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Faces of the scl norm ball

DANNY CALEGARI

Let F D �1.S/ where S is a compact, connected, oriented surface with �.S/ < 0

and nonempty boundary.

(1) The projective class of the chain @S 2 BH
1
.F / intersects the interior of a

codimension one face �S of the unit ball in the stable commutator length norm
on BH

1
.F / .

(2) The unique homogeneous quasimorphism on F dual to �S (up to scale and
elements of H 1.F /) is the rotation quasimorphism associated to the action of
�1.S/ on the ideal boundary of the hyperbolic plane, coming from a hyperbolic
structure on S .

These facts follow from the fact that every homologically trivial 1–chain C in S

rationally cobounds an immersed surface with a sufficiently large multiple of @S .
This is true even if S has no boundary.

20F65, 20J05; 20F67, 20F12, 55N35, 57M07

1 Introduction

An immersed loop in the plane might or might not bound an immersed disk, and if it
does, the disk it bounds might not be unique. An immersed loop on a surface might not
bound an immersed subsurface, but admit a finite cover which does bound an immersed
subsurface – ie it might “virtually” bound an immersed surface. Most homologically
trivial geodesics on hyperbolic surfaces with boundary do not even virtually bound an
immersed surface. However, in this paper, we show that every homologically trivial
geodesic in a closed hyperbolic surface S virtually bounds an immersed surface, and
every homologically trivial geodesic in a hyperbolic surface S with boundary virtually
cobounds an immersed surface together with a sufficiently large multiple of @S . This
has implications for the structure of the (second) bounded cohomology of free and
surface groups, as we explain in what follows.

Given a group G and an element g 2 ŒG;G�, the commutator length of g , denoted
cl.g/, is the smallest number of commutators in G whose product is g , and the stable
commutator length of g is the limit scl.g/ WD limn!1 cl.gn/=n. Geometrically, if X
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1314 Danny Calegari

is a space with �1.X /DG and g is represented by a loop  in X , the commutator
length of g is the least genus of a surface mapping to X whose boundary maps to  .
By minimizing number of triangles instead of genus, one can reinterpret scl as a kind
of L1 norm on relative (2–dimensional) homology. Technically, if B1.GIR/ denotes
the vector space of real-valued (group) 1–boundaries (ie group 1–chains which are
boundaries of group 2–chains; see Section 2.2), there is a well-defined scl pseudo-norm
on B1.GIR/. The subspace on which scl vanishes always includes a subspace H

spanned by chains of the form gn � ng and g � hgh�1 , for n 2 Z and g; h 2 G ,
and therefore scl descends to a pseudo-norm on the quotient B1.GIR/=H , which we
abbreviate by BH

1
.GIR/ or BH

1
.G/ or even BH

1
in the sequel. In certain special

cases (for example, when G is a free group), scl defines an honest norm on BH
1
.F /,

but we will not use this fact in the sequel. More precise definitions and background are
given in Section 2.

Dual (in a certain sense) to the space BH
1
.GIR/ with its scl pseudo-norm is the space

Q.G/ of homogeneous quasimorphisms on G , ie functions �W G!R for which there
is a least real number D.�/ (called the defect) such that �.gn/D n�.g/ for all g 2G

and n 2 Z, and j�.g/C�.h/��.gh/j �D.�/ for all g; h 2G . The particular form
of duality between scl and Q.G/ is called Bavard duality, which is the equality

scl
�X

tigi

�
D sup
�2Q.G/

P
ti�.gi/

2D.�/

(see Section 2 for details).

The defining properties of a homogeneous quasimorphism can be thought of as an
infinite family of linear equalities and inequalities depending on elements and pairs of
elements in G . The L1 –L1 duality between scl and Q.G/ means that computing scl
is tantamount to solving an (infinite dimensional) linear programming problem in group
homology (for an introduction to linear programming; see eg Dantzig [9]). In finite
dimensions, L1 and L1 norms are piecewise linear functions, and their unit balls are
rational convex polyhedra. Broadly speaking, the main discovery of Calegari [6] is that
in free groups (and certain groups derived from free groups in simple ways), computing
scl reduces to a finite dimensional linear programming problem, and therefore the unit
ball of the scl pseudo-norm on BH

1
.F IR/ is a rational convex polyhedron; ie for every

finite dimensional rational vector subspace V of B1.F IR/, the unit ball of the scl
pseudo-norm restricted to V is a finite-sided rational convex polyhedron (compare
with the well-known example of the Gromov–Thurston norm on H2 of a 3–manifold;
see Thurston [21]).

In a finite dimensional vector space, a rational convex polyhedron is characterized by
its top dimensional faces – ie those which are codimension one in the ambient space.
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In an infinite dimensional vector space, a rational convex polyhedron need not have any
faces of finite codimension at all. The codimension of a face of a convex polyhedron
in an infinite dimensional vector space is the supremum of the codimensions of its
intersections with finite dimensional subspaces. Top dimensional faces of the unit ball
of the Gromov–Thurston norm on H2 of a 3–manifold have a great deal of topological
significance (see eg Thurston [21], Kronheimer and Mrowka [14], Calegari [7] or
Ozsváth and Szabó [18] for connections with the theories of taut foliations, Seiberg–
Witten equations, quasigeodesic flows and Heegaard Floer homology respectively). It
is therefore a natural question to ask whether the scl unit polyhedron in BH

1
.F IR/ has

any faces which are codimension one in BH
1
.F IR/, and whether some of these faces

have any geometric significance. Our first two main theorems answer these questions
affirmatively.

Theorem A Let F be a free group, and let S be a compact, connected, orientable
surface with �.S/ < 0 and �1.S/ D F . Let @S 2 BH

1
.F IR/ be the 1–chain repre-

sented by the boundary of S , thought of as a finite formal sum of conjugacy classes
in F . Then the projective ray in BH

1
.F IR/ spanned by @S intersects the unit ball of

the scl norm in the interior of a face of codimension one in BH
1
.F IR/.

By Bavard duality, a face of the scl norm ball of codimension one is dual to a unique
extremal homogeneous quasimorphism, up to elements of H 1 (which vanish identically
on BH

1
). It turns out that we can give an explicit description of the extremal quasimor-

phisms dual to the “geometric” faces of the scl norm ball described in Theorem A.

If S is a compact, connected, orientable surface with �1.S/D F , then S admits a
hyperbolic structure with geodesic boundary. The hyperbolic structure and a choice of
orientation determine a discrete, faithful representation �W �1.S/!PSL.2;R/, unique
up to conjugacy. Since �1.S/ is free, this representation lifts to z�W �1.S/!fSL.2;R/
where fSL.2;R/ denotes the universal covering group of PSL.2;R/. There is a unique
continuous homogeneous quasimorphism on fSL.2;R/ (up to scale), called the rotation
quasimorphism (discussed in detail in Section 3.3). This quasimorphism pulls back by z�
to a homogeneous quasimorphism rotS on �1.S/, which is well-defined up to elements
of H 1.S IZ/. Up to scale, this turns out to be the homogeneous quasimorphism dual
to the top dimensional face of the scl norm ball described above:

Theorem B Let F be a free group, and let S be a compact, connected, orientable
surface with �.S/ < 0 and �1.S/D F . Let �S be the face of the scl unit norm ball
whose interior intersects the projective ray of the class @S . The face �S is dual to the
extremal homogeneous quasimorphism rotS .

These theorems are both proved in Section 3.
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Theorem A shows how hyperbolic geometry and surface topology manifest in the
abstract (bounded) cohomology of a free group. Theorem B is a kind of rigidity
result, characterizing the rotation quasimorphism associated to a discrete, faithful
representation of �1.S/ into PSL.2;R/ amongst all homogeneous quasimorphisms
by the property that it is “extremal” for @S . In Section 3.5 we use these theorems to
deduce a short proof of a relative version of rigidity theorems of Goldman [11] and
Burger–Iozzi–Wienhard [3], that representations of surface groups into certain Lie
groups of maximal Euler class are discrete (it should be stressed that [11; 3] contain
much more than the narrow result we reprove).

In light of Theorem A and Theorem B, it is natural to ask whether the projective class
of every element g 2 ŒF;F � intersects the interior of a face of the scl norm ball of
finite codimension. In fact, it turns out that this is not the case. We show by an explicit
example (Example 3.23) that there are many elements g 2 ŒF;F � where F has rank at
least 4, whose projective classes are contained in faces of the scl norm ball of infinite
codimension.

The method of proof is of independent interest. We show that for any homologically
trivial geodesic 1–manifold  in a hyperbolic surface S , there is a surface T and an
immersion f W T; @T !S;  for which f�Œ@T � is taken to some multiple of Œ �CnŒ@S �

in H1 ; ie the 1–cycle  C n@S “rationally bounds” an immersed surface. Note that
this remains true even if S is closed! Explicitly, the statement of the main technical
theorem (proved in Section 3.4) is as follows:

Theorem C Let S be a compact, connected orientable surface with �.S/ < 0 and
C D

P
rigi a finite rational chain in BH

1
.�1.S//. Then for all sufficiently large

rational numbers R (depending on C ), the geodesic 1–manifold in S corresponding
to the chain R@S C

P
rigi rationally bounds an immersed surface f W T ! S .

The connection with stable commutator length is as follows: from the main theorem
of [6] it follows that in an oriented hyperbolic surface S with boundary, a rational
1–chain C bounds an immersed surface if and only if scl.C /D rotS .C /=2, where rotS
is as above (this is Proposition 3.8 below). Hence Theorem C implies that every chain C

in BH
1
.�1.S// which is projectively close enough to @S satisfies scl.C /D rotS .C /=2;

Theorems A and B follow.

A number of additional corollaries are stated, including a generalization of the main
theorem of [8]. Let G be a graph of free or (closed, orientable) hyperbolic surface
groups amalgamated over infinite cyclic subgroups, and let A be a nonzero rational
class in H2.G/. Let ŒS1�; : : : ; ŒSm� be the fundamental classes in H2 of the vertex
subgroups which are closed surface groups. Then for all sufficiently big integers ni ,
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some multiple of the class AC
P

i ni � ŒSi � in H2.G/ is represented by an injective
map from a closed hyperbolic surface group to G .

2 Background

2.1 Definitions

The following definition is standard; see Bavard [1] or Calegari [5, Section 2.1].

Definition 2.1 Let G be a group, and g 2 ŒG;G�. The commutator length of g ,
denoted cl.g/, is the smallest number of commutators in G whose product is g .

Topologically, if X is a space with �1.X /DG , and  W S1!X is a loop representing
the conjugacy class of g , then cl.g/ is the least genus of a compact oriented surface S

with one boundary component for which there is a map f W S !X with f j@S in the
free homotopy class of  .

Definition 2.2 Let G be a group, and g 2 ŒG;G�. The stable commutator length of g ,
denoted scl.g/, is the limit

scl.g/D lim
n!1

cl.gn/

n
:

Commutator length and stable commutator length can be extended to finite linear sums
of groups elements as follows:

Definition 2.3 Let G be a group and g1;g2; : : : ;gm elements of G whose product
is in ŒG;G�. Define

cl.g1C � � �Cgm/D inf
hi2G

cl.g1h1g2h�1
1 � � � hm�1gmh�1

m�1/

scl.g1C � � �Cgm/D lim
n!1

cl.gn
1
C � � �Cgn

m/

n
:and

A geometric interpretation of these numbers will be given in Section 2.3.

It is a fact that the limit in Definition 2.3 exists and satisfies scl.gnC
P

gi/D scl.ngCP
gi/ and scl.g C g�1 C

P
gi/ D scl.

P
gi/ for all g;gi 2 G and n 2 N . So it

makes sense to define scl.
P

nigi/ D scl.
P

g
ni

i / for any ni 2 Z and gi 2 G . With
this definition, it is immediate that scl is subadditive; ie

scl
�X

gi C

X
hj

�
� scl

�X
gi

�
C scl

�X
hj

�
:
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If we need to emphasize the group G we denote cl and scl by clG and sclG respectively.

One may reduce the calculation of scl on finite sums to a calculation of scl on individual
elements, by the following “addition lemma”:

Lemma 2.4 (Addition Lemma) Let g1; : : : ;gm 2 G have infinite order. Let H D

G �Fm�1 where Fm�1 is freely generated by x1;x2; : : : ;xm�1 . Then

sclG.g1C � � �Cgm/C
m� 1

2
D sclH .g1x1g2x�1

1 � � �xm�1gmx�1
m�1/:

This follows from [5, Theorem 2.93] and induction. When the gi have finite order, the
formula must be corrected (in a straightforward way).

2.2 scl as a pseudo-norm

It is convenient to use the language of homological algebra. Given a group G , one
has the complex of real group chains C�.GIR/; @ whose homology is the real (group)
homology of G ; see Mac Lane [15, Chapter IV, Section 5]. A real (group) n–chain is a
finite formal real linear combination of elements of Gn , so (for instance) a real (group)
1–chain is just a finite formal real linear combination of elements of G . Denote the
group of (real) 1–boundaries by B1.GIR/, or B1.G/ for short.

The properties of scl enumerated in Section 2.1 imply that the function scl is well-
defined, linear and subadditive on finite integral group 1–boundaries and therefore
admits a unique linear continuous extension to B1.G/.

Moreover, scl vanishes on the subspace H of B1 spanned by chains of the form
gn�ng and g�hgh�1 for any g; h 2G and n 2Z. Thus scl defines a pseudo-norm
on BH

1
WD B1=H . See Calegari [5, Section 2.6] for proofs of these basic facts.

In [6] an algorithm is described to compute scl on elements of BH
1
.F / where F is a

free group. The program scallop (source available at [4]) implements a polynomial-
time version of this algorithm, described in [5, Sections 4.1.7–4.1.8]. At a number
of points in this paper we make assertions about the value of scl on certain chains in
BH

1
.F /; these assertions are justified using the program scallop.

Remark 2.5 In the final analysis, our main theorems do not depend logically on the
computations carried out with the aid of scallop (also see Remark 3.12). Nevertheless,
these computations were an essential part of the process by which these theorems were
discovered.
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2.3 Extremal surfaces

The definition of stable commutator length can be reinterpreted in geometric terms.
Let X be a space and 1; : : : ; mW S

1!X nontrivial free homotopy classes of loops
in X . Let f W S !X be a surface for which there is a commutative diagram

@S
i

����! S

@f

??y ??yf`
i S1

`
i i

����! X

where i W @S ! S is the inclusion map, and @f�Œ@S �D nŒ
`

i S1� in H1 for some n.

Define ��.S/ to be the sum of Euler characteristic � over all components of S for
which � is nonpositive. Then there is an equality

sclG.g1C � � �Cgm/D inf
S

���.S/

2n

over all compact oriented surfaces S as above, where G D �1.X /, and i represents
the conjugacy class of gi . See Proposition 2.68 of [5] for a proof.

Definition 2.6 The chain g1C� � �Cgm is said to rationally bound a surface f W S!X

for which there is a commutative diagram as above. A surface with this property is
extremal if every component of S has negative Euler characteristic, and there is equality

scl.g1C � � �Cgm/D
���.S/

2n
:

Extremal surfaces are �1 –injective [5, Proposition 2.96].

2.4 Quasimorphisms

Definition 2.7 Let G be a group. A function �W G!R is a homogeneous quasimor-
phism if it satisfies �.gn/ D n�.g/ for all g 2 G and n 2 Z, and if there is a least
nonnegative real number D.�/ called the defect, such that for all g; h 2G there is an
inequality

j�.g/C�.h/��.gh/j �D.�/:

The set of homogeneous quasimorphisms on a group G is a real vector space and is
denoted Q.G/. A homogeneous quasimorphism has defect 0 if and only if it is a
homomorphism. Thus H 1.GIR/ is a vector subspace of Q.G/. The defect D defines
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a natural norm on Q.G/=H 1.GIR/, making it into a Banach space. Any real-valued
function on G extends by linearity to define a 1–cochain. There is an exact sequence

0!H 1.GIR/!Q.G/
ı
�!H 2

b .GIR/!H 2.GIR/

where ı is the coboundary map on 1–cochains, and H�
b

denotes bounded (group)
cohomology. See Bavard [1] or Calegari [5, Section 2.4] for an explanation of these
facts and Gromov [12] for an introduction to bounded cohomology.

There is a duality between stable commutator length and quasimorphisms, called Bavard
duality. For chains in BH

1
.G/, this takes the following form:

Theorem 2.8 (Bavard duality) Let C D
P

tigi be an element of BH
1
.GIR/. Then

there is an equality

scl.C /D sup
�2Q.G/=H 1.G/

P
ti�.gi/

2D.�/
:

See Bavard [1] for a proof when C is an element of ŒG;G�, or Calegari [5, Theo-
rem 2.73] for the general case.

Definition 2.9 A quasimorphism � 2 Q.G/ is extremal for a chain C D
P

tigi 2

BH
1
.GIR/ if there is equality

scl.C /D
P

ti�.gi/

2D.�/
:

Given a chain C , the set of extremal quasimorphisms for C is a nonempty convex
cone and is closed (away from 0) in the natural Banach space topology on Q.G/, as
well as in the topology of termwise convergence in RG . See [5, Proposition 2.81] for
a proof.

3 Immersed surfaces

3.1 Doodles

The question of which immersed loops in surfaces bound immersed subsurfaces is subtle
and interesting and has fascinated many mathematicians (see eg Grothendieck [13,
page 47]). An immersed loop in the plane which bounds an immersed disk necessarily
has winding number ˙1, but not every loop with winding number ˙1 bounds an
immersed disk. See Figure 1.
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Figure 1: A figure 8 has winding number 0 , and therefore cannot bound an
immersed disk. But a “double 8” has winding number 1 , and does not bound
an immersed disk either.

Blank [2] gave an algorithm to determine which immersed loops in the plane bound
immersed disks; his algorithm was extended to other surfaces by Francis [10] and
others, but the answer is not very illuminating: some curves bound immersed disks,
some don’t, and the reason is complicated. Other authors have studied the existence of
branched immersions with prescribed boundary, which are much easier to construct.

Milnor [17] gave a well-known example of an immersed loop in the plane which bounds
two different immersed disks. See Figure 2.

Figure 2: Milnor’s “doodle” bounds an immersed disk in two inequivalent ways.

On a hyperbolic surface S , every homotopy class of essential loop contains a canonical
geodesic representative. One can therefore ask which conjugacy classes in �1.S/ are
represented by geodesics which bound immersed surfaces. The answer turns out to be
independent of the choice of hyperbolic structure on S , and therefore in principle is a
purely “algebraic” problem.

One subtle aspect of the problem is illustrated by the example in Figure 3. This shows
an immersed loop  (in the isotopy class of a geodesic) in a genus 2 punctured surface
which does not bound an immersed surface, but which “virtually” bounds an immersed
surface: there is an immersed surface with two boundary components, each of which
wraps positively once around  .

One is therefore led to study the following question. If S is an orientable hyperbolic
surface, which conjugacy classes g in �1.S/ are represented by geodesics which
virtually bound immersed surfaces? That is, when is there an immersed surface in S ,
all of whose boundary components wrap positively around the geodesic representative
of g? Only a homologically trivial loop virtually bounds a surface at all, so we restrict
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Figure 3: The loop  does not bound an immersed surface, but two copies of
 do.

attention to g in the commutator subgroup. It turns out that we can give a complete and
somewhat surprising answer to this question. If S is closed, then every homologically
trivial geodesic virtually bounds an immersed surface. If S has (geodesic) boundary,
then a homologically trivial geodesic corresponding to a conjugacy class g virtually
bounds an immersed surface if and only if the projective class of g , thought of as
a 1–boundary, intersects a certain top dimensional face of the unit ball in the scl
pseudo-norm on BH

1
.�1.S//. This is explained in the remainder of this section.

3.2 Positive immersed surfaces

Definition 3.1 An immersion f W T ! S between oriented surfaces is positive if it is
orientation-preserving.

Definition 3.2 Let  W
`

i S1!S be an immersed 1–manifold in S . The 1–manifold
 bounds a (positive) immersion f W T ! S if there is a commutative diagram

@T
i

����! T

@f

??y ??yf`
i S1


����! S

for which @f W @T !
`

i S1 is an orientation-preserving homeomorphism. The 1–
manifold  rationally bounds a positive immersion f W T ! S if there is some
integer n and a commutative diagram as above, for which @f W @T !

`
i S1 is a positive

immersion (ie an orientation-preserving covering map) such that @f�Œ@T �D nŒ
`

i S1�

in H1 .

Compare with Definition 2.6.

We are concerned in the sequel with the case that S is compact, connected and oriented,
possibly with boundary and satisfying �.S/ < 0. The surface S admits a (nonunique)
hyperbolic structure with totally geodesic boundary; we fix such a structure. Let
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C D
P

nigi be a chain in BH
1
.�1.S/IR/ where the ni are integers, and the gi are

primitive.

For each i , let i W S
1! S be a geodesic loop corresponding to the conjugacy class

of gi , and let  W
`

i S1!S be the union of the i . We say that C rationally bounds a
positive immersed surface if there is an integer n and a positive immersion f W T ! S

as in Definition 3.2 for which @f�Œ@T �D n � .
P

i ni ŒS
1
i �/ in H1 , where i W S

1
i ! S .

Lemma 3.3 Suppose chains C1;C2 rationally bound positive immersed surfaces.
Then C1CC2 rationally bounds a positive immersed surface.

Proof For “generic” chains C1 and C2 there is nothing to prove: the disjoint union
of two immersed surfaces is an immersed surface. The issue is that there might be a
conjugacy class g in the support of both C1 and C2 whose coefficients have different
signs. Let  be the geodesic in the free homotopy class corresponding to g . Positive
immersed surfaces with rational boundary C1 and C2 might have boundary components
mapping to  with different degrees. The following claim shows that we can construct
suitable covers of these immersed surfaces such that the boundary components mapping
to  can be glued up.

Claim Let S be a connected, oriented surface with �.S/ < 0 and genus at least 1. Let
ıS � @S be a set of boundary components, and let fS W ıS !  be an immersion, such
that the degree of fS on every component is positive. Let ni be the degrees of fS on
the components of ıS , and let N be a common multiple of the ni . Then there is a finite
cover yS such that every component of the preimage yıS maps to  with degree N .

Proof An orientable surface S with genus at least 1 admits a double cover S 0 such that
every component of @S has exactly two preimages in S 0 . Let ıS;i be the components
of ıS , and let ni be the degrees of the map fT W ıS;i !  . Let N be a common
multiple of the ni . Define a homomorphism �W �1.S

0/! Z=N Z as follows. For
each i , let �i;1 , �i;2 be the components of @S 0 in the preimage of ıS;i , and let ni

be the degree of fS W ıS;i !  . Then define �.�i;1/D ni and �.�i;2/D �ni . Since
�.@S 0/D 0 in Z=N Z, the function � extends to a (surjective) homomorphism from
�1.S

0/ to Z=N Z. If yS is the cover corresponding to the kernel of � , then every
component of yıS , the preimage of ıS , maps to  with degree N , as desired.

Start with a pair of positive immersed surfaces with rational boundary C1 and C2 .
Since the Euler characteristics of these surfaces are negative, they admit finite covers
with genus at least one. After passing to a suitable cover (provided by the claim) and
gluing up pairs of boundary components which map to geodesics  in the common
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support of C1 and C2 with the same absolute degree but with opposite signs, we obtain
a positive immersed surface which C rationally bounds.

Remark 3.4 Compare with the proof of Theorem 3.4 of [8].

We will give a much shorter proof of this Lemma (assuming more machinery) in Section
3.3 in the special case that the ambient surface S has boundary.

3.3 Rotation quasimorphism

Throughout this section we fix S , a compact oriented hyperbolic surface with boundary.

Let  be a homologically trivial geodesic in S . The geodesic  cuts S up into
connected regions Ri . For each i , let ˛i be an oriented arc from @S to Ri which is
transverse to  , and let ni be the signed intersection of ˛i with  . Since  is homo-
logically trivial by hypothesis, ni does not depend on the choice of ˛i . Geometrically,
if T is an oriented surface, and f W T; @T ! S;  is a smooth map, ni is a signed
count of the preimages of a generic point in Ri .

Definition 3.5 The algebraic area enclosed by  is the sum

area. /D
X

ni � area.Ri/:

The hyperbolic structure and the orientation on S determines a discrete faithful repre-
sentation �W �1.S/! PSL.2;R/ unique up to conjugacy. Since �1.S/ is free, this
representation lifts to z�W �1.S/! fSL.2;R/, where fSL.2;R/ denotes the universal
covering group of PSL.2;R/. The group PSL.2;R/ acts on the circle at infinity of
hyperbolic space and lets us think of PSL.2;R/ as a subgroup of homeoC.S1/. The
covering group fSL.2;R/ is the preimage of PSL.2;R/ in homeoC.R/.

Definition 3.6 Given g 2fSL.2;R/, the rotation number of g , as defined by Poincaré,
is the limit

rot.g/D lim
n!1

gn.0/

n

where we think of fSL.2;R/ as a subgroup of homeoC.R/ under the covering projection
R! S1 DR=Z.

Rotation number pulls back by z� to define a function rot on �1.S/. As is well-known,
rot is a homogeneous quasimorphism on �1.S/ with D.rot/ D 1. As a function
on �1.S/, the function rot depends on the choice of lift of � to z� . Different lifts
are classified by elements of H 1.S IZ/, so rot is well-defined on �1.S/ modulo

Geometry & Topology, Volume 13 (2009)



Faces of the scl norm ball 1325

elements of H 1.S IZ/, and therefore well-defined on the commutator subgroup of
�1.S/ independent of the choice of z� . Though it appears to depend on the choice of
hyperbolic structure on S , it depends only on the topology of S . If we need to stress
the dependence of rot on S , we write it rotS .

Lemma 3.7 (Area is rotation number.) If g 2 �1.S/, and  is a geodesic in S

corresponding to the conjugacy class of g , there is an equality

area. /D 2� � rotS .g/:

This is proved in [5, Lemma 4.58]. For the expert, the lemma follows from the fact
that the coboundary of the rotation quasimorphism is the (relative) Euler class and the
Gauss–Bonnet theorem.

Note that for every nontrivial g 2�1.S/, the element �.g/ is hyperbolic in PSL.2;R/,
and therefore fixes two points in the circle at infinity. It follows that rot.g/ is an integer.
An explicit formula for rot.g/, in terms of an expression of g as a reduced word in a
standard generating set for �1.S/, is given in [5, Theorem 4.62].

The functions area and rot extend linearly and continuously to BH
1
.�1.S/IR/. This is

obvious for the function rot and straightforward for area: if C D
P

i tigi where the ti
are real numbers and the gi are primitive conjugacy classes, let i be oriented geodesics
in S in the conjugacy classes of the gi . The i cut up S into regions Rj . For each j ,
let ˛ be an arc from @S to Rj transverse to every i , and let sj D

P
i ti.˛\i/ where

\ denotes signed intersection number. Then area.C /D
P

j sj � area.Rj /.

We can now give necessary and sufficient conditions for a rational chain in a hyperbolic
surface to rationally bound an immersed subsurface.

Proposition 3.8 Let S be a compact, connected, oriented hyperbolic surface with ge-
odesic boundary. A rational chain C in BH

1
.S/ rationally bounds a positive immersed

subsurface if and only if
scl.C /D rotS .C /=2:

Proof Given C 2 BH
1

and f W T ! S a surface that it rationally bounds, we can
replace T by a pleated surface (see eg Thurston [20, Chapter 8] for an introduction to
the theory of pleated surfaces) and observe that the hyperbolic area of T is at least as
big as j area.C /j, with equality if and only if the map f is an immersion (note that if the
original map was already an immersion, then so is its pleated representative). It follows
that an immersed surface is extremal, and therefore by Theorem 2.8, if a chain C

bounds a positive immersed surface, then scl.C /D area.C /=4� by Gauss–Bonnet.
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Conversely, since S has boundary (by assumption) and therefore �1.S/ is free, any
rational chain C admits an extremal surface, by the Rationality Theorem from [6] (or
see Theorem 4.18 of [5]). Hence sclD area.C /=4� if and only if C bounds a positive
immersed surface. By Lemma 3.7 there is an equality area.C /=4� D rotS .C /=2.

In particular, the chain @S satisfies

scl.@S/D area.S/=4� D��.S/=2:

Hence the surface S itself is an extremal surface for @S .

Remark 3.9 We can use this fact to give a very short proof of Lemma 3.3 in the case
that the ambient surface S has boundary. A rational chain C in S rationally bounds a
positive immersed surface if and only if rotS is extremal for C , ie if scl.C /D rot.C /=2.
If C1 and C2 rationally bound positive immersed surfaces, then

scl.C1CC2/� scl.C1/C scl.C2/D rot.C1/=2C rot.C2/=2D rot.C1CC2/=2:

Hence rot is extremal for C1CC2 , and therefore C1CC2 rationally bounds a positive
immersed surface. Of course this proof is not “really” short, since it uses the (highly
nontrivial) fact that every rational chain in a free group bounds an extremal surface.

Example 3.10 Let S be a once-punctured torus, with standard generators a, b . Let
w 2 �1.S/ be a nontrivial commutator, and let  be the associated geodesic in S

(necessarily primitive). It is a fact that in a free group, the “standard” once-punctured
torus whose boundary is a given nontrivial commutator is always extremal. When
does  bound an immersed surface? A description of w as a cyclically reduced word
in a; b; a�1; b�1 determines a polygonal loop Pw in R2 with vertices contained in
the integer lattice, as follows. Start at the origin and read the letters of w one by one.
On reading a (resp. a�1 ), take one step to the right (resp. left), and on reading b (resp.
b�1 ), take one step up (resp. down). The polygonal loop Pw can be “smoothed” by
rounding the corners where a horizontal and a vertical arc of Pw meet, giving rise to
an immersed loop pw . It turns out that  bounds an immersed surface in S if and only
if the winding number of pw is ˙1. So for example, Œan; bm� bounds an immersed
surface when n;m¤ 0, but Œa; ba�1b�1� does not. For details see Section 4.2 of [5].

3.4 Immersion theorem

We now prove our main technical result (Theorem C) and deduce Theorem A and
Theorem B as corollaries.
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Theorem C Let S be a compact, connected orientable surface with �.S/ < 0 and
C D

P
rigi a finite rational chain in BH

1
.�1.S//. Then for all sufficiently large

rational numbers R (depending on C ), the geodesic 1–manifold in S corresponding
to the chain R@S C

P
rigi rationally bounds an immersed surface f W T ! S .

Proof Since @S bounds the immersed surface S , it suffices to prove the theorem for
a particular positive R (depending on C ).

Multiply through by a large positive integer to clear denominators, so we can assume
the ri are all integers. Also, by replacing gi with g�1

i if necessary, we can assume
the ri are all positive. Pick a hyperbolic structure on S , and let i be the geodesic
loop corresponding to the conjugacy class of gi . By Scott [19] there is a finite cover
of S in which every component of the preimage of each i is embedded. In other
words, there is a finite cover zS! S , so that if zC is the union in zS of all preimages of
all components of C , then every component of zC is embedded (although the union
typically will not be). The composition of a positive immersion with a covering map is
a positive immersion, so it suffices to construct the positive immersion in zS . Hence
without loss of generality we can assume that we are working in the cover, and every
individual geodesic i is embedded (though of course the union will typically not be).

Let ˛1; ˇ1; : : : ; ˛g; ˇg be a standard system of embedded geodesics which are a
standard basis for H1.S IZ/=H1.@S IZ/. For each i let ai;j , bi;j be integers such
that

Œi �D
X

j

ai;j Œ j̨ �C bi;j Œ ǰ ��Di

in homology, where Di is in the image of H1.@S IZ/. Since the entire boundary @S is
homologically trivial, the class Di is represented (in many different ways) as a positive
sum of positively oriented boundary components of S .

The logic of the remainder of the argument is as follows. We will show that for each i ,
the chain

Ci WD i �

�X
j

ai;j j̨ � bi;j ǰ

�
C @i

bounds a positive immersed surface, where @i is a positive sum of positively oriented
boundary components of S . This will be enough to prove the theorem. For, since C is
homologically trivial, we haveX

riCi D

X
i

rii CR@S D C CR@S:

Hence by Lemma 3.3, the chain C CR@S bounds a positive immersed surface for
sufficiently big R, as claimed.
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First, decompose S along a union ı of embedded separating geodesics into a union of
genus one subsurfaces Sk such that ˛k ; ˇk is a standard basis for H1.Sk/=H1.@Sk/.
Hence (in particular), for each k , the geodesics ˛k ; ˇk are simple and intersect trans-
versely in one point. The first step is to replace each i by a union  00i of geodesics,
each of which is embedded and contained in a single subsurface Sk .

Claim For each i there is a chain i � 
00
i C @i which bounds a positive immersed

surface, where  00i is a positive sum of embedded geodesics disjoint from ı , and @i is a
positive sum of positively oriented boundary components of @S .

We remark that either or both of  00i ; @i might be empty in the statement of the claim
above.

Proof If i is a component of ı , then i cobounds a positive immersed surface (in
fact, an embedded subsurface of S ) together with some components of @S . After
adding a sufficiently big multiple of @S we obtain a chain of the form iC@i as above
which bounds an immersed positive surface, and we are done in this case.

Otherwise, i\ı is in general position. The intersection i\Sk consists of a collection
of arcs or a single embedded loop. Moreover, since i and ı are geodesic, every arc
of i \Sk is essential. Among the components Sk , there are two which intersect ı
each in a single component. Let Sk be one such. Every arc of i \Sk has endpoints
on this single component of ı . There are two possibilities (not necessarily mutually
exclusive):

(1) There is an arc � of i \ ı and an arc � of ı on the positive side of � such that
the interior of � is disjoint from i , and @�D @� .

(2) There are arcs �; �0 of i \ ı and arcs �;�0 of ı on the positive sides of �; �0

such that the interiors of �;�0 are disjoint from i , and @�[ @�0 D @� [ @�0 .

In the first case we build a positive immersed surface with one boundary component
on i by attaching a 1–handle whose core is �. In the second case we build a positive
immersed surface with one boundary component on i by attaching a 1–handle whose
core is one of �;�0 . See Figure 4.

The result of attaching a 1–handle with core � to a product neighborhood of i produces
an embedded positive surface. If some component of the boundary of this surface is
homotopically trivial, it is necessarily trivial on the positive side, so we cap it off with
an embedded disk. Straighten the resulting surface by an isotopy until its boundary
components are geodesic. This produces a new geodesic 1–manifold r.i/ called a
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� �

ı

resolve �
�0
�

�0

ı

resolve

Figure 4: The 1–manifolds i and � 0i cobound a positive immersed surface,
obtained from i by attaching a 1–handle whose core is � .

resolution of i whose components are all embedded, such that i � r.i/ bounds a
positive immersed surface and such that r.i/ has at least two fewer intersections with
ı than i does. In particular, it is certainly true that each component of r.i/ has fewer
intersections with ı than i does.

We resolve the components of r.i/ in exactly the same way that we resolved i above,
and so on, inductively. If some of the resulting components are (isotopic to) elements
of ı , they cobound an immersed positive surface with some positive sum of positively
oriented boundary components of @S as above.

After finitely many steps, we obtain chains  0i and @0i , where  0i is a positive sum of
embedded geodesics, each disjoint from @Sk , where @0i is a positive sum of positively
oriented boundary components of @S , such that i�

0
iC@

0
i bounds a positive immersed

surface.

Now, let Sk0 be a component of S�ı adjacent to Sk . By construction, each component
of  0i intersects at most one component of ı in @Sk0 . So the components of the  0i can
be iteratively resolved by the method above. By induction, we end up (finally) with a
chain i � 

00
i C @i of the desired form, proving the claim.

Let � be a component of  00i as in the claim. Let Sk be the component of S � ı

containing � , and let S 0 be obtained from Sk by filling in all but exactly one boundary
component. For notational simplicity, denote the geodesics ˛k , ˇk by ˛ , ˇ respectively,
and let a, b be integers such that Œ��D aŒ˛�C bŒˇ� in H1.S

0/.

Since � is a geodesic on Sk but not in S 0 , some component of S 0� �[˛[ˇ might
be a bigon which contains one, or several components of S 0�Sk .

By pushing � repeatedly over such components of S 0 � Sk we can eliminate such
bigons, innermost first. If �0 is the geodesic in Sk obtained from � by pushing �
over one component @i of @Sk , then � and �0 are disjoint, and either � � �0 C @i

or �� �0C .@Sk � @i/ bounds a positive embedded subsurface of Sk . By gluing up
finitely many such surfaces, we obtain a geodesic �00 in Sk , such that ���00 plus some
union of boundary components of Sk bounds a positive immersed surface in Sk and
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such that �00[˛[ˇ is in the isotopy class of a configuration of geodesics for some
hyperbolic structure on S 0 .

In this way we are reduced to arguing about embedded curves in a once-punctured torus.
We will show that �00�a˛� bˇCn@S 0 rationally bounds a positive immersed surface
in S 0 . If we can find such an immersed surface, then by drilling out the components of
S 0�Sk we will obtain a positive immersed surface in Sk bounded by �00�a˛�bˇC@00�
for some suitable @00� which is a positive sum of boundary components of @Sk .

By induction, and the (well-known) classification of simple curves in a once-punctured
torus, it suffices to show that the chain ab � a � b C nŒa; b� bounds an immersed
surface in the once-punctured torus for sufficiently large jnj. In fact, this turns out
to be true for jnj � 2. Since the algebraic area in the once-punctured torus enclosed
by ab � a � b is 0, it suffices (by Lemma 3.7 and Proposition 3.8) to show that
scl.2Œa; b�˙ .ab� a� b//D scl.2Œa; b�/D 1 which can be verified by calculation, eg
using scallop (also see Figure 5 below).

Applying Lemma 3.3, we conclude that �� a˛� bˇC @� rationally bounds a positive
immersed surface, where @� is some positive sum of boundary components of @Sk .
By adding on sufficient copies of S �Sk we obtain a positive immersed surface with
boundary � � a˛ � bˇCD� , where D� is a positive sum of boundary components
of S . But � is an arbitrary component of  00i . By the claim and Lemma 3.3, we obtain
a positive immersed surface with rational boundary i �

P
j ai;j j̨ � bi;j ǰ C @i for

suitable @i . Since i was arbitrary, this proves the theorem.

Remark 3.11 Notice that we do not assume that @S is nonempty, just that �.S/ < 0.
It is only the subsurfaces Sk which are required to have nonempty boundary, which
will be the case, since each Sk has genus 1, and �.S/ < 0 implies that the genus of S

is at least 2.

By the results of Section 3.3 and Section 2.4 we conclude:

Theorem A Let F be a free group, and let S be a compact, connected, orientable
surface with �.S/ < 0 and �1.S/ D F . Let @S 2 BH

1
.F IR/ be the 1–chain repre-

sented by the boundary of S , thought of as a finite formal sum of conjugacy classes
in F . Then the projective ray in BH

1
.F IR/ spanned by @S intersects the unit ball of

the scl norm in the interior of a face of codimension one in BH
1
.F IR/.

Theorem B Let F be a free group, and let S be a compact, connected, orientable
surface with �.S/ < 0 and �1.S/D F . Let �S be the face of the scl unit norm ball
whose interior intersects the projective ray of the class @S . The face �S is dual to the
extremal homogeneous quasimorphism rotS .
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Remark 3.12 For the sake of completeness, we exhibit a positive immersed surface
with rational boundary 2Œa; b�C aC b� ab in Figure 5.

b

B

A

a

A

a
b

B

B

b

b

B
a

Ab

B

A

a B

b

A

a

a

A

Figure 5: A positive immersed surface with rational boundary the chain
2Œa; b�C aC b� ab

The figure depicts a genus 0 surface T with 6 boundary components. The boundary
components are (cyclically) labeled by words in F2 (for clarity, A and B are used
in place of a�1 and b�1 ). The components are decomposed into arcs each labeled
by a letter, such that adjacent arcs have opposite labels. It follows that there is a
(unique) homotopy class of map f W T ! S where S is a once-punctured torus
with standard generators a, b for �1 taking each boundary component of T to the
geodesic in S corresponding to the conjugacy class of the boundary label. Two
components of @T each wrap twice around Œa; b� (the boundary of S ). Two other
components of T wrap once each around .ab/�1 . One component of T wraps twice
around a, and one component wraps twice around b . Hence @T represents the chain
2Œa; b�2C a2C b2 � 2ab . Since ��.T /=2D 2D scl.2Œa; b�2C a2C b2 � 2ab/, the
homotopy class of f is represented by an immersion.

3.5 Remarks and Corollaries

In this section we collect some miscellaneous remarks and corollaries of our main
theorems. The first remark is that one can give a new proof of the relative version
of rigidity theorems of Goldman [11] and Burger–Iozzi–Wienhard [3] (also compare
Matsumoto [16]) about representations of surface groups with maximal Euler class.

The context is as follows. Let S be a compact oriented surface with boundary, and let
�W �1.S/! Sp.2n;R/ be a symplectic representation for which the conjugacy classes
of boundary elements fix a Lagrangian subspace. In this case, there is a well-defined
relative Euler class eu� in H 2.S; @S IZ/ associated to � . It is well-known in this
context that eu� is a bounded cohomology class and satisfies j eu�.ŒS �/j � ��.S/ � n.
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Our methods give a surprisingly short new proof of the following theorem (due to
Goldman for nD 1 and Burger–Iozzi–Wienhard for n � 1). For simplicity we restrict
to Zariski dense representations; this restriction can be removed by analyzing various
cases, but since the main virtue of our alternate argument is its brevity, it is probably
not worth spelling out the details.

Corollary 3.13 Let S be a compact oriented surface with boundary. Let �W �1.S/!

Sp.2n;R/ be Zariski dense, and suppose that boundary elements fix a Lagrangian
subspace (so that the relative Euler class eu� is defined). If eu�.ŒS �/ is maximal, � is
discrete.

Proof In what follows, denote �1.S/ by G and its commutator subgroup by G0 .
Since S has boundary, eu� D ı�� where �� is a homogeneous quasimorphism on G ,
unique up to elements of H 1.S IR/. For each g 2 G , the value of ��.g/ mod Z
is the symplectic rotation number of �.g/. The symplectic rotation number lifts to
a quasimorphism on the universal cover of Sp.2n;R/ with defect n. On the other
hand, j��.@S/j D j eu�.ŒS �/j D ��.S/ � n so we can conclude that the defect of ��
on G is exactly n, and �� is extremal for @S . Hence by Theorem B we conclude that
the symplectic rotation number of every element of �.G0/ is zero, and therefore (in
particular) �.G0/ is not dense in Sp.2n;R/. Since Sp.2n;R/ is simple, every Zariski
dense subgroup is either discrete or dense (in the ordinary sense). If �.G/ is dense,
then the closure of �.G0/ is normal in Sp.2n;R/. But Sp.2n;R/ is simple, and the
closure of �.G0/ is a proper subgroup; hence �.G/ is discrete.

Bavard [1] asked whether scl takes values in 1
2
Z in a free group. Though this turns

out not to be the case, nevertheless, elements with values in 1
2
Z are very common.

Theorem C gives a flexible method to construct many elements in free groups with scl
in 1

2
Z. For example, from Lemma 2.4 we conclude:

Corollary 3.14 Let F2 denote the free group on two generators a, b and let F3 D

F2�hci be a free group on three generators. For any w 2 ŒF2;F2� and for all integers n

with jnj sufficiently large (depending on w ) there is an equality

sclF3
.Œa; b�ncwc�1/D

jnC rot.w/jC 1

2
2

1

2
Z:

Obviously this construction can be varied considerably.

Remark 3.15 Computer experiments (using scallop) suggest that for any w 2

ŒF2;F2�, the geodesic corresponding to the conjugacy class of wŒa; b�n rationally
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bounds an immersed surface for sufficiently large n. This can be proved directly for
many specific elements w , but a general argument is lacking. Therefore we make the
following conjecture:

Conjecture 3.16 Let w 2 ŒF2;F2� be arbitrary. Then for sufficiently large integers n,
there is an equality

scl.wŒa; b�n/D rotS .wŒa; b�n�/=2

where rotS is the rotation quasimorphism associated with the realization of F2 as
�1.S/ where S is a hyperbolic once-punctured torus.

This certainly holds for many w . On the other hand, it is worth remarking that the
projective classes of such chains wŒa; b�n are necessarily in the boundary of the face
�S of the scl norm ball.

One can also deduce interesting corollaries for chains in closed surface groups:

Corollary 3.17 Let S be a closed, orientable surface with �.S/ < 0. Any rational
chain C 2 BH

1
.�1.S/IR/ rationally bounds an injective surface.

Proof By Theorem C the chain C rationally bounds a positive immersed surface in S .
But an immersion between hyperbolic surfaces with geodesic boundary is necessarily
�1 –injective.

Remark 3.18 Theorem C unfortunately does not settle the question of whether scl
is rational in closed (orientable) surface groups. A positive immersed surface T with
rational boundary a chain C 2 BH

1
.S/ is extremal in its relative homology class,

but the set of relative homology classes with boundary C is a torsor for the group
H2.S IZ/, which is infinite when S is closed and orientable. One can translate this
into an absolute statement about scl at slight cost.

Let S be a closed hyperbolic surface, and let M be the unit tangent bundle of S . The
Euler class of M , thought of as an oriented circle bundle over S , is an element of
H 2.S IZ/ whose evaluation on the fundamental class of S is �.S/. The fundamental
group of M is a central extension

0! Z! �1.M /! �1.S/! 0

corresponding to the Euler class in H 2.S IZ/. Given g 2 Œ�1.S/; �1.S/� there are
many distinct lifts yg to �1.M / which differ by elements of �.S/ �Z. Theorem C
implies that for all but finitely many lifts, scl�1.M /.yg/ 2

1
2
Z and yg is represented

by a loop which rationally bounds an extremal surface whose projection to S is an
immersion.
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The next corollary is a purely group-theoretic statement about homologically trivial
elements in closed surface groups.

Corollary 3.19 Let G be a closed, orientable surface group with negative Euler
characteristic, and g 2 ŒG;G�. Then there is a free subgroup F of G and elements gi

which are conjugates of positive powers of g such that every gi 2 F , and the product
of the gi is in ŒF;F �.

Remark 3.20 Corollary 3.19 can be thought of as saying that a homologically trivial
loop in a closed surface is covered by a homologically trivial 1–manifold in some
surface of infinite index. One can ask to make this result sharper:

Question 3.21 Let G be a closed, orientable surface group with negative Euler char-
acteristic, and g 2 ŒG;G�. Is there a free subgroup F of G such that g 2 ŒF;F �?

One can ask an analogous question for any group G . This question is especially
interesting when G D �1.M / where M is a closed 3–manifold.

Finally, we can use Theorem C to construct injective closed surface groups representing
homology classes in certain graphs of groups. The following is the analogue of the
main theorem from [8].

Corollary 3.22 Let G be a graph of free and closed orientable surface groups with
�<0 amalgamated along cyclic subgroups, and let A be a homology class in H2.GIQ/.
Let Si be the closed surface vertex subgroups and r1; : : : ; rn any rational numbers with
all jri j sufficiently large. Then the class AC r1S1C r2S2C ::C rnSn is rationally
represented by a closed surface subgroup of G .

Proof This follows immediately by the argument of Theorem 3.4 from [8] and
Theorem C.

It is natural to wonder whether every rational chain in BH
1
.F /, where F is a free group,

is projectively contained in the interior of a face of the scl norm of finite codimension,
but in fact this is not the case, as the following example shows.

Example 3.23 By Bavard duality, the codimension of the face whose interior contains
the projective class of a rational chain C is one less than the dimension of the space
of extremal quasimorphisms for C (mod H 1 ). Hence to exhibit a rational chain (in
fact, an element of ŒF;F �) which is in the interior of a face of infinite codimension,
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it suffices to exhibit a chain which admits an infinite dimensional space of extremal
quasimorphisms.

Let F DF1�F2 where F1 and F2 are both free of rank at least 2, and let g 2 ŒF1;F1�

be nontrivial. Let �1 2 Q.F1/ be extremal for g , and let �2 2 Q.F2/ be arbitrary
with D.�2/ �D.�1/. By the Hahn–Banach theorem, there exists � 2Q.F / which
agrees with �i on Fi and satisfies D.�/DD.�1/.

Another (more direct) way to see that g is contained in a face of infinite codimension
is as follows. Let h be a nontrivial element of ŒF2;F2�. Let Xi be a K.Fi ; 1/ (eg a
wedge of two circles) for i D 1; 2. Let X be a K.F; 1/ obtained by joining X1 to X2

by an edge e . Let f W S ! X be extremal for the chain gnC h. If S maps over e ,
we can compress S along the preimage of a generic point on e , reducing ���.S/,
which is absurd since S is extremal. Hence S consists of two surfaces S1;S2 one of
which is extremal for gn in X1 , and one of which is extremal for h in X2 . Hence

sclF .ngC h/D sclF1
.gn/C sclF2

.h/D sclF1
.gn/C sclF2

.h�1/D sclF .ng� h/

so g is not in the interior of a top face of the scl norm restricted to the vector subspace
of BH

1
.F / spanned by g and h.
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