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The homotopy type of the space of symplectic balls
in rational ruled 4–manifolds

SÍLVIA ANJOS

FRANÇOIS LALONDE

MARTIN PINSONNAULT

Let M WD .M 4; !/ be a 4–dimensional rational ruled symplectic manifold and
denote by wM its Gromov width. Let Emb!.B4.c/;M / be the space of symplectic
embeddings of the standard ball of radius r , B4.c/ � R4 (parametrized by its
capacity c WD �r2 ), into .M; !/ . By the work of Lalonde and Pinsonnault [13],
we know that there exists a critical capacity ccrit 2 .0; wM � such that, for all c 2

.0; ccrit/ , the embedding space Emb!.B4.c/;M / is homotopy equivalent to the
space of symplectic frames SFr.M / . We also know that the homotopy type of
Emb!.B4.c/;M / changes when c reaches ccrit and that it remains constant for all
c 2 Œccrit; wM / . In this paper, we compute the rational homotopy type, the minimal
model and the cohomology with rational coefficients of Emb!.B4.c/;M / in the
remaining case c 2 Œccrit; wM / . In particular, we show that it does not have the
homotopy type of a finite CW–complex. Some of the key points in the argument
are the calculation of the rational homotopy type of the classifying space of the
symplectomorphism group of the blow up of M , its comparison with the group
corresponding to M and the proof that the space of compatible integrable complex
structures on the blow up is weakly contractible.

53D35, 57R17, 57S05; 55R20

1 Introduction

We compute in this paper the rational homotopy type, the minimal model and the
cohomology with rational coefficients of the space of embedded symplectic balls
of capacity c in any closed rational ruled 4–manifold. We consider only minimal
ruled manifolds in the sense that they are not blow-ups of ruled manifolds. By the
classification theorem for rational ruled 4–manifolds in Lalonde and McDuff [12], any
such manifold is symplectomorphic, after rescaling, to either

� the topologically trivial S2 –bundle over S2 , M 0
� D .S

2 �S2; !0
�/, where !0

�

is the split symplectic form !.�/˚!.1/ with area �� 1 for the first S2 –factor
and with area 1 for the second factor; or
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� the topologically nontrivial S2 –bundle over S2 , M 1
� D .S

2z�S2; !1
�/, diffeo-

morphic to CP2# CP2 equipped with the standard Kähler form !1
� where the

symplectic area of the exceptional divisor is � > 0 and the area of a projective
line is �C 1 (this implies that the area of the fiber is 1).

Note that the second bundle is, topologically, the only nontrivial S2 –bundle over S2 .
Let B4.c/�R4 be the closed standard ball of radius r and capacity cD�r2 equipped
with the restriction of the symplectic structure !st D dx1 ^ dy1C dx2 ^ dy2 of R4 .
Let Embi

!.c; �/ be the space, endowed with the C1–topology, of all symplectic
embeddings of B4.c/ in M i

� . Finally, let =Embi
!.c; �/ be the space of subsets of M i

�

that are images of maps belonging to Embi
!.c; �/ defined as the topological quotient

(1) Symp.B4.c// ,! Embi
!.c; �/ �!=Embi

!.c; �/

where Symp.B4.c// is the group, endowed with the C1–topology, of symplectic
diffeomorphisms of the closed ball, with no restrictions on the behavior on the boundary
(thus each such map extends to a symplectic diffeomorphism of a neighborhood of
B4.c/ that sends B4.c/ to itself). We may view =Embi

!.c; �/ as the space of all
unparametrized balls of capacity c in M i

� .

1.1 Preliminary results

Recall that the Nonsqueezing Theorem implies that Embi
!.c; �/ is empty for c � 1;

it is then easy to see that the Gromov width of all spaces M i
� is equal to 1 and that,

actually, the space Embi
!.c; �/ is nonempty if and only if c 2 .0; 1/. It was proved

in Lalonde and Pinsonnault [13, Corollary 1.2] and in Pinsonnault [17, Corollary 1.9]
that the homotopy type of Embi

!.c; �/ can be completely understood for some special
values of �, namely:

Proposition 1.1 Let �W Embi
!.c; �/ ! SFr.M i

�/ be the map that associates to an
embedding �W B4.c/ ,!M i

� the symplectic frame at the origin.

(1) For �D 1 and i D 0, that is, for S2 �S2 with factors of equal area, the map �
is a homotopy equivalence for all values c 2 .0; 1/. Consequently, the space of
unparametrized balls =Emb0

!.c; �/ is homotopy equivalent to S2 �S2 .

(2) In the twisted case, for any � in the range .0; 1�, the map � is a homotopy
equivalence for all values c2 .0; 1/. Hence, the space =Emb1

!.c; �/ is homotopy
equivalent to M 1

� for these values of �.

We will therefore assume in this article that �> 1. Denote by ` the “low integral part”
of �, ie the largest integer strictly smaller than �. Using an inflation argument, it was
shown in [13, Theorem 1.7] and in [17, Theorem 1.7] that:

Geometry & Topology, Volume 13 (2009)



The homotopy type of the space of symplectic balls 1179

Proposition 1.2 The space Embi
!.c; �/ is homotopy equivalent to the space of sym-

plectic frames of M i
� for all values c 2 .0; �� `/. Hence, in this range of c ’s, the

space =Embi
!.c; �/ is homotopy equivalent to the manifold M i

� itself. Moreover, the
homotopy type of =Embi

!.c; �/ changes when c reaches the critical capacity �� `
and remains constant for all c 2 Œ�� `; 1/.

Define the critical capacity ccrit 2 .0; 1� by setting ccrit WD �� `. In this paper, we will
therefore restrict our attention to the remaining cases, namely to the values � > 1 and
c � ccrit in both the split and nonsplit bundles.

1.2 The general framework

Let M i
� be a normalized rational ruled 4–manifold with �>1 and consider c2 Œccrit; 1/.

The main results of this paper are:

� Theorem 3.1 that gives the rational homotopy type of =Embi
!.c; �/, expressed

as a nontrivial fibration whose base and fiber are explicitly given,

� Theorem 5.1 that computes the minimal model of =Embi
!.c; �/.

� Corollary 7.1 that computes the rational cohomology ring of =Embi
!.c; �/.

In particular, these results imply that if c 2 Œccrit; 1/, then the topological space
=Embi

!.c; �/ does not have the homotopy type of a finite dimensional C W –complex.

In order to obtain the previous results we need two fundamental calculations, namely:

� The computation of the rational homotopy type of BSymp. �M i
�;c/, the classifying

space of the symplectomorphism group of the blow-up of M i
� at a ball of

capacity c (Theorem 2.5), as well as its rational cohomology (Theorem B.7).

� The calculation of the structure of the space of compatible integrable complex
structures on the blow-up of M i

� , and in particular the fact that this space is
weakly contractible (Appendix A).

Here is a brief description of the approach to prove these results. McDuff showed
in [14] that the space =Embi

!.c; �/ is path-connected. By extension of Hamiltonian
isotopies, one sees immediately that the group of Hamiltonian diffeomorphisms of M i

�

acts transitively on =Embi
!.c; �/. Note that under the restriction � > 1, the group

of Hamiltonian diffeomorphisms is equal to the full group of symplectic diffeomor-
phisms. On the other hand, using J –holomorphic techniques, it was proved in Lalonde
and Pinsonnault [13] that the stabilizer of this action, ie the subgroup of symplectic
diffeomorphisms of M i

� that preserve (not necessarily pointwise) a symplectically
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embedded ball Bc�M i
� , can be identified, up to homotopy, with the group of all

symplectomorphisms of �M i
�;c , the blow-up of M i

� at a ball of capacity c in M i
� . We

therefore have the fibration

(2) Symp. �M i
�;c/ ,! Symp.M i

�/ �!=Embi
!.c; �/

that naturally expresses =Embi
!.c; �/ as an homogeneous space, namely,

=Embi
!.c; �/' Symp.M i

�/=Symp. �M i
�;c/:

Consequently, the homotopy-theoretic study of =Embi
!.c; �/ breaks down into three

steps:

Step 1 The computation of the homotopy type and cohomology algebra of the space
Symp.M i

�/ (as well as those of BSymp.M i
�/). This step was carried out by a number

of authors: Abreu [1], Abreu and McDuff [3], Anjos [4], Anjos and Granja [5] and
Abreu, Granja and Kitchloo [2].

Step 2 The computation of the homotopy type and cohomology algebra of the space
Symp. �M i

�;c/ (as well as those of BSymp. �M i
�;c/). The rational cohomology modules

H�.Symp. �M i
�;c/IQ/ and H�.BSymp. �M i

�;c/IQ/ were computed in Lalonde and
Pinsonnault [13] and Pinsonnault [17]. In the present paper, we will carry these
calculations further and describe the full homotopy type of these spaces as well as the
rational cohomology ring structure by adapting the arguments of Abreu, Granja and
Kitchloo [2].

Step 3 The most interesting step is understanding how Symp. �M i
�;c/ sits inside

Symp.M i
�/ so that we could compute the quotient. This step has been carried out

in some special cases in Anjos and Lalonde [6], Lalonde and Pinsonnault [13] and
Pinsonnault [17]. In this article, we take a systematic approach to compute the rational
homotopy type of the quotient. See Theorems B.8 and B.9 showing that, even with
the most natural choice of generators, the way in which Symp. �M i

�;c/ sits inside
Symp.M i

�/ is not straightforward.

Note that, in view of the fibration (1) above, and since the reparametrization group of
the standard ball B4 �R4 retracts to U.2/, the computations for =Embi

!.c; �/ carry
easily to Embi

!.c; �/. We get, in this way, similar theorems for the parametrized space
of embeddings.

1.3 The duality between Emb.M 0
�/ and Emb.M 1

�/

We now explain the duality introduced in Pinsonnault [17] that enables us to reduce
the twisted case to the split one.
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Denote by B0 and F0 in H2.M
0;Z/ the classes of the first and second factor respec-

tively. Denote by F1 the fiber of the fibration M 1.D CP2# CP2/! CP1 and by
B1 the section of self-intersection �1 of that fibration. Denote by Ei 2H2. �M i ;Z/,
i D 0; 1, the class of the exceptional divisor that one gets by blowing up the standard
symplectic ball of capacity c in M i . Let’s denote by the same symbols Bi , F i the
obvious lifts (proper transforms) of these classes to the blow-up �M i . Now let’s recall
the duality1 according to which blowing up M 0DS2�S2 or M 1DCP2# CP2 leads
to diffeomorphic smooth manifolds �M 0 ' �M 1 . As explained in [17], the blow-down
of an exceptional curve in �M 0 in class F0 �E0 yields a manifold diffeomorphic
to CP2# CP2 . The induced diffeomorphism between �M 0 and �M 1 relates the bases
fB0;F0;E0g and fB1;F1;E1g as follows:

B1  ! B0�E0

E1  ! F0�E0

F1  ! F0

When one considers this birational equivalence in the symplectic category, the unique-
ness of symplectic blow-ups implies that the blow-up of M 0

� at a ball of capacity
0 < c < � is symplectomorphic to the blow-up of M 1

��c at a ball of capacity 1� c .
Conversely, the blow-up of M 1

� with capacity 0 < c < 1 is symplectomorphic to
the blow-up of M 0

�C1�c
with capacity 1� c . In other words, we have a complete

symplectic duality between the blow-up of “large” balls in M i and the blow-up of
“small” balls in M 1�i . For this reason, we will state our results for both ruled surfaces
M 0 and M 1 but we will often give the complete proof for the split case M 0 only,
leaving to the reader its relatively easy adaptation (using the above equivalence) to the
twisted case M 1 .

1.4 Plan of the paper

Here is an overview of the content of the paper. In Section 2, we briefly recall the geomet-
ric facts that lead to the homotopy decomposition of the groups of symplectomorphisms.
The actual computations for the groups Symp. �M i

�;c/ are carried out in Appendices A
and B, following the method introduced in Abreu, Granja and Kitchloo [2]. In Section 3,
we express rationally the space =Embi

!.c; �/ as a fibration whose base and fiber are
computed. In Section 5 we compute the minimal model of =Embi

!.c; �/, showing
in particular that the latter space does not retract to a finite CW–complex for � > 1

1That duality also exists on ruled symplectic 4–manifolds over surfaces of any genus and was exploited
in Lalonde [11] to prove that the Nonsqueezing Theorem does not hold when the base of the trivial
symplectic fibration †g �S2 is a real surface of genus greater than 0 .
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and c � ccrit . Finally, in Section 7, we compute the cohomology of =Embi
!.c; �/ with

rational coefficients.

Acknowledgements The authors would like to thank Gustavo Granja for useful conver-
sations, Octav Cornea for discussions on some aspects of the theory of minimal models
and V Apostolov and A Broer for conversations on complex algebraic geometry. But
above all, the authors are grateful to the referee for reading the paper carefully and giving
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supported by FCT/POCTI/FEDER and by project POCTI/2004/MAT/57888 and the
second author is partially supported by NSERC (Canada) grant OGP 0092913 and
FQRNT (Québec) grant ER-1199.

2 Homotopy decomposition of the symplectic groups

This section is devoted to the homotopy decomposition of the groups Symp.M i
�/ and

Symp. �M i
�;c/. For the convenience of the reader, we first briefly review the geometric

arguments that lead to the description of these symplectomorphism groups (and of
their classifying spaces) as iterated homotopy pushouts. The references for this are
the papers by Abreu, Granja and Kitchloo [2], Abreu and McDuff [3], Lalonde and
Pinsonnault [13], McDuff [16; 15] and Pinsonnault [17] and Appendices A and B in
which we carry out the computations for the groups Symp. �M i

�;c/.

To simplify the notation, we will write Gi
� and zGi

�;c for the group Symp.M i
�/ and

Symp. �M i
�;c/.

2.1 The limits lim�!1G i
� and lim�!1

zG i
�;c

Let us first recall that the homotopy-theoretic understanding of the groups Gi
� and zGi

�;c

heavily relies on the generalization, due to McDuff, of the Lalonde–McDuff inflation
technique. These ideas are used in McDuff [16] to prove the following fundamental
results. In the following two theorems, ` is the largest integer strictly smaller than �,
ie ` < �� `C 1.

Theorem 2.1 (See McDuff [16] and Abreu, Granja and Kitchloo [2].) For any �� 1

and �; ı > 0, there is a natural diagram

Gi
�

//

""EE
EE

EE
EE

E
Gi
�C�

��
Gi
�C�Cı
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well defined up to homotopy. Altogether, these maps define a homotopy coherent system
whose homotopy limit is FDiff.M i/, the group of fibered C1–diffeomorphisms, that
is, those diffeomorphisms that are lifts to M i of diffeomorphisms of the base S2 of
the fibration S2 ,!M i! S2 . Moreover:

(1) The homotopy type of Gi
� remains constant as � varies in the interval .`; `C1�.

(2) The map Gi
�!Gi

�C� is .4`C2i�1/–connected. In particular, when � > 1, it
induces an isomorphism of fundamental groups.

(3) These maps induce surjections H�.BGi
�C�/! H�.BGi

�/ for all coefficients.
Consequently, the map BGi

�! BFDiff induces a surjection in cohomology.

The same arguments can be adapted to the case of zGi
�;c and yield:

Theorem 2.2 [17] Given c 2 .0; 1/, there is a homotopy coherent system of maps

zGi
�;c //

##HHHHHHHHHHH zGi
�C�;c

��
zGi
�C�Cı;c

defined for all �� 1 and all �; ı > 0, whose homotopy limit is FDiff�.M i/, the group
of fibered C1–diffeomorphisms of M i that fix a point p 2M i . Moreover:

(1) The homotopy type of zGi
�;c remains constant as � varies in either .`; `C c/ or

Œ`C c; `C 1�.

(2) The map zGi
�;c!

zGi
�C�;c is .4`C2i�3/–connected if c�ccrit , and .4`C2i�1/–

connected if c < ccrit . In particular, when � > 1, it induces an isomorphism of
fundamental groups.

(3) These maps induce surjections H�.B zGi
�C�;c/ ! H�.B zGi

�;c/ for all coef-
ficients. Consequently, the map B zGi

�;c ! BFDiff� induces a surjection in
cohomology.

Proof See Theorem 1.3 and Proposition 3.6 in [17].

2.2 The action of Symp.M i
�/ on compatible almost complex structures

Let J i
� be the space of all C1–almost complex structures compatible with the sym-

plectic form !i
� on M i

� . This is an infinite dimensional Fréchet manifold on which
Gi
� acts by conjugation, that is, � � J � .d�/J.d�/�1 where � 2 Gi

� and J 2 J i
� .
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Observe that because J i
� is contractible, the associated homotopy orbit space (ie the

Borel construction) �
J i
�

�
hGi

�
WDEGi

� �Gi
�
J i
�

is homotopy equivalent to the classifying space BGi
� . It is a standard fact that the

projections yield an equivariant diagram

EGi
� �J i

�
//

��

J i
�

��
BGi

�

� // J i
�=G

i
�

such that the preimage ��1ŒJ � is naturally identified with the classifying space BKJ

of the stabilizer subgroup KJ of J . In our case, this isotropy subgroup is the group
of isometries of the almost Hermitian structure associated to the pair .!i

�;J / and,
hence, is a compact Lie group. Moreover, as we will explain below, the orbit category
associated to the action of Gi

� on J i
� is essentially finite and can be understood

by combining J –holomorphic techniques with standard results from the theory of
deformation of complex structures. This leads to a description of BGi

� in terms of
classifying spaces BKJ of finitely many compact Lie subgroups KJ �Gi

� .

2.3 The stratification of J i
� as an orbit decomposition

The space J i
� is naturally partitioned in .`C 1/ strata indexed by even integers in the

split case i D 0 and by odd integers in the twisted case i D 1:

J i
� D J i

�;i tJ
i
�;2Ci t � � � tJ

i
�;2`Ci

where as usual ` is the largest integer strictly smaller than �. The stratum J i
�;2kCi

is made of those almost complex structures J for which the class Bi � kF i can be
represented by an embedded J –holomorphic 2–sphere. Note that this is indeed a
partition: by positivity of intersection, a J –structure cannot belong to more than one
such stratum, and any J 2 J i

� must belong to at least one stratum since the GW–
invariant associated to the class Bi does not vanish (use then the Gromov compactness
theorem to conclude). Each stratum is a smooth co-oriented Fréchet submanifold of
finite codimension: the stratum J i

�;i is an open and dense subset of J i
� while for

j D 2kC i � 2 the stratum J i
�;j is of codimension 2j � 2. The reader will find in

Abreu and McDuff [3] the proofs of the results regarding the stratification of J i
� and

further references.

Each stratum corresponds to a toric structure on M i
� , unique up to equivariant sym-

plectomorphisms. In particular, J i
�;j contains a Hirzebruch complex structure Jj ,
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unique up to diffeomorphisms, coming from an identification of .M i
�;Jj / with the

Hirzebruch surface Fj WD P .O.�j /˚C/ (hence our choice of indices). The stabilizer
subgroup K.j / of Jj is given, up to isomorphism, by

K.j /'

8̂<̂
:

SO.3/�SO.3/ if j D 0,

S1 �SO.3/ if j D 2k, k � 1,

U.2/ if j D 2kC 1, k � 0.

The closure of J i
�;j in J i

� is the union of all strata of index n� j

SJ i
�;j WD J

i
�;j t � � � tJ

i
�;2`Ci :

In fact, using J –holomorphic gluing techniques, one can show that the partition is a
genuine stratification: each J�;j has a neighborhood Nj � J� which, once given the
induced stratification, has the structure of a locally trivial fiber bundle whose typical
fiber is a cone over a finite dimensional stratified space.

Most importantly, the action of Gi
� preserves each stratum and, although the action

restricted to a stratum cannot be transitive (because, for instance, each stratum contains
both integrable and nonintegrable structures), the inclusion

Gi
�=K.j / ,! J i

�;j

of the symplectic orbit of Jj in J i
�;j is a weak homotopy equivalence.

Let us consider the particular case M 0
� D .S

2 �S2; �� ˚ �/ with 1 < � � 2 more
closely. For � in that range, the space J 0

� is made of an open stratum J 0
�;0
'G0

�=K0

and a codimension 2 stratum J 0
�;2
'G0

�=K.2/. The isotropy groups intersect along a
common SO.3/ which is the SO.3/ factor in K.2/D S1 � SO.3/ and the diagonal
SO.3/ in K.0/D SO.3/� SO.3/. The action of the S1 factor of K.2/ on a fiber of
the normal bundle of J 0

�;2
is isomorphic to the standard linear action of S1 on R2 .

In particular, K.2/ acts transitively on the unit normal bundle over J2 with stabilizer
SO.3/. Now assume that there exists a G0

�–invariant tubular neighborhood N WD
N .J 0

�;2
/ of J 0

�;2
in J 0

� isomorphic to a tube G0
� �K.2/D2 . Then we could write the

contractible space J 0
� as an equivariant homotopy pushout

(3)

N .J 0
�;2
/�J 0

�;2
//

��

J 0
�;2
'G0

�=K.2/

��
J 0
�;0
'G0

�=K.0/
// J 0
�

Geometry & Topology, Volume 13 (2009)
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and, by applying the Borel construction EG0
��G0

�
, we would get another pushout

diagram

(4)

BSO.3/ //

��

B.S1 �SO.3//

��

B.SO.3/�SO.3// // BG0
�

that would decompose (the homotopy type of) BG0
� along conjugacy classes of maximal

compact subgroups. The only problem with this argument is that it may be impossible
to construct such an invariant tubular neighborhood N . Nevertheless, as explained
in [2, Appendix C], a slice theorem for the action of Gi

� on J i
� allows one to make

the previous argument completely rigorous 2 by defining, for any indices i and j , an
A1–action of Gi

� near J i
�;j which is essentially equivalent to the left action of Gi

�

on a tube Gi
��K.j/D

2j�2 .

In the general case � > 1, i 2 f0; 1g, one may decompose J i
� as the union�

J i
�;i t � � � tJ

i
�;2`Ci�2

�
[N .J i

2`Ci/:

To apply the previous ideas to this decomposition, one has to understand the action of
K.2`C i/ on the normal bundle N .J i

2`Ci
/ of the last stratum and one must compute

the homotopy orbit space �
J i
�;i t � � � tJ

i
�;2`Ci�2

�
hGi

�
:

In principle, this can be done using J –holomorphic gluing techniques but, as explained
in McDuff [15], the computations quickly become intractable as � increases. A solution
to this problem, found by Abreu, Granja and Kitchloo in [2], is to look at the restriction
of the action Gi

� � J i
� ! J i

� to the subspace Ii
� � J i

� of compatible integrable
complex structures. As they explained, the point is that for Kähler 4–manifolds
satisfying some analytical conditions, the action of the symplectomorphism group on
the space of compatible integrable complex structures can be understood using complex
deformation theory. In the special case of rational ruled surfaces M i

� , they showed
that:

(1) Ii
� is a submanifold of J i

� and the inclusion Ii
� � J i

� is transverse to each
stratum J i

�;j .

(2) The stratum Ii
�;j WD I

i
�\J i

�;j is homotopy equivalent to the symplectic orbit
of Jj in Ii

�;j .

2See also Anjos and Granja [5] for a different, more algebraic, approach.
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(3) For any J 2 Ii
� , the tangent space of Ii

! at J is naturally identified with
TJ ..Diff.M / �J /\Ii

!/˚H
0;1
J
.TM i

�/, where TM i
� denotes the sheaf of germs

of holomorphic vector fields. Here the (infinite dimensional) first summand
is the tangent space to the stratum Ii

�;j to which J belongs, while the (finite
dimensional) second summand is naturally identified with the fiber of the normal
bundle of Ii

�;j � I
i
� at J . Moreover, this identification is equivariant with

respect to the action of the isometry group K.j /.

It follows that Ii
� is itself a stratified space, that the inclusion Ii

�;j ,! J i
�;j is a

homotopy equivalence, that the equivariant diffeomorphism type of a normal neighbor-
hood of the j –th stratum is the same in both stratifications and that this neighborhood
does not depend on the parameter � as long as � > .j � i/=2. These facts, together
with the results of Appendix C in [2], imply that the action of Gi

� on the normal
bundle N .J i

2`Ci
/ is homotopically equivalent to the left action of Gi

� on the tube
Gi
� �K.2`Ci/H

0;1
J2`Ci

.TM i
�/ and that the homotopy orbit space�
J i
�;i t � � � tJ

i
�;2`Ci�2

�
hGi

�

can be understood iteratively. Finally, because dimC H
0;1
Jj
.TM i

�/D 2j � 2, we get
the following homotopy decomposition of BGi

� :

Theorem 2.3 [2, Theorem 5.5] There is a homotopy pushout diagram�
S4`C2i�3

�
hK.2`Ci/

j`
��

� // BK.2`C i/

i`
��

BGi
��1

// BGi
�

where ` < �� `C 1, � is the bundle associated to the representation of K.2`C i/ on
H

0;1
J2`Ci

.TM i
�/, the map i` is induced by the inclusion K.2`C i/ ,!Gi

� , and where
the map BGi

��1! BGi
� coincides, up to homotopy, with the one given by inflation

described in Theorem 2.1.

2.4 Homotopy decomposition of B zG i
�;c

There is a similar pushout decomposition for the classifying space of zGi
�;c . Note

that because we can identify symplectically �M 0
�;c with �M 1

��c;1�c
, there is no loss in

generality to restrict ourselves to the case i D 0, that is, to symplectic blow-ups of the
trivial bundle M 0

� only.
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All of Abreu, Granja and Kitchloo arguments on M 0
� apply as well for the group of

symplectomorphisms of the blow-up �M 0
�;c if one has in mind the following geometric

facts and observations. When passing to the blow-up, the spaces of compatible (almost)
complex structures �J 0

�;c and zI0
�;c are now partitioned according to the degeneracy

type of exceptional curves in class B�E (using the notation introduced in Section 1.3).
Indeed, recall that there are exactly three exceptional classes in H2. �M 0

�;c/, namely E ,
F�E and B�E . For generic J , they are all represented by embedded J –holomorphic
spheres. However, when � > 1, the class B �E has strictly larger area than E and
F �E and it follows that:

(1) The exceptional classes E and F �E are symplectically indecomposable and,
given any J 2 �J 0

�;c , are always represented by embedded J –holomorphic
spheres.

(2) A J –holomorphic representative of the exceptional class D0 WD B �E can
only degenerate, as J varies, to a cusp-curve containing a unique embedded
representative of either D2k�1 WD B � kF or D2k WD B � kF �E for some
1� k � `.

Because the intersection Di �Dj is always negative, this defines a partition of spaces of
compatible (almost) complex structures in which the j –th stratum �J 0

�;c;j consists of
those complex structures J for which the class Dj admits an embedded J –holomorphic
representative. The set of strata is in bijection with the set of equivalence classes of
toric actions on �M 0

�;c and incorporates strata coming, after blow-up, from both J 0
� and

J 1
��c . It is easy to see that the strata are now indexed by all integers between 0 and m,

where mD 2` if c < ccrit or mD 2`� 1 if c � ccrit . In particular, when c belongs to
the range Œccrit; 1/, which is the case considered in this paper, this stratification starts at
the dense stratum associated to D0 and ends at the .2`�1/–th stratum associated to
the class D2`�1 D B � `F . Again, the symplectomorphism group zG0

�;c acts on �J 0
�;c

preserving the stratification.

Proposition 2.4 (See Lalonde and Pinsonnault [13, Section 4] and McDuff [15].)
Given � � 1 and c 2 .0; 1/, recall that ` is such that ` < � � `C 1. Let m be the
index of the last stratum in �J 0

�;c , namely,

m WD

(
2` if c < ccrit,

2`� 1 if c � ccrit.

Then, given 1� j �m, we have:

(1) The subspace �J 0
�;c;j is a smooth, co-oriented, codimension 2j submanifold

whose closure is the union
F

j�s�m
�J�;c;s .
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(2) The stratum �J�;c;j contains a complex structure zJj , unique up to diffeomor-
phisms, coming from the blow-up of the Hirzebruch surface Fj at a point p

belonging to the zero section. Equivalently, one can obtain zJj by blowing up the
even Hirzebruch surface F2k on the zero section if j D 2k , or on the section at
infinity if j D 2k � 1.

(3) The group zG0
�;c acts smoothly on �J 0

�;c;j . The stabilizer of zJj is the 2–torus
zT .j / generated by the lifts of the Kählerian isometries of Fj fixing the center p

of the blow-up. This identifies zT .j / with a maximal torus of K.j /.

(4) The inclusion of the symplectic orbit zG0
�;c �

zJj '
zG0
�;c=
zT .j / ,! �J 0

�;c;j is a
homotopy equivalence.

As we explain in Appendix A, the action of the symplectomorphism group on �J 0
�;c

is homotopically equivalent to its restriction to the subset of compatible integrable
complex structures zI0

�;c . Since the last stratum has real codimension 2m, this yields
the following description of B zG0

�;c :

Theorem 2.5 If ` < �� `C 1 and c 2 .0; 1/, there is a homotopy pushout diagram

S2m�1

h zT .m/
//

jm

��

B zT .m/

im

��
B zG0

�0;c
// B zG0

�;c

where m is the index of the last stratum of �J 0
�;c , and where

�0 D

(
`C c if c < ccrit,

` if c � ccrit,

so that zG0
�0;c is the group associated with a stratification having one stratum less than

the stratification associated with zG0
�;c . The upper horizontal map is the universal

bundle map associated to the representation of zT .m/ on H
0;1
Jm
.T �M i

�;c/, the map im is
induced by the inclusion zT .m/ ,! zG0

�;c , and the map B zG0
�0;c! B zG0

�;c coincides, up
to homotopy, with the one given by inflation described in Theorem 2.2.

3 Homotopy type of the space of embedded symplectic balls

In this section we describe the rational homotopy type of the space

=Emb.Bc ;M
i
�/'Gi

�=
zGi
�;c
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as the total space of a fibration whose base and fiber are explicitly computed. We will
prove the following theorem:

Theorem 3.1 If c � ccrit , the topological space =Embi
!.c; �/ has the rational homo-

topy type of the total space of a fibration

F i
!Gi

�=
zGi
�;c!M i

�;

where F0 D S4`�1 ��S4`C1 and F1 D S4`C1 ��S4`C3 as topological spaces.
The projection map is homotopy equivalent to the pushforward, through the quotient
map Embi

!.c; �/ ! =Embi
!.c; �/, of the evaluation map at the center of the ball

evcenterW Embi
!.c; �/!M i

� .

To prove the Theorem 3.1, it is convenient to consider the untwisted case and the
twisted case separately.

3.1 The untwisted case

Let FDiff be the group of fiber preserving diffeomorphisms of S2 �S2 and FDiff� �
FDiff be the stabilizer of a point. Since FDiff acts transitively on S2 �S2 , there is a
fibration

S2
�S2

! BFDiff�! BFDiff

and because FDiff ' hocolim�!1G0
� and FDiff� ' hocolim�!1 zG0

�;c , there is a
homotopy commuting diagram of fibrations

(5)

F� //

��

G0
�=
zG0
�;c

� //

��

S2 �S2

��
zF z �;c

//

��

B zG0
�;c

��

z �;c // BFDiff�

��
F � // BG0

�

 � // BFDiff

in which the spaces in the leftmost column are defined as the homotopy fibers of the
horizontal maps. Over the rationals, this diagram simplifies enough to allow explicit
computations. For instance, the topological group FDiff is homotopy equivalent to the
semidirect product SO.3/Ë Map.S2;SO.3// where SO.3/ acts on Map.S2;SO.3//
by precomposition. In fact, the principal fibrations

Map.S2;SO.3//! FDiff! SO.3/

�2SO.3/!Map.S2;SO.3//! SO.3/and
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both admit sections so that, as a space, FDiff ' �2SO.3/� SO.3/� SO.3/. At the
classifying space level, we have fibrations with natural sections

Map.S2;BSO.3//! BFDiff! BSO.3/

�SO.3/!Map.S2;BSO.3//! BSO.3/:and

Because the rational cohomologies of BSO.3/ and �SO.3/ are concentrated in even
degrees, the corresponding rational spectral sequences collapse at the second stage,
and since

H�.�SO.3/�BSO.3/�BSO.3/IQ/DH�.K.Q; 2/�K.Q; 4/�K.Q; 4//;

it follows that there are rational homotopy equivalences

BFDiff!K.Q; 2/�K.Q; 4/�K.Q; 4/ �SO.3/�BSO.3/�BSO.3/:

In fact, since �SO.3/'Q BS1 , there is a natural map

BS1
_BSO.3/_BSO.3/! BFDiff

that, rationally, extends to a homotopy equivalence

BS1
�BSO.3/�BSO.3/! BFDiff:

The same arguments as above show that the classifying space of the stabilizer subgroup
FDiff� is rationally equivalent to BS1�BS1�BS1'K.Q; 2/�K.Q; 2/�K.Q; 2/.

Lemma 3.2 Over the rationals, BG0
� fibers over B.SO.3/� SO.3/�S1/ with fiber

S4`C1 .

Proof We know from [2] that the rational cohomology ring of BG0
� is isomorphic to

QŒT;X;Y �=hf i

where the generators are of even degrees jT j D 2, jX j D 4 and jY j D 4, and where
f is an homogeneous polynomial of degree 4`C 2. The theory of minimal models
(see, for instance, the discussions in the beginning of Sections 4 and 5) implies that,
rationally, the cohomology ring of the homotopy fiber of the map

BG0
�!K.Q; 2/�K.Q; 4/�K.Q; 4/

is isomorphic to an exterior algebra with a single generator of degree 4`C1. Therefore,
the homotopy fiber is rationally equivalent to K.Q; 4`C 1/' S4`C1 .
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Similarly, the description of the rational cohomology ring of B zG0
�;c given by Theorem

B.7 in Appendix B yields:

Lemma 3.3 Over the rationals, the space B zG0
�;c fibers over B.S1 �S1 �S1/ with

fiber S4`�1 .

The previous two lemmas implies that the diagram (5) is homotopy equivalent, over the
rationals, to the following commutative diagram in which =Emb0

!.c; �/'G0
�=
zG0
�;c

appears, as desired, as the total space of a fibration whose base and fiber are known:

F0 //

��

G0
�=
zG0
�;c

//

��

S2 �S2

��

S4`�1 //

j

��

B zG0
�;c

//

��

B.S1 �S1 �S1/

��

S4`C1 // BG0
�

// B.SO.3/�SO.3/�S1/

(6)

Notice that F0 is the fiber of the map j from S4`�1 to S4`C1 . Any map between
such spheres is null homotopic, so F0D S4`�1��S4`C1 as topological spaces. This
proves Theorem 3.1 in the untwisted case.

3.1.1 The particular case 1<�� 2 When 1<�� 2, one can strengthen Theorem
3.1 by computing the full homotopy type of the embedding space =Emb0

!.c; �/. This
range of � corresponds to the first step of the induction process that gives the homotopy
type of BG0

� and B zG0
�;c as pushout squares. In this case the Borel construction

S4`�3
hK.2`/

D EK.2`/�K.2`/ S4`�3 gives S1
hK.2/

' BSO.3/. Therefore, it is easy to
see that there are maps  0 and  1 that make the following diagram commutative.

BSO.3/

�

��

� // B.SO.3/�S1/

i1

��
 1

##HHHHHHHHHHHHHHHHHHHHHHHH

B.SO.3/�SO.3//
i0 //

 0

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYY
BG0

�

))SSSSSSSSS

B.SO.3/�SO.3/�S1/

where � is the diagonal map, � is the inclusion of the first factor, i0 and i1 are the
inclusions of the classifying spaces of the isotropy subgroups. Note that this diagram
holds not only over the rationals but also over the integers.
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Similarly, if 0< �� 1� c < 1, then the homotopy orbit S1
hT .1/

is equivalent to BS1

and we get the following commutative diagram that also holds over the integers.

BS1

�

��

� // B.S1 �S1/

i1

��
z 1

!!CCCCCCCCCCCCCCCCCCCCC

B.S1 �S1/
i0 //

z 0

++WWWWWWWWWWWWWWWWWWWWWWWWW B zG0
�;c

((QQQQQQQ

B.S1 �S1 �S1/

The fibers of the maps BG0
�!B.SO.3/�SO.3/�S1/ and B zG0

�;c!B.S1�S1�S1/

are given by †2SO.3/ and S3 , respectively. Using these fibrations, we can then
construct a commutative diagram, as in (6), that now gives the full homotopy type of
the space of embedded balls.

Theorem 3.4 If 0< �� 1� c < 1, the topological space =Emb0
!.c; �/ has the full

homotopy type of the total space of a fibration

(7) �†2SO.3/=�S3
!=Emb0

!.c; �/! S2
�S2;

where the inclusion �S3 � �†2SO.3/ is understood by identifying �S3 with
�†2S1 and taking the standard inclusion of S1 in SO.3/.

Moreover, S2 �S2 is a retract of the space of embedded balls.

Proof The fibration has a section, since S2 �S2 may be identified with the homo-
geneous space .SO.3/�SO.3//=.S1 �S1/ where these two groups are subgroups of
G0
� and zG0

�;c , respectively. This proves the second statement in the theorem.

3.2 The twisted case

There is a whole similar picture for the twisted bundle M 1
�D.S

2z�S2; !�/. Let us write
FDiff for the group of fiber preserving diffeomorphisms of M 1

� , and FDiff� � FDiff
for the stabilizer of a point. Rationally, we have homotopy equivalences

BFDiff' BSU.2/�BSU.2/�BS1;

BFDiff� ' BS1
�BS1

�BS1
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Over the rationals, this yields a commutative diagram that expresses the homotopy type
of =Emb1

!.c; �/'G1
�=
zG1
�;c as the total space of a fibration:

S4`C1 ��S4`C3 //

��

G1
�=
zG1
�;c

//

��

S2z�S2

��

S4`C1 //

j

��

B zG1
�;c

//

��

B.S1 �S1 �S1/

��

S4`C3 // BG1
�

// B.SU.2/�SU.2/�S1/

This concludes the proof of Theorem 3.1.

4 The minimal models of Symp.M i
�/ and of Symp.M i

�;c/

First recall that in order to be applicable to some given topological space, the theory
of minimal models does not require that the space be simply connected. We simply
need that the space has a nilpotent homotopy system, which means that �1 is nilpotent
and �n is a nilpotent �1 –module for n> 1. Since the groups of symplectomorphisms
Symp.M i

� ) and Symp. �M i
�;c/ are H –spaces, it follows that they have a nilpotent

homotopy system, because for a H –space, �1 is abelian and is therefore nilpotent,
and moreover �1 acts trivially on all �n ’s. On the other hand, =Embi is simply
connected since we know that the generators of �1.Symp.M i

�// lift to the generators
of �1.Symp. �M i

�;c//. Therefore the theory of minimal models is applicable to all
spaces under consideration.

Recall that a model for a space X is a graded differential algebra that provides a
complete rational homotopy invariant of the space. Its cohomology is the rational
cohomology of the space. The model can be constructed from the rational homotopy
groups of X . In this case, it is always minimal, which implies that there is no linear
term in the differential of the model, ie the first term is quadratic. When there are no
higher order term (ie all terms are quadratic), then Sullivan’s duality can be expressed
in the following way:

dbk D

X
i;j

hbk ; Œbi ; bj �ibibj :

where the ha; bi denotes the a–coefficient in the expression of b , and where the
brackets denote the Whitehead product. Finally, when X is an H–space, as it is the
case of both Symp.M i

�/ and Symp. �M i
�;c/, all Whitehead products vanish as well as

the differential.
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From these considerations and the computations of the rational homotopy groups of
both Symp.M i

�/ and of Symp. �M i
�;c/ in Abreu and McDuff [3] and Pinsonnault [17],

we have:

� The minimal model of Symp. �M i
�;c/ is ƒ.zt ; zx; zy; zw/, the free graded algebra

generated by the elements zt , zx , zy , zw with degrees deg zt D deg zx D deg zy D 1

and deg zw D 4`C 2i � 2.

� The minimal model of Symp.M i
�/ is ƒ.t;x;y; w/, the free graded algebra

generated by the elements t , x , y , w with degrees deg t D 1, deg xD deg yD 3

and degw D 4`C 2i .

Let’s now explain what these generators are.

First recall that F (or more precisely F i ) denotes the homology class of the fiber of
M i
� and E (or more precisely Ei ) 2 H2. �M i

�;c ;Z/ is the class of the exceptional
divisor that one gets by blowing up the standard symplectic ball of capacity c in M i

� .

We first briefly recall the definition of the Hirzebruch surfaces. For any � > 0 and any
integer k � 0 satisfying � � k

2
> 0, let CP1 �CP2 be endowed with the Kähler form

.�� k
2
/�1C�2 where �` is the Fubini–Study form on CP ` normalized so that the area

of the linear CP1 ’s be equal to 1. Let Fk be the corresponding Hirzebruch surface, ie
the Kähler surface defined by

Fk D
˚
.Œz0; z1�; Œw0; w1; w2�/ 2CP1

�CP2
j zk

0w1 D zk
1w0

	
It is well-known that the restriction of the projection �1W .CP1�CP2; .��k

2
/�1C�2/!

CP1 to Fk endows Fk with the structure of a Kähler CP1 –bundle over CP1 that
corresponds topologically to the trivial S2�S2 bundle if k is even and to the nontrivial
one S2 �� S2 DCP2# CP2 if k is odd. In this correspondence, the fibers, of area 1,
are preserved and the section at infinity of this bundle

s1 D f.Œz0; z1�; Œ0; 0; 1�/g

of area � � k
2

in Fk corresponds to the section of self-intersection �k that lives in
S2 �S2 if k is even and in the nontrivial S2 –bundle if k is odd. Thus it represents
the class �0�

k
2

F (resp. ��1� .
k�1

2
/F in the nontrivial case) where �j is the section

of self-intersection j . Therefore, the form .� � k
2
/�1 C �2 gives area 1 to each

CP1 –fiber and area � to the section of self-intersection 0 (ie to B D �0 in the trivial
case, and to .��1C�1/=2 in the odd case). However, our conventions for M i

� gives
area � to the zero section when i D 0 and gives area � to the section ��1 when
i D 1. This means that � must be identified with � when k is even and with �C 1

2

when k is odd. By the classification theorem of ruled symplectic 4–manifolds, this
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correspondence establishes a symplectomorphism between .Fk ; .��
k
2
/�1C �2/ and

M 0
� for all even k 0s strictly smaller than 2�; similarly, there is a symplectomorphism

between .Fk ; .�C
1
2
�

k
2
/�1C �2/ and M 1

� for all odd k 0s strictly smaller than 2�.
Each such symplectomorphism endows M i

� with a different integrable compatible
complex structure indexed by 0 � k < � having the section of self-intersection �k

holomorphically represented.

The element t in �1.Symp.M i
�// is the rotation in the fibers of the Hirzebruch surface

F2Ci , once identified with M i
� , i D 0; 1; for i D 0, it is therefore the rotation in the

fibers of M 0
�DB�F round the two fixed symplectic surfaces in classes B�F;BCF

represented by the graph of the ˙ identity map from the base B to the fiber F . Similar
comments apply to i D 1.

In the case i D 0, the element zt is the blow-up of t at the point .Œ1; 0�; Œ0; 0; 1�/ 2 F2 ,
kept fixed under the action of t , identified with the center �c.0/ 2 S2 � S2 of the
standard ball Bc . In the untwisted case the element x is the 3–dimensional sphere
generating �3.SO.3// where SO.3/ is considered as acting on the first factor in the
obvious way, the element y corresponds to the case when SO.3/ acts on the second
factor; the elements zx; zy are the blow-up of the S1 part of that action that leaves the
point �c.0/2S2�S2 invariant. In the twisted case x and y are 3–spheres that generate
the U.2/–Kähler actions on Fk when k is odd. Finally, both w and zw are symplectic
elements that do not correspond to Kählerian actions (ie a symplectic action preserving
an integrable complex structure compatible with the symplectic form). In the split case,
recall that ` is the largest integer strictly smaller than �: if `D 1 the generator w is
the Samelson product of t and x , while zw is the Samelson product of zt and zx ; and
if ` D 2, then both w and zw are higher order Samelson products. More precisely,
as explained in [3, Section 6], if `D 2 one can find commuting representatives of t

and x , so the Samelson product Œt;x� vanishes. Hence there is a 5–disk that bounds
Œt;x�, and the new 8–dimensional generator w is a second order Samelson product
made from this new disk and x . In general, if ` < �� `C 1, the Samelson product
Œt;x; : : : ;x� of order `� 1 vanishes, so w , in degree 4`, is a higher order product
made from a .4`�3/–disk and x . For the generator zw in the blow-up manifold, there
is a similar description, that is, if ` < �� `C 1 and c � �� `, the Samelson product
Œzt ; zx; : : : ; zx� of order 2`� 2 vanishes, so the generator zw in degree 4`� 2 is a higher
product made from a .4`�3/–disk and zx . Notice that the dimension of zw jumps by
two every time � passes an integer or c passes the critical value ccrit D �� `.

There is a corresponding description for the twisted case, however, instead of considering
the Samelson product of t and x one should consider the product of the generators x

and y and their higher order Samelson products.
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5 The minimal model of =Embi
!.c; �/

The goal of this section is to prove the following theorem:

Theorem 5.1 If c� ccrit (ie 0<��`� c< 1), the minimal model of =Embi
!.c; �/ is

ƒ.=Embi
!.c; �//D .ƒ.a; b; e; f;g; h/; dU /Dƒ.S

2
�S2/˝ƒ.c;g/

with generators in degrees 2, 2, 3, 3, 4`C 2i � 1, 4`C 2i and with differential

dU e D a2; dUf D b2; dU g D dU aD dU b D 0; dU hD qbg;

where ƒ.S2 � S2/ is the minimal model for S2 � S2 and q is a nonzero rational
number. Thus the rational cohomology ring of =Embi

!.c; �/ is equal to the algebra

H�.=Embi
!.c; �/IQ/Dƒ.a; b;g;gh; : : : ;ghn; : : : ; bh; : : : ; bhn; : : :/=ha2; b2; bgi

where n 2 N (see the computation of this cohomology ring in Corollary 7.1). It is
therefore not homotopy equivalent to a finite-dimensional CW–complex.

Proof Any fibration V ,! P ! U for which the theory of minimal models applies
(ie each space has a nilpotent homotopy system and the �1 of the base acts trivially on
the higher homotopy groups of the fiber) gives rise to a sequence

.ƒ.U /; dU / �! .ƒ.U /˝ƒ.V /; d/ �! .ƒ.V /; dV /:

where the differential algebra in the middle is a model for the total space. Let djU ; djV
represent the restriction of the differential d to U and V respectively. The theory of
minimal models implies that

d jU D dU

d jV D dV C d 0

where d 0 is a perturbation with image not in ƒ.V /.

Given the fibration

Symp. �M i
�;c/ �! Symp.M i

�/ �!=Embi
!.c; �/ ;

we wish to find the model for =Embi
!.c; �/. We will treat the case i D 0 in complete

detail. The case i D 1 is completely analogous to this one. To avoid unnecessary
repetitions, in the latter case we will just state the relevant propositions, leaving the
proofs as exercises to the interested reader. Since the rest of the section is mainly
devoted to the case i D 0, we will assume throughout that i D 0, unless noted otherwise,
and omit the superscript 0 to simplify notation.
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The algebra of the minimal model of =Emb!.c; �/ for c � ccrit follows from the
computation, in Pinsonnault [17], of its rational homotopy groups:

�1 D 0; �2 DQ2; �3 DQ2; �4`�1 DQ; �4` DQ and �n D 0 for all other n:

Therefore the algebra is ƒ.a; b; e; f;g; h/ where deg aDdeg bD2, deg eDdegf D3,
deg g D 4`� 1 and deg hD 4`. Thus we get the following fibration

ƒ.a; b; e; f;g; h/; dU �!ƒ.a; b; e; f;g; h/˝ƒ.zt ; zx; zy; zw/; d �!ƒ.zt ; zx; zy; zw/; dV

The differential d satisfies djU D dU and djV D dV Cd 0 D d 0 . So in order to find the
differential dU for ƒ.a; b; e; f;g; h/ it is sufficient to compute the differential d for
the model ƒ.a; b; e; f;g; h/˝ƒ.zt ; zx; zy; zw/. We need to compare this model with the
minimal model ƒ.t;x;y; w/ of Symp.M i

�/ given in the last section.

Computation of the differential d Let us first apply the simplest method of dimen-
sion counting. That method yields easily the following partial results:

Lemma 5.2 Without loss of generality, one may assume that the differential d satisfies

dzt D 0; d zx D a; d zy D b; d zw D g

(and therefore the differentials of a, b , g vanish). Moreover de and df must be
quadratic, equal to (perhaps vanishing) linear combinations of a2 , b2 , ab .

Proof Since the middle term computes the rational cohomology of Symp.M�/, we
need exactly one generator of degree 1. There is no loss of generality in assuming
that it is zt : d zt D 0. It follows that d zx and d zy must be different from 0 otherwise
we would have too many generators in cohomology in dimension 1. By the theory of
models for fibrations, the perturbation d 0 has image not in ƒ.zt ; zx; zy; zw/. Therefore,
without loss of generality, we may set

d zx D a; d zy D b

which implies that d aD d b D 0.

Now lets compute d zw . It does not vanish because there is no generator in the cohomol-
ogy of Symp.M�/ in dimension 4`� 2. The theory of rational models for fibrations
implies that the perturbation d 0 is dual to the boundary operator @W ��.B/˝Q!
��.F /˝Q. Since @g D zw , we conclude that d 0 zw D g , which means that d zw D g

and implies that dg D 0.
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Let us now compute the values of d e and d f . As we will see below, these will
follow easily from the computation of the Whitehead products Œa; a�, Œa; b�, Œb; b� in the
rational homotopy of =Emb!.c; �/. If the total space of the fibration Symp. �M�;c/!

Symp.M�/!=Emb!.c; �/ were contractible, computing such products would boil
down to computing the Samelson product of corresponding elements of the fiber. But
our total space is not contractible, and we have to take also into account an horizontal
part in the Whitehead product.

Let us briefly describe the generators of ƒ.U /, ie the generators of the rational
homotopy groups of =Emb!.c; �/. The group Symp.M�/ acts on =Emb!.c; �/
by � � A D image .�jA/ with stabilizer equal to Symp.M�;Bc/, the subgroup of
symplectic diffeomorphisms which preserve (not necessarily pointwise) Bc , the image
of the standard embedding of the ball of capacity c of R2n in M� . This leads to the
following homotopy fibration:

(8) Symp. �M�;c/! Symp.M�/!=Emb!.c; �/:

The elements e , f and h are the images by the action of Symp.M�/ on =Emb!.�; c/
of the elements x , y and w of ��.Symp.M�//˝Q. The elements a, b are uniquely
defined as those spheres in the base of that fibration whose lifts to the total space
Symp.M�/ are discs with boundary on the fiber equal to zx and zy respectively. These
lifts are unique because �2.Symp.M�//˝Q vanishes. The element g is defined in
the following way. When ` > 1 it is uniquely defined as the sphere in the base of that
fibration whose lift to the total space is a disc with boundary on the fiber equal to zw .
Such a lift is unique since �4`�1.Symp.M�//˝Q vanishes in this case. However, if
`D 1, the lift of g to the total space is a class in �3.Symp.M�/;Symp. �M�;c//˝Q
(D �3.=Emb!.c; �//˝Q/ which is not uniquely defined. To make it unique, we
define it by first taking the 2–disc Dzx � SO.3/D x � Symp.M�/ whose boundary is
equal to 2zx , and then taking the commutator of t and Dzx . This yields a 3–disc D

lying inside Œt;x�S D w , whose boundary is the Samelson product 2 Œzt ; zx�D 2 zw . Set
g DD=2 2 �3.Symp.M�/;Symp. �M�;c//˝Q.

Lemma 5.3 The Whitehead product Œa; b� vanishes, and

Œa; a�D e; Œb; b�D f:

Proof Assume that X , Y are the generators of ��.S2/˝Q of degrees 2 and 3,
respectively, and Xj , Yj their images in the j –th factor of S2 � S2 . We have
ŒX;X �D Y in the rational homotopy of S2 and ŒX1;X2�D 0 because ŒX1;X2� is the
obstruction to extend the inclusion map .S2�fptg/[ .fptg�S2/! S2�S2 to a map
defined on S2 �S2 .
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Recall, from Theorem 3.4, that S2 �S2 is a retract of the space of embedded balls,
that is, there is a section � W S2 � S2 ! =Emb0

!.c; �/ of fibration (7). It follows
that ��.X1/ D a, ��.X2/ D b , ��.Y1/ D e and ��.Y2/ D f and therefore Œa; a� D
e; Œb; b�D f and Œa; b�D 0.

Recall that Sullivan’s duality implies

dbk D

X
i;j

hbk ; Œbi ; bj �ibibj :

Therefore, the last lemma implies that

dU .e/D a2 and dU .f /D b2:

It remains to compute dh.

Lemma 5.4 The differential d satisfies dh D qbg where q is a nonzero rational
number.

Proof Notice that dh¤ 0 if and only if

rnk H 4`.=Emb!.c; �/IQ/D

(
1 for `D 1;

0 for `� 2.

Indeed, if dh did not vanish, there would be no element remaining in degree 4` when
` > 1 and there would be only one element remaining in degree 4, namely ab . Hence,
in that case, we would have dh D c� where � is a nonzero linear combination of
a and b , since there are no closed classes in degree 4`C 1 except c� . Moreover,
there is a constant q ¤ 0 such that dhD qbg , because the Whitehead product Œa;g�
vanishes. Indeed, recall that if ` D 1 the element 2a is the projection on the base
=Emb!.c; �/ of the 2–disc Dzx �D defined above, while 2g is the projection of the
3–disc D � Œt;x�S Dw . Therefore a� g and their Whitehead product must vanish
since �4.S

3/˝Q D 0. If ` > 1 notice that the Samelson product of order 2`� 2,
Œt; zx; : : : ; zx�, vanishes so the .4`�1/–disc

D zw � Œt; zx; : : : ; zx„ ƒ‚ …
2`�2

;Dzx �

is well defined. Its boundary is the higher order Samelson product 2 Œt; zx; : : : ; zx�D 2 zw .
So 2g is the projection on the base of this disc. Since Dzx �D zw it follows again that
a� g and their Whitehead product must vanish because �4`.S

4`�1/˝QD 0.

We will show that H 4`.=Emb!.c; �/IQ/DH 4`.G�= zG�;c IQ/ is zero-dimensional
if `� 2 and one-dimensional if `D 1, by an argument that uses the Eilenberg–Moore
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spectral sequence3 applied to the fibration G�= zG�;c!B zG�;c!BG� . This spectral se-
quence, which is a second quadrant spectral sequence, converges to H�.G�= zG�;c IQ/.
Its E2 –term is given by

E
i;j
2
D Tor�i;j

H �.BG�/
.Q ;H�.B zG�;c//:

We follow P Baum’s paper [7, Section 2] to calculate these Tor groups. Let ƒ be a
graded Q–algebra and, M and N be ƒ–modules. Then Torƒ.M;N / is the bigraded
Q–module obtained as follows. Consider a projective resolution R of M over ƒ
given by

RD f : : : // R.�2/
f .�2/

// R.�1/
f .�1/

// R.0/
f .0/ // M // 0 g:

Let L be the bigraded differential Q–module defined by Lp;q D .R.p/˝ƒN /q with
d W Lp;q!LpC1;q given by f .p/˝ƒ 1N . Torƒ.M;N / is the homology of L, that
is Torp;q

ƒ
.M;N /DH p;q.L/:

In our example we have ƒDH�.BG�IQ/, M DQ and N DH�.B zG�;c IQ/. The
cohomology ring of BG� was computed by Abreu, Granja and Kitchloo in [2]; it is
given by

H�.BG�IQ/

DQŒT;X;Y �
.�

T
Ỳ
iD1

.T 2
C i4X � i2Y /

�
where jT j D 2 and jX j D jY j D 4:

The same methods can be applied to compute the cohomology ring of B zG�;c . The
proofs of the following two theorems are given in Appendix B.

Theorem 5.5 (See Theorem B.7.) Let ` < �� `C 1. Then the cohomology ring of
B zG�;c is isomorphic to

QŒz;x;y�
zR�;c

where z , x , y have degree 2, and where the ideal zR�;c is given by

zR�;c D

8̂<̂
:
hz.z�xCy/.z�x�y/ � � � .z� `2xC `y/i in the case c � ccrit,

hz.z�xCy/.z�x�y/

� � � .z� `2xC `y/.z� `2x� `y/i in the case c < ccrit.

3It is obvious that dh either vanishes or is equal to a nonzero multiple of bg . Unfortunately, one can
prove that the Leray spectral sequence cannot distinguish between these two cases. We thank the referee
for pointing out that the Eilenberg–Moore sequence does.
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The map B zG�;c! BG� induces a map in cohomology.

Theorem 5.6 (See Theorem B.8.) The map H�.BG�IQ/ ! H�.B zG�;c IQ/ is
given by

T 7! z

X 7! x2

Y 7! y2C 2xz:

Under this map, the cohomology of BG� can be identified with the subring

H�.BG�IQ/DQŒz;x2;y2
C 2xz�

.�
z
Ỳ
iD1

..z� i2x/2� i2y2/

�
:

We need to construct a projective resolution for Q as a H�.BG�/–module. We can
achieve this with "W QŒz;x2;y2C2xz�=hz

Q`
iD1..z� i2x/2� i2y2/i!Q'ƒ0 , the

augmentation of ƒ. Therefore we may calculate these Tor groups using the following
resolution (called the Koszul resolution)

ƒ.˛; ˇ; ; ı/˝QŒz;x2;y2
C 2xz�

.�
z
Ỳ
iD1

..z� i2x/2� i2y2/

�
;

with differentials given by

(9) d.˛/D z; d.ˇ/D x2; d. /D y2
C 2xz; d.ı/D ˛

Ỳ
iD1

..z� i2x/2� i2y2/:

Here ƒ.˛; ˇ; ; ı/ denotes the free (bi)graded algebra on elements ˛; ˇ;  and ı in
bidegrees .�1; 2/, .�1; 4/, .�1; 4/ and .�2; 4`C2/ respectively. The above complex
is a module over QŒz;x2;y2C2xz�=hz

Q`
iD1..z� i2x/2� i2y2/i, graded in external

degree zero, ie it lies in grading .0;�/. It follows that the Tor groups of interest are the
cohomology of the complex

ƒ.˛; ˇ; ; ı/˝QŒz;x;y�
.�

z.z� `2xC `y/

`�1Y
iD1

..z� i2x/2� i2y2/

�
:

Here we use the identification of H�.BG�IQ/ as a subring of H�.B zG�;c IQ/ and
under this identification the differential of the complex above satisfies the equali-
ties (9) along with the equality d.� ˝ m/ D d� ˝ m with � 2 ƒ.˛; ˇ; ; ı/ and
m 2QŒz;x;y�=hz.z�`2xC`y/

Q`�1
iD1..z� i2x/2� i2y2/i. Any class in total degree

4`, which is in negative external degree, may be written as x4`D c1ıC˛ˇ h1.x;y; z/C

˛ h2.x;y; z/, where c1 is a constant and h1 and h2 are linear combinations of classes
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of the type xnx yny znz where nx , ny , nz 2N such that nxC ny C nz D 2`� 2 and
therefore jxnx yny znz j D 4`� 4. For it to be closed we need

c1˛
Ỳ
iD1

..z� i2x/2� i2y2/C zˇh1C zh2�˛x2h1�˛.y
2
C 2zx/h2 D 0

which can happen only if c1 D 0 and all the coefficients in the linear combinations h1 ,
h2 vanish. Hence the only closed classes are in external degree zero. Clearly, all the
classes of the type z xnx yny znz , where nx; ny ; nz 2N and nxCnyCnz D 2`�1, are
in the image of the differential d because d.˛ xnx yny znz /D z xnx yny znz . It remains
to check that all the classes of the type xky2`�k are also in the image of d where
0� k � 2`, except the class xy if `D 1 .k D 1/. Note that if k � 2 then

xky2`�k
D x2 xk�2y2`�k

D d.ˇ xk�2y2`�k/:

If k D 1 and `� 2 then

xy2`�1
D xy2`�3 y2

D
1

2
d.xy2`�3. � 2˛ x//:

This shows that there are no classes in Tor in total degree 4` if ` > 1 and there is only
one, generated by xy , if `D 1.

Remark 5.7 There is a completely analogous story for the twisted case. The methods
are exactly the same and they show that only the dimension of the generators g and
h changes. In this case the cohomology ring of BG1

� was computed in [2] where the
authors showed that

(10) H�.BG1
�IQ/

DQŒX;Y;T �
.� Ỳ

iD0

..2i C 1/2.
i.i C 1/

2
.X CY /�Y /�

i2.i C 1/2

2
T 2/

�
:

The diffeomorphism B zG�;c
1 ' B zG0

�C1�c;1�c
yields easily the cohomology ring of

the blow up when c � ccrit :

H�.B zG�;c
1
IQ/DQŒx;y; z�

.�
z
Ỳ
iD1

.z� i2xC iy/.z� i2x� iy/

�
:
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Moreover, the map i�W H�.BG1
�IQ/! H�.B zG�;c

1IQ/ is given by (see Theorem
B.9)

X 7! y.y �x/C z
2
.7yC 7z� 3x/

Y 7! z
2
.y �xC z/

T 7! 4zC 2y �x:

Note that under this map, the relation in (10) is mapped to the product�
�

1

2

�`C1

z.z� .`C 1/2xC .`C 1/y/
Ỳ
iD1

.z� i2xC iy/.z� i2x� iy/

which is a multiple of the relation in the cohomology ring of B zG�;c
1 .

This completes the proof of Theorem 5.1.

6 The minimal model of Embi
!.c; �/

In this section, we compute the minimal model of the space Embi
!.c; �/ of parametrized

symplectic balls. Unless noted otherwise, we assume that i D 0 throughout and again
omit the superscript 0 . Consider the fibration U.2/! Emb!.c; �/!=Emb!.c; �/.
First observe that this fibration is the restriction to Bc of the fibration Symp. �M�;c/!

Symp.M�/!=Emb!.c; �/. This can be expressed by the commutative diagram

Sympid;Bc .M�/
� � // SympU.2/.M�;Bc/

restr //

��

U.2/

��
Sympid;Bc .M�/

� � //

��

Symp.M�/
restr //

��

Emb!.c; �/

��
fBcg

� � // =Emb!.c; �/ =Emb!.c; �/

where the map restr is the restriction to the standard embedded ball Bc � M� ,
SympU.2/.M�;Bc/ is the subgroup of Symp.M�/ formed of diffeomorphisms that
preserve the ball Bc and act in a U.2/ linear way on it, and Sympid;Bc .M�/ is
the subgroup of Symp.M�/ formed of the elements that fix the ball Bc pointwise.
Recall that there is a natural homotopy equivalence between SympU.2/.M�;Bc/ and
Symp. �M�;c/, so the vertical fibration in the middle is equivalent to the fibration (2) of
Section 1, namely Symp. �M�;c/! Symp.M�/!=Emb!.c; �/.
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We also have the commutative diagram

U.2/

��

U.2/

��
Emb!.c; �/

j //

��

UFr.M /

��
=Emb!.c; �/

l // M

where UFr.M / is the space of unitary frames of M , j is the 1–jet map evaluated at
the origin (followed by the Gram–Schmidt process assigning a unitary frame to each
symplectic one), and where the last horizontal map assigns to each unparametrized ball
its center (well-defined up to homotopy).

The minimal model for U.2/ is ƒ.u0; v0/ where deg.u0/D1 and deg.v0/D3. We first
show that the elements e; f;g; h2��.=Emb!.c; �//˝Q lift to ��.Emb!.c; �//˝Q,
but not a, b . However the difference a � b does lift. On the other hand only the
element v0 injects in ��.Emb!.c; �//˝Q, the element u0 is killed.

Proposition 6.1 The rational homotopy of Emb!.c; �/ is generated, as module over
Q, by a single element zh in dimension 4`, by one element zg in dimension 4`� 1, by
three elements v , ze , zf in dimension 3, and by a single element zda;b in dimension 2.
The elements zh, ze , zf are the images by the restriction map of the elements w , x , y

respectively. The element v is the image of v0 , zda;b is the unique lift of the difference
da;b WD a � b and zg is the unique lift of g if ` > 1. If ` D 1 the element zg is
well-defined up to a multiple of v .

Proof Consider the following commutative diagram of long exact sequences:

: : : // �k.U.2//˝Q
�� //

id
��

�k.Emb!.c; �//˝Q
�� //

j�

��

�k.=Emb!.c; �//˝Q
@� //

l�

��

: : :

: : : // �k.U.2//˝Q // �k.SFr.M //˝Q // �k.M /˝Q // : : :

Since �4`.M /˝Q vanishes, l�D4`.h/D 0, and therefore @�.h/D 0. Hence ��D4`

is an isomorphism between �4`.Emb!.c; �//˝Q and �4`.=Emb!.c; �//˝Q. Let’s
denote by zh the lift of h. Since �4`�1.U.2// and �4`�2.U.2// vanish if ` ¤ 1, it
follows that the map ��D4`�1 is an isomorphism between �4`�1.Emb!.c; �//˝Q
and �4`�1.=Emb!.c; �//˝Q. Let zg be the lift of g . In that case, that is, if `¤ 1
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and for k D 3, the short sequence

�3.U.2//˝Q
��
! �3.Emb!.c; �//˝Q

��
! �3.=Emb!.c; �//˝Q

splits because �4.=Emb!.c; �//˝Q and �2.U.2// vanish. Let’s denote by v the
image of v0 and by ze , zf the lifts of e , f ; all are well defined.

If `D 1, for k D 3, the short sequence

�3.U.2//˝Q
��
! �3.Emb!.c; �//˝Q

��
! �3.=Emb!.c; �//˝Q

still splits because, as we saw, h is mapped to 0, and �2.U.2// vanishes. We still
denote by v the image of v0 and by ze , zf , zg the lifts of e , f , g . In this case, all are
well-defined except zg which is defined up to a multiple of the element v . Consider
now the sequence

0! �2.Emb!.c; �//˝Q
��
! �2.=Emb!.c; �//˝Q

@�
! �1.U.2//:

The elements a, b are by definition such that they lift to discs

�a; �bW D
2
! Symp.M i

�/

with boundary equal to the elements x;y 2 �1.Symp. �M�;c//˝Q respectively. There-
fore, their lifts to Emb!.c; �/˝Q are the 2–discs

 a;  bW D
2
! Emb!.c; �/

defined by  a;b.z/D �a;bjBc
. Hence their boundaries are the restriction of the loops

zx; zy 2 �1.Symp.M�;Bc//˝Q to the standard ball Bc � M� . But each of these
loops preserve Bc (not pointwise) and correspond to the generator of �1.U.2//˝Q
through the identification B4.c/.� R4/! Bc . This proves that each of a and b is
mapped to u0 by the boundary operator of the above sequence. Denote by zda;b the lift
to �2.Emb!.c; �//˝Q of the element da;b D a� b .

Finally, the map @�W �2.=Emb!.c; �//˝Q! �1.U.2//˝Q being onto, the space
�1.Emb!.c; �//˝Q must vanish.

Let’s compute the minimal model of Emb!.c; �/. By the last proposition, a model of
Emb!.c; �/ is given by .ƒ. zda;b; ze; zf ; zg; v; zh/; d0/. By minimality, there is no linear
term in the differential, so d0. zda;b/ D 0, while the constants (when ` > 1) in the
expressions

d0.ze/D c1
zd 2
a;b; d0. zf /D c2

zd 2
a;b; d0v D c3

zd 2
a;b

are given, by duality, by

Œ zda;b; zda;b �D c1zeC c2
zf C c3v:
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When `D 1 we have to consider also d0.zg/D c4
zd 2
a;b

. Denoting by � the projection
Emb!.c; �/!=Emb.c; �/, we have

��.Œ zda;b; zda;b �/D Œda;b; da;b �D Œa� b; a� b�D Œa; a�C Œb; b�D eCf:

Therefore c1 D c2 D 1 and c4 D 0 (if `D 1), and we get Œ zda;b; zda;b �D zeC zf C c3v .
Now any value of this constant leads to the same model, up to isomorphism. Indeed,
since d0zeD d0

zf D zd 2
a;b

and d0vD c3
zd 2
a;b

, this means that ze kills zd 2
a;b

and thus both
zf and v can be considered as cycles (up to a reparametrization of the basis of the

algebra).

Finally, if `D 1, the differential of zh is given by the coefficient affecting the term zh
in the Whitehead products Œ zda;b; ze�, Œ zda;b; zf �, Œ zda;b; zg�, Œ zda;b; v�, while if ` > 1 we
just need to compute the Whitehead product Œ zda;b; zg�. Projecting on the base of the
fibration, we see that all these coefficients must vanish, except for the coefficient q 2Q
in d0

zhD q zda;b zg . Indeed projecting Œ zda;b; zg� on the base we have

��.Œ zda;b; zg�/D Œda;b;g�D Œa� b;g�D Œa;g�� Œb;g�D�qh;

since Œa;g�D0 and the differential d of the minimal model of =Emb satisfies dhDqbg

for some q¤ 0, as seen in Lemma 5.4. This shows that the differential of zh is given by

d0
zhD�q zda;b zg:

Denoting by zf 0 and v0 the elements zf �ze and v�c3ze respectively, the sets fze; zf 0; zg; v0g
and fze; zf 0; v0g form a basis of the 3–dimensional generators for the cases `D 1 and
` > 1 respectively. These same methods apply also to the computation of the minimal
model of Emb1

!.c; �/, that is, to the twisted case. So this proves the following:

Theorem 6.2 If 0< �� `� c < 1, a minimal model of Embi
!.c; �/ is given by

ƒ.Embi
!.c; �//D .ƒ.

zda;b; ze; zf
0; v0; zg; zh/; d0/

with generators of degrees 2, 3, 3, 3, 4`C 2i � 1, 4`C 2i and with differential
defined by

d0
zda;b D d0

zf 0 D d0zg D d0v
0
D 0; d0ze D zd

2
a;b and d0

zhD�q zda;b zg

where q is a nonzero rational number. Then the rational cohomology ring of the space
Embi

!.c; �/ is given by

H�.Embi
!.c; �/IQ/

Dƒ. zda;b; zf
0; zg; v0; zgzh; : : : ; zgzhn; : : : ; zda;b

zh; : : : ; zda;b
zhn; : : :/=h zd 2

a;b;
zda;b zgi

where n 2N (see the computation of this cohomology ring in Corollary 7.2).
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7 Cohomology rings

It is easy to describe the cohomology ring of =Embi
!.c; �/ with rational coefficients.

A careful comparison between the Serre spectral sequence of the fibration

(11) S4`C2i�1
��S4`C2iC1

�! Gi
�=
zGi
�;c �!M i

�

(recall that zG1
�;c '

zG0
�C1�c;1�c

) and Theorem 5.1 gives the cohomology ring of
=Embi

!.c; �/.

Corollary 7.1 If 0<��`� c<1 the cohomology ring of =Embi
!.c; �/ with rational

coefficients is given by

H�.=Embi
!.c; �/IQ/Dƒ.a; b;g;gh; : : : ;ghn; : : : ; bh; : : : ; bhn; : : :/=ha2; b2; bgi;

that is,

H�.=Embi
!.c; �/IQ/

DH�.S2
�S2
IQ/˝ƒ.g;gh; : : : ;ghn; : : : ; bh; : : : ; bhn; : : :/=hbgi;

where n 2 N , b is a generator of H 2.S2 � S2IQ/, and g , h correspond to the
generators of the cohomology ring H�.S4`C2i�1 ��S4`C2iC1IQ/ where jgj D
4`C 2i � 1 and jhj D 4`C 2i .

Proof We give the proof for the untwisted case. The case i D 1 is analogous to this;
we leave its proof to the reader. The rational cohomology ring of the fiber is given by

H�.S4`�1
��S4`C1

IQ/Dƒ.g/˝QŒh�:

We showed in the proof of Lemma 5.4 that H 4.=Emb0
!.c; �/;Q/ is one dimensional

and that rnk H 4`.=Emb0
!.c; �/;Q/ D 0 when ` > 1. This implies that in the E2 –

term of the Serre spectral sequence of the fibration (11) the differential d2h does
not vanish. This is clear when ` > 1 for dimensional reasons. When ` D 1 if
we had d2h D 0 then h would survive to the E1 page of the spectral sequence
and, unless d4g D ab , we would have two generators in the cohomology group
H 4.=Emb0

!.c; �/IQ/, namely h and ab . However, it follows from the minimal
model computation that rnk H 3.=Emb0

!.c; �/IQ/ D 1 which implies that g is a
permanent cycle and therefore dr g D 0 for all r � 2. We can assume that d2hD bg .
Then the generators bhn and ghn where n2N survive to the E1 page of the spectral
sequence. For all these generators, except for ghn when ` D 1 and n 2 N , this
follows simply for dimensional reasons since Ep;q D 0 for all p � 5 and q � 0. When
`D 1 one knows from the computation of the minimal model of =Emb0

!.c; �/ that

Geometry & Topology, Volume 13 (2009)



The homotopy type of the space of symplectic balls 1209

rnk H 4nC3.=Emb0
!.c; �/IQ/D 1, and it is easy to verify that ghn , for each n, is the

single element in dimension 4nC 3 that can survive to the E1–page of the spectral
sequence. This completes the proof.

A comparison of Theorem 6.2 and the Serre spectral sequence of the fibration

(12) U.2/ �! Embi
!.c; �/ �!=Embi

!.c; �/

yields the cohomology ring of Embi
!.c; �/ with rational coefficients.

Corollary 7.2 If 0< �� `� c < 1 then

H�.Embi
!.c; �/IQ/Šƒ.b; f; v;g;gh; : : : ;ghn; : : : ; bh; : : : ; bhn; : : :/=hb2; bgi

where H�.U.2/IQ/Šƒ.u; v/, jf jD3 and a, b , g , ghn , bhn with n2N correspond
to the generators of the cohomology ring of =Embi

!.c; �/.

Proof From the computation of the minimal model in Theorem 6.2, it follows that there
is no generator in degree 1 in the cohomology ring of Embi

!.c; �/ so, in the E2 –page of
the Serre spectral sequence of the fibration (12), the differential satisfies d2u¤0. There-
fore d2u is a linear combination of a and b . Notice that the minimal model computation
also shows that there is no element in degree 4 in the cohomology ring. Hence the ele-
ment ab in the E2 –page has to be in the image of d2 or d4 . The computation of the min-
imal model implies that we need to have two generators of degree 3 in the cohomology
ring for all cases except when `D 1 and i D 0 (in this latter case it has three generators).
Hence v is a permanent cycle and we can choose d2uD a. Then one has d2ubD ab as
desired and the element ua survives to the E1 page. The element ua corresponds to
the generator f . The element g survives to the E1–page since it is the only candidate
that could represent the generator in dimension 4`C 2i � 1 that exists by the minimal
model computation. It is not hard to see that the generators ghn also survive to the E1
page and they correspond to the generators zgzhn in the minimal model. Finally we see
that the generators bhn cannot be in the image of dr with r � 2, so they also survive
to the E1 page. Moreover they correspond to the elements snD

zhn�1.zh zda;bC nqzezg/

in the minimal model, where n 2N , which clearly satisfy d0sn D 0.

Remark 7.3 Notice that this cohomology ring is equivalent to the one given in Theo-
rem 6.2. Indeed the difference between the two is that, here, we use the generators of
the cohomology ring of =Embi

!.c; �/ to describe the ring while, there, we used the
generators of the minimal model.
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7.1 The split case with 1<�� 2

Recall from Section 3.1.1 that if � lies in this interval we have the fibration

(13) �†2SO.3/=�S3 x{ // G0
�=
zG0
�;c

x� // S2 �S2 :

One can compute the cohomology ring of the space =Emb0
!.c; �/ with Zp coefficients

and p prime, using this fibration. Let �Zp
Œx� denote the divided polynomial algebra on

the generator x . This is, by definition, the Zp –algebra with basis x0 D 1;x1;x2; : : :

and multiplication given by

xixj D

�
i C j

i

�
x

iCj
1

:

As one can check, there is an isomorphism

�Zp
Œx�� Zp Œx1;xp;xp2 ; : : :�=hx

p
1
;xp

p ;x
p

p2 ; : : :i D
O
i�0

Zp Œxpi �=hx
p

pi i:

Corollary 7.4 If 0< �� 1� c < 1 and p ¤ 2 then

H�.=Emb0
!.c; �/IZp/Dƒ.a; b;g/=ha

2; b2; bgi˝g�Zp
Œh�˝ b�Zp

Œh�

where jaj D jbj D 2, jgj D 3, jhj D 4 and ��Zp
Œh�, with � D g or � D b , stands for

the infinitely generated algebra in which � commutes with every element.

Proof First notice that the fiber �†2SO.3/=�S3 is equivalent to the space S3��S5

away from the prime 2. Therefore we get

H�.�†2SO.3/=�S3
IZp/Dƒ.g/˝�Zp

Œh�;

where p ¤ 2, jgj D 3 and jhj D 4. The same argument as in the proof of the Lemma
5.4, using the Eilenberg–Moore spectral sequence, shows that H 4.=Emb0

!.c; �/IZp/

is one dimensional if p¤ 2. Since rnk H 4nC3.=Emb0
!.c; �/IQ/D 1 where n2N0 it

follows that H 4nC3.=Emb0
!.c; �/IZp/ is at least one dimensional. Then using again

the Serre spectral sequence of the fibration (13) and an argument similar to the one
used in Corollary 7.1 we obtain the desired result.

Next, we will see that =Emb0 has Z2 –torsion and therefore the cohomology ring with
these coefficients is not as simple to describe as the previous ones.
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Corollary 7.5 When 0<��1� c < 1, the cohomology groups with Z2 coefficients
of the space =Emb0

!.c; �/ are given by

(14) H�.=Emb0
!.c; �/IZ2/DH�.S2

�S2
IZ2/˝H�.�†2SO.3/=�S3

IZ2/

(as vector spaces). Moreover, as an algebra

H�.�†
2SO.3/=�S3

IZ2/D T .w2; w3; w4/˝T .w2/Z2

where T denotes the tensor algebra, that is, the free noncommutative algebra on the
generators wi with degrees jwi j D i . Therefore the cohomology ring of =Emb0

!.c; �/

with Z2 coefficients is given by

H�.=Emb0
!.c; �/IZ2/ŠH�.S2

�S2
IZ2/˝A

where A has an infinite number of generators.

Proof Since the inclusions �S3 ,!�†2SO.3/, zG0
�;c ,!G0

� and S1�S1�S1 ,!

S1�SO.3/�SO.3/ induce injective maps in homology with Z2 coefficients, it follows
from the Leray–Hirsch Theorem that we have the following isomorphisms as vector
spaces:

H�.�†2SO.3/IZ2/ŠH�.�†2SO.3/=�S3
IZ2/˝H�.�S3

IZ2/;

H�.G0
�IZ2/ŠH�.G0

�=
zG0
�;c IZ2/˝H�. zG0

�;c IZ2/;

H�.S1
�SO.3/�SO.3/IZ2/ŠH�.S2

�S2
IZ2/˝H�.S1

�S1
�S1
IZ2/:

Moreover, since the fibrations

� W G0
�! S1

�SO.3/�SO.3/;

z� W zG0
�;c! S1

�S1
�S1

are (weakly) homotopically trivial, we obtain the following isomorphisms as graded
algebras:

H�.G0
�IZ2/ŠH�.S1

�SO.3/�SO.3/IZ2/˝H�.�†2SO.3/IZ2/;

H�. zG0
�;c IZ2/ŠH�.S1

�S1
�S1
IZ2/˝H�.�S3

IZ2/:

The five previous isomorphisms yield the isomorphisms

(15) H�.G0
�=
zG0
�;c IZ2/ŠH�.�†2SO.3/=�S3

IZ2/˝H�.S2
�S2
IZ2/

as vector spaces, that is to say (14).
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It follows that the homomorphism x{� is surjective and the Serre spectral sequence of
the fibration (13) collapses at E2 . Therefore

E�;�1 ŠE
�;�
2
ŠH�.�†2SO.3/=�S3

IZ2/˝H�.S2
�S2
IZ2/

as bigraded modules. But this does not directly shows that the isomorphism (15) also
holds as a graded algebra isomorphism. However, it is clear that H�.G0

�=
zG0
�;c IZ2/

has a subalgebra x��.H�.S2 �S2IZ2//ŠH�.S2 �S2IZ2/. Although it is not easy
to describe the Z2 –cohomology of the space �†2SO.3/=�S3 , one can calculate
its Z2 –homology. For this, recall that the homology of �†X , with its Pontrjagyn
product, is the free tensor algebra on the homology of X for any connected space X .
Hence the map �S3 ! �†2SO.3/ corresponds to the obvious inclusion of tensor
algebras over Z2 :T .w2/! T .w2; w3; w4/ where T denotes the tensor algebra and
jwi j D i . The Bar spectral sequence for a principal fibration can then be applied to give

H�.�†
2SO.3/=�S3

IZ2/D T .w2; w3; w4/˝T .w2/Z2;

as Hopf algebras, where T .w2/ acts by product on the left factor and by mapping
w2 to the zero map on the right factor. In Kitchloo, Laures and Wilson [9] the reader
will find the necessary results on the Bar spectral sequence (cf [9, Theorem 4.2]) and
further references. By a simple counting argument, since this is a noncommutative
algebra, the (graded-commutative) cohomology ring H�.�†2SO.3/=�S3IZ2/ must
have an infinite number of generators. From the E2 page of the spectral sequence of
the fibration (13) we can then conclude that

H�.G0
�=
zG0
�;c IZ2/ŠH�.S2

�S2
IZ2/˝A;

as graded algebras, where A has an infinite number of generators, but it is not necessarily
isomorphic as a graded algebra to H�.�†2SO.3/=�S3IZ2/. This isomorphism
completes the proof.

There is a similar picture for the cohomology ring of Emb0
!.c; �/ with Zp coefficients

and p prime.

Corollary 7.6 If 0< �� 1� c < 1 and p ¤ 2 then

H�.Emb0
!.c; �/IZp/Šƒ.b; f;g; v/=hb

2; bgi˝g �Zp
Œh�˝ b�Zp

Œh�;

where ��Zp
Œh�, with � D g or � D b , stands for the infinitely generated algebra

Zp Œ�h1; : : : ; �h
p�1
1

; �hp; : : : ; �hp�1
p ; �hp2 ; : : : ; �h

p�1

p2 ; : : :�

where the generators hi are the generators of the divided polynomial algebra �Zp
Œh�.
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Using this corollary and the Serre spectral sequence of fibration (12), we get:

Corollary 7.7 If 0< �� 1� c < 1 then

H�.Emb0
!.c; �/IZ2/Šƒ.b; f; v/=hb

2
i˝A0

where the algebra A0 has an infinite number of generators.

Appendix A Integrable complex structures and homotopy
decomposition of B zG i

�;c

A.1 Spaces of compatible integrable complex structures

Let .M; !/ be a symplectic 4–manifold. Denote by J! the space of compatible almost
complex structures and by I! the subset of integrable ones. Given an integrable J ,
we write H

0;q
J
.M / for the q–th Dolbeault cohomology group with coefficients in

the sheaf of germs of holomorphic functions and H
0;q
J
.TM / for the q–th Dolbeault

cohomology group with coefficients in the sheaf of germs of holomorphic vector fields.

In their paper [2], Abreu, Granja and Kitchloo prove that, under some cohomological
conditions, I! is a genuine Fréchet submanifold of J! whose tangent bundle may be
described using standard deformation theory, namely:

Theorem A.1 [2, Theorem 2.3] Let .M; !/ be a symplectic 4–manifold, and let
J 2 I! . If the cohomology groups H

0;2
J
.M / and H

0;2
J
.TM / are zero, then I! is

a submanifold of J! near J . Moreover, the tangent space of I! at J is naturally
identified with TJ ..Diff.M / � J /\ I!/˚H

0;1
J
.TM /. Here, H

0;1
J
.TM / represents

the moduli space of infinitesimal compatible deformations of J in I! that coincides
with the moduli space of infinitesimal deformations of J in the set of all integrable
structures I .

The actions of various natural subgroups of Diff.M / on I give rise to different
partitions of I! . Let DiffŒ!� denote the group of diffeomorphisms of M preserving the
cohomology class Œ!� and write HolŒ!�.J / for the subgroup of complex automorphisms
of .M;J /. Let Iso.!;J / denote the Kähler isometry group of .M; !;J /. The next
result shows that in some cases the part of the DiffŒ!�–orbit of J that lies in I! may
be identified with the Symp.M; !/–orbit:
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Theorem A.2 [2, Corollary 2.6] If J 2 I! is such that the inclusion Iso.!;J / ,!
HolŒ!�.J / is a weak homotopy equivalence, then the inclusion of the Symp.M; !/–
orbit of J in .DiffŒ!� �J /\ I!

Symp.M; !/=Iso.!;J / ,! .DiffŒ!� �J /\ I!

is also a weak homotopy equivalence.

Recall that the natural stratifications of J .M i
�/ and J . �M i

�;c/ described in Section 2
are defined geometrically in terms of J –holomorphic curves in certain homology
classes. The restriction of each stratum to integrable compatible complex structures
can be understood as follows. Given a symplectic manifold .M; !/, let us denote by
M.A;J!/ the space of pairs .u;J / 2 C1.CP1;M /�J! such that uW CP1!M

is a somewhere injective J –holomorphic map whose image represents the homology
class A. This space is always a smooth manifold whose image UA under the projection
� WM.A;J!/! J! is the set of all J such that A is represented by an irreducible
J –holomorphic sphere. The next proposition gives conditions ensuring that the stratum
UA is transversal to I! and that its normal bundle at J 2 I! may be described in
terms of deformation theory.

Theorem A.3 [2, Theorem 2.9] Let .M; !;J / be a Kähler 4–manifold such that
the cohomology groups H

0;2
J
.M / and H

0;2
J
.TM / are zero. Suppose that .u;J / 2

M.A;J!/ is such that u�W H
0;1
J
.TM /!H 0;1.u�.TM // is an isomorphism. Then

the projection � WM.A;J!/ ! J! is transversal at .u;J / to I! � J! and the
infinitesimal complement to the image UA of � at J can be identified with the moduli
space of infinitesimal deformations H

0;1
J
.TM /

A.2 The case of rational ruled surfaces

It is classical that given any k � 0 and a compatible integrable complex (Hirzebruch)
structure Jk in the k –th stratum J i

�;k
, both H

0;2
Jk
.M i

�/ and H
0;2
Jk
.TM i

�/ are zero.
Moreover, for any J 2 Ii

�;k
WD J i

�;k
\ Ii

� and a J –holomorphic map uW CP1 !

.M i
�;J /' Fk representing a section of negative self-intersection, the induced map

u�W H
0;1
J
.TM /! H 0;1.u�.TM // is an isomorphism. By Theorems A.1 and A.3,

it follows that the restriction of the stratification of J i
� to the integrable complex

structures Ii
� defines a stratification of Ii

� and that the strata in both stratifications
have normal slices isomorphic to moduli spaces of infinitesimal deformations. Now,
it is also well known that Hol.Jk/ retracts on Iso.!;Jk/ D Kk . Consequently, by
Theorem A.2, the symplectic orbit Gi

� � Jk is weakly homotopy equivalent to the
intersection .DiffŒ!� �J /\ I! . Finally, because any two integrable complex structures
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belonging to the same stratum are in the same Teichmüller class (that is, there exists a
� 2 Diff0 sending one to the other), each stratum is weakly homotopy equivalent to a
symplectic orbit:

Ii
�;k D .Diff0 �Jk/\ I� 'Gi

�=Kk :

Therefore, the actions of Gi
� on the spaces J i

� and Ii
� are homotopically equivalent.

In particular, the total space Ii
� is weakly contractible and one may compute the

homotopy type of Gi
� using the homotopy pushout diagram

Gi
� �K` S4`C2i�3 //

��

Ii
�;`
'Gi

�=K`

��
Ii
�� Ii

�;`
// Ii
�

(16)

where as usual ` < � � `C 1. As explained in [2], the action of Kk on the normal
slice H

0;1
Jk
.TM i

�/ may be determined either directly (that is, by looking at the action
of Kk on Čech cocycles associated to an open cover) or by applying the Atiyah–Bott
fixed points formula to compute the character of the virtual representation of Kk on
the equivariant elliptic complex

�
0;0
Jk
.TM i

�/!�
0;1
Jk
.TM i

�/!�
0;2
Jk
.TM i

�/:

This gives:

Theorem A.4 [2, Theorem 4.1] If k is even, the representation of Kk on H
0;1
Jk
.TM i

�/

is given by det˝ symk�2.C2/, where det represents the standard representation of S1 ,
and symk�2.C2/ denotes the k � 2 symmetric power of the canonical representation
of SO.3/ D SU.2/=˙ 1 on C2 . Similarly, if k is odd, we get the representation
det�k

˝ symk�2.C2/, where det denotes the determinant representation of U.2/ and
symk�2.C2/ denotes the k � 2 symmetric power of the canonical representation of
U.2/ on C2 .

In particular, the representation of Kk on H
0;1
Jk
.TM i

�/ is independent of � > k .
Consequently, an easy induction argument over the number of strata shows that

EGi
� �Gi

�
.Ii
�� Ii

�;`/' BGi
��1:

A.3 Blow-ups of rational ruled surfaces

We now show that similar results hold in the case of the symplectic blow-ups �M i
�;c ,

for all values of � and c 2 .0; 1/. In particular, we no longer assume that c � ccrit .

Lemma A.5 For any J2Ii
�;c , the cohomology groups H

0;2
J
. �M i

�;c/ and H
0;2
J
.T �M i

�;c/

are zero.
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Proof (See also Kodaira [10, Section 5.2(a)(iv), page 220].) Without loss of gener-
ality we can suppose that i D 0. Because the exceptional class E is symplectically
indecomposable, it is represented by an embedded J –holomorphic exceptional sphere
that can be blowed down (in the complex category). This shows that any compatible
complex structure on �M 0

�;c is obtained by blowing-up a Hirzebruch structure on M 0
� .

Now, for any Kähler manifold .X;J / of complex dimension n, the Hodge numbers
hp;q WD rnk H

p;q
J
.X / satisfy hn�p;n�q D hp;q D hq;p . Since the Hodge numbers

hp;0 are birational invariants, it follows that

rnk H
0;2
J
. �M 0

�;c/D h2;0. �M 0
�;c/D h2;0.M 0

�/D 0:

As for H
0;2
J
.T �M 0

�;c/ WD
{H 2.T �M 0

�;c/, Serre duality implies that {H 2.T �M 0
�;c/
_ '

{H 0.K˝�1/. Now, �M 0
�;c contains a real two-dimensional family of embedded rational

curves of zero self-intersection (the fibers) which cover a dense open set, and the
restriction of the rank 2 bundle K ˝ �1 to any of those curves is isomorphic to
O.�4/˚O.�2/. Hence, K˝�1 cannot have a nontrivial holomorphic section.

Lemma A.6 Each stratum Ii
�;c;k

is covered by the Teichmüller orbit, that is, for any
pair zJ0; zJ1 2 Ii

�;c;k
, there exists a � 2 Diff0.M / such that zJ1 D �� zJ0 .

Proof Given a pair zJ0; zJ1 2 Ii
�;c;k

, the class E is represented by zJi –holomorphic
exceptional curves †i that are symplectically isotopic. So, we may assume that
†0 D†1 . By blowing down .M; †; zJi/, we get two complex structures on the same
underlying marked 4–manifold .M;p;Ji/. The unmarked complex surfaces are both
isotopic to the Hirzebruch surface Fk . Note that any such isotopy sends p to the zero
section s0 of Fk . The statement follows from the fact that the identity component
of the complex automorphism group of Fk (which is isomorphic to the semidirect
product PSL.2IC/Ë .C� �H 0.CP1IO.k// ) acts transitively on s0 ; see David and
Gauduchon [8].

Lemma A.7 The inclusion Iso.!; zJk/ ,! HolŒ!�. zJk/ is a weak homotopy equiva-
lence.

Proof This follows from the corresponding statement for the Hirzebruch surfaces.

Lemma A.8 Let zFmD2k '
CS2 �S2 denote the blow-up of the Hirzebruch surface

Fm at some point p . Let C be the unique embedded rational curve representing
either B � kF or B � kF �E (depending on whether p lies outside the zero section
of Fm or not), and denote by uW C ! zFm its inclusion. Then the induced map
u�W H 0;1.T zFm/!H 0;1.u�.T zFm// is an isomorphism.
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Proof Consider the exact sequence of sheaves associated to the inclusion uW C ! zFm

0!O.�C /!OzFm
!OC ! 0:

Tensoring with T zFm we get the short exact sequence

0!O.�C /˝T zFm! T zFm!OC ˝T zFm! 0

whose associated cohomology sequence is:

� � � !H 1.zFmIT zFm/
u�

!H 1.P1
Iu�T zFm/!H 2.zFmIO.�C /˝T zFm/! � � �

The sheaf O.�C /˝T zFm being locally free, Serre duality implies that

H 2.zFmIO.�C /˝T zFm/'H 0.zFmIO.C /˝T zF_m˝K
T zFm

/:

But, since C � F D 1, the restriction of O.C /˝T zF_m˝K
T zFm

to any fiber F is
isomorphic to O.1/˝ .O.�4/˚O.�2//. It follows that O.C /˝T zF_m˝K

T zFm
has

no nontrivial sections and, by duality, that H 2.zFmIO.�C /˝T zFm/D 0.

Corollary A.9 The action of Symp. �M i
�;c/ on �J i

�;c is homotopy equivalent to its
restriction to �Ii

�;c .

Corollary A.10 The space �Ii
�;c of compatible integrable complex structures of �M i

�;c

is contractible.

Appendix B Algebraic computations

B.1 Conventions

In order to carry the computation of the cohomology ring of B zGi
�;c , we follow the

conventions used in [2] and [3]:

(1) Let T 4 � U.4/ act in the standard way on C4 . Given an integer n � 0, the
action of the subtorus T 2

n WD .nsC t; t; s; s/ is Hamiltonian with moment map

.z1; : : : ; z4/ 7! .njz1j
2
Cjz3j

2
Cjz4j

2; jz1j
2
Cjz2j

2/:

We identify M 0
� D .S

2�S2; ��˚�/ with each of the toric Hirzebruch surface
F�

2k
, 0 � k � ` (where as usual ` < � � `C 1), defined as the symplectic

quotient C4==T 2
2k

at the regular value .�C k; 1/ endowed with the residual
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action of the torus T .2k/ WD .0;u; v; 0/�T 4 . The image �.2k/ of the moment
map �2k is the convex hull of

f.0; 0/; .1; 0/; .1; �C k/; .0; �� k/g:

Similarly, we identify M 1
� D .S

2z�S2; !�/ with the toric Hirzebruch surface
F�

2k�1
, 1� k � `, defined as the symplectic quotient C4==T 2

2k�1
at the value

.�C k; 1/. The moment polygon �.2k � 1/ WD �2k�1.F2k�1/ of the residual
action of the 2–torus .0;u; v; 0/ is the convex hull of

f.0; 0/; .1; 0/; .1; �C k/; .0; �� kC 1/g:

Note that the group Symph.M�/ of symplectomorphisms acting trivially on
homology being connected, any two identifications of F�n with M i

� are isotopic
and lead to isotopic identifications of Symph.F

�
n / with Symp.M i

�/.

(2) The Kähler isometry group of F�n is N.T 2
n /=T 2

n where N.T 2
n / is the normalizer

of T 2
n in U.4/. There is a natural isomorphism4 N.T0/=T 2

0
'SO.3/�SO.3/ WD

K.0/, while for k � 1, we have N.T 2
2k
/=T2k ' S1 � SO.3/ WD K.2k/ and

N.T 2
2k�1

/=T 2
2k�1

'U.2/ WDK.2k�1/. The restrictions of these isomorphisms
to the maximal tori are given in coordinates by

.u; v/ 7! .�u; v/ 2 T .0/ WD S1
�S1

�K.0/

.u; v/ 7! .u; kuC v/ 2 T .2k/ WD S1
�S1

�K.2k/

.u; v/ 7! .uC v; kuC .k � 1/v/ 2 T .2k � 1/ WD S1
�S1

�K.2k � 1/:

These identifications imply that the moment polygon associated to the maximal
torus T .n/D S1 �S1 �K.n/ is the image of �.n/ under the transformation
Cn 2 GL.2;Z/ given by

C0 D

�
�1 0

0 1

�
; C2k D

�
1 0

�k 1

�
; C2k�1 D

�
1� k 1

k �1

�
(3) We identify the symplectic blow-up �M 0

�;c with the equivariant blow-up of the
Hirzebruch surfaces F�n for appropriate parameter � and capacity c 2 .0; 1/.
(a) We define the even torus action zT .2k/ as the equivariant blow-up of the

toric action of T .2k/ on F�
2k

at the fixed point .0; 0/ with capacity c .
(b) The odd torus action zT .2k � 1/, k � 1, is obtained by blowing up the toric

action of T .2k � 1/ on F��c

2k�1
at the fixed point .0; 0/ with capacity 1� c .

4In the untwisted case, we assume � > 1 so that the permutation of the two S2 factors is not an
isometry.
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Our choices imply that under the blow-down map, zT .n/ is sent to the maximal
torus of K.n/, for all n � 0. Again, because Symp. �M 0

�;c/ is connected (see
Lalonde and Pinsonnault [13] and Pinsonnault [17]), all choices involved in
these identifications give the same maps up to homotopy. Note also that when
c < ccrit WD �� `, �M 0

�;c admits exactly 2`C 1 inequivalent toric structures
zT .0/; : : : ; zT .2`/, while when c � ccrit , it admits only 2` of those, namely
zT .0/; : : : ; zT .2` � 1/. Note that the free variable n indexing these objects
corresponds to the free variable j indexing the strata in Section 2.4.

(4) The cohomology ring of B zT .n/ is isomorphic to QŒxn;yn� where jxnjD jynjD

2. We identify the generators xn , yn with the cohomology classes induced by
the circle actions whose moment maps are, respectively, the first and the second
component of the moment map associated to zT .n/. Geometrically, yn is induced
by the lift to �M 0

�;c of a rotation of the base of M 0
� , while xn is induced by

a rotation of the fibers. Note that since we work only with topological groups
up to rational equivalences, we will also denote by fxn;yng the generators in
�1
zT .n/ and in �2B zT .n/.

B.2 The isotropy representation of zT .n/

Proposition B.1 The character of the representation of zT .n/, n�1, on H 0;1.T �M i
�;c/

is given by

z�.n/D

(
x.yk�1C � � �Cy�.k�1// if nD 2k � 1,

x.yk�1C � � �Cy�k/ if nD 2k.

Consequently, the equivariant Euler class of the representation is

˙zen D

(
.xC .k � 1/y/.xC .k � 2/y/ � � � .xC .1� k/y/ if nD 2k � 1,

.xC .k � 1/y/.xC .k � 2/y/ � � � .x� ky/ if nD 2k.

In particular, zen 2H�.B zT .n/IA/ is nonzero for any coefficient ring A.

Proof Following [2], we compute the character of the virtual representation of the
group �H .n/ of holomorphic automorphisms of �M i

�;c on the equivariant elliptic com-
plex

0!�0;0.T �M i
�;c/!�0;1.T �M i

�;c/!�0;2.T �M i
�;c/! 0

using the Atiyah–Bott fixed point formula applied to the maximal torus zT .n/� �H .n/.
Note that since H 0;2.T �M i

�;c/D0, the index computes the character of H 0;0.T �M i
�;c/�

H 0;1.T �M i
�;c/. Note also that the action of �H .n/ on H 0;0.T �M i

�;c/' Lie.�H .n// is
isomorphic to the adjoint representation.
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In the even case nD 2k � 2, the isotropy weights .w1; w2/ of the toric action at the 5

fixed points fpig are:

p1 p2 p3 p4 p5

w1 yk=x 1=y ykx y ykC1=x

w2 y 1=ykx 1=y x=ykC1 x=yk

Writing �i for the elementary symmetric polynomials in two variables, the index of
the virtual representation is given by

zI.2k/D
X
pi

�1.w1; w2/�2.w1; w2/

.1�w1/.1�w2/

D
1

xyk

�
y2k
C � � �CyC 1Cxyk�1.2yC 1/

�
�x

�
yk�1

C � � �Cy�k
�
:

Since the number of negative terms, 2k , is equal to the (complex) dimension of
H 0;1.T �M i

�;c/, it follows that the character of the isotropy representation is given by
the negative part of the above formula, that is,

z�.2k/D x.yk�1
C � � �Cy�k/;

Similarly, in the odd case nD 2k � 1� 1, the isotropy weights .w1; w2/ of the toric
action at the 5 fixed points fpig are

p1 p2 p3 p4 p5

w1 xk=ykC1 xk�1=yk y=x xk=yk�1 x=y

w2 yk=xk�1 x=y yk�1=xk y=x ykC1=xk

and the index computation shows that the character of the representation H 0;1.T �M i
�;c/ is

z�.2k � 1/D y

��
x

y

�k�1

C � � �C

�
x

y

�1�k�
:

In both cases, the computation of the equivariant Euler class follows by naturality.

From the Gysin exact sequence of the fibration .S2n�1/
h zT .n/

! B zT .n/, we immedi-
ately obtain:

Corollary B.2 The rational cohomology of the space .S2n�1/
h zT .n/

is isomorphic to
QŒxn;yn�=hzeni.
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B.3 The cohomology module H �.B zG 0
�;cIZ/

The homotopy decomposition of B zG0
�;c in Theorem 2.5 yields a pullback diagram

(17)

H�
�
.S2m�1/

h zT .m/
IA
�

H�.B zT .m/IA/
��

oo

H�.B zG0
�0;c IA/

j�m

OO

H�.B zG0
�;c IA/

oo

i�m

OO

where m is the index of the last stratum of �J 0
�;c , and where

�0 D

(
`C c if c < ccrit,

` if c � ccrit,

(here ` is the lower integral part of �) so that zG0
�0;c is the group associated with a

stratification having one less stratum. Because the map �� is surjective, the associated
Mayer–Vietoris sequence splits into the short exact sequence

0!H�.B zG0
�;c IA/!H�.B zG0

�0;c IA/˚H�.B zT .m/IA/

!H�..S2m�1/
h zT .m/

IA/! 0

which reduces to the short exact sequence

0! hzemi D†
deg.zem/H�.B zT .m/IA/!H�.B zG0

�;c IA/!H�.B zG0
�0;c IA/! 0

where †n stands for the n–fold suspension of graded abelian groups. Both sequences
split over any field coefficients and, because all their terms are finitely generated, it
follows that they also split over Z. For `D0 we have H�.B zG0

0;c
IZ/'H�.B zT .0/IZ/

and, by induction, we get:

Theorem B.3 As a module,

H�.B zG0
�;c IZ/'

mM
iD0

†2iH�.B zT 2
IZ/ where m WD

(
2`� 1 if c � ccrit,

2` if c < ccrit.

In particular, H�.B zG0
�;c IZ/ is torsion free.

B.4 The rational cohomology ring H �.B zG 0
�;cIQ/

We know from Theorem 2.2 that the map z �;c W B zG0
�;c! BFDiff� induces a surjec-

tion in rational cohomology, and we know from Section 3.1 that there is a rational
homotopy equivalence BFDiff�'B.S1�S1�S1/. It follows that H�.B zG0

�;c IQ/'
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QŒx;y; z�= zR�;c where zR�;c is the kernel of z ��;c , and where the three generators
x , y , z are of degree 2. Now, the homotopy decomposition of B zG0

�;c yields, at the
rational cohomology level, an extended pullback diagram

(18)

QŒxm;ym�=hzemi QŒxm;ym�
��

oo

QŒx;y; z�= zR�0;c

j�m

OO

QŒx;y; z�= zR�;c
oo

i�m

OO

QŒx;y; z�

z ��;c

ggOOOOOOOOOOOOz �
�0;c

kkXXXXXXXXXXXXXXXXXXXXXXXXXX

z �m

__@@@@@@@@@@@@@@@@@@@@

So, to compute the ideal zR�;c , one has to understand the maps z �n W QŒx;y; z� !
QŒxn;yn� for all n � 0. For that, it is enough to consider the relations in �1FDiff�
between the generators of �1

zT .n/. We first observe that when � > 1, the maps
zT .n/! zG0

�;c! FDiff� induce injective maps of fundamental groups. Then, from the
classification of Hamiltonian T 2 –actions and Hamiltonian S1 –actions on 4–manifolds,
it is easy to see that:

Lemma B.4 In �1. zG
0
�;c/' �1FDiff� , for all admissible values k; k 0 � 1, we have

the identifications

y2k D kx0Cy0;

k 0x2k �y2k D kx2k0 �y2k0 ;

kx2k Cy2k D .kC 1/x2k�1C ky2k�1;

.k � 1/x2k0�1C ky2k0�1 D .l � 1/x2k�1C k 0y2k�1;

x1 D y0�x0:

Proposition B.5 Let z �n W H
�.BFDiff�IQ/ ! H�.B zT .n/IQ/ ' QŒxn;yn� be the

map induced in cohomology by the inclusion B zT .n/ ! BFDiff� . Given w in
H�.BFDiff�IQ/ corresponding to any element of the fundamental group, define
.an; bn/ by setting z �n .w/D anxnC bnyn . Then, for k � 1, we have

a2k D ka2C .k � 1/a0 b2k D ka0C b0

a2k�1 D�ka0C b0 b2k�1 D ka2C .2kC 1/a0� b0;

which shows that the coefficients fa0; b0; a2g determine w and z �n .w/ for all n� 0.

Proof Let .s; t/W S1! T 2 stands for the inclusion � 7! .s�; t�/. Each relation in
Lemma B.4 gives rise to a relation in cohomology by looking at the induced commutative

Geometry & Topology, Volume 13 (2009)



The homotopy type of the space of symplectic balls 1223

square. For instance, the first two relations yield

QŒs� QŒx2k ;y2k �
.0;1/�

oo

QŒx0;y0�

.k;1/�

OO

QŒx;y; z�
z �

0

oo

z �
2k

OO
QŒs� QŒx2k0 ;y2k0 �

.k;�1/�
oo

QŒx2k ;y2k �

.k0;�1/�

OO

QŒx;y; z�
z �

2k

oo

z �
2k0

OO

from which we immediately get b2k D ka0C b0 for k � 0. Setting k 0 D kC 1 in the
second relation, we obtain the recursive formula a2k D ka2C .k�1/a0 , for k � 1. In
the same way, one gets a recursive formula for the coefficients .a2k�1; b2k�1/, n� 1,
by setting k 0 D kC 1 in the forth relation. Then, one obtains explicit formulae for all
coefficients, in terms of fa0; b0; a2g only, by using the remaining two relations.

We can define an explicit isomorphism H�.BFDiff�IQ/ ' QŒx;y; z� by choosing
x , y z as the elements corresponding to the parameters fa0 D 0; b0 D 1; a2 D 0g,
fa0 D�1; b0 D 0; a2 D 1g and fa0 D 0; b0 D 0; a2 D 1g respectively.

Corollary B.6 Let fx;y; zg be the generators of H�.BFDiff�IQ/ defined above.
Then the maps z �n are given by the formulae

z � z �0 .x/D y0; z �0 .y/D�x0; z �0 .z/D 0

and, for k � 1,

z �
2k
.x/D y2k

z �
2k�1

.x/D x2k�1�y2k�1

z �
2k
.y/D x2k � ky2k

z �
2k�1

.y/D kx2k�1� .kC 1/y2k�1

z �
2k
.z/D kx2k

z �
2k�1

.z/D ky2k�1:

Their kernels are the ideals

k2k D hz� k2x� kyi;

k2k�1 D hz� k2xC kyi:

Theorem B.7 Given �� 1 and c 2 .0; 1/, the rational cohomology ring of B zG0
�;c is

isomorphic to
QŒx;y; z�
zR�;c

where x , y , z have degree 2, and where the ideal zR�;c is given by

zR�;c D

8̂<̂
:
hz.z�xCy/.z�x�y/ � � � .z� `2xC `y/i in the case c � ccrit,

hz.z�xCy/.z�x�y/

� � � .z� `2xC `y/.z� `2x� `y/i in the case c < ccrit.
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Proof The proof is by induction on the number m of strata in �J 0
�;c . Fix some

c 2 .0; 1/. Then the case m D 1 corresponds to � D 1 (hence ` D 0, ccrit D 1).
But it is proved in [13] that zG0

1;c
retracts onto zT .0/, so the result holds in that

case. Now assume the statement is true for some �0 > 1 for which there are m� 1

strata and consider a � > �0 for which �J 0
�;c contains m strata. The diagram (18)

implies that zR�;c �
zR�0;c \ km . Since zR�0;c and km are coprime, it follows that

zR�0;c \km D
zR�0;c �km . By Theorem B.3, the first relation in H�.B zG0

�;c IQ/ must
occur in degree 2m so that zR�;c D

zR�0;c � km . The statement follows.

B.5 The map H �.BGi
�IQ/!H �.B zG i

�;cIQ/

The map BG0
�! BFDiff defined in Theorem 2.1 induces a surjective map in rational

cohomology. The rational equivalence BFDiff 'Q B.S1 � SO.3/� SO.3// allows
one to choose generators of H�.BFDiffIQ/: let T be the generator of degree 2

corresponding to the S1 factor, and denote by X and Y the two generators of degree 4

corresponding to the two SO.3/ factors. Then, the rational cohomology of BG0
� is

given by

H�.BG0
�IQ/

DQŒX;Y;T �
.�

T
Ỳ
iD1

.T 2
C i4X � i2Y /

�
; where jT j D 2 and jX j D jY j D 4.

Theorem B.8 The map i�W H�.BG0
�IQ/!H�.B zG�;c

0IQ/ is given by

X 7! x2

Y 7! y2C 2xz

T 7! z:

Proof Let denote by A2k and X2k , k � 1, the generators of degree 2 and 4 in the
rational cohomology of BK.2k/ ' B.S1 � SO.3//. When k � 1, the torus zT .2k/

maps to the maximal torus S1�S1 �K.2k/' S1�SO.3/. At the cohomology level,
it follows that we have

A2k ! x2k

X2k ! y2
2k

where A2k and X2k are the generators of

H 2.B.S1
�SO.3/// and H 4.B.S1

�SO.3///:
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Let consider the diagram:

H�.B zT .2k// H�.BFDiff�/
z �

2koo

H�.BK.2k//

OO

H�.BFDiff/
 �

2koo

 �

OO

It was shown in [2] that the map  �
2k

verifies

 �
2k
.T / D kA2k

 �
2k
.X / D X2k

 �
2k
.Y / D A2

2k
C k2X2k :

Consequently, for the diagram to commute we must have

 �.T / D z

 �.X / D x2

 �.Y / D y2C 2xz

modulo elements in ker. z �
2k
/D .z�k2x�ky/. But since this must hold for all k � 1,

and since
T

k ker. z �
2k
/D∅, we see that  � is indeed given by the formulae above.

In the twisted case the rational equivalence H�.BFDiffIQ/'Q B.S1�SU.2/�SU.2//
still gives generators T , X and Y such that jT j D 2 and jX j D jY j D 4 corresponding
now to S1 and to the SU.2/ factors. The rational cohomology ring of BG1

� was
computed in [2] and it is given by

H�.BG1
�IQ/

DQŒX;Y;T �
.� Ỳ

iD0

�
.2i C 1/2

�
i.i C 1/

2
.X CY /�Y

�
�

i2.i C 1/2

2
T 2

��
:

Since B zG�;c
1 'B zG0

�C1�c;1�c
one gets immediately, from Theorem B.7, the coho-

mology ring in the twisted case, when ` < �� `C 1 and c � ccrit :

H�.B zG�;c
1
IQ/DQŒx;y; z�

.�
z
Ỳ
iD1

.z� i2xC iy/.z� i2x� iy/

�
:

Theorem B.9 The map i�W H�.BG1
�IQ/!H�.B zG�;c

1IQ/ is given by

X 7! y.y �x/C z
2
.7yC 7z� 3x/

Y 7! z
2
.y �xC z/

T 7! 4zC 2y �x:
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Proof The proof goes exactly as in the corresponding theorem in the split case. We
just need to note that now at the cohomology level we have

A2k�1! x2k�1Cy2k�1

X2k�1! x2k�1y2k�1

where A2k�1 and X2k�1 are the generators of H�.BU.2//, and to recall from [2]
that the map  �

2k�1
verifies

 �2k�1.T /D .2k � 1/A2k�1

 �2k�1.X /D k.k � 1/A2
2k�1C

2C k � k2

2
X2k�1

 �2k�1.Y /D
k.k � 1/

2
X2k�1:
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