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The Weinstein conjecture for stable Hamiltonian structures

MICHAEL HUTCHINGS

CLIFFORD HENRY TAUBES

We use the equivalence between embedded contact homology and Seiberg–Witten
Floer homology to obtain the following improvements on the Weinstein conjecture.
Let Y be a closed oriented connected 3–manifold with a stable Hamiltonian structure,
and let R denote the associated Reeb vector field on Y . We prove that if Y is not a
T 2 –bundle over S1 , then R has a closed orbit. Along the way we prove that if Y is
a closed oriented connected 3–manifold with a contact form such that all Reeb orbits
are nondegenerate and elliptic, then Y is a lens space. Related arguments show that
if Y is a closed oriented 3–manifold with a contact form such that all Reeb orbits
are nondegenerate, and if Y is not a lens space, then there exist at least three distinct
embedded Reeb orbits.

57R17, 57R57, 53D40; 57R58

1 Introduction

Throughout this paper, Y denotes a closed, oriented, connected 3–manifold. Recall
that a contact form on Y is a 1–form � on Y such that � ^ d� > 0. A contact
form � determines a contact structure, namely the two-plane field � WD Ker.�/. It also
determines a vector field R, called the Reeb vector field, characterized by d�.R; � /D 0

and �.R/D 1. A Reeb orbit is a closed orbit of R, ie a map  W R=T Z! Y for some
T > 0 such that  0.t/DR. .t//. Two Reeb orbits are considered equivalent if they
differ by precomposition with a translation of R=T Z.

The three-dimensional version of the Weinstein conjecture asserts that for every closed
oriented 3–manifold Y , and for every contact form � on Y , there exists a Reeb orbit.
There is a long history of work proving this conjecture in many cases, for example for
overtwisted contact structures by Hofer [8], for contact structures supported by planar
open books by Abbas, Cieliebak and Hofer [1] and for many additional types of open
books by Colin and Honda [5]. The Weinstein conjecture was recently proved by the
second author in all cases in [23].

In fact a stronger result is proved by the second author in [24], which asserts that a
version of the Seiberg–Witten Floer homology of �Y as defined by Kronheimer and
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Mrowka [19], namely the version zHM .�Y /, is isomorphic to the embedded contact
homology (ECH) of .Y; �/. To see how this implies the Weinstein conjecture, recall
that the ECH of .Y; �/ is the homology of a chain complex which is generated by
certain unions of Reeb orbits with multiplicities and whose differential counts certain
embedded holomorphic curves in R�Y . If Y has a contact form with no Reeb orbit,
then the ECH has just one generator, namely the empty set of Reeb orbits. However
Kronheimer and Mrowka have shown that zHM of every closed oriented 3–manifold is
infinitely generated [19]. Together with the isomorphism between ECH and zHM , this
gives a contradiction, and the Weinstein conjecture is proved.

The original proof of the Weinstein conjecture in [23] established and used only a first
step towards the isomorphism between ECH and zHM , which entailed showing how
generators of zHM give rise to generators of ECH. In the present paper, we exploit
the full strength of the isomorphism to obtain two improvements on the Weinstein
conjecture. First, we extend the class of vector fields for which a closed orbit is known
to exist. Second, in most cases we can increase the lower bound on the number of
(embedded) Reeb orbits from one to three.

To explain the first improvement: A contact form is a special case of a stable Hamilton-
ian structure, a notion which was identified by Bourgeois et al [3] and Cieliebak and
Mohnke [4] as a general setting in which one can obtain Gromov-type compactness for
moduli spaces of holomorphic curves in R�Y . If Y is an oriented three-manifold, a
stable Hamiltonian structure on Y is a pair .�; !/, where � is a 1–form on Y and !
is a 2–form on Y , such that

d! D 0;

�^! > 0;

Ker.!/� Ker.d�/:

Note that the second condition implies that ! is nonvanishing, and consequently the
third condition is equivalent to

d�D f!

where f W Y !R is a smooth function.

A stable Hamiltonian structure determines a vector field R on Y , which we call the
Reeb vector field, characterized by

!.R; �/D 0; �.R/D 1:

It follows from the definitions that the stable Hamiltonian structure is invariant under R:

(1-1) LR�D 0; LR! D 0; LRf D 0:
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Example A contact 1–form � determines a stable Hamiltonian structure in which
! D d� and R is the Reeb vector field in the usual sense. Here f � 1.

Example Let † be a closed oriented surface with a symplectic form ! , and let � be
a symplectomorphism of .†; !/. Let Y be the mapping torus

(1-2) Y WD
Œ0; 1��†

.1;x/� .0; �.x//
:

This fibers over S1 DR=Z. Let R denote the vector field on Y which increases the
Œ0; 1� coordinate in (1-2). Note that closed orbits of R correspond to periodic orbits
of � . Now Y has a stable Hamiltonian structure in which R is as described above, �
is the pullback of the volume form on S1 , and ! is the unique extension of the closed
2–form on the fibers of Y ! S1 to a 2–form on Y which annihilates R. Here f � 0.

Stable Hamiltonian structures are also carried by “stable hypersurfaces” in symplectic
manifolds; see Cieliebak and Mohnke [4, Section 2.3]. The Weinstein conjecture is
known to hold for compact stable hypersurfaces in R2n ; see Hofer and Zehnder [12,
Section 4.3]. This suggests that in three dimensions it might be possible to generalize
the Weinstein conjecture from contact structures to stable Hamiltonian structures. The
main result of the present paper is that this is almost always true:

Theorem 1.1 Let Y be a closed oriented connected 3–manifold with a stable Hamil-
tonian structure. If Y is not a T 2 –bundle over S1 , then the associated Reeb vector
field has a closed orbit.

Note that there exist T 2 –bundles over S1 with stable Hamiltonian structures having
no Reeb orbit. Examples with f D 0 are provided by the mapping tori of symplecto-
morphisms �W T 2! T 2 with no periodic orbit. Here � can be an irrational rotation,
or an appropriate composition of an irrational rotation with a Dehn twist. In addition,
the construction in Section 5 can be inverted to produce examples of T 2 –bundles over
S1 with stable Hamiltonian structures in which f changes sign and there is no Reeb
orbit.

The outline of the proof of Theorem 1.1 is as follows. Assume that R has no closed
orbit. By the Weinstein conjecture, f is sometimes zero; and if f is identically zero
then Y fibers over S1 and a calculation using the Lefschetz fixed point theorem shows
that the fiber is T 2 . So assume that f is sometimes zero and sometimes nonzero.
Choose " > 0 small such that both " and �" are regular values of f . Since f is
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invariant under the nonvanishing vector field R, the level sets f �1.˙"/ are disjoint
unions of tori. We can now decompose Y along a union of tori as

Y D f �1.�1;�"�[f �1Œ�"; "�[f �1Œ";1/:

It is enough to show that each piece in the decomposition is a disjoint union of copies
of T 2 � I .

To do this for the middle piece f �1Œ�"; "�, the idea is to use the fact that f is close to
zero to show that the middle piece fibers over S1 . We then use the assumption that
there are no Reeb orbits to show that the fibers are disjoint unions of annuli. This part
of the argument does not use any Floer homology.

The remaining pieces in the decomposition can be collapsed into closed contact mani-
folds with each boundary torus becoming an elliptic Reeb orbit. To conclude the proof
of Theorem 1.1, we then invoke the following theorem. To state it, recall that a Reeb
orbit  is called nondegenerate if its linearized return map, ie the symplectic linear
map from �.0/ to itself given by the linearized Reeb flow along  , does not have 1

as an eigenvalue. We usually assume that all Reeb orbits (including multiple covers)
are nondegenerate. In this case one can then classify the Reeb orbits into three types
according to the eigenvalues �; ��1 of the linearized return map:

� elliptic: �; ��1 on the unit circle.

� positive hyperbolic: �; ��1 > 0.

� negative hyperbolic: �; ��1 < 0.

Theorem 1.2 Let Y be a closed oriented connected 3–manifold with a contact form �

such that all Reeb orbits are nondegenerate and elliptic. Then Y is a lens space, there
are exactly two embedded Reeb orbits, and they are the core circles in the solid tori of a
genus one Heegaard splitting of Y .

The proof of Theorem 1.2 extensively uses the isomorphism between ECH and zHM .
The outline is as follows. If all Reeb orbits are elliptic, then the differential on the ECH
chain complex vanishes, because all generators have even grading. The isomorphism
with zHM then implies that all Reeb orbits represent torsion homology classes. If the
number of embedded Reeb orbits is less than or greater than two, then the growth
rate of the number of nullhomologous ECH generators with grading � I as I goes to
infinity is either too slow or too fast to be consistent with known properties of zHM .
Next, the equivalence of the U maps in the two theories guarantees the existence
of many holomorphic curves between the ECH generators. Finally, a probabilistic
argument shows that at least one of these holomorphic curves is in fact a cylinder whose
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projection to Y is an embedding. This gives rise to a foliation of Y by holomorphic
cylinders with boundary on the two Reeb orbits, and this foliation yields the desired
Heegaard splitting.

A corollary of Theorem 1.2 is that it is impossible for there to exist only one embedded
Reeb orbit and for that orbit to be nondegenerate and elliptic. Using ECHDzHM a bit
more, one can upgrade this to show:

Theorem 1.3 Let Y be a closed oriented 3–manifold with a contact form such that
all Reeb orbits are nondegenerate. Then there are at least two distinct embedded Reeb
orbits; and if Y is not a lens space then there are at least three distinct embedded Reeb
orbits.

There is certainly room for improvement on the lower bound in Theorem 1.3, at least
if one knows more about the three-manifold Y and its contact structure. In fact, work
of Colin and Honda [5] using linearized contact homology shows that many three-
manifolds with contact structures have the property that for any contact form there
must be infinitely many distinct embedded Reeb orbits.

Update After posting the first version of this paper, we received a draft of the thesis
of Ana Rechtman [20], which contains constructions that are relevant to Theorem 1.1.

The rest of the paper In Section 2 we review the basics of ECH. In Section 3 we
discuss some more subtle aspects of ECH that we will need. In Section 4 we prove
Theorem 1.2 regarding contact manifolds with all Reeb orbits elliptic, and we also
prove the lower bound in Theorem 1.3. In Section 5 we prove the main Theorem 1.1.

Acknowledgements The first author was partially supported by NSF grant DMS-
0505884. The second author was partially supported by the National Science Founda-
tion.

2 Review of embedded contact homology

We now review the basic notions from embedded contact homology (ECH) that will
be needed in the present paper. References are Hutchings [13; 14] for the ECH index
theory, Hutchings and Sullivan [16] for additional structure on ECH and Hutchings and
Taubes [17] for the analysis. Below, fix a closed oriented connected 3–manifold Y as
usual, and fix a contact form � on Y such that all Reeb orbits are nondegenerate.
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2.1 ECH generators

Definition 2.1 An ECH generator is a finite set of pairs ˛ D f.˛i ;mi/g such that
the ˛i ’s are distinct embedded Reeb orbits, the mi ’s are positive integers and mi D 1

whenever ˛i is hyperbolic. The homology class of ˛ is defined to be

Œ˛� WD
X

i

mi Œ˛i � 2H1.Y /:

For each � 2H1.Y /, the embedded contact homology ECH�.Y; �; �/ is the homology
of a chain complex C�.Y; �; �/ which is freely generated over Z by the ECH generators
˛ with Œ˛�D � .

Before defining the grading and the differential on this chain complex, we make two
remarks. First, the empty set ˛D � is a legitimate ECH generator with Œ˛�D 0. In fact
the ECH generator � turns out to be a cycle in the ECH chain complex C�.Y; �; 0/,
whose homology class in ECH conjecturally agrees with the contact invariant in zHM .
Second, we sometimes write an ECH generator ˛D f.˛i ;mi/g using the multiplicative
notation

Q
i ˛

mi

i . However the grading and differential on the ECH chain complex do
not behave simply with respect to this sort of multiplication.

2.2 The ECH index

We now explain the grading on the chain complex.

Notation 2.2 If ˛ D f.˛i ;mi/g and ˇ D f. ǰ ; nj /g are two ECH generators with
Œ˛�D Œˇ�D � , define H2.Y; ˛; ˇ/ to be the set of equivalence classes of 2–chains Z

in Y with
@Z D

X
i

mi˛i �

X
j

nj ǰ ;

where two such 2–chains are considered equivalent if they differ by the boundary of a
3–chain. Thus H2.Y; ˛; ˇ/ is an affine space over H2.Y /.

Definition 2.3 If Z 2H2.Y; ˛; ˇ/, define the ECH index

I.˛; ˇ;Z/ WD c� .Z/CQ� .Z/C
X

i

miX
kD1

CZ� .˛k
i /�

X
j

njX
kD1

CZ� .ˇk
j / 2 Z:

Here � is a trivialization of the contact plane field � over the ˛i ’s and ǰ ’s; c� .Z/

denotes the relative first Chern class of � over Z with respect to the boundary trivi-
alization � ; Q� .Z/ denotes the relative intersection pairing;  k denotes the k –fold
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iterate of  , ie the pullback of  W R=T Z! Y to R=kT Z; and CZ� denotes the
Conley–Zehnder index. For the detailed definitions of the integers c� .Z/, Q� .Z/ and
CZ� . k/, see Hutchings [13; 14].

As explained in [13; 14], the ECH index I.˛; ˇ;Z/ does not depend on the choice of
trivialization � , even though the individual terms in its definition do. It does depend
on Z : if Z02H2.Y; ˛; ˇ/ is another relative homology class, then by [13, Equation (5)]
and [13, Lemma 2.5(a)] we have

c� .Z/� c� .Z
0/D hc1.�/;Z �Z0i;(2-1)

Q� .Z/�Q� .Z
0/D 2� � .Z �Z0/:(2-2)

Therefore

I.˛; ˇ;Z/� I.˛; ˇ;Z0/D hc1.�/C 2 PD.�/;Z �Z0i:

Consequently, if Œ˛�D Œˇ�D � , then it makes sense to define

(2-3) I.˛; ˇ/ WD I.˛; ˇ;Z/ 2 Z=d� ;

where Z is any element of H2.Y; ˛; ˇ/, and d� denotes the divisibility of c1.�/C

2 PD.�/ in H 2.Y IZ/ mod torsion. Note that d� is an even integer.

It is also shown in [13, Proposition 1.6(b)] that I is additive in the following sense:
If  is another ECH generator with Œ �D � and if W 2H2.Y; ˇ;  /, then ZCW 2

H2.Y; ˛;  / is defined and

I.˛; ;ZCW /D I.˛; ˇ;Z/C I.ˇ; ;W /:

It follows that (2-3) defines a relative Z=d� grading on the chain complex C�.Y; �; �/.

It is further shown in [14] that the relative grading (2-3) can be refined to an absolute
grading which associates to each ECH generator a homotopy class of oriented 2–plane
fields on Y . In the present paper we will not need this absolute grading and can just
regard the grading on C�.Y; �; �/ as taking values in some abstract affine space over
Z=d� . However we do need to know, from [13, Proposition 1.6(c)], that the mod 2
grading is given by

(2-4) I.˛; ˇ/� I2.˛/� I2.ˇ/ 2 Z=2:

Here if ˛ D f.˛i ;mi/g is an ECH generator, then I2.˛/ 2 Z=2 denotes the mod 2
count of orbits ˛i that are positive hyperbolic.
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2.3 The index inequality

To prepare to define the differential on the ECH chain complex, choose an almost
complex structure J on R�Y satisfying the following properties. Let s denote the R
coordinate on R�Y , and recall that R denotes the Reeb vector field. We require that
J.@=@s/DR, that J is invariant under the map .s;y/ 7! .sC c;y/ for each c 2 R,
and that J sends the contact plane field � to itself, rotating positively in the sense that
d�.v;Jv/� 0 for all v 2 � .

We consider holomorphic curves uW .C; j /! .R�Y;J / such that the domain C is a
punctured compact Riemann surface, and u is not constant on any component of C .
The domain C is not required to be connected. We often abuse notation and denote
the holomorphic curve u simply by C .

If C is a holomorphic curve in R�Y , if  is an embedded Reeb orbit, and if k is a
positive integer, then a “positive end of C at  of multiplicity k ” is an end of C which
is asymptotic to R cross the k –fold iterate of  as s!1. This means that the end
can be parametrized by Œ0;1/�S1 with coordinates �; t , with the almost complex
structure j sending @� to @t , such that if on this end we write u.�; t/D .s.�; t/;y.�; t//

with s.�; t/ 2R and y.�; t/ 2 Y , then lim�!1 s.�; �/D1, and lim�!1 y.�; �/ is a
reparametrization of the k –fold iterate of  . A “negative end” is defined analogously
but with s!�1.

If ˛ D f.˛i ;mi/g and ˇ D f. ǰ ; nj /g are two ECH generators, let M.˛; ˇ/ denote
the moduli space of holomorphic curves in R� Y with positive ends at ˛i of total
multiplicity mi , negative ends at ǰ of total multiplicity nj , and no other ends. If
C 2M.˛; ˇ/, then the projection of C to Y has a well-defined relative homology
class ŒC � 2H2.Y; ˛; ˇ/. We write I.C / WD I.˛; ˇ; ŒC �/.

The key nontrivial property of the ECH index is that if C 2M.˛; ˇ/ is not multiply
covered, then

(2-5) ind.C /� I.C /� 2ı.C /:

Here ind.C / denotes the Fredholm index of C ; if J is generic, then M.˛; ˇ/ is a
manifold near C of dimension ind.C /; see Dragnev [6]. Also, ı.C / is a nonnegative
integer which is zero if and only if C is embedded. The index inequality (2-5) was
proved in a simpler setting in [13, Theorem 1.7] and is proved in the present setting in
[14, Theorem 4.15] with the help of [22].

Another useful fact, which is a special case of [14, Theorem 5.1], is that if C and C 0

are two holomorphic curves whose images in R�Y do not have a common irreducible
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component, then

(2-6) I.C [C 0/� I.C /C I.C 0/C 2C �C 0:

Here C �C 0 denotes the algebraic intersection number of C and C 0 , a nonnegative
integer which is zero if and only if C and C 0 are disjoint.

The above two inequalities imply the following classification of (possibly multiply
covered) holomorphic curves with low ECH index when the almost complex structure
J is generic.

Notation 2.4 Any holomorphic curve C 2M.˛; ˇ/ can be uniquely written as C D

C0 [ C1 , where C0 and C1 are holomorphic curves such that the image of C0 is
a union of R–invariant cylinders in R� Y , while no component of C1 maps to an
R–invariant cylinder.

Lemma 2.5 Suppose J is generic, let ˛ and ˇ be ECH generators, and let C be in
M.˛; ˇ/. Write C D C0[C1 as above. Then:

(a) I.C /� 0, with equality if and only if C D C0 .

(b) If I.C / 2 f1; 2g, then C0 and C1 are disjoint in R � Y ; C1 is embedded in
R�Y ; and ind.C1/D I.C1/D I.C /.

Proof This follows from the inequalities (2-5) and (2-6), as explained eg in [17,
Proposition 7.15].

2.4 The differential

The differential
@W C�.Y; �; �/ �! C��1.Y; �; �/

is defined as follows. Fix a generic almost complex structure J . If ˛ is an ECH
generator with Œ˛�D � , define

@˛ WD
X
ˇ

X
C2M.˛;ˇ/=R

I.C /D1

".C / �ˇ:

Here the first sum is over ECH generators ˇ with Œˇ�D � . In the second sum, two
curves C DC0[C1 and C 0DC 0

0
[C 0

1
in M.˛; ˇ/ are considered equivalent whenever

C1 D C 0
1

. The R action on M.˛; ˇ/ is given by translation of the R coordinate on
R� Y . Finally, ".C / 2 f˙1g is a sign, which depends on some additional choices
described below. However making different choices to define the signs will result in
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isomorphic chain complexes. It is shown in [17, Lemma 7.19 and Theorem 7.20] that
@ is well defined and @2 D 0.

To determine the signs ".C /, one orients all moduli spaces of non–multiply covered
holomorphic curves (with the ends at positive hyperbolic orbits ordered and with no end
of even multiplicity at a negative hyperbolic orbit1) by choosing “coherent orientations”
of the relevant deformation operators with the conventions in [18, Section 9]. The
quotients of such moduli spaces by the R action are then oriented using the “R–
direction first” convention. One also fixes an ordering of the set of all positive hyperbolic
embedded Reeb orbits. Finally, given a curve C D C0[C1 with I.C /D 1, writing
C1 2M.˛0; ˇ0/, we define ".C / to be the orientation of the point C1 2M.˛0; ˇ0/=R.
This orientation is well defined thanks to our assumption that no hyperbolic orbit
appears in an ECH generator with multiplicity greater than one.

We denote the homology of this chain complex by ECH�.Y; �; �/. Although the
differential @ depends on J , it turns out that the homology of the chain complex
does not. This follows from the comparison with Seiberg–Witten Floer homology
below. We also expect that one could prove this directly with holomorphic curves by a
generalization of the proof in [17; 18] that @2 D 0.

2.5 The U map

There is also a degree �2 chain map

U W C�.Y; �; �/ �! C��2.Y; �; �/:

The definition of U was sketched in [16, Section 12], and we give more details here.

To define U , fix a generic almost complex structure J and make the choices described
above that are needed to define the signs in the differential @. Also fix a point y 2 Y

which is not on any Reeb orbit. If ˛ and ˇ are ECH generators, define My.˛; ˇ/ to
be the moduli space of pairs .u; z/ where uW .C; j /! .R� Y;J / is an element of
M.˛; ˇ/, and z 2 C is a marked point with u.z/D .0;y/. Finally, if ˛ is an ECH
generator, define

U˛ WD
X
ˇ

X
C2My.˛;ˇ/

I.C /D2

".C / �ˇ:

Here the sign ".C / is defined as follows. Write C D C0 [ C1 as usual, and write
C1 2M.˛0; ˇ0/. Recall from Lemma 2.5(b) that C1 is embedded in R � Y , and

1For holomorphic curves with even multiplicity ends at negative hyperbolic orbits, one needs to further
choose “asymptotic markings” of such ends in order to orient the moduli spaces.
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M.˛0; ˇ0/ is a 2–dimensional manifold near C1 . Let .v1; v2/ be a positively oriented
basis for TC1

M.˛0; ˇ0/. The tangent vectors v1; v2 determine elements w1; w2 of the
normal bundle to C1 at .0;y/. A standard transversality argument shows that if J is
generic, then w1; w2 are necessarily linearly independent. We then define ".C / to be
C1 if .w1; w2/ is a positively oriented basis for N.0;y/C1 , and �1 otherwise.

Lemma 2.6 Suppose J is generic. Then:

(a) U is well defined.

(b) Suppose C 2M.˛; ˇ/ contributes to U , and write C DC0[C1 as usual. Then
C1 is embedded and connected and ind.C1/D I.C1/D 2.

Proof Note that if J is generic, then:

(i) The elements of My.˛; ˇ/ with I D 2 are isolated points in My.˛; ˇ/.

(ii) .0;y/ is not in the image of any holomorphic curve with I D 1.

Condition (i) follows from the transversality that was discussed in the previous para-
graph. Condition (ii) for generic J follows from Lemma 2.5(b) together with our
assumption that y is not on any Reeb orbit. Assume that J is generic so that (i) and
(ii) hold.

(a) We need to show that if ˛ and ˇ are ECH generators, then the set of holomorphic
curves C 2My.˛; ˇ/ with I.C /D 2 is finite. Suppose to the contrary that C .n/ is
an infinite sequence of distinct such curves for nD 1; 2; : : :. By [17, Lemma 7.23], we
can replace the sequence C .n/ with a subsequence that converges in the sense of [3] to
either a curve in My.˛; ˇ/, or a “broken” curve in which two of the levels have I D 1

and the remaining levels have I D 0. These cases are impossible by conditions (i) and
(ii) above, respectively.

(b) All except the connectedness follows from Lemma 2.5(b). If C1 is disconnected,
then it follows from Lemma 2.5 and the inequality (2-6) that C1 has two components
and each component has I D 1. This contradicts condition (ii) above.

One can then show that U is a chain map:

@U D U @:

The idea of the proof is to count the ends of moduli spaces of I D 3 curves with marked
points mapping to .0;y/. The details are a straightforward modification of the proof
that @2 D 0 in [17; 18], because in the analysis, curves with a marked point constraint
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behave essentially the same way as curves with index one less and no marked point
constraint.

Moreover, up to chain homotopy, U does not depend on the choice of y 2 Y . To
prove this, let y0 2 Y be another point not on any Reeb orbit, and let U 0 denote the
corresponding degree �2 chain map. Choose a path � in Y from y to y0 (here we are
using the assumption that Y is connected). Then counting I D 1 curves with marked
points mapping to the path f0g � � in R�Y , using the same signs as in the definition
of @, defines a degree �1 map K such that

@KCK@D U �U 0:

To prove this last equation, one counts ends and boundary points of the moduli space
of I D 2 curves with marked points mapping to f0g � �, using the exact same gluing
analysis as in the proof that @2 D 0.

In conclusion, we obtain a well-defined map on homology

(2-7) U W ECH�.Y; �; �/ �! ECH��2.Y; �; �/:

Again, the comparison with Seiberg–Witten theory shows that this does not depend
on J , and we expect that this can also be shown directly using holomorphic curves.

2.6 Relation with Seiberg–Witten Floer homology

It is shown in [24] that embedded contact homology is isomorphic to a version of
Seiberg–Witten Floer homology as defined by Kronheimer and Mrowka [19]. The
precise statement is that for each � 2H1.Y /, there is an isomorphism

(2-8) ECH�.Y; �; �/'zHM�.�Y; s.�/CPD.�//

of relatively Z=d.c1.�/C 2 PD.�//–graded abelian groups2. Here s.�/ denotes the
spin-c structure associated to the oriented 2–plane field � as in [19, Section 28].

It is further shown in [25] that, at least up to signs, the isomorphism (2-8) interchanges
the map U in (2-7) with the map

U| W
zHM�.�Y; s.�/CPD.�// �!zHM��2.�Y; s.�/CPD.�//

defined in [19].

The above equivalence, together with known properties of zHM , implies the following
facts about ECH which we will need.

2The right hand side of (2-8) is replaced by the canonically isomorphic group bHM
��
.Y; s.�/CPD.�//

in [24].
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Proposition 2.7 (Finiteness) (a) For each � 2H1.Y / and for each grading �, the
group ECH�.Y; �; �/ is finitely generated.

(b) There are only finitely many � 2H1.Y / such that ECH�.Y; �; �/ is nonzero.

Proof The corresponding facts about zHM� are proved in [19, Lemma 22.3.3 and
Proposition 3.1.1].

Proposition 2.8 (Torsion spin-c structures) Let � 2H1.Y / and suppose that c1.�/C

2 PD.�/ 2H 2.Y IZ/ is torsion, so that ECH�.Y; �; �/ is relatively Z–graded. Then:

(a) ECH�.Y; �; �/ is zero if the grading � is sufficiently small.

(b) ECH�.Y; �; �/ is nonzero for an infinite set of gradings �.

(c) If the grading � is sufficiently large then the U map (2-7) is an isomorphism.

Proof The corresponding properties of zHM are proved as follows. Part (a) follows
from the definition of zHM in [19]. Part (b) is proved in [19, Cor. 35.1.4]. Part (c) is a
consequence of [19, Lemma 33.3.9].

3 More about the holomorphic curves in ECH

We now give some more detailed information which we will need concerning the
structure of the holomorphic curves that contribute to the U map in ECH. (Similar
results hold for the curves that contribute to the ECH differential @, but will not be
needed here.) Throughout this section fix .Y; �/ as in Section 2, and also fix a generic
almost complex structure J on R�Y as needed to define ECH.

3.1 Possible multiplicities of the ends

We begin by recalling some restrictions on the multiplicities of the ends of holomorphic
curves that contribute to U .

If  is an embedded elliptic Reeb orbit, and if � is a trivialization of �j , then � is
homotopic to a trivialization with respect to which the linearized Reeb flow on the
contact planes along  is rotation by angle e2� i� for some real number � , which we
call the monodromy angle of  with respect to � . Our standing assumption that all
Reeb orbits are nondegenerate implies that � is irrational. Changing the trivialization
� shifts � by an integer.

If � is an irrational number, define S� to be the set of positive integers q such that
dq0�e =q0> dq�e =q for all q0 2 f1; : : : ; q�1g. That is, q 2S� if and only if � is better
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approximated from above by a rational number with denominator q than by a rational
number with any smaller denominator. The set S� depends only on the equivalence
class of � in R=Z.

Lemma 3.1 Let C be a holomorphic curve that contributes to U , and write C D

C0[C1 as usual. Let  be an embedded elliptic Reeb orbit with monodromy angle �
with respect to some trivialization. Then:

� If C1 has a positive end at  of multiplicity m, then m 2 S�� .

� If C1 has a negative end at  of multiplicity m, then m 2 S� .

Proof By Lemma 2.6(b), the curve C1 is not multiply covered and has ind.C1/D

I.C1/. The conclusions of the lemma are then part of the necessary conditions for
equality in the index inequality (2-5); see [13, Theorem 1.7] or [14, Theorem 4.15].

We now show that the allowable multiplicities have “density zero”.

Notation 3.2 If A is a subset of the positive integers, define the density of A to be

d.A/ WD lim
N!1

1

N

ˇ̌
A\f1; : : : ;N g

ˇ̌
;

if this limit exists.

Lemma 3.3 Let � be an irrational number. Then S� has density zero.

Proof Write the elements of S� in increasing order as q1; q2; : : : . It is enough to
show that as i !1, the differences qiC1� qi are nondecreasing and tend to infinity.
In fact these differences are some of the elements of S�� , in increasing order, each
repeated some finite number of times. One can prove this by noting that the fractions
dq�e =q for q 2S� and bq�c =q for q 2S�� are the semiconvergents in the continued
fraction expansion of � , and using some basic facts about continued fractions.

3.2 Embeddedness in the 3–manifold

The non–R–invariant components of the holomorphic curves counted by the U map are
embedded in R�Y . Using arguments going back to Hofer, Wysocki and Zehnder [10;
11] and developed further by Siefring [21] and Wendl [26], one can show that under
certain circumstances the projections of these curves to Y are also embeddings, and
the corresponding moduli spaces of holomorphic curves locally give a foliation of Y .
In particular, we will need the following proposition. Some more general criteria for
3–dimensional embeddedness and foliations are discussed in [21; 26].
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Proposition 3.4 Assume that J is generic. Let C be a holomorphic curve that
contributes to U , and decompose C D C0[C1 as usual. Suppose that C1 has genus
zero, all ends of C1 are at elliptic Reeb orbits, and C1 does not have two positive ends
or two negative ends at the same Reeb orbit. Then:

(a) The projection of C1 to the three-manifold Y is an embedding. Moreover the
projections to Y of the holomorphic curves in the same moduli space component
as C1 give a foliation of some subset of Y .

(b) C1 does not have both a positive end and a negative end at the same Reeb orbit.

Proof The proof has seven steps.

Step 1 Let C be a non–R–invariant connected holomorphic curve. We begin by
recalling the asymptotic behavior of an end of C at an embedded Reeb orbit  ;
for details, see Hofer, Wysocki and Zehnder [9], Siefring [22] and Hutchings and
Taubes [18].

By rescaling we may assume that  is parametrized by S1 DR=Z. The asymptotic
operator associated to  is the operator

L W C
1. ��/ �! C1. ��/

defined by
L WD JrR

t ;

where t denotes the S1 coordinate and rR denotes the connection on  �� given
by the linearized Reeb flow. More explicitly, choose a complex linear, symplectic
trivialization � of  �� ; then in this trivialization,

L D
p
�1

d

dt
CS.t/

where S.t/ is a symmetric 2� 2 matrix. If k is a positive integer, let  k denote the
k –fold iterate of  , ie the pullback of  to R=kZ. Then the asymptotic operator
associated to  k is given in the above trivialization by

(3-1) Lk D
p
�1

d

dzt
CS.�.zt //;

where zt denotes the R=kZ coordinate and � W R=kZ!R=Z denotes the projection.

Now identify a tubular neighborhood of  with S1�D , where D is a disk in C , such
that the derivative of this identification agrees with � . A positive end of C at  of
multiplicity k is then described by a map

ŒR;1/�R=kZ �!R�S1
�D;

.s; zt / 7�! .s; �.zt /; '.s; zt //:
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Moreover the function ' satisfies

(3-2) '.s; zt /D e��s.�.zt /C �.s; zt //;

where �W S1! C is a nonzero eigenfunction of the asymptotic operator Lk with
eigenvalue �> 0, while �.s; zt / and all of its derivatives decay exponentially as s!1.
A negative end of C at  is similarly described by

(3-3) '.s; zt /D e��s.�.zt /C �.s; zt //

for s 2 .�1;R�, where � is a nonzero eigenfunction of Lk with eigenvalue � < 0,
and the function �.s; zt / and all of its derivatives decay exponentially as s!�1.

Note that the eigenfunction � in (3-2) or (3-3) can never vanish, by Equation (3-1) and
the uniqueness of solutions to ODE’s. Furthermore, as shown in [10], if  is elliptic
with monodromy � with respect to � , then for a positive end � has winding number at
most

(3-4) wind.�/� bk�c ;

while for a negative end � has winding number at least

(3-5) wind.�/� dk�e :

Step 2 We now deduce an important inequality. Suppose that the holomorphic curve
C is connected, immersed and non–R–invariant. Let  denote the section of the
normal bundle to C given by the projection of @=@s , where s denotes the R coordinate
on R� Y . A calculation using the above asymptotic formulas and winding bounds
along with similar winding bounds for the hyperbolic ends (cf [10]) shows that the
algebraic count of zeroes of  is finite and satisfies

(3-6) 2 # �1.0/� 2g.C /� 2C ind.C /C hC.C /;

where hC.C / denotes the number of ends of C at positive hyperbolic orbits (or at
negative hyperbolic orbits with even multiplicity).

Step 3 Now write C WD C1 . Lemma 2.6 implies that C is connected, embedded in
R� Y and has Fredholm index ind.C /D 2. Thanks to our hypotheses and the fact
that ind.C /D 2, the right hand side of (3-6) equals zero. On the other hand, because
 satisfies a linear PDE with the same symbol as a Cauchy–Riemann equation, all
zeroes of  have positive multiplicity. Consequently  has no zeroes, and it follows
that the projection of C to Y is at least an immersion.
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Step 4 Let � denote the asymptotic eigenfunction associated to an end of C at 
with multiplicity k . We claim that there does not exist a solution to the equation

�.zt /D r�.zt C l/; r > 0; zt 2R=kZ; l 2 f1; : : : ; k � 1g:

If a solution to the above equation exists, then it follows from (3-1) and the uniqueness
of solutions to ODE’s that r D 1 and � is the pullback of an eigenfunction of Lk0

where k 0 < k is a divisor of k . But this cannot happen because the winding number
wind.�/ is relatively prime to k . To prove this last fact, one notes that the winding
bounds (3-4) and (3-5) are sharp here, eg because equality holds in (3-6), and then
applies Lemma 3.1.

Step 5 For � > 0, let C.�/ denote the holomorphic curve in R�Y obtained from
C by translation in the R direction by distance � .

Claim There exists R> 0 such that if � > 0 is sufficiently small, then any intersection
of C with C.�/ has jsj<R.

Proof There is an obvious bijection between the ends of C and those of C.�/. Two
noncorresponding ends of C and C.�/ cannot intersect where � is small and jsj is
large by the last of our hypotheses. To show that an end of C cannot intersect the
corresponding end of C.�/ where � is small and jsj is large, one uses the asymptotic
formulas (3-2) and (3-3) together with Step 4, as follows. For say a positive end, it is
enough to show that the function ' in (3-2) cannot admit a solution to the equation

(3-7) '.s; zt /D '.sC �; zt 0/

where s is large and � > 0 and �.zt /D �.zt 0/. We consider Equation (3-7) in polar
coordinates. By Step 4, if s is large then the two sides of (3-7) cannot have the same
angular coordinate except when zt Dzt 0 . But then the two sides of (3-7) cannot have the
same radial coordinate, because when s is large the derivative of the radial coordinate
of '.s; zt / with respect to s is negative by (3-2).

It follows from the above claim that C is disjoint from C.�/ when � > 0 is sufficiently
small. Otherwise we could take a sequence of intersections fxng of C with C.�n/

where �n! 0, and by the claim we could pass to a convergent subsequence. The limit
of this subsequence would then be a zero of  , contradicting Step 3.

Step 6 We now complete the proof of part (a). To prove that the projection of C to
Y is an embedding, it is enough to show that C is disjoint from C.�/ for all � > 0.
More generally, to prove all of part (a) it is enough to show that if C 0 ¤ C is any
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holomorphic curve in the same moduli space component as C , then C and C 0 are
disjoint.

It follows from the detailed asymptotics in [22] that C and C 0 have only finitely many
intersections. By [13, Lemma 8.5], the algebraic count of intersections of C and C 0 is
given by

C �C 0 DQ� .C /C `� .C;C
0/:

Here � is a trivialization of � over all the Reeb orbits at which C has ends, and
`� .C;C

0/ denotes the “asymptotic linking number” of C and C 0 with respect to � ,
defined in [13, Section 8.2] or [14, Section 2.7].

The asymptotic linking number is bounded from above by

(3-8) `� .C;C
0/�

X
2PC

k bk�c�
X
2P�

k dk�e :

Here the first sum is over the Reeb orbits  at which C has a positive end, the second
sum is over the Reeb orbits  at which C has a negative end, and in each summand, �
denotes the monodromy angle of  with respect to � and k denotes the multiplicity
of the corresponding end of C . The inequality (3-8) is a special case of a linking
bound which is proved in a simpler situation in [13, Lem. 6.9] and which follows in
the present case by the asymptotic analysis in [22]. Thus we obtain an upper bound on
the algebraic intersection number:

(3-9) C �C 0 �Q� .C /C
X
2PC

k bk�c�
X
2P�

k dk�e :

The right hand side of (3-9) is a topological invariant of C which does not depend on
C 0 . If C 0DC.�/ where � > 0 is small, then it follows from the asymptotics discussed
above that the inequality (3-8), and hence the inequality (3-9), is sharp. On the other
hand we know from Step 5 that C �C 0D 0 in this case. Thus (3-9) says that C �C 0 � 0

for all C 0 . It follows by intersection positivity that C and C 0 are disjoint for all C 0 .

Step 7 We now prove part (b). Suppose  is an embedded elliptic Reeb orbit at which
C has both a positive and a negative end. Let T denote the boundary of a small tubular
neighborhood of  . Let � be a trivialization of � over  and identify T ' S1 �S1

compatibly with this trivialization, where the first S1 factor is identified with  . Let
� denote the monodromy angle of  with respect to � .

It follows from the above asymptotic formulas and winding bounds that the projection
of the positive end of C to Y intersects T transversely in a circle representing a
homology class .qC;pC/ 2H1.T

2/, such that qC is the multiplicity of the end and
pC=qC < � . Likewise, the projection of the negative end of C to Y intersects T
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transversely in a circle with homology class .q�;p�/ satisfying p�=q� > � . Since
pC=qC ¤ p�=q� , the positive and negative circles in T must intersect, contradicting
part (a).

3.3 Euler characteristic

We next recall from [14, Section 6] a variant of the ECH index, denoted by J0 , which
bounds the negative Euler characteristic of holomorphic curves, similarly to the way
that the ECH index I bounds the Fredholm index in (2-5).

If ˛ D f.˛i ;mi/g and ˇ D f. ǰ ; nj /g are ECH generators with Œ˛� D Œˇ�, and if
Z 2H2.Y; ˛; ˇ/, one defines

(3-10) J0.˛; ˇ;Z/ WD � c� .Z/CQ� .Z/C
X

i

mi�1X
kD1

CZ� .˛k
i /�

X
j

nj�1X
kD1

CZ� .ˇk
j /:

Here � is a trivialization of � over the Reeb orbits ˛i and ǰ ; one can check that J0 ,
like I , does not depend on � , even though the individual terms in its definition do.
Also, like the ECH index, J0 is additive in the sense that

(3-11) J0.˛; ˇ;Z/CJ0.ˇ; ;W /D J0.˛; ;ZCW /:

If C 2M.˛; ˇ/ is a holomorphic curve, we write J0.C / WD J0.˛; ˇ; ŒC �/.

We now have the following bound on topological complexity in terms of J0 .

Lemma 3.5 Let C 2M.˛; ˇ/ be a holomorphic curve that contributes to U . Write
C D C0[C1 as usual. Then

(3-12) J0.C /� 2g.C1/� 2C
X

i

.2nCi C tCi � 1/C
X

j

.2n�j C t�j � 1/:

Here g.C1/ denotes the genus of C1 ; nCi denotes the number of positive ends of C1 at
˛i and n�j denotes the number of negative ends of C1 at ˇ�j ; tCi is 1 if the image of
C0 contains R�˛i and 0 otherwise; and t�j is 1 if the image of C0 contains R� ǰ

and 0 otherwise3.

Proof Since C1 is embedded by Lemma 2.6(b), one can apply [14, Proposition 6.9]
to obtain

(3-13) J0.C1/� 2g.C1/� 2C
X

i Wn
C

i
>0

.2nCi � 1/C
X

j Wn�
j
>0

.2n�j � 1/:

3In fact equality holds in (3-12) here. One can show this by the arguments in [14], or by a more direct
calculation using the necessary conditions for equality in (2-5). However we will not need this.
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Also [14, Proposition 6.14] implies that

(3-14) J0.C /� J0.C0/CJ0.C1/C
X

i Wn
C

i
>0

tCi C
X

j Wn�
j
>0

t�j :

Finally, it follows from the definition of J0 that

(3-15) J0.C0/D 0:

Combining (3-13), (3-14) and (3-15) proves the lemma.

It follows immediately from the inequality (3-12) that

(3-16) J0.C /� �1;

since all of the summands in the sums over i and j are nonnegative and C1 has at
least one end. We also deduce the following criterion for recognizing holomorphic
cylinders in a certain situation which will arise later.

Lemma 3.6 Let 1 and 2 be distinct embedded elliptic Reeb orbits and let ˛ D
m1

1
m2

2
and ˛0 D m0

1
1
m0

2
2

with m1;m2;m
0
1
;m0

2
¤ 0. Suppose C 2 M.˛; ˛0/

contributes to U , and write C D C0[C1 as usual. Assume that C1 has ends at both
1 and 2 . Then:

(a) J0.C /� 2.
(b) If J0.C /D 2, then C1 is a cylinder.

Proof (a) In this situation the inequality (3-12) can be rewritten as

(3-17)
1

2
J0.C /� g.C1/� 3C

2X
iD1

�
nCi C n�i CTi

�
;

where Ti is defined to be 1 if the image of C0 contains R�i and 0 otherwise. Since
C1 has ends at both 1 and 2 , we have nCi C n�i � 1. Also, since mi ;m

0
i ¤ 0, it

follows that

(3-18) Ti D 0 H) nCi ; n
�
i � 1:

So in all cases we have

(3-19) nCi C n�i CTi � 2:

Putting (3-19) into (3-17) gives J0.C /� 2.

(b) By the above, if J0.C /D 2 then g.C1/D 0 and nCi C n�i CTi D 2 for i D 1; 2.
If T1 D T2 D 1, then it follows immediately that C1 is a cylinder so we are done. If
some Ti D 0, then nCi D n�i D 1 by (3-18). But this contradicts Proposition 3.4(b).
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4 Contact 3–manifolds with all Reeb orbits elliptic

We now prove Theorem 1.2. The proof occupies Sections 4.1–4.7 below. We then
prove Theorem 1.3 in Section 4.8.

4.1 Initial input from Seiberg–Witten theory

Throughout the proof of Theorem 1.2, fix a closed oriented connected 3–manifold Y

with a contact form � such that all Reeb orbits are nondegenerate and elliptic. Also
fix a generic almost complex structure on R� Y in order to define the ECH chain
complex.

We begin by using Propositions 2.7 and 2.8 from Seiberg–Witten theory to make some
basic observations which will be used repeatedly below.

Lemma 4.1 Under our assumption that all Reeb orbits are nondegenerate and elliptic:

(a) All differentials in the ECH chain complex vanish.

(b) If  is a Reeb orbit then Œ � is torsion in H1.Y /.

(c) c1.�/ is torsion in H 2.Y IZ/.

Proof (a) Equation (2-4) and our assumption that all Reeb orbits are elliptic imply
that the relative index I.˛; ˇ/ is always even, so the differential vanishes.

(b) If  is an embedded Reeb orbit, then for each nonnegative integer m, the ECH
generator m represents a nonzero class in ECH�.Y; �;mŒ �/. If Œ � is not torsion, then
the homology classes fmŒ �gmD0;1;::: give infinitely many � for which ECH�.Y; �; �/
is nonzero, contradicting Proposition 2.7(b).

(c) Since c1.�/ is divisible by 2 in H 2.Y IZ/, there exists � 2 H1.Y / such that
c1.�/ C 2 PD.�/ D 0. By Proposition 2.8(b), there exists an admissible orbit set
˛ D f.˛i ;mi/g with Œ˛�D

P
i mi Œ˛i �D � . It then follows from part (b) that c1.�/ is

torsion.

This lemma simplifies the computation of the ECH index as follows. Let ˛ and ˇ be
two ECH generators with Œ˛� D Œˇ� 2 H1.Y /, let � be a trivialization of � over the
Reeb orbits in ˛ and ˇ , and let Z 2H2.Y; ˛; ˇ/. Then by Equation (2-1), the relative
first Chern class c� .Z/ depends only on ˛ , ˇ and � , so we can denote it by c� .˛; ˇ/.
Likewise, by Equation (2-2), the relative intersection pairing Q� .Z/ depends only on
˛ , ˇ and � , so we can denote it by Q� .˛; ˇ/.
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4.2 Computing the ECH index

We now compute the ECH index of all of the ECH generators. For simplicity, let
us temporarily assume that all Reeb orbits are nullhomologous; we will remove this
assumption in Section 4.7.

Let 1; : : : ; n denote the distinct embedded Reeb orbits. (At this point in the argument
there could be infinitely many of them, in which case n should be replaced by 1
in the summations below.) The ECH generators have the form m1

1
� � � 

mn
n where

m1; : : : ;mn are nonnegative integers. This product notation is shorthand for the orbit
set f.i ;mi/ j i D 1; : : : ; nI mi ¤ 0g.

Since c1.�/ is torsion and all of the Reeb orbits are nullhomologous, the relative index
on ECH has a unique refinement to an absolute index which assigns to each generator ˛
an integer I.˛/ such that I.˛; ˇ/ D I.˛/ � I.ˇ/ and I.∅/ D 0. To describe this
integer, fix a trivialization � of the contact structure � over the i ’s. The index of an
ECH generator ˛ D m1

1
� � � 

mn
n is then given by

I.˛/D c� .˛/CQ� .˛/C

nX
iD1

miX
kD1

CZ� . k
i /:

Here c� .˛/ is shorthand for c� .˛;∅/, and Q� .˛/ is shorthand for Q� .˛;∅/.

To make this more explicit, define ci WD c� .i ;∅/ and Qi WD Q� .i ;∅/. Also, for
i ¤ j define Qij WDQ� .Zi ;Zj / where Zi 2H2.Y; i ;∅/ and Zj 2H2.Y; j ;∅/.
In fact it follows from the definition of Q in [13; 14] that Qij does not depend on
Zi , Zj , or � and is just the linking number of i and j . Finally, let �i denote the
monodromy angle of i with respect to � ; see Section 3.1. Since c� is linear in the
relative homology class, we have

c� .˛/D

nX
iD1

mici :

Also Q� is quadratic in the sense that

(4-1) Q� .˛/D

nX
iD1

m2
i Qi C

X
i¤j

mimj Qij

(see [13, Equation (68)] or [14, Equation (3.11)]). Finally, the Conley–Zehnder terms
are given explicitly by

CZ� . k
i /D 2 bk�icC 1:
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To simplify the resulting expression for the ECH index, define

�i WD .ci �Qi C 1/=2; �i WDQi C �i :

We then obtain

(4-2)
1

2
I.˛/D

nX
iD1

mi�i C

X
i<j

mimj Qij C

nX
iD1

miX
kD1

bk�ic :

We remark that the quantities �i and �i are natural to consider because they do not
depend on � (even though ci , Qi and �i do). In fact Qi � ci agrees with a familiar
quantity from contact topology, namely the self-linking number of the transverse knot i

(see eg Geiges [7, Section 3.5.2]); while �i is some irrational number.

Example 4.2 Suppose Y is an ellipsoid�
.z1; z2/

ˇ̌̌̌
jz2

1
j

a1

C
jz2j

2

a2

D 1

�
�C2;

where a1=a2 is irrational, with the standard contact form. Here there are exactly two
Reeb orbits, both elliptic, given by the circles z1 D 0 and z2 D 0. One can calculate
that �1 D �2 DQ12 D �1�2 D 1. It is an exercise to deduce from Equation (4-2) that
there is exactly one generator of each nonnegative even index4, as there should be since
Y ' S3 and the Seiberg–Witten Floer homology zHM of S3 is known to have one
generator in each nonnegative even degree. It is interesting to compare this example
with the characterization of ellipsoids in terms of linearized contact homology in [2].

4.3 Proof that there are exactly two embedded orbits

We now prove that nD 2. The idea is to use Proposition 2.8 and argue that if nD 1

then there are not enough generators in a given index range, and if n � 3 then there
are too many.

By estimating k�i � 1� bk�ic � k�i in Equation (4-2), we find that the ECH index
is approximated by

(4-3) I.˛/D SQ.m1; : : : ;mn/CO.m1C � � �Cmn/;

4The solution to the exercise is to consider the line L in the plane with slope ��1 passing through the
point .m1;m2/ . The right side of (4-2) is then the number of lattice points in the triangle consisting of the
line L and the coordinate axes (including lattice points on the boundary), minus 1 . As one moves the
line L up and to the right, keeping its slope fixed, one hits all of the lattice points in the positive quadrant
in succession, and each lattice point has index 2 greater than the previous one.
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where SQ denotes the quadratic form

SQ.m1; : : : ;mn/ WD

nX
iD1

m2
i �i C

X
i¤j

mimj Qij :

Also recall that the numbers �i are irrational. It follows that n� 2, because if n< 2,
then the number of ECH generators with index � k is bounded from above by a linear
function of

p
k plus a constant, so there are not enough generators of large index to

satisfy Proposition 2.8(b),(c).

On the other hand, it follows from (4-3) that there is a constant c such that

I.˛/� c.m2
1C � � �Cm2

nC 1/:

Hence the number of ECH generators with index � k is bounded from below by a
constant times .k � c/n=2 . But by Propositions 2.7(a) and 2.8(a),(c), the number of
generators of index �k is bounded from above by a linear function of k plus a constant.
Thus n� 2.

4.4 A lower bound on the ECH index

With nD 2 proved, we now establish an additional estimate on the ECH index which
will be needed later:

Lemma 4.3 There are constants c1; c2> 0 such that if ˛D m1
1
m2

2
with m1;m2� 0,

then
I.˛/� c1.m

2
1Cm2

2/� c2:

Proof By the estimate (4-3), if ˛ D m1
1
m2

2
with m1;m2 � 0 then

I.˛/� SQ.m1;m2/�L.m1;m2/;(4-4)

I.˛/� SQ.m1;m2/CL.m1;m2/;(4-5)

where L is a linear function. By the lower bound in (4-4), it is enough to show that
SQ.m1;m2/ > 0 whenever m1 and m2 are nonnegative and not both zero. It follows
from Proposition 2.8(a) and the upper bound in (4-5) that SQ is nonnegative on all lines
of rational slope in the quadrant f.m1;m2/ jm1;m2 � 0g. Therefore SQ is nonnegative
on the whole quadrant. Moreover SQ is positive on the coordinate axes (minus the
origin), because �1 and �2 are irrational. So we just need to rule out the case where
SQ is degenerate and its null space has positive slope.

In the case to be ruled out,

SQ.m1;m2/D �1.m1��m2/
2
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where �1; � > 0. We can then complete the square in the upper bound (4-5) to obtain

(4-6) I.˛/� �1.m1��m2C a1/
2
C a2m1C a3

where a1 , a2 , a3 are constants. But this contradicts the linear growth in the number
of ECH generators with index � k as k!1. To see this, note that if a2 � 0, then
by taking lattice points near the line m1 D �m2 we can find infinitely many ECH
generators with index bounded from above. And if a2 > 0, then calculation using (4-6)
shows that the number of ECH generators with index � k grows as at least k3=2 .

We remark that in Example 4.2, the quadratic form SQ is degenerate, and its null space
has negative slope.

4.5 Existence of a holomorphic cylinder

We now put everything together to prove:

Lemma 4.4 Let 1 and 2 denote the distinct embedded Reeb orbits as above. Then
there exist positive integers m1 , m2 and an I D 2 cylinder C in M.m1

1
; m2

2
/ or

M.m2
2
; m1

1
/ or M.m1

1
m2

2
;∅/.

Proof By Proposition 2.8, if k0 is a sufficiently large integer, then there exist ECH
generators of index 2k0 , and the U map is an isomorphism in all degrees higher than
2k0 . Let ˛.0/ be a generator with I.˛.0//D 2k0 . By induction on k we can find a
sequence of ECH generators ˚

˛.k/D m1.k/
1 m2.k/

2

	
indexed by k � 0 such that for each k � 1, there exists

C.k/ 2M.˛.k/; ˛.k � 1//

which contributes to U . In particular,

(4-7) I.˛.k//D 2.k0C k/:

Now we consider positive integers k such that the curves C.k/ have certain desirable
properties. Let

A1 WD fk > 0 jmi.k/;mi.k � 1/¤ 0 for i D 1; 2g;

A2 WD fk > 0 jmi.k/ … S��i
and mi.k � 1/ … S�i

for i D 1; 2g;

A3 WD fk > 0 j C.k/1 has ends at both 1 and 2, or J0.C.k//� 3g;

A4 WD fk > 0 j J0.C.k//D 2g:
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Here in the definition of A3 we are decomposing C.k/ D C.k/0 [C.k/1 as usual.
It is enough to show that A1 \A3 \A4 is nonempty, because if k 2 A1 \A3 \A4

then Lemma 3.6(b) is applicable to the curve C.k/, and C.k/1 is the cylinder we
are seeking. To prove that A1 \A3 \A4 is nonempty, we will show that for each
j D 1; 2; 3; 4 the set Aj has density 1. (The fact that A2 has density 1 will be used
in the proofs that A3 and A4 do.)

To show that A1 has density 1, note that since I.˛.k// grows linearly with k ; see
Equation (4-7), it follows from Lemma 4.3 that

(�) There is a constant c such that for each positive integer N , the N C 1 points
.m1.0/;m2.0//; : : : ; .m1.N /;m2.N // are all contained in a ball of radius
c.
p

N C 1/ centered at the origin.

Consequently jf1; : : : ;N gnA1j grows as at most
p

N , so A1 has density 1. Likewise,
(�) and Lemma 3.3 imply that A2 has density 1.

We now show that A3 has density 1. Since A1 and A2 have density 1, it is enough
to show that .A1 \A2/ nA3 has density 0. Suppose k 2 .A1 \A2/ nA3 and let
C WD C.k/. Since k … A3 , without loss of generality C1 has ends only at 1 , and
J0.C /� 2. These two conditions, together with the assumption k 2A1 and Lemma
3.5, imply that

g.C1/C nC
1
C n�1 CT1 � 3:

Here nC
1

denotes the number of positive ends of C1 at 1 ; n�
1

denotes the number
of negative ends of C1 at 1 ; and T1 is defined to be 1 if the image of C0 contains
R� 1 and zero otherwise. Note also that nC

1
� 1 since any holomorphic curve of the

type we are considering must have at least one positive end. We then deduce from the
above inequality that at least one of the following cases holds:

(i) C1 has no negative end.

(ii) The image of C0 does not contain R� 1 , and C1 has exactly one positive end
or exactly one negative end.

(iii) C1 is a cylinder with both positive and negative ends.

Now case (ii) is impossible by our assumption that k 2 A2 and Lemma 3.1. And
case (iii) is impossible by Proposition 3.4(b). So to complete the proof that A3 has
density 1, it is enough to show that case (i) only happens for k in a set of density zero.

If case (i) holds, let �C1 denote the union of C1 with the part of C0 that maps to R�1 .
By the superadditivity of the ECH index in Equation (2-6) and Lemma 2.6(b), we have
2D I.C /� I.�C1/� I.C1/D 2; so

I.�C1/D I.C1/D 2:
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That is, writing m WDm1.k/ and m0 WDm1.k � 1/, we have

I.m
1 /� I.m0

1 /D I.m�m0

1 /D 2:

By Equation (4-2), this is equivalent to

m�m0X
kD1

�
.m0C k/�1

˘
D

m�m0X
kD1

bk�1c D 1� �1.m�m0/:

Recall that �1> 0. Now the left equality requires that m0�d1=�1e, because otherwise
each term in the left sum would be greater than the corresponding term in the right
sum. And the right equality can only hold for finitely many values of m�m0 , because
the left side is approximated by a quadratic function of m�m0 while the right side
is a linear function of m�m0 . We conclude that case (i) can only hold for finitely
many pairs .m1.k/;m1.k � 1//, and by (�) again this can only happen for k in a set
of density zero.

To show that A4 has density 1, we first show that J0 is “close” to I . In the present
situation, the relative index J0 , just like I , can be uniquely refined to an absolute index
which associates to each ECH generator an integer, such that J0.˛; ˇ/DJ0.˛/�J0.ˇ/

and J0.∅/D 0. Similarly to (4-2), we find that if ˛ D m1
1
m2

2
, then

1

2
J0.˛/D

2X
iD1

mi.1� �i/Cm1m2Q12C

2X
iD1

mi�1X
kD1

bk�ic�
1

2
#fi jmi ¤ 0g:

Subtracting this from Equation (4-2), we obtain

I.˛/�J0.˛/D

2X
iD1

mi.4�i � 2/C 2

2X
iD1

bmi�icC #fi jmi ¤ 0g:

This equation implies that there is a constant c such that

jJ0.˛/� I.˛/j � c.m1Cm2/:

It follows using (�) that for any " > 0, if N is sufficiently large then

jJ0.˛.N //� I.˛.N //j � "N:

Then by Equation (4-7), for any " > 0, if N is sufficiently large then

(4-8) J0.˛.N //�J0.˛.0//� .2C "/N:
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On the other hand, by the additivity of J0 , we have

(4-9) J0.˛.N //�J0.˛.0//D

NX
kD1

J0.C.k//:

Now it follows from Lemma 3.6(a) that J0.C.k// � 2 for all k in the set A1 \A3 ,
which has density 1. Also recall from (3-10) and (3-16) that J0.C.k// is always an
integer and always at least �1. Combining this with (4-8) and (4-9), we conclude that
J0.C.k//D 2 for k in a set of density 1.

4.6 Existence of a genus one Heegaard splitting

To complete the proof of Theorem 1.2 (modulo our temporary simplifying assumption
that all Reeb orbits are nullhomologous), we now show that Y has a genus 1 Heegaard
splitting such that the Reeb orbits 1 and 2 are the core circles of the corresponding
solid tori.

By Lemma 4.4, without loss of generality there exists a cylinder C 2M.m1
1
; m2

2
/,

for some m1;m2 ¤ 0, with ECH index I.C / D 2. (It makes no difference in the
argument below if both ends of C are positive.) Let MC denote the component of
M.m1

1
; m2

2
/ containing C . Let � W R�Y !Y denote the projection. By Proposition

3.4(a), �.C / is embedded in Y , and the projections to Y of the cylinders in MC

comprise a foliation of some subset of Y . Since all ECH generators have even index,
it follows from the compactness theorem in [13, Theorem 1.8] or [17, Lemma 7.23]
that the moduli space MC =R is compact. Therefore the projections of the cylinders
in MC foliate all of Y n .1[ 2/, and MC =R' S1 .

For each i D 1; 2 let Ti � Y denote a torus given by the boundary of a small closed
tubular neighborhood Ni of i . It follows from the asymptotics for holomorphic curves
reviewed in Section 3.2 that the end at i of each holomorphic curve in MC , when
projected to Y , intersects the torus Ti transversely in a single circle. These circles
then foliate the torus Ti .

It follows that if C 0 2MC , then �.C 0/ intersects Ni only in a single half-closed
cylinder corresponding to the end of C 0 at i . Thus �.C 0/ intersects Y n int.N1[N2/

in a closed cylinder. For each element of MC =R, we can choose a diffeomorphism of
this closed cylinder with S1� Œ1; 2�, sending the corresponding circle in Ti to S1�fig.
There is no obstruction to choosing these diffeomorphisms to be smooth functions on
MC =R' S1 , so that they combine to give a diffeomorphism

'W S1
�S1

� Œ1; 2�
'
�! Y n int.N1[N2/
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identifying S1 �S1 � fig with Ti . Now

N1['.S
1
�S1

� Œ1; 3=2�/

N2['.S
1
�S1

� Œ3=2; 2�/and

are solid tori in Y which give the desired Heegaard splitting.

4.7 Removing the simplifying assumption

We now prove Theorem 1.2 without assuming that all Reeb orbits are nullhomologous.

As in Section 4.2, let 1; : : : ; n denote the distinct embedded Reeb orbits. We know
from Lemma 4.1(b) that these represent torsion homology classes, so for each i D

1; : : : ; n let li denote the smallest positive integer such that  li
i is nullhomologous.

If m1; : : : ;mn are nonnegative integers such that li divides mi for each i , then
m1

1
� � � 

mn
n is a nullhomologous orbit set. As such it has a well-defined absolute ECH

index. To compute this, similarly to Section 4.2, let � be a trivialization of � over the
i ’s, let ci WD c� .

li
i ; �/= li , let Qi WDQ� .

li
i ; �/= l2

i , for i ¤ j let Qi;j denote the
linking number of  li

i and  lj
j divided by lilj , and let �i denote the monodromy angle

of i with respect to � . Then just as in (4-2),

(4-10) I.m1
1 � � � mn

n /D

nX
iD1

.cimiCQim
2
i /C

X
i¤j

mimj QijC

nX
iD1

miX
kD1

.2 bk�icC1/:

In fact, the linear property of c� and the quadratic property of Q� imply that the index
formula (4-10) is valid for any nullhomologous ECH generator m1

1
� � � 

mn
n , not just

one in which each mi is a multiple of li .

We can approximate the index formula (4-10) by

I.m1
1 � � � mn

n /D SQ.m1; : : : ;mn/CO.m1C � � �Cmn/;

where the quadratic form SQ is defined by

SQ.m1; : : : ;mn/ WD

nX
iD1

.Qi C �i/m
2
i C

X
i¤j

mimj Qij :

The same argument as in Section 4.3 then shows that nD 2. Also the same argument
as in Section 4.4 shows that Lemma 4.3 still holds for nullhomologous ECH generators.
One just needs to divide each estimate on the number of nullhomologous ECH generators
by the density of the lattice˚

.m1;m2/ 2 Z2
jm1Œ1�Cm2Œ2�D 0 2H1.Y /

	
:

Geometry & Topology, Volume 13 (2009)



930 Michael Hutchings and Clifford Henry Taubes

Lemma 4.4 then holds by the same argument, using a sequence of nullhomologous ECH
generators provided by Proposition 2.8. Finally, the argument in Section 4.6 produces
a genus 1 Heegaard splitting just as before. Note that Y 6' S1 �S2 because Œ1� and
Œ2� are torsion. So Y is a lens space, and the proof of Theorem 1.2 is complete.

4.8 The theorem on three Reeb orbits

Proof of Theorem 1.3 Let Y be a closed oriented connected 3–manifold with a
contact form � such that all Reeb orbits are nondegenerate, and fix a generic almost
complex structure on R�Y to define ECH.

First note that if all Reeb orbits are hyperbolic, then there must be infinitely many
distinct embedded Reeb orbits. Otherwise by definition the ECH chain complex would
have only finitely many generators, contradicting Proposition 2.8.

So by Theorem 1.2, it is enough to rule out the case where there are exactly two
embedded Reeb orbits, one elliptic and one hyperbolic. Suppose that this holds and
denote these orbits by e and h respectively. The ECH generators are now emhn where
m� 0 and n 2 f0; 1g.

By Proposition 2.8(b), there exists � 2H1.Y / such that there are infinitely many ECH
generators ˛ with Œ˛�D � . It follows that the homology class Œe� 2H1.Y / is torsion.

The homology class Œh� is also torsion. Proof: If Œh� is not torsion then the ECH
differential vanishes identically as in Lemma 4.1(a). Since Œe� is torsion, it follows that
ECH�.Y; �; �/ is infinitely generated for both � D 0 and � D Œh�. Since Œh� is not
torsion, at least one of these classes � must have the property that c1.�/C 2 PD.�/ 2
H 2.Y IZ/ is not torsion. For such a class � there are only finitely many possible values
of the grading on ECH�.Y; �; �/, and now Proposition 2.7(a) gives a contradiction.

Since all Reeb orbits represent torsion homology classes, the cohomology class c1.�/2

H 2.Y IZ/ is then also torsion, as in Lemma 4.1(c).

If Œh�¤ 0, then the same argument as in Section 4.3 gives a contradiction, by showing
that ECH�.Y; �; 0/ does not have enough generators in a given index range in order to
be consistent with Proposition 2.8. If Œh�D 0 then this argument also works, because
I.emh/ differs from I.em/ by a linear function of m.

5 The Weinstein conjecture for stable Hamiltonian structures

This section is devoted to the proof of the main theorem, Theorem 1.1.
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5.1 Warmup cases

We first prove the theorem in the special cases when f vanishes either nowhere or
everywhere.

If f is nowhere vanishing, then Y is a contact manifold (with the opposite orientation
if f < 0), so the theorem in this case is just the Weinstein conjecture which we already
know (even if Y is a T 2 –bundle over S1 ).

Now suppose f D 0, so that the 1–form � is closed. Since �^! > 0, it follows that
Œ��^ Œ!�¤ 0 in H 3.Y IR/, so � represents a nonzero cohomology class in H 1.Y IR/.
We can then add a small closed 1–form so as to replace � by a closed 1–form �0

which represents a real multiple of an integral cohomology class and still satisfies
�0 ^! > 0 everywhere. Since Œ�0� is a multiple of an integral class, there is a fiber
bundle � W Y ! S1 such that �0 is a multiple of the pullback of the volume form on
S1 . Since �0 ^! > 0, it follows that ! restricts to a symplectic form on each fiber
of � . Since R is in the kernel of ! , we deduce that R is transverse to the fibers.
If F is a fiber, then the return map of the flow R defines an orientation-preserving
diffeomorphism �W F ! F , and closed orbits of R are equivalent to periodic orbits
of � . By replacing � with an iterate if necessary, we may assume without loss of
generality that F is connected. The theorem in this case now follows from part (a) of
the following lemma. Part (b) will be needed later.

Lemma 5.1 Let F be a closed oriented connected surface and let �W F ! F be
an orientation-preserving diffeomorphism. Suppose that � has only finitely many
irreducible periodic orbits and that all periodic orbits are nondegenerate and elliptic5.
Then:

(a) If � has no periodic orbits, then F is a torus.

(b) Otherwise F is a sphere, � has exactly two fixed points, and these are the only
irreducible periodic orbits.

Proof Let A denote the induced map ��W H1.F /!H1.F /. Since all periodic orbits
are elliptic, every periodic point of � of period p counts with weight C1 in the
Lefschetz fixed point formula for �p . We then have the identity

det.1� tA/

.1� t/2
D

Y


�
1� tp. /

��1

5Here “nondegenerate and elliptic” means that the eigenvalues of the linearized return map are not on
the real line.
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of formal power series in ZŒŒt ��, where the product is over irreducible periodic orbits  ,
and p. / denotes the period of  . This formula is a special case of the product formula
for the Lefschetz zeta function (see eg [15]), and it is proved by taking the logarithmic
derivative of both sides and then using the Lefschetz fixed point formula for � and its
iterates. Now we can rewrite the product formula here as

det.1� tA/
Y


�
1� tp. /

�
D .1� t/2:

Since by hypothesis there are only finitely many factors on the left hand side, each a
polynomial, it follows that the sum of the degrees of these factors must equal 2, ie

2g.F /C
X


p. /D 2:

The lemma follows immediately.

To prove Theorem 1.1 in the remaining cases, assume that R has no closed orbit and
that the function f is sometimes zero and sometimes nonzero. We must show that Y

is a T 2 –bundle over S1 .

5.2 The region where f is large

Lemma 5.2 Suppose "� 0 is a regular value of f . Then

Y�" WD fy 2 Y j f .y/� "g

is diffeomorphic to a disjoint union of copies of T 2 � I .

Proof The idea is to collapse each boundary component of Y�" to a circle, so as
to obtain a closed contact manifold with one embedded elliptic Reeb orbit for each
boundary component, and then invoke Theorem 1.2. We proceed in three steps.

Step 1 We begin by choosing coordinates near the boundary of Y�" in which the
stable Hamiltonian structure has a nice form.

Fix ı > 0 sufficiently small so that every number in the interval Œ"; "C ı� is a regular
value of f . Fix a component Z of f �1Œ"; "C ı�. For s 2 Œ0; ı�, let †s denote the
component of f �1."C s/ in Z . Each †s is a torus, because the Reeb vector field R

is nonvanishing and tangent to †s .

There is a unique vector field W on Z such that �.W /D 0 and !.W; �/D df . The
vector field W is tangent to each †s and commutes with R by (1-1); and the vectors
R and W are linearly independent at each point.
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Claim We can find smooth real-valued functions ˛.s/; ˇ.s/;  .s/; �.s/ such that for
each s , the vector fields ˛.s/RCˇ.s/W and  .s/RC�.s/W are linearly independent
on †s and have all orbits closed with period 1.

Proof Fix s 2 Œ0; ı�. For t 2 R let ˆt
R
W †s ! †s and ˆt

W
W †s ! †s denote the

time t flows of R and W respectively on †s . Fix a point p 2†s and define a map
�W R2!†s by

�.˛; ˇ/ WDˆ˛Rˆ
ˇ
W
.p/:

Since R and W are linearly independent and commute, it follows that � is a covering
map and ��1.p/ is a lattice in R2 . Choose .˛.s/; ˇ.s// and . .s/; �.s// to be a basis
for this lattice. Then ˛.s/; ˇ.s/;  .s/; �.s/ have the required properties for our fixed s .
These can be uniquely extended to smooth functions of s 2 Œ0; ı� which satisfy the
required properties for all s .

It follows from the claim that we can find coordinates s 2 Œ0; ı� and x1;x2 2R=Z on
Z in which

f .s;x1;x2/D "C s;

RD a1.s/
@

@x1

C a2.s/
@

@x2

:

Since R is assumed to have no closed orbits, the ratio a1.s/=a2.s/ is an irrational
number which does not depend on s . In fact a1.s/ and a2.s/ do not depend on s

either. To see this, note that since LR�D 0, we have

R .� .@=@s//D .LR�/ .@=@s/C�.LR.@=@s//

D��.L@=@sR/

D��

�
a01.s/

@

@x1

C a02.s/
@

@x2

�
:

Since the right hand side depends only on s , and since the function �.@=@s/ is bounded
on †s , it follows that the right hand side is zero. Therefore

a01.s/
@

@x1

C a02.s/
@

@x2

is a multiple of W , and this multiple must be zero because a1.s/=a2.s/ is constant.

Since !.R; �/D 0, we can write

! D c.s/ds ^ .a2dx1� a1dx2/:
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Note that the function c depends only on s , because LR! D 0 implies R.c/D 0, and
R has dense orbits on each †s . Also c is nowhere vanishing, and we can choose our
coordinates so that c is always positive. Likewise, since �.R/D 1, we can write

�D b.s/.a2dx1� a1dx2/C �.s/dsC .a2
1C a2

2/
�1.a1dx1C a2dx2/;

where b and � depend only on s because LR�D 0. Since d�D f! , we have

(5-1) b0.s/D ."C s/c.s/:

Also, changing � by adding the differential of some function of s does not change its
salient properties, so we may assume that �.s/D 0.

Step 2 We now collapse the boundary component †0 to a circle.

To prepare for this, define a function �W Œ0; ı�!R by

�.s/2 WD 2.b.s/� b.0//:

Since "� 0 and c.s/ is always positive, it follows from Equation (5-1) that � is strictly
increasing and smooth on .0; ı�. In terms of this function we can write

�D
1

2
�2.a2dx1� a1dx2/C˛1dx1C˛2dx2

where ˛1 and ˛2 are constants satisfying a1˛1C a2˛2 D 1.

We next modify � on Y�" , without changing its salient properties, to arrange that ˛1=˛2

is rational. Suppose that ˛1=˛2 is irrational. The restriction map H 1.Y�"IZ/ !
H 1.†0IZ/ is nonzero, and so there exists a closed 1–form �1 on Y�" such that
�1jZ D ˇ1dx1Cˇ2dx2 for some relatively prime integers ˇ1 and ˇ2 . Now consider
replacing � by �C ��1 where � is a small constant. If � > 0 is sufficiently small then
we still have .�C ��1/^! > 0. And since ˛1=˛2 is irrational and ˇ1=ˇ2 is rational,
it follows that .˛1C �ˇ1/=.˛2C �ˇ2/ is rational for a dense set of � . Replacing � by
�C ��1 multiplies the Reeb vector field by a positive function; in particular there are
still no Reeb orbits.

With ˛1=˛2 arranged to be rational, by an SL2Z coordinate change we can further
assume that ˛1 D 0. Now let Y 0�" be obtained from Y�" by declaring two points in
†0 to be equivalent whenever they have the same x1 coordinate. The subset Z of
Y�" gets collapsed to a subset Z0 of Y 0�" which is a disk cross S1 . Define the smooth
structure on Z0 so that .�;x1/ are polar coordinates on the disk and x2 is the S1

coordinate. Then � is a smooth contact form on Z0 , because in the above coordinates,

�D
1

2
�2.a2dx1� a1dx2/C˛2dx2
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is smooth, and
�^ d�D � d� dx1 dx2

is nonvanishing. The boundary torus †0 gets collapsed to a new Reeb orbit †0
0

in Y 0�" .
This Reeb orbit is elliptic with irrational monodromy angle, because R has irrational
slope on the tori where � is constant. The Reeb vector field on Y 0�" n†

0
0
D Y�" n†0

is unaffected.

Step 3 We now complete the proof of Lemma 5.2.

Repeating the above process finitely many times, we collapse all boundary components
of Y�" to circles, to obtain a closed contact manifold with one embedded elliptic Reeb
orbit for each boundary component, all of whose iterates are nondegenerate, and no
other embedded Reeb orbits. Let X be a component of Y�" . It then follows from
Theorem 1.2 that there are exactly two such orbits which comprise the core circles of
a genus 1 Heegaard splitting of the collapsed X . Uncollapsing these circles back to
boundary tori, we conclude that X is diffeomorphic to T 2 � I .

The same argument with some different signs shows that if " � 0 is a regular value
of f , then

Y�" WD fy 2 Y j f .y/� "g

is likewise diffeomorphic to a disjoint union of copies of T 2 � I . In particular, if 0

is a regular value of f , then it follows that Y is a union of copies of T 2 � I glued
together along their boundaries, so Theorem 1.1 is proved in this case.

5.3 The region where f is small

We now begin the proof of Theorem 1.1 when 0 is not necessarily a regular value of f .
Choose a small " > 0 such that both " and �" are regular values of f . Define

Y" WD fy 2 Y j jf .y/j � "g:

To prove Theorem 1.1, we will show that if " as above is sufficiently small, then Y" is
a disjoint union of copies of T 2 � I . The strategy for doing so is to perturb �jY"

to a
closed form which still has positive wedge product with ! , deduce that Y" fibers over
S1 such that the Reeb vector field is transverse to the fibers, and then apply Lemma
5.1(b) to show that the fibers are disjoint unions of annuli.

To start, fix a metric on Y . Also fix a smooth function �W Œ0; 1�! Œ0; 1� such that
�.t/D 1 for t < 1=3 and �.t/D 0 for t > 2=3.

Fix " as above. Choose ı 2 .0; "/ sufficiently small so that all numbers in the intervals
Œ"; "C ı� and Œ�"� ı;�"� are regular values of f . Define a 1–form �� on Y"Cı as
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follows. On Y" define �� WD �. We now define �� on f �1Œ"; "C ı�. The construction
on f �1Œ�"� ı;�"� is analogous and will be omitted.

Fix a component Z of f �1Œ"; "C ı�. Recall from Section 5.2 that we can choose
coordinates s 2 Œ0; ı� and x1;x2 2 R=Z on Z , and modify � without changing its
salient properties, so that in these coordinates

�D b.s/.a2dx1� a1dx2/C
a1dx1C a2dx2

a2
1
C a2

2

;

! D c.s/ds ^ .a2dx1� a1dx2/;

where c.s/ > 0. We now define �� on Z by

�� WD
�
b.0/C�.ı�1s/.b.s/� b.0/

�
.a2dx1� a1dx2/C

a1dx1C a2dx2

a2
1
C a2

2

:

On Y"Cı we then have
d�� D g!

where g is a smooth function which agrees with f on Y" and extends by zero to a
smooth function defined on all of Y .

5.4 An upper bound on g

We now show that there is an "–independent constant c0 such that if ı is chosen
sufficiently small in the above construction then

(5-2) jgj � c0":

We just need to check this on a region Z as above. It follows from the above equations
that on Z we have

(5-3) g.s/D c.s/�1
�
ı�1�0.ı�1s/.b.s/� b.0//C�.ı�1s/b0.s/

�
:

Since b0.s/D ."C s/c.s/ and we have chosen ı < ", it follows that

c.s/�1�.ı�1s/b0.s/D �.ı�1s/."C s/ < 2":

If we further choose ı sufficiently small so that c.t/� 2c.s/ for all s; t 2 Œ0; ı�, then
we can estimate

b.s/� b.0/D

Z s

0

."C t/c.t/dt

� 2c.s/."sC s2=2/

� 3c.s/"ı:

Putting the above two inequalities into (5-3) proves (5-2).

Geometry & Topology, Volume 13 (2009)



The Weinstein conjecture for stable Hamiltonian structures 937

5.5 The cohomology class of g!

We now study the cohomology class of the closed 2–form g! on Y .

Let U � Y denote the open set where f ¤ 0. Consider the relative homology long
exact sequence:

� � � �!H1.U / �!H1.Y / �!H1.Y;U / �! � � �

Here and below all homology and cohomology is with real coefficients. Fix embedded
oriented curves 1; : : : ; n�U that represent a basis for the kernel of the map H1.Y /!

H1.Y;U /. Since the curves i all have positive distance from the compact set where
f D 0, there exists d > 0 such that if " is sufficiently small then no point in Y" is
within distance d of any point in any of the curves i . For each i D 1; : : : ; n, fix
an "–independent closed 2–form �i which represents the Poincaré dual of i and is
supported within distance d=2 of i .

Claim There exists an "–independent constant c0 such that if " is chosen sufficiently
small in the construction in Section 5.3, then there are unique real numbers q1; : : : ; qn

such that

(5-4) Œg!�D

nX
iD1

qi Œ�i � 2H 2.Y /;

and these satisfy

(5-5) jqi j � c0":

Note that c0 here is different than in (5-2).

Proof Choose " sufficiently small so that Y" does not intersect the support of the
forms �i . Then the Poincaré duality isomorphism H1.Y /

'
�!H 2.Y / restricts to an

injection

(5-6) Ker.H1.Y /!H1.Y;U // �! Ker.H 2.Y /!H 2.Y"//:

Since q! restricts to an exact form on Y" , to prove that the numbers qi exist and are
unique it is enough to show that the map (5-6) is surjective. To prove this surjectivity,
note that any element of Ker.H 2.Y / ! H 2.Y"// can be represented by a closed
2–form � with support on Y nY" . Here we are assuming as usual that " and �" are
regular values of f . Now the Poincare dual of Œ�� 2H 2

c .Y nY"/ is a homology class
˛ 2H1.Y nY"/ with ˛ �S D

R
S � for all S 2H2.Y nY"; @Y"/. Letting {W Y nY"! Y

denote the inclusion, we then have {�˛ �S D
R

S � for all S 2H2.Y /. So {�˛ 2H1.Y /

is the Poincaré dual of Œ��2H 2.Y /, and {�˛ maps to 0 in H1.Y;U / since Y nY"�U .
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To prove that jqi j � c0", for each i D 1; : : : ; n we can fix an "–independent closed
oriented embedded surface †i in Y which has intersection number ıij with j . Then
observe that

qi D

Z
†i

nX
jD1

qj�j D

Z
†i

g!

and use (5-2).

5.6 The region where f is small fibers over S 1

We now show that if " is sufficiently small then Y" fibers over S1 so that the Reeb
vector field R is transverse to the fibers.

Let " > 0 be small enough so that Y" does not intersect the support of the forms �i .
Let qi be the numbers satisfying (5-4). Since the 2–form

g! �

nX
iD1

qi�i

is exact on Y , there exists a unique 1–form � such that

d� D g! �

nX
iD1

qi�i

and d�� D 0 and � is L2 –orthogonal to the space of harmonic 1–forms on Y . It then
follows from estimates on the Green’s function for d C d� , namely the fact that the
singularity of the Green’s function behaves as dist.y1;y2/

�2 for any points y1 ¤ y2

in Y , that there is an "–independent constant c0 such that

jvj � c0 sup
Y

ˇ̌̌̌
g! �

nX
iD1

qi�i

ˇ̌̌̌
:

With (5-2) and (5-5), this implies that there is an "–independent constant c0 such that

(5-7) j�j � c0":

Now the 1–form �� � restricts to a closed 1–form on Y" . By the estimate (5-7), if
" is sufficiently small then .�� �/^! > 0 everywhere. We can perturb �� � to a
closed 1–form �0 on Y" which represents a real multiple of an integral cohomology
class in H 1.Y"IZ/ and still satisfies �0 ^! > 0. It follows as in Section 5.1 that Y"
fibers over S1 with the Reeb vector field R transverse to the fibers.
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5.7 The fibers are disjoint unions of annuli

To complete the proof of Theorem 1.1, we now show that Y" is diffeomorphic to a
disjoint union of copies of T 2 � I .

Let X be a component of Y" . Let F be a fiber of the fibration X ! S1 constructed in
Section 5.6, and let �W F!F denote the return map of the flow R. Closed orbits of R

in X are equivalent to periodic orbits of � , so by assumption � has no periodic orbits.
By replacing � by an iterate if necessary, we may assume without loss of generality
that F is connected.

Assume as usual that " and �" are regular values of f , so that the boundary of X is a
disjoint union of tori. Each boundary circle of F lies in a boundary torus of X . Recall
from Section 5.2 that on each boundary torus of X , in suitable coordinates the Reeb
vector field R is a constant vector field with irrational slope which does not change if
we perturb ".

Let F 0 be the closed surface obtained from F by identifying two points whenever they
are in the same boundary circle. Then � descends to a diffeomorphism �0W F 0! F 0

with one irreducible periodic orbit  for each boundary torus of X , and no other
irreducible periodic orbits. The period of  equals the number of boundary circles of
F 0 on the corresponding boundary torus of X . It follows from the above description
of R near the boundary of X that the orbit  and all of its iterates are nondegenerate
and elliptic.

We now invoke Lemma 5.1(b) to conclude F 0 is a sphere and �0 has two fixed points
and no other irreducible periodic orbits. It follows immediately that F is an annulus,
so X is diffeomorphic to T 2� I as desired. This completes the proof of Theorem 1.1.
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