we define
pr = p’i ---pz(u); (note pfz =1); for p!, p? and p3, we abbreviate

p=(p'.p%pY) and py=p,pips

We define the three-partition-Hodge-integral generating functions to be
oo -
Gp(hw)y =Y 222G, o(w) and GOupiw) = D Gzl w)pg:
g=0 fePi
we define the same generating functions for not necessarily connected domain curves
to be

(2-13) G*(hip;w) =exp(G(ipiw) =1+ Y GL(l;wp
fePi
LN —Xx+E(iL) o .
(2-14) GLOsw) = Y ATXHIG L (w);
XE€27Z

we define G;(A;7), G(A;p;7), G*(A;p; 7) and G;L()\; 7) similarly.

We will relate GEL (A7) to Wﬁ(q) in Theorem 8.2.

3 Relative formal toric Calabi—Yau threefolds

In this section, we will introduce formal toric Calabi—Yau (FTCY) graphs, and construct
their associated relative FTCY threefolds.

3.1 Toric Calabi-Yau threefolds

For a smooth toric Calabi—Yau threefold Y, we denote by Y'! (resp. Y'?) the union of
all 1-dimensional (resp. O—dimensional) (C*)? orbit closures in ¥ . We assume that

Y is connected and Y° is nonempty.

Under this condition, we will find a distinguished subtorus 7" C (C*)* and use the
T —action to construct a planar trivalent graph I'y. The FTCY graphs that will be
defined in Section 3.3 are generalization of such graphs.
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We first describe the distinguished subtorus 7. We pick a fixed point p € Y and
look at the (C*)3 action on the tangent space T,Y . Its induced action on the top
wedge A3T, pY corresponds to an irreducible character o, € Hom((C*)3, C*); by the
Calabi—Yau condition and the connectedness of Y'!, ap is independent of the choice
of p. We define

T défKerap ~ (C*)2.

We next describe the planar trivalent graph I'y . We let A1 be the group of irreducible

characters of 7T, ie,

Ar € Hom(T, C*) =~ 722,

We let Tr = U(1)? be the maximal compact subgroup of T'; let tg and ty be its
Lie algebra and its dual; let u: ¥ — tﬂ\é be the moment map of the TR —action on Y.
Because of the canonical isomorphism tﬁé ~ A7 ®zR, the image of Y'! under p forms
a planar trivalent graph T'y in Z®? ®7 R. The graph I'y encodes the information
of Y in that its edges and vertices correspond to irreducible components of ¥'! and
fixed points Y ?; the slope of an edge determines the T —action on the corresponding
component of Y1,

C3 Opi1(=1) ® Op1(=1) Op2(-3)
Figure 1: Some examples of planar trivalent graphs

Let Y be the formal completion of ¥ along Y'!; Y is a smooth formal Calabi—Yau
scheme and inherits the 7 —action on Y . The formal Calabi—Yau scheme ¥ together
with the 7" —action can be reconstructed from the graph I'y (cf (a) in Section 3.2 below).
The construction of a relative FTCY threefold from a FTCY graph (given in Section
3.5) can be viewed as generalization of this reconstruction procedure.

3.2 Relative toric Calabi-Yau threefolds

A smooth relative toric Calabi—Yau threefold is a pair (Y, D), where Y is a smooth
toric threefold and D is a possibly disconnected, smooth (C*)? invariant divisor of Y,
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that obeys the relative Calabi—Yau condition:
A3Qy(log D) = Oy.

A toric Calabi—Yau threefold can be viewed as a relative Calabi—Yau threefold with
D=g.

We now describe in details three examples of relative toric Calabi—Yau threefolds
and their associated graphs, as they are the building blocks of the definitions and
constructions in the rest of Section 3:

(a) Y is the total space of Opi1(—1+n)® Opi1(—1—n).

(b) Y is the total space of Opi1(n)® Op1(—1+n); D is its fiber over g =[1,0] €
P!

(c) Y is the total space of Opi1(n) @ Op1(—n); D is the union of its fibers over
go=1[0,1] and ¢; =[1,0] in P!.

\ Wy — AW
wo W3 7 A
w
Vo 1 Vo o
O —Wwq
w1 — Wy /'—wz v
—Wy + nw

@ Op1(=1+n) @ Op1(=1=n)  (b) Op1(n) @ Op1(=1—n) (c) Op1(n) ® Op1(—n)
Figure 2: Three basic examples of relative toric Calabi—Yau threefolds

In Figure 2, the edge connecting the two vertices vy and v; corresponds to the zero
section P!; it is a 1-dimensional (C*)3 orbit closure in Y. The vertices vy and v;
correspond to the (C*)3 fixed points go and g; € P!, respectively.

In Case (a), for Y is a toric Calabi—Yau threefold, we may specify a subtorus 7'
as in Section 3.1. The weights of the T—action on the fibers of the bundles TP!,
Op1(—1+n) and Op1(—1—n) at the T —fixed point o € P!, respectively, are given
by wi, wy, w3 € Ar = 792; the weights of the same action on the fibers of these
bundles at the other fixed point ¢; € P! are given by —w;, w, + (1 —n)w; and
w3z + (1 +n)wy = —w, +nwy, respectively. Here we have w; + w, + w3 = 0 because
T acts on A>T, q0Y trivially. Also, from the graph in Figure 2(a) one can read off the
T'—action on Y and the degrees of the two summands of the normal bundle Np1,y .
Therefore, Y together with the T —action can be reconstructed from the graph.
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Similarly, from the graph in Figure 2(b) and (c), one can reconstruct the pair (Y, D) in
(b) and (c) together with the T —action; the weights of the 7 —action at fixed points can
be read off from the graph as follows:

®) | TP | Opi(n) Opi1(=1—n) © | TP! | Opi(n) Op1(—n)

qdo | Wi wr W3 =—wW; —W2 || o | Wi wa —W3

q1 | —wWp | W2 —hwq wy + (L+muwy q1 | —wWp | W2 —hRW | —W3 + W
= —Wjy +nw

3.3 FTCY graphs

We now introduce formal toric Calabi—Yau (FTCY) graphs, which are graphs together
with local embeddings into the R? endowed with the standard orientation and the
integral lattice Z®? c R2.

As will be clear later, assigning a slope to an edge depends on the orientation of the
edge. For book keeping purpose, we shall associate to each edge two (oppositely)
oriented edges; for an oriented edge we can talk about its initial and terminal vertices.
To recover the graph, we simply identify the two physically identical but oppositely
oriented edges as one (unoriented) edge. This leads to the following definition.

Definition 3.1 (Graphs) A graph I' consists of a set of oriented edges E°(I"), a set
of vertices V(I), an orientation reversing map vev: E°(I') — E°(I"), an initial vertex
map vo: E°(I') — V(I') and a terminal vertex map v{: E°(I') — V(I'). Together
they satisfy the property that tev is a fixed point free involution; that both vy and v,
are surjective and v; = vg o rev. We say ' is weakly trivalent if |t10_1(v)| < 3 for
ve V().

For simplicity, we will abbreviate tev(e) to —e. Then the equivalence classes E(I") =
E°(T")/{£1} is the set of edges of T" in the ordinary sense. In case I' is weakly
trivalent, we shall denote by V;(I"), V,(I") and V3(T") the sets of univalent, bivalent,
and trivalent vertices of I"; we shall also define

EN) ={ee E°(I)|v;(e) € Vi(T) U V(D)

it is the set of oriented edges whose terminal edges are not trivalent. Finally, we fix a
standard basis {u,u,} of Z®2 such that the ordered basis (u;, 1) determines the
orientation on R2.

Definition 3.2 (FTCY graphs) A formal toric Calabi-Yau (FTCY) graph is a weakly
trivalent graph I' together with a position map

p: E°(T) — Z®2 —{0}
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and a framing map
j: EN(T) — Z%% — {0},
such that (see Figure 3)
(T1) p is antisymmetric: p(—e) = —p(e).
(T2) p and | are balanced:
e For a bivalent vertex v € V,(I") with Ul_l (v) ={ey, e}, pler) +p(ex) =0
and f(e1) +f(e2) = 0.
e For a trivalent v € V3(I") with Ugl(v) ={eq,e3,e3} and p(ey) + p(er) +
p(e3) =0.
(T3) p and | are primitive:
o For a trivalent vertex v € V3(I") with 051 (v) ={eq, €2, e3}, any two vectors

in {p(e;),p(ez), p(e3)} form an integral basis of Z®2
e Forec ENI), ple) Af(e) =uy Aus.

f(e)s fler)s — =-plea)
e e Ly e
— -
p(ej p(eT) f(ea)
07! (v) = {e} o7 (v) = {er. ez} 0, (v) = {e1. ez, €3}

Figure 3: The position map p and the framing map f
We say I is a regular FTCY graph if it has no bivalent vertex.

To each edge e in a FTCY graph we shall construct a relative Calabi—Yau threefold
(Y€, D?). Intuitively, such Y ¢ resembles the examples (a), (b) or (c) in Figure 2 (if
we add vectors {—f(e) | v1(e) € V1(E)}). The threefold Y ¢ will be the total space of
the direct sum of two line bundles over P!, one L¢ and the other L™¢. We define
the weights [g(e) and [;(e) of the T —action on L;O and Lgl as follows: like in
Figure 2(a), (b) or in (c), if we arrange so that p(e) = w; is pointing to the right, and
vo and v; are the initial and the terminal vertices of e, then we define [y(e) and [;(e)
be that given by the upward vectors at vy and vy.

Definition 3.3 Let I' be an FTCY graph. We define [o, [;: E°(I') — Z®? as follows:
_J—f(=e), vole) £ V3(I), (e, vi(e) £ V3(I),
lo(e) = li(e) =
pleo1). vole) € V3(I). plerr). vi(e) € V3(T).

Geometry & Topology, Volume 13 (2009)



A mathematical theory of the topological vertex

541

Here ¢;; is the unique oriented edge such that vg(e;1) = v;(e) and p(e) Ap(e;1) =

l1(e)
A

\
lo(—e)

Uy ANuy.
lo (6) ‘ l1(e) lo (6’),*’
pe) p(—e) EA
_ 7 ople) p(—e)
I (—e) 0( e) /"[1(_8)
() (b) (©

Figure 4: o, I: EO(F) — 792, (a) Uo(e‘),Ul(e‘) € V3(F) (b) Uo(e) S
V3(T), v1(e) € Vi(T) U Va(I')  (c) vole), v1(e) € Vi(T') U Va(I)

The degree of the line bundle L¢ determines an integer n°:

e deg L+ 1, vy eV3(),
degLe, V1 ¢ V3(F)

This motivates the following definition.

Definition 3.4 We define 71: E°(T") — Z by

(1=n(e)ple). vi(e) € V3(I),

l1(e) —Tlo(e) = {_ﬁ(e)p(e), oi(e) ¢ V3(I).

We write n¢ for 7(e).
Note that n=¢ = —n®.

3.4 Operations on FTCY graphs

In this subsection, we define four operations on FTCY graphs: smoothing, degeneration,
normalization, and gluing. These operations extend natural operations on toric Calabi—

Yau threefolds.

The first operation is the smoothing of a bivalent vertex v € V,(I"). This operation

eliminates the vertex v and combines the two edges attached to v.

Definition 3.5 (Smoothing) The smoothing of I" along a bivalent vertex v € V,(I') is
a graph I'y that has vertices V(I")—{v}, oriented edges E°(I")/ ~ with the equivalence
+ey ~Fe, for {eq,e5} = 01_1 (v). The maps vg, b1, p and f descend to corresponding
maps on ['y, making it a FTCY graph. (See Figure 5: I'; is the smoothing of IT',

along v.)

Geometry € Topology, Volume 13 (2009)



542 Jun Li, Chiu-Chu Melissa Liu, Kefeng Liu and Jian Zhou

The reverse of the above construction is called a degeneration.

Definition 3.6 (Degeneration) Let I" be a FTCY graph and let e € E°(I") be an edge.
We pick a lattice point fo € Z®? so that p(e) Afo = 11 Auy. The degeneration of T at
e with framing fo is a graph I'c 5, whose edges are (E°(I") —{%e})U{%e;, Le,} and
whose vertices are V(I') U {vo}; its initial vertices b, terminal vertices by, position
map p and framing map hf are identical to those of I' except

to(e1) =vo(e), by(e1) =v1(ez) = vg, boler) =vy(e),
pler) = —ple) = ple), fler) = f(e2) = fo.

(See Figure 5: I'; is the degeneration of I'3 at e with framing fg.)

The normalization is to separate a graph along a bivalent vertex and the gluing is its
inverse.

Definition 3.7 (Normalization) Let I' be a FTCY graph and let v € V,(I") be a
bivalent vertex. The normalization of T at v is a graph I'” whose edges are the same
as that of I" and whose vertices are (V(I") — {v}) U {vy, vp}; its associated maps by,
1, P and § are identical to that of T" except for {e1,es} = v (v), By(er) = vy and
v1(e2) = vy. (See Figure 5: Ty is the normalization of I'; at v.)

Definition 3.8 (Gluing) Let I' be a FTCY graph and let v, v, € Vi(I') be two
univalent vertices of I". Let f; = f(e;), where {e;} = Ul_l (vi). Suppose p(ey) =—p(es)
and f; = —f,. We then identify v and v, to form a single vertex, and keep the framing
f(e;) = fi. The resulting graph ['V1:Y2 is called the gluing of T" at v; and v,. (See
Figure 5: I'; is the gluing of I'; at v; and v,.)

[y = T2 = (T3)g.e

Figure 5: Operations on FTCY graphs

It is straightforward to generalize smoothing and normalization to subset 4 of V,(T").
Given A C V,(T'), let I'y denote the smoothing of I' along A, and let ' denote the
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normalization of I" along A. There are surjective maps

4 E(T) = E(Ty), =4 v(4) = V(D).

3.5 Relative FTCY threefolds

In this subsection we will introduce relative formal toric Calabi—Yau (FTCY) threefolds.

Given a FTCY graph I', we will construct a pair yrel = (f}, 13), where Y is a formal
threefold, possibly with normal crossing singularities, D C Y is a relative divisor, so
that Y™ = (Y, D) is a formal relative Calabi—Yau threefold:

A¥Qy(log D) = O3

The pair (17, 13) admits a 7" —action so that the action on A*T; pf’ is trivial for any fixed
point p.

To motivate our construction to be followed momentarily, we remark that for ¥ a
smooth toric Calabi—Yau threefold, with Y'! the union of closures of 1-dimensional
orbits, the formal completion Y of Y along Y'! will be examples of our formal toric
Calabi—Yau threefolds to be introduced. Note that the set of closed points of YisY!,
which is a union of P! or Al. However, due to the formal scheme structure of Y
along Y1, dimY =3.

The pair ()A’, 5) has similar properties. The set of closed points of Y is a union of
IP1°s, each associated to an edge of I'. Two P! intersect exactly when their associated
edges share a common vertex. The normal bundle to each P! in Y and the T —action
on Y are dictated by the data encoded in the graph I"'. A T —invariant divisor LcDh
will be specified according to the data of framings.

In the following construction, we will use the notation introduced in Section 3.3.
3.5.1 Edges Let e € E°(I") with vy and v, its initial and terminal vertices. We

first define ¥ (e) = P! with homogeneous coordinates [x§, 1]. By viewing p(e) as an
element in A7 = Hom(7, C*), we define a T —action on X(e) by

t-[xg. 1] =1[ple)(t)x§, 1], teT.

We denote the two fixed points by ¢gg = [0, 1] and ¢; = [o0, 1] =[1, 0]. Next we let
L¢ — X (e) be the line bundle of degree

n®—1, vy eV3(I),

deg L¢ =
n, vi € Va(I),
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where n¢ = 7i(e) is defined in Definition 3.4. We then assign the T —actions on Ly,
and Ly tobe lp(e) and [y (e), respectively.

For the opposite edge —e, we have similarly defined ¥ (—e) = P! and the T -line
bundle L.7¢ on X (—e). Because of our construction, the isomorphism t,: ¥(e) =
¥ (—e) induced by x§ = (xg ¢)~! is a T—isomorphism. Under this isomorphism, the
line bundles L¢ and L™¢ are line bundles over X(e) and X (—e).

With the line bundles L¢ and L™¢ on X(e), we define )A’(e) to be the formal completion
of the total space of L¢ @ L™¢ along its zero section. The T —actions on L¢ and L™¢
induce a T —action on Y (e).

Clearly, the isomorphism ¢.: X(e) = X(—e) and the isomorphism tZLie ~ L*e
extend to a tautological isomorphism

Y(e)~Y(—e).

Let p: I?(e) — Y (e) = P! be the projection and let ¢ = #({vg, v} N V3(I")) — 2. It
is clear that

(3-1) /\352)7(8) >~ p*Opi(c).

For the construction we are about to perform, it will be handy to have a local coordinate
of X(e) at go. Derived from the homogeneous coordinate [x¢, 1] of X(e), the x§
forms an affine coordinate of X (e)? = % (e) —gq; = Al. We then fix T—equivariant
trivializations

L?|5 )0 = Spec C[xg, x{] and L™, = Spec Clxg, x].
3.5.2 Near trivalent vertices Let v € V3(I") be a trivalent vertex; let nal(v) =
{e1,ea,e3} be so indexed that p(ey), p(es), p(e3) is in counter-clockwise order. We
first show how to construct a neighborhood of v in the intended FTCY.

For this purpose, we form the total space (denoted by Y (ex)?):

(3-2) Y(ex)” = (L% & L™%)|5 (g0 = Spee Clxg*, x7* . x2],

using the explicit coordinates introduced in (3-2). We define gluing homomorphism
Ve, be

l/fek: C[yl » V2, y3] — C['x(e)k ’ xfk’ xik]]’ y]+k(3) e x]?k .
(Here j + k(3) is j + k modulo 3.) Note that under this arrangement, the directions

Ty (er)?, L7424, and L¢|,, are all mapped to the same direction.

We then define )A’(v) be the formal completion of Spec C[y1, y,, y3] along the union
of the three y—axes. Using v, , Y (v) is also the formal completion of Y (ex)? along
the three axes, and under these identification, the yj —axis is exactly the line X (ex)°.
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3.5.3 Near bivalent and univalent vertices Next we look at a bivalent vertex v. Let
eq and e; be the two edges so that {e1,e;} = Uo_l(v). Let X(ex)? and Y(eg)® be as
before. We then form the ring C[yy, 2, u1, u2]/(y1y2) and the gluing homomorphisms

ek ek €Kk

wek: [ylvyz’ul’MZ]/(ylyZ)ﬁ(C[ 1 ’x—l

(5] (5]
1 , 1 V1P X, and

uzr—>x1 ,ylr—>0andy2r—>xgz.

by the rule: the homomorphism ¥, maps u; > x¢

Y2+ 0; the homomorphism ., maps u; — x_zl,

uzr—>x

We define IA’(U) to be the formal completion of Spec C[y1, y2,u1,uz]/(y1y2) along
the union of the y; and y, axes; it is singular along a divisor DV = Spec C[u, u>].

Lastly, consider v € V1 (I") with e = n_l (v). We define Y (e)® = Spec (C[xo, x{, x¢ s
we define Y(v) to be the formal completlon of Y(e)? along the Xxg axis; we define
DV to be the divisor defined by xO = 0, and consider it as part of the relative divisor

of the formal Calabi-Yau scheme Y™ we are constructing. We also introduce another
divisor LV in DV:

= (x%, =x¢ =0)C D’ = (x{ =0).

3.5.4 Gluing the pieces At last, we will glue all 17(11) to form a formal scheme Y .
To do this, we first form the disjoint union

(3-3) [] Y.
vel(I')

To glue, we need to introduce equivalence relations. Let e be an edge and let vy be its
initial vertex and v, be its terminal vertex. By our construction of Y (v;), the scheme

Y (e)o = ¥ (—e)o = Spec C[x§, (x§)~'IIx{, x*, ]
is canonically an open subscheme of Y (v1). Note that as a set it is the part
Spec C[x¢, (x§) ™' C ¥ (vy).

Similarly, since v, is the initial vertex of —e, it is also an open subset of f}(vz). Hence
we can use the open embeddings

Y(e)oCY(vy) and Y(e)oC Y (va)
to glue ?(vl) and ?(vz) along ?(e)o.

By gluing Y(vl) and Y(vz) in (3-3) for all pairs of adjacent vertices in I" we obtain a
formal threefold Y. The T —actions on Y(v) s descend to a T—action on Y . Finally,
for each univalent vertex v, we let DV C Y(v) be the divisor defined in Section 3.5. 3.
The (disjoint) union of all such D? form a divisor D that is the relative divisor of ¥ .
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Since D is invariant under T, the pair yrel = ()’;, 5) is a T —equivariant formal
scheme. Because of (3-1), we have

A*Q5(log D) = O3
ence Yl = A, D) is a formal toric Calabi—Yau scheme.
h Yl = (Y, D) is a formal Calabi—Yau sch

Following the construction, the scheme Y has only normal crossing singularities along
DY for all bivalent vertices v:

f}sing: ]_[ Bv-
velr ()

Therefore ¥ is smooth when V> (T') is empty. The relative divisor D is the disjoint
union of smooth divisors DV indexed by univalent vertices v:

(3-4) b= [] Do
veVl(F)

Within each divisor DV in (3-4) there is a divisor LV C DV defined as in Section 3.5.3.

From the construction, the scheme Y™ depends on the graph I". Often we will omit
the I' in the notation if there is no confusion. However, in case we need to emphasize
such dependence, we shall use Yf‘el in place of Y™,

For later convenience, we introduce some notation. Let e be the equivalence class
{e,—e} in E(T); let C¢ be the projective line X(e) = X(—e) C Y. For v € V1(T),
we let z¥ be the closed point in DV that is the T —invariant point ¢q in Z(e)o for
vole) =v.

4 Definition of formal relative Gromov—Witten invariants

In this section, we will define relative Gromov—Witten invariants of relative FTCY
threefolds; the case of indecomposable relative FTCY threefolds gives the mathematical
definition of topological vertex.

4.1 Moduli spaces of relative stable morphisms

Let I" be an FTCY graph and let yrel = (f’, 13) be its associated scheme. We first
clarify the degrees and the ramification patterns of relative stable morphisms to ¥,

Definition 4.1 (Effective class) Let I' be a FTCY graph. An effective class of T is
a pair of functions d: E(T') — Zs>o and [i: V(') — P that satisfy
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(1) ()| =d(@) if ve Vi(T) and v;(e) = v;
() d(@)=d(@) if ve Va(T) and v5' (v) = {ey, e2}.

We write u? for ji(v), and d€ for C_I;(Z).

To show that an effective class does characterize a relative stable morphism, a quick
review of its definition is in order. An ordinary relative morphism u to (Y, D) consists
of

e a possibly disconnected nodal curve X ;

e distinct smooth points {q}’ |ve Vi(T),1 <j <£(u)} in X such that each
connected component of X contains at least one of these points;

e amorphism u: X — Y

satisfying the properties:

e Foreach ve Vi(I), u™! (ﬁ”) = Zf(zulv) ,u}’q}’ for some positive integers /L});

e u is predeformable along the singular loci ]_[veVz(F) DY of Y™ e ifve Vo (I')
and no_l(v) = {ey,ey} , then u_l(ﬁv) consists of nodes of X, and for each
yeu (DY), Uly—1((ey)) and u,~1(x(e,)) have the same contact order to DV
at y;

* u coupled with the marked points g is a stable morphism in the ordinary sense.

Unless otherwise specified, all the stable morphisms in this paper are with not necessarily
connected domains.

Since ~
H(Y:2)= @ z[c°),
zcED)

the morphism u defines a map d: E (I') —> Z via
@-1) ux(X)= > d@IC’]
ecE(D)
The integers ,u;.’ form a partition
p’ = (g, vﬂz(uv))
and the map u: Vi(T') — P is
f) = pn’.
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With this definition, the requirement (1) in Definition 4.1 follows from (4-1) and (2)
since u is predeformable.

To define relative stable morphisms to Y™ we need to work with the expanded schemes
of Y™ introduced by the first author [19]. In the case studied, they are the associated
formal schemes of the expanded graphs of IT".

Definition 4.2 Let I be a FTCY graph. A flat chain of length n in I" is a subgraph
I' C T that has n edges +eq,--- , xey, n+ 1 univalent or bivalent vertices v, -+ , Uy
with identical framings § (up to sign) so that

vole1) =vo; vi(e) =vpleit1) =vi, i=1,---,n—1; vi(ey) = vy,

and that all p(e;) are identical.

fler) fe2) f(en)
A 7
Vo Vg vz o vy
eq e €n

Figure 6: A flat chain of length n

Definition 4.3 A contraction of a FTCY graph I' along a flat chain I' C T is the
graph after eliminating all edges and bivalent vertices of I from I, identifying the
univalent vertices of I" while keeping their framings unchanged.

Given a FTCY graph I' and a function
m: Vi(T)U V,o(T) — Z>o,

the expanded graph Iy, is obtained by replacing each v € V;(I') U V,5(I') by a flat
chain f‘,’,’,u of length m" = m(v) with framings +f(e), where v{(e) = v. In particular
'y = T for the function 0(v) = 0 for all v € V(") U V5(T"). The original graph T’
can be recovered by contracting I'y, along the flat chains

{I'V [ve Vi (T)UVy(D)}

We now study their associated Calabi—Yau schemes. We denote by (}?, 13) the associ-
ated Calabi—Yau scheme of I" and by (IA’m, 5,“) that of I',. We recover the original
scheme Y by shrinking the irreducible components of Ym associated to the flat chains
that are contracted. This way we obtain a projection

A~

Tm: )A’m — Y.
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We define a relative automorphism of )A’m to be an automorphism of f’m that is also a
Y —morphism; an automorphism of a relative morphism u: X — (Y, Dm) is a pair of
a relative automorphism ¢ of Yy, and an automorphism / of X so that

uoh=oou.

Definition 4.4 A relative morphism to 171561 is an ordinary relative morphism to
(Ym, Dm) for some m; it is stable if its automorphism group is finite.

The contraction ¢ I';y — I induces bijections (which we also call ¢y ):

Vi(Tw) — Vi(D).  E(Tm) — ( 11 E(f:;,v)) — E(I).
vel (MU ()

Definition 4.5 Given an effective class (c? ,it) of ', we define an effective class
(dm, fim) of Ty as follows. Define fim(v) = ji(cm(e)) for v € V1 ('), and define

@),  eeE[}), voler) =v,

m(e) = {c? (em(e)), otherwise,

foree E(Tn).

We fix a FTCY graph T', an effective class (J ,jit) of T, and an even integer x. We
then form the moduli space M3 7 ﬁ(Yrel) of all stable relative morphisms u to ¥
that satisfy

* x(Ox) = x/2, where X is the domain curve of u;

 the associated effective class of u is (c?m, fim) if the target of the morphism is
(Ym, Dm).-

Since Y is a formal Calabi-Yau threefold with possibly normal crossing singularity and
smooth singular loci, the moduli space M3 5. ﬁ(Y“’l) is a formal Deligne-Mumford
stack with a perfect obstruction theory [19; 20].

Lemma 4.6 The virtual dimension of M;’Q,ﬁ(f’rel) is Y vy ) LKY).

Proof The proof is straightforward and will be omitted. |

Geometry € Topology, Volume 13 (2009)



550 Jun Li, Chiu-Chu Melissa Liu, Kefeng Liu and Jian Zhou

4.2 Equivariant degeneration

We let p € A7 = Hom(7,C*) and let T acton P! x Al by

t-([x0.x1]. ) = ([p(?)x0, x1], 5).

Let 2) be the blowup of P! x Al at ([0, 1],0). The T -action on P! x Al can be
lifted to ) making the projection ) — P! x Al T'—equivariant. Composed with the
projection P! x Al — Al the morphism

@—)Al

becomes a T —equivariant family of curves whose fibers over s # 0 are P! and whose
central fiber 9o = P L P!,

The above construction can be generalized to many nodes cases. Let I' be a FTCY
graph and let

Vz(r) = {vl, ce ,Un}

be a complete list of bivalent vertices. Then we have a T —equivariant family
(Y, D) — A"

that has the property that for any subset J C {1,--- ,n}, the fiber of (37 , 15) over any
closed point in the set

A" ={(s1,---,sp) € A" |sj =0if and only if j ¢ J}

is the scheme IA’IECJl, where I'y is the smoothing of I' along the bivalent vertices
{vj | j € J}. In particular,

A" ={(0,...,0)}, Ty=T.

The family is 7 —equivariant with 7" acts trivially on A" and on each fiber as described
in Section 3.

By the construction in [20], there is a 7" —equivariant family
M3 a i) —> A

such that M} 7 ﬁ(JA))S =M* . _()s) forse A". In particular,
e X>d i
Mgz = M5 G (Y™

Geometry & Topology, Volume 13 (2009)



A mathematical theory of the topological vertex 551

The total space M j & (JA)) is a formal Deligne-Mumford stack with a perfect obstruc-
tion theory [T! — T?] of virtual dimension

)+ ().

velV ()
For each v € V(') there is a line bundle L on M 7 (37) with a section
sVt MS g 2() =LY
such that
M3 a (V™) = M5 g zMo

is the zero locus

{s'=0lve (M} M; iz0).
The pair (LY, s?) corresponds to (Lg, r¢) in [20, Section 3].

4.3 Perfect obstruction theory
Let I be a FTCY graph, and let (c? , it) be an effective class of I". We briefly describe

the perfect obstruction theory of /\71;(3 ﬁ(}?rel) constructed in [20].

Define M;’g’ﬁ(y) — AV2MI[T! - T2] and {L? | v € V5(I')} as in Section 4.2.
Let [71 — T?2] be the perfect obstruction theory on /\71;( d. ﬂ(Y“ﬂ). Let

u: (X,q) — (?m, lA)m)

represent a point in /\71;(’3’ ﬁ(f’ rely ¢ M (JA)), where

X
q={qj lveVi(D),1=j=tn")}
We have the following exact sequence of vector spaces:
0—7!' -1 — @ L — 72— T2 —0.
velr ()

We will describe T2, T2, and LY explicitly. When T is a regular FTCY graph, that is
when V,(I") = @, the line bundles LV do not arise and M3 7 ;(Y) = /\71;(’341 (yrehy.,

We need to introduce some notation. Given m: V(") U V(") — Z>g, let f‘,’;lv be
the flat chain of length m? = m(v) associated to v € V(I') U V,(T"), and let

VL) = @0, ... 0

where vy, € Vi(I'm) if v € Vi(T').
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LetveVi(IN)and 0 </ <m’—1,orlet ve V,(I') and 0 </ <m". We define a
line bundle L; on the divisor D} in Yy by

LY =N;

Dr/sen ®Np

Dy /Z(ey)
where 00_1 (v]) = {ev. e, }. Note that L; is a trivial line bundle on ﬁ;’
With the above notation, we have
mv
Ly =@ HO(D}. L)), veVyI).
=0
The tangent space T) and the obstruction space T2 to MS i ()A)) at the moduli point
[u: (X.q) —> (Ym. Dw)]
are given by the following two exact sequences:

(4-2) 0 — Ext°(Qx(Ry), Ox) —> H°(D®*) —> T}
— Ext'(Qx (Ry), Ox) — H'(D*) — T2 — 0

4-3) 0— H°(u*(Qy, (log Dm))") — H°(D*)
— P HR®RHe P HIURY) — H'(u*(Qf (log Dm))”)

veV () vel ()
0<l/<mV-—1 0<I<mV
— H'D)— P HiR"He P HIR})—0
veV () vela(T)
0<I<mV-—1 0<l<mV
(u)
where Ry = Z Z q;
vel () j=1
HYR = P T, () ® Ty (S(ey))) = CO
qeu=1(D})
for UO_I(U;’) = {ey, €},
4-4 HYRY®) = HO(Dp, LY)®" [ H(D}, L}
( ) e[(])= ( /> [) ( 1 [)a
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and n; is the number of nodes over 5;’ In (4-4),
H(DY, LY) — HO(DY, LY)®"
is the diagonal embedding.

We refer the reader to Li [20] for the definitions of H*(D®) and the maps between
terms in (4-2), (4-3).

4.4 Formal relative Gromov—Witten invariants

Usually, the relative Gromov—Witten invariants are defined as integrations of the pull
back classes from the target and the relative divisor. In the case studied, the analogue is
to integrate a total degree 2 ZveVl @) £(u?) class pull back from the relative divisoAr D.
The class we clAloose 1As the product of the 7"—equivariant Poincaré dual clT (O (L))
of the divisor LY C D", one for each marked point ¢} . Equivalently, we consider the
moduli space

M3 (T D) = {u. X)) € My gz (7 | u(g)) € ¥}

Its virtual dimension is zero. More precisely, let [71 — 772] be the perfect obstruction
theory on M3 7 2 (Y™ L) and [T! — T?] be the perfection obstruction theory on
M . ﬁ(Yrel). Given a moduli point

[u: (X, %) = (Ym, D)l € M3 G 2 (P L) € M3 5 2 (T,

£(u?)
we have 7;1 —’];2 = 7;41 —7;2 — @ @ (Nzu/ﬁv)u(q}’)
vel (') j=1

as virtual vector spaces.

In the rest of this subsection (Section 4.4), we fix x, I, c? , 1, and write M instead of
./\71)'( aji (IA’ rel, Z). We now define the formal relative Gromov—Witten invariants of ¥
by applying the virtual localization to the moduli stack M. We use the equivariant
intersection theory developed by Edidin and Graham [6] and the localization by Edidin
and Graham [7] and Graber and Pandharipande [11].

Since Y™ is toric, the moduli space M and its obstruction theory are 7' —equivariant.
We consider the fixed loci M7 of the T —action on M. The coarse moduli space of
MT is projective. The virtual localization is an integration of the quotient equivariant
Euler classes. When [u] varies in a connected component of M7 | the vector spaces
7,} and 7,2 form two vector bundles. We denoted them by 7! and 72. Since the
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obstruction theories are T —equivariant, both 7 are T —equivariant. We let 7 ./ and
7™ be the fixed and the moving parts of 77 . Since the fixed part 7%/ induces a
perfect obstruction theory of M7 | it defines a virtual cycle

[MT]Vir c A*(MT),
where A,(MT) is the Chow group with rational coefficients.

The perfect obstruction theory [T/ — T2/] together with the trivial T —action
defines a 7'—equivariant virtual cycle

MTET e AT (MT),
Since T acts on M7 trivially, we have [7, Proposition 2]
ATMT) = A M) @ Ar
where A7 = Hom(T, C*) = AT (pt) = Quy, us].
The moving part 75" is the virtual normal bundles of M7 in M. Let
el (T0m) e A%(MT)
be the T —equivariant Euler class of 7%, where A?(MT) is the T —equivariant
operational Chow group (see [6, Section 2.6]). For i = 1,2, el (T"™) lies in the
subring
A*MT) ® Qur.uz] € AFMT)
and is invertible in
A*MTY @ Qluy, uzlm C A% (M ).
Here the subscript ( )y, is localization at the ideal m = (uy, u,) (cf [7, Section 4]).
We can also define a degree homomorphism deg,, as follows. By [7, Theorem 1],
AL (M) 2= AT MD)m = 4MT) @ Qlur. ),
so we may generalize the degree map deg: Ao(M7T) - Q to
degp: Ag(MT)m — Q[uy, ]

4Rb s {deg(a)-b d=0,

b
Y d+40.

Also, for ¢ € A%(X)m and o € AT (X)), we agree

| e =degn(cna) € Qlur.usln
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Following the lead of the virtual localization formula [11], we define:

Definition 4.7 (Formal relative Gromov—Witten invariants)

1 eT (Tz,m)
4-5 F% o (up,up) = ———— —_—
( ) X’d’u( ! 2) |Aut(ﬂ)| [MT]vir,T eT(Tl’m)
where we view [MT]""T as an element in AT (MT),.

Note that
eT (72,m)
eT (’Tl )
where (A,{(MT)m)O is the degree zero part of the graded ring AT (MT),,. Therefore,

Frlg a(ui,uz) € (Quy, ualm)o = Q(u1/uz)

where (Q[u1, u3]m)o is the degree zero part of the graded ring Q[u1, U3]m-

N [MT]Vir,T c (AZ:(MT)T“)()

Since M usually is not proper, apriori the integral (4-5) may depend on u;/u;.
Nevertheless, in this case we have:

Theorem 4.8 The function F ;1;; ﬁ(ul ,Uy) is independent of uy, u, ; hence is a ratio-
nal number depending only on T', x, d and [i.

In Section 6 and Section 7, we will reduce the invariance of F ;rj ﬁ(ul ,u3) (Theorem
4.8) to the invariance for a special topological vertex (Theorem 5.2).

5 Invariance of the topological vertex

We begin with the notion of topological vertex and topological vertex with standard
framing.

Definition 5.1 (Topological vertex and standard framing) A topological vertex is a
FTCY graph that has one trivalent vertex and three univalent vertices (see Figure 10 in
Section 6). A topological vertex with a standard framing is a topological vertex whose
three edges e1, e, and e3 that share the only vertex v as their initial vertices have
their position and framing maps satisfying (see Figure 7)

fler) =ple2), flea) =ple3) and f(ez) = pley).

In this section, we shall prove:
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Figure 7: A topological vertex with standard framing

Theorem 5.2 (Invariance of the topological vertex) Theorem 4.8 holds for any topo-
logical vertex with standard framing.

We fix a topological vertex with standard framing I" once and for all in this section; we
let Y™ = (Y, D) be its associated FTCY threefold. As before, we continue to denote
by T the group (C*)? and abbreviate /\/l;(,g,ﬂ(Yrel, L) by M.

Our strategy to prove the invariance of

(5-1) F°F**(u1,u2)=;q me@(“l/uz)
xod.it |Aut()] Jpaqrpr e (T1m)

is to construct a new proper 7 —equivariant DM-stack E with perfect obstruction theory
and a T —morphism
. _AA® - vrel T =
O M (= M5 (Y. L)) — E
so that

(1) the induced map on the T —fixed loci ®7: MT — ET is an open and closed
embedding;

(2) the obstruction theory of M along its fixed loci is identical to that of E via ®7 .

Once we have ®, we shall take E; = ®(M) (as a closed subset), which is 7" —invariant.
Because of the equivalence of obstruction theories stated, we have

/ eT(TZ,m) B / eT(TZ,m)

[MTJvr eT(Tl,m) [E{]Vif eT(Tlam)’

(Here by abuse of notation, we denote by 7% the moving parts of the obstruction
complex [T! — T?2] of M as well as E along their fixed loci.)

To prove the invariance of the right hand side, we shall prove that we can pick another
T —invariant closed subsets E, C E that is disjoint from Z; so that the fixed loci
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and that the element [E]V">7 lifts to an element in Ag(El U E,) via the tautological
Tim e T/
Ay (E1UEy) — 4, (B).
On the other hand, we will show that the image of this lift under the composition
Tim (1= T /e Ty 98n
Ao (E{UE;,) — Ao (E1) — A0(51 Jm—> Quy,uz)

is F;FJ ﬁ(ul,uz) in (5-1). Since the degree map AZ;(EI) — Q takes values in Q,
this will prove that the formal expression F;% ,1(”1 ,Up) is a rational number, thus
proving the invariance theorem.

5.1 The relative Calabi-Yau manifold ¥ ™ and the morphism ®

We shall construct the stack E and the 7' —equivariant morphism & promised. The
stack & will be constructed as the moduli of relative stable morphisms to a pair of a
nonsingular projective 7 —threefold W with a relative divisor D C W and a subdivisor
L C D. The morphism & will follow once we choose (W, D) so that there is a
T —morphism (}A’, 13) — (W, D).

We begin with constructing the toric variety W'™!. Looking at the graph " chosen, the
obvious choice of W is the toric blowup of P! x P! x P! along three disjoint lines

¢, =ocox P! %0, l,=0xo00oxP! and ¢3=P!x0xoc0.
The moment polytope of W, which is the image of the moment map
T: W —R3,

can be identified with the quotient W /U (1)* of W by U(1)? C (C*)3, as shown in Fig-
ure 8. Here we follow the convention that (z1, z3, z3) is the point ([zy, 1], [z2, 1], [z3, 1])
in (P1)3. We let D C W be the exceptional divisor and let D; C D be its connected
component lying over ;. Each D; is isomorphic to P! x P!. We then let Cy, C, and
(3 be the proper transforms of

P'x0x0, 0xP!x0 and 0x0xP!
and let L; C D;,i = 1,2 and 3, be the preimages of
(00,0,0) € £y, (0,00,0) €, and (0,0,00) € £3.
Clearly, restricting to C; the log-canonical sheaf
(5-2) A3 Qu (log D)|c, = O, .

Hence to the curves C; the relative pair W™ = (W, D) is practically a relative Calabi—
Yau threefold.
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L343
D3

D3

q1 q2

Figure 8: Moment polytope of W. All faces of this polytope represent
the (C*)? invariant divisors of W . The point py is the image of the point
(0,0,0) € W. The line pgp; is the image of the curve C; = P!, and the
thickened line P;¢; is the image of the curve L; = P!. The rectangle face
containing the edge p;¢; is the image of the relative divisor D; = P! x P!,

For clarity of presentation, we will follow the convention that under the isomorphisms
D; =P!xP! and ¢; = P!, the tautological projection D; — {; is the first projection.
Under this convention, the line L; C D; is the line 0 x P! and the intersection
pi = Ci N D; is the point (0, 0).

As to the torus action, we pick the obvious one on (P1)3 via
b bl — 3
(z1. 22, 23) 21 = (121, 1225, 1323), (t1,12,13) € (C*)".

It lifts to a (C*)3—action on W that leaves D; and L; invariant. We let 7 C (C*)3
be the subgroup defined by #7573 = 1; it is isomorphic to (C*)? and is the subgroup
that leaves (5-2) invariant. In the following, we shall view W™ = (W, D) as a relative
Calabi—Yau 7 —manifold to the curves C;.

Next we will define the moduli space M ;. ﬁ(Wrel, L). Clearly, each C; induces
a homology class [C;] € Hy(W;Z). For ji = (u', u?, u?) € P, we let d be the
homology class

d = ' [C+ PG+ 11 1ICs] € Ha (W3 2).
The pair (c? , 1) is an effective class of T':

d(@)=p'|. p)=pu'. i=123.
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We then let
My a(W™. L)
be the moduli of relative stable morphisms

u: (X; Ry, Ry, R3) — W™ = (W, Dy, D,, Ds3),

where R; C X are the relative divisors of u to D; C W (namely u_l(Di) = R;),
that have fundamental classes d , have ramification patterns p/ along D;, and satisfy
u(R;) C L;, modulo the equivalence relation introduced in [20]. It is a proper, separated
DM-stack; it has a perfect obstruction theory [19; 20], and thus admits a virtual cycle.
This moduli stack M ;. ﬁ(Wrel, L) is the stack & we aimed to construct.

It follows from our construction that the scheme Y, which is the closure of the three
one-dimensional orbits in )A’, can be identified with the union C; U C, U C5 in W the
formal scheme Y is isomorphic to the formal completion of W along Y . Further, the
relative divisor D of ¥ (resp. the subdivisor LcC 5) is the preimage of the relative
divisor D C W (resp. the subdivisor L C D); the induced morphism

¢: (Y,D,L)— (W,D, L)

is T —equivariant; and the two effective classes (d, j1) are consistent under the map ¢ .
Therefore, it induces a T —equivariant morphism of moduli spaces

O M (= M3 g (Y™ L)) — E (= Mg (W™, L))

that induces a morphism
ol MT — g7
between their respective fixed loci.
Lemma 5.3 The morphism ®T is an open and closed embedding; the obstruction

theories of M and E are identical under ® along the fixed loci MT and its image
. =T
in E".

Proof This follows immediately from that C;, C, and Cj are the closures of three
one-dimensional orbits, that Y = C; U C, U C3 and that Y is the formal completion
of W along Y. |

We let E, be the image @(M), as a closed substack of E. Since ® is T'—equivariant,
& is T —invariant.
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5.2 A constancy criterion

We now construct the other T —invariant closed subset &, and verify the sufficient
condition for the constancy of (5-1) briefly mentioned at the beginning of this section.

First, since T acts on E, for any closed point u € E, the stabilizer Stabz (u) of u is
a subgroup of 7. For those points u that are fixed by 7 (so that Staby (u) = T), we
have:

Lemma 5.4 The fixed loci ET is a closed and open subset of the fixed loci 8T .

Proof The lemma will follow from the classification result in the next subsection. O

We now choose a T —invariant, closed &, C & that contains E7 — EIT and is disjoint

from Z;. Welet U = 2 — ET . For any one-dimensional subtorus G C T we let U®
be the closed subset of those u with staby (1#)y = G, where staby (1)¢ C stabg (u) is
the connected component of the identity. Accordingly, we let U° C U be the open
subset of those elements with finite stabilizers. Since & is proper, there is a finite set
A of one-dimensional subtorus G C T with nonempty U%. For each such G, we

let U IG be the union of those connected components of U¢ whose closures in E are
disjoint from E . Since the difference

ué-vfce’

T
1 B

ol _

and is disjoint from E7 , it is contained in 2 =2 T Thus

is T—invariant, closed, containing 7 — Ef and disjoint from ;.

Since both E{ and E, are T —invariant and closed, we have the exact sequence of
T —equivariant Chow groups

~ ~ ~~ ﬂ ~~ ~ ~
Ag(QIUaz)—>A(7;(a)—>A(7;(u—n1 UE,)—0.
Therefore, a £ € Ag(E) lifts to Ag(El U E,) if and only if B(§) = 0.

Unfortunately, the technique we shall apply only gives the vanishing of B([E2])V""T

in the ordinary equivariant homology group, not the equivariant Chow-group. To
accommodate this, we shall work with the equivariant homology groups instead.
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We let T be the maximal real subgroup U(1)*2 C T'. We let B!T = (C!+1 —0)*2
and B! Tr = (S2/+1)*2 be the finite approximation! of BT and BTy . For any proper
DM-stack M , we define

HiTR (M) = hlm H; 4 (M X TR BITR), H, the BM-homology

parallel to the definition of the equivariant Chow-group

AT (M) = lim A 1.2 (M x1 B'T).
Because M X1y B'Tgr = M x7 B'T and M is proper, we have a tautological homo-
morphism A7 (M) — HIR(M).

In the remainder of this section, for any class in AiT (Z), we shall not distinguish it
with its image in Hle.R (8). Since our ultimate goal is to investigate the degree of the
cycles in Ag (Z1)m, there is no loss of generality if we replace AZ: by HZJ;R since the
degree maps commute with the tautological map from Ag to HOT R,

For & € HOTR(E), we let £7 € HOTR(ET)m be the associated element under the
localization isomorphism

H{®(8)m= H]*(ET ).

(Here we follow the convention introduced in the previous section that m is the
ideal (u1,u3) C Hj.(pt) and the subscript m means the localization by m.) We let
& lT + ézT =&T be the decomposition of €7 under the tautological isomorphism

HI®ET) = HI®(ET) o HIR(ED ).

Lemma 5.5 Letf e Hg R (&) be any equivariant element. Suppose & can be lifted to
ann € HOTR(EI U E,). Then the component 1y € HOTR(El) of n has the property
that r){ =£ IT . Consequently, under the composition of the restriction and the degree
homomorphisms

deg”: HI®(E1)m— Ho(ET) ®q Qlu1, uslm —> Qluy, iz)m,

& IT is mapped to a constant (independent of u1 and u5 ).

17 = C* x C* acts on B'T via the product of the standard C* action on C/*! by multiplication:
v =g -v foro € C* and v e C!t!. The Tr action on BlTR is the one induced by 7" on B'T.
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Proof Suppose & lifts to an n € HOTR(EI U E,). Since E; and E, are disjoint,
n=nmn1+mny for n; € HOT R(E;). Then by the localization theorem,

H{*(E1UE2)m —— H{*(E)m

T= E

HI#(ET)m® HI®(E])m —— HI#(E )

is commutative. Let 17].T € HOT R(E].T)m be the element associated to 7; via the left
vertical arrows. Then since n = 1y + 1, is mapped to & under the top horizontal
arrow, SIT = 17{ . On the other hand, since n; is an equivariant homology class,
degT(an) =deg(n;) € Q. Thus degT(élT) € QQ as well. This proves the lemma. O

Following the lemma, to prove the invariance theorem we only need to check that the
class [E]VT lifts. For this purpose, we need a detailed classification of those u €
that are invariant under one-dimensional subtori G C T'.

5.3 Elements with nontrivial stabilizers

Let ay,a;,as € Z with a; 4+ a; + a3 = 0 be three relatively prime integers and let G
be the subtorus

G ={(t", 121" |teC*}CT.

Our task is to characterize those stable relative morphisms that are invariant under
G C T and are small deformations of elements in E;, where &1 = ®(M).

To investigate relative stable morphisms to W, we need the expanded relative pairs
(W[m], D[m]), m = (m, m,, m3) (see Figure 9). We let A be the projective bundle

P(Oplx]pl ® Op1yp1(0, 1))
over P! x P! with two sections
Dy =P(Opixp1 ®0) and D_=P(0& Opiypi(0,1)):

we form an m;—chain of A by gluing m; copies of A via identifying the D_ of one
A to the D4 of the next A using the canonical isomorphism pr: Dy — P! xP!; we
then attach this chain to D; by identifying the Dy of the first A in the chain with D;
and declaring the D_ of the last A be D[m];. The scheme W[m] is the result after
attaching such three chains, of length m, m, and mj respectively, to Dy, D, and
D3 in W. The union

D[m] = D[m]; U D[m], U D[m]3
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is the new relative divisor of W[m]. Note that our construction is consistent with that
the normal bundle of D; in W has degree —1 along L;.

L343 A

Figure 9: A sketch of the scheme W[m] for m = (0,2, 0). The main part
is the moment polytope of W (see Figure 8). The added two solids to
the right are the two A’s attached to D,, resulting the scheme W[m] with
m = (0, 2,0). The shaded faces are the relative divisor D[m] of W[m]. The
straight diagonal line contained in the bottom face indicates the image of ¢ .
in case n = (1, —1, 0); the curved line indicates the image of ¢ . in the other
case.

For future convenience, we denote by A[m;] the chain of A’s that is attached to D;; we
denote by L[m]; C D[m]; the same line as L; C D;. The new scheme W [m] contains
W as its main irreducible component; it also admits a stable contraction W [m] — W
whose restriction to the main component is the identity and its restriction to A[m;]
is the tautological projection A[m;] — D;. Also, (C*)3 acts on (W[m], D[m]) since
the (C*)3-action on N, p;/w induces a (C*)3—-action on each A attached to D;.
Therefore (C*)? and T act on E. Unless otherwise mentioned, the maps W — W [m]
and W[m] — W are these inclusion and projection; these maps are (C*)3—equivariant.

The pair (W, D) contains (Y, p), p = p1 + p» + p3, as its subpair. Accordingly,
the pair (W[m], D[m]) contains a subpair (¥ [m], p[m]) whose main part Y [m] is
the preimage of Y under the contraction W[m] — W . The relative divisor p[m] is
the intersection Y [m] N D[m]. It is the embedding Y [m] C W[m] that induces the
embedding 5 C B.
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We now fix a one-dimensional subtorus G C T'. We let u be a relative stable morphism
in B, considered as an element in Z; we let ug be a small deformation? of u¢ in
29 that is not entirely contained in E;. Each uy is a morphism from its domain Xj
to W[m] for some triple m possibly depending on s. We let #i;: Xy — W be the
composite of ug with the contraction W[m] — W . Then u; form a flat family of
morphisms. This family specializes to #y as s specializes to 0. Hence as sets, #s(X)
specializes to #o(Xy) as s specializes to 0. Because #5(X;) are union of algebraic
curves in W and (X)) is contained in C; U C, U C3, for general s the intersection
iis(Xs) N D is discrete. Hence every irreducible component Z C ;! (D;) must be
mapped to a fiber of A[m;]/D;.

Now suppose there is such a connected component Z with us(Z) lies in the fiber of
A[m;] over g € D;, then the predeformable requirement on relative stable morphisms
forces the same ¢ in D[m]; to lie in uz(X;). Because of the requirement ug(Z) N
D[m]; C L[m]; imposed on elements in &, we have

(5-3) us(Xs) N D; C L;.
This leads to the following definition.
Definition 5.6 To each one-dimensional subtorus G C T, we define /\/lg;”f to be the
union of all connected components of
({lu, X1€ ET" | #(X) N D is finite)}
that intersect but are not entirely contained in & .
Following the discussion before Definition 5.6, all u in Mg;”t satisfy (5-3). In case

aj+1 # 0 (we agree a4 = a; ), the only Ty, —fixed points of L; are p; and ¢;; hence
all u in Mg;’} satisfies a strengthened version to (5-3):

(5-4) us(X)N D; C p;, when a; 4 # 0.
Here ¢; is ruled out because each connected component of Mg;f’f intersects 2.

We now characterize elements in /\/lg;?f. We comment that we shall reserve a4, a, and
as for the three relatively prime integers that defines G, as specified in the beginning
of this subsection. In this and the next two Subsections, we shall workout the case
ay >0 and a,,a3 < 0; the case n = (1,—1, 0) will be considered in Section 5.6.

2 Here s should be viewed as varying in some smooth connected curve.
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Now let [u, X] € ./\/lg;”f and let V C #(X) be any irreducible component. Since u is
Ty—invariant, V' is Ty—invariant. Hence V' must be the lift of the set

V ={(c1t, caty?, e5t5%) | t € C U {oo} } C (P
for some (cy, ¢z, c3). This immediately rules out the following possibilities:

(1) all ¢; are nonzero: should this happen, then 1% N, = (0, 00, 00), which violates
(5-3);

(2) ¢1 = 0 but the other two are nonzero: should this happen, then either VN D =
VNDy=gqy,or VND=VND,=p), (see Figure 9 for the location of p’),
which violates (5-4);

(3) ¢z = 0 but the other two are nonzero: should this happen, then V N D = ¢q;
since a1 > |az|, which violates (5-4).

This leaves us with the only two possibilities: (a) only one of ¢; is nonzero; (b) ¢3 =0
but the other two are nonzero. In case (a), we have V = C; for some i; in case (b), V
is the image of the map

brc: Pl — W, keZt, ceC*

that is the lift of P! — (P1)*3 defined by & > (£k@1, c~ka2gka2 0. Clearly, ¢y . is
G —invariant. It is easy to see that these are the only 7, —equivariant maps Z — W
from irreducible Z whose images are not entirely contained in C; U C, U C3 and in
the divisor D. This proves:

Lemma 5.7 Suppose a; > 0 and a,, a3 <0. Then any (u, X) € /\/lg;”f not entirely
contained in Y has at least one irreducible component Z C X and a pair (k, c) so that

“lZ ;‘pk,c-

Here by u|z = ¢ ., we mean that there is an isomorphism Z = P! so that under this
isomorphism u|z = ¢ ..
When ¢ specializes to 0, the map ¢y . specializes to the morphism

¢ro: P'UP — W

defined as follows. We endow the first copy (of P! LIP!) with the coordinate £; and
the second copy with &,; we then form the nodal curve P! LIP! by identifying the 0
of the first P! with the 0 of the second P!; we define ¢k,o0 to be the lift of the maps

£ (E¥10,0) and & (0,£,%2,0).

Geometry € Topology, Volume 13 (2009)



566 Jun Li, Chiu-Chu Melissa Liu, Kefeng Liu and Jian Zhou

Since £, = 0 and &, = 0 are both mapped to the origin in (P!)*3, they glue together
to form a morphism ¢y o: PlUP - W.

This leads to the following definition.

Definition 5.8 A deformable part of a (1, X) € Mg;”f consists of a curve Z C X and
an isomorphism u|z = ¢ . for some (k,c).

Suppose (u, X) has at least two deformable parts, say (Z1, ¢x, ¢,) and (Z2, ¢, c,)>
then the explicit expression of ¢ . ensures that Z; and Z, share no common irre-
ducible components. Should Z; N Z, # &, their intersection would be a nodal point
of X that could only be mapped to either Dy or D, of W under u. (Note that it
could not be mapped to py since otherwise both ¢; = ¢, = 0 and this node would be
in more than two irreducible components of X .) However, the case that the node is
mapped to Dy or D, can also be ruled out because it would violate the predeformable
requirement of relative stable morphisms [19]. Hence Z; and Z, are disjoint. This
way, we can talk about the maximal collection of deformable parts of (u, X), say

(Zl"Pkl,cl)’ Tt (Zl’ ¢k1,0/)'

For convenience, we order it so that &, is increasing.

Definition 5.9 We define the deformation type of (u, X) € Mg;"f be
(k)p = (ky <k =--- < ky).

It defines a function on MdTg}, called the deformation type function.

Let (u, X) be an element in Mg;’lf of type (k,);. Intuitively, we should be able to
deform u within ./\/lgl;”f by varying u|z, using ¢, ; to generate an Al —family in Mg;’;.

It is our next goal to make this precise.

To proceed, we need to show how to put ¢ ; into a family. We first blow up P! x Al
at (0,0) to form a family of curves ) over Al. The complement of the exceptional
divisor ) — E = P! x Al —(0,0) comes with an induced coordinate (£, 7). We define

Oply-p: D—E — W;  (£,1) > (50, ~hazghaz g,

We claim that @y |9 g extends to a morphism ®: ) — W. Indeed, if we pick a
local coordinate chart near E, which is (€, v) with ¢t = £v, then

Dply—g: (5, v) > (EFN (Fv)~hazghaz ) = (gkar y~kaz ),
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which extends to a regular morphism
Y — W.

Note that for ¢ € A!, the fiber of (®y,9)) over c is exactly the ¢k we defined earlier.
Henceforth, we will call (®y,9)) the standard model of the family ¢y ,; we will use
2. to denote the fiber of ) over c € Al

To deform u using the family ®;, we need to glue ) onto the domain X. We let
D, be the proper transform of 0 x Al ¢ P! x Al and let ©®, = co x Al in ). Both
D, and D, are canonically isomorphic to Al via the second projection. For Z C X,
we fix an isomorphism Z =~ Q). so that u|z = ¢y .; we specify vy, v, € Z so that
u(vi) € D;; we let Xy be the closure of X — Z in X.

We now glue 2) onto X x Al. In case both v; and v, are nodes of X, we glue
) onto X x Al by identifying ©; with v; x A! and D, with v, x Al, using their
standard isomorphisms with A!; in case v; is a marked point of X and v, is a node,
we glue ) onto X, x Al by identifying D, with v, x Al and declaring D to be the
new marked points, replacing vy ; in case vy is a node and v, is a marked point, we
repeat the same procedure with the role of v{ and v, and of ®; and ©, exchanged;
finally in case both v; and v, are marked points, we simply replace Z x Al in X x Al
by ) while declaring that ®; and ®, are the two marked points replacing v and v;.
We let X — Al be the resulting family.

The morphisms
1 pr u|X0
XoxA'—> Xg——W[m] and @,: 99— W
glue together to form a morphism
U: X — Wim).
The pair (U, X)) is the family in M;;”f that keeps u|y, fixed.

More generally, we can deform u inside /\/lg;’} by identifying and altering its restriction
to the deformable parts of X simultaneously. This way, any u € ./\/lg;”f of type (k,);
generates an Al family of elements in /Vlg;”f.

5.4 Global structure of the loci of invariant relative morphisms

In this subsection, we shall prove that any connected component of Mg;’} is an A/
bundle.

We begin with a technical lemma:
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Lemma 5.10 Let v € X4 be a node in u=' (D). Then v remains a node when u
deforms infinitesimally in Mg;’;.

The key to the proof is that the 77 actions on the two irreducible components of X
that contain v are infinite on one and trivial on the other.

Recall that there is a natural inclusion /4: T — Aut(W[m]) induced by the T —actions on
W and on Np,,w . There is a unique homomorphism /4’: T — Aut(W[m]/ W) such
that® h/(t)oh(t) € Aut(W[m]) act trivially on p;[m;] forall £ € T, where p;[m;] is the
fiber of A[m;] over p; € D;. Since u is G —invariant and the image u(u_l(A[m,-])) is
entirely contained in p;[m;], there is a group homomorphism /;: T — Aut(X) such
that for all o € T},

W (c)oh(o)ou=uohi(c) and h;(c) acts on u™ ' (A[m;]) trivially.

Now let v € u~!1(D;) be a node of X that is mapped to D; under u; let V_ be the
irreducible component of X that contains v that is mapped to W, and let V4 be the
other irreducible component of X that contains v. Then u(V4) must be contained in
A[m;]. Since hy(id) = id and that 77 is connected, /11 (0)(V+) C V4. Hence /(o)
are automorphisms of V4 that fix v. We let

def
Tyly, S {hi(0) | o € Ty} C Aut(Va, v);

it is a group which is a homomorphism image of G =~ C*, so it is either C* or trivial.
Lemma 5.11 The group G|y_ is infinite while the group G|y is trivial. Therefore
G|V_ >~ C*.

Proof Since /(o) acts trivially on u~ ' (A[m;]) D V4, G|y, is trivial.

Since u(v) = p; and u(V-) C W, u(V-) is Ty invariant but not 7}, fixed. The induced
action on u(V_) is infinite, so 75|y must be infinite because u is Ty—invariant. O

We now prove Lemma 5.10.

Proof of Lemma 5.10 Suppose the node v can be smoothed of first order within
Mg;"f, then there is a family of stable morphisms u g over B = Spec C[t]/(?) in /\/lzl;”f
such that its closed fiber is u and that the family of the domain curves smoothes the
node v to the first order. We let X g be the domain of u g. Since the closed fiber of Xp

3The automorphisms ¢ € Aut(W[m]) that preserve the fibers of the map W[m] — W are called
relative automorphisms of W[m]/ W ; the group of all such automorphisms is denoted by Aut(W[m]/ W).
If m = (m;,m,, m3) then Aut(W[m]/ W) = (C*)m1+tmz2t+ms
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is X, v is a closed point of Xp. And since X smoothes the node v to the first order,
the tangent space T, Xp is C2. On the other hand, I1(Ty) is fixed by T}, the family
Xp — B is T;—equivariant with 75, acts trivially on B. Therefore, the T3 action
on T, Xp leaves T, V4 and T3, V_ invariant and has opposite weights on 73,V and
Ty V—. This contradicts to that Ty|y_ is infinite while Tj|y, is trivial. This proves
the lemma. O

As we argued before, each u € M(Q’f contains a deformable part that is the union of
some @y, , . Our next task is to show that the deformable parts of u remain the same

within a connected component of Mg;gc

We now make it more precise. We let (u#, X)) be any element in ./\/ldTe”f; let Yi,---,Y; C
X be all its deformable parts so that u|y, = ¢, ., ; let v,; and v, > € Y, be the marked
points so that u(v,,j) = pj. According to the discussion in the previous Subsection,
by varying u|y, using @, we get a copy Al in Mge”f; by varying all the deformable
parts we obtain a copy Al'in /Vlgi:ff. This is the fiber of the fiber bundle structure on
Mg:ff we are about to construct.

To extend this A/ C /\/lg;:’f to nearby elements of [u], we need to extend all ¥, in X to
a flat family of subcurves.

Lemma 5.12 The deformation type function on Mﬁf is locally constant.

Proof We pick a smooth curve 0 € S and a morphism ¢: S — M (Z;”f so that ¥ (0) =[u].
The morphism i pulls back the tautological family on Mﬁf to a family U: X — W
over S. The central fiber X, is X and thus contains Y,. We let A" C X be the
subscheme of the nodes of all fibers of X'/S. As before, we let R C X’ be the divisor
of special marked points in the domain X". Since v, ; is either a marked point or a node
of X, v,; e NUR. Let P, be the connected component of A'UR that contains
v,,j. We claim that P, ; is a section of NUR — S. First, P,,; is flat over S at v ;.
This is true in case v, ;j is a marked point since R is flat over S by definition; in case
v,,j 1s a node, it is true because of Lemma 5.10. Therefore, P, ; dominates .S'. Then
because N U R is proper and unramified over S, dominating over S guarantees that
P,,;j is finite and étale over S'. Replacing S by its étale cover, we can assume that
P,,j is isomorphic to S via the projection.

We now pick the desired family of curves ),. For j =1 or 2, in case P, ; is one
of the sections of the marked points of X'/S, we do nothing; otherwise, we resolve
the singularity of the fibers of X" along P, ;. As a result, we obtain a flat family of
subcurves ), C X that contains Y, as its central fiber. We let {4,: ), — WV be the
restriction of U to ),. Because U (Y,) CW C Wm], U, (),) C W xS CW as well.
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Since U: X — WV is a family of T, —equivariant relative stable maps, U,: J, — W is
also a family of T, —equivariant stable morphisms. Then because U, |y, is isomorphic
to P, ¢, - each member of U/, must be an ¢y, . for some ¢ € C. This proves that the
deformation type of U|x, contains that of I/|y, as a subset. Because this holds true
with 0 and s exchanged, it shows that the deformation type function remains constant
over S.

Finally, because any two elements in the same connected component of ./\/lg;”f can be
connected by a chain of images of smooth curves, the deformation type function takes
same values on such component. This proves the lemma. O

We are now ready to exhibit a fiber bundle structure of any connected component of
Mg;f’f. Let Q C Mg;'} be any connected component. We know that all elements in Q
are of the same deformation type, say (k,);. To get the fiber structure, we need to take
a finite cover of Q.

Definition 5.13 We define the groupoid Q over Q as follows. For any scheme S
over Q, we let Q(S) be the collection of data {(U, X, W), p,, Z,, 7, |t=1---,1} of
which
(1) U: X — W is an object* in Q(S);
(2) p, are morphisms from S to A{, A% ~ Al;
(3) Z, are flat families of subcurves in X over S with all marked points discarded;
4) m: Z,— pYy, is an isomorphism over S;
together they satisfy

Ulz, = p Py, 0m: Z,— W.

Further, an arrow from {(U, X, W), p,, Z,, 7.} to {U', X' W), p;, Z], ]} consists of
an isomorphism /;: X — X’ and an isomorphism /,: W — W’ relative to W so
that under these isomorphisms 2, = Z/, p, = p|, m, = n] (forall t=1,...,/) and
u=u'.

Here we use A! to denote the target of p,, which is A!. We are doing this to distinguish
them for different ¢.
For a fixed type (k,);, we form a subgroup of the symmetry group .S;:

Gy, =10 € Si | ko) = ki

4Here we consider Q as a groupoid and Q(S) is the collection of objects over S.
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Proposition 5.14 The groupoid Q is a DM-stack acted on by G (k,), ; it is finite and
étale over Q, and Q/G(kt)l = Q. The morphisms p, in each object in Q glue to
a morphism p,: Q — Al Let Qo = (p1,--- . p;)~'(0). Then there is a canonical
projection 7: Q — Qg making it an A' —bundle over Qg . Finally, the morphism

(. (D1, 1)) @—> Qo x A

is an isomorphism of DM-stacks.

Proof We shall omit the proof, which is straightforward, by the previous discussion. O

5.5 The obstruction sheaves

In this subsection, we will investigate the obstruction sheaf to deforming a [u] in /\/lzi;”f
for the case a,, a; < 0. We will construct weight zero quotient trivial sheaves (meaning
=~ ) of these obstruction sheaves. It is these quotient sheaves that allow us to prove
the desired vanishing in equivariant Chow groups.

We will follow the convention introduced in Section 5.4. We let S — Q be a T—
equivariant étale neighborhood, and let

U x—mw, RcX, DCW and Z,CX

be the tautological family of M(Z;”f over S. Here W is an S—family of W[m] of
possibly varying m, D is the relative divisor of WW, R C X is the union of the sections
of marked points and Z, C & is the (—th deformable parts of U/.

Let 72 be the obstruction sheaf over S of the obstruction theory of ./\/lg;’}. According
to [20, Proposition 5.1], its 7y —invariant part, indicated by the subscript (-)7,,, fits into
the long exact sequences:

B 5§ ~
(5-5) —>5xth/S(QX/S(R),OX)Tn—>A1Tn—>’TT2n —>0
o
(5-6) — B%’ —> R'm, (U™ Q15 (log D)V)T'7 — ‘A;'n — B}n —0
(5-7) — TTI,, — Hr, — TTZ,, — TTzn — 0.

Within these sequences, B/ = EB?=1 Bij ; each summand Bij is a sheaf that associates
to the smoothing of the nodes of the fibers of X that are mapped under U to D
(C W) or the singular loci of A[m;]; the WT is the scheme W with the log structure
defined in [20, Section 1.1] and £2,,,+ is the sheaf of log differentials. In our case,
Uy 5(D) = U*Qy (log D), where U: X — W is the obvious induced morphism.

Without taking the 73 —invariant part, the top two exact sequences define the obstruction
sheaf 72 to deforming [u] in MS . ﬁ(W“’])—the moduli of relative stable morphisms
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to W™ without requiring u(R) C L. Taking the invariant part and adding the last
exact sequence defines the obstruction sheaf ’Z']%n of /\/lg;ff. The sheaf H is the pull
back of the normal line bundle to £ C D. For the n we are interested, HT,, = 0; hence
the last exact sequence reduces to 7, an =7 73” .

In the following we shall show that the / families Z, C X of deformable parts of
(U, X) each contributes to a weight zero trivial (meaning = ) quotient sheaf of 7. 7%”.

We begin with the sheaf
(5-8) R' 704 (®F Qw (log D)),

where @ : ) — W is the family constructed before and 7g: ) — Al is the projection.
Welet Dy, (resp. D31) be the T —invariant divisor of W that contains C; and C, (resp.
C; and C3); it is also the proper transform of the product of the first and second (resp.
the first and third) copies of P! in (P1)3. We let m15: W — Dy,, m31: W — D33
and m;: W — C; be the obvious projections. We claim that Qy (log D)|p,, has a
direct summand ni“ g] /Dy, the pull back of the conormal bundle to Cy in Djq.

Indeed, via the projection 73; we have a homomorphism
731 N¢, by, |Dia — Qw D, — Qw(log D)Ip,,.
Also via the projection 71, we have a homomorphism
7,82p,,(log E12)|p,, — Qw(log D)|p,,. Ei»=DixND.
Combined, we have
751 NE, /Dy, D1 ® 7122y, (log E12)|p,, —> Qw (log D)|p,,.

which can easily be shown an isomorphism. This proves that Qy(log D)|p,, has a
direct summand 7N, gl /Dy, - Consequently, @ZLQW(log D)V has a direct summand

q)ltL(nichl/Dsl)'

Because of our choice, the weight of dz; is a;; the weight of 7', is 1/k, and the
weight of ta (mfNc,/ps,) at 0x Al €9 is —as3. Hence, the sheaf (5-8) splits into
line bundles of weights

1
—a3—a —, —a3—a
3 1+kL 3 1+

Since all a; are integers, and a3 < —1 and —a3 —a; = ap < —1, within the above list
there is exactly one that is zero. Hence

(5-9) Rlmox (®f, Qw(log D)) = Opr.
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We now let p,: S — A} be so that |z, = p] Py, . Since Z, C X is a flat family of
subcurves,

Rln*(Z/{*QWT/S(logD)V)Tn — Rlzr*(L{*QW+/S(IogD)V|Z[)Tn

is surjective; but the last term is isomorphic to the pull back p} of (5-9); hence we
obtain a quotient sheaf

(5-10) @0 R'ma (U*Qyy /5 (log D)V)Tn —> pfOal.

Lemma 5.15 The homomorphism ¢, canonically lifts to surjective

(5-11) o TTzn —> pOAl.

The default proof is to follow the construction of the sheaves and the exact sequences in
(5-5)—(5-7); once it is done, the required vanishing will follow immediately. However,
to follow this strategy, we need to set up the notation as in [20] that itself requires a lot
of efforts. Instead, we will utilize the decomposition of S to give a more conceptual
argument; bypassing some straightforward but tedious checking.

We first decompose U into four subfamilies. Since YV/S is a family of expanded pairs
of (W, D), WL = W xS is a closed subscheme of W. We then let X101 =7/~! (W[O]).
Because of Lemma 5.10,

ulol = U| yior: ol yylol

is an S—family of relative stable morphisms relative to DI% = D x § ¢ WO Next
we consider the composite

U: x —w — wll

and the preimage U~1(D;). Because of the same reason, either this preimage is a flat
family of nodes over S or is a flat family of curves over S. In the former case we
agree X (1 = & in the later case we define

XU =YD x S), Ul =] ppiy: 21— Wl

where the last term WU is the S—family of A[m;]’s that are attached to WI°! along
D; x S to form W.

Since Ul0: x[01 5 W0l j5 5 family of Tj—equivariant relative stable morphisms,
and since Ul is a family of T;—equivariant relative stable morphisms to A relative
to D_ and D4, modulo an additional equivalence induced by the C* action on A,
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the obstruction sheaves 7112 to deforming U 1] as Ty, —equivariant maps (7 112 are
sheaves over .S) fit into similar exact sequences:

X ﬂ[i] 0,1 §lil 1,2
(5-12) — Sxt;([i]/S(QX[i]/S(R[’]), Oxti)T, — A[}l — TT[‘;] —> 0,
. . ol .
(5-13) — B[]ii’o — Rln, (U[’]*Qw[m/s(log D)V)Tn — A[}l’l — 8[757]7’1 — 0.
Here we have already used the observation that ’fT[i]’z =7, 7[~i]’2.
n n

Now let Ny, C U —1(D; x S) be any section of nodes of X that separates X% and
X, By Lemma 5.11, the induced 77 —automorphisms on the connected component of
xlo] adjacent to N, is infinite and on X’ 7] js finite. Therefore the T —invariant parts

3

EXf;(/S(QX/S(R)» Ox)r, = @ 5xt;([i]/S(QX[i]/S(R[i]), Oxi)T,-
i=0

For the same reason, because the tangent bundle 7, W has no weight zero nontrivial
Ty—invariant subspaces,

3
(5-14)  R'm(U* Q1 5(l0g D)), = P R (U Qe S(logD[i])V)Tn,
i=0

where DI is the relative divisor of WL, Further, if we follow the definition of the
sheaves B’ and A’, we can prove that

3 3

Llj _ 4J il _ i .

@An = Az, and @BT,, =Bz,
i=0

i=0

that under these isomorphisms,

éa[i] =a, éﬁm =p and éé[i] =4;
i=0 i=0 i=0
and
3
(5-15) D=1
i=0

Finally, the exact sequences (5-5) and (5-6) become the direct sums of the exact
sequences (5-12) and (5-13).
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Now we come back to the weight zero quotient ¢, in (5-10). By its construction, ¢, is
merely the canonical quotient homomorphism

(5-16)  R'ms (U Q1015 (log D)) 1.
— R'm, (Z,{[O]*QW[O]/S(log D[O])V|ZL)T,7 = p; Oal

under the isomorphism (5-14). Because of (5-15), to lift ¢, to ¢, we only need to lift
(5-16) to T[O] 25 pFOal.

For this, we need to look at the exact sequence (5-13) for X [0, Since 410! is a relative
stable map to (W, D), namely no A has been attached to W, the sheaf BI%/ = 0.
Therefore the sequence (5-13) reduces to a!% = id. On the other hand, T[O] 2 is the
obstruction sheaf on S to deformations of /[%1. Since Z, is a family of connected
components of X [0] /S, the exact sequence (5-12) decomposes into direct sum of exact
sequences that contains

[2Z]

(517 — Extl 5(Qzs(R), 0z) L
F1E:
— Rz (U[O]*QWT/S(logD) 12)z, —>T[Z‘] 2_50
as their factors.

For Z,, since it is smooth, it has expected dimension zero and has actual dimension
one, the obstruction sheaf 7 [2:2 must be a rank one locally free sheaf on S'. Then
because the middle term in (5 17) is p; (’)Al which is a rank one locally free sheaf,
the arrow §1%) must be an isomorphism while ,B[Z‘] = 0. Hence ¢, lifts to

01,2 _ [2/],2 21,2 _
T = DI — 7 = 0w,
Y

and lifts to @,: ’T]%n — p; O 1, thanks to (5-15).

5.6 The case for n = (1,—-1,0)

We now investigate the structures of maps [u] € /\/lg;’lf in case n = (1,—1,0). Let
(u, X)) be any such map, let R C X be the divisor of marked points and let & be the
contraction X — W . Because a3 = 0, u(X) intersects D at pq; it intersects Dj
at ps; its intersection with D, can be any point in L,. Thus being T3 —equivariant
forces #(X) to be a finite union of a subset of Cy, C,, C; and the lifts to W of the
sets {z1zy =c,z3 =0} C (P1)3.

In case all irreducible components are mapped to U C; under #, [u] € E . For those that
are not in E, there are some Z C X so that u(Z) are the lifts of {z;z, = ¢, z3 = 0}.
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Such u|z are realized by the morphisms ¢y .: P! — W that are the lifts of
§r (R R 0 e ).

When ¢ specializes to 0, the maps ¢ . specialize to the ¢ o: P'UP! - W that is
the lift of £, > (£%,0,0) and & > (0,£;%,0). Indeed, there is a family ) — A! and
a morphism ®y: Q) — W so that its fiber over ¢ € A! is the ¢k o defined; also this is
a complete list of 7 —equivariant deformations of ¢y .. Since the argument is exactly
the same as in the prior case studied, we shall not repeat it here.

Here comes the main difference between this and the case studied earlier. In the
previous case, Im ¢y . N D; = p; for both i =1 and 2; hence we can deform each
u|z = ¢g . to produce an Al family in M(Qf. In the case under consideration, though
Im ¢y . N Dy = py, if we fix an embedding Al C L, sothat 0 € Al is the py € L,,
then Im¢y . N Dy = ¢k € L,. In other words, if we deform Ul = ¢g.c, we need
to move the connected component of X (2] that is connected to Y. (Recall that for
u: X — Wim), X = =1 (A[m;]) for 1 <i <3 and X! =u~1(W)))

This leads to the following definition.

Definition 5.16 We say that a connected component Z C X% is subordinated to a
connected component E C X2 if ZNE # &; we say a connected component E C X2
is deformable if every connected component of X [0] that is subordinate to E is of the
form ¢y . for some pair (k, c). We say u has deformation type (k,); = (k1 <---<kj)
if it has exactly / deformable connected components ¢g, ¢, "+ , Pk, ¢, i X (2],

The deformation types define a function on Mg;"f.
Lemma 5.17 The deformation type function is locally constant on /\/ldTe”f.
Proof The proof is parallel to the case studied previously, and will be omitted. O

As in the previous case, any [u] € Mg;”f of deformation type (k,); generates an A’
in Mg;f’f so that its origin lies in ;. Let Ey,--- ,E; C X 2] be the complete set
of deformable parts of u; let Z, j, j = 1,--- ,n, be the complete set of connected
components in X (0] that are subordinate to E, . By definition, each u|z, ; = ¢k, ; ¢, ;-
To deform u, we shall vary the ¢, ; in each ¢y and move E, accordingly to get
a new map.

t.JCuj

In accordance, we shall divide X into three parts. We let X be the union of irreducible
components of X other than the E,’s and Z, ;’s. The variation of u will remain
unchanged over this part of the curve. The second part is the moving part E,’s. Recall
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that each u| g, is a morphism to A[m]. Suppose it maps to the fiber A[m]c of Afm,]
over ¢ € Ly C D,. To deform u, we need to make the new map mapping E, to
A[m5]er. Since the total space of A[m,] over L, is a trivial P![m5] bundle, there is a
canonical way to do this. We let

Qe,crt Almale — Alms]er

be the isomorphism of the two fibers of A[m,] over ¢ and ¢’ € L, induced by the
projection A[m,] — P![m5,] that is induced by the product structure on A[m,] over
L, . The third parts are those Z, ; that are subordinate to E,.

We now deform the map u using the parameter space Al We let K, be the least

common multiple of (k, 1, .k, pn,); welete, ; = K,/k, ;. Since Z, j and Z, j/
are connected to the same connected component E, C X121,
kej _ Kkijr.
CLj TGy
we letitbe ¢,. For t = (t1,--- ,1;) € A, we define

t t t
wly, =ulxy, wlg, =¢, goulg, and ul|z = Pp

Here by ut|Zu. = Pk, ;,0 incase Z,,j = P! (when ¢, ; # 0) we mean that we will
replace Z, ; by P! UP! with necessarily gluing if required; and vice versa.

The A’ family u! is a family of Ty —equivariant relative stable morphisms in Mg;’;;
the map u® associated to 0 € A’ lies in E1; the induced morphism Al - Mg:ff is an
embedding up to a finite quotient.

By extending this to any connected component Q of /\/lg;”f, we obtain:

Proposition 5.18 Let Q be any connected component of Mg;”f that is not entirely
contained in E1. Suppose elements of Q has deformation type (k,);. Then there is
a stack Q, a finite quotient morphism Q/G(k[), — Q, a closed substack Qo C Q, [
projections p,: Q — Al and a projection : Q — Qq so that

(70, (o1, p1)): 0>y x Al

is an isomorphism. Further, given a [u] € Q, the fiber A! in Q that contains a lift of
[u] € Q is the A family {u' |t € A’} its intersection with the zero section Qg is u°.

Finally, the intersection Q N &1 is the image of Q.

Proof Let U/: X — )V be the tautological family over Q We choose Q so that there
are families of subcurves &;,--- ,& C X sothatforeachz€ Q, &, NA,,--- ,ENA,
are exactly the / deformable parts of X,. Then the composite & — VW —> W factor
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through L, C W, and the resulting morphism & — L, factor through Q— L,.
Because each £ N X, has a ¢ . connected to it, the image of Q— Lj liesin Ly —q5.
We then fix an isomorphism A! 2 L, — g, with 0 corresponding to p,. This way we
obtain the desired morphism

O 0 — Al ~L,—q5.

The proof of the remainder part of the Proposition is exactly the same as the case
studied; we shall not repeat it here. O

The last step is to investigate the obstruction sheaf over Q and its lift to Q

Let R C X be the divisor of marked points. By passing to an étale covering of Q,
we can assume that R — Q is a union of sections; in other words, we can index the
marked points of [u] in Q globally. We then pick an indexing so that for ¢ </ the (—th
section of the marked points R, lies in &,. For t = 1,...,n, where n is the number of
marked points, we let U,: Q — L, be

UEURr,: Ri=0—> Ly CW.
Since £, C D; is isomorphic to L X QcC Dy x O under the contraction W — W x Q
and since R, lies in &, for @ < [ the morphism U, is exactly the p, under the
isomorphism A! =~ L, — ¢, and U}*Np is canonically isomorphic to pf N,/ p, -
Because D, is fixed by T}, Np,,p, is fixed as well, and hence p Ny ,,p, is a trivial
line bundle on Q with trivial Ty -linearization.

Because H = P, ; U N /p (see Section 5.5), P, p; N,/ p, becomes a direct
summand of H. Because it has weight zero, it induces a canonical homomorphism

/
@IOL*NLz/DZ — Tzn’

=1

a weight zero subsheaf of 7. Tz,, .

Lemma 5.19 The homomorphism @le PrNL,/D, = TTZ,, in (5-7) is injective, and
is a direct summand of 7, 7377 .

Proof First the first / marked points lie in the connected components of X (2] that
are connected to the domain of at least one ¢ . in W. Because all deformations of
¢k, as Ty—invariant maps are ¢y ., and they intersect D, in L, only; hence for
these ¢ even if we do not impose the condition U (R,) C L, the condition will be
satisfied automatically. In short, the arrow T 71” — Hr, has image lying in the summand
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@B, UFNz/p. This proves that the homomorphism @!_, p* Ny, p, — TTzn is
injective.

We now show that this subsheaf is canonically a summand of the obstruction sheaf. The
ordinary moduli of stable relative morphisms M3 7 ﬂ(W“’l) requires that the marked
points be sent to the relative divisor. The moduli space E = M3 7, ﬁ(W“’l, L) imposes
one more restriction: the marked points be sent to L C D. The obstruction sheaves
of the two moduli spaces are related by the exact sequence (5-7) because of the exact
sequences

00— NLi/Di —> NL,‘/W — NDi/W|Li — 0.

In our case, L; is a P! and the above exact sequence splits 7'—equivariantly. Hence
the sheaf 7 73” splits off a factor that is the cokernel of 7T, 71” — Hr,. Therefore
@f=1 p; NL,/ D, Which is a summand of M7, and a subsheaf of 7, 2n, becomes
a summand of 7, Tzn . |

5.7 Proof of Theorem 4.8

Before presenting the proof, a quick review of the construction of the virtual cycles of
moduli stacks is in order.

Let 7 = (C*)? and E be as before. As shown in [3; 4; 21], the virtual cycle [E]'" is
constructed by

(a) identifying the perfect obstruction theory of E;

~

(b) picking a vector bundle’ (locally free sheaf) E on E so that it surjects onto the
obstruction sheaf of &

(c) constructing an associated cone C C E of pure dimension rank E'.

The virtual cycle [E]VI" is the image of the cycle [C] € H,,(E, E — E) under the Thom
isomorphism

og: Hyy(E,E—E)— Hy(E), r=rankFE.
Here as usual, we denote by E the total space of £ and denote by E C E its zero

section that is isomorphic to E. Also, all homologies are taken with Q—coefficient.
And ¢g[C] € Hy because E has virtual dimension zero.

Following [11], we can make the above construction 7" —equivariant. We choose E
be a T —equivariant vector bundle. Then the cone C alluded before is a 7" —invariant
subcone of E. Because C C E is T —equivariant, the limiting class of

I l
[C x7y B'TR] € Hay441(E X713 B'TR)
>t was shown in [20] the existence of a global vector bundle E can be replaced by that E is dominated

by a quasi-projective scheme.

Geometry € Topology, Volume 13 (2009)



580 Jun Li, Chiu-Chu Melissa Liu, Kefeng Liu and Jian Zhou

defines a T —equivariant [C]T e H27; (E, E — E); its image under the 7 —equivariant
Thom isomorphism ¢ is the T —equivariant virtual moduli cycle

ee([C17) =[E]"™T € H] (B).

We now prove that the class [2]">7 can be lifted to HOT (E1UE,). Since U is disjoint
from 2T, elements in U have stabilizers of at most dimension one. Clearly, the set of
those with finite stabilizers, denoted by Uy, is open in U . Those with one dimensional
stabilizers form a closed subset of U. By the conclusions from the previous two
sections, each of its connected component is a connected component of IT(G) for some
one-dimensional G C T'. As before we denote such connected components by Q,,

indexed by a set @ € 4, namely

U=UyU | J Q.

acA

Also, for each a € A, it associates to a subgroup G, C T so that Q, is a connected
component of I1(G,).

As G, is a subgroup of 7', it associates to a triple of relatively prime integers
(ai,as,asz). To streamline the discussion, we remark that we only need to consider
two cases:

(1) ay, —a; and —as; are positive;

(2) (alva27a3) = (1’_1’0)

Indeed, since the symmetry of (P1)? defined by (z;, z2, z3) = (22, 23, 21) lifts to a sym-
metry of W, any statement that holds true for (a1, a5, a3) holds true for (a,,as,ay).
Consequently, we only need to work with the cases that |aq| > |a;| and |a3|. Then
because (a;,a;,as) and (—a;, —a,, —az) define the same subgroup G C 7', we can
assume further that a; > 0. Hence either a, and a3 < 0 or one of them is zero. The
former is case (1); for later, by applying the S3 symmetry we can reduce it to case (2).

We now suppose that 77 , C T' belongs to the two classes just mentioned. We let Q4 be
a connected component of [1(G,) associated to U,. According to Lemmas 5.14 and
5.18, after a finite branched covering 7,: O, — Q4, Qg is isomorphic to Qg ¢ X Al
for some integer / > 0.

Next, we need to investigate the 7 —action on Q,. Since 9, is fixed by G4 and is
invariant under 7', the T —action on it is determined by the action of a Go = C* C T
complement to G,. Since the list of G, C T appeared in this construction is finite,
we can pick such a G so that Gy - G, = T for all G, C T'. By going through the
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construction, we see immediately that the G—action on Q, is the product of the action
on Q¢ induced by that on E; and the action

(5-18) (y,oup)® = (0% uy, -, 0%uy) € Al

for some w = (wy, -+, w;), where w, € Q*. In case some w, are nonintegers, we
let d be the least common multiple of the denominators of all w, and replace the G
action by composing it with the degree d homomorphism Gy — G. This way the
new exponents are dw,, which are integers. Thus without loss of generality, we can
assume that all w; are integers in the first place. Hence if we let P,: 9, — Al be
the projection, which is (py,--- , p7) by our convention, and if we endow Al with the
Go—action (5-18), then 9, — A’ is Go—equivariant.

We can quotient the pair Q, — Al by Gy now. We let @a,O C Q, be the union of fibers
over 7, which by our previous study is exactly the preimage P, 1(0). Accordingly,
we let (AY)* = A —0 and form

def /(= = -
tat Ma'= (Qa— Qa0)/ Go — (A)*/Go =P,
Here we use the subscript w to indicate the weights and the superscript / — 1 to
denote the dimension of the weighted projective space; to be precise, we shall view the
weighted projective space as a DM-stack. Since the specific weight is irrelevant to our
study, we shall not keep track of it in our study.

We next put our prior knowledge of the invariant part of the obstruction sheaf of Qg in
this setting. We let 7.2 be the obstruction sheaf on Q and let ,]:12Tn be its invariant
part. By Lemmas 5.15 and 5.19, there is a canonical quotient sheaf homomorphism

/
(5-19) Tr,, — @ riOal.

=1
both with trivial T}, ,—actions.
A direct check shows that to each ¢ there is a Go-linearization on 0! so that the above

homomorphism is Gg—equivariant. Because Go-G, =T , the adopted G —linearization
and the trivial G,-linearization on OA% makes (5-19) T —equivariant.

Since the obstruction sheaf 72 on E is a T —equivariant quotient sheaf of E, pulling
back to Q,, denoting it by Eléa, and then composing with (5-19) give us a 7'—
equivariant quotient sheaf

l
(5-20) Elg, — P rfOar.

=1
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Their descents to M, then give us a vector bundle F, over M, and a quotient homo-
morphism

Fa — //LZ Va.
Here V), is the descent (or the Gy—quotient) of @le Oal —a rank | vector bundle
on ]P"fv_l with trivial 7' —action; Fj, is the descent of E, a vector bundle over M.

We need a key technical lemma recently proved in [15, Lemma 2.6] concerning the
cone C C E and its restriction to Q.

Lemma 5.20 [15] Let C|g, C E|g, be the restriction of C C E to Qq;let Clg, C
E|5, be the pull back of C|g, to Q,.Then C|g, lies in the kernel bundle of the
homomorphism (5-20).

Before we prove Theorem 4.8, we need to recall the convention we shall adopt in
dealing with E using analytic method. We now work with the analytic category in the
remainder of this section. By viewing E as an orbifold, every point x € & is covered
by charts

Po: Xq €Vy —> X €Vy/Hy C &,

where V,, are (possibly singular) analytic spaces acted on by finite groups H, . For
two charts Vg and V,, over the same po(Ve) = pg(Vp), we say Vg is over Vy if there
is a group homomorphism Hg — Hy and an Hg—equivariant map ¢qg: Vg — Vy
commuting with the projections p, and pg. We say xg € Vg is over x4 € Vy if in
addition we have ¢gq(xg) = Xq .

~

Since E is an orbifold, it is covered by charts defined, and for any two charts x4 € Vy
and xg € Vg of x € E, there is a third chart x), € V), of x € E that is over both
Xo € Vi and Xg € Vlg.

—~

The vector bundle £ — E pulls back to Hy—equivariant vector bundles £y on V.
To define Gysin map with Q—coefficients, we can use Q—sections® of E, which are
collections of compatible (Q—sections on a covering charts of E.

Proof of Theorem 4.8 We first argue that we can find a T —equivariant (Q—section
of E over U that is disjoint from the cone C|y C E|y.

6A Q-section of Ely,/H, is an Hy—invariant weighted union of C®—sections of Ey: [s] =
> aj[si] with a; € Qxo, > a; =1 and s; are sections of Eg. The sum of [s] with [s'] = )" aj[s]] is
[s]1+[s'1=>a ia} [s; + s]/] Here each [s;] is viewed as a subset of V, with multiplicity one. We can scale
a section [s] by a smooth function p on Vy/Hy (or a Hy—invariant function on V) by [ps] = Y a;i[ps;].
To extend the section [s], we can first extend each s; individually and then averaging using Hy to make it
Hy —invariant. Two Q—sections over Vi and Vg are equal over a third chart V), over V,, and Vg if the
pull back of the two sections to V), are identical.
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We will construct the desired section of E|y by first constructing sections of E|o-
and then extend them to U . Since we will be content with Q —section, we can construct
such section over @ = 7, 1(Q;). We let

£,: Q9 — M, and Elg: — &5 Fa—> & uiVa
be the tautological map constructed before Lemma 5.20.

Since V, is arank / (orbi)bundle on a IP"Q_I , the rank / > dim IP’VIV_I guarantees that
there are Q—sections [s4] of V, that is disjoint from the zero section of V,. We now
pick an analytic Tg—equivariant splitting of E'|g- so that

Elo; =&5uiVa® E* oo

Such splitting exists if we pick a Tr—invariant hermitian metric on £. Using this
splitting, we can lift the sections [s,] of V, to a Q—section of E over Q;. By pushing
this section to Q,, we obtain a Q—section of E over 9, . By working over all 9,
we obtain a QQ—section on U,ec 4 Q, . We denote this section by [s]o. By Lemma 5.20,
[s]o is disjoint from the restriction of the cone C C E to Q, forall a € 4.

Next, since UgzeqQ, is closed in U, we can extend [s]g to a Tr—invariant Q-
section [s]3 of E in a Tr—invariant neighborhood of Uze4Q, C U. We denote this
neighborhood by V':

UDV DUzeu9Q,.

Since [s]g is disjoint with the cone C C E, by choosing V' small, we can assume that
the extension [s]§ remains disjoint with the cone C C E.

Finally, we need to extend [s]§ to over U. This time, since elements in Uy have finite
stabilizers in TR,
%= Uo/TR and E= E|UO/TR»

are an orbifold and an orbibundle over it. Also, since the restriction of [s]z‘ to V is
Tr —equivariant, it descends to a Q—section of E over

V.= (VNUp)/ Tk C Uy.

We denoted this section by [s]. Because the quotient C = C|y, /TR is a cone of pure
R—dimension 2r — 2 in E, (recall that virtual dimension of & is zero means that C
has pure complex dimension r,) and because E is a rank 2r (real) orbibundle over
Uy, by a generic position argument and possibly after shrinking V' if necessary, we
can extend [s] to a Q-section [s]* of E over Uy so that it is disjoint with the cone C.
The pull back of [s]** over to E|y, is the desired Q—section that is Tg —equivariant,
is disjoint with the cone C|y, and is an extension of [s]g.
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Since [E]V"T = ¢E[C], the existence of a Tr—equivariant Q—section disjoint from
C|y implies that the image B([E]"™T) = 0 for B the arrow shown below. By the
exact sequence

HI* (8 - U) — H™®(8) -2 HI*(U) —> o,

we see that [E]V"T lifts to a class in HOTR(El UE,) since E—-U = &; UE,.
Combined with the comment at the end of Section 5.2 we complete the proof of the
theorem. O

6 Topological vertex, Hodge integrals and double Hurwitz
numbers

In this section, we will investigate a general topological vertex and compute its formal
relative GW-contribution introduced in (4-5). According to its definition (Definition 5.1),

the topological vertex I'n:y,,w, is @ FTCY as in Figure 10, where n = (ny,n,,n3) €
793,

6-1) fi=wr—nmwy, [fa=wsz—nawy, fiz=w;—n3w3, w3=-—w;—Ws;

its GW-invariants contribution we denote by

° def olnw . .w
(6-2) Fx,ﬁ(mwl,wz)éF 3 V2 (g, us),

-
Uy

where the RHS is defined by (4-5).

To simplify the notation, we will fix n = (1, n,,n3) and (wy, w,) once and for all
and write I" instead of I'n;w, w, -

ey = 14

Figure 10: The graph of a topological vertex
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6.1 Torus fixed points and label notation
In this subsection, we describe the T —fixed points in /\71; (D) def /\71; . ﬁ(f’rel, z),
and introduce the label notation. Such label corresponds to a disjoint union of connected
components of
Wil T _ A qe® T
Mx,ﬁ(r) - Mx,[i(r) R’
or equivalently, a collection of graphs in the graph notation.
Let Yol = ()7, ﬁ) be the FTCY associated to I', and let
D'=Dv, ('=("
fori=1,2,3. Given u: (X,q) — ()A’m ﬁm), which represents a point in /ﬁ;’ﬁ(F)T,
we introduce its associated map

U=mpou: X—>Y1£el,

where 7rm: Ym— Y isthe projection defined in Section 4.1. Then #(X) C C'UC?UC?.
Let z0 and 2z’ be the two T fixed points on C?, and let

vi=u1¢h, i=0,1,2,3.

We also let E? be the closure of 7~ 1(C?\{z°, z%}) for i =1,2,3. Then E’ is a union
of projective lines, and u|gi: E! — C' is a degree d’ = |u’| cover fully ramified over
z% and Z°.

Fori =1, 2 or 3, we then define
Pl (m') = 1! (21).
which is a point if ' = 0 and a chain of m’ copies of P! if m’ > 0. We let
i =ulyi: Vi — Pl (m'), ¥ =u|gi: E'— C".

The degrees of %’ restricted to connected components of E! determine a partition v’
of d*.

For the same i, we let Vli e, Vlii be the connected components of Vi, and let gj. be
the arithmetic genus of Vji . (We define gj. =0if Vji is a point.) We introduce

kl
X'=) (2—-2gh.
j=1

3 3
Then —in+22£(vi)=—x.
i=0

i=1
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Note that x! <2min{f(u’), £(v))} fori =1,2,3, so

—x L) + L) = 0
and the equality holds if and only if m’ = 0. In this case, we have v/ = u! and
X =20(ut).
We introduce moduli spaces of relative stable maps to the nonrigid (P!, {0, co}) (called
rubber in [30] etc.):

o~  def 1

M = My®Lv, w)//C.

The quotient /\71;((}?1, v, u)//C* is defined in [23, Section 5].
For each i € {1,2, 3}, there are two possibilities:

Case 1 m’ = 0. Then &I’ is a constant map from £(u’) points to p’.

Case2 m' > 0. Then i’ represents a point in Mx vi i -

Definition 6.1 An admissible label of ./\71;( 5(T) is a pair (¥, V) such that
() x =" x' x2 x*), where x' €27Z;
(2) v= (', v2 v?), where v is a partition such that [v’| = |p/|;
) x° =230 L)
4) x' <2min{l(u’), L(v¥)} fori =1,2,3;
(5) —Yi—ox +237- L0 = -
Let G§ 5 (') denote the set of all admissible labels of ./\71;( (D).

For a nonnegative integer g and a positive integer /, let M ¢,h be the moduli space
of stable curves of genus g with / marked points. Although M g,h 18 empty for
(g,h) =(0,1),(0,2), for notational simplicity, we agree that:

1 1 / 1 1
//\710,1 l—dy — d*’ Moo M=) (W —pata) oy +pa
This convention will fit in with the general results.

For a nonnegative integer g and a positive integer /, let M' be the moduli of
possibly disconnected stable curves C with 4 marked points such that

e if Cy,...,C} are connected components of C and g; are the arithmetic genus
of C;, then

k
Y 2-2e)=1x;

i=1
e cach connected component contains at least one marked point.
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The connected components of J\7l;( , are of the form

k k
Mgy x--x Mgy, where Y (2=2g) =y, ) hi=h

i=1 i=1

The restriction of the Hodge bundle E — M® ; to the above connected component is
the direct sum of the Hodge bundles on each factor the Hodge integral

AV (u) = HA (u).

i=1

We define
Mz = l_[ Mx v o
where /\71;(’,30 = M;O,e( 5’ for i € {1,2, 3} we define
i [ L) + L) =0,
YA M e =X 0D+ L(uf) > 0.

For each (x,v) € G 3.i(I'), there is a morphism i3 3 ./\/l;( 5 — MS M(F)T whose

image F3 ; is a union of connected components of /\/l' M(F)T The morphism i
induces an isomorphism

Xl)

My (HA ) = Fise
i=1
i

where Ay ;' is the automorphism group associated to the edge e;:

L)
Az 5t HZUJ,,—X + L) + L' =0;
j=1
L))
1 - 1—[ Z,i — Az5" — Aut(v') — 1L—x' +£(v") + £(u') > 0.
J
j=1

The set of fixed points /\71;( i ()T is a disjoint union of

Frol V) € Gy (D)}

Remark 6.2 There are two perfect obstruction theories on F7 3: one is the fixed part
[T/ — T2/] of the restriction of the perfect obstruction theory on M ©a(); the
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other comes from the perfect obstruction theory on the moduli spaces M® 0.4 and
M.

Yiwi i~ Itis straightforward to check that they coincide.

6.2 Contribution from each label

We view w; and f; in Equation (6-1) as elements in
Zuy ® Zuy = At = HZ(pt, Q).

Recall that H7 (pt; Q) = Q[u, uz]. The results of localization calculations will involve
rational functions of w; and f; which are elements in Q(uq,u5).

If m* >0, let wo ¥° denote the target ¥ class of /\7lx - (see eg [23, Section 5] for
definitions). Let N vir 5 denote the virtual bundle on My 5 which is the pull back of

X,V
Tlm _12.m under l;(

With the above notation and the explicit description of [7! — 772] in Section 4.3,
calculations similar to those in [22, Appendix A] show that

W‘H i l_[Bew
i=1
3

bi A (w we(v) !
where By, = 1_[ E(v 5 (w;)
i=1 H (w,(w, -V ‘/’ ))

and for i € {1,2, 3}:

1, —x L)+ L) =0
B = (—l)ﬁ(vi)—xi/2 f, v );j(u ), —x' L)+ L(u') >0
B, = (1)l I L)1 e](i[) H"j:_l (Wit 1vj +aw;)
! =t -
The disconnected double Hurwitz numbers Hx Vot (see Section 2.2) can be related to

intersection of the target i class (see [23, Section 5] for a derivation):

o _ Cx v +Ew)! / ()X H W) H )1
XVl |Aut(v) x Aut(p)| Jizaey | e
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The three-partition Hodge integral G)'( ﬁ(w) defined by (2-14) in Section 2.3 can be
expressed as

3
G;j(w) = (—\/—1)Z(V)VX’§(W) l_[ E i Wiy, wi),

i=1

where
(6 3) ( ) / 3 AV(wi)wﬁ(T))_l
- X v = °
|Aut(v)| ) it 1—[“" D (wi (wi —viyh)
yVJ +ax)
(6-4) Ey(x,y) = -1
]1:[1 (v — 1)!va !
1
We set I_' Q(n W) []_- ]vlr W
. 1 1
Thel’l IX,G(n’ W) = HT ]v1r W
i=1

which equals

3 i i b
[Aut(jh) | (— ) Zi=1 (DI (D) Oy ).

i=1

Xi,Vi,lLi
(=} + L) + L))t

=X+ +HL(uh)

Therefore,

(6-5) I ;(n;w)
. 3 RN L(jL) ~e
_ |Aut(//l/)|(_1)Z’:l(nl Dlw |(—\/—1) (M)Gxo’;(w)

& i i i .
. l_[ z i(ﬁ(n_ Wit ))—x +eO)+L(u') HXi,vi,;Li
v Cow (—x + L) + £(uh))!

1=
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6.3 Sum over labels

The right hand side of (4-5) can be written as a sum of contributions from /\71;(’;} , where
(x,v) € G5 i(T), so we have

o 1
Fxﬁ(n’ Wi, wy) = ARG Z I; 5 (n; w).
(x,v)eGy ;(T)

We define generating functions

Fﬁ(k;n;wl,w2)= Z )\_XM(“)F;’&(H;wl,wz)
XE2Z,x=<L(iL)

~ i £(
66)  Fa(himwy.wy) = (~)Zi=1 LT B sy wy).

Then relation (6-5) becomes

3 .
(6_7) Fﬁ(k;n;wl’wz) = Z G;}O\‘;W)szicb;isﬂi (\/—_l(l’li— w;)—i—l))\)’
vl |=Iui] i=1 l

where G;L (A; w) is defined by (2-13) in Section 2.3; @7 () is the generating function
of disconnected double Hurwitz numbers defined in Section 2.2.

Equations (6-7), (2-9) and (2-10) imply that

3
(6-8) ﬁﬁ(k;n;wl,wz): Z ﬁg(k;O,wl,wz)sziCD:,-’Mi((v—ln,-k)).

[vi|=|u| i=1
By Theorem 5.2,

° — D o0
F2(0; 0wy, wy) = XX:A XM(V)F)(,%,T)(WI’ w3)

does not depend on wy, wy. So Ff:()‘; n; wi, wy) and ﬁ;;()‘; n; wi, wy) do not depend
on wq,w; by (6-6) and (6-8). From now on, we will write

Fﬁ(k; n), Fﬁ(k; n)

instead of F;L()\;n; wi, wy), ﬁ;;,()‘; n; wi,w;). In summary, for each i € ’Pi and
each n € Z*, we have defined a generating function F ;L (A;n) that are expressed in
terms of Hodge integrals and double Hurwitz numbers as follows.
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Proposition 6.3 We have

3
(6-9) fﬁ(k;n) = Z G;(k; W) 1_[ zvid>;,-’ui («/—_l(n, - w;).;..l )x)
i = Tu] i=1 l

Proposition 6.3 and the sum formula (2-9) of double Hurwitz numbers imply:

Corollary 6.4 (Framing dependence in winding basis) We have

3
(6-10) Feoum= Y Fou0)[]zi®l (\/—_lnik).

[vi|=|u] i=1
Note that (6-10) is valid for any three complex numbers n1, 71y, 13.

6.4 Representation basis

The framing dependence (6-10) is particularly simple in the representation basis used
in [1]. For this, we shall use the notation introduced in Section 2.1. We define

3
(6-11) Caumy= " F2(um) [ xu).

[l |=uf] i=1

which is equivalent to

3 .
e e Xui(MZ)

vl |=|uf] i=1
Then (6-10) is equivalent to:
Proposition 6.5 (Framing dependence in representation basis) We have

~ 3 ~
Cz0um) = 2V 1 Eim1%umh G - 0),

We introduce C ()= C (2;0) and let ¢ = eV=12 , then (6-11), (6-9) and the Burnside
formula (2-8) of double Hurwitz numbers imply:
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Proposition 6.6 We have

3
(6-12) Ca () = g 3= kuwia /w0 5™ GG [ s ),
v =] | i=1
X () 1 ~
(6-13) Gyw = Y [[ g &k 0 C ).
vi|=|ui|i=1  "H

7 Gluing formulae of formal relative Gromov—Witten invari-
ants

Let I be a FTCY graph (see Definition 3.2), and let (Ei , 1) be an effective class of
I (defined in Definition 4.1). In this section, we will calculate the formal relative
Gromov—Witten invariant

Fylgauiuz) € Qua/uy).

We will reduce the invariance of F F d.ji (Theorem 4.8) to the invariance of the topo-
logical vertex at the standard framlng (Theorem 5.2). We will derive gluing formulae
for such invariants.

As in Definition 4.1, we will use the abbreviation
“=d@. eeED): u’=h@). veW(D).
7.1 Torus fixed points and label notation
In this subsection, we describe the 7 —fixed points in ./\7l;(g ﬂ(f’rel, i), and introduce
the label notation. This is a generalization of Section 6.1.

Given a morphism
u: (X,q9) — (Ym, Dm),

which represents a point in /\71;(,6}’[1(?“31, E)T, as before we let 4 = rpou: X — Y.
Then
ixc | ¢
zeE(D)

where C€ is defined as in Section 3.5.
Let z¥ be the T fixed point associated to v € V(I"), as in Section 3.5, and let

vV=u"'(z").
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Let E€ be the closure of 7~ 1(C?\ {z%(®) z91()) for 7= {e, —e} € E(T'). Then E°
is a union of projective lines, and u|gz: E¢ — C*¢ is a degree d° cover fully ramified
over vg(e) and vq(e).

For v € V{(I') U V,(I"), we define
PY(m") = 7, (2),
which is a point if m¥ = 0, and is a chain of m” copies of P! if m® > 0. We let
u’ =ulpyv: V¥ — PY(m").

For e € E(I"), we define

u® =u|ge: E¢ — C°.

The degrees of 7€ restricted to connected components of E€ determine a partition
v¢ =v~¢ of d€.

For v e V(I'), we let V",..., V!, be the connected components of V¥, and let gj'.’
be the arithmetic genus of Vj". (We define g}’ =0 if Vj” is a point.) We define

kU
XU=> (2-2g)).

j=1
Then - Z x'+ Z L) =—yx.

velV(I') ecE°(")
Given v € V1 (I") with nl_l(v) = {e}, we have y? < 2min{f(v¢), £(u")}. Therefore,

(7-1) PP 0(v0) + L) > 0;

the equality holds if and only if m¥ = 0, and in this case, v¢ = u¥, x¥ = 24(u?).
For each v € V(I'), there are two cases:

Casel m" =0. Then u" is a constant map from £(u?) points to zV.

Case2 m" > 0. Then i" represents a point in M33" e 0.

In case v € V,(I") with nl_l (v) = {e, €'}, the same conclusions hold. Namely, we have
x¥ < 2min{l(v¢,£(v¢)} and

(7-2) PP (08 L) > 0,

and equality holds when the same conclusion as in the case v € V;(I') holds with pu?
replaced by ve'.

Geometry € Topology, Volume 13 (2009)



594 Jun Li, Chiu-Chu Melissa Liu, Kefeng Liu and Jian Zhou

Definition 7.1 An admissible label of ./W)'( d. ﬁ(f’“ﬂ, L) is a pair (¥, ) such that:
(1) x: V(I') — 2Z. Let x° denote x(v).
(2) v: E°(T') — P, where v(e) = v(—e) and |V(e)| = d€. We write v¢ for v(e).
(3) For v e Vy(I") with nl_l(v) = {e}, we have x¥ <2min{f(v¢), £(u?)}.
(4) For v e V,(I") with nl_l(v) = {e, e}, we have x¥ <2min{{(1¢),£(v¢)}.
(5) For v e V3(I'), define £3(v) = Zeengl(v) £(v¢). Then x¥ < 24;(v).
©) =2 verm X' 22 ccrm) L) =—x.

We denote by G§ j (') the set of all admissible labels of M;,g,ﬂ(?rel, i)

Given (,V) € G3.d,;i(I'), define ¥ asin (7-1) and (7-2) for v € V1 (I') and v € V5(T),
respectively. We define

velV ()
where
{pt}. ve MU (), r’ =0,
e v = _)'(?,ve,ﬂu, ve Vi), t)l_l(v) ={e}, r' >0,
M e vEVAD). 07 () = e} 1V >0,

M).(”,Zg(v)’ vV E V3(F)
For each (x,V) € G5 4 (1), there is a morphism
Ry if® - _(yrehT
l)-(”‘j. M)_é,lj d Mx,d’ﬁ(Yre)

) . . \f® - _(yvreh\T
whose image F3 3 is a union of connected components of M 7 5 (Y™)" . The
morphism i 5 induces an isomorphism

X5V
Mﬁ/( I1 A”?) =~ P35
ZeE(T)

where Ay 3¢ is the automorphism group associated to the edge e:

()
Az =[] Zoe . too(@).o1@3nVi(D) = {0} #2 and r’=0;
j=1
L(ve) B
1 — l_[ Zng — Az 3% — Aut(v®) — 1, otherwise.
j=1
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The fixed points set M;,gﬁ ()A”el, i)T is a disjoint union of

{Frs | (X.0) € Gy g a (M)}

7.2 Perfect obstruction theory on fixed points set

There are two perfect obstruction theories on F3 5 : one is the fixing part [TV T2/
of the restriction of the perfect obstruction theory on M' i (Yrel L) the other comes
from the perfect obstruction theory on the moduli spaces

;(,,e_(v) and M;(Nvu

Let [M* 5]VI' denote the virtual cycle defined by [TY/ — T%/]. By inspecting the
T —action on the perfect obstruction theory on ./\/l' i (Yre] L) (see Li [20] and the
description in Section 4), we get

]Vlr: 1_[ [M _}v]vir

vel/(I')
where
[{pt}]. ve Vi(uVy(l), r* =0,
s V] = [M;(Nv . ]Vlr, . ve Vi), Uzl(v) ={e}, r' >0,
ci(L)Nf X“ eve’] . vel), o7l (v) ={e. '}, 1V >0,
[/\/l v (_(U)], v e V().

Here L is a line bundle on M* ;¥ coming from the restriction of the line bundle L
on M j M(y) (see Section 4. 3)

We now give a more explicit description of IL. Let

u: (X,q) — (P'(m), po, pm)

represent a point in M;(;’V,v"',v_’ where P! (m) is a chain of m > 0 copies of P! with
two relative divisors pg and p,. Let A; be the /—th irreducible component of P! (1)
so that A; N Ay = {p;}. The complex lines

m—1
Lo =TpA1 Ly=QTpA®@TpAr and L =Ty, Ap
I=1

form line bundles L.°, L' and L on M
The line bundle L is given by

xOvt v Whenwevaryuln/\/lx -
L=L°QL'®L>.
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Note that
(L) ==y (L) =-y*,
where ¥, > are target ¥ classes (see eg [23, Section 5]).

The line bundle L' has another interpretation. Let D be the divisor in M2

xUvtp~
that corresponds to morphisms with target P (m), m > 1, then L! = O(D).

Let

(7 3) J),(v’v-ﬁ—,v— ={(X+vX_’O) | X+’X_ € 2Z’ o€ P’ |(7| = |U+| = |l)_|,
—xT +20(0) — x~ = —x", —)(jE —i—E(vi) +{(0) > O}.
For each (x*, x™.,0) € J)’(’v+’v_, there is a morphism

LA~ o~
Txtx—.0 Myt vto MX o0 EMX TRl

with image is contained in D. Moreover,
M5+ -1 N er (@)
_ do A (O~ v1r vir
= X a3 1 X 5 0, 1)
(xt.x~.0)
€Jyv v+ -

where a, and Aut(o) are defined in Section 2.1.

7.3 Contribution from each label

We follow the definitions in Sections 2.1 and 3.3.
In this subsection, we view the position p(e) and the framing f(e) as elements in
Zuy ® Zuy = At = HZ(pt, Q).

Recall that H7 (pt; Q) = Q[u, us]. The results of localization calculations will involve
rational functions of p(e) and f(e).

Let Ny ;' denote the pull back of 7' —T7 2™ of F ; under i3 ;. Let r” be defined
as (7-1) and (7-2). For e € E°(I"), let e = {e, —e} € E(I") as before.

With the conventions and the explicit description of [T'! — T'2] in Section 4.3, calcula-
tions similar to those in [22, Appendix A] show that

eT(N_,ﬂwr) 1_[ By l_[ Be,

vel(I') ecE(T)
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where

1 ve Vi(T)U Vo(T), r¥ =0,
(—1)“‘”)—%”/2%8% ve V(D). o7 (v) ={e}.r’ >0,
(_l)f(ve)—xvﬂ )
By, = N ayea,e fe)" veVa(T), o7 (v) = {e,e'}.r¥ >0,
(—p(e) =¥ O)(—p(e’) —y>)
I aye AV (p(e))p(e)tr @1
[T (((e) () = vey®)))
ecvy ()1 1j=1 A
Eye(p(e), lo(e))
Bomcapeie.] B (e bo-0)
‘ (=D~ E e (p(e), lo(e))  vole) € V3(D),v1(e) ¢ V3(I),
1 vo(e) € V3(I'),v1(e) £ V3(I).

v e Vi),

vo(e),v1(e) € V3(T),

Recall that n€ is defined in Definition 3.4 and E,(x, y) is defined by (6-4).

For v € V,(I'), we have

/ ie)”
[M?.ﬁv]vir (_P(e) - WO)(—p(el) - lﬁoo)

_ / f(e)" er(L)
LA o1 (PO =Y (p(e) =)
- / J(e)" (=p(e) =y ° +p(e) =y + ¢ (L))
Ay L (—p(e) =¥ O)(p(e) — )
B f(e)™ fe)""
- A_;:.ue.ue/]Vir p(e) N woo + /[M:(:.ve.\;e’]wr _p(e) - wo
+ _
o ROk fle)se
- (X§_ ,y Aw@ iy |, e —p(e) =y [[M;:we,]vir ple) — Y™
eJ vpe pe
e o f(e) rv rT H;'f‘,vf‘,a ;_,a,ve/
= |Aut(v®) x Aut(v®)|( —= (—1) xto Zg ——
(p(e)) (X%_m T !
eJ

7
xV.ve ve
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where r;ﬁr =—xT +L(v®) + L(0), ry-o=—X +Lo)+ (v, and

_ / /7 7
(7-4) v ye ye! = Jxv,vff,ve’ U{(2L(v°), x,v%), ()}, 2L(v¢),v)}.

Given v € V3(I"), we can arrange 00_1 (v) ={e1,ez,e3} sothat p(eq) Ap(er) =ui Aus.
Therefore the ordering (eq, €3, €3) is unique up to cyclic permutation. Let

(7-5) VY= (02 0%), WP = (pler), ple2). ples)).

Then V,» 5v(W") is independent of choice of cyclic ordering of ey, ez, e3, where
VX,;(W) is defined by (6-3). Set

st = [ :
> s(up, u) = _—
X5V [F5 5] eT(N_, qv1r)

Then the following holds:

I“(ul,uz)
B 1
HEGE(F) |A | iﬂ]wr eT(N* —»Vlr)
— |Aut(ji)| 1‘[ (_1)"“”2”6 [T Vesr®) J]  Evee).l(e)
gcE() vels(T) ecoy 1 (V3(IN)

l_[ \/__le(ve)—i_é('u’v)(_l)de (\/_f(e)) XU ve,uv

V|
VeV (D), 01 ()=v p(e) e

1—[ (\/_—lé(v")—i—((v (Ff(e))

velr(I') H. p(e) H.
UI_I(U)={€’,€/} X+ ve,o e(o,) ve/’a
. Z r+ ( 1) }’_— !
xt.x".0) X+‘7 X0
GJU e yel
xXv.vE,p
So we have:
e e L5 (v)
IisGuiup) = Aw@| [ 07" [ V=176 500"
zeE) velhs(I)
L(uV)+L(?) e f(é’) voyv, i
(7-6) - [T v=1 (D¢ (V ()) Xrlf. .
vel (D), ple )
vi(e)=v
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n (ﬂﬁ(v€)+e(v )(\/—f(e))

vev; (e)
2()
—1 — / .
o =tecd Z HX"‘ ve,o Zo(— 1)5(0) H ¢’ a)
+ |
(xt.x".0) "yt rX 7
eJxv,ve.ve/

7.4 Sum over labels

Finally, with the notation above, the formal relative GW invariants of a general FTCY
graph T" are

o |
FX,I;"I(M17”2) Z X’\j(ul,uz).
@] et

Define a generating function
(7-7) F Qounun) = 30 AT RN ().
XE27Z,x<L(jL)

Then (7-6) becomes

For (hiup up) =
d,ii

Y [T e [T V=16 0w

|ve|=d(e) ¢€E(T) veVs(T)
e R o ),
78 - [] n¥V-1 % (VTN
vely (), ( p(e) )
v1(e)=v
e e’ ,
1—[ /—_lf(l) )+L(v )CI):,ea( /—1@)\)(—1)6(0)2011) v (\/—f(e/) )
vels (D), ’ p(e) v p(e’)

oy ()={e,e’}

where G;L is defined by (2-13), wy, is defined in (7-5), and q>;’ P is defined in Section
2.2. Equations (6-9) and (6-6) imply:

@9) V=162 (hipen). plea). ples)

R 3
_ /@ Z fg(k;O)sztqD;i’M,-(«/—_lro(ei)k)

i =l i=1 ples)
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i@ e T 1)
= (-DZi=19@ N o) [ V-1 z,i ®°

vi,ul

lo(ei)
(V)

o7 | =] =1

7.5 Invariance

In this subsection, we prove that formal relative Gromov—Witten invariants are rational
numbers independent of u1, > (Theorem 4.8). We will use operations on FTCY graphs
such as smoothing and normalization (defined in Section 3.4) to reduce this to the
invariance of the topological vertex (Theorem 5.2).

Let " be a FTCY graph, and let
l—vz — FVz(F)’ FZ — FVZ(F)-

Then T'5, I'? are regular FTCY graphs. We call T’y the full smoothing of T', and T'?
the full resolution of I". We have surjective maps

w2 = mpyry: EO(T) = E°(Ty), n%=x"20: v(r?) - v(D).

Definition 7.2 Let I' be a FTCY graph, and let T'? be the full resolution of I". Let
(d, ) be an effective class of I". A splitting type of (d, 1) is amap o: Vo(I') —> P
such that |6 (v)| = d(e) if vy(e) = v.

Given a splitting type ¢ of an effective class (c_i ,j) of T, let (c_i , 1 L) denote the
effective class of I'? defined by d: E(I'?) = E(T') = Z>¢ and

(A, 72 e ni(D)
“““”‘{5m%wxn%wewau

Let S5 i denote the set of all splitting types of (67 ).
The following is clear from the expression (7-8).

Lemma 7.3 LetI" be a FTCY graph, and let (67 , 1) be an effective class of T". Then

2
F:F . — -'F:F .
S Gun ) > oz S R u)

UGS(;,/?L

where zz = [[yep, ) Z5() -
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By Lemma 7.3, it suffices to consider regular FTCY graphs. For a regular FTCY graph
I', (7-8) reduces to

. ege LBY)
FJ;()&;UI,Mz) = Z l_[ (—l)n d Zye l_[ v —1 G‘_),v O"WU)
[vé|=d® ec E(T) veV;(T)

[T v g, (J_@A)

vel] (F),U] (e)=v (e)

(7-10)

since V,(I") =

Let (d ji) be the effective class of a regular FTCY graph. Let P i be the set of all
maps v: E°(I") — P such that

o |i(e)| =d¥;
e V(e) =ji(v) if vg(e) =v e Vi(T).

Note that we do not require v(e) = v(—e). Denote v(e) by v¢. Given v € V3(I'),
there exist e, e;, e3 € E(I'), unique up to a cyclic permutation, such that no_l (v) =
{e1,e2,e3} and p(er) Ap(ez) = uy Auy. Define

(7-11) VY= (v, 02 v%)  and  zge = Zyer ZyeaZyes.

Note that F{?v (A;0) and z;v are invariant under cyclic permutations of eq, e;, e3, thus
well-defined.

Using (7-9) and the sum formula (2-9) of double Hurwitz numbers, we can rewrite
(7-10) as follows:

(7-12)  F2U (Aiuy, us)
d.i

L(ve)—L(v—¢ e je
oIl B0z [ V-1 vO-te )(—1)”dq>;e’v_e(\/_1n€)h),

veP; ; vel3(V) ecE)

Note that the right hand side of (7-12) does not depend on u 1, #,. This completes the
proof of Theorem 4.8. From now on, we write F;L (1) instead of F;: (Auy,uz).
S i

We define
FX dji = Fx d M(”l,uz),

to be formal relative Gromov—Witten invariants of Yrrf:l.
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7.6 Gluing formulae
Let (c? , it) be an effective class of a regular FTCY graph T". Let

Tj,ﬁz{ .

Note that we do not require v(e) = ji(v) if vg(e) = v € V{(E). We have

— (@), ¥(—e) = a(e)’} .

(=D IR+

® . _ N Xv‘(/’L)
(7-13) F5(0:0) = @ > C(A)H

il=|ul| i=1

where 5;, )= 5,7 (A;0). Applying (7-13) and the Burnside formula (2-8) of double
Hurwitz numbers, we see that (7-12) is equivalent to the following.

Proposition 7.4 Let I' be a regular FICY graph. Then

3 P )
Z 1—[ (—1)@H+ DA = Teyen©i/2 1—[ Con () 1—[ XV;((,ﬁ))
vET— _ecE() velV3(I) vel (') Vv —
d.ik vo(e)=v
Recall that kye is defined by (2-3), and we have n™¢ = —n°, k,t = —ky, SO

Ky—en” ¢ = Kk(yey - (—=n°) = kyen®.

Theorem 7.5 (Gluing formula) Let I' be a FTCY graph, and let T'y and I'? be its
full smoothing and its full resolution, respectively. Let (d, j1) be an effective class of
I" which can also be viewed as an effective class of I'y. Then

o[> el _ R o2
Fg’ﬁ(X)—FM(M—ﬁZ 5 F5 ).
O’GS‘;J}

Proof By Lemma 7.3 and Proposition 7.4, it suffices to show that if |u| = |v| =4,
then

Z Xu(0) Xv(0)
£ o L
lo|]=d vV—1 (O)ZU =1 (U)zo

which is obvious. O

= (=180

Geometry & Topology, Volume 13 (2009)



A mathematical theory of the topological vertex 603

7.7 Sum over effective classes

Given a regular FTCY graph, let Eff(I") denote the set of effective classes of T'.
Introduce formal Kihler parameters

t={°:ec E)}
and winding parameters

p=1{p’=(p{.p;....):veV ()}

We define the formal relative Gromov—Witten partition function of ?Ir‘el to be

Tt = ol - e C_i(_)l?
T4 ZgGitp= ), FiLMem e @0 [T pl,
(d i) €Eft(T) vel ()

v f— v .o U
where py =Py, Py,

Let TT denote the set of pairs (v, i) such that

: E°(T') — P such that v(—e) = v(e)’;
° /TLZ Vl (F) - P,

<l

o V| =|p? if vole) = v.

We abbreviate v(e) to v¢ for e € E°(T'), abbreviate ji(v) to u® for v € Vi(T),
and define 1Y by (7-11) for v € V3(I"). The following is a direct consequence of
Proposition 7.4.

Corollary 7.6

Z};l(k;t;p): Z 1_[ e_|”e\t5(_1)(”e+1)|v"Ie—«mxvenek/z
(3,h)eTT ecE(T)

] 1—[ 6{51} ) 1—[ Xve (1Y)

—tu?)
vel3(T) velVi(I),vo(e)=v —1 ZH'U

8 Combinatorial expressions for the topological vertex

We use the notation introduced in Section 2.1. The goal of this section is to derive the
following combinatorial expression for C;():
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Theorem 8.1 Let ji € P3 . Then
Ca(A) =Wi(9),
where q = e*ﬁ”, and VT/‘; (gq) is defined by (2-7).

We now outline our strategy to prove Theorem 8.1. By Proposition 6.6,

5‘2()\) — Z HX//,’ (U )q Zz 1Kvlwl+1/wl)G ()\ W)

i |=|uf|i=1
where w is as in (2-11). Since the above sum is independent of w, we may take
w = (1, 1,—2) and obtain

3
Gi= Y TTxw®hg 5 taetics . Gios1,1,-2),
[vi|=|ui]i=1
In Section 8.1, we show that the main result in [23] gives a combinatorial expres-
sion of G}, , »(A;w) (Theorem 8.7). In Section 8.2, we relate G;:()" 1,1,-2) to

G;.a MENE (A; 1, 1,—2). This gives the combinatorial expression W (¢) in Theorem

8.1. Moreover, (6-13) and Theorem 8.1 imply the following formula of three-partition
Hodge integrals.

Theorem 8.2 (Formula of three-partition Hodge integrals) Let w be as in (2-11) and
let ji = (u', u*, u?) € P3. Then

G;L()\;W): Z l_[th(M) Zz 1KU1w,+1/w,)W ).

i |=|ui|i=1

The cyclic symmetry of C i(1) is obvious from definition. By Theorem 8.1 we have
the following cyclic symmetry

Wit 23@) =Wy 3 1 (@) = Wys it 2(q)
which is far from being obvious.

Finally, we conjecture that the combinatorial expression Wﬁ (g) coincides with W;(¢)
predicted in [1]:

Conjecture 8.3 Let i € P3 . Then
Wi(q) = Wi (q),
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where g = eﬁ)‘, and W; (¢) is defined by (2-6).

We have strong evidence for Conjecture 8.3. By Theorem 8.1 and Corollary 8.8,
Conjecture 8.3 holds when one of the three partitions is empty. When none of the
partitions is empty, A Klemm has checked by computer that Conjecture 8.3 holds in all
the cases where

ln'| <6, i=1,2,3.

We will list some of these cases in Section 8.4.

As explained in Section 1, Conjecture 8.3 will follow from the results in [28].

8.1 One-partition and two-partition Hodge integrals

We recall some notation in [22]:
o) = V=168 0t —t— 1),
_ el
V@) = g+ *V=1"Wu(9),

where Wy (q) = Wy, ,2(q) is defined in Section 2.1. The main result of [22] is the
following formula conjectured by Marifio and Vafa [25] (see Okounkov and Pandhari-
pande [29] for another proof):

Theorem 8.4

C,'L()»;r)= Z quv(‘r-i-%)/zvv(q)

A
wl=lu| “H

Theorem 8.4 can be reformulated in our notation as follows:

Theorem 8.5 (Formula of one-partition Hodge integrals) Let w be as in (2-11), and
let p € P4. Then

° 1
Guoohiw) = Z XVZ(M)‘IZK”M/”)' Wi, ,2(q).
wl=lul

Let
- D) = (NG e -1 -1,

The main result of [23] is the following formula conjectured in [35]:
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Theorem 8.6 Let (1™, ™) € P2. Then

. X+ () o= (™) -
wt.u— A7) = Z . . q(KV+I+KU ‘ )/2Wv+,v* (q)-
ok AT

We now reformulate Theorem 8.6 in the notation of this paper.

G;l,ﬂz,g(A’;l’r’_l_T)
. In2]—£(u?) le(/'Ll)sz(Mz) (;c 1 T+k 21:_1)/2
= (-pwI=EED R K1 T Wi ,2(9)
wilmwi|
X1 (D) X2y (1?) —1
= Z vz 1 (vZ) 2 q(KV”_’_K”N )/ZQKVZ/ZWVI,(VZ)’,AZ(Q)
vi|=[ui] TH H
1 2
_ ot () X2 (L7) (¢ 14k ,=T=1)/2
_I -§-| Zu! Zpu2 q( VT2 T Wit v2,6(4)
vlzul

Theorem 8.6 is equivalent to the following:

Theorem 8.7 (Formula of two-partition Hodge integrals) Let w be as in (2-11) and
let (u!, pn?) e Pi. Then

y (;w)

pulu?,o

1 2
— Z Z XVI(M )sz(,lL )q%(K”lwZ/wl+KU2w3/w2)Wvl,v2’g(Q)-

: A oz Z,2
i=lut [ v |=|u!| * ’

Note that Theorem 8.5 corresponds to the special case where (1!, u?) = (i, 9).
Theorem 8.7 and (6-12) imply:

Corollary 8.8 Let ji = (u', u?, pu?) e P2, andlet g = e¥V=1%_ Then
Ciz(AM) =W;(q)

when one of ', u?, ;13 is empty.

8.2 Reduction

Recall that

Gou(v) =G, p(1,7,—t—1).
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For two partitions ! and p2, let u!' U u? be the partition with
mi(u' Up?) =m(u') +mi(u?). Vil
We have:

Lemma8.9 Let ji = (u', pu? pn3) € P3. Then

) H—t(ul) “u'up? )
Gga(hi1) = (—DW IHWD LB G e s (1)

Z'uI 'ZMZ
(8'1) (_l)m—l
820 D Bt mSuzebui ey —
m=1
Proof Let
; B 3 Av(w,-)u)f(“)_l
g W) = / v € :
Mo j=1 l_[j=1 (wi (w; _Mjwd;ii'i_j)

and let I, ;(v) = I ;(1,7,—7 —1). Then

(=1 — 1))Em-1 2 3 £(jt)—3
(z( ) (WH@JF_I?_IJ

IO,I_/:(T) = ng(uz)(__[ . ])ZK(HS)

Note that 7, 7 (7) has a pole at T =1 only if
(8-2) g=0, f=(m),a,(2m))or (2, (m),(2m)),

where m > 0. Let

L(u) yymi—1
4 ey +a)
o = [ Heg

Then E,(7) is a polynomial in 7 of degree || —£€(w), and

j=1

Ey(—t—1) = (=)W E (7).

Then
—/—1)tW) 1
reat (Ig/u_t—(uzﬂEw(f)Euz(—l —tHE (ﬁ) T i(®)
_ (et CVDU

. 1
|Aut(ﬁ)| Eﬂl(—l—f)E’uz(—l—‘C )EM3 (ﬁ) Ig’ﬁ(‘lf)
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(—~ /_1)15(/1)
E
|Aut(pe! U ) x Aut(p?)] *

1
Ep | — | lz.optupzus(®)

—7—1

while Ggoptupz,us(T) = 1UM2(—1—‘E_1)

where E,1y,2(—1— = E (-1 —‘C_I)Euz(—l — D,
Suppose that (g, /1) is not the exceptional case listed in (8-2). Then neither is
(g. 2, n' Up?, 1), It is immediate from the definition that
Lot 23 (D) = Ig g piup2 pu3(1),
SO
|Aut(n' U p?)| )
[Aut(uh) x Aut(p?)] &2 IR

For the exceptional case (8-2), we have

(8-3) Gg ()= (_1)IM‘|—Z(MI)

m—1
T

t+DH(m—-D'2m—1)! aljl (tm+a)

Go,(m),2,2m)(T) =

m—1 om 2m—1 m
: ]_[(_t_1 +a) ] (——+a)
a=1 a=m+1
1 ml
hil G =
wae 0.2.6m.m) (T = o Gy T i@ = D)1 al:[l( m +a)
m—1 2m—1
2m 2m
: ]‘[(_T_l +a) [] (——+a)
a=1 a=m+1
So
G —1
(8-4) Go,(m),z,em)(1) = Ty Go,2,(m),2cm)(1) = T

Combining the general case (8-3) and the exceptional case (8-4), we obtain (8-1). O

Let p, p’, pr be defined as in Section 2.3, and let G*(A; p; t) be defined as in (2-13).
We have:

Lemma 8.10 Let

()
(8-5) =0l pf =] -
j=1
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Then

-1 m—1
8-6) G*(A:p'.p® phi1)=G*(:0,pF, p*: l)eXP( ) e
m

m=1

1.3
meZm)'

Proof We have

o0
GO:pi )= Ghip 1. 1,=2) = 3 ) AX 720G, 20 D py papys:

fiepi §=0
By Lemma 8.9,
G(A:p; 1)
> Z,1 2 1 1
_ o U _
= Z Z)‘zg ZM(M)Gg,@,u‘UMZ,M(l)u(—l)m| Hu )pllupizpis
[/lE’P;”r 2=0 Z,U«lzll«z
(_l)m_l 1 .3
+ Z E——Y T
m=>1

o0
= Z Z AZg—2+f(u+)+Z(u3)Gg ot (D
(ut.u3)eri g=0 o

Zyt _p(ul
X( T gt )PLIPiZ)Pi3
WUt ZILIZILZ

RV
+ Z — —— PmPom

m
m=>1

It is easy to see that

Zy+ 1_ 1
(8-7) Y, A p2 =
Ut Zy1Zy2
12 3 3 N R
So G pl, p2 PP ) =G0, pt pii D) + Z . PmPom
m=1
which is equivalent to (8-6). O
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8.3 Combinatorial expression
Lemma 8.11 Let p™ be defined by (8-5).
G*(A;0,pT, p 1)

3 .
Z + ok 3|—e(u Xoi (')
= cz)vl)’vzq( 2t K”3/2)/2Wv+,u3(61)(—1)|“ =D II VZ ; p:ci-
vt i uiep i=1 ut

Proof By Theorem 8.7,

G*(%;0,pT, p’; 1)

+ 3
_ Z Xv""(:u )Xv?(ﬂ )q(_ZKV+_K”3/2)/2Wg,v+

Z,.3

+ 3
w3 DP Dy
Z,+ u
pEptpiep  TH

Recall that

W@,v+,v3 (q) = qKUs/ZWv"F,(vz’)t (q)a

Zu+ 1 1
+ uw —L 1 2
Pu+ = E (_l)lu =t )Pulpuz-
Ut Zy2Zy2

Let st = Z Xu 1(;‘)) pv be Schur functions. Then
vl=lul

G*(A;0,pt, p; 1)

+ 3
. Z Xv+(/j' )Xv‘(:u )q(_2K1’++K1}3/2)/2W

Z

+ 3
Zo4 B v+,(u3)t(51)Pu+PM3
pEptpiep  TH *

+ 3

X3y (W) o o

_ Z Xv';‘(l: ) (VZ) q( 2K+ "v3/2)/2W,,+,v3(Q)P,3L3
u

3
wEvE udep H

Zy+ 1 1

n —L 1 2

E : (_I)IM [—€(u )pulpuz
Z,1Z,2

ulup2=p+ w w

- ¥ (xv+(u1uu2)x(,,3)t(ﬂ3)

i vt p3ep ZutEp2 Zp3

xq( 2K, + "1;3/2)/2W,,+’v3(6])(—1)m| tu )PL1Pi2Pi3)
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- ¥ (Xv+(ul U i) 1 () xw2 (1?)
w2t viep Zptip2

x gAY (@) (=D D) svzsﬁvs)t)

B 3 (Xw(/ﬁl U 1) Xy (1) xp2 (1)
w2t viep ZptEp2
X q(_ZK”+_K”3/2)/2Wv+,v3 (q)sil Sizs(3v3)t)

+ _ —
= Z Cz)vl)tvzq( 2yt K"3/2)/2Wv+,v3(q)silsfzsgﬁ)’

vtoviep
yt N Xt ()
S R [ XD
U+,Vi,[1,iE'P i=1 ,u,
In the above we have used (8-7) and the following identity:
oM _ Z Xt ) xu= (V) (0T UYT) -
utu= :

Zy+Zy—

vt,v

Remark 8.12 By the same method we also have
(8-8) G*(1:0,p™. p’:1)

+ Xyi (! )
= Z g/yl)tyzq( 2yt +KV3/2)/2WV+ v (@) 1_[ ¥ p
yt.yiuiep =1 W

72

Lemma 8.13 We have

- lul—€ (1)
exp( Z( 1) ranm) Z( I)M ‘ llegM

m>1 UEP

where 2 is the partition (2pt1, 242, ..., 2lg()) -
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Proof Let (xi, ...,XL,...) be formal variables such that pfn = Zn(x,’;)m. By stan-
dard series manipulations,

exp| — SV = =pm! 1 \m/.3 \2m
pl= D rnpim )= Do — > ()" ()

m=1 m=1 ni,n3
_ D" _ 1 1 ,.34\2
= [Texo( 2 ——n,a)™ ) = ] (43,6527
ni,n3 m=1 ni,n3

Now recall (cf [24, page 65, (4.1°)]):
Dlel—=€w)
[0+ =% ) ).

HeP

Hence we have

—1)ym—1 —1)lel—tw)
eXp( > %pﬁnpim) = D ) pu()?)
m=>1 HEP w
4]
e D ) PO =
WUEP

By Lemma 8.10, Lemma 8.11, and Lemma 8.13, we have
G*(L:p'. prp’iD)

=G*(L: 0 + 3.1 (_l)m_l 1.3
=G0, p", phDexp | D i

m=>1

+ _ _
v 2k K 2)/2 1 .2 .3
= Z C(vl)’vzq( vt/ WV+,V3Svlsv2S(v3)’

vt,viep
(—1)lHl=t@w)
x Y pu () P2 (x?)
HEP K
— Z CE)ul)IVZ‘]( 2,4 —K 3/2)/2WJr 3(Q)SV1S,,2S(V3):
vt,viep
(= 1)Hl=tw)

Y Tt W Cr)s) sl

wntndep i
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+ 1 3

— v 14 4 (—2k,+—k,3/2)/2

= E (C(vl)tvzcnlvlcn3(v3)tq v
vl plnd uep

Xy (W X3 ) | 5 4
X W]ﬁ',\ﬂ(‘]) N .5‘101.5'102_3'103
+ 1 3 ~ B
= Z (CFVl)tvchnl)tvl61/’])3(V3)tq( 2K1)+ Ku3/2)/2
U+,v1’v3’n1’n3,uep

3(2
Wi (g T G o )

S 58

1 2 3
ol p2"p
Zl‘l/

By Proposition 6.6,

3 i
.1 — ~ (1 —2K,2—K,3/2)/2 Xv"(:u) i
"= Y Coglenamea/m [T A0 )
uiviep i=1 K

3
= Z 5")’ (}\,)q(K\)l_zkvz_Kv3/2)/2 l_[ Syi (xi).
viep i=1

By comparing coefficients,

+ 1 3 - _ Xt (1) X3 (210)
ZCE)vl)fych?l)tvl053(v3)tq( vt Kv3/2)/2Wv+,u3(Q)%S;IS;Z,ZSZS
3
— Z Cﬁ(k)q(Kul_2"112_"1;3/2)/2 l_lsll)i'
wiviep i=1
Therefore, C 5(A) = Wﬁ((])

where W/;(q) is defined by (2-7). This completes the proof of Theorem 8.1.

Remark 8.14 By (8-8) one gets a slightly different expression.

8.4 Examples of Conjecture 8.3

We have seen in Section 8 that Conjecture 8.3 holds when one of the three partitions is
empty. When none of the partitions is empty, A Klemm has checked by computer that
Conjecture 8.3 holds in all the cases where

n'| <6, i=1,2,3.
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We list some of these cases here.

-+ —q+1
q'2(q—1)3

- +q—q+1

(> =D(g—1)°*

=+ —q+1
q(qg*—=D(g—1)?

2@ —q"+q* —q+1)
(@ =D(g*=D@—-1?

Wy, (@) =Wy, (@) =

Wy, @ = Way,m,2 @) =

W(1),(1),(1,1)(Q) =Wau),m,a,n@) =

Wy, (@) = Way,).3) (@) =

Way.ay.e.0@ = Way,ay.e.1)@)
q8—2q7+3q6—3q5+3q4—3q3+3q2—2q+1
q'2(¢> - 1) (g - 1)*
*—q"+q*—q+1
2> = 1)(g> - D(g—1)3
'@ —q"+¢°—¢*+¢* —q+ 1)
(g2 —1D*(g—1)?3
@’ —*+q¢° - +2¢° —¢* —q+1
732> —1)%(g —1)?
9_q8_q7+2q6_q4+q3_q+1
q'2(g* —1)%(qg—1)3
=4+ —q"+¢—q+1
732(q* = 1)2(g - 1)}
'@ -+ —q+1)
(¢*=D(g* = D(@g*-D@g—-1)3

W(l),(1),(1,1,1)((1) =Wu),m).,a,1,1n(q) =

W2, (@ =Wa).@.@) =

Waya.0.2@ = Way,a.1,2@) =

~ q
Way,@),a,0)@) =Way,@),a,n@) =

W(l),(l,l),(l,l)(CI) =Wau),a,1),a,1)(@q) =

Wy, @ = Way,m,@ @) =

Way,(),6,0(@) = Wa).a),6.1)(@)
_q(q"° =2¢° +2¢° —2¢° +3¢° — 2¢* +2¢*> —2q + 1)
B (@*—1D(g>—D(g—D*
q(q*=2¢°+¢° +q* +¢° —2¢* + 1)
(@ =D(g*=D?*@g—-1)3

Way.(0).2.2(@) = Way.().2.2)(@) =

Way..2.1.0@) = Wa).).2.1.0 @)
_ q1°—2q9—|—2q8—2q6—|—3q5—2q4—|—2q2—2q+1
q(g* =1 (@>—-1)(g—1*
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qlo_q9+q5_q+1
q*(q* = 1D(g* - D> = D@13
@ - +q¢°—q*+¢*—q+1)

(®—=D(g*—=D*g—-1)3
?@"°—¢®+q"—q*+q* —q+1)
(@*—=D(g*-D*g—-1)3

W(l),(l),(l,l,l,l)(‘]) =Wau),),a,1,1,n(q) =

Way,@.3@ = Way,@.3) @ =

Wy,().2@ =Wy, @) =

Wa),2),2.0@ = Way,2),2.1 (@)
g —2g10 120° g8 4 q" St gt —g+1
(@3 = 1D(g*> = D(g—1?*
Wa,2.0,@) = Way,e.1.0 @)
g =g g — S gt — P+ 2q2—2g + 1
q(q*> = 1)(g*> - 1)(g—D*
Wa,@,a1,1.10@) = Way,@),1.1,1(@)
PRESPA B [ B Bt B S S|
q(¢> = D(g* —1D*(g — 1)
Wai,1,1,1,2)@) = Wy, (1,1,1),2)(@)
g g g P — g — g+
a 7*(q> = )(g2—D2(q—1)3
W, @) = Wy 1,1),3) @)
_42 4"+ ¢ +q* +¢* g’ —q +1
a q(q> —D(g>—1)2(g—1)?
Wa).3).,0@) = Way,3).a,0@)
_ 4@ -4"—¢"+°+q* —¢°+¢* —q+ 1)
a (@3 —D(g>=1D*g—-1)3
Way,(.1,2.0@) = Way,1,1).2.1(@)
qll_q10+q7_q5 +q4_q3 +2q2_2q+1
q*(q*> = 1)(g* = D(g—D*
Wa,2.0,0,0(@ = Way, 1,21 @)
gt —=2¢" +2¢° —q® +q" —qS +q* —q+1
q(¢* = D(g*=1)(g—D*
0"°—¢°+4"—q°+q* —q+1
q*(q*> = 1)(g* —1D?*(qg—1)?

Way.a.0..1.0@ = Way.a.n.a.1.10(@) =
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g% (> =1 (> —1)*(q—1)3

W(l),(l,l,l),(l,l)(ﬂ) =Wa),1,1,1),0,0(q) =

W22, @) =Wa),@,2 @)
q(qlo — 3q8 + 3q7 + 2q6 — 5q5 + 2q4 + 3q3 — 3q2 +1)
(> —1)3(g—1)3

W), 2).0.0@) =Wy, 2).0,1@)

G2 =g g0 4209 T S 424 — P — g+ 1

q(q*> =13 1)
Way.a,0,a,10@) = Way.a,1,0.1(@)

g2 =g — 104 20% g7 45— g5 4203 —g?—q + 1

q*(q* =13 —1)?
W n,a,0,0.0@) = Wa,1,a,1,0,1) (@)
q'%—=3¢% +3¢7 +2¢°—5¢° +2¢* +3¢3 —3¢* + 1
q*(q*=1)*(g—1)

Wiy.2).6.0 @ = Way.2).6.1(@)

q3/2<q13_2q12 +q11 +2q10_3q9)
+2¢%—2¢ +2¢° —g +1

(@*=D(g* = D*g—-1)*
W ,20.3@ = Wi, 1,21, (@)
— (q19_q18_q17 +q16 +q15_q13 +q11 _q10+q8 +q7
—q6—2q5+2q4+q2—2q+1)
(2@ -D*@*-D*(@-D*) "
Wa).@.2.0.1.0(@ = Wey@).e.1,1,1)@)
= (42— g? —2¢%° +3¢" + 418 = 3417 4+ 3¢15 — g4 — 241
F g2 g g0 =207 — g% +3¢7 = 3¢5 +¢* + 343
~24% =g +1)- (4@ - D@ - D@ -1’ g-1)*) "
W), 2,2,6.2 @) =Wy, 2.2,6,2 @)
= (1P —2g2 + @ 4 g — g1 118~ 2417 4 416 1 415
F g —3¢12 4 g1 124 4+ 4% =247 — 245 + 24 + 24°

—2¢> =g +1)-(q(¢* =)@’ - D} -1 g-1H "
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Appendix Notation

pw=(uy =--->pup>0) partition, Section 2.1

i) 1
%)
Aut(p)
Zu
PIP+

2 3
PIIPY

A= (u' p? p?)
am)

Aut(ji)

Sd

Xu

Pi

Pu

Si;”n/u

Cuv

[m]

KM _
Wil Wy Wiy

)\j/‘/fi
¥ =c (L))
\%
Ag(u)
Gei(W), Gg i (1)
Gﬁ, G,G2, G*
m

T
AT

R

r
E(T)/E°(T)/V(I)

ey
e

—e =rev(e)
00/01

size/length/transpose of a partition p, Section 2.1

the empty partition, Section 2.1

automorphism group of a partition p, Section 2.1

M1 -l lAut(u)], Section 2.1

set of all partitions/all nonempty partitions, Section 2.1

set of pairs/triples of partitions which are not all empty,

Section 2.1

a triple of partitions, Section 2.1

() 4 £(u?) + £(u?), Section 2.1

Aut(u!) x Aut(p?) x Aut(p3), Section 2.1

symmetric group on d elements, Section 2.1

irreducible character of S, Section 2.1

i—th power sum x’i + x; + -+, Section 2.1

Newton function py, pu, -+, Section 2.1

Schur function/skew Schur function, Section 2.1

Littlewood-Richardson coefficients, Section 2.1

q™/2 —g=m/2_ Section 2.1

> pi(ui —2i + 1), Section 2.1, (2-3)

Section 2.1, (2-4)/(2-5)/(2-6)/(2-7)

double of a partition u, Section 2.1

disconnected double Hurwitz number, Section 2.2

generating function of H® ., _, Section 2.2
BT

Hodge bundle/line bundles over Mg 5, Section 2.3

¢j (E) (A—classes)/c; (IL; ) (—classes), Section 2.3

w—classes, Section 2.3

u€ —Au8 1 ...+ (=1)&Aq, Section 2.3

three-partition Hodge integral, Section 2.3

generating functions of three-partition Hodge integrals,

Section 2.3

a rank 2 subtorus of (C*)3 (so T' 2 (C*)2), Section 3.1

Hom(7T, C*), group of irreducible character of T'

(so A = Z92), Section 3.1

maximal compact subgroup of 7'

(so Tr = U(1)?), Section 3.1

(FTCY) graph, Section 3.3, Definition 3.1

set of edges/oriented edges/vertices of a graph I',

Section 3.3

orientation reversing map E°(I") — E%(T"), Section 3.3,

Definition 3.1

oriented edge, Section 3.3

an oriented edge e with the opposite orientation, Section 3.3

617

initial/terminal vertex map E°(I") — V(I"), Section 3.3, Definition 3.1
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Vi)V (T)/V3(T)
p/f

lo, 1

ii(e)®
Ty/Te /T V/T V12
ry/r4

yrel — ()'}’ 5)

> o

LN
~

~o
<

S
n=(ny,ny.n3)

wil fi
F* .
Xoid
MG i (T)
M

S

o e
2'2t

<

s

(X v .

x'/x? and v'/ve

rU

G* .(D)/G* . (T
i x,d,ﬁ( )

J ’
XV ,ve pe! T xv,ve e

VysWIEy(x,y)
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set of univalent/bivalent/trivalent vertices of I', Section 3.3
position/framing map, Section 3.3, Definition 3.2

maps from E°(I") to Z®2, Section 3.3, Definition 3.3

an integer associated to an oriented edge e,

Section 3.3, Definition 3.4
smoothing/degeneration/normalization/gluing of a FTCY

graph I', Section 3.4, Definition 3.5/3.6/3.7/3.8
smoothing/normalization of I" along a set A of bivalent

vertices, Section 3.4

relative FTCY threefold associated to a FTCY graph I',

Section 3.5

relative divisor in ?, Section 3.5

a connected component of D associated to a vertex v, Section 3.5

a T—invariant divisor of 5/]3”, Section 3.5

(unoriented) edge, Section 3.5

T—invariant P! associated to an unoriented edge e, Section 3.5
effective class, Section 4.1, Definition 4.1

degree w.r.t. Ce~ P!, Section 4.1

ramification pattern w.r.t. the divisor DV C ¥, Section 4.1

expanded graph, Section 4.1

relative FTCY scheme associated to the graph I'm, Section 4.1
2x(Oyx), where X is the domain of a relative stable map, Section 4.1
moduli stack of stable relative morphisms to Yl Section 4.4
perfect obstruction theory, Section 4.4

fixed/moving part of 7% (i = 1,2), Section 4.4

formal relative GW invariants of a FTCY graph I', Section 4.4
framing of a topological vertex, Section 6, (6-1)

position/framing vectors of a topological vertex, Section 6, Figure 10
formal relative GW invariants of a topological vertex, Section 6, (6-2)
moduli stack of stable relative maps to a topological vertex, Section 6.1
moduli stack of stable relative maps to a rubber, Section 6.1
admissible label, Section 6.1/7.1, Definition 6.1/7.1

components of ¥ and v in (), V), Section 6.1/7.1, Definition 6.1/7.1
Section 7.1, (7-1), (7-2)

set of admissible labels of M;,ﬁ(r)/ﬂ;,g,ﬁ(f’f@l, L),

Section 6.1/7.1, Definition 6.1/7.1

disconnected version of M gk Section 6.1

disconnected version of Agv,(u), Section 6.1

T fixed locus associated to the label (), V), Section 6.1/7.1

a finite cover of ]-'(7(,3), Section 6.1/7.1

factors of M %5 (_which is a product of moduli spaces), Section 6.1/7.1
line bundles on M5, Section 7.2

target Y —classes, Section 7.2
Section 7.2/7.3, (7-3)/(7-4)

vertex/edge contribution to G; 5 (w), Section 6.2, (6-3)/(6-4)
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v partitions/weights of a trivalent vertex v, Section 7.3, (7-5)

contribution from F ; to the invariant F® ./F°®'= _ Section 6.2/7.3
Xs Xl x.d, [

F2/C- generating functions of formal relative GW invariants of a topological

vertex in winding/representation basis, Section 6.3/6.4

F‘;Fﬁ 1ZT generating functions of formal relative GW invariants of a relative
y7?

FTCY threefold )?fel, Section 7.4/7.7, (7-7)/(7-14)
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