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The Jones polynomial of ribbon links

MICHAEL EISERMANN

For every n–component ribbon link L we prove that the Jones polynomial V .L/

is divisible by the polynomial V .n/ of the trivial link. This integrality property
allows us to define a generalized determinant det V .L/ WD ŒV .L/=V .n/�.t 7!�1/ ,
for which we derive congruences reminiscent of the Arf invariant: every ribbon link
LDK1[ � � �[Kn satisfies det V .L/� det.K1/ � � � det.Kn/ modulo 32 , whence in
particular det V .L/� 1 modulo 8 .

These results motivate to study the power series expansion V .L/D
P1

kD0 dk.L/h
k

at t D �1 , instead of t D 1 as usual. We obtain a family of link invariants dk.L/ ,
starting with the link determinant d0.L/D det.L/ obtained from a Seifert surface
S spanning L . The invariants dk.L/ are not of finite type with respect to crossing
changes of L , but they turn out to be of finite type with respect to band crossing
changes of S . This discovery is the starting point of a theory of surface invariants of
finite type, which promises to reconcile quantum invariants with the theory of Seifert
surfaces, or more generally ribbon surfaces.

57M25; 57M27

1 Introduction

It is often lamented that, after more than 20 years of intense research and spectacular
success, we still do not have a good topological understanding of the Jones polynomial.
This is in sharp contrast to the Alexander polynomial: to mention just one prominent
example (Fox–Milnor [15]), the Alexander polynomial �.K/ of every ribbon or slice
knot K has a beautiful and very strong symmetry, �.K/D f .q/ � f .q�1/, whereas
no similar result is known for the Jones polynomial.

Only a few special values of the Jones polynomial have a topological interpretation,
most notably the determinant det.L/D V .L/j.q 7!i/D�.L/j.q 7!i/ . (See Section 2 for
definitions; we use the parameterization t D q2 throughout.)
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624 Michael Eisermann

1.1 Statement of results

We define the nullity null V .L/ of the Jones polynomial V .L/ to be the multiplicity
of the zero at q D i . The trivial link with n components, for example, satisfies
V .n/D .qC1C q�1/n�1 and thus null V .n/D n� 1.

Lemma 1 The Jones nullity equals the multiplicity of the factor .qC1Cq�1/ in V .L/.
If L has n components, then V .L/j.q 7!1/ D 2n�1 and thus 0� null V .L/� n� 1.

This inequality provides a first piece in the puzzle: the same bounds 0� null.L/�n�1

hold for Murasugi’s nullity derived from the Seifert form; see Section 2 for details.

Proposition 1 Consider a link L�R3 bounding a properly embedded smooth surface
S � R4

C without local minima. If S has positive Euler characteristic n D �.S/,
then the Jones polynomial V .L/ is divisible by V .n/ D .qC C q�/n�1 and so
null V .L/� n� 1.

The condition is equivalent to saying that L bounds an immersed surface S �R3 of
Euler characteristic n and having only ribbon singularities; see Section 3 for details.

Again the same inequality, null.L/ � �.S/� 1, holds for the Seifert nullity. Upper
and lower bound for null V .L/ coincide precisely for ribbon links.

Theorem 1 Every n–component ribbon link L satisfies null V .L/D n� 1.

This corresponds to the Seifert nullity, so we see that null.L/D null V .L/ for every
ribbon link L. It would be interesting to know whether this equality generalizes to all
links, see Question 7.8 and Question 7.9 towards the end of this article.

Expanding V .L/ in q D exp.h=2/ we obtain a power series V .L/D
P1

kD0 vk.L/h
k

whose coefficients vk.L/ are link invariants of finite type in the sense of Vassiliev
[46] and Goussarov [19], see also Birman–Lin [4] and Bar-Natan [2]. The above
results motivate to study the power series expansion V .L/D

P1
kD0 dk.L/h

k in q D

i exp.h=2/. We obtain a family of invariants dk.L/ starting with the link determinant
d0.L/Ddet.L/. The Jones nullity null V .L/ is the smallest index � such that d�.L/¤

0. The link invariants dk.L/ are not of finite type with respect to crossing changes.
They enjoy, however, the following surprising property.

Proposition 2 The surface invariant S 7! dk.@S/ is of finite type with respect to band
crossing changes. More precisely, it is of degree �m for mD kC 1��.S/.
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See Section 5.5 for definitions. The only invariant of degree < 0 is the zero map:
for k < �.S/� 1 we thus have dk.@S/ D 0 as in Proposition 1. The case m D 0

corresponds to k D �.S/� 1; being of degree � 0 means that dk.@S/ is invariant
under band crossing changes. Specializing to ribbon links we obtain the following
result.

Corollary 2 For every n–component ribbon link LDK1[ � � � [Kn the Jones deter-
minant det V .L/ WD ŒV .L/=V .n/�.q 7!i/ is invariant under band crossing changes. If
L bounds an immersed ribbon surface S �R3 consisting of n disjoint disks, then we
have det V .L/D det.K1/ � � � det.Kn/, whence det V .L/ is an odd square integer.

For a ribbon surface S � R3 consisting of disks which may intersect each other,
multiplicativity only holds modulo 32, and examples show that this is the best possible
value.

Theorem 2 Every n–component ribbon link LDK1[� � �[Kn satisfies det V .L/�

det.K1/ � � � det.Kn/ modulo 32, and in particular det V .L/� 1 modulo 8.

These results can be seen as a first step towards understanding the Jones polynomial of
ribbon links. It is plausible to expect that our results can be extended in several ways,
and we formulate some natural questions in Section 7. As an application, Theorem 1 is
used in Eisermann–Lamm [11] as an integrality property of the Jones polynomial of
symmetric unions.

1.2 Related work

Little is known about the Jones polynomial of ribbon knots, but there is strong evidence
that the expansion at t D�1 (that is, q D i ) plays a crucial rôle.

First of all, for every ribbon knot K , the determinant d0.K/D det.K/D V .K/t 7!�1

is a square integer, see Remark 3.6, and the resulting congruence det.K/� 1 mod 8

is related to the Arf invariant of knots, see Lickorish [32, chapter 10].

Next, the first-order term d1.K/D�
�

d
dt

V .K/
�

t 7!�1
figures prominently in the work of

Mullins [37, Theorem 5.1], who discovered a beautiful relation with the Casson–Walker
invariant �.†2

K
/ of the 2–fold branched cover of S3 branched along K :

(1) �.†2
K /D

1

4
sign.K/�

1

6

� d
dt

V .K/

V .K/

�
t 7!�1

D
1

4
sign.K/C

1

6

d1.K/

d0.K/
:
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626 Michael Eisermann

This identity holds for every knot K � S3 , and more generally for every link with
non-vanishing determinant. Garoufalidis [17, Theorem 1.1] generalized Mullins’ result
to all links, using the Casson–Walker–Lescop invariant ƒ constructed by Lescop [30]:

(2) i Œsign.K /Cnull.K /�
�ƒ.†2

K /D
1

4
d0.K/ sign.K/C

1

6
d1.K/:

If det.K/¤ 0, then †2
K

is a rational homology sphere; in this case the Casson–Walker
invariant is defined and satisfies �.†2

K
/ � j det.K/j Dƒ.†2

K
/, so that (2) implies (1).

If det.K/D 1, then †2
K

is an integral homology sphere and �.†2
K
/ 2 Z is Casson’s

original invariant. If, moreover, K is a ribbon knot, then sign.K/ vanishes and �.†2
K
/

is an even integer because it reduces modulo 2 to the Rohlin invariant and †2
K

bounds
a homology 4–ball, see Casson–Gordon [6, Lemma 2]. In this case d1.K/ is divisible
by 12. No such congruences seem to be known for higher order terms d2; d3; : : : , nor
for ribbon knots or links in general.

Generalizing work of Sakai, Mizuma has worked out an explicit formula for d1.K/ of
1–fusion ribbon knots K [35] and derived a lower bound for the ribbon number [36].

Studying link concordance, Cochran [7, Corollary 3.10] has established similar proper-
ties and congruences for the first non-vanishing coefficients of the Conway polynomial.

1.3 How this article is organized

Theorem 1 and Theorem 2 are pleasant to state but their proofs are somewhat technical:
we proceed by induction on planar diagrams of immersed surfaces in R3 . The arguments
are elementary but get increasingly entangled. Generally speaking, these technicalities
are due to the combinatorial definition of the Jones polynomial whereas the ribbon
condition is topological in nature.

The article follows the outline given in this introduction. Section 2 recollects some
basic definitions and highlights motivating analogies; the upper bound of Lemma 1 is
derived from Jones’ skein relation by an algebraic argument. In order to apply skein
relations to ribbon links, Section 3 recalls the notions of slice and ribbon links, and
introduces planar band diagrams as a convenient presentation. Section 4 sets up a
suitable induction technique for the Kauffman bracket and proves the lower bound of
Proposition 1. Section 5 discusses band crossing changes and proves Proposition 2.
Section 6 establishes multiplicativity modulo 32 as stated in Theorem 2. Section 7,
finally, discusses possible generalizations and open questions.
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2 Definitions and first properties

The nullity and the determinant that we introduce and study for the Jones polynomial
are analogous to the corresponding notions of the classical Seifert form. In order to
highlight these intriguing analogies most convincingly, we shall review side by side
some elementary properties of the Alexander–Conway and the Jones polynomial.

As standard references in knot theory we refer to Burde–Zieschang [5], Lickorish [32]
and Rolfsen [44]. Throughout this article we work in the smooth category.

2.1 The Alexander–Conway polynomial

We denote by ZŒq˙� the ring of Laurent polynomials in the variable q D qC with
inverse q�1 D q� . Its elements will simply be called polynomials in q . For every link
L�R3 we can construct a Seifert surface S spanning L, that is, a compact connected
oriented surface S �R3 such that LD @S with induced orientations. We choose a
basis of H1.S/ and denote by � and �� the associated Seifert matrix and its transpose,
respectively; see Burde–Zieschang [5, Definition 8.5], Lickorish [32, Definition 6.5] or
Rolfsen [44, Definition 8A1]. The Alexander–Conway polynomial �.L/ 2 ZŒq˙� is
defined as �.L/D det.q� ��� qC �/. It does not depend on the choice of S and is
thus an isotopy invariant of the link L. It is traditionally parameterized by t D q2 , but
we prefer the variable q D�t1=2 in order to avoid square roots and to fix signs.

We denote by L the set of isotopy classes of oriented links L � R3 . The map
�W L! ZŒq˙� is characterized by Conway’s skein relation

�
� �

��
� �

D .qC� q�/�
� �

with the initial value �./D 1. The skein relation entails that �.Lt/D 0.

The (signed) determinant of a link is defined as

det.L/ WD�.L/j.q 7!i/ D detŒ�i.� C ��/�:
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628 Michael Eisermann

Most authors consider the determinant det.� C ��/, but then only its absolute value
j det.� C ��/j is invariant; see Burde–Zieschang [5, Corollary 13.29], Lickorish [32,
page 90], Rolfsen [44, Definition 8D4]. In our normalization the determinant is the
unique invariant detW L! ZŒi � that satisfies det./D 1 and the skein relation

det
� �

� det
� �

D 2i det
� �

:

2.2 Signature and nullity

Murasugi [40] showed that the signature sign.L/ WD sign.� C ��/ and the nullity
null.L/ WD null.� C ��/ are invariants of the link L. Tristram [45] generalized this by
passing from the symmetric matrix � C �� to the hermitian matrix

M! WD .1�!
2/� C .1� x!2/�� D .! � x!/.x!���!�/

with ! 2 S1 X f˙1g. He showed that the generalized signature sign! L WD sign M!

and the generalized nullity null! L WD null M! are again link invariants. Independently,
Levine [31] defined the same invariants for knots. For ! D ˙i this specializes to
Murasugi’s invariants. For higher dimensions see Erle [12] and Milnor [34].

Remark 2.1 For every knot K we have det.K/ � 1 mod 4, whence det.K/ ¤ 0

and null.K/ D 0. More generally, let N 2 N be a prime number and let ! be a
primitive 2N th root of unity. Tristram [45, Lemma 2.5] remarked that the generalized
determinant

det!.L/ WD�.L/j.q 7!!/ D det.x!���!�/

never vanishes for a knot. More generally, he proved that 0 � null!.L/ � n� 1 for
every link L with n components [45, Corollary 2.24]. We shall see below that the
same technique applies to the Jones polynomial.

For the matrix M WD q��� � qC� over ZŒq˙� � Q.q/, the nullity null M is the
dimension of its null-space. We have null M � null M! for all ! 2 S1 , and equality
holds for all but finitely many values of ! . In particular we see that 0� null M � n�1.

2.3 The Jones polynomial

The following theorem is due to Alexander [1] and Conway [8] for N D 0, Jones [21]
for N D 2, and HOMFLYPT (Freyd–Yetter–Hoste–Lickorish–Millett–Ocneanu [16],
Przytycki–Traczyk [42]) for the general case N 2N .

Theorem 2.2 For each N 2N there exists a unique link invariant VN W L! ZŒq˙�
mapping the trivial knot to VN ./D 1 and satisfying the following skein relation:

(3) q�N VN

� �
� qCN VN

� �
D .q�1

� qC1/VN

� �
:
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The case ND 0 reproduces the Alexander–Conway polynomial, V0.L/D .�1/n�1�.L/

where n is the number of components. The choice N D 1 yields the trivial invariant,
V1.L/D1 for all L2L. The case N D2 yields the Jones polynomial [21], traditionally
parameterized by t D q2 with the sign convention q D�t1=2 (see Section 4.1).

Remark 2.3 It follows from these axioms that VN .Lt/D VN .L/ �UN with

UN D
q�N � qCN

q�1� qC1
:

We have U0 D 0 and U1 D 1, while for N � 2 we obtain the expansion

UN D q�NC1
C q�NC3

C � � �C qN�3
C qN�1:

This is sometimes called the quantum integer ŒN �q . For q 7! 1 we get ŒN �.q 7!1/ DN .

For the trivial n–component link we have VN .
n/D U n�1

N
, and for every n–comp-

onent link L we obtain

VN .L/j.q 7!1/ D VN .
n/j.q 7!1/ DN n�1:

Finally, we observe the following symmetry with respect to the automorphism q 7!�q ,
which corresponds to the non-trivial Galois automorphism of ZŒt˙1=2 � over ZŒt˙�:

VN .L/j.q 7!�q/ D .�1/.N�1/.n�1/VN .L/:

If N is odd, then VN .L/ is even, that is, invariant under the automorphism q 7! �q .
If N is even, then VN .L/j.q 7!�q/ D .�1/n�1VN .L/ depends on the parity of n.

2.4 An upper bound for the Jones nullity

We are now ready to prove Lemma 1. The idea is to adapt Tristram’s observation [45,
Lemma 2.5] to the Jones polynomial.

Definition 2.4 The nullity nullz P D � of a Laurent polynomial P 2CŒq˙� at some
point z 2C X f0g is the multiplicity � of the root at q D z .

More explicitly, we have P D .q � z/� �Q such that � � 0 and Q 2 CŒq˙� satisfies
Q.z/¤ 0. Alternatively, � is the least integer such that the derivative P .�/ D

dv

dqv P

does not vanish in z . It is also the smallest index such that d� ¤ 0 in the power series
expansion P .q/D

P1
kD0 dkhk at q D z exp.h=2/.

The polynomial UN 2 ZŒq˙� of degree 2N � 2 vanishes at every 2N th root of
unity ! other than ˙1, so that null! UN D 1. We fix a primitive 2N th root of
unity, ! D exp.i�k=N /, by specifying an integer k such that 0 < k < 2N and
gcd.k; 2N /D 1.
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630 Michael Eisermann

Proposition 2.5 Let L�R3 be a link. If N is prime, then we have the factorization
VN .L/ D U �

N
� zVN .L/ with � D null! VN .L/ and zVN .L/ 2 ZŒq˙� such that UN −

zVN .L/.

Proof If N D 2, then ! D˙i , whence q2C 1D qU2 is the minimal polynomial of
! in QŒq�. For each P 2 ZŒq˙�, the condition P .!/D 0 is equivalent to P D U2 �Q

for some Q 2 ZŒq˙�. Iterating this argument, we obtain P D U �
2
�Q with Q 2 ZŒq˙�

such that Q.!/¤ 0, whence null! P D � .

If N is odd, then ! is of order 2N and �! is of order N in the multiplicative group
C� . Their minimal polynomials in QŒq� are the cyclotomic polynomials [29, Section
VI.3]

ˆ2N D

Y
�2C�

ord.�/D2N

.q� �/ and ˆN D

Y
�2C�

ord.�/DN

.q� �/:

If moreover N is prime, then all 2N th roots of unity are either of order 1, 2, N , or
2N and thus q2N � 1D .q� 1/.qC 1/ˆNˆ2N . This implies that

ˆN �ˆ2N D q2N�2
C q2N�4

C � � �C q2
C 1D qN�1UN :

This polynomial is even, has integer coefficients and leading coefficient 1. As a
consequence, if P 2 ZŒq˙� is even, then P .!/D 0 is equivalent to P D UN �Q for
some Q 2ZŒq˙�, and Q is again even. Iterating this argument, we obtain P DU �

N
�Q

with Q 2 ZŒq˙� even and Q.!/¤ 0, whence null! P D � .

Corollary 2.6 Let N be a prime and let ! ¤˙1 be a 2N th root of unity. Then the
nullity null! VN .L/ only depends on N and will thus be denoted by null VN .L/. For
every link L with n components we have the inequality 0� null VN .L/� n� 1.

Proof We have VN .L/D U �
N
� zVN .L/ with � D null! VN .L/ and zVN .L/ 2 ZŒq˙�.

Evaluating at q D 1, we find N n�1 DN � � zVN .L/j.q 7!1/ , whence � � n� 1.

Definition 2.7 In the notation of the previous proposition, we call zVN .L/ the reduced
Jones polynomial and det! VN .L/ WD zVN .L/j.q 7!!/ the Jones determinant of L at
! . It depends on the chosen root of unity ! up to a Galois automorphism of the ring
ZŒ!�.

Remark 2.8 The family of invariants VN with N 2N can be encoded by the HOM-
FLYPT polynomial P W L! Z.q; `/ defined by P ./D 1 and the skein relation

`�P
� �

� `CP
� �

D .q�� qC/P
� �

:
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This implies that P .L t/ D P .L/ � U with U D `��`C

q��qC
. Moreover, P takes

values in the subring R WDZŒq˙; `˙;U � and is invariant under the ring automorphism
.` 7! �`; q 7! �q/.

By construction, the following diagram is commutative:

HOMFLYPT ZŒq˙; `˙;U �
` 7!qN

����! ZŒq˙� Jones

` 7!�1

??y ??yq 7!!

Alexander–Conway ZŒq˙� ����!
q 7!!

C determinant

For every link L we have a unique factorization P .L/ D U � �Q with � � 0 and
Q 2R satisfying Qj`D˙1 ¤ 0. We call null P .L/ WD � the nullity of the HOMFLYPT

polynomial. It satisfies the inequality null P .L/ � null VN .L/ for all N 2 N , and
equality holds for all but finitely many values of N . In particular 0� null P .L/�n�1.

3 Band diagrams for ribbon links

3.1 Band diagrams

We wish to apply skein relations to ribbon links. To this end we shall use planar band
diagrams built up from the pieces shown in Figure 1.

(a) ends, strip, twists (b) band junction (c) band crossing (d) ribbon singularity

Figure 1: Elementary pieces of band diagrams

Such a diagram encodes not only a link L�R3 but also an immersed surface S �R3

with boundary @S DL. More explicitly we have the following definition.

Definition 3.1 Let † be a smooth compact surface with boundary @†¤∅. We do
not require S to be orientable nor connected, but we will assume that S does not
have any closed components. A smooth immersion f W †# R3 is called (immersed)
ribbon surface if its only singularities are ribbon singularities according to the local
model shown in Figure 1d. Figure 2a displays a more three-dimensional view: every
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(a) a ribbon singularity (b) a ribbon link L (c) ribbon disks for L

Figure 2: Ribbon links and immersed ribbon surfaces

component of self-intersection is an arc A so that its preimage f �1.A/ consists of
two arcs in †, one of which is interior.

Notation We regard f only up to diffeomorphisms of †, and can thus identify
the immersion f with its image S D f .†/. The Euler characteristic �.S/ of the
immersed surface S is by definition the Euler characteristic of the abstract surface †.
A component of S is the image of a component of †.

A ribbon singularity is called mixed if it involves two distinct surface components.
Otherwise, if the surface component pierces itself, the ribbon singularity is called pure.

We write S D S1 t � � � tSn if the components S1; : : : ;Sn are contained in disjoint
balls in R3 . We also use the analogous notation LDL1 t � � � tLn for links.

Since each surface component Sk has non-empty boundary, it satisfies �.Sk/� 1. As
a consequence, if a link L has n components, then every ribbon surface S spanning
L satisfies �.S/� n. The maximum is attained precisely for ribbon links.

Definition 3.2 An n–component link L � R3 is called a ribbon link if it bounds a
ribbon surface S �R3 consisting of n disks. (Figure 2 shows an example.)

Proposition 3.3 For every band diagram D there exists a ribbon surface S �R3 such
that the standard projection R3!R2 maps S to D in the obvious way.

Any two ribbon surfaces projecting to D are ambient isotopic in R3 . Modulo ambient
isotopy we can thus speak of the surface realizing D ,

Every ribbon surface S �R3 can be represented by a band diagram D , that is, S is
ambient isotopic to a surface S 0 projecting to D .

Geometry & Topology, Volume 13 (2009)
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cut reglue

Figure 3: Cutting and regluing a ribbon surface

Proof We only sketch the last assertion: existence of a band diagram for every ribbon
surface S . The idea is to cut S along properly embedded arcs running from boundary
to boundary. This is possible under our hypothesis that S has no closed components.
We repeat this process so as to obtain trivial pieces homeomorphic to disks.

These disks can be put disjointly into the plane and then reglued as prescribed; Figure 3
illustrates an example. Regluing typically introduces junctions, band crossings, twists
and ribbon singularities; these suffice to achieve the reconstruction.

Remark 3.4 There is an analogue of Reidemeister’s theorem, representing ambient
isotopy of ribbon surfaces S �R3 by a generating set of local moves on band diagrams
D �R2 . The local moves are straightforward but lengthy to enumerate, and we shall
not need this more precise result here. The general philosophy is that of links with extra
structure, in our case links with a ribbon surface. This is an interesting topic in its own
right, but we shall use it here merely as an auxiliary tool for our induction proof.

3.2 Slice and ribbon links

In order to put our subject matter into perspective, we briefly recall the 4-dimensional
setting of slice and ribbon links.

We consider R3 as a subset of R4 via the standard inclusion .x1;x2;x3/ 7!.x1;x2;x3;0/.
We say that a link L � R3 bounds a surface S � R4

C D fx 2 R4 j x4 � 0g if S is
a properly embedded smooth surface such that @S D S \R3 DL. (We will always
assume that S has no closed components.) A link L is called slice if it bounds n

disjointly embedded disks in R4
C . This is sometimes called slice in the strong sense;

see Fox [14] for a discussion of weaker notions. Slice knots naturally appear in the
study of surfaces †� S4 with singularities, that is, isolated points where the surface
† is not locally flat, see Fox–Milnor [15], and Livingston [33] for a survey.

If an n–component link bounds a surface S � R4
C , then the Euler characteristic is

bounded by �.S/� n, and the maximum is attained precisely for slice links. We are
particularly interested in the case where the surface S � R4

C has no local minima,
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or more explicitly, the height function hW R4
C! RC , x 7! x4 , restricts to a Morse

function hjS without local minima. The following observation goes back to Fox [14].

Proposition 3.5 For every link L�R3 the following assertions are equivalent:
(1) L bounds an immersed ribbon surface S �R3 such that �.S/D n.
(2) L bounds a surface SC �R4

C without local minima such that �.SC/D n.

As a consequence, L is a ribbon link if and only if it bounds n disjointly embedded
disks in R4

C without local minima. Whether all slice knots are ribbon is an open
question which first appeared as Problem 25 in Fox’s problem list [14]. Also see
Problem 1.33 of Kirby’s problem list [28].

Remark 3.6 Every n–component slice link L satisfies null.L/Dn�1 and sign.L/D
0 (Murasugi [40]), and more generally null!.L/ D n� 1 and sign!.L/ D 0 where
! is a 2N th root of unity and N is prime (Tristram [45]). For nD 1 the Alexander
polynomial factors as �.L/ D f .qC/ � f .q�/ with some f 2 ZŒq˙� (Fox–Milnor
[15]). As a consequence det.K/ is a square integer for every slice knot K , in particular
det.K/� 1 mod 8. For n� 2, however, we have �.L/D 0, see Kawauchi [25]. It is
a classical topic to study higher-order Alexander polynomials to remedy this problem;
for the multi-variable Alexander polynomial see Kawauchi [25] and Florens [13]. We
will instead look for extensions and analogies in the realm of quantum invariants.

4 The Jones nullity of ribbon links

Jones’ skein relation (3) serves well for the upper nullity bound, but it turns out to be ill
suited for the inductive proof that we shall be giving for the lower bound. We will thus
prepare the scene by recalling Kauffman’s bracket (Section 4.1). Ribbon link diagrams
suggest a proof by induction, but one has to suitably generalize the statement (Section
4.2). I present here what I believe is the simplest induction proof, based on the Euler
characteristic (Section 4.3).

4.1 The Kauffman bracket

The Kauffman bracket [23] is a map D! ZŒA˙�, denoted by D 7! hDi, from the set
D of unoriented planar link diagrams to the ring ZŒA˙� of Laurent polynomials in the
variable A. It is defined by the skein relation˝ ˛

DA
˝ ˛
CA�1

˝ ˛
;

hD ti D hDi � .�AC2
�A�2/;

hi D 1:
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The bracket polynomial hDi is invariant under Reidemeister moves R2 and R3, called
regular isotopy. Normalizing with respect to the writhe one obtains an isotopy invariant:
upon the change of variables q D�A�2 we thus recover the Jones polynomial

V .L/j.qD�A�2/ D hDi � .�A�3/writhe.D/:

Here V .L/DV2.L/ is the Jones polynomial of the oriented link L, while D is a planar
diagram representing L, and hDi is its bracket polynomial (forgetting the orientation
of D ). The writhe of D is the sum of all crossing signs.

Notation All subsequent calculations take place in the ring ZŒA˙�� ZŒq˙�� ZŒt˙�
with q D�A�2 and t D q2 DA�4 . This context explains the sign in q D�t1=2 with
t1=2 D A�2 : although the roots ˙t1=2 are conjugated in ZŒt˙1=2 � over ZŒt˙�, this no
longer holds in ZŒA˙�. Choosing this convention I have tried to reconcile simplicity
and tradition, so that all formulae become as simple as possible yet remain easily
comparable. The results stated in the introduction are invariant under all possible
normalizations and parameterizations, but of course such conventions are important in
actual calculations and concrete examples.

4.2 Proof strategy

Applying Kauffman’s skein relation to a ribbon singularity, we obtain the following 16

terms:

D E
DC

D E
C

D E
C

D E
C

D E
C

D E
C

D E
CAC4

D E
CA�4

D E
CAC2

D E
CAC2

D E
CA�2

D E
CA�2

D E
CAC2

D E
CAC2

D E
CA�2

D E
CA�2

D E
:

(4)
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For a band crossing we obtain the same 16 terms with permuted coefficients:D E
DC

D E
C

D E
C

D E
C

D E
C

D E
C

D E
CAC4

D E
CA�4

D E
CAC2

D E
CA�2

D E
CAC2

D E
CA�2

D E
CAC2

D E
CA�2

D E
CAC2

D E
CA�2

D E
:

(5)

We are mainly interested in ribbon links, so we start out with a ribbon surface consisting
only of disk components. Some of the resolutions displayed above, however, will lead
to more complicated components, namely annuli or Möbius bands. We can avoid either
Möbius bands or annuli by adding half twists as desired, but we cannot avoid both
of them altogether. In order to set up an induction proof, this difficulty forces us to
consider a suitable generalization including (at least) annuli or Möbius bands.

4.3 A lower bound for the Jones nullity

Even though we are primarily interested in ribbon links, we are obliged to prove a more
general statement, as motivated above. The following seems to be the simplest setting
supporting the desired inductive proof.

Proposition 4.1 If a link L � R3 bounds an immersed ribbon surface S � R3 of
positive Euler characteristic n, then V .L/ is divisible by V .n/D .qCC q�/n�1 .

Divisibility means that V .L/D .qCC q�/n�1 zV for some zV 2 ZŒq˙�. In this formu-
lation the proposition holds for all n 2 Z but it is trivial, of course, for n� 1.

Example 4.2 The surface S of Figure 4a has Euler characteristic �.S/D1C1C0D2,
so for the link LD@S we expect null V .L/�1. Indeed we find null V .L/D1, because

V .L/D .qCC q�/ �
�
q6
� q4
C 2q2

C 2q�2
� q�4

C q�6
�
:

We also remark that LD 8n8 is the (anti-parallel) 2–cable of the Hopf link with zero
framing. It thus bounds a surface consisting of two annuli. According to the proposition,
L does not bound a surface S with �.S/D 3 or �.S/D 4.
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(a) a surface with �D 2 (b) a surface with �D 1

Figure 4: Examples of ribbon surfaces

Example 4.3 The surface S of Figure 4b has Euler characteristic �.S/D1C1�1D1.
The link LD @S is the connected sum HC ]H� ]HC ]H� of four Hopf links, whence

V .L/D .qC1
C qC5/2 � .q�1

C q�5/2:

We thus find det.L/ D 16 and null V .L/ D 0. This example shows that the lower
bound for null V .L/ does not only depend on the number of disk components of S .

Proof of Proposition 4.1 We proceed by induction on the ribbon number r.S/ of
the ribbon surface S , that is, the number of ribbon singularities. If r.S/ D 0, then
S DS0t

n , and so V .L/ is divisible by V .n/. To see this, notice that a connected
surfaces with positive Euler characteristic is either a sphere, a projective plane, or a
disk. Since S has no closed components, this implies that �.S/D n> 0 can only be
realized by (at least) n disks. If the immersed surface S has no singularities, then it is
in fact embedded in R3 and so L has (at least) n trivial components.

For the induction step we assume that r.S/ � 1 and that the assertion is true for all
ribbon surfaces S 0 with r.S 0/ < r.S/. We replace one ribbon singularity by a band
crossing, that is,

(6) we transform S D into S 0 D :

For L0 D @S 0 we know by induction that V .L0/ is divisible by V .n/.

We represent the link L and its ribbon surface S by a band diagram D . Since the
Jones polynomial V .L/ and the bracket polynomial hDi satisfy V .L/D˙AkhDi for
some exponent k 2 Z, the assertion for the Jones polynomial V .L/ and the bracket
polynomial hDi are equivalent. In the rest of the proof we will work with the latter.
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Subtracting Equations (4) and (5) we obtain the following difference:

(7)
D E

�

D E
D .AC2

�A�2/

�D E
�

D E�
C .AC4

� 1/

�D E
�

D E�
C .A�4

� 1/

�D E
�

D E�
:

All ribbon surfaces on the right hand side have ribbon number smaller than r.S/,
so we can apply our induction hypothesis. Cutting open a band increases the Euler
characteristic by one, whereas regluing decreases the Euler characteristic by one:

�
� �

D �
� �

C 1:

On the right hand side of Equation (7), the two surfaces in the first parenthesis have
Euler characteristic nC 1, the four surfaces in the second parenthesis have Euler
characteristic n, so each bracket polynomial on the right hand side is divisible by
hni. We conclude that hDi is divisible by hni and this completes the proof by
induction.

5 Band crossing changes

Proposition 4.1 says that V .L/ is divisible by V .n/D .qCC q�/n�1 whenever L

bounds a ribbon surface S of positive Euler characteristic n. The value ŒL=S � WD
ŒV .L/=.qCC q�/n�1�.q 7!i/ is thus well-defined (Section 5.1) and we show that it is
invariant under certain operations on the surface S , namely band crossing changes
(Section 5.2) and band twists (Section 5.3). We generalize these observations and
establish a convenient framework by introducing the notion of surface invariants of
finite type with respect to band crossing changes (Section 5.5).

5.1 The surface determinant

We fix the following notation.

Definition 5.1 (surface determinant) Consider an oriented link L�R3 bounding an
immersed ribbon surface S �R3 with Euler characteristic nD �.S/. We define the
determinant of the pair .L;S/ to be ŒL=S � WD ŒV .L/=.qCC q�/n�1�q 7!i .

Remark 5.2 For n D 1 this is the ordinary determinant, det.L/ D V .L/q 7!i . For
n� 0 we multiply by .qCC q�/1�n and evaluation at q D i thus yields ŒL=S �D 0.
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We do not assume S to be oriented, nor even orientable. In order to speak of the Jones
polynomial V .L/, however, we have to choose an orientation for the link LD @S .

In general ŒL=S � is not determined by the surface S alone: although the unoriented
link L is determined by S , the orientation of L adds an extra bit of information.

Likewise, ŒL=S � is not an invariant of the link L alone: different surfaces may have
different Euler characteristics, and we do not require �.S/ to be maximal.

According to Proposition 4.1 the surface determinant ŒL=S � is non zero only if �.S/�1

and S maximizes the Euler characteristic of surfaces spanning L.

Remark 5.3 Changing the orientation of any link component changes the writhe by a
multiple of 4 and thus ŒL=S � changes by a factor ˙1.

If we choose a surface component of S and reverse the orientation of its entire boundary,
then the writhe changes by a multiple of 8, and so ŒL=S � remains unchanged.

This applies in particular to reversing a link component that bounds a disk or Möbius
band. If there are no other components, then ŒL=S � is independent of orientations.

Example 5.4 We always have ŒL=S � 2 Z or ŒL=S � 2 iZ, depending on whether
c.L/��.S/ is even or odd. Here are two simple examples:

(8) S D and S 0 D :

We have ŒL=S �Ddet LD4 and ŒL0=S 0�Ddet L0D�4i . We remark that LDH�]HC ,
and we can change orientations so as to obtain H� ]H� or HC ]HC , both with
determinant �4. Notice that ŒL0=S 0� is independent of orientations.

5.2 Band crossing changes

The following observation will be useful.

Proposition 5.5 The surface determinant ŒL=S � is invariant under band crossing
changes.

Proof Let S be an immersed ribbon surface of positive Euler characteristic nD�.S/.
We reconsider Equation (5), resolving a band crossing according to Kauffman’s skein
relation. The resolution for the changed band crossing is analogous, with all diagrams
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rotated by 90ı . When we calculate their difference, 10 of the 16 terms cancel each
other in pairs, and we obtain the following skein relation:

(9)
D E

�

D E
D .AC4

�A�4/

�D E
�

D E�
C .AC2

�A�2/

�D E
�

D E
C

D E
�

D E�
:

The two surfaces in the first parenthesis have Euler characteristic n, so their polynomials
are divisible by hniD .qCCq�/n�1, and the coefficient q�2�qC2D.q�CqC/.q��qC/

contributes another factor. The four surfaces in the second parenthesis have Euler
characteristic nC 1, so their polynomials are divisible by hnC1i D .qCC q�/n .

This means that hDi modulo .qCC q�/n is invariant under band crossing changes as
stated. The writhe remains constant or changes by ˙8. We conclude that the Jones
polynomial V .L/ modulo .qCC q�/n is invariant under band crossing changes.

5.3 Band twists

Generalizing Example 5.4, we obtain the following result.

Proposition 5.6 The surface determinant ŒL=S � is invariant under band twisting, up
to some sign factor " 2 f˙1;˙ig. More precisely, we have� �

D i
� �

D�
� �

and� �
D
� �

D "
� �

:

For the last link we have to choose arbitrary orientations; there is no canonical choice.

Proof We have h iDAh iCA�1h i. The last term does not contribute
to the surface determinant because it has greater Euler characteristic. The other two
terms establish the desired equality upon normalization with respect to the writhe. For
parallel orientations we obtain:� �

D
�
.�A�3/wC1

h i=.qCC q�/��1
�
.q 7!i/

D
�
�A�2

�
.q 7!i/

�
�
.�A�3/wh i=.qCC q�/��1

�
.q 7!i/

D i
� �

:

We recall our sign convention q D�A�2 . For anti-parallel orientations we obtain:� �
D
�
.�A�3/w�1

h i=.qCC q�/��1
�
.q 7!i/

D
�
�A4

�
.q 7!i/

�
�
.�A�3/wh i=.qCC q�/��1

�
.q 7!i/

D
�
A8
�
.q 7!i/

�
�
.�A�3/wC1

h i=.qCC q�/��1
�
.q 7!i/

D
� �

:
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The middle term can be identified with ˙
� �

or ˙i
� �

. In general the sign
depends on the chosen orientations and the induced writhe of the resulting diagram.

Remark 5.7 Adding two full band twists leaves ŒL=S � invariant. Of course, this can
also be realized by a band crossing change, as in the following example:

= =

Example 5.8 As a word of warning, the following example illustrates that band
twisting or a band crossing change can alter the determinant of a link. We consider

S� D and SC D :

The boundary H˙ D @S˙ is the Hopf link with linking number lk.H˙/D˙1 and
determinant det H˙ D˙2i . Proposition 5.5 and Proposition 5.6 apply to the surface
determinant ŒL˙=S˙�, but in this case the statement is empty because ŒL˙=S˙�D 0.
See Remark 5.2.

5.4 Orientable surfaces

In order to simplify the exposition we will concentrate on orientable surfaces. This
restriction seems acceptable because we are ultimately interested in ribbon links. All
results extend to non-orientable surfaces as well, but statements and proofs are twice
as long due to clumsy case distinctions.

Definition 5.9 If S is orientable then we define ŒS � WD ŒL=S � by choosing an arbitrary
orientation of S and the induced orientation of the boundary LD @S . This is well-
defined according to Remark 5.3.

Proposition 5.10 For every orientable surface S we have ŒS � 2 Z.

Proof We have �.S/� c.L/ mod 2, where c.L/ is the number of components of
the link LD @S . The Jones polynomial V .L/ is even if c.L/ is odd, and V .L/ is
odd if c.L/ is even. The reduced polynomial V .L/=.qCCq�/��1 2ZŒq˙� is always
even.
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Remark 5.11 By definition, ŒS � depends only on the link L D @S and the Euler
characteristic �.S/ of the surface S . According to Proposition 5.5 and Proposition
5.6, the value ŒS � does not depend on the situation of S in R3 , but only on the abstract
surface together with the combinatorial pattern of ribbon singularities. This is rather
surprising.

5.5 Surface invariants of finite type

In order to put the surface determinant into a wider perspective, I would like to expound
an interesting analogy with link invariants of finite type. A more comprehensive study
of surface invariants of finite type will be the object of a forthcoming article [10].

Remark 5.12 We expand the Jones polynomial V .q/D
P1

kD0 vkhk in qD exp.h=2/.
Here any power series q � 1Ch=2 mod h2 could be used: the crucial point is that
q� q�1 � h has no constant term. Then the link invariants L 7! vk.L/ are of finite
type in the sense of Vassiliev [46] and Goussarov [19], see also Birman–Lin [4] and
Bar-Natan [2]. This means that these invariants behave polynomially with respect to
crossing changes $ .

Remark 5.13 We can also expand V .q/D
P1

kD0 dkhk in qD i exp.h=2/. Any power
series q � i C ih=2 mod h2 could be used: the crucial point is that qC q�1 � ih

has no constant term. We obtain a family of link invariants L 7! dk.L/ starting
with the classical link determinant d0.L/D V .L/j.q 7!i/ D det.L/. The Jones nullity
� D null V .L/ is the smallest index such that d�.L/¤ 0. If L bounds a surface S

of positive Euler characteristic n, then d0.L/D � � � D dn�2.L/D 0 and dn�1.L/D

in�1ŒL=S �.

The arguments used in the proofs of Proposition 5.5 and Proposition 5.6 motivate the
following definition of alternating sums of surfaces, imitating finite type invariants of
links.

Notation As in Section 3.1 we consider a smooth compact surface † without closed
components. In order to simplify we assume † to be oriented and endow @† with the
induced orientation. We denote by B.†/ the set of band immersions †# R3 modulo
ambient isotopy.

Let D be a band diagram representing some ribbon surface S 2B.†/ and let X be a
set of band crossings of D . For each subset Y � X we denote by DY the diagram
obtained from D by changing all band crossings x 2 Y as indicated in Figure 5a. This
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$

(a) Band crossing

$

(b) Band twist

Figure 5: Changing band crossings and band twists

does not change the abstract surface †, and so the diagram DY represents again a
ribbon surface in B.†/.

Slightly more generally, we also allow X to contain band twists, in which case we
simply change one crossing as in Figure 5b. We will usually not mention this explicitly
but rather subsume it under the notion of band crossing change. Of course, two full
band twist can be traded for one band crossing change, see Remark 5.7.

Remark 5.14 We emphasize that we are considering links L equipped with extra
structure, namely the given surface S �R3 spanning LD @S . This extra structure is
crucial. Kauffman [22, chapter V] studied pass moves, which consist of the move of
Figure 5a without keeping track of surfaces. He shows that the set of knots splits into
two equivalence classes, corresponding to the two values of the Arf invariant.

Remark 5.15 We assume that † is a compact surface without closed components.
Then any two embeddings f;gW † ,! R3 can be transformed one into the other
by a finite sequence of the above band crossing changes. The same holds true for
ribbon immersions f;gW †# R3 provided that the combinatorial structure of their
singularities coincide.

Definition 5.16 Let vW B.†/!A be a surface invariant with values in some abelian
group A. We say that v is of degree �m with respect to band crossing changes ifX

Y�X

.�1/jY j v.DY /D 0 whenever jX j>m:

We say that v is a surface invariant of finite type if it is of degree �m for some m2N .

Remark 5.17 If A is a module over a ring K, then the surface invariants B.†/!A

of degree � m form a module over K. If A is an algebra over K, then the surface
invariants B.†/!A of finite type form a filtered algebra over K: if f is of degree
�m and g is of degree � n, then their product f �g is of degree �mC n.

Proposition 5.18 The surface invariant S 7! dk.@S/ is of finite type with respect to
band crossing changes. More precisely, it is of degree �m for mD kC 1��.S/.
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In the case m < 0 we have k < �.S/� 1, whence dk.@S/ D 0 by Proposition 4.1.
For mD 0 we have k D �.S/� 1, whence dk.@S/ is invariant under band crossing
changes by Proposition 5.5. Proposition 5.18 extends these results in a natural way to
all k 2N . It is a consequence of the following observation.

Lemma 5.19 Consider an oriented band diagram D . For every set X of band cross-
ings, the polynomial

P
Y�X .�1/jY j V .@DY / is divisible by .qCC q�/jX jC�.S/�1 .

Proof We proceed by induction on the cardinality of X . The case jX j D 0 is settled
by Proposition 4.1. If jX j � 1 then we choose one band crossing or band twist x 2X .
In the first case we apply Equation (9). The orientations of the vertical and horizontal
strands are antiparallel, so we can put them into the following configuration:

(10) V
� �

�V
� �

D .q�� qC/.qCC q�/

�
V
� �

�V
� ��

C .qC� q�/

�
V
� �

�V
� �

CV
� �

�V
� ��

:

The diagrams so obtained have the same writhe, and thus Equation (7) for the Kauffman
bracket directly translates to Equation (10) for the Jones polynomial. On the right hand
side the first two terms have the same Euler characteristic as S but one extra factor
.qCC q�/, whereas in the last four terms the Euler characteristic increases by one.

The second case is analogous: if x is a band twist, then Equation (3) yields

V
� �

�V
� �

D

h
V
� �

� q4V
� �i

C .q4
� 1/V

� �
(11)

D .q1
� q3/V

� �
C .q3

� q1/.qCC q�/V
� �

:

In both cases we pass to the alternating sum over all subsets Y of X 0 DX Xfxg. On
the left hand side we obtain the alternating sum over all subsets of X , as desired. On
the right hand side we apply the induction hypothesis to conclude that the resulting
polynomial is divisible by .qCC q�/jX jC�.S/�1 .

Remark 5.20 Every link invariant L 7! v.L/ of degree �m (with respect to crossing
changes) induces a surface invariant S 7! v.@S/ of degree � m (with respect to
band crossing changes). This holds, for example, for the coefficients vk in the above
expansion V .q/D

P1
kD0 vkhk in q D exp.h=2/. It is surprising that the expansion

V .q/D
P1

kD0 dkhk in q D i exp.h=2/ provides an independent family of examples,
even though the link invariants dk are not of finite type with respect to crossing changes.
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The determinant d0.L/D det.L/ comes close to being a Vassiliev–Goussarov invariant
in the sense that det.L/2 is polynomial of degree � 2 on every twist sequence, see
Eisermann [9, Section 5]. Here det.@S/ turns out to be of degree � 1� �.S/ with
respect to band crossing changes of the surface S .

Remark 5.21 We parameterize the Alexander–Conway polynomial�.L/D
P

ak.L/z
k

by z D qC� q� . The link invariant L 7! ak.L/ is then of degree k with respect to
crossing changes. If we consider a disk † and band immersions †# R3 , then the
surface invariant S 7! ak.@S/ is of degree 0 with respect to band crossing changes. To
see this, notice that the Seifert matrix of the knot KD @S has the form � D

�
0 A
B C

�
, see

Kauffman [22, chapter VIII]. This implies that sign.K/D sign.� C ��/ vanishes and
that �.K/D det.q� ��� qC �/ is of the form f .qC/ �f .q�/ with f 2ZŒq˙�. Band
crossing changes of S only affect the submatrix C , and so �.K/ remains unchanged.

If we pass from the special case of a disk to immersions or embeddings of an arbitrary
surface †, then the surface invariant S 7! ak.@S/ is no longer invariant under band
crossing changes. Example 5.8 illustrates this for the linking number a1 D lk when †
is an annulus.

6 The Jones determinant of ribbon links

The surface determinant ŒS � is invariant under band crossing changes, but in general it
changes when we replace a ribbon singularity by a band crossing. In order to analyze
this in more detail, we spell out an oriented skein relation (Section 6.1) and establish
some useful congruences (Section 6.2). We then apply them to ribbon links (Section
6.3) and prove Theorem 2 stated in the introduction. The arguments remain elementary
but get increasingly complicated, because our combinatorial approach entails numerous
case distinctions. Finally we sketch an application to satellites of ribbon knots (Section
6.4).

6.1 An oriented skein relation

We wish to set up a suitable skein relation for the determinant ŒS � of an orientable
ribbon surface S . Replacing a ribbon singularity by a band crossing as in Equation
(7), we obtain a ribbon surface S 0 with one less singularity. The right hand side of (7)
features six diagrams: the first two of these terms vanish at q D i because they have
greater Euler characteristic. Hence Equation (7) becomes

(12)
�

S

�
�

�
S 0

�
D�2

��
S1

�
�

�
S2

�
C

�
S3

�
�

�
S4

��
:
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Notice that the orientations of the vertical and horizontal strands are antiparallel, and
the writhe of the shown crossings in S and S 0 add up to 0. Inserting pairs of opposite
twists as necessary, we can always put the bands into the configuration shown in (12).
This has the advantage that we can use the same orientations on the right hand side. All
diagrams have the same writhe, so that Equation (7) for the Kauffman bracket directly
translates to the Jones polynomial, and to Equation (12) for the surface determinant.

6.2 Some useful congruences

We continue to consider an orientable ribbon surface S . We denote by c.S/ the number
of its connected components. Since each component has Euler characteristic � 1, the
deficiency d.S/D c.S/��.S/ is non-negative, and we have d.S/D 0 if and only
if S consists only of disks. In the following induction the deficiency d.S/ measures
how far S is from being a collection of disks.

Definition 6.1 We call a ribbon singularity essential if the pierced component is a
disk and the piercing component remains connected after cutting it open along the
singularity. We denote by e.S/ the number of essential singularities of S .

Lemma 6.2 Every oriented ribbon surface S �R3 satisfies the following congruences:

(1) If d.S/D 0, then ŒS �� 1 mod 8.

(2) If d.S/D 1, then ŒS �� 4e.S/ mod 8.

(3) If d.S/� 2, then ŒS �� 0 mod 2dC1 .

Remark 6.3 The ribbon condition improves the usual congruences by a factor 2: in
general we only have det K � 1 mod 4 for a knot and det L� 0 mod 2 for a link.

Case (1) includes the well-known fact that every ribbon knot K satisfies det.K/� 1

mod 8. This classical result is reproved in our more general setting for ribbon links.

Case (2) could be reduced to ŒS �� 0 mod 4, but the refinement modulo 8 will prove
indispensable in order to establish Theorem 2 (see Theorem 6.8 below).

Case (3) could likewise be strengthened, but we content ourselves with a weaker
formulation that suffices for the inductive proof of Lemma 6.2.

Proof of Lemma 6.2 We first recall that we assume the surface S to be non-empty and
without closed components. We also remark that the case �.S/� 0 is trivial, because
d.S/� 1 and ŒS �D 0 by definition. In the sequel we can thus assume �.S/� 1.
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We proceed by induction on the number r.S/ of ribbon singularities. Suppose first that
r.S/D 0. If d.S/D 0, then S D� with �D �.S/, whence ŒS �D 1. If d.S/� 1

then S D S0 t
� with S0 ¤∅, whence V .L/D .qCC q�/� V .L0/ and ŒS �D 0.

For the induction step we suppose that r.S/ � 1 and that the statement is true for
all surfaces S 0 with r.S 0/ < r.S/. We then replace a ribbon singularity of S by a
band crossing as in Equation (12). By our induction hypothesis, we can apply the
congruences stated above to the surface S 0;S1;S2;S3;S4 . All surfaces have the
same Euler characteristic as S but the number of components may differ: we have
c.S/D c.S 0/ and c.Si/� c.S/ 2 f1; 0;�1g.

We denote by SD resp. Sk the component the surface S containing the horizontal resp.
vertical strip in Equation (12). In order to analyze the contribution of the four ribbon
surfaces S1;S2;S3;S4 we distinguish the following cases.

Case (1) If d.S/D 0, then we are dealing exclusively with disks:

(a) If SD and Sk are different disks of S , then all four diagrams S1;S2;S3;S4

feature only disks, whence d.S1/D d.S2/D d.S3/D d.S4/D 0. We thus have
ŒS1� � ŒS2� � ŒS3� � ŒS4� � 1 mod 8, whence ŒS1�� ŒS2�C ŒS3�� ŒS4� � 0

mod 8. The factor �2 in Equation (12) ensures that ŒS �� ŒS 0� mod 16.

(b) Suppose next that Sk coincides with SD . For concreteness we will assume that
the western and southern pieces are connected outside of the local picture, as
indicated in Figure 6. (The other three variants are analogous.)

S1 S2 S3 S4S’S

Figure 6: Resolving a pure ribbon singularity

Two diagrams, in our case S1 and S2 , feature only disks, whence d.S1/ D

d.S2/D 0 and ŒS1�� ŒS2�� 1 mod 8. The other two diagrams, in our case S3

and S4 , each feature one extra annulus, whence d.S3/D d.S4/D 1, whence
ŒS3�� ŒS4�� 0 mod 4. Equation (12) implies that ŒS �� ŒS 0� mod 8.

Remark 6.4 For future reference, we wish to be more precise here. The surfaces S3

and S4 may have different numbers of essential singularities, so ŒS4�� ŒS3� D 4�

mod 8. We conclude that ŒS � � ŒS 0� � 8� mod 16: if � is even, then ŒS � � ŒS 0�
mod 16; if � is odd, then ŒS �� ŒS 0�� 8 mod 16.
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The difference � D e.S4/� e.S3/ is the number of times that the annulus formed
by connecting the western and southern pieces, essentially pierces the northern piece:
these singularities are essential for S4 but not essential for S3 . All other essential
singularities are the same for both S3 and S4 .

Case (2) If d.S/D 1, then we are dealing with n disks and one annulus.

(a) If the components SD and Sk coincide, then d.S1/Dd.S2/Dd.S3/Dd.S4/�

1, whence ŒS1�� ŒS2�� ŒS3�� ŒS4�� 0 mod 4. In this case ŒS �� ŒS 0� mod 8.
The considered singularity is not essential, so that e.S/D e.S 0/.

In the following cases we assume that SD and Sk are different components.

(b) If splitting separates both SD and Sk , then d.S1/Dd.S2/Dd.S3/Dd.S4/D1,
whence ŒS1� � ŒS2� � ŒS3� � ŒS4� � 0 mod 4. We conclude that ŒS � � ŒS 0�
mod 8. The considered singularity is not essential, so that e.S/D e.S 0/.

(c) If splitting separates Sk but not SD , then d.S1/D d.S2/D d.S3/D d.S4/D 0,
whence ŒS1� � ŒS2� � ŒS3� � ŒS4� � 1 mod 8. We conclude that ŒS � � ŒS 0�
mod 16. The considered singularity is not essential, so that e.S/D e.S 0/.

(d) If splitting separates SD but not Sk , then d.S1/ D d.S3/ D 1 and d.S2/ D

d.S4/D 0. We thus have ŒS1�� ŒS3�� 0 mod 4 as well as ŒS2�� ŒS4�� 1

mod 8, whence ŒS1�� ŒS2�C ŒS3�� ŒS4�� 2 mod 4. We conclude that ŒS ��
ŒS 0�C4 mod 8. The considered singularity is essential, so that e.S/De.S 0/C1.

This exhausts all possibilities in the case d.S/D 1: at least one of the components
SD or Sk is a disk, and so splitting separates at least one of them.

Case (3) In the case d.S/ D 1 we already know that ŒS � � 0 mod 2dC1 . If
d.S/ � 2 then the four surfaces S1;S2;S3;S4 satisfy d.Si/ � d.S/ � 1, whence
ŒSi �� 0 mod 2d . Equation (12) then implies that ŒS �� ŒS 0� mod 2dC1 .

6.3 Application to ribbon links

For a ribbon knot K D @S , Proposition 5.5 says that det.K/ is invariant under band
crossing changes of S . This is a well-known property for the classical determinant:
even the Alexander–Conway polynomial �.K/ does not change (see Remark 5.21).
This observation trivially holds for ribbon links with n � 2 components, for which
we always have �.L/D 0. The point of Proposition 5.5 is that after dividing out the
factor V .n/ in V .L/ we obtain the desired property for the Jones determinant.
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Corollary 6.5 Consider an n–component ribbon link L bounding a collection of
ribbon disks S �R3 . Then the Jones nullity is null V .L/D n�1, and the determinant
det V .L/D ŒS � is invariant under band crossing changes.

Proof We know from Corollary 2.6 that null V .L/� n�1 for all n–component links.
According to Proposition 4.1 we have null V .L/� n�1 for n–component ribbon links.
We conclude that null V .L/D n� 1 and so det V .L/D ŒV .L/=V .n/�.qDi/ D ŒS �.
Proposition 5.5 ensures that det V .L/ is invariant under band crossing changes.

Corollary 6.6 Consider an n–component ribbon link LDK1[ � � �[Kn that bounds
a collection of ribbon disks S �R3 without mixed ribbon singularities, which means
that distinct disks never intersect each other. Then the Jones determinant satisfies
det V .L/D det.K1/ � � � det.Kn/ and is thus a square integer.

Proof Since there are no mixed ribbon singularities, we can change band crossings
from S D S1 [ � � � [Sn to S 0 D S1 t � � � tSn . Using the invariance established in
Corollary 6.5, we conclude that det V .L/D det V .L0/D det.K1/ � � � det.Kn/.

Remark 6.7 If we allow ribbon disks to intersect each other, then multiplicativity holds
at least modulo 16: for mixed ribbon singularities, the proof of case (1a) of Lemma
6.2 shows that ŒS �� ŒS 0� mod 16 holds in Equation (12). Having replaced all mixed
ribbon singularities by ribbon crossings, we can apply Corollary 6.6 to conclude that
det V .L/ � det V .L0/ D det.K1/ � � � det.Kn/, so in particular det V .L/ � 1 mod 8.
We have to work a bit harder to improve this congruence from 16 to 32, which is
where the full details of Lemma 6.2 come into play.

Theorem 6.8 Consider an n–component ribbon link LDK1[ � � � [Kn , bounding
a collection of ribbon disks S � R3 . Suppose that in Equation (12) the depicted
ribbon singularity involves two distinct disks, SD¤ Sk . Then ŒS1�� ŒS2�� ŒS3�� ŒS4�

mod 16 and thus ŒS �� ŒS 0� mod 32.

Proof We proceed by a double induction. The first induction is on the ribbon number
r.S/. If r.S/D 1, then all links are trivial ie LDL0 DL1 DL2 DL3 DL4 D

n ,
and so ŒS �D ŒS 0�D ŒS1�D ŒS2�D ŒS3�D ŒS4�D 1.

If r.S/� 2, we proceed by induction on the number k of mixed singularities of SD .
If k D 1 then SD is not involved in any other mixed ribbon singularity besides the
shown one. Applying band crossing changes (Corollary 6.5) we can achieve that SD
lies above all other components, except of course at the shown ribbon singularity. This
situation is depicted in Figure 7: S1 and S3 are two connected sums, while S2 and
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S4 are mutants modulo some band twisting (see Proposition 5.6). This implies that
ŒS1�D ŒS3� and ŒS2�D ŒS4�. The difference ŒS1�� ŒS2�D ŒS3�� ŒS4� is a multiple of
8 according to Remark 6.7. Equation (12) then implies that ŒS �� ŒS 0� mod 32.

S D

R
S1 D

R
S2 D

R
D

R

S 0 D

R
S3 D

R
S4 D

R
D

R

Figure 7: Resolving the only ribbon singularity between SD and Sk

Suppose next that k � 2, that is, SD is involved in another mixed ribbon singularity.
By induction, it suffices to replace one such ribbon singularity by a band crossing. This
replacement translates S;S 0;S1;S2;S3;S4 to six new diagrams xS ; xS 0; xS1; xS2; xS3; xS4 ,
each having one less ribbon singularity. By induction we know that Œ xS �� Œ xS 0� mod 32.

If our second ribbon singularity involves SD and some third component different from
Sk , then we can apply Remark 6.7 to all four diagrams on the right hand side to obtain
the congruence ŒS1� � Œ xS1� � ŒS2� � Œ xS2� � ŒS3� � Œ xS3� � ŒS4� � Œ xS4� � 0 mod 16.
Equation (12) then implies that ŒS �� ŒS 0� mod 32.

S S1 S2

S 0 N S3 N 0
S4

Figure 8: Resolving a second ribbon singularity between SD and Sk
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The only problem arises when our second ribbon singularity involves both SD and
Sk . Suppose for example that the western and southern pieces of S meet again in a
second ribbon singularity, as depicted in Figure 8. Then this is still a mixed singularity
in S1 and S2 , and so ŒS1�� Œ xS1�� ŒS2�� Œ xS2�D 0 mod 16 by Remark 6.7. But in
S3 and S4 it becomes a pure singularity. Remark 6.4 in the proof of Lemma 6.2 case
(1b) shows that ŒS3�� Œ xS3�� ŒS4�� Œ xS4�� 8� mod 16: the northern pieces N and
N 0 are pierced by the newly formed annulus in exactly the same essential singularities.
We conclude that

ŒS �� ŒS 0�� 2
�
ŒS1�� ŒS2�C ŒS3�� ŒS4�

�
� 2

�
Œ xS1�� Œ xS2�C Œ xS3�� Œ xS4�

�
� Œ xS �� Œ xS 0�� 0 mod 32

because ŒS1�� Œ xS1� and ŒS2�� Œ xS2� and ŒS3�� ŒS4�� Œ xS3�� Œ xS4� modulo 16.

Corollary 6.9 (general multiplicativity modulo 32) Every n–component ribbon link
LDK1[� � �[Kn satisfies the congruence det V .L/� det.K1/ � � � det.Kn/ mod 32.

Proof We first replace all mixed ribbon singularities by ribbon crossings: Theorem
6.8 ensures that det V .L/� det V .L0/ mod 32. We can then apply Corollary 6.6.

Example 6.10 The value 32 is the best possible: the 2–component link LD 10n36

depicted below is ribbon, whence det.L/D 0, and its Jones polynomial factors as

V .L/D .qCCq�/.�qC8
C2qC6

�3qC4
C4qC2

�3C4q�2
�3q�4

C2q�6
�q�8/:

Here we find det V .L/ D �23 whereas the components satisfy det.K1/ D 1 and
det.K2/D 9. The congruence �23� 9 mod 32 is satisfied, and 32 is optimal.

LD L0 D

Example 6.11 Not all links with maximal nullity null V .L/ D n� 1 satisfy multi-
plicativity modulo 32. For L0 D 10n57, for example, we find det.L0/D 0 and

V .L0/D .qCC q�/.qC6
� 2qC4

C 2qC2
� 2C 3q�2

� 2q�4
C 2q�6

� q�8/

whence det V .L0/D�15. Both components separately are trivial, and det V .L0/� 1

holds modulo 16 but not modulo 32. (In particular, L0 is not a ribbon link. This is no
surprise: determinant and signature vanish but the Alexander polynomial does not.)
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6.4 Satellites of ribbon knots

Our results contain information for links with two or more components, but at first sight
they seem void for knots. One possible application is via the construction of satellites.

Every oriented knot K �R3 can be equipped with a tubular neighbourhood, that is, an
embedded torus f W D2 �S1 ,! R3 , f .s; t/D fs.t/, such that f0 parameterizes K

satisfying lk.f0; f1/D 0 and lk.f0; f jS1�f1g/DC1. Such an embedding f exists
and is unique up to isotopy. For a link P �D2 �S1 , the image f .P /�R3 is called
the satellite of K with pattern P , and will be denoted by K �P .

Definition 6.12 We say that P � D2 �S1 is a ribbon pattern if �P is a ribbon
link, where  denotes the trivial knot. This means that the standard (unknotted and
untwisted) embedding of the torus D2 �S1 ,!R3 maps P to a ribbon link in R3 .

Proposition 6.13 If K is a ribbon knot and P D P1 [ � � � [Pn is an n–component
ribbon pattern, then the satellite K �P is an n–component ribbon link.

Remark 6.14 Starting with a ribbon pattern P , the satellite K �P may be ribbon
even though K is not; see Rolfsen [44, Example 8E33].

Corollary 6.15 If K is a ribbon knot, then for every c 2 N the 0–framed c–cable
Kc is a ribbon link, whence null V .Kc/D n� 1 and det V .Kc/� det.K/c mod 32.

Example 6.16 The knot K D 61 is the smallest ribbon knot; it has determinant
det.K/D 9. The Jones determinant of its two-cable is det V .K2/D 49D 92�32. For
the three-cable we find det V .K3/D 1785D 93C 33 � 32. Again 32 is optimal.

This corollary is quite pleasant, yet it does not seem to obstruct ribbonness. A possible
explanation is that every cable Kc is a boundary link: Question 7.8 below asks whether
this entails the same algebraic consequences, even if the initial knot K is not ribbon.

7 Open questions and perspectives

Our results can be seen as a first step towards understanding the Jones polynomial of
ribbon links. They suggest further questions and generalizations in several directions.
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7.1 From ribbon to slice

At the time of writing it is not known whether every smoothly slice link is a ribbon link.
Our results thus offer two perspectives: either they extend from ribbon to smoothly
slice links, which would be rather satisfactory for the sake of completeness. Or, even
more interestingly, there exist smoothly slice links for which some (suitably refined)
ribbon criteria fail: this would refute the long-standing conjecture “smoothly slice
implies ribbon” conjecture, at least for links.

Question 7.1 Do Theorem 1 and Theorem 2 generalize from ribbon links to slice
links?

Quite possibly our results hold true in this generalized setting. An elegant way to show
this would be to extend an observation of Casson, recorded by Livingston [33, Section
2.1]: for every slice knot K there is a ribbon knot K0 such that their connected sum
K ]K0 is ribbon. Is there an analogous trick for slice links?

A negative answer to Question 7.1 would be spectacular, but it remains to be examined
whether the Jones polynomial can detect such subtle differences, if at all they exist. As
Livingston [33, Section 10, Problem 1] put it: “One has little basis to conjecture here.
Perhaps obstructions will arise (...) but the lack of potential examples is discouraging.”

7.2 From Jones to HOMFLYPT

It is tempting to generalize Theorem 1 to other knot polynomials, in particular to the
HOMFLYPT polynomial, or at least to VN for N prime.

Question 7.2 Does Theorem 1 extend to the generalized Jones polynomial in the
sense that VN .L/D VN .

n/ � zVN .L/ for every ribbon link L?

This holds for N D 0 because the Alexander–Conway polynomial vanishes for n� 2.
The case N D 1 is trivial. Theorem 1 settles the case N D 2. The question for N � 3

is open, but sample calculations suggest that the factorization seems to hold.

Remark 7.3 The Kauffman bracket has served us well in the inductive proof for
N D 2. For VN with N � 2, Murakami–Ohtsuki–Yamada [39] have developed
an analogous oriented state model. Even though the approach is very similar, the
calculations generalizing Section 4 get stuck because certain terms do not cancel each
other. This makes the argument harder and some additional ideas will be needed.

Question 7.4 How can Theorem 1 be generalized to the Kauffman polynomial [24]?
The obvious generalization is false: the Kauffman polynomial F.L/ 2 ZŒa˙; z˙� of
the two-component ribbon link LD 10n36, for example, is not divisible by F.2/.
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7.3 Towards Khovanov homology

The most fertile development in the geometric understanding and application of the
Jones polynomial in recent years has been Khovanov homology [26; 3]. Applying
the philosophy of categorification to the Kauffman bracket, this theory associates to
each link L a bigraded homology Kh.L/ D

L
i;j2Z Khi;j .L/ as an invariant. The

polynomial P .t; q/ D
P

i;j2Z t i qj dimQ.Khi;j .L/˝Q/ is an invariant of L that
specializes for t D�1 to the Jones polynomial, P .�1; q/D .qCC q�/ �V .L/.

Question 7.5 What is the homological version of V .L/D V .n/ � zV .L/?

The naı̈ve generalization would be Kh.L/ Š Kh.n/˝ zKh.L/. The first problem
in stating and proving a result of this type is that the isomorphism must be made
explicit and should be as natural as possible. A polynomial factorization such as
P .L/D .qCCq�/n � zP .L/ is a weaker consequence that does not require isomorphisms
in its statement. Sample calculations, say for L D 10n36, show that these simple-
minded factorizations do not hold, neither over Q nor over Z=2.

Since P .�1; t/ can be seen as the graded Euler characteristic of Kh.L/, another
analogy could prove useful: for every fibration pW E! B with fibre F , the Leray–
Serre spectral sequence with E2

p;q DHp.B;Hq.F // converges to HpCq.E/, whence
�.E/D �.B/ ��.F /. Can the factorization V .L/D V .n/ � zV .L/ be derived as the
Euler characteristic of some spectral sequence? What is the rôle of the factor zV .L/?

7.4 Ribbon cobordism

On top of the quantitative improvement of a more detailed numerical invariant P .t; q/,
Khovanov homology provides an important qualitative improvement: it is functorial
with respect to link cobordism (Jacobsson [20], Khovanov [27]). In this vein Rasmussen
[43] established a lower bound for the slice genus of knots, providing a new proof of the
Milnor conjecture on the unknotting number of torus knots. It thus seems reasonable
to hope that Kh.L/ captures more subtle properties of slice and ribbon links.

Question 7.6 Is there a functorial version of Theorem 1 and Theorem 2?

Gordon [18] introduced the notion of ribbon concordance. In the slightly more general
setting of Proposition 1 we consider a link L�R3 that bounds a properly embedded
smooth surface S � R4

C of positive Euler characteristic n � 1 and without local
minima. Cutting out small disks around n local maxima we obtain a ribbon cobordism
C �R3� Œ0; 1� from LDC \.R3�f0g/ tonDC \.R3�f1g/ such that �.C /D 0.
This induces homomorphisms cW Kh.L/! Kh.n/ and c�W Kh.n/! Kh.L/.
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Question 7.7 Is c surjective? Is c� injective? Better still, do we have c ı c� D id? A
positive answer would exhibit Kh.n/ as a direct summand of Kh.L/.

C Blanchet suggested that the chain complex CKh.L/ could be considered as a mod-
ule over CKh.n/ D A˝n , where A is the Frobenius algebra used in Khovanov’s
construction. This leads to the natural question: when is CKh.L/ essentially free over
CKh.n/? A positive answer would explain the factorization V .L/D V .n/ � zV .L/

and potentially give some meaning to the reduced Jones polynomial zV .L/.

7.5 Other geometric criteria

We have concentrated here on ribbon links, but many other links L may also satisfy
the conclusion of Theorem 1 and Theorem 2:

Question 7.8 Which other geometric properties imply that V .L/ is divisible by
V .n/? Do they imply thatLDK1[� � �[Kn satisfies det V .L/� det.K1/ � � � det.Kn/

modulo 32? More concretely: does this hold for boundary links?

We recall that an n–component link LDL1[� � �[Ln is a boundary link if it bounds a
surface S D S1[� � �[Sn embedded in R3 such that @Si DLi for each i D 1; : : : ; n.
(We can always find a connected surface S such that @S DL, but here we require that
S consist of n disjoint surfaces S1; : : : ;Sn .) The Seifert nullity of a boundary link is
maximal, perhaps its Jones nullity too. It is certainly not enough that pairwise linking
numbers vanish: the Whitehead link W satisfies lk.W /D 0 but det.W /D 8i .

Question 7.9 For which links L do we have equality null!.L/D null! VN .L/?

The following observations show that this question is not completely absurd:

� Equality holds for all knotsK and primeN , becausenull!.K/Dnull!VN .K/D0,
that is, det!.K/D VN .L/j.q 7!!/ is always non-zero.

� Equality also holds for all two-component links and prime N , because we have
null!.L/2 f0; 1g and null!VN .L/2 f0; 1g, as well as det!.L/DVN .L/j.q 7!!/ .

� Equality is preserved under disjoint union, connected sum, mirror images, and
reversal of orientations.

� Theorem 1 ensures that, at least for N D 2, equality holds for all ribbon links.

Garoufalidis [17, Corollary 1.5] observed that null.L/� 4 implies null V .L/� 2. This
follows from Equation (2) and a result of Lescop [30, Section 5.3] saying that ƒ.M /

vanishes for every manifold with dim H1.M;Q/ � 4. In the special case M D †2
L

this can possibly be sharpened to show that null.L/� 2 implies null V .L/� 2.
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Question 7.10 Does link concordance L�L0 imply null! VN .L/D null! VN .L
0/?

If so, which congruence holds between det! VN .L/ and det! VN .L
0/?

For the Alexander–Conway polynomial the corresponding questions were answered by
Kawauchi [25] and Cochran [7]. Equality in Question 7.9 would imply concordance
invariance of null! VN .L/, because the Seifert nullity is a concordance invariant.

7.6 Does the Jones polynomial determine the signature mod 4?

The determinant det.L/ and the signature sign.L/ of a link L are related by the
formula

(13) det.L/D i� sign.L/
� j det.L/j:

Conway [8] used this together with sign. /�sign. /2f0; 1; 2g to calculate signatures
recursively. An analogous formula holds for every ! 2 S1 with im.!/ > 0.

If ! is a primitive 2N th root of unity, we know that det!.L/¤ 0 at least for knots. For
links with n� 2 components Conway’s signature calculation is obstructed by the fact
that the determinant may vanish, in which case Equation (13) contains no information.
This happens exactly when null.L/� 1. One might suspect that the stronger condition
det V .L/ D i� sign.L/ � j det V .L/j holds. Unfortunately this is false in general: see
Example 6.10 above for a ribbon link with det V .L/ < 0.

The formula thus needs some correction. Of course we can define a link invariant
".L/W L ! f˙1;˙ig by ".L/ WD i sign.L/ � det V .L/=j det V .L/j. The topological
meaning of this factor ".L/, however, is not clear. It is also unknown whether ".L/
can be deduced from the Jones polynomial alone. If so, then the Jones polynomial
would determine the signature of all links via Conway’s skein theoretic recursion.

7.7 Surface invariants of finite type

Section 5 introduces and illustrates the concept of surface invariants that are of finite
type with respect to band crossing changes. This is an interesting analogy and extension
of link invariants of finite type. What is the precise relationship between these two
classes of invariants? In our examples the surface invariant S 7! dk.@S/ only depends
on the boundary of S , but in general this need not be the case. Can we generate
more non-trivial examples from the HOMFLYPT or the Kauffman polynomial or other
quantum invariants? What is their geometric significance?

The general finite type approach to surfaces will be the object of a forthcoming article
[10]. Generalizing Section 5, one proceeds as follows.
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� Introduce the filtration induced by band crossing changes and band twists.

� Study the graded quotients and extract combinatorial data modulo relations.

� Integrate (in low degree at least) combinatorial data to invariants of surfaces.

It is interesting to note that the Euler characteristic of the surface intervenes in a
natural and non-trivial way. Two perspectives seem to be most promising: Considering
immersed ribbon surfaces one might hope to derive lower bounds for the ribbon genus.
Turning to embedded surfaces one might try to reconcile the classical approach of
Seifert surfaces with finite type invariants. Here Vassiliev–Goussarov invariants are
known to be too restrictive, see Murakami–Ohtsuki [38].

In analogy with the tangle category modelling knots and links, one can construct a
category modelling ribbon surfaces. Once we have a presentation of this category by
generators and relations, we can look for representations and extract invariants. Quite
plausibly some of the extensively studied quantum representations extend to this setting,
and the introduction of surfaces might reveal more topological features.
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