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Symplectic structures on right-angled Artin groups:
Between the mapping class group and the symplectic group

MATTHEW B DAY

We define a family of groups that include the mapping class group of a genus g
surface with one boundary component and the integral symplectic group Sp(2g,Z).
We then prove that these groups are finitely generated. These groups, which we call
mapping class groups over graphs, are indexed over labeled simplicial graphs with
2g vertices. The mapping class group over the graph I' is defined to be a subgroup
of the automorphism group of the right-angled Artin group Ar of I'. We also prove
that the kernel of AutAr — AutH; (Ar) is finitely generated, generalizing a theorem
of Magnus.

20F36, 20F28

1 Introduction

1.1 Background

Let I' be a graph on n vertices, with vertex set X and adjacency relation denoted by
e(—,—). Let Ar denote the right-angled Artin group of T", defined by

Ar := (X [ Rr)

where the relations are Rr = {[x, ]| x,y € X and e(x, y)}. As we vary [, the
group Ar interpolates between the free group F, (if " is edgeless) and the free
abelian group Z" (if " is complete). Similarly, as we vary I", the automorphism group
Aut Ar interpolates between Aut F;, and the integral general linear group GL(n, Z).

Both mapping class groups and symplectic groups can be expressed as stabilizer
subgroups of automorphism groups. Consider the free group F,, with free generators
ap,...,ag, by,... bg. The stabilizer in Aut Fp4 of the element [ay, by]---[ag, bg]
is a subgroup isomorphic to the mapping class group of a genus g surface with a
single boundary component. This is a version, due to Zieschang [20], of the classical
Dehn—Nielsen—Baer Theorem (see Farb—Margalit [7, Chapter 3]). At the other extreme,
the integral symplectic group Sp(2g, Z) is the stabilizer in GL(2g, Z) of the standard
symplectic form on Z2£ . In this paper, we define a structure on a right-angled Artin
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group that interpolates between a surface relator on a free group and a symplectic form,
so that the stabilizer in Aut Ar of this structure interpolates between mapping class
groups and integral symplectic groups. This answers a question due to Benson Farb.

This paper is a continuation of the author’s previous paper [6], and we will freely use
notation, terminology and results from that paper.

1.2 Symplectic structures on right-angled Artin groups

Let AL = [Ar, Ar] be the commutator subgroup of Ar. Let Hr = Ar /A be the
abelianization of Ar, which is the free abelian group ({[x]|x € X}). As usual, the
alternating square A% Hp of Hp is the free abelian group generated by the wedge
products [x] A[y] for x # y € X (where [x] A [y] = —[¥] A[x]). The symbol [x] A[y]
is bilinear, so the action of Aut Ar on Hr induces a diagonal action on A% Hry.

A standard alternating form is an element of A2 Hp of the form [a]A[by]+ -+ +
[ax] A [br], where a;, b; € X*! and the {a;, b;}; are pairwise distinct and not equal to
each other’s inverses. A surface relator is an element (possibly trivial) of A/F of the
form [ay,bq]---|ag, br], where a;, b; € X!, and the {ai, b;} are pairwise distinct
and not equal to each other’s inverses.

Definition 1.1 Suppose I' has 2g vertices. A pair (w, Q) € Ar x (A2Hr) is a
symplectic structure for the right-angled Artin group Ar if there is some labeling
of X*! as aI*Ll, ... ,a;,tl, blil, .. .,b;,tl and some k with 0 < k < g satisfying the
following conditions:

e Foreach i with 1 <i <k, we have [a;, b;] # 1.

e Foreachi with k+1<i <g, we have [a;,b;]=1.

e w is the surface relator
w = [ay,bi]---[ag, bg].

e () is the standard alternating form

g
0= ) lalAlbil

i=k+1

The mapping class group over T' with respect to a symplectic structure (w, Q), written
Mod(T", w, Q), is the intersection of the stabilizers of w and Q in Aut Ar:

Mod(T", w, Q) := (AutAI‘)(w,Q) = (Aut Ar)y N (AutAF)Q
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Remark 1.2 Consider the subgroups V and V- defined by:
V =({lx]Aly]lx.y € X and [x, y] = 1})
and V4= ({Ix]AD] | x.y € X and [x, y] # 1})

As an Aut Ap—module, A2 Hp decomposes as A*Hr =V & VL. This phenomenon
is somewhat peculiar to right-angled Artin groups.

Let A%z) =[A"., Ar]. The map A?Hp — A’F/A%z) given by [a] A [b] [a,b]-A%z)
for a,b € X is a surjective homomorphism (it follows from the Witt—Hall identities
that this map is well defined; see Serre [17, Proposition I.II.1.1]). Then V' is clearly
the kernel of this map. This also tells us that A}/ Ag) >~ V<. The composition of this
isomorphism with the inclusion V1 <> A2Hp gives amap f: A — A?Hr. Note
that if [a,b] # 1 for a,b € X, then f([a,b]) =[a] A[b]. This map f is not usually
Aut Ar—equivariant because V= is not usually invariant under the action of Aut Ar.

If (w, Q) is a symplectic structure on A, then Q €V, f(w)e VL and O+ f(w) is
a standard symplectic form on Hr. It turns out that Aut Ar does not usually preserve

0+ f(w).

Example 1.3 Suppose [ is the edgeless graph on 2g vertices. Then (w, Q) is a
symplectic structure if and only if Q = 0 and w is a surface relator of length 4g. In
this case Mod(I", w, 0) = Mody ;.

Example 1.4 At the other extreme, if I" is the complete graph on 2g vertices, then
(w, Q) is a symplectic structure if and only if w =1 and Q € V = A?Hr is a
symplectic form. In this case Mod(T", 1, Q) = Sp(2g, Z).

The methods of this paper make it possible to explore more difficult examples such
as the following, but for brevity we give the following examples without proving
the assertions we make about them. We develop an example more thoroughly in
Section 4.1.

Example 1.5 Suppose I'; is the complete graph on 2k; vertices, ', is the edgeless
graph on 2k, vertices, and I' is the graph-theoretic join of I'y and I';. Then a
symplectic structure on each of Ar, and Ar, will induce a symplectic structure
(w, Q) on Ar. In this case, we have:

Mod(T", w, Q) = ((SP2k1 (Z) x Mody, 1) X l_[ A[‘l) x 7.
xels

The inclusions of Spyy, (Z) and Mody, ; into Mod(T", w, Q) are the obvious ones, the
copy of Z is given by conjugation by w, and the copies of Ar, are given by x > xu
for x a generator in Ar, and u € Ar, .
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Example 1.6 If instead of the join, we take I" to be the disjoint union of the graphs
I'1 and I' from Example 1.5, then we still get an induced symplectic structure (w, Q),
but a different group Mod(I", w, Q). Any automorphism in Aut Ar that conjugates
all of the generators of Ar, by one of the generators of Ar, (and fixes the generators
of Ar,) preserves the symplectic structure (w, Q). Although it is not obvious, it turns
out that:

Mod(T", w, Q) = Spyg, (Z) x (Mody,,; XAr,)

In general, the groups Mod(T", w, Q) and Mod(I'’, w’, Q") tend to look very different
for slightly different graphs I and I'/. Even if I' = I", if (w, Q) is different from
(w’, Q’), the resulting groups may be different.

Example 1.7 If I" is the disjoint union of I'y and I'; as in Example 1.6, but with
a single edge added between a vertex of I'; and a vertex of I',, then the respective
inclusions of I'; and I, into I" do not induce maps of Aut Ar, or Aut Ar, to Aut Ar.
Then neither Mody, ; nor Sp(2k;, Z) include in Mod(I", w, Q) in the obvious way.
However, Mody,—;,; and Sp(2k; — 2,Z) both include into Mod(I", w, Q), so the
group is nontrivial. It takes some work to get a more complete picture of this group.

1.3 Statement of results

Theorem A For any graph I' with an even number of vertices and any symplectic
structure (w, Q) on Ar, the group Mod(I", w, Q) is finitely generated.

This is strong evidence that our definition for Mod(I", w, Q) from Definition 1.1 is a
good one. We also considered an alternate definition for a symplectic structure: a pair
(w, Q) where w is a surface relator and Q € A2 Hr is a standard symplectic form,
such that w and Q project to the same element in A}/ A%z). As we show in Section
4.1, there is an example of a graph I" where the subgroup of Aut Ar fixing both a
surface relator and a compatible symplectic form on Hrt is not finitely generated (but
of course, Theorem A still holds in this case).

The proof of Theorem A proves both the finite generation of mapping class groups and
the integral symplectic groups in special cases. We did not find a single argument that
proved both things in the same way, but rather found a single algorithm that reduces
to two previously known algorithms in each extreme case. These extremal algorithms
are integral symplectic row reduction and the peak reduction algorithm (Whitehead’s
theorem) for free groups.

We also obtain the following statement, which is of interest in itself, as a corollary to
a proposition used in the proof of Theorem A. In the case where Ar is a free group,
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this theorem restricts to the 1934 theorem of Magnus that ker(Aut F, — GL(n, Z)) is
finitely generated (see Magnus—Karrass—Solitar [12, Theorem 3.5.N4] or Magnus [11]).
Let TAut Ar denote the kernel ker(Aut Ar — Aut Hr).

Theorem B The group 1Aut Ar is finitely generated.

This theorem opens the way for further study of IAut Ar. An interesting corollary
of this theorem is that the preimage in Aut Ar of a finitely generated subgroup of
Im(Aut Ar — Aut Hr) is a finitely generated group.
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a graduate research fellowship from the National Science Foundation, and the paper
was prepared under the support of NSF postdoctoral fellowship DMS-0802918. 1
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for conversations about this project and to Ruth Charney for conversations and for
helping me find an obscure reference. I would also like to thank Hanna Bennett, Nathan
Broaddus, Thomas Church, Jim Fowler and Benjamin Schmidt for comments on earlier
versions of this paper.

2 Background

In this section, we review the notation and the main result from Day [6]. Let L be the
set of letters X UX 1. For x € L, let v(x) € X, the vertex of x, be the unique element
of X N{x,x~!}. We will use stz (x) and lkz (x) as notation for st(v(x)) Ust(v(x))~!
and 1k(v(x))Ulk(v(x))~! respectively. The support supp w of a word or cyclic word w
is the subset of X consisting of all generators that appear (or whose inverses appear)
in w. There is a reflexive and transitive binary relation on X called the domination
relation: say x > y (x dominates y) if 1k(y) C st(x). Write x ~ y when x > y and
y > x; the relation ~ is called the domination equivalence relation.

There are four important classes of automorphisms known collectively as the Laurence—
Servatius generators: dominated transvections, partial conjugations, inversions and
graphic automorphisms. For x, y € L with x > y and v(x) # v(»), the dominated
transvection (or simply transvection) tx ) is the automorphism that sends y > yx
and fixes all generators not equal to v(y). For x € L and Y a union of connected
components of I' —st(v(x)), the partial conjugation c y is the automorphism that
sends y > x~!yx for y € Y and fixes all generators notin Y . For x € X , the inversion
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of x is the automorphism that sends x > x~! and fixes all other generators. For 7 an
automorphism of the graph I", the graphic automorphism of & sends x — m(x) for
each generator x € X . Servatius defined these automorphisms and conjectured that
they generate Aut Ar in [18]; Laurence proved that conjecture in [9, Theorem 6.9].

We will use the Whitehead automorphisms of Aut Ar, as defined by the author in [6].
The set of Whitehead automorphisms €2 is the finite set of all automorphisms of the
following two types. The type (1) Whitehead automorphisms are the finite subgroup of
Aut Ar generated by the inversions and graphic automorphisms. An automorphism
o € Aut Ar is a type (2) Whitehead automorphism if there is an element a € L, called
the multiplier of «, such that for all x € X, we have a(x) € {x,xa,a 'x,a ' xa}
(note at(a) =a). Forae L and A C L witha€ A and a—! ¢ A, we use the notation
(A4, a) to refer to the type (2) Whitehead automorphism that sends x € L —{a,a '} to
x ora~!x if x ¢ A and to xa or a~'xa if x € A, if such an automorphism exists.
Lemma 2.5 of Day [6] explains when such an automorphism exists.

The following two subsets of €2 are also from Day [6]. The set Q2 of long-range
Whitehead automorphisms is the set of all type (1) Whitehead automorphisms together
with all type (2) Whitehead automorphisms (A, @) with ANlky (a) = &. The set 2 of
short-range Whitehead automorphisms is the set of type (2) Whitehead automorphisms
(A, a) with A C sty (a).

We recall the definition of peak reduction. The length of a conjugacy class in Aut Ap
is the shortest length of a representative element (with respect to X' ). We say that a
factorization o = By - -- B is peak-reduced with respect to a conjugacy class [w] in
Aut Arp if foreach i =1, ...k, we do not have both

|Bit1---Pr(wD =i -+ Br(w]
and Bi-- Br(wD] = |Bi1 - Br((w))

unless all three lengths are equal. We say that « can be peak-reduced by elements
of a set S with respect to [w] if there is a factorization o = B --- B; by elements
B1,..., By thatis peak-reduced with respect to [w].

The following theorem is essentially Theorem B of Day [6].
Theorem 2.1 The set 2y US2; is a finite generating set for Aut Ar with the following
properties:

(1) Each o € Aut Ar can be written as « = By for some B € (Qg) and some
Y €(Qg).

(2) The usual representation Aut Ay — Aut Hy (Ar) to the automorphism group of
the abelianization H{(Ar) of Ar restricts to an embedding (25) < Aut Hy (Ar).
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(3) Any o € (Qy) can be peak-reduced by elements of 2y with respect to any
conjugacy class [w] in Ar.

We will also make use of the pure automorphism group of Ar, denote Aut’Ar. The
group Aut®Ar is the subgroup of Aut Ap generated by the partial conjugations, domi-
nated transvections and inversions. This group appears in Charney—Crisp—Vogtmann [4]
and is useful for technical reasons. It is easy to see that Aut®Ar is normal in Aut A and
that Aut Ar/ Aut®Ar is finite (it is a quotient of AutT"). The group Aut®Ar contains
all those graphic automorphisms that can be realized as a product of transvections and
inversions, so if T is edgeless or complete, then Aut®Ar is Aut Ar.

3 Kernels of restrictions of the homology representation

This section is devoted to the proof of Theorem B. We will also prove a proposition
that will be used in the proof of Theorem A.

If x,y,c € L with x,y > ¢ and v(x), v(») and v(c) all distinct, then we write
Tx,yl,e fOr [Tx,c, Ty,c]. As the notation suggests, 7[x ,],. sends ¢ — c[x, y] and fixes
all generators in X not equal to c.

For any subset Z C X, let Gz < Aut Ar be generated by the transvections t,; for
a,b € Z*' with a > b, and the (total) conjugations of Ar. Let K7 < Aut Ar be
generated by all the 7y . and all the partial conjugations ¢ ¢y for x, y,c € Z
with x, y > ¢, and the (total) conjugations of Ar. Note that for each Z, we have
Kz < Gz. We will refer to a partial conjugation of the form ¢y (¢} as a one-term
partial conjugation.

Remark 3.1 In fact, K7 is equal to the subgroup generated by the conjugations and
the [y y1c and ¢y g4y for x, y,c € Z *1 and d € Z (with appropriate domination
conditions). This is because C;}{d} =Cx—1 (d}> and because Ty ] With x, y,c € Z*!
can always be expressed as a product of generators of K.

Sublemma 3.2 For any a,b,c,x € X, witha > b, a# b, x > ¢ and x # c, the
automorphism ra,bcx,{c}ra_}) isin K pcxi-

For Y C X such that ¢y y is a partial conjugation of Ar, we have that ta,bcx,yra_[i
is a product of elements of Ky,  xy and partial conjugations of the form ¢,y where
ze€fa,x} and Y CY U{x,a}.

If ¢y is conjugation by x, then Ta,bcxfa_’[l, isin K¢z p x}-
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Proof Suppose that a,b,x € X, a > b and Y C X such that ¢, y is a partial
conjugation. The lemma will follow from several identities of automorphisms, which
can be verified by evaluating the automorphisms on X . Note that if a = x, then 7,5
and cx,y commute. If both a,b € Y, then 7,5 and ¢y )y commute. If a € Y, b ¢ Y
and b # x, then the following identity applies:

-1
(3-1) Ta,bCx,Y Ty p = Cx,Y Ux,al,b

The use of 7y 4], is allowed, since if @ and b are in different components of I' —st(x)
and a>b,then x >b.If a€ Y and b = x, then:

. -1 _ . .
(3-2) Ta,xCx,Y g x = Ca,(Y—a+x)Cx,Y

These terms are allowed since if @ > x and Y is a union of connected components
of I' —st(x), then ¥ —a and Y —a + x are both unions of connected components
of I —st(a). We have covered all the cases where ¢ € Y or a = x, so we assume
that a ¢ Y and a # x. If both a,b ¢ Y and x # a and x # b, then 7,5 and ¢y y
commute. If b € Y, then:

-1
(3-3) Ta,bCx,Y Tg p = Cx,¥ Ux—1al,b

As in Equation (3-1), the conditions ensure that 7j,—1 4 is allowed. If b = x, then:

. -1 _
(3-4) Ta,xCx,YTg,x = Cx,YCa,Y

Since @ > x and a ¢ Y, we have that Y is a union of connected components of
I' —st(a) and ¢4,y is allowed. This proves the second statement in the lemma.

If we have some ¢ € X with x > ¢, then we can take Y = {c} and each of the equations
from Equation (3-1) through Equation (3-4) applies, proving the first statement in the
lemma.

The third statement is obvious since the groups of inner automorphisms is normal in

Aut Ar. O

Sublemma 3.3 Forany a,b,c,x,ye€ X,witha>b,a#b,x>c,x#c,y>c,
y # ¢ and x # y, the automorphism Ta,bf[x,y],cfa_é isin Kggpc x,y}-

Proof Note that

-1 _
T[y,x],c = Tx,ylc

so we may switch x and y in our enumeration of cases.
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If a,b ¢ {x, y,c}, then it follows from Day [6, Proposition 2.10] 7,5 and 7y y]¢
commute. If ¢ = b then one can verify by evaluation on X that:

-1_ . —1
Ta,bUx,y1,bTq,b = Ca,{b}Ux,y1,6Cq,{b}

This works whether or not a € {x, y}. If c =a and b € {x, y}, then it follows from
Day [6, Proposition 2.10] and the previous case that:

-1 -1
Tarb T[x,y],a Ta,b = T[xyy]sacar{b}T[y:x]’bca,{b}

If c =a and b = x, then

-1 _ —1 -1 —1 —1 —1
Ta,blb,yl.aTq,p = Ca{b}Ca Cb{a}Clp €y (b} Uy.al,bCy{a} T [y—1,6—11,a=1CbCp 143CaCq (b}

where ¢, and ¢ denote the (total) conjugations by a and b respectively. Our assump-
tions dictate that y > a ~ b, so all the terms in this equation are allowed. This identity
can be verified by evaluation on X .

Now we may assume that ¢ ¢ {a,b}. If b = x and a # y, then the following identity
applies:

TabTbyLeTab = CbiciTlayleCh e} Tb.yle
Again, this identity can be verified by evaluation. There are then two remaining cases:
a=x and b # y;and a = x and b = y. In both of these cases, it follows from Day [6,
Proposition 2.10] that 7, ; commutes with [y ;. a

Lemma 3.4 Forany Z C X, the group Kz is normalin Gz .

Proof If a,b € X with a > b, then 1,1 5 = r;ll), and 7, p-17T4p = Cq,(p}- This
means that Gz is generated by the generators of Kz together with the transvections
Tq,p With @, b € K (in particular, not in K ~1). Then the identities from Sublemma 3.2
and Sublemma 3.3 indicate that the conjugate of any generator of Kz by a generator
of Gz can be expressed as a product of elements of K~ . m|

The proof of the following proposition is a generalization of Magnus’s proof that A4,
is finitely generated [11].

Proposition 3.5 Forany Z C X, we have Kz = ker(Gz — Aut Hr).

Proof Let C;U---UC, = Z be the decomposition of Z into domination equivalence
classes. Since partial conjugations map to the identity in Aut Hr, it follows from Day [6,
Corollary 3.11] that Im(Gz — Aut Hr) has a presentation where the generators are
the elementary row operations E, 5 = (t4,5)+ such that a > b, for a,b € Z, and the
relations are as follows:
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(1) [Egp,Ecaql=1ifb#canda#b.

(2) [Eap. Eb7d]Ea_,(11 =lifa#d.

(3) (Ea,bE;’;Ea,b)“ =1,ifa~banda#b.

4) (E,I,,,EZ;,;Ea,,,)Z(Ea,,,E;,;JE‘,,,)}Eb,a)—3 =1,ifa,beC;,a#b and |C;| = 2.

Consider the lifts of the relations gotten by replacing each of the E,j; with the
corresponding 7, 5. We claim that these lifts are all in Kz . Relation (1) obviously
lifts to 7j4,¢),p if b = d and lifts to the trivial element otherwise. Relation (2) lifts
to [‘L’a’b,‘lfb,d]‘fa_,llj, which is 74 4.0. We know Kz is normal in Gz, so we say
two elements of Gz are equal modulo K 7 if their difference is in K. Since
Ta.b—1Ta,b = Ca,{b}> WE know that t~ b and 7, ,—1 are equal modulo Kz . Then the
lift the element E,pE, Ea p 18 equal modulo Kz, to 7 b 1Th,a—1Ta,b» Which
is equal to the permutatlon 0q,p of order 4 from Equatlon (RS) of Day [6], ac-
cording to that equatlon So Relation (3) lifts to an element of K. The lift of
the element (EqpE, Ea b Ep, a) is equal modulo KZ to (0g4,57p, 2)}. By Equa-
tion (R6) of Day [6 (aa bTb, )= =T, b . a—l a.b— 103 ab This is equal modulo Kz
to ra b b_ 1T, boa b which is o2 by Equatlon (RS) of Day [6]. So Relation (4) lifts
to an element of K Z.

The group Kz is obviously in ker(Gz — Aut Hr). Any element of Gz can be
expressed as a product of inner automorphisms, one-term partial conjugations and lifts
{tap|la,be Z,a>b} ofthe {E,;p |a,be Z a>b}. Since these lifts map to the
generators of our presentation for Im(Gz — Aut Hr) and the inner automorphisms and
one-term partial conjugations are in ker(G z — Aut Hr), it follows that any element of
ker(Gz — Aut Hr) can be written as a product of conjugates of inner automorphisms,
one-term partial conjugations and lifts of relators from the presentation. The group
K 7 contains all the inner automorphisms, one-term partial conjugations and lifts of
the relators. By Lemma 3.4, Kz is normal in Gz, so it contains all the conjugates of
these elements. So ker(Gz — Aut Hr) < K 7z, and they are equal. a

Recall from the introduction that [Aut AT denotes the kernel of the homology rep-
resentation. We will show Theorem B by showing that IAut Ar is generated by the
generators of Ky, together with the partial conjugations of Ar.

Proof of Theorem B Let p: Aut At — Aut Hr be the homology representation. As
previously noted, Aut®Ar is normal in Aut Ap. It is apparent from considering the
generators of Aut At and the definition of Aut’Ar that p induces an isomorphism
Aut Ar/ Aut®Ar = p(Aut At)/p(Aut’®Ar). From this we deduce that IAut Ap <
AutOAr.
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Let K be the subgroup of Aut’Ar generated by Ky and the partial conjugations. Note
that Aut®Ar is generated by Gy together with K and the inversion automorphisms.

By Sublemma 3.2, Lemma 3.4 and the fact that inversions normalize K, we know
that K is normal in Aut’Ar. So if « € Aut®Ar, then o can be written as o = By
where B € K and y is a product of elements of Gy and inversions. If we further
assume that « is in IAut Ar, then it follows from Proposition 3.5 that y is in Kx .
So TAut At < K. Since the reverse inclusion is obvious, it follows that IAut Ap = K
and IAut Ar is generated by the finite set of the generators of Ky together with the
partial conjugations. a

4 Symplectic structures

4.1 A counterexample

As an alternate definition for a symplectic structure on a right- angled Artin group,
one can consider a pair (w, Q) where w € A is a surface relator, Q € A’Hr is a
symplectic form, and w and Q map to the same element under the respective maps
of AL and A%Hp to A’ /A(z) The group (Aut Ar)w,0) can also be seen as an
analogue to a mapping class group or a symplectic group. This differs from Definition
1.1 in that Q is a symplectic form on all of A2 Hp, instead of being an alternating
form supported on a subspace.

This alternate definition is attractive because the groups defined in this way have
symplectic homology representations, while in general the groups Mod(I", w, Q) do
not. However, this alternate definition is less attractive because of the following example,
which is a group that satisfies the alternate definition and is not finitely generated.

y

Figure 1: A counterexample to the finite generation of a different group

Example 4.1 Take I' to be the graph indicated in Figure 1. Let w be the word
[ai,b1]laz, by, where ay, by, ap and b, are as indicated. By pairing off the remaining
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vertices in adjacent pairs as, b3, ...,a7, b7 (which include the vertices labeled x
and y), we get a symplectic form:

7

0= [ailn[bi]

i=1
It is easy to see that (w, Q) satisfies the alternate definition.

One can check that the only examples of domination in this I are x > a; and y > aq,
and that the only vertices whose stars separate I are x and y, both of which separate
it into {a;} and one other component. By inspecting the valences of the vertices, it is
apparent that there are no nontrivial automorphisms of the graph I".

From Laurence’s theorem [9, Theorem 6.9], we can tell that Aut Ar is generated by
conjugations, inversions and the following four transvections:

{Txal’ryal’rxa yall}

Note that tx,4,(a1) = a1x and tyq4,(a;) = ayy, while 7 -1(a;) = x~la; and
—1 a
Ty.a;! (a1) =y~ 'a;. Let F, denote the free group on the generators X and yv. lf o is
in the subgroup generated by these four transvections, then a(a;) = u~'a;v for some
u,v € Fy. The map o + (u, v) is an isomorphism from this subgroup to F, x Fj.
Then we have

4-1) Out Ap = (Z/272)'* x (F, x F3)

where the fourteen generators of order 2 are the inversions and the inversions act on
the transvections by the rule of Equation (R6) of Day [6].

If (u,v) € F, x F,, then the corresponding outer automorphism sends the con-
jugacy class [w] to the class represented by the graphically reduced cyclic word
u_lalblal_lubl_l[az,bz]. The v does not appear because x and y both commute
with b . It then follows from Equation (4-1) that (Out Ar)ry,] is the subgroup generated
by the images of 7x 4,, Ty 4, together with the inversions of vertices that do not appear
in w. The only inner automorphisms fixing w are conjugation by powers of w. At
this point, we can see that

(Aut Ap)y = (Z/22)'° x F) X Z

where the copy of F3 is generated by 7x 4, and 7y 4, and the copy of Z is generated
by conjugation by w.

In the subgroup of Aut Hr generated by (7x,q,)+ and (7y,4,)+, it is easy to check
that only the trivial element preserves Q. Then it follows from Proposition 3.5 (with
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Z ={x, y,a.}) that the group (Aut Ar)g is also finitely generated. We do not see
any groups that are not finitely generated until we stabilize both w and Q.

As before, if o € (Tx,q,, Ty,a,), then a(a;) =a u, where u € (x, y) = F, and the map
o > u is an isomorphism. The subgroup of (tx 4, Ty,q,) fixing Q is then isomorphic
to the kernel of the abelianization map F, — Z2. The only products of inversions
preserving both w and Q are Ng; Np, for i =3,...,7 and their products, where N,
denotes the inversion with respect to z. We can then deduce that:

(Aut Ar)w.8) = (Z/27)° x (ker(Fy — Z*))) x Z

Since ker(F, — Z?) is an infinite rank free group, we have that (Aut Ar)(w,g) is not
finitely generated.

On the other hand, if we take Q to be Q minus the image of w in A% Hr, then
Mod(T", w, Q) = ((Z/27)° x F») X Z,

which is finitely generated.

Remark 4.2 This example shows that the image of Mod(T", w, Q) under the homology
representation Aut Ar — Aut Hr need not be symplectic. Although Mod(T", w, Q)
fixes w and fixes Q, it doesn’t necessarily fix Q = f(w)+Q, where f: A — A?Hp
is as in Remark 1.2. This is because the map f is not usually equivariant.

4.2 Symplectic row reduction with domination

At this point, we assume that | X' | = 2g is even. Pick a bijection ()*: L — L such that
(a*)* =a~! forall a € L, and pick a set of g letters S = {ay,...,ag} C L such that
S*U S contains x or x~! for each x € X . Let

0 =Y {lailrla}]] af €lkp(ai)} € A*Hp

and let wq be the concatenation of the words [a;, a}] for those i for which a} €1ky (a;),
in increasing order of the index i . Then (wq, Q) satisfies the definition of a symplectic
structure on Ar. We will also demand that there is some k, 0 < k < g + 1, such that
lai,af]#1fori=1,... .k and [a;,a]]=1fori =k +1,..., g. In this subsection,
we assume Q # 0. Let supp Q C X denote the set of elements a € X with a appearing

in Q.

In this subsection, for ¢ in L, we will also use a to denote the image of a in Hr.
The images of the elements of X give a basis for Hr which we also call X. By
declaring X to be orthonormal, we determine an inner product (—, —): Hp x Hp — Z.
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For a,b € L with a > b, let E,; € Aut Hr denote the linear transvection (the row
operation) mapping
b—b+a

and fixing the images of all elements of X different from v(a). For a € L, let
N, € Aut Hr denote the inversion with respect to a, which maps

a— —a
and fixes the images of all elements of X different from v(a).

A standard dominated Q—transvection (or Q—transvection for short) is an element of
Aut Hr of one of the two following forms:

(1) Egq+, where a € supp Q and a > a*.

() Ea,bEb_*la* where a,b € supp Q, v(a*) #v(b), a> b and b* > a*.

The Q—inversion with respect to a € supp Q is NgyNg+. Note that a standard Q-
transvection is not necessarily a transvection, but it is in some sense the closest thing
to a transvection that preserves Q. In the case that I' is a complete graph, the standard
dominated Q—transvections are simply the standard symplectic transvections from
classical linear algebra.

Claim 4.3 The Q —transvections and Q —inversions preserve Q.

Proof Note the following computations:

NgNg+ -(a/\a*) = (—a)/\(—a*) =anrna*
E4 o+ '(a/\a*) =aA(a*+a) =ana*
Ea,bE;*l,a* (ana*+bAb*)Y=E p-(ana* +bAb*—anb®)

=anrna*+bAb*

The claim follows immediately. a

Let G < Aut Hr be the group:
G={{EsplacX,besuppQ and a>b}U{Ny | b €supp O})
This is the image under the homology representation of the subgroup of Aut’Ar that

fixes each element of (supp wg)*!.
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This subsection is devoted to the proof of the following theorem.

Theorem 4.4 The subgroup of G stabilizing Q is generated by the standard dominated
Q —transvections and Q —inversions.

The basis X lets us think of End Hr as matrices; in particular, it allows us to identify
End Hr with ®2Ht and gives us a transpose operation. Express End Hr as three-by-
three block matrices, with respect to the decomposition of Ht as

(SUPp Wo) B (g 41+ ag) B (a4, k).
Define J € End Hr by:
0 0 0
Ji=10 0 -1,
0 Igx O

Then J is the image of Q under the map:

A?Hr < ®* Hr—=>End Hr
Note that for any 4 € Aut Hr, we have A-Q = Q if and only if AJAT = J. Also
note that for any a € supp Q, we have Ja = a*. Let Hp < Hr be generated by the
image of supp Q.
Lemma 4.5 If Ao € G and Ay fixes Q, then Ao leaves Hg invariant.

Proof From the definition of G we have that for some matrices 4, B, C, D, E, F:

Ly E F
Ag=| 0 4 B
0 CD

Since Ay JA;)'_ = J, we can deduce that:

A B —-FT\ (o0

C D ET )7 \o0
But since the matrix (g g) is a diagonal block of a block-upper-triangular matrix, it is
invertible, and therefore /¥ =0 and £ = 0. O

By virtue of Lemma 4.5, we restrict our entire argument from Hr to Hgp. We also
use the symbols Q and J to represent their respective restrictions to Hg. Note that J
restricted to Hy is invertible. The element Q is a standard symplectic form, when
considered as an element of A2HQ .
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Lemma 4.6 If o € Aut®Ar, then for any a,b € X, we have (asb,a) # 0 implies
a=bora>b.

Proof We induct on the length of « in terms of the generators of Aut’Ar. The
assertion is obvious if the length is zero. Assume it is true for 8 and that @ = Sy
where y is one of the generators of Aut’Ap. If y is an inversion or a partial conjugation,
then lemma follows. Suppose y =1, 4 for some ¢,d € L with ¢ >d . Then (a+b, a) #
0 implies either that (8.b,a) # 0 or that v(a) = v(c) and (B«b,d) # 0. In the first
case, the lemma follows. In the second case, we have @ > d and also d > b by inductive
assumption. a

We define a binary relation on supp Q called Q—domination: a > b if v(a) # v(b*)
and @ > b and b* > a*, or if v(a) = v(b*) and a > b. We define Q—domination
equivalence by: a ~ b if a > b and b > a. Note that we have a Q—transvection
sending b to b +a only if a > b.

Lemma 4.7 If A € G and A fixes Q, then for any a,b € supp Q, we have that
(Ab,a) # 0 impliesa=5b ora>b.

Proof If (Ab,a) # 0, then by Lemma 4.6, we have a > b. Since AJAT = J, we
know A=J(AN) I T=JTU4"HTJ. So

04 (JT(A YT Jb,a) = (b*, A" a*)

which implies (again by Lemma 4.6) that b* > a™*. O

Now we will reassign the indices for our basis for Hgp. Assume we have labeled
some vertices {X{,...,Xi, Vi,..., i} C (supp Q)*!. Then we choose x;4 to be
O —domination maximal among the elements of supp Q not yet labeled as x; or y;. Set
YVit+1 = JX;41. By construction, we deduce that {v(x1),...,v(x;), v(»1),...,v(¥i)}
does not contain v(y;41). We proceed this way until we have constructed a basis.

We will now prove Theorem 4.4 by exhibiting a row reduction algorithm. This algorithm
will differ from the usual integral symplectic row reduction algorithm in that we have
to check at each step that the J—domination relation allows us to use a given Q—
transvection.

Proof of Theorem 4.4 Let A € G fix Q. By Lemma 4.5, we think of A as being
in Aut Hp. Assume inductively that we have already row-reduced A4 by applying
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standard Q—transvections and inversions to get a matrix A; (for 1 <i < g—k) such
that for j < i, we have

(4-2) Aixj = Xx;j.

Since A is symplectic, A; is symplectic, so 4; = J T(Ai_l)TJ , and

(4-3) (Aixi, yj) = —(yi. A7 'xj) = —(yi,xj) =0
forany j <i.If we have any j >i with (4;x;, x;) # 0, then by Lemma 4.7, we have
Xj > x;; since X; is maximal among {x;,... ,xg_k}, we know x; ~ x;. Similarly, if

Jj =i with (4;x;, yj) #0, we know x;~y;.

Step 1 Consider all the indices j >i such thatboth (4;x;, x;) #0 and (4;x;, yj) #0.
For any such j, we have x;j~y;, and by repeatedly applying the row operations
Ex;.y;» Ey; x; and their inverses (which are Q—transvections) according to the Eu-

~

clidean algorithm, we can reduce A; to a matrix A; in which either (4;x;,x;) =0
or (/f,-x,', vj) = 0. By repeating this step for all such indices j, we assume we have
reduced A to Aj in which for each j > i, either (4;x;,x;) =0 or (4)x;, y;) = 0.
Note that these operations do not affect the columns of A4; before column of x;, so
Equation (4-2) and Equation (4-3) both still hold with A;. instead of A;.

Step 2 We find an element a € {x;,...,Xg_k, Vi,..., Vg—k} Maximizing |[(A}x;,a)]
for a in this set. Since the determinant of A} is nonzero, we can deduce from the
form of A} that this maximum is nonzero. If this @ is the unique such element
making this value nonzero, we move on to the next step. Otherwise, there is some
other b € {Xj,...,Xg—f. Vi,-..,Vg—k} With [(A}x;,b)| # 0. Since these matrix
entries are nonzero, we know that a~b. Since by the first step, we know that
(Ajxi,a*) = (A;x;,b*) = 0, we know that the row operation Eb,aEb_*l’a* and its
inverse only change the column of x; in A by adding plus or minus the h—entry to
the a—entry. Further, this does not alter the column of x; in A; for any j <i. This
step reduces either the maximum of |(A}x;,a)| for a € {x;,....Xg_k, Vis---\ Vg—i}>
or it reduces the number of elements realizing this maximum absolute value. Either
way, by repeatedly applying this step, we arrive at a matrix A} such that there is a
unique @ € {X;, ..., Xg—k, Vi, ..., Vg—k} With [(A7x;, b)| # 0. Again, the Equation
(4-2) and Equation (4-3) both still hold with A instead of A;.

Step 3 We now have a unique @ € {x;, ..., Xg_k, Vi...., Vg—k} With (47x;,a) #O0.
By the form of A and the fact that its determinant is 1, we deduce that [(A4}x;, a)|=1.

If v(a) # v(x;), then we know a ~ x;. In this case, if v(a) # v(y;) we can apply the
product of Q—transvections

(Ea,xi E;l*l,a*)(E;ll,a Ea*,x;k)(Ea,x,' E;l*l’a*)
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which sends x; to a, a to —x;, y; to a* and a* to —y; while fixing all other elements
of our basis. Otherwise, v(a) = v(y;) and we can apply the product of Q —transvections

-1
Eyi s Xi E.Xi Vi Eyl »Xi

which sends x; to y; and y; to x;” 1 while fixing all other elements of our basis. In any

event, perhaps by applying some Q —transvections, we may assume that v(a) = v(x;).

Possibly after applying a Q—inversion, we may assume that (47x;,x;) = 1. So for

J =i, wehave (47x;, ;) =0 and (A}x;,x;) is 0if i # j and 1 if i = j.

Step4 Foreach j <i with (47x;,x;) # 0, we know that x; > x;, and we may apply
the row operation Ey; x; E ;ll ;- Since all of the other relevant entries in the column
of x; are zero, the only effect of this operation is to add 1 to the x; —entry. Of course,
by applying some power of this operation, we can delete this entry. By applying this
step repeatedly, we arrive at a matrix that satisfies the recursion hypotheses for i + 1
and we can go back to step 1.

We recurse through these steps g —k times and arrive at a matrix Ag_f 4 satisfying
Equation (4-2) and Equation (4-3) for i = g —k + 1. However, these conditions imply
that Ag_g 4 is the identity matrix.

Since we reduced the arbitrary A to the identity matrix by repeatedly applying O—
transvections and Q—inversions, we have shown that these elements generate the
stabilizer of Q in G. a

4.3 Automorphisms fixing a surface relator

Recall the bijection *: L — L with (a*)* =a~! forall a € L and the surface relator
wo = [ay, by]---lag, bi].

Note that |wg| = 4k. In this subsection, we assume that |wg| > 0. Note that if
a € supp wy, then either (a*)~'aa* or a*a='(a*)~! is a subsegment of wy.

From here on, we will use symbols like w to refer to a word or the group element it
determines, and we will use [w] to refer to the cyclic word determined by w or to the
conjugacy class of w.

The goal of this subsection is to prove that we can peak-reduce an arbitrary auto-
morphism in Aut Ar (not just in (€24)) if we are only reducing peaks with respect
to [wg] (Theorem 4.17). In order to do this, we split an automorphism fixing [wyg]
into its long-range and short-range parts, and we will analyze this short-range part
(Sublemma 4.14 and Lemma 4.15). Once we understand the short-range part, we will
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be able to absorb all of the peak-forming short-range elements into general Whitehead
automorphisms (Lemma 4.16).

We define the pure long-range Whitehead automorphisms Qg to be Q; NAut®Ar. We
will use a slight refinement of part (3) of Theorem 2.1: if [w] is a conjugacy class and
a € (Qg), then o can be peak-reduced with respect to [w] by elements of Qg (see
Day [6, Remark 3.22]).

Our first goal is to show that the action of Aut’Ar cannot shorten [wp] or shrink its
support. This relies strongly on the structure of wg, which we exploit through the
following two sublemmas.

Sublemma 4.8 Suppose C is a nonempty adjacent domination equivalence class of T’
and suppose y is a product of transvections and partial conjugations with multipliers
in C. Let j = |C Nsuppwy| and let m = (k — j). There are letters fi,..., f; €
(suppwoNC)E, x1,...,xj,¢1,...,cmand dy, ..., dpy in L—C*' and words u; =
Y(fi)s Flo oo Fms S1aee . Smoand ty, ...ty in CEY such that y ([w]) is represented
by a cyclic word given as a graphically reduced product of the words

xlulxl_l, .. ,x]'ujxj_l

with the words
ciridisic 1[ d 1 CmPmAmSmce 1[ d 1

and some elements of C*' in some order. Further, if j > 0 then these {u;}; are all
nontrivial, and their product is nontrivial.

Proof We will prove this statement by induction on the length of y as a product of
Whitehead automorphisms. First we discuss the base case. For a factor [a;, b;] of wy,
not both of a; and b; are in C since a; and b; do not commute. If a given a; is in
C*!, we set the next available Xp=>b; andset up, = fp = ai_l . Similarly, if b; is in
C*!, we set the next available x, = a; and set u, = f, = b;. For each i with both
v(a;),v(b;) € C, we set the next available ¢, = a; and set d, = b;. We take each rp,
sp and ?, to be the empty word. This proves the base case |y| = 0.

Now suppose that w satisfies the conclusions of the lemma and let o be a Whitehead
automorphism with multiplier a € C +1 5o that y = ay’ for some y’. Then for each
element x of X —C, a(x) contains a single instance of x, and supp a(x) C {v(a), x}.
Then the same choices of {x;};, {¢;}; and {d;}; elements will work. For each i, it is
possible to choose new words r;, s; and ¢; that will work based on the old words and
a(c;) and a(d;). Note that regardless of what «(x;) is, oz(xiu,-xl._l) is xioz(u,-)xi_1
or a_lxia(u,-)xi_la. This means that our «(u;) will work as our new u;, and since
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ui =y'(fi), we have a(u;) = y(f;). This means that we can write a(w) in the desired
form.

Note that since each original f; is nontrivial, each y(f;) is nontrivial, and since the
product fj--- f; is nontrivial, the product y(f1)---y(f;) is nontrivial. O

Sublemma 4.9 Suppose C is an adjacent domination equivalence class of I" with
|C| > 1, and suppose y is a product of transvections and partial conjugations with
multipliers in C . Then if « € Q shortens y ([wy]), then a = (A, a) for some a € C*! .

Further, no o € Q4 can shorten [wy)].

Proof We will prove both statements at once by supposing that either C = & (and
y is trivial) or |C| > 1. If o € Q4 shortens y(Jwg]), then « is not a permutation
automorphism, so suppose @ = (A4, a). Suppose for contradiction that v(a) € C. Let
w be a representative of y (Jwg]) of the form given in Sublemma 4.8 (or w = wy if
C = ©). The conjugacy class of w maps to the trivial element of Aut Hr. This means
that every element of supp w appears an even number of times in w, half with positive
exponent and half with negative exponent. Since v(a) ¢ C, we know by Sublemma
4.8 that a appears only twice in w. So we have vy, v, words in L —{a,a~'} such
that w = viav,a™! as graphically reduced cyclic words. Then since o shortens w), it
must delete both the instance of a and the instance of ! in w without introducing
any new instances of a*!. Then a(v;) = v and a(v,) = ¢~ v,a (since o multiplies
generators by a only on the right).

In the case |C| > 1, we have distinct b, c € C*'. Suppose a@ > b. Then a € Ik (c),
and therefore a € Ikz (b). So either a commutes with every element of C or a does
not dominate any element of C'.

With notation as in Sublemma 4.8, we first suppose that v(a) is a v(c¢;) or a v(d;).
This is the only possibility if C = &. We suppose that v(a) = v(c;), since the case that
v(a) = v(d;) is parallel. Then possibly by swapping (4, a) with (L—A—1lky (a),a™ '),
we assume that @ = ¢;. Then vy, = r;d;s;. If C = @, of course, our words 7;, s; and ;
are all empty. If r; # 1 or s; # 1 and a does not commute with the elements of C,
then to delete the instances of a*! in ar; and sja™!
any event, either to delete existing instances or to avoid introducing new instances of
a*!, d; and dl._1 must be in A (note that d; € 1k («) since a = ¢;). We know that
tl-di_ 1 is an initial segment of vy. If #; = 1, then we already have a contradiction, since
d; is then the first letter of v{ and we have a(vy) # vy. If ¢; # 1, a does not commute
with #;, and to avoid introducing an extra instance of a between f; and d;” 1 o must

, o must conjugate C. Then in

conjugate C. But then a(f;) = a~'t;a~!, and we cannot have «(v;) = vy, which is
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a contradiction. So v(a) is not a v(c¢;) or a v(d;). Note that in the case C = &, the
proof is finished.

Then it must be that v(a) = v(x;) for some i. For the rest of the proof, we assume
|C| > 1. We suppose without loss of generality that ¢ = x;. Then v, = u;, a word in
C*! . If ¢ commutes with the elements of C, then since « is long-range, o fixes u;,
and we have a(v,) = vy, which is a contradiction. So suppose a does not dominate
any element of C. Then « sends every element of C to its conjugate by a. Since u;
is nontrivial and w maps to the trivial element of Hr, we know that there are some

elements of C in v;. So there is a subsegment v3 of v; such that a(v3) = a lvsa.

Let v4 be the longest subsegment of v, containing vz, such that a(v4) = a lva.

Since a(v1) = vy, we know that if we delete v4 from v; we get two subsegments.

By Sublemma 4.8, the letter furthest to the left in this right subsegment of v; must
be an element of C*!, or an X;, or a ¢;. If it is an element of C*!, then it is
conjugated by «, contradicting the definition of v4. If it is an x;, then this x; is in
a subsegment x,-u,-xl._l. Since v4 maps to a Yvga, we know that xl._1 must be in A4
or else that x; € Ikz (a). If x; € kg (a), then the x;~ ! on the right adds an instance
of a, contradicting the definition of v4. If x; € Ik (@), then since the u; is nontrivial,
it is conjugated by a, also contradiction the definition of v4. If this letter is a ¢;, there
are several cases. If ¢;, d; € Ik (a), then either the a from «(v4) commutes past our
ciridisic; llidi_l , or one of the r;, s; or ¢; is nontrivial and an a is introduced by
conjugation. If d; is in lkz (a) but ¢; is not, then to avoid introducing an a, we have
¢ '€ 4 and another « is introduced either by the ¢ Uor the ;. If ¢; is in Ikz (a) but
d; is not, then either the a from v4 or from r; must be cancelled by an a~! from d;,
o) dl._l € A and the final a’i_1 introduces an extra a. If both ¢;, d; € 1ky (a), then to
cancel the a from vy, ci_1 € A; to cancel the a from ci_1 or t;, we have d; € 4; to
cancel the a from d; or from s;, we have ¢; € A; and to cancel the a from ¢; or r;,
we have d;” I € A. This means that dl._1 introduces an extra a at the end. In any event
we contradict the definition of v4 if the letter in vy right after v4 is a ¢;. So v4 must
extend to the right edge of vy, a contradiction. O

Lemma 4.10 Suppose C is the domination equivalence class of an element ¢ € X .
Then if y € Aut’Ar, we have |C N supp y ([wo])| = |C N supp wo|.

Proof By Theorem 2.1, we can write y = off where a € (Qg) and f € (Qj).
By Theorem 2.1, we can write 8 = 8’B¢, where B¢ is a product of short-range
transvections with multipliers in C and B’ is a product of short-range transvections
with multipliers not in C'. Again by Theorem 2.1, we can rewrite o8’ as f”«’ for some
a € (92) and some B” € (Q;). Further, by the form of the sorting substitutions in
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Definition 3.2 of Day [6], we know that B” is also a product of short-range transvections
with multipliers not in C.

We have y = ”a’ B¢ . The automorphism B” cannot remove any instances of elements
of C from the support of a word because it can be written as a product of transvections
whose multipliers are not in C. We will prove the lemma by showing that S¢ cannot
send wy to a word containing fewer elements of C, and then by showing that &’ cannot
remove elements of C from B¢ ((wo]).

Consider (B¢)« € Aut Hr as a matrix with respect to the generators of Hr given by
the image of X'. By Day [6, Corollary 3.11], we know that the block of this matrix
sending the image of C to itself is invertible. Then:

‘U{C Nsupp Bc(a) | a € C Nsupp wo}| > |C N supp wy|

Suppose temporarily that C is an adjacent domination equivalence class. If v(a) €
C Nsupp wg, we know that v(a*) € C since a* ¢ 1kz (a). Then v(a™) € supp B¢ (x)
for any x # (a*)*', and since a* ¢ Ik (a), we also know Bc(a*) =a*. If C isa
nonadjacent domination equivalence class, then S¢ = 1, and it follows in both cases
that B¢ (a*) = a* for every a with v(a) € C N supp wy.

Consider the representative w for B¢ (Jwg]) from Sublemma 4.8. For each element
a € CNsupp wy, v(a*) is one of the v(x;) elements and B¢ (@) is the corresponding u; .
In particular, there are at least as many elements of C appearing in subsegments of w
of the form (¢*)™'Bc(a)a* or a*Bc(a)~ (a*)™!, for a € C*! and a* ¢ C*! as
there are elements of C N supp wy.

By Theorem 2.1, o’ has a factorization by elements of Qg that is peak-reduced
with respect to B¢ ([wp]). This factorization may include permutations, but these
permutations preserve C (because they are in Aut®Ar), so the only way to remove
any extra instances of elements of C from w is to decrease its length. Then peak
reduction implies that the elements of this factorization shorten w immediately and
keep shortening it until all the excess instances of elements of C have been removed.
If C is an adjacent domination equivalence class and |C| > 1, then by Sublemma
4.9, each one of these shortening automorphisms has multiplier in C, and again by
Sublemma 4.8, we see that these shortening automorphisms do not remove any elements
from C Nsuppwyg. If |C| =1 or C is a nonadjacent domination equivalence class,
then B¢ = 1 and B¢ ((wp]) = [we]. Then by Sublemma 4.9, no element of 2, can
shorten B¢ ([wg]), and therefore o’ cannot remove any elements from C Nsupp wy. O

Corollary 4.11 For each y € Aut’Ar, we have |y ([wo])| > |wo.
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Proof We know from Lemma 4.10 that | supp y (wo])| = 2k . Since y (Jwg]) maps to
the trivial element of Hr, each element appears at least twice (once with positive and
once with negative exponent). So |y ([wg])| is at least 4k, the length of wy. ad

Now we will analyze the short-range part of an automorphism fixing [wy].

Definition 4.12 A short-range transvection 7, 5 is wo—irrelevant if a € Ik (b*). An
automorphism is wg—irrelevant if it is a product of wg—irrelevant transvections.

Remark 4.13 Suppose e(a,b*) and @ > b. Then
Tap(bb*b N (*)™Yy = bab*a b (0*) T = bb*HTH(B*) .

So 1,4, fixes wo. We call these automorphisms wq—irrelevant because they are an
obvious class of automorphisms fixing wy.

Sublemma 4.14 Let C be an adjacent domination equivalence class in X . Suppose
o€ (92), o is a permutation automorphism that fixes C, y is a product of short-range
transvections with multipliers not in C, and f is a product of short-range transvections
with multipliers in C, such that

yoap([wol]) = [wol.

Then we can write B as B’t, where t is wo—irrelevant and B’ is a product of short-range
transvections with multipliers in C, none of which are wg—irrelevant.

Proof First we note that the group
{{ra,p | V(b) € suppwg and a € C Nlkg (b) Nlkz (b¥)})

is a normal subgroup of the group generated by short-range transvections with multipli-
ersin C. If b € suppwg and a € C N1kz (b) N1ky (b*), then b ¢ C. If b were in C,
then b ~a and b € Ik (b*), a contradiction. So for 7. 4 a short-range transvection
with ¢ € C, we have v(c) # v(b), and either 7, ; commutes with 7, , or v(d) = v(a)
and we apply [t¢,q, T45] = Tcp. Since ¢ > a, we have ¢ € Ikp (b), and 7.5 is a
member of the subgroup and the subgroup is normal.

So we can move wq—irrelevant transvections 7, 5 with v(b) € supp wy to the right of
any other transvections in a factorization of 8, and therefore without loss of generality
we may assume that 8 has a factorization in which the only wg—irrelevant transvections
that appear are the ones of the form 7, 5 where v(b) € supp wy.

Apply B to wyq letter-by-letter and graphically reduce to get a cyclic word w. Then w is
a representative of B(Jwg]). Suppose there is some b € supp wg and y € C — supp wo
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with y € supp B(b). By the form of 8, we know that no element in supp f(b) com-
mutes with 5*. Since b* does not commute with b, we know b* is not in C, and
therefore each instance of b* survives in w. No instance of y can be cancelled out
of the subsegment b*B(b) 1 (b*)~! or (b*)~1B(h)b* of w (this is the image of the
subsegment 5*b~1(h*)~1 or (b*)~1hb* of wy).

Since y € supp wy, either o or y or ¢ must remove it. We know that o fixes C, so
o cannot remove it. Also y cannot remove ) because y can be written as a product
of transvections whose multipliers are not y. We can peak-reduce o with respect
to w. This peak-reduced factorization may have permutation automorphisms in it, but
these will fix adjacent domination equivalence classes. So, there must be a sequence of
long-range automorphisms, each of which progressively shortens w, which remove
all instances of y. This is impossible: the »* and (h*)~! cannot be removed since
removing one of them would change the class of the word in Hr and removing both
would contradict Lemma 4.10; they cannot be moved without being removed since this
would not shorten the word; and without moving or removing the b* and (b*)~! it is
impossible to remove the instance of y between them. This is a contradiction, so we
may assume that for b € supp wq, we have supp 8(b) C supp wy.

This fact, together with Theorem 2.1, lets us deduce that 8 has a factorization by
short-range transvections with multipliers in C N supp wg. Note that the subgroup

{{rx,y | x € C N'suppwg and y ¢ supp wo})

is normal in the group of short-range automorphisms with multipliers in C N supp wy .
This is because for any 7y , with x € C Nsuppwg and y € supp wy, and any 7, p
with a € C N supp wy, either 7y 5 and 7, commute or v(h) = v(x) and we apply
the identity [t 4, Tp x] = Ta,x. Since this subgroup is normal, we can rewrite 8 with
all the wg—irrelevant transvections first. a

The following lemma is the core reason that we are able to peak-reduce automorphisms
fixing [wy], regardless of whether they are long-range or not.

Lemma 4.15 Suppose o € (822) and B € (Q2) such that af([wg]) = [wo]. Then
there is a permutation automorphism o that leaves supp wg invariant, a wq —irrelevant
automorphism « € (Qy), distinct elements x, ..., x, € (suppwo)T' (with x; # )cj_1
for any i, j ) and elements v, ..., y, € (supp wo)E! with x; > y; and y; € Ikp (x;)
such that

B=0Tx; p * Txy,y, !

and such that each x; is domination-minimal among {x;, Xjy1,...,Xr}.
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Proof Suppose that C;y U--- Uy, = X is the decomposition of X into adjacent
domination equivalence classes. We assume that these sets are indexed such that if
acC;and b € Cj witha elkp(b), a>b and a b, then i > j. This assumption
makes C; minimal and makes C,, maximal.

Inductively assume we have expressed § as
/
B Up—18 lp—1

where B’ is a product of short-range transvections whose multipliers are in C,U. . .UCy,;
the automorphism § can be written as a product of short-range transvections with distinct
multipliers in C; U...U Cp_1, in domination-nondecreasing order; the automorphism
Lp—1 is wo—irrelevant; and 6,1 is a permutation automorphism that is trivial outside
of CiU...UCp_1. We will show that we can then do the same for p instead of p—1.

By Day [6, Corollary 3.11], we can rewrite 8’ as ”f,, where f, is a product of
short-range transvections whose multipliers are in C, and B” is a product of short-
range transvections whose multipliers are in Cp41 U...U Cp,. Then B, commutes
with 0,_1. We can also conjugate 8, across &, as follows. Observe that if we have
short-range transvections 7,5 and 7. 4 with ¢ € Cp and a € C; for i < p, then the
transvections commute unless v(d) = v(a), in which case we have [7¢ 4, T4 5] = Tc 5 -
In any case, we do not change § by conjugating these elements across it, and the new
transvections we introduce have multipliers in Cp,. As a result we can write 8 as

" /
ﬂ ap—l Sﬁp l'p—l
where ,81/) is a product of transvections whose multipliers are in Cp.

Next we move B” back across o and move 8§ across o,—; and «. Of course, this
is possible by Theorem 2.1, but we also note that by Day [6, Equation (3-3)], if we
introduce new short-range transvections through this process, they will have the same
multipliers as those already in ” and §,—;. So we can write

af’op—18 =yop_1a
where y is a product of short-range transvections with multipliers not in C, and
a € (Qg).

Since 1,1 is wo—irrelevant, one can easily see that 1,1 ([wg]) = [wo]. Then since
af = yop—10'B,tp, we have yo,_1a' B, ([wo]) = [wo]. By Sublemma 4.14, we can
write B,tp—1 as B,ip, where B is a product of transvections with multiplier in Cp
that are not wo—irrelevant, and ¢, is a product of wq—irrelevant transvections. In
particular, we have B = B"0,_18B,1p.
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If we consider (B,)« € Aut(Hr) as a matrix, we know that the block of (8},) taking the
image of C,, to itself is invertible. Further, since we have removed all the wq—irrelevant
automorphisms, we know that the block of (ﬂg)* taking the image of Cp, Nsupp wy to
itself is invertible. Then there is a permutation 01/, of (CpNsupp wo)T! such that 01/, (x)
appears in ,81/,/ (x) to a positive power, for x € X. We extend 01’, by the identity outside
of Cp to get a permutation of L; since Cp, is an adjacent domination equivalence
class this permutation extends to an automorphism of Ar. Let 6, = (01’,)_1 ;,’ , and
let 0 = op_lo';,. Then each x € X appears in §,(x) to a positive power. Note that
the hypotheses on § imply that § commutes with o}, and we have 8 = B"0,65,¢,.

Let w be a word gotten by applying §, letter-by-letter to wg and graphically reducing.
Since §), is free of wo—irrelevant transvections in its factorization, for any a € supp wy,
we know supp 8, (a) does not contain any elements commuting with a*. Then if we
further suppose that supp 6, (a) # {a}, then a is adjacently dominated by an element
of Cp, and we know that a* ¢ C, and we have a*8,(a)"!(@*)~! or (a*)718,(a)a*
as a subsegment in w. This is also true if a € C,. Of course, af”0,8([w]) = [wo].
If we let «” = (0;,)_10/0;, € (Qy), then af” 0,6 = yo,a”. We know that y cannot
remove any instances of elements in C}, from a word, and 0, can permute the elements
of C, Nsupp wo but cannot remove any. Therefore if the elements of supp 6, (a) in
w are removed by yo,a”, it must be «” that removes them. We assume o’ to be
peak-reduced with respect to §,([wg]), so there must be a sequence of long-range
automorphisms that progressively shortens 6, ([wo]) and remove the extra instances of
elements of C,. However, we know we cannot alter the instance of a*§,(a)~!(a*)™!
or (a*)~18,(a)a* in w by any such moves. If on the other hand §,(a) = a, we know
by Lemma 4.10 that 0, (a) survives to the final wy.

Therefore for each element ¢ appearing in §,(a) for any a € supp wy, the element
op(c) appears in the final wo with at least the multiplicity with which ¢ appears in
dp(a). We know op(c) € (supp wo)*E! if and only if ¢ € (supp wg)*!. Therefore there
cannot be any a € supp wo with §,(a) containing any x € supp wq to any power greater
than 1 in absolute value, or with §,(a) containing any x € supp wo at all. Finally,
if there are two distinct elements ¢;, c; € supp wo and some x with x € supp §,(c;)
for i = 1,2, then x appears in cl?“(Sp(c,-)_l(cl?")_1 or (c;")_lép(c,-)c;" fori =1,2,
and also in x*8,(x)"1(x*)™! or (x*)718,(x)x* in w. So in this case, these three
instances cannot be removed, and since two of them are both to a positive power or
both to a negative power, there would be at least 4 instances of 0,(x) in wq, which is
impossible. So at most one element of supp wy maps to an element with a given x in
its support under J,,.

From this we deduce that the matrix (8,)« has diagonal entries of 1, has off-diagonal
entries of either =1 or 0, and has only trivial entries away from the rectangular block
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sending elements dominated by C, to the image of Cp, N supp wq. Further, each row
has at most one nonzero off-diagonal entry. Then the block sending the image of
C, N'supp wy to itself must be invertible; all together these conditions indicate that
there is a reindexing of the basis that makes (8,)+ upper-triangular. An upper-triangular
matrix where each row has at most one nonzero off-diagonal entry can be column
reduced using each row operation at most once. By Theorem 2.1, we have factored 6,
as a product of short-range transvections with distinct multipliers in Cp.

Then one can easily see that B = B”0,(88,)tp is a factorization satisfying the inductive
hypothesis for the next step. The lemma follows. a

Finally, we proceed to reducing peaks.

Lemma 4.16 Let 75 , € Q; with x, y € suppwy. Let o € (522). Suppose B € ()
is a product of transvections of the form t, p for various a € supp wg, v(a) # v(x),
such that x does not strictly dominate a. Further suppose that aty, yB([wo]) has the
same length and support as wy.

Then we can find (B, x) € Q and o', " € (Qg) such that aty,yf = o' (B, x)a’ B and
a” B([wo]) and (B, x)a” B([wo]) have the same length and support as wy.

Proof By Theorem 2.1, we peak-reduce o with respect to 7y yB([wo]). Then
since [wg] is of minimal length in its Aut Ap—orbit by Corollary 4.11, we have
o =1 ypdy -8, for some yq,...,¥p.01,...,84 € Q, where each y; leaves
the length of the word the same, and each §; shortens the word. More precisely, if
|7x,y B([wo])| = |wo|, then ¢ = 0, if ¢ > 0 then for each i we have

18; - 8qTx,y Bwol)| < |8i 41+ 84Tx,y B(wo))|

and if p > 0 then for each i we have

i+ ¥pS1 -+ 8qTx,pB(woD| = Vi1 ¥pS1 -+ 8 Tx,y B([wo)) |-

Since B is a product of transvections with multipliers in supp wg, we know that
supp 7,y B((wo]) C suppwo. By Lemma 4.10, we know that they are equal. Since
each §; decreases length, we know that

supp d; - -+ 8¢ T,y B([wol) C suppdiy1 -+ 8T,y B([wol).-
Again from Lemma 4.10, we know supp §; - - - 84 7x,y B([wo]) = supp wy for each i.

Temporarily fix i . The automorphism §; = (A4, a) for some a € L. Since §; decreases
length, we know that v(a) € supp wg. By Lemma 4.10, we know §; cannot remove
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all the instances of a*! from §; -+ 847x,y B([wo]), so there must be extra instances
of @ in ;41 ---847x,yB([we]). These extra instances must have been put there by
Tx,y P (since the other §; automorphisms are length-decreasing), so we deduce that
either v(a) = v(x), or that there is some z € supp wg such that a € supp 8(z). By the
hypotheses on B, this tells us that if v(a) # v(x), then x does not strictly dominate a.

Now we consider what happens when we try to move 7y, to the left across §; = (A4, a).
From Day [6, Lemma 3.4], we know that they commute (at least in Out A1) unless
v(a) = v(y). Without loss of generality we temporarily assume a = . In this case,
conjugating Ty, across §; introduces a short range element s((4 —a + x, x)) and a
long-range element £((A —a + x, x)). However, since x does not strictly dominate a
and a = y, we know x > a and therefore x ~ a. If x ~ a, then the element
s((A—a+x,x))=1. So in any case, we add at most a single new long-range element
(working in Out A1) and no new short-range elements. In returning to Aut Ay it is
possible that we introduce an inner automorphism, which is a product of long-range
automorphisms. So we have shown that there is an element ¢; € (522) such that

8il'x,y = Tx,y¢i-

We rewrite 81 ---8pTx,y aS Ty, yp1 - ¢p. If

[T,y @1+ PpB(wol)| = |1 -+ ¢pB([wo))

then we are done; if we set (B, x) =1tyx,,,set &’ =y ---y4 and set @ = ¢y - - - ¢, then
the conclusions hold. So assume 7y , decreases the length of the word. From the setup,
we know that Ty y¢q -+ - ¢pB([wo]) has the same length and support as wo. Then we
know that y and y~! both appear only once in ¢ - - ¢, B([wo]). This means that ty
decreases the length by 2, removing an instance of x and x~! each. By the form of S,
we know that B([wo]) only has a single x and a single X!, so ¢; -+ - ¢p must increase
the number of instances of x. We have a word v -- -, in Qg that is a peak-reduced
factorization of ¢ ---¢, with respect to B([wp]). Some automorphism v; adds an
extra instance of x and in doing so increases the length by 2. Since the factorization is
peak-reduced, this automorphism must be ¥ = (B’, x) (without loss of generality, we
assume the multiplier is x and not x~!, since Tx,y = Tx—1 y—1). Weset B = B U{y}
to get 7x,,(B’, x) = (B, x) € Q. Since |¢; --- ¥, B([wo])| = |wo| + 2, we know that
W2 -+ ¥ B([wol)| = [wol, and therefore also that [(B,x)y2 -~ ¥, B([wol)| = [wol.
Then by setting &’ = y; ---yp and o' = ¥, --- ¥, we are done. ]

Theorem 4.17 If y € Aut®Ar with y ([wo]) = [we], then there is a factorization of y
as a product of elements of Q2 that is peak-reduced with respect to [wg].
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Proof By Theorem 2.1, we factor y as «off, where 8 € (2) and « € (92) By
Lemma 4.15, we write B as 0'tx,y, - Tx,,y, !, Where ¢’ is a permutation, ¢ is wo—
irrelevant, and the Ty, y, are short-range transvections such that {xy,...,x,} lie over
distinct vertices and each x; is domination-minimal among {x;,...,x,}. Now we
rewrite o’ as o’a’, where o’ € (Qg). By Theorem 2.1, we have a factorization
o' = 0”8y --- 8, which is peak-reduced with respect to tx,,y, - - Tx,,y, t ({Wo]), Where
o’ is a permutation automorphism and each §; is a nonpermutation automorphism
in Q). We set 0 = 0’0", so that we have y = 081 -+ 8pTx;,p; ** Ty p, -

Since each x; € supp wg, we deduce that no 7y, ,; changes the support of wq (if
it did, this would contradict Lemma 4.10). From Corollary 4.11, we know that
|Tx 1,01 * T,y ((Wo])| = |wo|, so since « is peak-reduced, each §; either shortens
8ig18pTxy,y; ** " Ty,y, ((Wo]) or leaves its length unchanged. Since §; acts by a
single multiplier, this means §; either leaves supp 8;1 -+ 8pTx,,y, *** Ty, y, ((Wo]) the
same or removes a single element. However, if this support is equal to supp wy,
removing an element would contradict Lemma 4.10. So inductively, we deduce that

supp 8y - - '(Sp'fxl,yl T, yp ([wo]) = supp wo.

Since 81 -+ 8p Ty, p; =+ Txy,y, ((Wo]) differs from [wo] by the permutation o, we know
that their lengths are the same.

Now inductively assume that we have written 8; -8, 7x,,y, *** Tx,,y, as a product
Po(Ar. X1)P1 -+ j—2(Aj—1. Xj— 1)} Txj,p; " Txyoy,» With @ € (Q)) and with
oi € (Qg) and (A4;, x;) € Q for each i. Also suppose that for each i,

(Aiv Xi)¢i e (Aj—l s xj—1)¢]/'—1 ‘Exj it fxr,yr ([w()])
and ¢i e (Aj—l P xj—l)(pjl'_] T.Xj Vit Txr,yr ([wO])

have the same length and support as wq. The base case for this induction has ¢; =
8y--8p.

Then we simply apply Lemma 4.16 to qu/._l Tx;,y; """ Tx,,y, and get the same statement
with j instead of j — 1. After we have done this r times, we get

Y =0¢o(A1,x1)p1 - (Ar. Xr) Py 1.

Peak-reduce each ¢; with respect to (A;, x;)@i - -+ (Ar, xr)Pr (o)), peak-reduce ¢,
with respect to [wg], and write out ¢ as a product of wq—irrelevant transvections; this
is a peak-reduced factorization of y . |

The following ideas appear for free groups in Lyndon—Schupp [10, Chapter 1.4] and
are closely related to the work of McCool in [13].
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Definition 4.18 We construct a labeled, directed multigraph A whose vertices are
conjugacy classes of Ar with length equal to |wg| = 4k, where we place a directed
edge from [u] to [v] if there is a Whitehead automorphism « € Q with «([u]) = [v].
We label this directed edge by «. The Whitehead graph A of [wg] is the (undirected)
connected component of [wg] in A.

Since there are only finitely many words of length 4k, there are only finitely many
conjugacy classes of length 4k . Since € is finite, this means that A is a finite graph
with only finitely many edges between any two vertices.

Corollary 4.19 The group (AutoAr)[wO] of automorphisms in Aut’Ar preserving
[wo] is finitely generated.

Proof A pathin A determines an element of Aut®A by composing the labels along
the edges. Further, if « is the automorphism determined by a path from the vertex [w]
to the vertex [w,], we know that «(Jw;]) = [w,] (this is true by definition for a path
of length one and remains true under concatenation). In particular, this defines a map
w1 (A, [we]) — (AutOAF)[wO]. If x e (AutOAF)[wO], then by Theorem 4.17, there is
a factorization By --- 1 of @ by elements of Q that is peak-reduced with respect to
[wo]. By Corollary 4.11, this means that for each i, B; --- B1([wo]) is a vertex in A,
and B; is an edge from B;_1 --- B1([wog]) to Bi--- Bi(wo]). So By --- B describes a
path in A that maps to «. So the finitely generated group 1 (A, [wg]) surjects on
(AutOA[‘)[wO] . O

Remark 4.20 There are normal forms for elements of Ar (see Van Wyk [19], for
example), so there is an effective procedure to produce the Whitehead graph of wq. Of
course, this means that there is a procedure to give a generating set for (AutOAp)[wO].
Unfortunately, A can be large for simple examples and it appears to be difficult to
use this method to write down specific generating sets. McCool has explored this for
the case where Ar is a free group and (AutOAp)[wo] is a mapping class group in [14].
This procedure does not produce the familiar generating sets for the mapping class
group given by Dehn twists.

4.4 Finite generation of Mod(T', wg, Q)

This subsection is devoted to finishing the proof of Theorem A. Recall the Whitehead
graph A from Definition 4.18.

Lemma 4.21 The graph A has a maximal tree T such that the set of all edges in T
that are nonpermutation automorphisms forms a subtree containing [wy].
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Proof We take A’ to be the connected component of [wg] in the subgraph of A gotten
by deleting the edges labeled with permutation automorphisms. We take 7" to be a
maximal tree for A’.

Now, for each vertex [w] of A notin A’, there is a path p from [wg] to [w] in A (paths
in A are written in function composition order). If ¢ is a permutation automorphism
in ©, and « is a nonpermutation Whitehead automorphism in €2 such that ¢ -0 is a
segment in p, then by Day [6, Equation (R6)], o-(6~'«0) is another segment of length
two in A connecting the same initial and terminal vertices. Note that since o leaves
supp wy invariant, we know that o~ !ao € . We modify p by substituting this second
segment in for the first one. By repeating substitutions like this whenever possible and
multiplying the permutation automorphisms together as a single permutation, we get a
path p’ from [wy] to [w] of the form

Olw] " (Aﬂh Clm) e (Al ?al)
where of,,] is a permutation automorphism and each (A4;,a;) € Q.

We already have a path in 7”7 from [wg] to (A, am) -+ (A1, a1)(we]), so we can add
the edge ofy,) starting at (Ap, am) -+ (A1, a1)((wo]) to T to get a tree containing [w].
It is obvious that if we add an edge gotten in this manner to 7’ for each vertex not
in T’, we will get a maximal tree for A satisfying the conclusions of the lemma. O

Definition 4.22 For (4, a) € €2, the transvection set trans(A4, a) is the set of x € X
with x € 4 or x~! € A4, but not both.

Lemma 4.23 The graph A of wgy has a maximal tree T satisfying the following
condition: for each edge « originating at a vertex [w], either o is a permutation
automorphism or a Whitehead automorphism o = (A, a) with a € supp w and trans o C
supp w.

Proof Start with an arbitrary maximal tree 7. Suppose we have an edge (4, a)
of Ty originating at a vertex [w]. Fix a cyclic representative w of [w], and consider
the obvious representative w’ of (A, a)(Jw]) based on w. If a ¢ supp w, then w’ is
the same as w with some instances of @ added in. Since these are both graphically
reduced representatives of conjugacy classes of the same length, we deduce that in
fact, (4, a)([w]) = [w]. However, since Ty is a tree, we cannot have a loop (4, a),
so it must be that @ € supp w. If trans(A4, @) ¢ supp w, then we can rewrite (4, a) as
(A1,a)(A,,a) where trans(A1,a) C suppw and (A4,, a) is a product of transvections
with trans(A,, a) Nsupp w = &. In this case, we know that (4,, a)(Jw]) = [w], and
therefore (A1, a)(Jw]) = (4, a)(Jw]). We replace the edge (A4, a) with the edge (41, a).
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Of course, we can repeat this procedure with each edge of 7 to obtain a tree 7" which
satisfies the conclusions of the lemma. |

Note that if the tree Ty above satisfies the conclusions of Lemma 4.21, then the final
tree T does as well. So at this point we fix a maximal tree 7" in A that satisfies the
conclusions of Lemma 4.21 and Lemma 4.23. Let T’ be the subtree of 7" whose
edges are nonpermutation Whitehead automorphisms. For each vertex [w] € T, let
o[y] € Aut®Ar be the product of edge labels in the edge path in T’ from [wy] to [w].

Lemma 4.24 For [w] € T', we have supp[w] = supp wq. In particular, oy, is an
automorphism of the form (A, am)--- (A1, ay) where for each i, a; € supp wo and
trans(A;, a;) C supp wy -

Proof Suppose [w],[w’] € A and we have (A4, a) with a € supp[w] and (4, a)((w]) =
[w’]. Then supp[w’] C supp[w]U {a} = supp[w]. Since the vertices of A are conjugacy
classes of the same length as [wo], it follows that supp[w’] = supp[w]. It then follows
from the definition of 7" that for all [w] € T’, we have supp[w] = supp wg. The second
statement in the lemma then follows from the first one. O

Definition 4.25 For [w] € T’ (possibly [w] = [wg]), the automorphism aﬂ_(l[w]) Bagwy
in (AutoAF)[wO] is an edge generator if B is an edge in § originating at [w] with
B((w]) € T’ and either

e [ is a permutation automorphism fixing (supp Q

e B =(B,b) and trans § C supp wy.

)£! pointwise, or

Define the set S, to be the set of edge generators.

Define the set S; C (AutOAp)[wO], the set of wo—independent generators, to be the set
of elements 7, 5, where b € supp Q and a € X with a > b, together with the inversions
with respect to elements of supp Q.

Define the set Sg C (AutOAF)([wO],Q), the set of lifted Q—transvections and Q-
inversions, to be the set of permutation automorphisms inducing a Q —inversion together
with those products of transvections of length 1 or 2 that induce standard dominated
Q—transvections in Aut Hr.

Define the set S C (AutoAr)([wo],Q), the set of kernel generators, to be the set of
elements of the following forms:

e automorphisms 7[, 1. (as in Section 3) where x,y € X, ¢ € supp Q and
x,yzec,
* partial conjugations ¢y (¢}, where x € X', ¢ € supp Q and x > ¢, and

e conjugations ¢y, where x € X .
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We call S} the set of kernel generators because these generators will be part of our
generating set and they lie in the kernel of the homology representation.

Our next intermediate goal is the following.
Proposition 4.26 The finite set S, U Sy, U S; generates (Aut®A4 )wo] -
We will prove some lemmas before proving this proposition.

Lemma 4.27 Let b € (supp Q)*!. Suppose o = (A, am)--- (A1, ay) is a product
of Whitehead automorphisms such that v(a;) # b and trans(A4;,a;) C supp wg for
each i . Further suppose we have B, B2 € Aut’Ar both of which satisfy the following
three conditions: (1) B; fixes each x € X — {b}; (2) Bi(b) contains only a single
instance of b and no instance of b~ ; and (3) for each y € supp B;(b), we have y > b
or y = b. Finally, suppose that («~'B1aB2)« € Aut Hr is the identity.

Then we have ! BB, € (Sk).

Proof Let y =a !B aB,. If x € X —{b}, then since each v(a;) # b, we know that
b ¢ supp a([x]) and therefore that y fixes x. Since b ¢ trans(4;, a;) for any i, if we
alter « by an inner automorphism, we may assume that each (A4;,a;) fixes b. Since we
aim to show y is in (Sj), which contains the inner automorphisms, we can do this. If
some (A;,a;) conjugates some x > b while fixing b, we can deduce that ¢; > b, and
it follows that each element of supp y () is either equal to b or dominates b. Since
each a; # b, we know that only a single instance of b appears in y (b). Also, we know
that y fixes the image of b in Hr, so each element of X — {b} that appears in y(b)
appears in pairs of opposite exponent.

We claim that we can reduce y to the identity by a series of applications of elements
of Sg. Let the cyclic word vo be a graphically reduced representative of y(b); by the
previous reasoning, we know that vy contains a single instance of b.

Suppose the b in vg is in a subsegment xby for x, y € L. Note that vy with bxy
substituted for xby represents cx ¢5}([vo]) and that vy with xyb substituted for xby
represents c;% b}([vo]). In this manner, by applying some partial conjugations from Sy,
we can send [vg] to a conjugacy class represented by vy with b moved to any position
in the cyclic word. If the b in vq is in a subsegment bxy with v(x) # v(y), then
vo with byx substituted for bxy is a representative for [, 4] 5([vo]). So by applying
some elements from Sy, we can send [vg] to a conjugacy class represented by vy with
the two letters to the right of b swapped.

So, to shorten vy, identify an instance of some x and an instance of x~! in v, apply
elements of S to move b to the left of x, apply an element to move x to the right
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(by a swap), move b to the right, and repeat, until x is next to x~! and they cancel.
Note that all of these moves are allowed since the elements appearing in vy other
than b dominate b, and also note that these moves fix every element other than b.
By this procedure we can shorten vy until only b remains, and we have produced an
automorphism § € (S;) with § =y~ 1. ad

Lemma 4.28 Let [w]€ T’ and let b € supp Q. For any a € X with a > b, we have
an automorphism y that is a product of transvections acting only on b, such that

U Tab@w]Y € (Sk)-
For any element o = oz(_cl c)([w])(C, c)apy) € Se, with v(c) # b, there is a product y
of transvections acting only on b such that
a_lra,bay_l € (Sk).
If B € (Sy) fixes every element of X — {b}, then
Ot[;l]ﬂ(x[w] € (Sg).

Proof For the first statement, note that

(eq)y'lal = Y pileil € Hr

i=1

for some ¢; € X and nonzero integers p;. Then for each i we have ¢; > a by Lemma
P1 P

4.6, so ¢; > b and we can take y = Teib " Tomb

Similarly, it follows from Lemma 4.6 that the element y needed for the second statement
also exists.

Then the lemma is immediate from Lemma 4.24 and Lemma 4.27. O

Lemma 4.29 Let [w] € T’ and y € (S;). Then there is an element Y’ € (S;) such
that oe[jul]ya[w]y’ isin (Sy).

Proof We proceed by induction on the S;-length of y. Suppose y = 148 where
B € S; and we have some y; € (S;) such that § = a[;l]yoa[w]yé € (Sg). If B is the
inversion with respect to any element of supp Q, then a computation shows that oy
commutes with 8, and therefore

AVl B Vg = 8 € (Sk)

and we can take Y’ = ,3_1)/(’).
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If B is a transvection 7, with b € supp Q, then by Lemma 4.28 we have a " € (S;)
with § = o I,Ba[w]y € (Sk). Set 8" = (y§)~'8'y;. From Lemma 3.4 (with Z =
supp 0), we have 8" € (Sk). Weset y' =y"yg, and we have
A Vo]V = Ay o'
=8(yg) "' 8'yy = 88"

which is in (S). O

Proof of Proposition 4.26 First note that S, is finite because A is finite, and S;
and Sy are finite because X is finite. Now suppose we have an edge o between two
vertices [w1] and [w,] of A. We know that [w;] = ;7 ([v;]) where o; is a possibly trivial
permutation automorphism and [v;] € T”, for i = 1, 2. Define the set S C Aut Ar to
be the set of elements of the form o, ;]02_ laalcx[vl] , indexed over all edges o of A.
Since 7' is a maximal tree for A, the elements of S describe a generating set for
1 (A, [wg]), and as explained in Corollary 4.19, they therefore generate (AutoAp)[wO].

Since it is obvious that S, U S U S; C (AutoAr)[wO], we prove the lemma by showing
that S C (S, U S; U S;). Consider an arbitrary element of S':

B = oc[;;]az_laala[vl].

If « is a permutation automorphism, then we write o, 1

Since [vq] and [v,] are both in 7", we know that supp[v;] = supp[v,] = supp wq, and
therefore o3 leaves supp wg invariant. It follows from this and the fact that o3 is in
Aut’Ar that o3 factors as a product of a permutation automorphism Ow, € Aut’Ar
that fixes (supp Q)*! pointwise and a permutation automorphism og € Aut®Ar
):I:l ):I:l it

a0 as a single permutation o3 .

that fixes (supp wo pointwise. Since o is in Aut’Ar and fixes (supp wo
follows that og € (S;). We know supp|vi] = supp wo, so o fixes [vi] and therefore
owo ([V1]) = [v2] and ap, ]owoa[vl] € S.. Then B will be in (SeUSk) if ap, ]GQOI[Ul] is.
Since og € (S;), Lemma 4.29 says that there is a y € (S;) with a[v 100w, 1Y € (Sk)-
The proposition follows in this case.

So assume that « = (A4, a). By replacing o with 02_10102 and o with 02_101, we
may assume that o, = 1. If we set [w3] = o~ a[vz]([wo]) then it follows from the
construction of 7’ that [w3] € T’'. Then we know that Uy ]alcx[vl] is in S, and
therefore B is in (S, U Sy U S;) only if the element

—1
p' = Oy, ¥ X ws]

is as well. We may rewrite @« = (A’,a)y, where y € (S;) and trans(A’, a) C supp wy.
Since [w3] € T', we know supp[w3] = supp[wg], and y fixes [w3]. We may rewrite 8’
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as the product of the element ap, ](A a)ay,), which is in S., with the element
[w 1Y Qws]- By Lemma 4.29, there is an element Y’ € (S;) such that a[w ]ya[w3]y
is in (Sg). The proposition follows. O

We proceed by showing that we can do better:

Proposition 4.30 Any element of (AutOAp)[wO] can be written as the product of a
single element of (S, U Si) and a single element of (S;).

Sublemma 4.31 Suppose (B, b) is a Whitehead automorphism, a € L with a > b and
a,a”' ¢ B. Suppose [u] is an element or conjugacy class in Ar with v(b) ¢ supp|u]
and v is a graphically reduced word or cyclic word representing (B, b)([u]). Then if v’
is v with all instances of b replaced by a and all instances of b~ replaced by a™!,

then v’ is a representative of (B —b + a, a)([u]).

Proof Note that since @ > b, (B —b + a, a) is well defined by Day [6, Lemma 2.5].
Pick a graphically reduced representative u for [u]; obtain a representative v for
(B, b)([u]) by applying (B, b) letter-by-letter to u. It is immediate that if " is ¥ with
these substitutions, then v represents (B —b + a, a). Note that v(b) € supp v. Since a
commutes with every letter that 5 commutes with (except possibly b*!), each time
we modify v by swapping two adjacent, commuting letters, or by making a graphic
reduction, we can make a parallel modification to " and still have representatives that
differ by the described substitution and represent the same two elements. Since we can
get from any representative of (B, b)([u]) to the representative v by such moves, we
have proven the statement. O

Lemma 4.32 Suppose = (B, b) € Q such that v(b) ¢ supp wq and for some [w]€ T’,
a[jul]ﬁa[w] € Se. If a € (suppwp) N (trans B), then a £ b.

Proof Suppose for contradiction that @ ~ b. By the construction of 7/, w has the
same length and support as wg, so by Lemma 4.10, there is a single instance of a and
a single instance of ¢~! in w. So write w as the graphically reduced cyclic word
aua='v. Then [u,a] # 1 and [v,a] # 1. Since a ~ b, we know that [u,b] # 1 and
[v,b] # 1 as well. Since a € trans B, we may assume that a € B and a~! ¢ B (the
case where a~! € B and a ¢ B is similar). We know B([w]) = [w] and B(a) = ab.
Since [v, b] # 1, B cannot send v to an element represented by a reduced word ending
in 5~! or beginning with b. It follows that B(u) = b~ 'ub and B(v) = v.

Since a ~ b, we know from Day [6, Lemma 2.5] that (B — b, a) is a well-defined
Whitehead automorphism. We know b does not appear in u or v, so by Sublemma 4.31
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(B—b,a)(u) =a'ua and (B —b,a)(v) =v. Since [u,a] # 1, these expressions are
graphically reduced. Then (B — b, a)(w) = aa~'uaa™ v = uv, and |uv| < |w|—

This contradicts Corollary 4.11. a

Lemma 4.33 Suppose (B, b) € Q such that v(b) ¢ supp wo and for some [w] € T’,
[w]ﬁa[w] € S,. Suppose a € L suchthata>b and a,a™' ¢ B. Then (B—b +a,a)
fixes [w], and Uy ](B b+a,a)op) € Se.

Proof It is immediate from Sublemma 4.31 that (B —b + a, a) fixes [w]. Note that
trans(B — b + a, a) = trans(B, b) C supp wg, SO oz[_wl](B —b+a,a)ap, € Se. O

Lemma 4.34 Suppose Uy ](B b)apy) € Se and v(b) € supp Q. If y is a product of
transvections acting only on b then Yy ](B D)oy~ Uisin (S, U Sk).

Proof Let S[,) be the union of Sy with the set of (C, ¢) € @ such that (C, ¢)([w]) =
[w] and trans(C, ¢) C supp wy.

As a base case, consider the effect of a single transvection 7,5 on a (B,b), where
a€ L and a > b. Note that if ¢ € trans(B, b), then a € supp wg and b > a. Then a ~ b,
contradicting Lemma 4.32. So we know a ¢ trans(B, b). Possibly by multiplying
(B, b) by an inner automorphism, we may assume a ¢ B. Then since a ¢ trans(B, b),
we know a1 ¢ B. Since Tap = ({a, b}, a) and b~! ¢ {a,b}, we have the following
special case of Equation (R4) of Day [6]:

(B,b) 14 5(B.b) =14(B—b +a,a).
We rephrase this as
Tap(B.b)7, , = (B,b)(B—b+a,a).
Similarly, note that
Tap-1(B.b)t,, = (B=b+a~',a”")(B,b).
By Lemma 4.33, (B—b+a,a) and (B—b+a~',a~") both preserve [w]. Of course,
trans(B —b +a~',a~!) = trans(B — b + a, a) = trans(B, b) C supp wy.

Now consider 7,/ 5 for some @’ € L with a > b. If v(a') = v(a), then 7,5 and
(B—b+a,a) commute. Since trans(B —b +a, a) = trans(B, b), and since by Lemma
4.32, we know «’ ¢ trans(B, b), we know a’ ¢ trans(B — b + a, a). Further, we know
that b,b~! ¢ B —b + a. Then by Day [6, Equation (R3)], Ty p and (B—b+a,a)
commute up to an inner automorphism,. Similarly, 7,/ ,—1 and (B —b+a,a) commute
up to an inner automorphism.
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So if y is a product of transvections acting only on b, then up to inner automorphisms,
y(B,b)y~1is (B,b) times some number of elements of the form (B —b + a,a) for
various @ > b. Then in particular, ¥ (B,b)y ™! isin (Sp)).

Now suppose y is a product of transvections acting only on ». From Lemma 4.28,
there is a product y’ of transvections acting on b and a § € (Se) with yap,) =
8a[_w 1])/ . We deduce from the previous paragraph there is an element 8 € (Sp,)) with

Y (B,b)y’~! = B. Then we have
yop (B, b)equyy ™" = Sa i Bogus .

By Lemma 4.28, if §’ € Sy, then oc[jul]é’a[w] € (Sk). And if (C,c) € Sp, then

oz[jul](C, c)apy] € Se. So a[jul]ﬂa[w] € (S, U Sk}, proving the lemma. |

Lemma 4.35 Suppose b € supp Q, y; is a product of transvections acting on b and
@ € Se U Sy. Then there is a b’ € supp Q and a product y, of transvections acting on
b’ such that yyay; ' € (Se U Sk).

Proof First we note that if o € Sg, then we can take y, = y; and the lemma follows
from the identities in Sublemma 3.2 and Sublemma 3.3.

Now suppose o = aE(l[w]) Barpy) and B is a permutation automorphism. Since [w] and
B([w]) are both in 7”’, we know that supp[w] = supp B([w]) = supp wg. So f leaves
supp Q invariant and we can set b’ = v(87!(b)) € supp Q. By Lemma 4.6, we can
find a product y, of transvections acting only on b’, such that y, sends the image of
b’ in Hr to the same element that a[jl)l]ﬂ_laﬂ[w]yl_l sends it to. Let o’ = By 87!
and let y’ = By»B~!. Then by Day [6, Equation (R6)], o’ can be written as a product
of nonpermutation automorphisms with multipliers not equal to v(b) and y’ can be
written as a product of transvections acting only on b. It then follows from Lemma
4.27 that

Y1 (@) Bow) V2 (@) B~ @pul) = v1(@uia)y (@) ™" € (Sk)
which proves the lemma in this case.
Ifa = a(_cl’c)([w])(C, c)afy), then the lemma follows from Lemma 4.34 if v(c) = v(b)

and from Lemma 4.28 if v(c) # v(b). O

Proof of Proposition 4.30 For each b € supp Q, take S(b) to be the subgroup
generated by {7, p|a € X,a > b} and the inversion with respect to b, and take:

s= J s

besupp Q
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For « € (Aut’4 Iwo]» take d(a) to be the minimum number of elements of S ap-
pearing in any factorization of « as a product of elements of (Sx U S, U S)*!. Note
S; C S, so such a factorization exists by Proposition 4.26.

We will prove this proposition by induction on d(«). If d(a) = 0, then the proposition
is obviously true. Now suppose that we have o = Bya’, where y € S(b) for some
b esupp O, B € (SeUSk) and o’ € (Aut®Ar)y,,) with d(a’) = d(e)— 1. By repeated
application of Lemma 4.35, we know we have some b’ € supp Q, some y’ € S(b’) and
some B’ € (Si U Se) with By = y’B’. Then o = y’f’a’. Since d(f'a’) < d(a)—1,
we can apply the inductive hypothesis and get y” € (S;) and B” € (S U S,) with

B'a’ =y"B". Then o = y’'y"B”; since y'y” € (S;), we are done. ]

Lemma 4.36 We have (S U Se) < (Aut®4r)g.

Proof For § € Si, since 6 € ker(Aut®’Ar — Aut Hr), it is obvious that §,Q = Q.

For [w] € T’, note that (cr[])« Q = Q. This is because ofy,) is a product of elements
(A,a) with trans(A4,a) C suppwg. If o = a/g(l[w])ﬂa[w] € S, then either B is a
permutation fixing (supp Q)*! or B is a nonpermutation Whitehead automorphism
with trans 8 C supp wy. In either case, it follows that ax Q = Q. a

Theorem 4.37 The group (AutoAp)([wO],Q) is generated by the finite set S USxUSg.

Proof As previously noted, S, and Sy are finite. The set S is finite because Q is
finite. Now suppose that o € (AutoAF)([wo],Q). By Proposition 4.30, we can rewrite
o as By where B € (S, U Sk) and y € (S;).

By Lemma 4.36, we know that 8.0 = Q. Since a«Q = Q, it follows that y.Q = Q.
So there is an element § € (S¢p) such that y8~! eker(Aut’Ar — Aut Hr), by Theorem
4.4. Then by Proposition 3.5 (with Z = supp Q), we know that y§~! € (S;). Since
o = B(y8~1)8, we have proven the theorem. O

Proposition 4.38 The group (Aut Ar)([w,],0) 1s finitely generated.

Proof Recall that Aut®Ar is a finite-index normal subgroup of Aut Ar. Then Aut’Ar
is also finite-index and normal in (Aut®Ar, (Aut Ar)([we],0)) - By the classical second
isomorphism theorem, we have:

(AutOAp , (Aut Al")([wo], 0) ) /AutOAp
=~ (Aut AF)([wO],Q)/((AUt AF)([wo],Q) N AutOAF)

But (AUtAI‘)([wO],Q) N AutoA[‘ = (AutoAF)([wO]’Q), SO (AutOA[‘)([wO]’Q) is finite-
index in (Aut A1) ([w,],0)- So we are done by Theorem 4.37. a
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Final step in the proof of Theorem A Let Z4,.(wo) denote the centralizer of wg in
Ar. Consider the following sequence of maps, which we will show to be exact:

4
Z 41 (wo) = Mod(T", wo, Q) = (Out A1) ([w1,0) = 0.

where the first map sends an element to its corresponding inner automorphism.

If [o] € (Out A1) ([w,],0) and a € Aut At is alift of o, then & sends wy to a conjugate
u~lwou. If we compose a with the inner automorphism given by conjugation by
u~!, we get an automorphism in Mod(T", wg, Q) that projects to [«]. This explains

the surjectivity of .

If « is in the kernel of s, then it is the inner automorphism ¢, for some u € Ar. Of
course, ¢, € Mod(I", wo, Q) if and only if ¢, € (Aut Ar )y, . wWhich is true if and only
if u € Z4.(wp), proving the exactness of this sequence.

From Proposition 4.38, the group (Out Ar)([w,],0) i finitely generated. Servatius’s
centralizer theorem from [18] completely describes the centralizers of elements in
Ar; in particular, it tells us that Z 4. (wy) is finitely generated. Since Mod(I", wg, Q)
surjects onto a finitely generated group with finitely generated kernel, it is finitely
generated. O

5 Closing remarks

The work in this paper opens the way for further study of mapping class groups over
graphs. First of all, it would be interesting to recover Definition 1.1 by means of a
geometric construction. In the extreme cases, Sp(2g,Z) can be seen as the linear
automorphisms of the torus T 2€ that preserve a standard symplectic differential form,
and Modg ; can be seen as the homotopy group of self-homotopy-equivalences of
a graph that preserve some additional combinatorial structure called a “fat graph”
structure (see Penner [15]). It is worth noting that T %€ and certain graphs are examples
of Salvetti complexes. The Salvetti complex ST is a finite cubical complex that forms
a natural K(Ar, 1) space (see Charney [3, Section 2.6]). If we take the monoid of
self-homotopy-equivalences of ST and take a quotient by considering maps equivalent
if they are homotopic, we get a group. Call this group G . Note that G = Aut Ar. This
brings us to the following problem:

Open Problem 5.1 Produce a structure on St and a corresponding symplectic struc-
ture (w, Q) on Ar such that the subgroup of G of elements represented by maps
fixing this structure is naturally isomorphic to Mod(I", w, Q).

By a structure on ST, I mean some extra combinatorial data, or some extra differential
data, or some combination of the two.
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Theorem A could be a starting point for future homological finiteness results about
Mod(T", w, Q). This conjecture could be a possible next step.

Conjecture 5.2 For every graph I' with a symplectic structure (w, Q) on Ar, the
group Mod(T", w, Q) is finitely presented.

There are combinatorial methods to show that Mody ; is finitely presented (see Mc-
Cool [13]) which could potentially be extended to prove Conjecture 5.2.

In the extreme cases, it is known that both Modg ; and Sp(2g, Z) contain finite index
subgroups with finite K (s, 1) complexes. This implies that both groups are of type VFL,
which is a strong homological finiteness condition (see Brown [2, Chapter VIII.11]).
This leads us to the following conjecture.

Conjecture 5.3 For every graph I" with symplectic structure (w, Q) on Ar, the
group Mod(T", w, Q) has a finite-index subgroup G with a finite K(G, 1) complex.

It seems unlikely that Conjecture 5.3 could be proven by purely combinatorial methods,
but given a solution to Open Problem 5.1, it is conceivable that one could recover such
a K(G, 1) complex as a kind of moduli space of Salvetti complexes with symplectic
structures. A related problem would then be to find bounds on the virtual cohomo-
logical dimension of Mod(T", w, Q). Charney—Crisp—Vogtmann [4] and Charney—
Vogtmann [5] have already made much progress on the parallel problem for Aut Ar.

Theorem B could be a starting point for work on the homological properties of [Aut A .
In the usual way (as with Modg | or with Aut F},), the action of Aut Ay on the 2—step
nilpotent truncation of Ar defines an Aut Ar—equivariant homomorphism (a Johnson
homomorphism) from IAut Ar to an abelian group. We can then ask the following
question.

Question 5.4 For arbitrary I', is the image of the Johnson homomorphism on [Aut Ar
equal to the abelianization of [Aut Ar?

This question was answered in the affirmative for 7/4,, independently by Cohen—
Pakianathan, by Farb and by Kawazumi [8] (see Theorem 1.1 of Pettet [16]).
The following conjecture is linked to Charney—Vogtmann [5].

Conjecture 5.5 For every graph I', the group 1Aut Ar is torsion-free and there is a
finite-dimensional K(IAut Ar, 1) complex.

A related problem is to bound the dimension of such a complex, as Bestvina—Bux—
Margalit [1] did in the case of 1A4,. We do not expect such a complex to have finitely
many cells in each dimension, but only that such a complex would be finite-dimensional.
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