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Novikov-symplectic cohomology
and exact Lagrangian embeddings

ALEXANDER F RITTER

Let N be a closed manifold satisfying a mild homotopy assumption. Then for
any exact Lagrangian L � T �N the map �2.L/! �2.N / has finite index. The
homotopy assumption is either that N is simply connected, or more generally that
�m.N / is finitely generated for each m� 2 . The manifolds need not be orientable,
and we make no assumption on the Maslov class of L .

We construct the Novikov homology theory for symplectic cohomology, denoted
SH�.M Iƒ˛/ , and we show that Viterbo functoriality holds. We prove that the
symplectic cohomology SH�.T �N Iƒ˛/ is isomorphic to the Novikov homology of
the free loopspace. Given the homotopy assumption on N , we show that this Novikov
homology vanishes when ˛ 2H 1.L0N / is the transgression of a nonzero class in
H 2. zN / . Combining these results yields the above obstructions to the existence of L .

57R17; 57R58

1 Introduction

Consider a disc cotangent bundle .DT �N; d�/ of a closed manifold N n together
with its canonical symplectic form. We want to find obstructions to the existence
of embeddings j W Ln ,! DT �N for which j �� is exact. These are called exact
Lagrangian embeddings. For now assume that all manifolds are orientable and that we
use Z–coefficients in (co)homology.

Denote by pW L!N the composite of j with the projection to the base. Recall that
the ordinary transfer map p!W H�.N /!H�.L/ is obtained by Poincaré duality and
the pullback p� , by composing

p!W H�.N /!H n��.N /!H n��.L/!H�.L/:

For the space L0N of smooth contractible loops in N , such transfer maps need not
exist, as Poincaré duality no longer holds. However, using techniques from symplectic
topology, Viterbo [11; 12] showed that there is a transfer homomorphism

Lp!W H�.L0N /!H�.L0L/
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which commutes with the ordinary transfer map for p ,

H�.L0L/
OO
c�

?�

oo Lp!
H�.L0N /

OO
c�

?�

H�.L/ oo p!
H�.N /

where cW N ! L0N denotes the inclusion of constant loops.

For any ˛ 2H 1.L0N /, we can define the associated Novikov homology theory, which
is in fact homology with twisted coefficients in the bundle of Novikov rings ƒDZ..t//
associated to a singular cocycle representing ˛ . We denote the bundle by ƒ˛ and the
Novikov homology by H�.L0N Iƒ˛/.

Main Theorem For all exact L� T �N and all ˛ 2H 1.L0N /, there exists a com-
mutative diagram:

H�.L0LIƒ.Lp/�˛/OO
c�

oo Lp!
H�.L0N Iƒ˛/OO

c�

H�.LI c
�ƒ.Lp/�˛/ oo p!

H�.N I c
�ƒ˛/

If c�˛ D 0 then the bottom map becomes p!˝ 1W H�.L/˝ƒ H�.N /˝ƒ.

Suppose now that N is simply connected. Then a nonzero class ˇ 2H 2.N / defines a
nonzero transgression �.ˇ/ 2H 1.L0N /. The associated bundles ƒ�.ˇ/ on L0N and
ƒ�.p�ˇ/ on L0L restrict to trivial bundles on N and L.

Suppose �.p�ˇ/D 0 2H 1.L0L/. Then the above twisted diagram becomes

H�.L0L/˝ƒ
OO

c�

?�

oo Lp!
H�.L0N Iƒ�.ˇ//OO

c�

H�.L/˝ƒ

����
q�

oo p!
H�.N /˝ƒ

where qW L0N !N is the evaluation at 0 map. If N is simply connected and ˇ ¤ 0,
then we will show that H�.L0N Iƒ�.ˇ//D 0, so the fundamental class ŒN � 2Hn.N /

maps to c�ŒN �D 0. But Lp!.c�ŒN �/D c�p!ŒN �D c�ŒL�¤ 0 since c� is injective on
H�.L/. Therefore �.p�ˇ/ D 0 cannot be true. This shows that � ı p�W H 2.N /!
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H 1.L0L/ is injective. Now, from the commutative diagram

H 2.N /

p�

��

�

�
// Hom.�2.N /;Z/ŠH 1.L0N /

.Lp/�

��
H 2.L/

� // Hom.�2.L/;Z/�H 1.L0L/

we deduce that p�W H 2.N /!H 2.L/ and Hom.�2.N /;Z/!Hom.�2.L/;Z/ must
be injective. Thus we deduce:

Main Corollary (See Corollary 11.) If L � T �N is exact and N is simply con-
nected, then the image of p�W �2.L/! �2.N / has finite index and p�W H 2.N /!

H 2.L/ is injective.

We emphasize that there is no assumption on the Maslov class of L in the statement
– this is in contrast to the results of Nadler [6] and Fukaya, Seidel and Smith [3]:
the vanishing of the Maslov class is crucial for their argument. Also observe that if
H 2.N /¤ 0 then the corollary overlaps with Viterbo’s result [11] that there is no exact
Lagrangian K.�; 1/ embedded in a simply connected cotangent bundle.

We will prove that the corollary holds even when N and L are not assumed to be
orientable. A concrete application of the Corollary is that there are no exact tori and no
exact Klein bottles in T �S2 . We will also generalize the Corollary to obtain a result
in the non–simply connected setup:

Corollary (See Corollary 13.) Let N be a closed manifold with finitely generated
�m.N / for each m� 2. If L� T �N is exact then the image of p�W �2.L/! �2.N /

has finite index.

This is innovative since in [3], [6] and [11] it is crucial that N is simply connected.

The outline of the proof of the corollary required showing that the Novikov homology
H�.L0N Iƒ�.ˇ// vanishes for nonzero ˇ 2H 2. zN /. The idea is as follows. A class
�.ˇ/ 2H 1.L zN /DH 1.L0N / gives rise to a cyclic covering L0N of L0N . Let t be
a generator for the group of deck transformations. The Novikov ring ƒ D Z..t// D
ZŒŒt ��Œt�1� is the completion in t of the group ring ZŒt; t�1� of the cover. The Novikov
homology is isomorphic to H�.C�.L0N /˝ZŒt;t�1�ƒ/.

Using the homotopy assumptions on N it is possible to prove that H�.L0N / is finitely
generated in each degree. It then easily follows from the flatness of ƒ over ZŒt; t�1�

and from Nakayama’s lemma that

H�.C�.L0N /˝ZŒt;t�1�ƒ/ŠH�.L0N /˝ZŒt;t�1�ƒD 0:
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946 Alexander F Ritter

The outline of the paper is as follows. In Section 2 we recall the construction of
symplectic cohomology and we explain how the construction works when we use
twisted coefficients in the Novikov bundle of some ˛ 2 H 1.LN /, which we call
Novikov-symplectic cohomology. In Section 3 we recall Abbondandolo and Schwarz’s
construction [1] of the isomorphism between the symplectic cohomology of T �N and
the singular homology of the free loopspace LN , and we adapt the isomorphism to
Novikov-symplectic cohomology. In Section 4 we review the construction of Viterbo’s
commutative diagram, and we show how this carries over to the case of twisted
coefficients. In Section 5 we prove the Main Theorem and in Section 6 we prove the
Main Corollary. In Section 7 we generalize the corollary to the case of non–simply
connected cotangent bundles, and in Section 8 we extend the results to the case when
N and L are not assumed to be orientable.

Acknowledgements I would like to thank Paul Seidel for suggesting this project.

2 Symplectic cohomology

We review the construction of symplectic cohomology, and refer to Viterbo [12] for
details and to Seidel [9] for a survey and for more references. We assume the reader is
familiar with Floer homology for closed manifolds; for instance, see Salamon [7].

2.1 Liouville domain setup

Let .M 2n; �/ be a Liouville domain, that is .M; ! D d�/ is a compact symplectic
manifold with boundary and the Liouville vector field Z , defined by iZ! D � , points
strictly outwards along @M . The second condition is equivalent to requiring that
˛ D � j@M is a contact form on @M , that is d˛ D !j@M and ˛ ^ .d˛/n�1 > 0 with
respect to the boundary orientation on @M .

The Liouville flow of Z is defined for all negative time r , and it parametrizes a
collar .�1; 0�� @M of @M inside M . So we may glue an infinite symplectic cone
.Œ0;1/� @M; d.er˛// onto M along @M , so that Z extends to Z D @r on the cone.
This defines the completion �M of M ,�M DM [@M Œ0;1/� @M:

We call .�1;1/�@M the collar of �M . We extend � to the entire collar by � D er˛ ,
and ! by ! D d� . Later on, it will be convenient to change coordinates from r to
xD er . The collar will then be parametrized as the tubular neighbourhood .0;1/�@M
of @M in �M , where @M corresponds to fxD 1g.

Geometry & Topology, Volume 13 (2009)
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Let J be an !–compatible almost complex structure on �M which is of contact type on
the collar, that is J�� D er dr or equivalently J@r DR where R is the Reeb vector
field (we only need this to hold for er � 0 so that a certain maximum principle applies
there). Denote by g D !. � ;J � / the J –invariant metric.

2.2 Reeb and Hamiltonian dynamics

The Reeb vector field R 2C1.T @M / on @M is defined by iRd˛D 0 and ˛.R/D 1.
The periods of the Reeb vector field form a countable closed subset of Œ0;1/.

For H 2 C1. �M ;R/ we define the Hamiltonian vector field XH by

!.XH ; � /D�dH:

If inside M the Hamiltonian H is a C 2 –small generic perturbation of a constant, then
the 1–periodic orbits of XH inside M are constants corresponding precisely to the
critical points of H .

Suppose H D h.er / depends only on er on the collar. Then XH D h0.er /R. It
follows that every nonconstant 1–periodic orbit x.t/ of XH which intersects the
collar must lie in fer g � @M for some er and must correspond to a Reeb orbit
z.t/ D x.t=T /W Œ0;T �! @M with period T D h0.er /. Since the Reeb periods are
countable, if we choose h to have a generic constant slope h0.er / for er � 0 then
there will be no 1–periodic orbits of XH outside of a compact set of �M .

2.3 Action functional

We define the action functional for x 2 C1.S1;M / by

AH .x/D�

Z
x�� C

Z 1

0

H.x.t// dt:

If H D h.er / on the collar and x is a 1–periodic orbit of XH in fer g � @M , then

AH .x/D�er h0.er /C h.er /:

Let L �M D C1.S1; �M / be the space of free loops in �M . The differential of AH at
x 2 L �M in the direction � 2 TxL �M D C1.S1;x�T �M / is

dAH � � D�

Z 1

0

!.�; Px�XH / dt:

Thus the critical points x 2Crit.AH / of AH are precisely the 1–periodic Hamiltonian
orbits Px.t/ D XH .x.t//. Moreover, we deduce that with respect to the L2 –metricR 1

0 g. � ; � / dt the gradient of AH is rAH D J. Px�XH /.

Geometry & Topology, Volume 13 (2009)



948 Alexander F Ritter

2.4 Floer’s equation

For uW R�S1!M , the negative L2 –gradient flow equation @suD �rAH .u/ in
the coordinates .s; t/ 2R�S1 is Floer’s equation

@suCJ.@tu�XH /D 0:

The action AH .u.s; � // decreases in s along Floer solutions, since

@s.AH .u.s; � ///D dAH � @suD�

Z 1

0

!.@su; @tu�XH / dt D�

Z 1

0

j@suj2g dt:

Let M0.x�;xC/ denote the moduli space of solutions u to Floer’s equation, which at
the ends converge uniformly in t to the 1–periodic orbits x˙ :

lim
s!˙1

u.s; t/D x˙.t/:

These solutions u occur in R–families because we may reparametrize the R coordinate
by adding a constant. We denote by M.x�;xC/ DM0.x�;xC/=R the space of
unparametrized solutions.

2.5 Energy

For a Floer solution u the energy is defined as

E.u/D

Z
j@suj2 ds dt D

Z
!.@su; @tu�XH / ds dt D�

Z
@s.AH .u// ds:

Thus for u 2M0.x�;xC/ there is an a priori energy estimate,

E.u/DAH .x�/�AH .xC/:

2.6 Compactness and the maximum principle

The only danger in this setup, compared to Floer theory for closed manifolds, is that
there may be Floer trajectories u 2M.x�;xC/ which leave any given compact set in�M . However, for any Floer trajectory u, a maximum principle applies to the function
er ıu on the collar, namely: on any compact subset ��R�S1 the maximum of er ıu

is attained on the boundary @�. Therefore, if the x˙ lie inside M [ .Œ0;R�� @M /

then also all the Floer trajectories in M0.x�;xC/ lie in there.
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x

u0
1

u00
1

y0 y00

un

u0
2

u00
2

y

Figure 1: The x , y0 , y00 , y are 1–periodic orbits of XH , the lines are Floer
solutions in �M . The un 2M1.x;y/ are converging to the broken trajectory
.u0

1
;u0

2
/ 2M0.x;y

0/�M0.y
0;y/ .

2.7 Transversality and compactness

Thanks to the maximum principle and the a priori energy estimates, the same analysis
as for Floer theory for closed manifolds can be applied to show that for a generic
time-dependent perturbation .Ht ;Jt / of .H;J / the corresponding moduli spaces
M.x�;xC/ are smooth manifolds and have compactifications SM.x�;xC/ whose
boundaries are defined in terms of broken Floer trajectories (Figure 1). We write
Mk.x�;xC/DM0kC1

.x�;xC/=R for the k –dimensional part of M.x�;xC/.

The perturbation of .H;J / ensures that the differential D�1
XH

of the time 1 return
map does not have eigenvalue 1, where �t

XH
is the flow of XH . This nondegeneracy

condition ensures that the 1–periodic orbits of XH are isolated and it is used to prove
the transversality results. In the proofs of compactness, the exactness of ! is used to
exclude the possibility of bubbling-off of J –holomorphic spheres.

To keep the notation under control, we will continue to write .H;J / even though we
are using the perturbed .Ht ;Jt / throughout.

2.8 Floer chain complex

The Floer chain complex for a Hamiltonian H 2C1. �M ;R/ is the abelian group freely
generated by 1–periodic orbits of XH ,

CF�.H /D
M˚

Zx W x 2 L �M ; Px.t/DXH .x.t//
	
;

and the differential @ on a generator y 2 Crit.AH / is defined as

@y D
X

u2M0.x;y/

�.u/x;

Geometry & Topology, Volume 13 (2009)
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where M0.x;y/ is the 0–dimensional part of M.x;y/ and the sign �.u/ 2 f˙1g is
determined by the choices of compatible orientations.

We may also filter the Floer complexes by action values A;B 2R[f˙1g:

CF�.H IA;B/D
M˚

Zx W x 2 L �M ; Px.t/DXH .x.t//; A<AH .x/ < B
	
:

This is a quotient complex of CF�.H / if B ¤1. Observe that increasing A gives
a subcomplex, CF�.H IA0;B/ � CF�.H IA;B/ for A < A0 < B . Moreover there
are natural action-restriction maps CF�.H IA;B/!CF�.H IA;B0/ for A<B0 <B ,
because the action decreases along Floer trajectories.

Standard methods show that @2 D 0, and we denote by HF�.H / and HF�.H IA;B/
the cohomologies of these complexes.

2.9 Continuation maps

One might hope that the continuation method of Floer homology can be used to define
a homomorphism between the Floer complexes CF�.H�/ and CF�.HC/ obtained
for two Hamiltonians H˙ . This involves solving the parametrized version of Floer’s
equation

@suCJs.@tu�XHs
/D 0;

where Js are !–compatible almost complex structures of contact type and Hs is a
homotopy from H� to HC (ie an s–dependent Hamiltonian with .Hs;Js/D .H�;J�/

for s � 0 and .Hs;Js/ D .HC;JC/ for s � 0). If x and y are respectively 1–
periodic orbits of XH� and XHC , then we can define a moduli space M.x;y/ of such
solutions u which converge to x and y at the ends. This time there is no freedom to
reparametrize u in the s–variable.

The action AHs
.u.s; � // along such a solution u will vary as follows:

@s.AHs
.u.s; � ///D�

Z 1

0

j@suj2 dt C

Z 1

0

.@sHs/.u/ dt

So the action decreases if Hs is monotone decreasing, @sHs � 0. The energy is

E.u/D

Z
j@suj2gs

ds ^ dt DAH�.x�/�AHC.xC/C

Z
.@sHs/.u/ ds ^ dt;

so an a priori bound will hold if @sHs � 0 outside of a compact set in �M .

If Hs D hs.e
r / on the collar and @sh0s � 0, then a maximum principle for er ı u as

before will hold on the collar (we refer to Seidel [9] for a very clear proof) and therefore
it automatically guarantees a bound on .@sHs/.u/ and thus an a priori energy bound.
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Thus, if outside of a compact in �M we have Hs D hs.e
r / and @sh0s � 0, then (after a

generic C 2 –small time-dependent perturbation of .Hs;Js/) the moduli space M.x;y/

will be a smooth manifold with a compactification SM.x;y/ by broken trajectories
and a continuation map �W CF�.HC/! CF�.H�/ can be defined: on a generator
y 2 Crit.AHC/,

�.y/D
X

v2M0.x;y/

�.v/x;

where M0.x;y/ is the 0–dimensional part of M.x;y/ and �.v/ 2 f˙1g depends
on orientations. Standard methods show that � is a chain map and that these maps
compose well: given homotopies from H� to K and from K to HC , each satisfying
the condition @sh0s � 0 outside of a compact in �M , then the composite CF�.HC/!
CF�.K/! CF�.H�/ is chain homotopic to � . So on cohomology, �W HF�.HC/!
HF�.H�/ equals the composite HF�.HC/! HF�.K/! HF�.H�/.

For example, a “compactly supported homotopy” is one where Hs is independent of s

outside of a compact (@sHs D 0 for s� 0). Continuation maps for Hs and H�s can
then be defined and they will be inverse to each other up to chain homotopy.

2.10 Symplectic cohomology using only one Hamiltonian

We change coordinates from r to xD er , so the collar is now .0;1/� @M � �M and
@M D fxD 1g.

Take a Hamiltonian H1 with H1D h.x/ for x� 0, such that h0.x/!1 as x!1.
The symplectic cohomology is defined as the cohomology of the corresponding Floer
complex (after a C 2 –small time-dependent perturbation of .H1;J /),

SH�.M IH1/D HF�.H1/:

The technical difficulty lies in showing that it is independent of the choices .H1;J /.

2.11 Symplectic cohomology with action bounds

Similarly one defines the groups SH�.M IH1IA;B/ D HF�.M IH1IA;B/, but
these now depend on the choice of H1 . However, for B D1, taking the direct limit
as A!�1 yields

lim
�!

SH�.M IH1IA;1/D SH�.M IH1/;

since CF�.H1IA;1/ are subcomplexes exhausting CF�.H1I �1;1/ as A !

�1.
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If we use action bounds, one can sometimes vary the Hamiltonian without continuation
maps. Let H1 D h1.x/ for x� x0 , and suppose Ah1

.x/D�xh0
1
.x/Ch1.x/ <A for

x� x0 . Let H2DH1 on M [fx� x0g and H2D h2.x/ with Ah2
.x/ <A for x� x0

(eg if h00
2
� 0). Then

CF�.H1IA;B/D CF�.H2IA;B/

are equal as complexes: the orbits in fx � x0g get discarded by the action bounds;
the orbits agree in M [fx� x0g since H1 DH2 there; and the differential on these
common orbits is the same because the maximum principle forces the Floer trajectories
to lie in M [fx� x0g, where H1 DH2 , so the Floer equations agree.

For example, let H1 D h1.x/D 1
2

x2 on x > 0, so Ah1
.x/D �1

2
x2 . Take H2 DH1

on M [fx� x0g and extend H2 linearly on fx� x0g. Then CF�.H1I �
1
2

x2
0
I1/D

CF�.H2I �
1
2

x2
0
I1/. By this trick, SH�.M IH1IA;1/ can be computed by a Hamil-

tonian which is linear at infinity, and so SH�.M IH1/ can be computed as a direct
limit using Hamiltonians which are linear at infinity and whose slopes at infinity become
steeper and steeper. We now make this precise.

2.12 Hamiltonians linear at infinity

Consider Hamiltonians H which equal

hm
c;C .x/Dm.x� c/CC

for x� 0. We assume that the slope m> 0 does not occur as the value of the period
of any Reeb orbit. If Hs is a homotopy from H� to HC among such Hamiltonians,
ie Hs D h

ms

cs ;Cs
.x/ for x� 0, then the maximum principle (and hence a priori energy

bounds for continuation maps) will hold if

@s@xh
ms

cs ;Cs
D @sms � 0:

Suppose that @sms � 0, satisfying ms Dm� for s� 0 and ms DmC for s� 0, and
suppose that the action values AHs

.x/ of 1–periodic orbits x of XHs
never cross the

action bounds A, B . Then a continuation map can be defined:

�W CF�.HCIA;B/! CF�.H�IA;B/:

These maps compose well: �0ı�00 is chain homotopic to � (where to define �0 , �00 we
use m0s varying from m� to some m, m00s varying from m to mC , and the analogous
assumptions as above hold). For example if we vary only c , C , and not m, then
@sms D 0 outside of a compact and the continuation map � for Hs can be inverted (up
to chain homotopy) by using the continuation map for H�s . Thus, up to isomorphism,
HF�.H / is independent of the choice of the constants c;C in hm

c;C
.
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2.13 Symplectic cohomology as a direct limit

Suppose H1 D h.x/ for x � 0 and h0.x/ ! 1 as x ! 1. Suppose also that
xh00.x/ > ı > 0 for x� 0. This implies that @xAh D�xh00.x/ <�ı so Ah decreases
to �1 as x!1.

Given A 2 R, suppose Ah.x/D �xh0.x/C h.x/ < A for x � x0 . Define H DH1
on M [ fx � x0g and extend H linearly in x for x � x0 . Then CF�.H IA;B/ D
CF�.H1IA;B/, and CF�.H IA;B/ is a subcomplex of CF�.H1I �1;B/.

Decreasing A to A0 < A defines some Hamiltonian H 0 which is steeper at infinity,
and it induces a continuation map CF�.H IA;B/! CF�.H 0IA0;B/. The direct limit
over these continuation maps yields a chain isomorphism

lim
�!

CF�.H IA;B/! CF�.H1I �1;B/;

which by the exactness of direct limits induces an isomorphism on cohomology

lim
�!

HF�.H IA;B/! SH�.M IH1I �1;B/:

So an alternative definition is

SH�.M /D lim
�!

HF�.H /;

where the direct limit is over the continuation maps for all the Hamiltonians which are
linear at infinity, ordered by increasing slopes m> 0. In the above argument, we chose
particular H which approximated H1 on larger and larger compacts. However, the
direct limit can be taken over any family of H with slopes at infinity m!1 because,
up to an isomorphism induced by a continuation map, HF�.H / is independent of the
choice of H for fixed m, so any two cofinal families (m!1) will give the same
limit up isomorphism.

2.14 Novikov bundles of coefficients

We recommend Whitehead [14] as a reference on local systems. Let LN DC1.S1;N /

denote the free loopspace of a manifold N , and let L0N be the component of con-
tractible loops. The Novikov ring

ƒD Z..t//D ZŒŒt ��Œt�1�

is the ring of formal Laurent series. Let ˛ be a singular cocycle representing a 2

H 1.LN /. The Novikov bundle ƒ˛ is the local system of coefficients on LN defined
by a copy ƒ
 of ƒ over each loop 
 2 LN and by the multiplication isomorphism
t˛Œu�W ƒ
!ƒ
 0 for each path u in LN connecting 
 to 
 0 , where ˛Œ��W C1.LN /!Z
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is evaluation on singular one-chains. A different choice of representative ˛ for a gives
an isomorphic local system, so by abuse of notation we write ƒa instead of ƒ˛ and
aŒu� instead of ˛Œu�.

We will be using the Novikov bundle ƒ�.ˇ/ on L0N corresponding to the transgression
�.ˇ/ 2 H 1.L0N / of some ˇ 2 H 2.N / (see Section 6.1). This bundle pulls back
to a trivial bundle under the inclusion of constant loops cW N ! L0N , since the
transgression �.ˇ/ vanishes on �1.N /� �1.L0N /. Therefore we just get ordinary
cohomology with coefficients in the ring ƒ,

H�.N I c�ƒ�.ˇ//ŠH�.N Iƒ/:

Moreover, for any map j W L! T �N the projection pW L! T �N !N induces a
map LpW L0L! L0N , and the pullback of the Novikov bundle is

.Lp/�ƒ�.ˇ/ Šƒ.Lp/�.�.ˇ// Šƒ�.p�ˇ/:

If �.p�ˇ/D 0 2H 1.L0L/, then this is a trivial bundle and

H�.L0LI .Lp/�ƒ�.ˇ//ŠH�.L0L/˝ƒ:

2.15 Novikov–Floer cohomology

Let .M 2n; �/ be a Liouville domain Section 2.1. Let ˛ be a singular cocycle represent-
ing a class in H 1.LM /ŠH 1.L �M /. We define the Novikov–Floer chain complex for
H 2C1. �M ;R/ with twisted coefficients in ƒ˛ to be the ƒ–module freely generated
by the 1–periodic orbits of XH :

CF�.H Iƒ˛/D
M˚

ƒx W x 2 L �M ; Px.t/DXH .x.t//
	
;

and the differential ı on a generator y 2 Crit.AH / is defined as

ıy D
X

u2M0.x;y/

�.u/ t˛Œu� x;

where M0.x;y/ and �.u/2 f˙1g are the same as in Section 2.8. The new factor t˛Œu�

which appears in the differential is precisely the multiplication isomorphism ƒx!ƒy

of the local system ƒ˛ which identifies the ƒ–fibres over x and y .

As in the untwisted case, we assume that a generic C 2 –small time-dependent pertur-
bation of .H;J / has been made so that the transversality and compactness results of
Section 2.7 for the moduli spaces M.x;y/ are achieved.

Proposition 1 .CF�.H Iƒ˛/I ı/ is a chain complex, ie ı ı ı D 0.
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Proof We mimic the proof that @2D 0 in Floer homology (see Salamon [7]). Observe
Figure 1. A sequence un 2M02.x;y/ converges to a broken trajectory .u0

1
;u0

2
/ 2

M0
1
.x;y0/�M0

1
.y0;y/, in the sense that there are sn!�1 and Sn!1 with

un.snC � ; � /! u01 and un.SnC � ; � /! u02 both in C1loc I

Conversely given such .u0
1
;u0

2
/ there is a curve uW Œ0; 1/!M0

2
.x;y/, unique up to

reparametrization and up to the choice of u.0/2M0
2
.x;y/, which approaches .u0

1
;u0

2
/

as r ! 1, and the curve is orientation preserving if and only if �.u0
1
/�.u0

2
/D 1.

So the boundary of SM1.x;y/ is parametrized by M0.x;y
0/�M0.y

0;y/. The value
of d˛ D 0 on the connected component of M1.x;y/ shown in Figure 1 is equal to
the sum of the values of ˛ over the broken trajectories,

˛Œu01�C˛Œu
0
2�D ˛Œu

00
1�C˛Œu

00
2�;

and since �.u0
1
/�.u0

2
/D��.u00

1
/�.u00

2
/, we conclude that

�.u01/ t˛Œu
0
1
� �.u02/ t˛Œu

0
2
�
D��.u001/ t˛Œu

00
1
� �.u002/ t˛Œu

00
2
�:

Thus the broken trajectories contribute opposite ƒ–multiples of x to ı.ıy/ for each
connected component of M1.x;y/. Hence, summing over x , y0 ,

ı.ıy/D
X

.u0
1
;u0

2
/2M0.x;y0/�M0.y0;y/

�.u01/ t˛Œu
0
1
� �.u02/ t˛Œu

0
2
� x D 0:

Denote by HF�.H Iƒ˛/ the ƒ–modules corresponding to the cohomology groups of
the complex .CF�.H Iƒ˛/I ı/. We call these the Novikov–Floer cohomology groups.
By filtering the chain complex by action as in Section 2.8, we can define

HF�.H Iƒ˛IA;B/DH�.CF�.H Iƒ˛IA;B/I ı/:

2.16 Twisted continuation maps

We now show that the continuation method described in Section 2.9 can be used in the
twisted case under the same assumptions that we made in the untwisted case. Recall
that this involves solving

@svCJs.@tv�XHs
/D 0;

and that under suitable assumptions on .Hs;Js/ the moduli spaces M.x;y/ of solu-
tions v joining 1–periodic orbits x , y of XH� and XHC are smooth manifolds with
compactifications SM.x;y/ whose boundaries are given by broken trajectories.
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So far, using a twisted differential does not change the setup. However, to make the
continuation map �W CF�.HCIƒ˛/! CF�.H�Iƒ˛/ into a chain map we need to
define it on a generator y 2 Crit.AHC/ by

�.y/D
X

v2M0.x;y/

�.v/ t˛Œv� x;

where M0.x;y/ and �.v/ 2 f˙1g are as in Section 2.9.

Proposition 2 �W CF�.HCIƒ˛/! CF�.H�Iƒ˛/ is a chain map.

Proof We mimic the proof that � is a chain map in the untwisted case [7]. Denote by
MH˙. � ; � / the moduli spaces of Floer trajectories for H˙ . Observe Figure 2.

x

u0� u00�

x0 x00

vn

v0 v00

y

x

u0� v00

x0 y00

vn

v0 u00C

y

x

v0 v00

y0 y00

vn

u0C u00C

y

Figure 2: The dashed lines u˙ are Floer solutions converging to 1–periodic
orbits of XH˙

, the solid lines are continuation map solutions and the vn 2

M1.x;y/ are converging to broken trajectories.

A compactness result in Floer homology shows that a sequence of solutions vn 2

M1.x;y/ will converge to a broken trajectory

.u0�; v
0/ 2MH�

0
.x;x0/�M0.x

0;y/ or .v0;u0C/ 2M0.x;y
0/�MHC

0
.y0;y/:

Conversely, given such .u0�; v
0/ or .v0;u0C/ there is a smooth curve vW Œ0; 1/ !

M1.x;y/, unique up to reparametrization and up to the choice of v.0/, which ap-
proaches the given broken trajectory as r ! 1, and the curve is orientation preserving
if and only if respectively �.u0�/�.v

0/D�1 and �.v0/�.u0C/D 1.

Thus the boundary of SM1.x;y/ is parametrized by �MH�
0
.x;x0/�M0.x

0;y/ and
by M0.x;y

0/�MHC
0
.y0;y/. The value of d˛ D 0 on a connected component of
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M1.x;y/ as in Figure 2 is equal to the sum of the values of ˛ over the broken
trajectories. For instance, in the second figure

˛Œu0��C˛Œv
0�D ˛Œv00�C˛Œu00C�;

and since �.u0�/�.v
0/D �.v00/�.u00C/,

�.u0�/ t˛Œu
0
�� �.v0/ t˛Œv

0�
D �.v00/ t˛Œv

00� �.u00C/ t˛Œu
00
C
�:

Thus the broken trajectories contribute equal ƒ–multiples of x to ı.�.y// and �.ıy/
for that component of M1.x;y/. A similar computation shows that in the first or third
figures, the two broken trajectories contribute opposite ƒ–multiples of x and so in
total give no contribution to ı.�.y// or �.ıy/. We deduce that

ı.�.y//D
X

.u0�;v
0/2MH�

0
.x;x0/�M0.x0;y/

�.u0�/ t˛Œu
0
�� �.v0/ t˛Œv

0� x

D

X
.v0;u0

C
/2M0.x;y0/�M

HC
0

.y0;y/

�.v0/ t˛Œv
0� �.u0C/ t˛Œu

0
C
� x D �.ıy/;

where we sum respectively over x , x0 and x , y0 . Hence � is a chain map.

A similar argument, by mimicking the proof of the untwisted case, shows that the
twisted continuation maps compose well: given homotopies from H� to K and
from K to HC satisfying the conditions required in the untwisted case, the composite
CF�.HCIƒ˛/! CF�.KIƒ˛/! CF�.H�Iƒ˛/ is chain homotopic to � .

2.17 Novikov-symplectic cohomology

If we use the groups HF�.H Iƒ˛/ from Section 2.15 in place of HF�.H / in our
discussion (Sections 2.10–2.13) of the symplectic cohomology groups of a Liouville
domain, and we use the twisted continuation maps constructed in Section 2.16, then
we obtain the ƒ–modules

SH�.M IH1Iƒ˛/ and SH�.M IH1Iƒ˛IA;B/;

which we call Novikov-symplectic cohomology groups.

So for H1 such that H1 D h.x/ for x� 0 and h0.x/!1 as x!1, we define

SH�.M Iƒ˛/D HF�.H1Iƒ˛/:

Alternatively, we may use the Hamiltonians H which equal hm
c;C
.x/Dm.x� c/CC

for x� 0, and we take the direct limit over the twisted continuation maps between the

Geometry & Topology, Volume 13 (2009)



958 Alexander F Ritter

corresponding twisted Floer cohomologies as the slopes m> 0 increase:

SH�.M Iƒ˛/D lim
�!

HF�.H Iƒ˛/:

3 Abbondandolo–Schwarz isomorphism

For a closed (oriented) manifold N n , the symplectic cohomology of the cotangent disc
bundle M 2n DDT �N is isomorphic to the homology of the free loopspace:

SH�.DT �N /ŠHn��.LN /:

This was first proved by Viterbo [13], and there are now two alternative approaches
by Abbondandolo and Schwarz [1] and Salamon and Weber [8]. We will use the
Abbondandolo–Schwarz isomorphism and show that it carries over to twisted coeffi-
cients, but similar arguments could be carried out using either of the other approaches.
We will recall the construction [1] of the chain isomorphism

.CM�.E/; @E/! .CFn��.H /; @H /

between the Morse complex of the Hilbert manifold L1N DW 1;2.S1;N / with respect
to a certain Lagrangian action functional E and the Floer complex of T �N with respect
to an appropriate Hamiltonian H 2 C1.S1 �T �N;R/.

Let � W T �N ! N denote the projection. We use the standard symplectic structure
! D d� and Liouville field Z on T �N , which in local coordinates .q;p/ are

� D p dq ! D dp^ dq Z D p @p:

A metric on N induces metrics and Levi-Civita connections on TN and T �N , and
it defines a splitting T.q;p/T

�N Š TqN ˚T �q N Š TqN ˚TqN into horizontal and
vertical vectors and a connection r D rq˚rp , and similarly for T.q;v/TN . For this
splitting our preferred !–compatible almost complex structure is J@q D�@p .

Remark Our action AH is opposite to the action A used in [1], so our Floer trajectory
u.s; t/ corresponds to u.�s; t/ in [1]. Our grading is �.x/ D n � �CZ .x/ (see
Salamon [7], where the sign of H is opposite to ours), the one used in [1] is �CZ .x/

and that in [9] is ��CZ .x/. In our convention the index �.x/ agrees with the Morse
index indH .x/ for x 2 Crit.H / when H is a C 2 –small Morse Hamiltonian.

Geometry & Topology, Volume 13 (2009)



Novikov-symplectic cohomology 959

3.1 The Lagrangian Morse functional

The Morse function one considers on L1N DW 1;2.S1;N / is the Lagrangian action
functional

E.q/D
Z 1

0

L.t; q.t/; Pq.t// dt;

where the Lagrangian L 2 C1.S1 �TN;R/ is generic and satisfies certain growth
conditions and a strong convexity assumption that ensure that: E is bounded below;
the critical points of E are nondegenerate with finite Morse index; and E satisfies the
Palais–Smale condition (any sequence of qn 2 L1N with bounded actions E.qn/ and
with energies krE.qn/kW 1;2 ! 0 has a convergent subsequence). By an appropriate
generic perturbation it is possible to obtain a metric G which is uniformly equivalent
to the W 1;2 metric on L1N and for which .E ;G/ is a Morse–Smale pair. Denote by
ME.q�; qC/DM0E.q�; qC/=R the unparametrized trajectories, where

M0E.q�; qC/D
˚
vW R! L1N W @sv.s/D�rE.v.s//; lim

s!˙1
v.s/D q˙

	
:

Under these assumptions, infinite dimensional Morse theory can be applied to the
space .L1N; E ;G/ and the Morse homology is isomorphic to the singular homology of
L1N (which is isomorphic to the singular homology of LN , since L1N and LN are
homotopy equivalent). This isomorphism respects the filtration by action: the homology
of the Morse complex generated by the x 2 Crit.E/ with E.x/ < a is isomorphic to
H�.fq 2 L1N W E.q/ < ag/. The isomorphism also respects the splitting of the Morse
complex and the singular complex into subcomplexes corresponding to the components
of L1N (which are indexed by the conjugacy classes of �1.N /).

3.2 Legendre transform

L defines a Hamiltonian H 2 C1.S1 �T �N;R/ by

H.t; q;p/D max
v2TqN

.p � v�L.t; q; v//:

The strong convexity assumption on L ensures that there is a unique maximum precisely
where p D dvL.t; q; v/ is the differential of L restricted to the vertical subspace
T vert
.q;v/

TN Š TqN , and it ensures that the Legendre transform

LW S1
�TN ! S1

�T �N; .t; q; v/ 7! .t; q; dvL.t; q; v//

is a fiber-preserving diffeomorphism.

Pull back .!;H;XH / via L to obtain .L�!;H ıL;YL/, so L�!.YL; � /D�d.H ıL/.
The critical points of E are precisely the 1–periodic orbits .q; Pq/ of YL in TN , and
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these bijectively correspond to 1–periodic orbits x of XH in T �N via

.t;x/D L.t; q; Pq/:

Under this correspondence the Morse index of q is m.q/Dn��.x/ (in the conventions
of [1], m.q/D �CZ .x/). Moreover, for any W 1;2 –path xW Œ0; 1�! T �N ,

E.�x/� �AH .x/;

which becomes an equality if and only if .t;x/D L.t; �x; @t .�x// for all t .

3.3 The moduli spaces MC.q; x/

For 1–periodic orbits q of YL and x of XH , define MC.q;x/ to be the collection
of all maps u 2 C1..�1; 0/�S1;T �N / which are of class W 1;3 on .�1; 0/�S1

and which solve Floer’s equation

@suCJ.t;u/.@tu�XH .t;u//D 0;

with the following boundary conditions:

(i) As s!�1, u.s; � /! x uniformly in t .

(ii) As s! 0, u will converge to some loop u.0; � / of class W 2=3;3 , and we require
that the projection xq.t/D � ıu.0; t/ in N flows backward to q 2 Crit.E/ along
the negative gradient flow �s

�rE of E : �s
�rE.xq/! q as s!�1.

Loosely speaking, MC.q;x/ consists of pairs of trajectories .w;uC/ where w is a
�rE trajectory in N flowing out of q , and uC is a Floer solution in T �N flowing
out of x , such that w and �uC intersect in a loop xq.t/D �uC.0; t/ in N .

3.4 Transversality and compactness

The assumption on H and L is that there are constants ci > 0 such that for all
.t; q;p/ 2 S1 �T �N , .t; q; v/ 2 S1 �TN ,

dH.p@p/�H � c0jpj
2� c1; jrpH j � c2.1Cjpj/; jrqH j � c2.1Cjpj

2/I

rvvL� c3 Id; jrvvLj � c4; jrqvLj � c4.1Cjvj/; jrqqLj � c4.1Cjvj
2/:

We also assume that a small generic perturbation of L (and hence H ) are made so
that the nondegeneracy condition (see Section 2.7) holds for 1–periodic orbits of YL

and XH . We call such H;L regular. For regular H , there are only finitely many
1–periodic orbits x of XH with action AH .x/� a, for a 2R. After a small generic
perturbation of J , the compactness and transversality results of Section 2.7 hold for
the spaces MH .x;y/ DM0.x;y/=R of unparametrized Floer solutions in T �N
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converging to x;y 2 Crit.AH / at the ends, and similar results hold for MC.q;x/ by
using the W 1;3 condition in the definition to generalize the proofs used for M0.x;y/.

When all of the above assumptions are satisfied, we call .L;G;H;J / regular. In this
case, ME.p; q/, MH .x;y/ and MC.q;x/ are smooth manifolds with compactifica-
tions by broken trajectories, and their dimensions are:

dim ME.p; q/Dm.p/�m.q/� 1

dim MH .x;y/D �.x/��.y/� 1

dim MC.q;x/Dm.q/C�.x/� n

and we denote by ME
k
.p; q/, MH

k
.x;y/ and MC

k
.q;x/ the k –dimensional ones.

Theorem (Abbondandolo–Schwarz [1]) If .L;G;H;J / is regular then there is
a chain-complex isomorphism 'W .CM�.E/; @E/ ! .CFn��.H /; @H /, which on a
generator q 2 Crit.E/ is defined as

'.q/D
X

uC2MC0 .q;x/

�.uC/x;

where �.uC/ 2 f˙1g are orientation signs. The isomorphism is compatible with the
splitting into subcomplexes corresponding to different conjugacy classes of �1.N /,
and it is compatible with the action filtrations: for any a 2R it induces an isomorphism
on the subcomplexes generated by the q;x with E.q/ < a and �AH .x/ < a.

3.5 Proof that ' is an isomorphism

Since actions decrease along orbits and E.�x/��AH .x/ with equality if and only if
.t;x/D L.t; � ıx; @t�x/, we deduce that

E.q/� E.xq/� �AH .uC.0; � //� �AH .x/;

so E.q/��AH .x/ with equality if and only if q � xq , uC� x , q D �x and .t;x/D
L.t; q; Pq/. Therefore if E.q/<�AH .x/ then MC.q;x/D∅, and if E.q/D�AH .x/

then MC.q;x/ is either empty or, when .t;x/ D L.t; q; Pq/, it consists of uC � x .
Now order the generators of CM�.E/ according to increasing action and those of
CF�.H / according to decreasing action, and so that the order is compatible with the
correspondence .t;x/ D L.t; q; Pq/. Then ' is a (possibly infinite) upper triangular
matrix with ˙1 along the diagonal, so ' is an isomorphism.
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3.6 Proof that ' is a chain map

The differentials for the complexes .CM�.E/; @E/ and .CF�.H /; @H / are defined on
generators q 2 Crit.E/, y 2 Crit.AH / by

@E.q/D
X

v2ME
0
.q;p/

�.v/p and @H .y/D
X

u2MH
0
.x;y/

�.u/x

where �.v/; �.u/ 2 f˙1g depend on orientations. Observe Figure 3. A compactness

q

v0 v00

p0 p00

w0 w00

xqnxp0 xp00

�un�u0C �u00C

�x

q

w0 v00

xq xqn
p00

�u0C w00

xp00
�un

�x0

�u0 �u00C

�x

q

w0 w00

xq0 xq00xqn

�u0C �u00C
�un

�x0 �x00

�u0 �u00

�x

Figure 3: Solid lines are �rE trajectories in N and dotted lines are the
projections under � W T �N !N of Floer solutions.

argument shows that the broken trajectories that compactify MC
1
.q;x/ are of two

types: either (i) the �rE trajectory breaks, or (ii) the Floer trajectory breaks. More
precisely, if un 2MC1 .q;x/ and xqn.t/D �.un.0; t//, then one of the following holds:

(i) There are Œv� 2ME
0
.q;p/; u0C 2M

C

0
.p;x/; and reals tn!�1 with

�
tn

�rE.xqn/! v.0/ in W 1;2; and un! u0C in C1loc :

(ii) There are Œu0� 2MH
0
.x;x0/; u0C 2M

C

0
.q;x0/; and reals sn!�1 with

un.snC � ; � /! u0 and un! u0C both in C1loc :

Conversely, given .v;u0C/ or .u0;u0C/ as above, there is a smooth curve uW Œ0; 1/!

MC
1
.q;x/, unique up to reparametrization and up to the choice of u.0/, which ap-

proaches the given broken trajectory as r ! 1, and the curve is orientation preserving
if and only if respectively �.v/�.u0C/D 1 and �.u0/�.u0C/D�1.

Thus the boundary of MC
1
.q;x/ is parametrized by ME

0
.q;p/�MC

0
.p;x/ and by

�MH
0
.x;x0/�MC

0
.q;x0/. Figure 3 shows the possible components of MC

1
.q;x/:
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in the first and third figures, the broken trajectories contribute zero respectively to
'.@E.q// and @H .'.q//; in the second figure we see that �.u0/�.u0C/D �.v

00/�.u00C/,
so the broken trajectories contribute ˙x to both @H .'.q// and '.@E.q//. Therefore
@H .'.q//D '.@E.q//, so ' is a chain map.

3.7 The twisted version of the Abbondandolo–Schwarz isomorphism

Let ˛ be a singular cocycle representing a class in H 1.L1N / Š H 1.LN /. We
will use the bundles ƒ˛ on L1N and ƒ.L�/�˛ on L1T �N (see Section 2.14),
where L� W L1T �N ! L1N is induced by � W T �N ! N . The twisted complexes
.CM�.E Iƒ˛/; ıE/ and .CF�.H Iƒ.L�/�˛/; ıH / are freely generated over ƒ respec-
tively by the q 2Crit.E/ and the y 2Crit.AH /. The twisted differentials are defined by

ıE.q/D
X

v2ME
0
.q;p/

�.v/ t�˛Œv� p and ıH .y/D
X

u2MH
0
.x;y/

�.u/ t˛ŒL�.u/� x

since ˛ŒL�.u/�D .L�/�˛Œu�. The sign difference in the powers of t arises because
ıE is a differential and ıH is a codifferential. For simplicity, we write �uD L�.u/.

Theorem 3 If .L;G;H;J / is regular then for all ˛ 2 H 1.LN / there is a chain-
complex isomorphism 'W .CM�.E Iƒ˛/; ıE/! .CFn��.H Iƒ.L�/�˛/; ı

H /; which on
a generator q is defined as

'.q/D
X

uC2MC0 .q;x/

�.uC/ t�˛Œw�C˛Œ�uC� x;

where wW .�1; 0�! L1N is the negative gradient trajectory w.s/D �s
�rE.xq/ con-

necting q to xq. � / D �uC.0; � /. The isomorphism is compatible with the splitting
into subcomplexes corresponding to different conjugacy classes of �1.N /, and it is
compatible with the action filtrations: for any a 2R it induces an isomorphism on the
subcomplexes generated by the q , x with E.q/ < a and �AH .x/ < a.

After identifying Morse cohomology with singular cohomology, the map ' induces an
isomorphism

SH�.DT �N Iƒ˛/ŠHn��.LN Iƒ˛/:

Proof Figure 3 shows the possible connected components of MC
1
.q;x/. Evaluating

d˛ D 0 on a component equals the sum of the values of ˛ on the broken trajectories.
For instance, in the second figure

�˛Œw0�C˛Œ�u0C�C˛Œ�u0�D�˛Œv00��˛Œw00�C˛Œ�u00C�;
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and therefore, since �.u0/�.u0C/D �.v
00/�.u00C/,

�.u0/�.u0C/ t�˛Œw
0�C˛Œ�u0

C
� t˛Œ�u0�

D �.v00/�.u00C/ t�˛Œv
00� t�˛Œw

00�C˛Œ�u00
C
�:

Thus the broken trajectories contribute equally to ıH .'.q// and '.ıE.q//. A similar
computation shows that in the first and third figures the broken trajectories contribute
zero respectively to '.ıE.q// and ıH .'.q//. Hence

ıH .'.q//D
X

.u0;u0
C
/2MH

0
.x;x0/�MC

0
.q;x0/

�.u0/ t˛Œ�u0�
� �.u0C/ t�˛Œw

0�C ˛Œ�u0
C
� x

D

X
.v00;u00

C
/2ME

0
.q;p/�MC

0
.p;x/

�.v00/ t�˛Œv
00�
� �.u00C/ t�˛Œw

00�C˛Œ�u00
C
� x

D '.ıE.q//;

where we sum respectively over x , x0 and over x , p , and where w0 , w00 are the �rE
trajectories ending in �u0C.0; � /, �u00C.0; � /. Hence ' is a chain map.

That ' is an isomorphism follows just as in the untwisted case, because for E.q/ �
�AH .x/ the only nonempty MC

0
.q;x/ occurs when .t;x/D L.t; q; Pq/, and in this

case MC
0
.q;x/D fuCg where uC � x and w � q are independent of s 2R and so

the coefficient of x in '.q/ is

�.uC/ t�˛Œw�C˛Œ�uC� D �.uC/D˙1:

The last statement in the claim is a consequence of the identification of the Morse
cohomology of .L1N; E ;G/ with the singular cohomology of L1N just as in [1], after
introducing the system ƒ˛ of local coefficients.

4 Viterbo functoriality

Let .M 2n; �/ be a Liouville domain Section 2.1, and suppose

i W .W 2n; � 0/ ,! .M 2n; �/

is a Liouville embedded subdomain, that is we require that i�� � e�� 0 is exact for
some � 2R. For example the embedding DT �L ,!DT �N , obtained by extending
an exact Lagrangian embedding L ,!DT �N to a neighbourhood of L, is of this type.
We fix ı > 0 with

0< ı <min fperiods of the nonconstant Reeb orbits on @M and @W g:
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We will now recall the construction of Viterbo’s commutative diagram [12]:

SH�.W /
OO
c�

ooSH�.i/
SH�.M /

OO
c�

H�.W / oo i�
H�.M /

4.1 Hamiltonians with small slopes

We now consider Hamiltonians H 0 as in Section 2.12, which are C 2 –close to a
constant on �M n .0;1/�@M ; H 0D h.x/ with slopes h0.x/� ı for x� 0; and which
have constant slope h0.x/Dm> 0 for x� x0 .

A standard result in Floer homology is that (after a generic C 2 –small time-independent
perturbation of .H 0;J /) the 1–periodic orbits of XH 0 and the Floer trajectories
connecting them inside �M n fx � x0g are both independent of t 2 S1 , and so these
orbits correspond to critical points of H 0 and these Floer trajectories correspond to
negative gradient trajectories of H 0 . By the maximum principle, the Floer trajectories
connecting these orbits do not enter the region fx � x0g, and by the choice of ı there
are no 1–periodic orbits in fx� x0g since there 0< h0.x/� ı .

The Floer complex CF�.H 0/ is therefore canonically identified with the Morse com-
plex CM�.H 0/, which is generated by Crit.H 0/ and whose differential counts the
�rH 0 trajectories. The Morse cohomology HM�.H 0/ is isomorphic to the singular
cohomology of �M (which is homotopy equivalent to M ), so

HF�.H 0/Š HM�.H 0/ŠH�.M /:

Moreover, by Morse cohomology, a different choice H 00 of H 0 yields an isomor-
phism HM�.H 00/ Š H�.M / which commutes with HM�.H 0/ Š H�.M / via the
continuation isomorphism HM�.H 0/! HM�.H 00/.

4.2 Construction of c�

Recall from Section 2.13 that

SH�.M /D lim
�!

HF�.H /;

where the direct limit is over the continuation maps for Hamiltonians H which equal
hm

c;C
.x/Dm.x� c/CC for x� 0, ordered by increasing slopes m> 0.
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Since H 0 is such a Hamiltonian, there is a natural map HF�.H 0/! lim HF�.H /

arising as a direct limit of continuation maps. By Section 4.1, this defines a map

c�W H
�.M /! SH�.M /:

A different choice H 00 yields a map HF�.H 00/! SH�.M / which commutes with the
map HF�.H 0/!SH�.M / via the continuation isomorphism HF�.H 0/!HF�.H 00/.
Together with Section 4.1, this shows that c� is independent of the choice of H 0 .

4.3 Diagonal-step shaped Hamiltonians

We now consider the Liouville subdomain i W W ,!M . The @r –Liouville flow for
� 0 defines a tubular neighbourhood .0; 1C �/� @W of @W inside �M , where @W
corresponds to xD er D 1. This coordinate x may not extend to �M nW , and it should
not be confused with the x we previously used to parametrize .0;1/� @M � �M .

h
b

a

@W @M
c 1 1C � x

Figure 4: The solid line is a diagonal-step shaped Hamiltonian hD h
a;b
c with

slopes a� b . The dashed line is the action function Ah.x/D�xh0.x/Ch.x/ .

We consider diagonal-step shaped Hamiltonians H as in Figure 4, which are zero on
W n fx� cg and which equal h

a;b
c .x/ on fx� cg, where h

a;b
c is piecewise linear with

slope b at infinity; with slope a� b on .c; 1C �/; and which is constant elsewhere.
We assume that 0 � c � 1 and that a, b are chosen generically so that they are not
periods of Reeb orbits (see Section 2.2).

As usual, before we take Floer complexes we replace H by a generic C 2 –small time-
dependent perturbation of it, and the orbits and action values that we will mention take
this into account. Let M 0 � �M be the compact subset where h does not have slope b .
Observe Figure 4: the 1–periodic orbits of XH that can arise are:
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(1) critical points of H inside W n fx� cg of action very close to 0;

(2) nonconstant orbits near xD c of action in .�ac;�ıc/;

(3) nonconstant orbits near xD 1C � of action in .�ac; a.1C �� c//;

(4) critical points of H in M 0 n .W [fx� 1C �g/ of action close to a.1C �� c/;

(5) nonconstant orbits near @M 0 of action � 0 provided a� b .

Since the complement of the Reeb periods is open, there are no Reeb periods in
.a� �a; aC �a/ for some small �a > 0. Thus the actions in case (3) will be at least

�.a� �a/.1C �/C a.1C �� c/D �a.1C �/� ac;

and for sufficiently small c , depending on a, we can ensure that this is at least �a .
Hence (after a suitable perturbation of H ) we can ensure that if a� b and c� a�1

then the actions of (1) and (2) are negative and those of (3), (4) and (5) are positive.

4.4 Construction of SH�.i/

Suppose H is a (perturbed) diagonal-step shaped Hamiltonian, with a�b and c�a�1

so that the orbits in W have negative actions and those outside W have positive
actions. We write CF�.M;H / to emphasize that the Floer complex is computed
for M . Consider the action-restriction map Section 2.8

CF�.M;H I �1; 0/ CF�.M;H /:

Given two diagonal-step shaped Hamiltonians H , H 0 with H �H 0 everywhere, pick a
homotopy Hs from H 0 to H which is monotone (@sHs�0). The induced continuation
map �W CF�.M;H /! CF�.M;H 0/ restricts to a map on the quotient complexes
�W CF�.M;H I �1; 0/! CF�.M;H 0I �1; 0/ because the action decreases along
Floer trajectories when Hs is monotone (see Section 2.9).

Consider the Hamiltonian HW on the completion yW DW [@W Œ0;1/� @W which
equals H inside W and which is linear with slope a outside W . Then the quotient
complex CF�.M;H I �1; 0/ can be identified with CF�.W;HW / by showing that
there are no Floer trajectories connecting 1–periodic orbits of XH in �M which exit
W [fx� 1C �g. Therefore we obtain the commutative diagram

CF�.W;H 0
W
/ oo

OO
CF�.M;H 0/

OO

CF�.W;HW / oo CF�.M;H /
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where the vertical maps are continuation maps and where the horizontal maps arose
from action-restriction maps. Taking cohomology, and then taking the direct limit as
a� b!1 (so c� a�1! 0) defines the map SH�.i/:

SH�.i/W SH�.W / SH�.M /:

4.5 Viterbo functoriality

Consider a (perturbed) diagonal-step shaped Hamiltonian H DH 0 with c D 1 and
slopes 0 < b � a < ı so that the orbits inside W have negative actions and those
outside W have positive actions. Then H 0 and the corresponding H 0

W
are of the

type described in Section 4.1 for M and W respectively. The action-restriction map
CF�.W;H 0

W
/ CF�.M;H 0/ is then identified with the map on Morse complexes

CM�.W;H 0jW /  CM�.M;H 0/ which restricts to the generators x 2 Crit.H 0/

with H 0.x/ < 0. In cohomology this map corresponds to the pullback on singular
cohomology i�W H�.W / H�.M /.

This identifies CM�.W;H 0jW / CM�.M;H 0/ with the bottom map of the diagram
in Section 4.4 when we take H DH 0 , and so taking the direct limit over the H 0 we
obtain Viterbo’s commutative diagram in cohomology:

SH�.W /
OO
c�

ooSH�.i/
SH�.M /

OO
c�

H�.W / oo i�
H�.M /

4.6 Twisted Viterbo functoriality

We now introduce the twisted coefficients ƒ˛ for some ˛ 2H 1.L �M /ŠH 1.LM /,
as explained in Section 2.15 and Section 2.17. Recall that we have constructed twisted
continuation maps Section 2.16 which compose well, so the discussion of Section 4.2
and Section 4.4 will hold in the twisted case provided that we understand how the local
systems restrict.

Suppose H 0 is a Hamiltonian with small slope as in Section 4.1. In the twisted case
the canonical identification of CF�.H 0/ with the Morse complex CM�.H 0/ becomes

CF�.H 0
Iƒ˛/D CM�.H 0

I c�ƒ˛/;

where c�ƒ˛ is the restriction of ƒ˛ to the local system on �M � L0
�M which con-

sists of a copy ƒm of ƒ over each m 2 �M and of the multiplication isomorphism
t˛Œcıv� D tc�˛Œv�W ƒm!ƒm0 for every path v.s/ in �M joining m to m0 , and where
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the twisted Morse differential is defined on qC 2 Crit.H 0/ analogously to the Floer
case:

ıqC D
X˚

�.v/ tc�˛Œv� q� W q� 2 Crit.H 0/; @sv D�rH 0.v/; lim
s!˙1

v.s/D q˙
	
:

By mimicking the proof that HM�.H 0/ŠH�.M /, for twisted coefficients we have
HM�.H 0I c�ƒ˛/ŠH�.M I c�ƒ˛/ (singular cohomology with coefficients in the local
system c�ƒ˛ , as defined in [14]).

As in Section 4.2, we get twisted continuation maps CF�.H 0Iƒ˛/! CF�.H Iƒ˛/
for Hamiltonians H linear at infinity. In cohomology these maps yield a morphism
HF�.H 0Iƒ˛/! lim HF�.H Iƒ˛/, where the direct limit is taken over twisted con-
tinuation maps as the slopes at infinity of the H increase. This defines

c�W H
�.M I c�ƒ˛/! SH�.M Iƒ˛/:

We get action-restriction maps CF�.M;H Iƒ˛I �1; 0/ CF�.M;H Iƒ˛/ in Section
4.4, and two choices of diagonal-step shaped Hamiltonians H , H 0 with H �H 0 induce
a continuation map �W CF�.M;H Iƒ˛/! CF�.M;H 0Iƒ˛/ which restricts to the
quotient complexes �W CF�.M;H Iƒ˛I �1; 0/! CF�.M;H 0Iƒ˛I �1; 0/.

Let Li W LW !LM be the map induced by i . As in Section 4.4, the quotient complex
CF�.M;H Iƒ˛I �1; 0/ can be identified with CF�.W;HW Iƒ.Li/�˛/ because there
are no Floer trajectories connecting 1–periodic orbits of XH which exit W [fx�1C�g

in �M and so the twisted differentials of the two complexes agree since .Li/�˛ and ˛
agree on the common Floer trajectories inside W [fx� 1C �g.

As in Section 4.4, the direct limit over the twisted continuation maps for diagonal-step
shaped H of the action-restriction maps

CF�.W;HW Iƒ.Li/�˛/ CF�.M;H Iƒ˛/

as a� b!1 will define a twisted map SH�.i/ in cohomology:

SH�.i/W SH�.W Iƒ.Li/�˛/ SH�.M Iƒ˛/:

As in Section 4.5, the action-restriction maps fit into a commutative diagram

CF�.W;H 0
W
Iƒ.Li/�˛/ oo

OO
CF�.M;H 0Iƒ˛/OO

CM�.W;H 0
W
I c�ƒ.Li/�˛/

oo CM�.M;H 0I c�ƒ˛/

and taking the direct limit over the H 0 yields the following result in cohomology.
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Theorem 4 Let .M 2n; �/ be a Liouville domain. Then for all ˛ 2 H 1.LM / there
exists a map c�W H

�.M I c�ƒ˛/! SH�.M Iƒ˛/, where cW M !LM is the inclusion
of constant loops. Moreover, for any Liouville embedding i W .W 2n; � 0/! .M 2n; �/

there exists a map SH�.i/W SH�.W Iƒ.Li/�˛/  SH�.M Iƒ˛/ which fits into the
commutative diagram:

SH�.W Iƒ.Li/�˛/ oo SH�.i/

OO
c�

SH�.M Iƒ˛/OO

c�

H�.W I c�ƒ.Li/�˛/ oo i�
H�.M I c�ƒ˛/

5 Proof of the Main Theorem

Lemma 5 Let N n be a closed manifold and let L!DT �N be an exact Lagrangian
embedding. Then for all ˛ 2H 1.LN /, the composite

H�.N I c
�ƒ˛/

�
�!H n��.N I c�ƒ˛/

c�
�!SHn��.DT �N Iƒ.L�/�˛/

'�1

�!H�.LN Iƒ˛/

of Poincaré duality, the map c� from Section 4.6 and the inverse of ' (Theorem 3), is
equal to the ordinary map c�W H�.N I c

�ƒ˛/!H�.LN Iƒ˛/ induced by the inclusion
of constants cW N ! LN .

In the untwisted case, the lemma was proved by Viterbo [11] using his construction
of the isomorphism ' , and it can be proved in the Abbondandolo–Schwarz setup by
using small perturbations of L.q; v/D 1

2
jvj2 and H.q;p/D 1

2
jpj2 and by considering

the restriction of the isomorphism ' to the orbits of action close to zero. The twisted
version is proved analogously.

Theorem 6 Let N n be a closed manifold and let L!DT �N be an exact Lagrangian
embedding. Then for all ˛ 2H 1.LN / there exists a commutative diagram

H�.LLIƒ.Lp/�˛/OO
c�

oo Lp!
H�.LN Iƒ˛/OO

c�

H�.LI c
�ƒ.Lp/�˛/ oo p!

H�.N I c
�ƒ˛/

where cW N ! LN is the inclusion of constant loops, pW L! T �N ! N is the
projection and p! is the ordinary transfer map. Moreover, the diagram can be restricted
to the components L0L and L0N of contractible loops.

If c�˛ D 0 then the bottom map becomes p!˝ 1W H�.L/˝ƒ H�.N /˝ƒ.
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Proof Let �N be the canonical 1–form which makes .DT �N; d�N / symplectic.
By Weinstein’s theorem a neighbourhood of L is symplectomorphic to a small disc
cotangent bundle DT �L. Therefore the exact Lagrangian embedding j W Ln ,!

DT �N yields a Liouville embedding i W .DT �L; �L/ ,! .DT �N; �N /.

By Theorem 3 there are twisted isomorphisms:

'N W H�.LN Iƒ˛/ ! SHn��.DT �N Iƒ.L�/�˛/

'LW H�.LLIƒ.Lp/�˛/ ! SHn��.DT �LIƒ.Li/�.L�/�˛/

We define Lp! D '
�1
L
ı SH�.i/ ı'N so that the following diagram commutes:

H�.LLIƒ.Lp/�˛/OO

'�1
L
o

oo Lp!
H�.LN Iƒ˛/

'N o

��
SHn��.DT �LIƒ.Li/�.L�/�˛/ ooSH�.i/

SHn��.DT �N Iƒ.L�/�˛/

Recall that the ordinary transfer map p! is defined using Poincaré duality and the
pullback p� so that the following diagram commutes:

H n��.LI c�ƒ.Lp/�˛/OO

o

oo p�

H n��.N I c�ƒ˛/

o

��
H�.LI c

�ƒ.Lp/�˛/ oo p!
H�.N I c

�ƒ˛/

Finally, Theorem 4 for the map i yields another commutative diagram whose horizontal
maps are the bottom and top rows respectively of the above two diagrams (in the
second diagram we use that L, N are homotopy equivalent to DT �L, DT �N ). By
combining these diagrams we obtain a commutative diagram

H�.LLIƒ.Lp/�˛/OO
oo Lp!

H�.LN Iƒ˛/OO

H�.LI c
�ƒ.Lp/�˛/ oo p!

H�.N I c
�ƒ˛/

Lemma 5 shows that the vertical maps are indeed the maps c� in ordinary homology.
Since cW N ! LN maps into the component of contractible loops L0N , the diagram
restricts to L0L and L0N by restricting Lp! and projecting to H�.LLIƒ.Lp/�˛/

(not all loops in T �L that are contractible in T �N need be contractible in T �L).
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6 Proof of the Main Corollary

6.1 Transgressions

For ˇ2H 2.N /, let f W N!CP1 be a classifying map for ˇ . Let evW L0N�S1!N

be the evaluation map. Define

� D � ı ev�W H 2.N /
ev� // H 2.L0N �S1/

� // H 1.L0N / ;

where � is the projection to the Künneth summand. If N is simply connected,
then � is an isomorphism. Let u be a generator of H 2.CP1/, then v D �.u/

generates H 1.LCP1/ŠH 1.�CP1/ and �.ˇ/D .Lf /�v . Identify H 1.L0N /Š

Hom.�1.L0N /;Z/ and �1.L0N /Š �2.N /Ì�1.N /, then the class �.ˇ/ vanishes
on �1.N / and corresponds to

f�W �2.N /! �2.CP1/Š Z:

Similarly, define �bW H
2.N /!H 1.�0N / for the space �0N of contractible based

loops. Then �f W �0N ! �CP1 is a classifying map for �b.ˇ/. The inclusion
�0N ! L0N induces a bijection �.ˇ/ 7! �b.ˇ/ between transgressed forms.

We will assume throughout that the transgression ˛ D �.ˇ/ 2H 1.L0N / is nonzero,
or equivalently that f�W �2.N /! Z is not the zero map.

6.2 Novikov homology of the free loopspace

Denote by L0N the infinite cyclic cover of L0N corresponding to ˛W �1.L0N /!Z,
and let t denote a generator of the group of deck transformations of L0N . The group
ring of the cover is R D ZŒt; t�1�, and ƒ D Z..t// D ZŒŒt ��Œt�1� is the Novikov ring
of ˛ (see Section 2.14).

The Novikov homology of L0N with respect to ˛ is defined as the homology of L0N

with local coefficients in the bundle ƒ˛ , which by [14] can be calculated as

H�.L0N Iƒ˛/ŠH�.C�.L0N /˝R ƒ/:

Say that a space X is of finite type if Hk.X / is finitely generated for each k .

Theorem 7 For a compact manifold N , if �.ˇ/¤ 0 and �m.N / is finitely generated
for each m� 2 then L0N is of finite type.

Proof The theorem follows from five claims.

Claim 1 If �0N is of finite type then so is L0N .
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Proof Consider the fibration �0N ! L0N !N , and take cyclic covers correspond-
ing to �b.ˇ/ and �.ˇ/ to obtain the fibration �0N !L0N !N . By compactness, N

is homotopy equivalent to a finite CW complex and Claim 1 follows by a Leray–Serre
spectral sequence argument.

After replacing N by a homotopy equivalent space, we may assume that we have a
fibration f W N !CP1 with fibre F D f �1.�/, and taking the spaces of contractible
based loops gives a fibration �f W �0N !�CP1 .

Claim 2 The fibre of �f is a union .�F /K of finitely many components of �F ,
indexed by the finite set K D Coker.f�W �2N ! �2CP1/.

Proof Consider the homotopy LES for the fibration f ,

�2N
f� // �2CP1 // �1F // �1N

then .�f /�1.�/ D �F \�0N consists of loops 
 2 �F whose path component
lies in the kernel of �1F ! �1N , which is isomorphic to the cokernel of f� . Since
�.ˇ/¤ 0, also f� is nonzero and so K is finite.

Claim 3 �j W .�F /K !�0N is a homotopy equivalence.

Proof Observe that �0N is the pullback under �f of the cyclic cover of �CP1

corresponding to the transgression v D �b.u/ 2 H 1.�CP1/ of a generator u 2

H 2.CP1/ (see Section 6.1). We obtain the commutative diagram

.�F /K

��

�j // �0N

��

�f // �CP1

��

x'

'
// R

��
.�F /K

�j // �0N
�f // �CP1

'

'
// S1

where the homotopy equivalence ' corresponds to the class �b.u/ 2H 1.�CP1/Š
Œ�CP1;S1�. The claim follows since R is contractible.

Claim 4 �0N is of finite type if and only if �0F D� zF is of finite type.

Proof Each component of �F is homotopy equivalent to �0F via composition with
an appropriate fixed loop. The claim follows from Claims 3 and 2 since K is finite.
Note that we may identify �0F D� zF since the loops of F that lift to closed loops
of the universal cover zF are precisely the contractible ones.
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Claim 5 � zF is of finite type if and only if �mN is finitely generated for each m� 2.

Proof Since zF is simply connected, � zF is of finite type if and only if zF is of finite
type, by a Leray-Serre spectral sequence argument applied to the path-space fibration
� zF ! P zF ! zF (see Spanier [10, 9.6.13]). Moreover zF is of finite type if and only
if �m. zF /D �m.F / is finitely generated for all m � 2 (see [10, 9.6.16]). The claim
follows from the homotopy LES for F !N !CP1 .

Corollary 8 For a compact manifold N , if �.ˇ/¤ 0 and �m.N / is finitely generated
for each m� 2, then H�.L0N Iƒ�.ˇ//D 0.

Proof We need to show that each HNk D Hk.L0N Iƒ�.ˇ// vanishes. Since ZŒt �
is Noetherian, its .t/–adic completion ZŒŒt �� is flat over ZŒt � (see Matsumura [4,
Theorem 8.8]). Therefore, localizing at the multiplicative set S generated by t , ƒD
S�1ZŒŒt �� is flat over R D S�1ZŒt �. Thus HNk Š Hk.L0N /˝R ƒ, which is the
localization of Hk D Hk.L0N /˝ZŒt � ZŒŒt ��. Observe that t �Hk D Hk since t acts
invertibly on Hk.L0N /. So if Hk were finitely generated over ZŒt �, then Hk D 0 by
Nakayama’s lemma [4, Theorem 2.2] since t lies in the radical of ZŒŒt �� . By Theorem 7,
Hk is in fact finitely generated over Z, so this concludes the proof.

Remark 9 The idea behind the proof of Corollary 8 is not original. I later realized
that it is a classical result that if H�.X IZ/ is finitely generated in each degree then the
Novikov homology H�.C�. xX /˝R ƒ˛/ vanishes for 0¤ ˛ 2H 1.X /. The basic idea
dates back to Milnor [5] and a very general version of this result is proved in Farber [2,
Proposition 1.35].

Corollary 10 If N is a compact simply connected manifold, then H�.L0N Iƒ˛/D 0

for any nonzero ˛ 2H 1.L0N /.

Proof N is simply connected so its homotopy groups are finitely generated in each
dimension because its homology groups are finitely generated by compactness (see
Spanier [10, 9.6.16]). Since N is simply connected, any ˛ in H 1.L0N / is the
transgression of some ˇ 2H 2.N /. The result now follows from Corollary 8.

6.3 Proof of the Main Corollary

We recall the Main Corollary:

Corollary 11 Let N n be a closed simply connected manifold. Let L!DT �N be
an exact Lagrangian embedding. Then the image of p�W �2.L/! �2.N / has finite
index and p�W H 2.N /!H 2.L/ is injective.
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Proof A nonzero class ˇ 2H 2.N / yields a nonzero transgression �.ˇ/ 2H 1.L0N /

(see Section 6.1). Suppose by contradiction that �.p�ˇ/D 0. Then the local system
.Lp/�ƒ�.ˇ/ is trivial (see Section 2.14). Moreover c��.ˇ/D 0 since �.ˇ/ vanishes on
�1.N /. Therefore the diagram of Theorem 6, restricted to contractible loops, becomes

H�.L0L/˝ƒ
OO

c�

?�

oo Lp!
H�.L0N Iƒ�.ˇ//OO

c�

H�.L/˝ƒ

����
q�

oo p!
H�.N /˝ƒ

where qW L0L!L is the evaluation at 0. By Corollary 10, H�.L0N Iƒ�.ˇ//D 0, so
the fundamental class ŒN �2Hn.N / maps to c�ŒN �D 0. But Lp!.c�ŒN �/D c�p!ŒN �D

c�ŒL�¤ 0 since c� is injective on H�.L/.

Therefore �.p�ˇ/ cannot vanish, and so �b ı p�W H 2N ! H 1.�L/ is injective.
Consider the commutative diagram

H 2.N /

p�

��

�b

�
// Hom.�2.N /;Z/ŠH 1.�N /

.�p/�

��
H 2.L/

�b // Hom.�2.L/;Z/ŠH 1.�L/

where the top map �b is an isomorphism since N is simply connected. We de-
duce from the injectivity of �b ı p� D .�p/� ı �b that p�W H 2.N /! H 2.L/ and
Hom.�2.N /;Z/! Hom.�2.L/;Z/ are both injective, so in particular the image of
p�W �2.L/! �2.N / has finite index.

7 Non–simply connected cotangent bundles

We will prove that for non–simply connected N the map �2.L/! �2.N / still has
finite index provided that the homotopy groups �m.N / are finitely generated for each
m� 2.

This time we consider transgressions induced from the universal cover zN of N ,

� W H 2. zN /!H 1.L zN /DH 1.L0N /Š Hom.�2N;Z/:

The homomorphism zf�W �2. zN /D �2.N /! Z corresponding to such a transgression
�. ž/ is induced by a classifying map zf W zN !CP1 for ž 2H 2. zN /. Since � zN D
�0N and L zN D L0N , the transgressions �b. ž/ and �. ž/ define cyclic covers �0N

and L0N . We will use these in the construction of the Novikov homology.
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Theorem 12 Let N be a compact manifold with finitely generated �m.N / for each
m� 2. If �. ž/¤ 0 then L0N is of finite type and H�.L0N Iƒ

�. ž/
/D 0.

Proof Revisit the proof of Theorem 7. It suffices to prove that �0N has finite type.
This time we have the commutative diagram:

�F

��

�j // �0N

��

� zf // �CP1 'R

��
�F

��

�j // � zN D�0N

��

� zf // �CP1 ' S1

��
F

j // zN
zf // CP1

Since �F '�0N , it suffices to show that �F has finite type. Observe that

�F Š˚K�0F

where K D Coker. zf�W �2N ! �2CP1/ is a finite set since zf� ¤ 0. So we just
need to show that �0F D� zF is of finite type. The same argument as in Theorem 7
proves that � zF is of finite type if and only if �mN D �m

zN is finitely generated for
each m � 2. The same proof as for Corollary 8 yields the vanishing of the Novikov
homology.

Corollary 13 Let N be a closed manifold with finitely generated �m.N / for each
m � 2. Let L! DT �N be an exact Lagrangian embedding. Then the image of
p�W �2.L/! �2.N / has finite index and zp�W H 2. zN /!H 2. zL/ is injective.

Proof The proof is analogous to that of Corollary 11: .Lp/� in the diagram

H 2. zN /

zp�

��

�

�
// Hom.�2.N /;Z/ŠH 1.L0N /

.Lp/�

��

H 2. zL/
�

�
// Hom.�2.L/;Z/ŠH 1.L0L/

is injective because if, by contradiction, �. zp� ž/ 2H 1.L0L/ vanished then the functo-
riality diagram of Theorem 6 would not commute.
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8 Unoriented theory

So far we assumed that all manifolds were oriented. By using Z2DZ=2Z coefficients
instead of Z coefficients one no longer needs the Floer and Morse moduli spaces to
be oriented in order to define the differentials and continuation maps. For the twisted
setup, we change the Novikov ring to

ƒD Z2..t//D Z2ŒŒt ��Œt
�1�;

the ring of formal Laurent series with Z2 coefficients. The bundle ƒ˛ is now a bundle
of Z2..t// rings, however the singular cocycle ˛ is still integral: Œ˛� 2H 1.L0N IZ/.

Using these coefficients, all our theorems hold true without the orientability assumption
on N and L. The following is an interesting application of Corollary 11 in this setup.

Corollary 14 There are no unorientable exact Lagrangians in T �S2 .

Proof For unorientable L, H 2.LIZ/D Z2 . Therefore the transgression � vanishes
on H 2.LIZ/ since its range Hom.�2.L/;Z/ is torsion-free. But for S2 there is a
nonzero transgression. This contradicts the proof of Corollary 11.
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