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Residual finiteness, QCERF and fillings of hyperbolic groups
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We prove that if every hyperbolic group is residually finite, then every quasi-convex
subgroup of every hyperbolic group is separable. The main tool is relatively hyper-
bolic Dehn filling.

20E26, 20F67, 20F65

A group G is residually finite (or RF) if for every g 2 G X f1g, there is some finite
group F and an epimorphism �W G ! F so that �.g/ ¤ 1. In more sophisticated
language G is RF if and only if the trivial subgroup is closed in the profinite topology
on G .

If H <G , then H is separable if for every g 2G XH , there is some finite group F

and an epimorphism �W G! F so that �.g/ … �.H /. Equivalently, the subgroup H

is separable in G if it is closed in the profinite topology on G .

If every finitely generated subgroup of G is separable, G is said to be LERF or subgroup
separable. If G is hyperbolic, and every quasi-convex subgroup of G is separable, we
say that G is QCERF.

In this paper, we show that if every hyperbolic group is RF, then every hyperbolic
group is QCERF.

Theorem 0.1 If all hyperbolic groups are residually finite, then every quasi-convex
subgroup of a hyperbolic group is separable.

Remark 0.2 Theorem 0.1 states that the existence of a non–residually finite hyperbolic
group is equivalent to the existence of a nonseparable quasi-convex subgroup of some
hyperbolic group. This equivalence was guessed by Dani Wise in [20]. Wise [20] and
Minasyan [17] noticed independently that an argument of Long and Niblo [12] can be
used to show that residual finiteness for all hyperbolic groups implies separability of
all almost malnormal quasi-convex subgroups.

In the other direction, Kapovich and Wise show in [10] that if every hyperbolic group
has a finite index subgroup, then every hyperbolic group is residually finite. Together

Published: 21 January 2009 DOI: 10.2140/gt.2009.13.1043



1044 Ian Agol, Daniel Groves and Jason Fox Manning

with our result, this gives the statement: If every hyperbolic group has a finite index
subgroup, then every hyperbolic group is QCERF.

To prove Theorem 0.1, for a hyperbolic group G with quasi-convex subgroup H < G

and g 2 G �H an element to separate, we would like to find a hyperbolic quotient
'W G!K , such that '.H / <K is finite, and '.g/… '.H /. Then since K is assumed
to be hyperbolic and therefore residually finite, we may separate g from H . One
natural way to attempt to find such a quotient ' would be to “kill” a large finite index
normal subgroup H 0 C H and hope that the quotient of G is still hyperbolic and that
H projects to H=H 0 . This actually works if H is malnormal in G . The difficulty
with this procedure if H is not malnormal is that one must make sure that for any
k 2G�H , if U DH \H k ¤∅, then H 0\U DH 0\U k�1

�H , otherwise killing
H 0 would force a larger subset of H to be killed. Thus, we need to take into account
intersections between H and its conjugates, which motivates considering the following
definitions.

Let H g D gHg�1 . The following was defined by Gitik, Mitra, Rips and Sageev [6].

Definition 0.3 Let H be a subgroup of a group G . The elements fgi j 1� i �ng of G

are said to be essentially distinct if giH ¤gj H for i¤j . Conjugates fH gi j1� i �ng

of H by essentially distinct elements are called essentially distinct conjugates.

It should be remarked that essentially distinct conjugates may coincide if H is not
equal to its own normalizer.

Definition 0.4 The height of an infinite subgroup H < G is n if there exists a
collection of n essentially distinct conjugates of H such that the intersection of all the
elements of the collection is infinite and n is maximal possible. The height of a finite
subgroup is 0.

For example, an infinite, malnormal subgroup has height 1, whereas an infinite normal
subgroup has height equal to its index. The most relevant result about height for our
purposes is the following theorem of Gitik, Mitra, Rips and Sageev.

Theorem 0.5 [6] A quasi-convex subgroup of a hyperbolic group has finite height.

The proof of Theorem 0.1 will be by induction on height, using the following theorem,
which is the main technical result of this paper.

Theorem 0.6 Let G be a torsion-free residually finite hyperbolic group, let H be
a quasi-convex subgroup of G of height k and let g 2 G XH . There is a quotient
�W G! xG so that
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(1) xG is hyperbolic,

(2) �.H / is quasi-convex in xG ,

(3) �.g/ 62 �.H / and

(4) the height of �.H / in xG is at most k � 1.

Proof of Theorem 0.1 from Theorem 0.6 Let G be a hyperbolic group and H a
quasi-convex subgroup of G of height k . We prove that H is separable by induction
on height.

The base case is when H has height zero, which means H is finite. Since G is
residually finite it is straightforward to separate any g 2G XH from the finite set H .

Assume that k � 1. We claim that it suffices to prove H is separable in the special case
that G is torsion-free. Indeed, let G0 �G be a torsion-free subgroup of finite index.
Such a G0 exists because G is residually finite and G has only finitely many conjugacy
classes of torsion elements (see, for example, Brady [4]). Further, let H0 DG0\H .
An elementary argument shows that the height of H0 is at most k . Equally, if H0

is separable in G0 then H is separable in G . To see this, note that since G0 is of
finite index in G , the profinite topology on G0 coincides with the subspace topology
induced by the profinite topology on G . Thus, if H0 is closed in the profinite topology
on G0 then it is closed in the profinite topology on G . The subgroup H is a finite
union of cosets of H0 and is therefore closed in the profinite topology on G .

We have now reduced to the case that G is torsion-free. Let g2GXH . By Theorem 0.6
there is a hyperbolic quotient xG of G which separates g from H , and the image
of H in xG is quasi-convex and has height at most k � 1. Theorem 0.1 follows by
induction.

The remainder of the paper is devoted to the proof of Theorem 0.6.

0.1 Outline

In Section 1 we recall some definitions from Groves and Manning [8] on the geometry of
relative hyperbolicity. In Section 2, we collect some results about relatively hyperbolic
Dehn filling. In Section 3, we study the peripheral structure on a hyperbolic group
induced by a quasi-convex subgroup. The proof of Theorem 0.6 occupies Section 4;
we first prove a pair of technical lemmas and then prove the various conclusions of
Theorem 0.6 hold for appropriately chosen Dehn fillings of the peripheral structure
induced by a quasi-convex subgroup. The pieces are put together in Section 4.5. Finally
we discuss some generalizations in Section 5.
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1 The cusped space of a relatively hyperbolic group

In this section we briefly recall the main constructions of [8]. Given a finitely generated
group G D hSi and a finite collection of finitely generated subgroups P , we build a
“cusped space” X.G;P;S/ by first forming the Cayley graph of G and then gluing a
“horoball” onto each translate of an element of P .

Definition 1.1 Let � be any 1–complex. The combinatorial horoball based on � ,
denoted H.�/, is the 2–complex formed as follows:
� H.0/ D �.0/ � .f0g[N/.
� H.1/ contains the following three types of edges. The first two types are called

horizontal and the last type is called vertical.
(1) If e is an edge of � joining v to w then there is a corresponding edge xe

connecting .v; 0/ to .w; 0/.
(2) If k > 0 and 0 < d�.v; w/ � 2k , then there is a single edge connecting

.v; k/ to .w; k/.
(3) If k � 0 and v 2 �.0/ , there is an edge joining .v; k/ to .v; kC 1/.

� H.2/ contains 2–cells (described explicitly in [8, Definition 3.1]) which ensure
that H satisfies a linear isoperimetric inequality, with constant independent of � .

Remark 1.2 As the full subgraph of H.�/ on the vertices �.0/ � f0g is isomorphic
to � , we may think of � as a subset of H.�/.

Definition 1.3 Let � be a graph and H.�/ the associated combinatorial horoball.
Define a depth function

DW H.�/! Œ0;1/

which satisfies:

(1) D.x/D 0 if x 2 � .

(2) D.x/D k if x is a vertex .v; k/.

(3) D restricts to an affine function on each 1–cell and on each 2–cell.
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Definition 1.4 (Osin) Suppose that G is generated by S with respect to fH�g�2ƒ .
This means G is a quotient of

F D F.S/� .��2ƒH�/ ;

where F.S/ is the free group on the alphabet S . Suppose that N is the kernel of the
canonical quotient map from F to G . If N is the normal closure of the set R then we
say that

hS; fH�g�2ƒ jRi
is a relative presentation for G with respect to fH�g�2ƒ .

We say that G is finitely presented relative to fH�g�2ƒ if we can choose R and S to
be finite.

Definition 1.5 The cusped space X.G;P;S/. Let G be a finitely generated group
which is finitely presented relative to P D fP1; : : : ;Pmg, a family of finitely generated
subgroups of G . Let S be a generating set for G so that Pi \ S generates Pi for
each i 2 f1; : : : ;mg. For each i 2 f1; : : : ;mg, let Ti be a left transversal for Pi

(ie a collection of representatives for left cosets of Pi in G which contains exactly
one element of each left coset). Let � D �.G;S/ be the Cayley graph of G . To � ,
equivariantly attach 2–cells coming from the finite relative presentation to obtain a
2–complex S� .

For each i and each t 2 Ti , let �i;t be the full subgraph of the Cayley graph �.G;S/
which contains tPi . Each �i;t is isomorphic to the Cayley graph of Pi with respect to
the generators Pi \S . Then we define

X.G;P;S/DS� [
�S
fH.�i;t / j 1� i �m; t 2 Tig

�
;

where the graphs �i;t � �.G;S/ and �i;t � H.�i;t / are identified as suggested in
Remark 1.2.

Definition 1.6 A horoball of X.G;P;S/ is the subgraph H.�i;t / for some i and t .
For l 2N , an l –horoball is the full subgraph of H.�i;t / on those vertices of distance
at least l from the Cayley graph � .

Remark 1.7 Once a horoball is specified, the vertex of X.G;P;S/ connected by a
vertical geodesic of length n to the group element g can be conveniently referred to
by the ordered pair .g; n/, and we will often do so.

Remark 1.8 Whenever X.G;P;S/ is to be thought of as a metric space, we will
always implicitly ignore the 2–cells and regard H.�/.1/ as a metric graph with all
edges of length one.
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Relative hyperbolicity was first defined by Gromov in [7]. We use the following
characterization (See [8, Section 3] for this characterization and others):

Proposition 1.9 Let G be a finitely generated group, and let P be a finite collection
of finitely generated subgroups. The following are equivalent:

(1) G is hyperbolic relative to P in the sense of Gromov.

(2) The space X.G;P;S/ is Gromov hyperbolic for some finite generating set S .

(3) The space X.G;P;S/ satisfies a linear isoperimetric inequality.

Most of our geometric arguments therefore take place in some cusped space X D

X.G;P;S/. For most of the paper, we will work either with arbitrary geodesics in this
space, or with regular geodesics, ie geodesics whose intersection with any horoball
is vertical except possibly for a single horizontal subsegment. In Section 4.4, we will
need to use paths between points in X (and sometimes @X ) whose behavior is even
more controlled. These are the preferred paths of [8], and we refer to that paper for a
detailed discussion.

2 Filling hyperbolic and relatively hyperbolic groups

Let G be hyperbolic relative to a finite collection PDfP1; : : : ;Pmg, as in the previous
section. A filling of G is determined by a choice of subgroups Nj C Pj , called filling
kernels; we write the quotient after filling as G.N1; : : : ;Nm/. If S is a generating
set for G which contains generating sets for each Pi , then for each i we define the
algebraic slope length, denoted jNi jPi

, to be the length of the shortest nontrivial
element of Ni , measured in the generators S \Pi .

We collect here some results about filling from [8] (see also Osin [19]):

Theorem 2.1 Let G be a torsion-free group, which is hyperbolic relative to a collection
P D fP1; : : : ;Pmg of finitely generated subgroups. Suppose that S is a generating set
for G so that for each 1� i �m we have Pi D hPi \Si. Let F �G be a finite set.

There exists a constant B depending only on G , P , S and F so that for any collection
fNig

m
iD1

of subgroups satisfying

� Ni E Pi and

� jNi jPi
� B ,

the following hold, where K is the normal closure in G of N1 [ � � � [ Nm and
G.N1; : : : ;Nm/DG=K :
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(1) [8, Theorem 9.1] The map �i W Pi=Ni!G.N1; : : : ;Nm/ given by pNi 7! pK

is injective for each i .

(2) [8, Theorem 7.2] G.N1; : : : ;Nm/ is hyperbolic relative to the collection QD
f�i.Pi=Ni/ j 1� i �mg.

(3) [8, Corollary 9.7] The projection from G to G.N1; : : : ;Nm/ is injective on F .

The following lemma is needed in the proof of Proposition 2.3. Its statement involves
both “relative Dehn functions” and the “coned-off Cayley complex” of a relatively
hyperbolic group. We refer the reader to Osin [18, Section 2.3] and Groves and
Manning [8, Definition 2.47] for the definitions.

Lemma 2.2 Suppose that G is hyperbolic relative to P and that

hX; fP�g�2ƒ jRi

is a finite relative presentation for G with respect to P . Let M Dmaxr2R jr j.

Suppose further that G has a linear relative Dehn function with constant K . Then the
coned-off Cayley complex of G with respect to P has a linear isoperimetric function
with constant at most .MC1/KC 1.

Proof Let yC be the coned-off Cayley complex. Start with a loop c in the 1–skeleton
of yC . We may clearly assume that c is embedded.

Let � be the Cayley graph of G with respect to the generating set X [
�S

� P�Xf1g
�
.

Any loop in � can be filled with a disk whose 2–cells have boundary labelled either
by elements of R (“R–cells”) or by a relation in one of the P� (“P –cells”).

We replace the loop c by a loop c0 in � by taking each subsegment of c of length 2

which has a cone point as its midpoint and replacing it with the corresponding edge
of � .

Clearly jc0j � jcj. There is therefore some filling of c0 in � with at most Kjcj R–cells
(and we do not need any information about the number of P –cells).

These R–cells lift to a partial filling ! of c in yC . There is a collection �1; : : : ; �k of
embedded loops, each of which is in the closed star of some cone vertex xi 2

yC so
that as (oriented) 1–cycles, the boundary of ! is c �

P
i �i .

The edges in the �i are of three types:

(1) edges on the boundary of some R–cell

(2) edges in the Cayley graph whose interior do not intersect any R–cell

(3) the cone edges removed when constructing c0 from c .
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There are at most MKjcj edges of the first type and at most jcj total edges of the
second and third types. Since the cone on any graph has isoperimetric constant 1, each
loop �i can be filled with a disk �i of area at most j�i j. The required filling of c is
given by the 2–chain !C

P
i �i . It is straightforward to see that this can be realized

by a disk. Since the area of ! is at most Kjcj, and the sum of the areas of the �i is
equal to X

i

j�i j � .MKC 1/jcj;

we get the required isoperimetric constant for yC .

Proposition 2.3 Suppose that G , P and S are as in the hypothesis of Theorem 2.1,
and let F D ∅. There is some ı and B so that for any hyperbolic filling G0 D

G.N1; : : : ;Nm/ and Q as in Theorem 2.1 with jNi jPi
� B for all i the space

X.G0;Q;S/ is ı–hyperbolic.

Proof By [8, Theorem 3.25], G is hyperbolic relative to P . By the Appendix of [18]
this means that the relative Dehn function of G with respect to P is linear. Let C be
the constant of this linear function. By [19, Lemma 5.3], there is a finite set A 2G so
that if each Ni \AD∅ then the relative Dehn function for G0 with respect to Q is
linear with constant at most 3C . Let B be so large that the ball of radius B about 1

in G contains A.

Given a finite relative presentation for G , there is an obvious finite relative presentation
for G0 , and the maximum length of a relator does not increase. Let M be the maximum
length of a relator in the given finite relative presentation for G (which is used to
calculate the constant C above). By Lemma 2.2, the coned-off Cayley complex for
G0 has a linear isoperimetric function with constant at most 3.MC1/C C 1. Let
C 0 D 3.MC1/C C 1. By [8, Theorem 3.24] this implies that the cusped space for G0

has a linear isoperimetric function with constant 3C 0.2C 0C1/. Now, by [5, Theorem
III.H.2.9], the constant of hyperbolicity for the cusped space for G0 can be calculated
explicitly in terms of this isoperimetric constant, and maxfM; 5g, the maximum length
of an attaching map of a 2–cell for the cusped space. Putting all of these estimates
together shows that this constant of hyperbolicity is uniform over all sufficiently long
fillings.

Remark 2.4 There is a direct proof of the above result using the results of [8] rather
than [19]. However, the output of the main theorem of [8] is a bound on the constant
for a linear homological isoperimetric inequality for the space X.G0;Q;S/. In order
to apply this, one needs to make the constant of hyperbolicity in the conclusion of
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[8, Theorem 2.29] explicit in terms of the homological isoperimetric constant. This
would involve rewriting [5, Theorem III.H.2.9] in a homological setting. Feeling that
this would be too much of a diversion, we chose the shorter but more circuitous proof
above.

3 Quasi-convexity

Suppose that H and G are both relatively hyperbolic groups. Let PDfP1; : : : ;Png be
the peripheral subgroups of G , and let DDfD1; : : : ;Dmg be the peripheral subgroups
of H . Let �W H ! G be a homomorphism. If every �.Di/ 2 D is conjugate in G

into some Pj 2 P , we say that the map � respects the peripheral structure on H . Let
S and T be finite relative generating sets for G and H respectively.

Lemma 3.1 If �W H !G is a homomorphism which respects the peripheral structure
on H , then � extends to an H –equivariant Lipschitz map {� from (the zero-skeleton
of) X.H;D;T / to X.G;P;S/. If � is injective, then {� is proper.

Proof We first associate with each Di 2D an element ci 2G . Since � respects the
peripheral structure, there is some Pji

2 P and some c 2G so that �.Di/� cPji
c�1 .

We let ci be some shortest such c , with respect to the generators S .

For h2H , we define {�.h/D�.h/. A vertex in a horoball of X.H;D;T / is determined
by a triple .sDi ; h; n/, where s 2H , Di 2D , h 2 sDi and n 2N . We define

{�.sDi ; h; n/D .�.s/ciPji
; �.h/ci ; n/:

Let aDmaxfj�.t/jS j t 2 T g, and let b Dmaxfjci jSg; the map {� is ˛–Lipschitz for
˛ Dmaxfa; bC 1g.

Properness is left to the reader.

Recall that a filling of G is determined by a choice of subgroups Nj C Pj , called
filling kernels; we write the quotient after filling as G.N1; : : : ;Nm/.

Definition 3.2 If � is a homomorphism which respects the peripheral structure on
H , then any filling of G induces a filling of H as follows. For each i , there is some
ci D c.Di/ in G and some Pji

in P so that ciPji
c�1

i contains �.Di/. The induced
filling kernels Ki C Di are given by

Ki D �
�1.ciNji

c�1
i /\Di :

The induced filling is H.K1; : : : ;Kn/. The map � induces a homomorphism

x�W H.K1; : : : ;Kn/!G.N1; : : : ;Nm/:
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Definition 3.3 Suppose G is a relatively hyperbolic group, relative to P , and that
H < G is hyperbolic relative to D and that the inclusion of H into G respects
the peripheral structure. A filling G! G.N1; : : : ;Nm/ is an H –filling if whenever
H \P

g
i is nontrivial, N

g
i � sDj s�1 �H for some s 2H and Dj 2D .

3.1 Induced peripheral structures

Let G be a hyperbolic group, and let H <G be a quasi-convex subgroup. Recall that
according to Theorem 0.5, H has finite height (see Definition 0.4). We will construct
a peripheral structure for G using the infinite intersections of maximal collections of
essentially distinct conjugates of H .

Lemma 3.4 There are only finitely many H –conjugacy classes of subgroups H \H g

such that jH \H gj D1.

Proof If g1 and g2 lie in the same double coset HgH , then the subgroups H \H g1

and H \H g2 are conjugate in H . By [6, Lemma 1.2], there is an upper bound on the
minimal length of a coset representative of HgH such that jH \H gj D1.

Using induction on the height we obtain the following.

Corollary 3.5 Let n be the height of H . There are only finitely many H –conjugacy
classes of minimal infinite subgroups of the form H \H g1 \ � � �H gj where j � n

and f1;g1; : : : ;gj g are essentially distinct.

Choosing one subgroup of this form per H –conjugacy class and taking its commensu-
rator in H , we obtain a system D of (quasi-convex) subgroups of H which we will
call the malnormal core of H . The collection D gives rise to a collection of peripheral
subgroups P for G in two steps:

(1) Change D to D0 by replacing each element of D by its commensurator in G .

(2) Eliminate redundant entries of D0 to obtain P � D0 which contains no two
elements which are conjugate in G .

Call P the peripheral structure on G induced by H . This peripheral structure is only
well-defined up to replacement of some elements of P by conjugates. On the other
hand, replacing H by a commensurable subgroup of G does not affect the induced
peripheral structure. We consider two peripheral structures on a group to be the same
if the same group elements are parabolic in the two structures.
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Observation 3.6 Let H1 and H2 be quasi-convex subgroups of the hyperbolic
group G with the same limit sets in @G . The peripheral structures induced by H1 and
H2 are the same.

In the next two observations and lemma, we consider a hyperbolic group G and a
quasi-convex subgroup H . We let D be the malnormal core of H , and let P be the
peripheral structure on G induced by H . Finally,

{�W X.H;D;T /!X.G;P;S/

is the extension of the inclusion map given by Lemma 3.1.

Observation 3.7 If P is the peripheral structure on G induced by H , and P 2 P ,
then H \P is finite index in P .

Observation 3.8 If P is the peripheral structure on G induced by H , and h 2H is
parabolic with respect to that structure, then h is conjugate in H to an element of D

for some D in the malnormal core D of H .

Lemma 3.9 There is a constant ˇ satisfying the following: Let A be a horoball of
X.G;P;S/, and suppose that H \ StabG.A/ contains an element of infinite order. A
ˇ–neighborhood of the image of {� contains A.

Proof For each D2D , there is some (unique) P DP .D/2P and some cD c.D/2G

(chosen as in the proof of Lemma 3.1) so that D < cPc�1 . By Observation 3.7, D is
finite index in cPc�1 . Since D is finite, there is some constant ˇ1 , independent of D ,
so that cP is contained in a ˇ1 –neighborhood of D in G .

Let h be the infinite order element of H \StabG.A/. Observation 3.8 implies that h

is already parabolic in H , so h 2 sDs�1 for some s 2H and D 2D .

The horoball A is attached to some coset tPi for t 2G and Pi 2 P . Since parabolics
cannot have infinite intersection without coinciding, it follows that Pi D P .D/; we
may take t D sc .

It follows from the first paragraph that tPi D scPi is contained in a ˇ1 –neighborhood
of sD . Moreover, elements of tPi are uniformly close to elements of sDc , and
elements of the horoball A are uniformly close to elements of the form

{�.sD; h; n/D .tPi ; hc; n/:

In other words, the vertices of A which do not lie in G are all contained in some
ˇ2 –neighborhood of the image of {�.

We may therefore take ˇ Dmaxfˇ1; ˇ2g.
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Example 3.10 Let G D ha; bi be a free group of rank 2 and let H D ha2; ba3b�1i.
In this case one must take commensurators twice, once to get the malnormal core and
a second time to get the induced peripheral structure. Indeed, the minimal infinite
intersections of H with its conjugates are conjugate in H either to

ha6
i DH \H a

\H b
\H ab�1

\H a2b�1

hba6b�1
i DH \H bab�1

\H ba2b�1

\H b
\H ba;or

so H has height 5. The malnormal core of H is

DD fha2
i; hba3b�1

ig

and the induced peripheral structure on G is P D fhaig.

Definition 3.11 Let �W H ! G be a homomorphism which respects the peripheral
structure. We say that �.H / is C –relatively quasi-convex in G if {� has C –quasi-
convex image. If H < G and � is the inclusion map, we say that H is a relatively
quasi-convex subgroup of G .

The relative quasi-convexity of �.H / does not depend on the choice of relative gener-
ating sets S and T , though the constant C does depend on S and T .

Proposition 3.12 Let H be a quasi-convex subgroup of the torsion-free hyperbolic
group G , and let D be the malnormal core of H . Let P be the peripheral structure on
G induced by H .

(1) H is hyperbolic relative to D .

(2) G is hyperbolic relative to P .

(3) With respect to the above peripheral structures, H is a relatively quasi-convex
subgroup of G .

Proof The first two assertions are essentially contained in [3, Proposition 7.11]. By
construction, the elements of D are quasi-convex, nonconjugate, and any pair of
conjugates of elements of D are either equal or intersect in a finite set. They are also
equal to their commensurator, are hence to their normalizer. These are the hypotheses
of [3, Proposition 7.11]. The same properties hold for P in G .

We now consider the third property. Let X DX.G;P;S/ be the cusped space of G .
Let XH be the zero-skeleton of the cusped space of H , and let Y be the image of the
proper map {�W XH !X from Lemma 3.1. Let x and y be vertices of Y .

We need to prove that there is a constant C (independent of x and y ) so that a geodesic
in X between x and y lies within C of Y .
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Case 1 The points x and y lie deep (deeper than 50ı ) in the same horoball.

In this case the geodesic between x and y lies entirely in the horoball (see [8,
Lemma 3.26]). Any geodesic between x and y is Hausdorff distance at most 4

from a regular geodesic, which is vertical except for a horizontal segment of length at
most three (see [8, Lemma 3.10]). The vertical subsegments start at points in Y , so by
construction of cusped spaces and the map {� , the vertical subsegments lie in Y also.
Therefore in this case we can take C D 6.

Case 2 x and y lie at depth no more than 50ı in X .

In this case, consider the space X 0 which consists of all vertices in X at depth at most
100ı . This space is quasi-isometric to the group G , and H is a quasi-convex subset
of X 0 , with quasi-convexity constant �, say. Choose a geodesic  in X 0 between x

and y . We may assume that  is “regular” in each horoball, in the following sense:
If  contains vertices at depth 90ı in the horoball, then that part of  between depth
0 and depth 90ı consists of two vertical segments.

Since H is �–quasi-convex in X 0 , there is an element of H within � of any point
in  . Now consider  as a subset of X , using the natural inclusion of X 0 in X . We
will replace  with a 10ı–local geodesic x in X with endpoints x and y . The path x
will be seen to lie in a uniformly bounded neighborhood of Y .

Let � be a subsegment of  lying entirely below depth 90ı . Any such � is contained
in a unique maximal segment y� lying below depth 80ı . To define x , we replace each
such y� with an X –geodesic consisting of two vertical and one horizontal subsegment.

This yields a continuous path x from x to y which we claim is a 10ı–local geodesic
in X . Consider a subsegment I of x of length 10ı . We must show that I is a geodesic
in X . If I lies completely beneath depth 80ı it is obvious that I is geodesic.

Suppose I lies entirely above depth 80ı . Any path joining the endpoints of I which
is not entirely contained in X 0 must have length at least 40ı . Since I has length 10ı

and is a geodesic in X 0 , I is a geodesic in X .

Finally, between depths 70ı and 90ı , x is vertical and hence geodesic. In particular,
if I crosses depth 80ı , then I is geodesic. This shows that x is a 10ı–local geodesic
between x and y .

We claim that x lies in a bounded neighborhood of Y . This is clear for those parts of
x which lie in  , so let � be a maximal subsegment of x which is not contained in  .
Then � is contained in a single horoball A. We now split into two subcases, depending
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on the length of � . Let A0 be the part of A at depth 0 and A� be the �–neighborhood
of A0 in X . Also let GA D Stab.A/. Then GA acts cocompactly on A� . Let K be
the number of vertices in A�=GA .

Case 2.1 The length of � is less than .3C 40ıC 2 log2.�.KC1///.

Then each point in � is at most .3C40ıC2 log2.�.KC1///=2 from an endpoint of � .
However, the endpoints of � lie in  , which lies in a �–neighborhood of Y . Thus in
this case each element of � lies within .3C 40ıC 2 log2.�.KC1///=2C� of Y .

Case 2.2 The length of � is at least .3C 40ıC 2 log2.�.KC1///.

In this case, consider the path z� �  which joins the endpoints of � . The path z� has
length at least �.KC1/. Each point in z� is within at most � from a point in H , so
there are at least KC1 distinct points, fh1; : : : ; hKC1g, all within � of z� and each of
these points lies in A� . By the choice of K , there is hi ¤ hj in the same GA –orbit, so
hih
�1
j 2GA X f1g. Since G is torsion-free, hih

�1
j has infinite order, and by Lemma

3.9, a ˇ–neighborhood of Y contains A.

Let � be a geodesic joining x to y in X . By [5, III.H.1.13(1)], � lies in a 2ı

neighborhood of x , which we have already shown lies in a bounded neighborhood
of Y .

Case 3 Either x or y lies inside a 50ı–horoball, but we are not in Case 1.

If x or y lies in a horoball, it lies directly beneath a point in H at depth 0 (ie in the
Cayley graph of G ) in X . Either appending or deleting 1 the vertical paths from x to
depth 0 and similarly for y we obtain a path which is a 10ı–local geodesic. Since
10ı–local geodesics are .7=3; 2ı/–quasi-geodesics [5, III.H.1.13(3)], the proposition
follows now from Cases 1 and 2.

Remark 3.13 We direct the interested reader to Martı́nez-Pedroza [16] for a much
more general theorem from which part (3) of Proposition 3.12 follows.

In general, even if G is hyperbolic, a relatively quasi-convex subgroup (with respect to
some relatively hyperbolic structure on G ) need not be quasi-convex in G . However,
the following lemma is straightforward.

Lemma 3.14 Suppose that G is hyperbolic relative to a collection of finite subgroups.
Then G is hyperbolic and any relatively quasi-convex subgroup of G is quasi-convex.

1Whether a vertical path is appended or deleted depends on whether the geodesic from x to y initially
goes up or down (the case when it goes horizontal is treated as if it goes down).
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4 Proof of Theorem 0.6

4.1 Projections of geodesics to cusped spaces of quotients

The key technical lemma is the following:

Lemma 4.1 Fix a relatively hyperbolic group G with peripheral subgroups P and
compatible generating set S . Choose ı > 0 so that the cusped spaces X DX.G;P;S/
and X 0DX.G.N1; : : : ;Nm/;Q;S/ are both ı–hyperbolic, whenever G.N1; : : : ;Nm/

is a sufficiently long filling of G .

Let L � 10ı , and let D � 3L. Let F D fg 2 G j dX .g; 1/ � 2Dg, and let � W G!
G.N1; : : : ;Nm/ be any hyperbolic filling of G which is injective on F and so that
X 0DX.G.N1; : : : ;Nm/;Q;S/ is ı–hyperbolic. (We denote the induced map from X

to X 0 also by � .) Let  be a regular geodesic in X joining two elements of G . One
of the following occurs:

(1) There is a 10ı–local geodesic with the same endpoints as �. / which is con-
tained in a 2–neighborhood of �. / and coincides with �. / everywhere in an
L–neighborhood of the Cayley graph of G.N1; : : : ;Nm/.

(2) There is a coset tPi whose corresponding horoball intersects  in a subseg-
ment Œg1;g2� of length at least 2D � 20ı � 4 but there is some n 2 Ni with
dX .g1;g2n/� 2LC 3.

Proof It is straightforward to verify that the map � W X ! X 0 induced by the filling
is injective on balls of radius 10ı centered on points either in the Cayley graph or at
depth at most D� 10ı� 2 in a horoball. It follows that subsegments of  straying no
further than D�10ı�2 from the Cayley graph project to 10ı–local geodesics. Let B

be a horoball which  penetrates to depth greater than D� 10ı� 2. The horoball B

intersects the Cayley graph of G in some coset tP for t 2G and Pi 2 P . Let g1 and
g2 be the initial and terminal vertices of  \B . There are three possibilities:

(a) �. \B/ is geodesic.

(b) �. \B/ is not geodesic but dX 0.�.g1/; �.g2//� 2LC 3.

(c) �. \B/ is not geodesic and dX 0.�.g1/; �.g2// < 2LC 3.

We first claim that if (a) or (b) holds for every horoball which  penetrates to depth
greater than D � 10ı � 2, then conclusion (1) of the Lemma holds. We argue by
constructing a new 10ı–quasi-geodesic  0 in X 0 which agrees with �. / everywhere in
an L–neighborhood of the Cayley graph of G.N1; : : : ;Nm/ and inside those horoballs
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of X 0 which �. / intersects in a geodesic segment. Whenever a subsegment �
of �. / is of type (b), we can replace it by a shorter, but still 10ı–local geodesic
segment as follows. The segment � is composed of two vertical subsegments and a
short (length 2 or 3) horizontal subsegment at depth d >D � 10ı � 2. Since �.�/
is not geodesic, the images in X 0 of the vertical subsegments must come within a
horizontal distance of 3 of one another at some smaller depth d 0 . The assumption that
dX 0.�.g1/; �.g2//� 2LC 3 forces d 0 >L. Modifying � by removing the part lying
below depth d 0 and replacing it with a horizontal geodesic leaves a geodesic � 0 which
still goes to depth at least L. Therefore making all possible such modifications leaves
a 10ı–local geodesic  0 satisfying conclusion (1) of the Lemma.

Now suppose that there is some horoball B so that  penetrates B to depth greater
than D � 10ı � 2, but �. \B/ satisfies condition (c) above. The image of Pi in
G.N1; : : : ;Nm/ is canonically isomorphic to Pi=Ni , so there is some n 2Ni so that
dX .g1;g2n/ � 2LC 3. Since  is geodesic, dX .g1;g2/ > 2.D � 10ı � 2/, and so
conclusion (2) holds.

In our current applications, we will only ever apply this lemma to a geodesic with both
endpoints in a quasi-convex subgroup. In this context, more can be said.

Lemma 4.2 Let G , P , S and L� 10ı be as in the hypothesis of Lemma 4.1. Let H

be a �–relatively quasi-convex subgroup of G , and let ˛ be the Lipschitz constant for
the extension of the inclusion map in Lemma 3.1.

Let D � 3L C 100� C 4˛ , and let F D fg 2 G j dX .g; 1/ � 2Dg. Suppose
� W G ! G.N1; : : : ;Nm/ is an H –filling which is injective on F and so that X 0 D

X.G.N1; : : : ;Nm/;Q;S/ is ı–hyperbolic. Let KH < ker.�/\H be the kernel of
the induced filling of H (as in Definition 3.2). Finally, suppose that  is a geodesic
joining 1 to h for some h 2H .

If conclusion (2) of Lemma 4.1 holds, then there is a k 2KH satisfying jkhjX < jhjX .2

Proof Let g1;g2 2 tPi and n 2Ni be as in the conclusion to Lemma 4.1, and let B

be the horoball in X which contains tPi . We have

dX .g1;g2/� 2D� 20ı� 4� 6LC 200�C 8˛� 20ı� 4;(1)

dX .g1;g2n/ < 2LC 3:but

We use quasi-convexity to approximate g1 and g2 by elements of Hc \ tPi for some
small c 2G . If g 2 tPi and m 2N , we will write .g;m/ for the unique vertex of B

connected to g by a vertical geodesic of length m, as in Remark 1.7.

By (1), the geodesic  penetrates the horoball B to depth at least D�10ı�4> 2�; in

2writing j � jX for dX . � ; 1/
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particular,  passes through .g1; �C1/ and .g2; �C1/. Let �W H!G be the inclusion
map and {� the extension from Lemma 3.1. Since H is �–relatively quasi-convex,
there are points z1 D{�

�
.s1Dj1

; h1; n1/
�

and z2 D{�
�
.s2Dj2

; h2; n2/
�

in B within �
of .g1; �C 1/ and .g2; �C 1/, respectively. Note that dX .zj ; hj /� 2�C˛ and thus
dX .hj ;gj /� 4�C˛ for j D 1; 2. Thus

(2) dX .h1; h2/� dX .g1;g2/� .8�C 2˛/ > 0:

In particular h1 ¤ h2 . Moreover, since {� is H –equivariant, h2h�1
1

B intersects B in
its interior. Hence h2h�1

1
fixes the horoball B and the coset tPi . Because the filling

kernels fN1; : : : ;Nmg are assumed to determine an H –filling, we have

tNi t
�1
� sDls

�1
�H

for some s 2H and some Dl 2D .

For j 2 f1; 2g we have gj D tpj for pj 2 Pi . As Ni C Pi , g2nD tp2nD tn0p2 for
some n0 2Ni . Let k D tn0t�1 , so that g2nD kg2 .

We claim that k 2 KH . Indeed, Kl D cNic
�1 is the induced filling kernel in Dl ,

if c D c.Dl/. Moreover tNi t
�1 D scNic

�1s�1 D sKls
�1 lies in KH . In particular

k 2 sKls
�1 �KH .

Let h0 D kh. It remains to show that jh0jX < jhjX .

Note first that dX .h
0
2
;g2n/D dX .h2;g2/. It follows that

(3) jh�1
1 h02jX < 8�C 2˛C 2LC 3:

Clearly h D h1.h
�1
1

h2/.h
�1
2

h/. Furthermore, each of h1 and h2 lies no more than
4�C˛ from a geodesic connecting 1 to h. Thus

(4) jh1jX Cjh
�1
1 h2jX Cjh

�1
2 hjX � jhjX C 16�C 4˛:

We can factorize h0 as h0 D h1.h
�1
1

h0
2
/.h�1

2
h/. By (4), it follows that

jh0jX � jh1jX Cjh
�1
1 h02jX Cjh

�1
2 hj

< jhjX C 16�C 4˛� .jh�1
1 h2jX � jh

�1
1 h02jX /:(5)

Inequalities (2), (3) and (1) imply that

jh�1
1 h2jX � jh

�1
1 h02jX > jg�1

1 g2jX � .8�C 2˛/� .8�C 2˛C 2LC 3/

D jg�1
1 g2jX � .16�C 4˛C 2LC 3/

� 200�C 2LC 20ı� 4� .16�C 4˛C 2LC 3/ > 16�:

Applied to (5), this yields jh0jX < jhjX , as required.
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4.2 The image of H is quasi-convex

Proposition 4.3 Let G be a relatively hyperbolic group and H a subgroup as in Defi-
nition 3.2, and suppose that H is �–relatively quasi-convex in G . For all sufficiently
long H –fillings G.N1; : : : ;Nm/ of G , the image in G.N1; : : : ;Nm/ of the induced
filling H.K1; : : : ;Kn/ is �0–relatively quasi-convex, for some �0 independent of the
filling.

Proof We fix a (relative, compatible) generating set S for G , and let ı be the
uniform constant of hyperbolicity for cusped spaces X D X.G;P;S/ and X 0 D

X.G.N1; : : : ;Nm/;Q;S/ provided by Proposition 2.3. It is useful to assume that both
ı and � are integers.

We will apply Lemma 4.1 and Lemma 4.2 with LD 10ı and DD 100�C100ı . Then
“sufficiently long” means that the filling is injective on F D fg 2G j dX .g; 1/� 2Dg

(and that X 0 is ı–hyperbolic).

By [5, III.H.1.13], any 10ı–local geodesic in X 0 is a .7=3; 2ı/–quasi-geodesic.
Let R be the constant of quasi-geodesic stability for .7=3; 2ı/–quasi-geodesics in
a ı–hyperbolic space (see [5, III.H.1.7]). We show that it is sufficient to take �0 D
�CRC 2ıC 2.

Let �W H ! G be inclusion and �W H ! G.N1; : : : ;Nm/ be � ı � where � W G !
G.N1; : : : ;Nm/ is the filling map. Recall from Lemma 3.1 that we have induced maps
{� and {� from the cusped space for H to X and X 0 , respectively.

Claim 4.3.1 Let xh2�.H /. Any geodesic in X 0 joining 1 to xh stays in an .�CRC2/–
neighborhood of the image of {� .

Proof of Claim 4.3.1 We choose h 2H of minimal X –length projecting to xh, and
let  be a regular geodesic joining 1 to h in X .

By Lemma 4.1 and Lemma 4.2 and the minimality of h, there is a 10ı–local geodesic
with endpoints 1 D �.1/ and xh D �.h/ which is contained in a 2–neighborhood
of �. /.

Any geodesic from 1 to �.h/ therefore lies in a .RC2/–neighborhood of �. /, by
quasi-geodesic stability. Since  lies in a �–neighborhood of the image of {�, any
geodesic from 1 to �.h/ lies in a .�CRC2/–neighborhood of the image of {� .

Claim 4.3.1 suffices to prove the Proposition, as follows: Let XH be the zero-skeleton
of the cusped space of H , and let Y D {�.XH /. Let x1 , x2 be elements of Y .
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If x1 and x2 lie in the same horoball one may use the convexity of ı–horoballs [8,
Lemma 3.26] to see that any geodesic joining them stays in a .2ıC2/–neighborhood
of Y .

Suppose therefore that x1 and x2 lie in different horoballs. Each xi is connected by a
vertical geodesic to some hic for hi 2 �.H / and jcjX < ˛ , where ˛ is the Lipschitz
constant from Lemma 3.1. Except for hic itself, this vertical geodesic contains only
vertices of Y . The geodesic between h1 and h2 is a �.H /–translate of one between 1

and h�1
1

h2 , and so this geodesic stays in a .�CRC2/–neighborhood of Y by Claim
4.3.1. The two vertical segments, the geodesic between h1 and h2 , and the geodesics
from h1 to h1c and from h2 to h2c form five sides of a geodesic hexagon, the sixth
side of which can be taken to be any geodesic joining x1 to x2 . This sixth side stays
within a 4ı–neighborhood of the other five and therefore within �CRC 2C 4ıC˛

of Y .

The Proposition is proved for �0 D �CRC 2C 4ıC˛ .

The following result is not required for the proof of Theorem 0.6, but may be of
independent interest.

Proposition 4.4 Let H < G be a relatively quasi-convex subgroup. For any suffi-
ciently large H –filling G.N1; : : : ;Nm/ of G , the induced map from the induced filling
H.K1; : : : ;Kn/ into G.N1; : : : ;Nm/ is injective.

Proof As above, choose a compatible generating set S for G with peripheral structure
P D fP1; : : : ;Pmg and let ı be a constant of hyperbolicity which suffices both for
X.G;P;S/ and for the cusped space X 0 of any sufficiently long hyperbolic filling
of G . Let � be the constant of (relative) quasi-convexity for H .

We will again apply Lemma 4.1 and Lemma 4.2 with LD 10ı and DD 100�C100ı ,
so “sufficiently long” means that the filling is injective on F Dfg 2G jdX .g; 1/� 2Dg

(and that X 0 is ı–hyperbolic).

Let � W G!G.N1; : : : ;Nm/ be such a filling. Let h 2 ker.�/\H be nontrivial. We
must show that h 2KH , the kernel of the induced filling of H . Let  be a geodesic
in X from 1 to h. Note that �. / is a loop. Suppose that conclusion (1) of Lemma
4.1 holds. Then there is a 10ı–local geodesic loop based at 1 in X 0 , which coincides
with �. / on an initial segment of length L� 10ı . This is impossible since there are
no nontrivial 10ı–local geodesic loops in a ı–hyperbolic space.

Therefore we may apply Lemma 4.2 to conclude that there is a k 2 KH so that
jkhjX < jhjX . Induction on the length of h shows that h 2KH , as required.
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4.3 Keeping g out of H

Proposition 4.5 Let H < G be a relatively quasi-convex subgroup, and let I > 0.
There is some F D F.I/ so that if G.N1; : : : ;Nm/ is an H –filling of G which is
injective on F and g 2G XH satisfies jgjX < I , then �.g/ … �.H /.

Proof As above, choose a compatible generating set S for G with peripheral structure
P D fP1; : : : ;Pmg and let ı be a constant of hyperbolicity which suffices both for
X.G;P;S/ and for the cusped space of any sufficiently long hyperbolic filling of G .
Let � be the constant of (relative) quasi-convexity for H .

As usual, we will apply Lemma 4.1 and Lemma 4.2. This time, we will choose
LD 2I C 10ı and D D 100�C 100ıC 6I . Let

F D fg 2G j jgjX � 2Dg;

and let G.N1; : : : ;Nm/ be an H –filling of G which is injective on F and so that the
associated cusped space X 0 is ı–hyperbolic.

If the proposition does not hold, then there is some g 2G XH so jgjX < I and some
h 2H so that �.g/D �.h/. Without loss of generality, we may pick some such h so
jhjX is minimal. Note that jhjX � 200�C 200ıC 12I , by the injectivity hypothesis.
We let  be a geodesic joining 1 to h. By Lemmas 4.1 and 4.2 and the minimality
of h, conclusion (1) of Lemma 4.1 holds.

In this case, there is a 10ı–local geodesic  0 in X 0 connecting 1 to �.g/ which lies
in a 2–neighborhood of �. / and coincides with �. / in a .2IC10ı/–neighborhood
of both 1 and �.g/. It follows that  0 has length at least 4I C 20ı . But since  0 is a
10ı–local geodesic, it must be a .7=3; 2ı/–quasi-geodesic, and so the distance in X 0

between 1 and �.g/ is at least

3

7
.4I C 20ı/� 2ı > I:

It follows that jgjX > I , a contradiction.

4.4 Height decreases under filling

This subsection is devoted to proving that given a relatively quasi-convex subgroup H ,
its height decreases after any sufficiently long H –filling. Our method is the same as
the one used by the second and third authors for the results in [8, Part 2]; as such it
is inspired by certain hyperbolic 3–manifold arguments by Lackenby [11] and by the
first author [1]. Briefly, we choose some minimal counterexample to the theorem and
derive a contradiction by using “area” estimates coming from “pleated surfaces”.
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Theorem 4.6 Let G be a torsion-free hyperbolic group, H < G a quasi-convex
subgroup of height k , and let P D fP1; : : : ;Pmg be the peripheral structure on G

induced by H . There is a finite set F � G so that if � W G ! G.N1; : : : ;Nm/ is a
hyperbolic H –filling satisfying

(1) Ni C Pi is finite index for all i and

(2) Ni \F D∅ for all i ,

then �.H / has height strictly less than k in G.N1; : : : ;Nm/.

Proof Suppose H <G is the height k quasi-convex subgroup and that H 0<G0 is the
image after filling along finite index subgroups of the malnormal core of H . The filling
map from G to G0 will be called � . The kernel N of � will be normally generated
by some collection of filling kernels N1; : : : ;Nm , each normal in some element of the
peripheral structure on G induced by H and each contained in H .

We must show that if some intersection of conjugates of H 0 is infinite, then this
intersection can be lifted back up to G . In other words, we will show that infinite order
elements of the intersection of essentially distinct conjugates of H 0 are always images
of infinite order elements of the intersection of essentially distinct conjugates of H .

We choose some (compatible) generating set S for G so that X DX.G;P;S/ is ı–
hyperbolic. With respect to this choice, H is �–relatively quasi-convex for some �. By
rechoosing ı , we can assume that � < ı . We also assume, as in [8] that ı is an integer
greater than or equal to 100. All constants from [8] will be in terms of this rechosen ı
for X.G;P;S/. In particular, the auxiliary constants K D 10ı , L1 D 1000ı and
L2 D 3000ı will be used in the argument below.

Let Ch D K C 12ı C 9 be the upper bound on the Hausdorff distance between a
geodesic and the preferred path with the same endpoints, from [8, Corollary 5.12]. For
each i let Fi be the ball of Pi –radius 2L2.24 � 24ChC3C 24/ about 1 in Pi , and let
F D

�S
i Fi

�
X f1g.

Now fix a hyperbolic H –filling � W G! xG of G so that for each i , Ni is finite index
in Pi and so that Ni \F D ∅ for each i . In other words, for every nontrivial n in
any Ni , the length in Pi satisfies

(6) jnjPi
> 2L2.24 � 24ChC3

C 24/:

Let N D ker� . Any element g 2N is a product in G of conjugates of elements ofS
i Ni . We define the N –area as the smallest number of such conjugates needed to

write g .
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In order to derive a contradiction, assume that �.H / has height at least k . Thus k

essentially distinct conjugates of �.H / intersect in an infinite (and quasi-convex)
subgroup of xG . This subgroup is infinite and hyperbolic, and so it must contain an
element of infinite order. It follows that �.H / contains infinite order elements a and
bi for i 2 f2; : : : ; kg and essentially distinct f1;g2; : : : ;gkg so that

(7) aD gibig
�1
i

for each i .

Fix a lift za of a closest to 1 in X , subject to the condition that za 2H . Now for each
i 2 f2; : : : ; kg choose some zgi and zbi subject to the conditions

(C1) zgi 2 �
�1.gi/,

(C2) zbi 2 �
�1.bi/\H and

(C3) za�1zgi
zbi zg
�1
i has minimal N –area for all choices of zgi and zbi satisfying condi-

tions (C1) and (C2).

Claim 4.6.1 For each i , za�1zgi
zbi zg
�1
i has N –area zero.

If the word za�1zgi
zbi zg
�1
i has N –area zero, then it is equal in G to 1. Therefore, the

claim implies that zaD zgi
zbi zg
�1
i in G for each i .

The claim implies the theorem: Certainly, the elements f1; zg2; : : : ; zgkg are essentially
distinct in G . Because each zbi is in H , the conjugates H;H zg2 ; : : : ;H zgk all contain
the element za, and so H \H zg2 \ � � � \H zgk is infinite. Since H has height k , the
subgroup H\H zg2\� � �\H zgk is a conjugate of Pj for some j . Since Nj was chosen
to be finite index in Pj , this implies that aD �.za/ has finite order in xG , contradicting
the original choice of a.

Proof of Claim 4.6.1 If the equation za�1zgi
zbi zg
�1
i has N –area p > 0, then there is

some equation

(8) za�1
zgi
zbi zg
�1
i D

pY
jD1

j̨ nj˛
�1
j

with each nj 2Nkj
for some kj . This equality can be represented by a punctured disk

(as in [8, Part 2]) with boundary labelled za�1zgi
zbi zg
�1
i . There are two subsegments

of the boundary of this disk labelled zgi and zg�1
i . Gluing these together yields an

annulus, again with p punctures, as in Figure 1. Again as in [8, Part 2], there is a
proper map from this punctured annulus into X=G , so that labelled subsegments of the
boundary go to loops representing those elements of G described by their labels. The
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zgi

za

zbi

Figure 1: The punctured annulus {†

distinguished arc labelled zgi is sent by � to a loop representing zgi . To be consistent
with the notation of Part 2 of [8], we refer to the punctured annulus as {† and the proper
map to X=G as {� .

We define a reducing arc for {� to be a proper, essential embedding � W R! {†, so that
{� ı � can be properly homotoped to miss any given compact subset of X=G .

Subclaim 4.6.1.1 There are no reducing arcs for {� .

Proof We argue by contradiction. Suppose that � W R! {† is a reducing arc.

Case 1 We suppose first that the closure of the image of � in the unpunctured annulus
is a homotopically nontrivial loop. In this case, the surface {† may be cut along the
image of � to yield a pair of surfaces. The half of the surface with boundary labelled za
represents a proof that aD�.za/ is parabolic in xG . Since every parabolic element of xG
has finite order, this is a contradiction.

Case 2 Now suppose that the image of � does not intersect the distinguished arc in {†
labelled zgi . We may argue very much as in the proof of Claim 9.2 in the proof of
Theorem 9.1 of [8]: The case that � connects two distinct punctures is the same as
Case 1 of that argument, and the case that � connects a puncture to itself is the same
as Case 4 of that argument, except that if the reducing arc � represents a peripheral
element which is not in Ni then the contradiction is to the conclusion of Theorem 9.1
of [8], rather than to the minimality of the diagram. Since

2L2.24 � 24ChC3
C 24/ > 12 � 2L2 ;

the conclusion of Theorem 9.1 of [8] does hold. Cases 2 and 3 of the proof from [8,
Claim 9.2] do not occur. The upshot here is that if a reducing arc appeared, we would
be able to choose a new expression of the form (8) with smaller N –area by performing
a “boundary reduction” of some kind.
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Case 3 Finally, we suppose that the image of � intersects the arc labelled zgi , but we
are not in Case 1.

There is a natural basepoint x1 in X=G , which is the image of 1 2G �X under the
quotient map (and also, of course, the image of any other group element). There is a
canonical identification between �1.X=G;x1/ with G . Let  W I ! {† be any arc with
the same endpoints as the distinguished arc labelled by zgi . Then {� ı  is a loop in
X=G based at x1 and so determines a unique element g of G . The identity

a�1�.g /bi�.g /D 1;

always holds in xG and has N –area at most p .

Since we are not in Case 1, there is an arc  in {†, with the same endpoints as the
distinguished arc, which does not intersect � . We are now in Case 2.

This completes the proof of Subclaim 4.6.1.1.

Choose a (partially ideal) triangulation T of the punctured annulus {† whose vertices
are the endpoints of the distinguished arc and the punctures. There are 2pC2 triangles
in such a triangulation.

Since there are no reducing arcs, the hypotheses of [8, Lemma 8.6] are satisfied. Let

{�T W {†!X=K

be the map from [8, Lemma 8.6] sending each edge of T to a preferred path, and let

R�T W Skel.{�T /!X=G [ .@HX /=G;

be the map from [8, Remark 8.11], where it is called R{�T . (Elements of .@HX /=G are
G –orbits of horoball centers and are in one to one correspondence with P .) We note
some facts about the skeletal filling Skel.{�T / and the map R�T :

(1) If x† is {† with punctures filled in, then the 1–complex Skel.{�T / embeds
naturally in x† so that every edge is either
(a) part of one of the edges from T ,
(b) a rib (with image under {�T a horizontal edge at depth L2 ) or
(c) a ligament (with image under {�T a vertex at depth L2 ),

and every vertex is either
(a) coincident with a filled-in puncture of x†,
(b) a vertex of T or
(c) the endpoint of one or two ribs or ligaments.

The last two types of vertices will be called ordinary vertices.
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(2) Every vertex v coming from a puncture has a link, which is a circle in Skel.{�T /
composed of ribs, ligaments and possibly some subsegments of edges of T in
the boundary of {†. (See [8, Definition 8.12] for the precise definition.) The
map R�T sends the entire link to that part of X=G at depth L2 or more. A
puncture is called interior if its link is composed entirely of ribs and ligaments.
Otherwise it is called exterior.

(3) Every path between ordinary vertices is sent by R�T to a path in X=G which
is either a based loop at x1, or can be made into one in a canonical way by
adding vertical segments. Thus any path between ordinary vertices in Skel.{�T /
determines an element of G .

(4) The group element determined by the concatenation of paths between ordinary
vertices in Skel.{�T / is the product of those determined by the paths.

(5) The group element determined by a loop around the link of a vertex is always
an element of Ni for some i . Different choices of starting point for the loop
give rise to elements of Ni which are conjugate in Pi .

(6) Two paths homotopic in x† rel their endpoints determine the same element of xG .
(This follows immediately from (4) and (5).)

Figure 2 shows an example of what Skel.{�T / might look like, if there were three
exterior and no interior punctures.

za

zbi
zgi

Figure 2: Dark edges are either ribs or ligaments. Hollow circles are vertices
of Skel.{�T / coming from punctures. The (exterior) puncture at the right has
a link composed of 7 ribs or ligaments, and a single edge which is part of the
edge of T labelled by zbi .

If T is a 2–simplex of T , then �j@T lifts to a preferred triangle A�j@T W @T !X . Let
R.T / be the number of ribs in Skel.A�j@T /, and note that this number does not depend
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on the lift chosen. Corollary 5.38 of [8] implies that R.T /� 6.

Let A.�/D
X
T2T

R.T /:

Corollary 5.38 of [8] immediately implies

(9) A.�/� 6.2pC 2/� 24p:

Let x be a puncture. As remarked above, the link Lk.x/ is an embedded loop in {†
whose image in X=G lies entirely at or below depth L2 . By joining an arbitrarily
chosen basepoint of Lk.x/ to x1 in the canonical way, we obtain an element of the
filling kernel Ni , contained in the peripheral subgroup Pi for some i .

Subclaim 4.6.1.2 Not all punctures of {† are interior.

Proof Suppose that all punctures of {† were interior. In this case, the image of each
link Lk.x/ lies entirely at depth L2 in X=G and represents a conjugacy class of
element of Ni for some i . The length of {�.Lk.x// is the number of ribs in Lk.x/.
Therefore there are at least 24 � 24ChC3C 24 ribs in each link. Summing over all the
links, there are more than 24p ribs, which contradicts (9) above.

This proves that not all punctures are interior.

Subclaim 4.6.1.3 No link of a puncture hits the boundary component of {† labelled zbi .

Proof By way of contradiction, we assume that there is some puncture x so that
Lk.x/ intersects the boundary component of {† labelled zbi in a subsegment I . The
idea here is that if it did, we would be able to replace zbi by some zb0i so that za�1zgi

zbi zg
�1
i

had smaller N –area. Our assumption that � is small with respect to ı (and therefore
with respect to L2 ) ensures that this new lift zb0i still lies in H .

We will choose zb0i to be the element determined by the path in Skel.{�T / which is
obtained from the path labelled zbi by replacing I with its complement in Lk.x/.
Let ˇ be the group element represented by the part of the edge labelled by zbi which
precedes I , and let n 2 Nj be the element represented by the loop around Lk.x/
starting at the beginning of I and going around once, clockwise. It is clear that

zb0i D ˇnˇ�1zbi

maps to bi and has N –area less than that of zbi . To establish the subclaim, it remains
only to establish that zb0i 2H .
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The restriction of the map {�T W {†!X=G to the edge e of {† labelled zbi can be lifted
to a preferred path  W e! X joining 1 to zbi . The map  sends the subsegment I

into the L2 –horoball inside some 0–horoball A, corresponding to some coset tPj of
one of the peripheral subgroups.

As in the proof of Lemma 4.2, we first argue that some nontrivial element of H

stabilizes the horoball A. The preferred path from 1 to zbi must penetrate at least L2

into the horoball A. It follows that a regular geodesic  penetrates A at least to depth
L2 �Ch > 2500ı . Let g1 and g2 be the group elements in tPj through which this
geodesic passes. By the foregoing, we must have dX .g1;g2/ > 5000ı . Moreover,
the geodesic  passes through the vertices .g1; �C 1/ and .g2; �C 1/ in A. The
�–relative quasi-convexity of H implies that there are vertices z1D{�

�
.s1Dj1

; h1; n1/
�

and z2 D {�
�
.s2Dj2

; h2; n2/
�

within � of .g1; �C 1/ and .g2; �C 1/, respectively.
Since g1 and g2 are so far apart (recall we have made the assumption � � ı ), the
element h2h�1

1
is nontrivial. By the H –equivariance of {�, this element stabilizes A,

ie H \ tPj t�1 is nontrivial.

The element ˇ D tp for some p 2 Pj , and so

zb0i D ˇnˇ�1zbi D t.pnp�1/t�1zbi :

Since Nj is normal in Pj , the element pnp�1 2Nj . Because of the assumption that
xG is an H –filling of G , the subgroup tNj t�1 lies in H . It follows that zb0i 2 H ,
completing the proof of the subclaim.

By Subclaim 4.6.1.2, some puncture or punctures are exterior; by Subclaim 4.6.1.3, the
links of the exterior punctures all intersect the edge of T labelled za and miss the edge
of T labelled zbi . We will show that if any link of a puncture hits the side labelled za,
we can find another lift of a whose X –length is smaller, contradicting our initial choice
of a shortest lift.

Let rj be the number of ribs in the link of the j –th puncture. We haveX
j

rj � 24p:

Also associated to the puncture is a subsegment of the preferred path from 1 to za
passing through an L2 –horoball. Specifically, it passes through some points .xj ;L2/

and .yj ;L2/ in a horoball based on Pkj
. Let qj be the distance in the L2 –horosphere

between vj D .xj ;L2/ and wj D .yj ;L2/. The ribs in the link of the j –th puncture
give an edge-path in this horosphere from .xj ;L2/ to w0j D .yj zj ;L2/ for some
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zj 2Nkj
. We therefore have

rj C qj � 2�L2CN

for each j . (If we are looking at an interior puncture, we have qj D 0.) ThusX
j

rj C qj � 2�L2CN p

X
j

qj � .2
�L2CN � 24/p:and

We now claim that for some j ,

(10) qj=rj > 2R:

Indeed, if this is never the case, thenX
j

qj � 2R
X

j

rj � 24 � 2Rp;

which implies that
2�L2CN � 24� 24 � 2R;

and so
CN � 2L2.24 � 2R

C 24/;

contradicting (6).

Choose some such j , and consider the lift za0 of a obtained by excising the word
representing x�1

j yj and replacing it by a word representing x�1
j yj zj . The distance

from 1 to za0 is at most

d.1; vj /C d.vj ; w
0
j /C d.wj ; za

0/;

which is at least .log2.qj /� log2.rj //� 4Ch less than the distance from 1 to za (for
this probably a picture should be drawn). Equation (10) implies that za0 is actually
shorter than za, contradicting our initial choice of za.

This completes the proof of Claim 4.6.1.

By Claim 4.6.1, there are lifts za, zgi , zbi of a, gi and bi respectively satisfying the
conditions (C1)–(C3) and with

zaD zgi
zbi zg
�1
i

for each i 2 f2; : : : ; kg. Since f1;g2; : : : ;gkg are essentially distinct, so are the lifts
f1; zg2; : : : ; zgkg, and so za lies in the intersection of k essentially distinct conjugates
of H . Since za has infinite order, and H has height k , it follows that za 2 Pj for
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some j . But since Nj has finite index in Pj , the image a of za in xG must have finite
order. This contradiction completes the proof of Theorem 4.6.

4.5 The proof of Theorem 0.6

Let G be a torsion-free residually finite hyperbolic group, let H be a quasi-convex
subgroup of G of height k and let g 2G XH .

Let D be the malnormal core of H , and let P be the peripheral structure on G induced
by H .

By Proposition 3.12, G is hyperbolic relative to P , H is hyperbolic relative to D and
H is �–relatively quasi-convex in G for some �.

Since all the elements of P are subgroups of G , they are residually finite. Thus they
contain finite index normal subgroups fNig which induce an H –filling of G satisfying
the hypotheses of Propositions 4.3 and 4.5 and Theorem 4.6.

We claim that the group xG D G.N1; : : : ;Nm/ satisfies the conclusion of Theorem 0.6.
Let �W G! xG be the canonical quotient map. By Proposition 4.3, �.H / is relatively
quasi-convex. Since the peripheral subgroups of xG are finite, Lemma 3.14 implies that
�.H / is actually quasi-convex in the hyperbolic group xG . Further, �.g/ 62 �.H / by
Proposition 4.5 and the height of �.H / is at most k � 1 by Theorem 4.6.

5 Conclusion

It would be nice to extend the main result of this paper to groups which are resid-
ually hyperbolic, that is to groups G which for any element 1 ¤ g 2 G , there is a
homomorphism 'W G!H onto a hyperbolic group such that '.g/¤ 1. A natural
class of such groups are groups G which are relatively hyperbolic, relative to a finite
family P D fP1; : : : ;Png of finitely generated residually finite subgroups of G . If
hyperbolic groups are residually finite, then these groups are also residually finite,
by performing finite fillings on the peripheral subgroups P using Theorem 2.1. To
generalize Theorem 0.1 to this class of groups, we would need to identify the analogue
of quasi-convex subgroups to separate. It would be natural to consider relatively quasi-
convex subgroups of G (as in Definition 3.11). In order to prove that G is QCERF, it
is certainly necessary that the peripheral groups are LERF. Moreover, to make sure that
quasi-convex subgroups of G intersect each conjugate of a peripheral subgroup nicely,
it is convenient to assume that subgroups of Pi are finitely generated. A group for which
every subgroup is finitely generated will be called slender. Examples of slender LERF
groups are polycyclic groups and, in particular, finitely generated nilpotent groups (see
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Mal 0cev [13]). The following theorem was conjectured (without the hypothesis of
torsion-freeness) in an earlier version of this paper and proved by the third author and
Martı́nez-Pedroza [14].

Theorem 5.1 [14] Suppose that hyperbolic groups are residually finite. Let G

be a torsion-free group which is hyperbolic relative to the peripheral system P D
fP1; : : : ;Png. If Pi is slender and LERF for each i , then relatively quasi-convex
subgroups of G are separable.

In particular, this theorem extends Theorem 0.1 to nonuniform lattices in rank one sym-
metric spaces, since these are hyperbolic relative to virtually nilpotent cusp subgroups.

Corollary 5.2 [14] If hyperbolic groups are residually finite, then (3–dimensional)
Kleinian groups are LERF.

Theorem 0.1 also makes it an interesting question to know whether hyperbolic groups are
residually finite. See Borisov and Sapir [2, Problem 4.4] for an example of hyperbolic
groups which are conjectured to not be residually finite. Also, a question of Olshanskii
about exponents of m–generated finite groups would imply the existence of a hyperbolic
group which is not residually finite (see Martı́nez [15] for a discussion of this question).
On the other hand, there are many examples known of residually finite hyperbolic
groups (see Haglund and Wise [9] and references therein for recent progress).
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