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A simply connected surface of general type
with pg D 0 and K 2 D 4

HEESANG PARK

JONGIL PARK

DONGSOO SHIN

As a continuation of the recent results of Y Lee and the second author [5] and the
authors [6], we construct a simply connected minimal complex surface of general type
with pg D 0 and K2 D 4 by using a rational blow-down surgery and Q–Gorenstein
smoothing theory.

14J29; 14J10, 14J17, 53D05

1 Introduction

A rational surface satisfies pgD qD 0 and it has Kodaira dimension �D�1. Around
1894 Castelnuovo conjectured that a surface with pg D q D 0 is rational. However the
conjecture was soon shown to be false by the examples of Enriques. Castelnuovo also
found another counterexample. Enriques’ example has Kodaira dimension 0 while
Castelnuovo’s example has Kodaira dimension 1. Hence smooth surfaces of general
type (ie Kodaira dimension 2) with pg D q D 0 are very interesting from the point of
view of the history of surfaces with pg D q D 0.

Nowadays a large number of examples of surfaces of general type with pg D q D 0

are known due to Godeaux, Campedelli and so on; cf Barth et al [3]. However it was
only in 1983 that the first example of a simply connected surface of general type with
pg D 0 appeared, the so-called Barlow surface [2]. The Barlow surface has K2 D 1.
The second examples were discovered just recently. Motivated by a result of the second
author [7], Y Lee and the second author [5] constructed a family of simply connected
minimal complex surfaces of general type with pgD 0 and K2D 1; 2 by using rational
blow-down surgery and Q–Gorenstein smoothing theory. After this construction, the
authors [6] constructed a family of simply connected minimal complex surfaces of
general type with pg D 0 and K2 D 3 by similar methods.

In this paper we extend the results of Lee and Park [5] and Park–Park–Shin [6] to the
case of K2 D 4. That is, we construct a new simply connected minimal surface of
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general type with pg D 0 and K2 D 4 by using a rational blow-down surgery and
Q–Gorenstein smoothing theory. This is the first example of such complex surfaces.

The key ingredient of this paper is to find an elliptic surface Y equipped with a special
bisection, ie an irreducible curve on an elliptic surface whose intersection number
with a fiber is 2. Blowing up Y several times appropriately, we get a rational surface
Z which makes it possible to get such a complex surface. Once we have the right
candidate Z with K2D 4, the remaining argument is similar to that of the K2D 1; 2; 3

cases appearing in Lee and Park [5] and Park–Park–Shin [6]. That is, by applying a
rational blow-down surgery and Q–Gorenstein smoothing theory developed in Lee
and Park [5] to Z , we obtain a minimal complex surface of general type with pg D 0

and K2 D 4. Then we show that the surface is simply connected. Since almost all the
proofs are parallel to the case of the main construction in Park–Park–Shin [6, Section 3],
we only explain how to construct such a minimal complex surface and we prove that
the surface is simply connected. The main result of this paper is the following theorem.

Theorem 1.1 There exists a simply connected minimal complex surface of general
type with pg D 0 and K2 D 4.

Remark Răsdeaconu and Şuvaina [9] proved that the complex surfaces constructed
in Lee and Park [5] and Park–Park–Shin [6] admit Kähler–Einstein metrics of negative
scalar curvature. By applying their method to the complex surface constructed in this
paper, one may prove that it also admits a Kähler–Einstein metric of negative scalar
curvature; see Section 4.

2 Main construction

We start with a special elliptic fibration Y WD P2 ] 9P2 which is used in the main
construction of this paper. Let L1 , L2 , L3 and A be lines in P2 and let B be a
smooth conic in P2 intersecting as in Figure 1(a). We consider a pencil of cubics
f�.L1CL2CL3/C�.ACB/ j Œ� W �� 2 P1g in P2 generated by two cubic curves
L1CL2CL3 and ACB , which has 4 base points, say, p , q , r and s . In order
to obtain an elliptic fibration over P1 from the pencil, we blow up three times at p

and r , respectively, and twice at s , including infinitely near base-points at each point.
We perform one further blow-up at the base point q . By blowing up nine times in total,
we resolve all base points (including infinitely near base-points) of the pencil and we
then get an elliptic fibration Y D P2 ] 9P2 over P1 (Figure 2).

There are four sections of the elliptic fibration Y corresponding to the four base points
p , q , r and s . Among these sections we use only two sections corresponding to p
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Figure 1: A pencil of cubics

and q , say S1 and S2 respectively, for the main construction. Furthermore, the elliptic
fibration Y has an I8 –singular fiber consisting of the proper transforms eLi of Li

(i D 1; 2; 3). Also Y has an I2 –singular fiber consisting of the proper transforms zA
and zB of A and B , respectively. According to the list of Persson [8], we may assume
that Y has only two more nodal singular fibers F1 and F2 by choosing generally the
Li ’s, A and B (Figure 2). For example the pencil used in Park–Park–Shin [6] works:

(2-1) f�.y �
p

3x/.yC
p

3x/.2y � 3z/C�x.x2
C .y � 2z/2� z2/ j Œ� W �� 2 P1

g:

This pencil has singular fibers at Œ� W �� D Œ1 W 0�, Œ0 W 1�, Œ2 W 3
p

3� and Œ2 W �3
p

3�.
Furthermore, setting

F1 D
˚
2.y �

p
3x/.yC

p
3x/.2y � 3z/C 3

p
3x.x2

C .y � 2z/2� z2/D 0
	
;

F2 D
˚
2.y �

p
3x/.yC

p
3x/.2y � 3z/� 3

p
3x.x2

C .y � 2z/2� z2/D 0
	
;

one can easily check that F1 andF2 are nodal cubic curves with one node at Œ
p

3 W0 W�1�

and Œ
p

3 W 0 W 1�, respectively.

Let M be the line in P2 passing through the point q and the node of the nodal cubic
curve F1 . The node of F1 does not lie on any Li ’s, A or B . Hence it satisfies that
M ¤ L1 , M ¤ A and �M � �M D 0, where �M is the proper transform of M in Y

(Figure 1(b)). We may assume further that M does not pass through the node of the
other nodal cubic curve F2 by choosing generally the Li ’s, A and B . For example,
the pencil in (2-1) works: We have q D Œ0 W 3 W 2�. Hence the line M passing through
q and the node of F1 is fsŒ0 W 3 W 2�C t Œ

p
3 W 0 W �1� j Œs W t � 2 P1g. It is obvious that

the node Œ
p

3 W 0 W 1� does not lie on the line M . Since M meets every member in the
pencil at three points, �M is a bisection of the elliptic fibration Y ! P1 . Furthermore,
since q 2M , the section S2 meets �M at one point (Figure 2).
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Figure 2: An elliptic fibration Y

Next, by blowing up nine times on Y , we construct a rational surface Z which contains
a special configuration of linear chains of P1 ’s. At first we blow up twice at the marked
point

J
on F1 . We then blow up seven times in total at the six marked points � on

each fiber and at the intersection point � of �M and S2 . We then get a rational surface
Z D Y ] 9P2 . We also denote by �Fi (i D 1; 2) the proper transforms of Fi . Then
there exists a linear chain of P1 ’s in Z ,
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;

which contains zA, S2 , �F2 , S1 , �F1 , �M , fL2 , fL1 and fL3 , where ui represents an
embedded rational curve (Figure 3).�1 �1 �1

�1�1 �1�1
�1�M
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�3

�3

S2
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S1�2

F1�6

�2
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Figure 3: A rational surface Z D Y ] 9P 2
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Finally, by applying Q–Gorenstein smoothing theory to Z as in Lee and Park [5]
and Park–Park–Shin [6], we construct a minimal complex surface with pg D 0 and
K2 D 4. That is, we first contract the chain C252;145 of P1 ’s from Z so that it
produces a normal projective surface X with one permissible singular point. It then
follows by a similar technique to one in Lee and Park [5] and Park–Park–Shin [6] that
X has a Q–Gorenstein smoothing. Let Xt be a general fiber of the Q–Gorenstein
smoothing of X . Since X is a (singular) surface with pgD 0 and K2D 4, by applying
general results of complex surface theory and Q–Gorenstein smoothing theory, one
may conclude that a general fiber Xt is a complex surface of general type with pg D 0

and K2 D 4.

The minimality of Xt follows from the nefness of the canonical divisor KX of X . Let
f W Z!X be the contraction of the chain C252;145 of P1 ’s from Z to the singular
surface X . By using a similar technique to one in Lee and Park [5] and Park–Park–
Shin [6], it follows that the pullback f �KX of the canonical divisor KX of X is
effective and nef, hence KX is also nef, which shows the minimality of Xt .

It remains to prove that Xt is simply connected.

Proposition 2.1 Xt is simply connected.

Proof Let Z252 be a rational blow-down 4–manifold obtained from Z by replacing
the configuration C252;145 with the corresponding rational ball B252;145 . Since a
general fiber Xt of a Q–Gorenstein smoothing of X is diffeomorphic to the rational
blow-down 4–manifold Z252 , it suffices to show that Z252 is simply connected.
We decompose the surface Z into Z D Z0 [ C252;145 . Then we have Z252 D

Z0[B252;145 . Furthermore, since �1.@B252;145/! �1.B252;145/ is surjective, by
van Kampen’s theorem, it suffices to show that �1.Z0/D 1.

Let ˛i be a normal circle of ui . First, note that Z and the configuration C252;145 are
all simply connected. Hence, applying van Kampen’s theorem on Z , we get

(2-2) 1D �1.Z0/=hNi�.˛1/i;

where i� is the induced homomorphism by the inclusion i W @C252;145!Z0 .

We write a� b if a and b are conjugate to each other in �1.Z0/. From Figure 4, one
can easily show that 1D i�.˛6/� i�.˛1/

26 , ie i�.˛1/
26 D 1 and i�.˛1/

5 � i�.˛3/�

i�.˛12/� i�.˛1/
9574: Since 9574� 6 .mod 26/, we have i�.˛1/

5 � i�.˛1/
6 . Hence

i�.˛1/
5�13 � i�.˛1/

26 D 1, which implies that i�.˛1/
5�13 D 1. Since ˛5�13

1
is also a

generator of �1.@C252;145/, we have i�.˛1/D 1. Therefore �1.Z0/D 1 by (2-2).
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3 More examples

In this section we describe another rational surface Z which makes it possible to get a
simply connected surface of general type with pg D 0 and K2 D 4.

Construction

Let C be a smooth cubic curve in P2 and p its inflection point. Let L1 be a line
passing through p which intersects C at two more different points q and r . Let L2 be
the tangent line to C at p and L3 the tangent line to C at one of the intersection points
of L1 and C , say q . Let s be the other intersection point of L3 and C (Figure 5(a)).
We consider a pencil of cubics f�.L1CL2CL3/C�C j Œ� W��2P1g in P2 generated
by two cubic curves L1CL2CL3 and C . According to Persson [8], if we choose
a general C , we may assume that the pencil of cubics contains four nodal singular
curves. Let T be a line joining p and s and M a line through r and the node of a
nodal singular member of the pencil of cubics. We may assume that M does not pass
through the other nodes (Figure 5(b)).

In order to obtain an elliptic fibration over P1 from the pencil above, we blow up
9 times in total at the base points of the pencil of cubics including infinitely near
base-points at each base point. We then get an elliptic fibration Y D P2 ] 9P2 over P1

(Figure 6). Note that the proper transform zT of T is a section of Y and the proper
transform �M of M is a bisection of Y (Figure 6). Here the section S in Y is an
exceptional curve induced by the blow-up at the point s .

We blow up 7 times at the marked points � on Y and blow up two more times at
the marked point

J
on Y . We finally obtain a rational surface Z D Y ] 9P2 which
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contains the following linear chain of P1 ’s (Figure 7):
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:

Finally, by applying Q–Gorenstein smoothing theory to Z as in Lee and Park [5] and
Park–Park–Shin [6], we are able to construct a minimal complex surface with pg D 0

and K2 D 4, say Xt , which is a general fiber of a Q–Gorenstein smoothing of X .

Proposition 3.1 The complex surface Xt is simply connected.

Proof Let us decompose the surface Z D Y ] 9P2 into Z DZ0[C183;38 . Then, as
in the proof of Proposition 2.1, it is enough to show that �1.Z0/D 1.

Let E be an exceptional curve intersecting �F2 at two points. The intersection of a
boundary of a tubular neighborhood of �F2 and E consists of two normal circles of �F2 ,
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Figure 7: A rational surface Z D Y ] 9P 2

say ˛ and ˇ , which are contained in Z0 . We choose a point x0 2 ˛ as a base point
for the homotopy group of Z0 . Let x1 2 ˇ be any point.

Since �F2 and E intersect positively at each intersection point, ˛ and ˇ have the same
orientation induced by the orientation of the exceptional curve E . Therefore, as circles
on the punctured sphere EnC183;38 , they are the boundaries of the cylinder EnC183;38

and, furthermore, they have the opposite orientation in the cylinder E nC183;38 . Let
i� be the induced homomorphism by the inclusion i W @C183;38!Z0 . Then we have

(3-1) Œi�.˛/�D Œ� � i�.ˇ/
�1
���1� in �1.Z0;x0/;

where � is a path connecting x0 and x1 which lies on E .

On the other hand, since ˛ and ˇ are normal circles of �F2 , we also have

(3-2) Œi�.˛/�D Œ� � i�.ˇ/ ��
�1� in �1.Z0;x0/

where � is a path connecting x0 and x1 which is contained in the boundary of a tubular
neighborhood of �F2 . Note that we may choose � and � so that they are homotopically
equivalent. Therefore it follows by (3-1) and (3-2) that

(3-3) Œi�.˛/
2�D 1 in �1.Z0;x0/:

It is not difficult to show that i�.˛/
2 is conjugate to i�.˛1/

2552 , where ˛1 is a generator
of �1.@Z0DL.1832;�6953/;x0/DZ1832 . Since 2552D 8�11�29 is relatively prime
to 1832 D .3 � 61/2 , it implies that ˛2 is also a generator of �1.@Z0/. By applying
van Kampen’s theorem on Z , we get

1D �1.Z0;x0/=hNi�.˛/2
i:

Therefore �1.Z0;x0/D 1 by (3-3).
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Remark (1) One can find more examples of simply connected surfaces of general
type with pg D 0 and K2 D 4 using different configurations. For example,
using an elliptic fibration on E.1/ with one I7 –singular fiber, one I2 –singular
fiber and two nodal fibers, we can find the following linear chain of P1 ’s in
E.1/ ] 9P2 :

C252;145 D
�2
ı �

�4
ı �

�6
ı �

�2
ı �

�6
ı �

�2
ı �

�4
ı �

�2
ı �

�2
ı �

�2
ı �

�3
ı �

�2
ı �

�3
ı :

It is a very intriguing question whether all these configurations above produce
the same deformation equivalent type of simply connected surfaces with pg D 0

and K2 D 4. We leave this problem for future research.

(2) It is also a natural question whether one can find an appropriate configuration in a
rational surface which produces a surface of general type with pgD0 and K2�5.
Note that the basic scheme used in this paper as well as in Lee and Park [5]
and Park–Park–Shin [6] is the following: We chose a delicate configuration in
a certain rational surface Z so that its induced singular surface X obtained
by contracting linear chains of curves in Z satisfies the cohomology condition
H 2.T 0

X
/D 0, which guarantees automatically the existence of a Q–Gorenstein

smoothing of X . In this respect, it seems impossible to find a configuration
satisfying H 2.T 0

X
/D 0 for K2 � 5. But, without the hypothesis H 2.T 0

X
/D 0,

there might still be a chance to find a configuration for K2 � 5. Of course, if
such a configuration exists, it will be another problem to determine whether the
induced singular surface X admits a Q–Gorenstein smoothing or not.

4 Einstein metrics on CP 2 ] 5CP 2

In this section we show that the complex surface Xt constructed in the main construc-
tion admits a Kähler–Einstein metric of negative scalar curvature, which implies the
following theorem.

Theorem 4.1 The topological 4–manifold CP2 ] 5CP2 has a smooth structure which
admits an Einstein metric with negative scalar curvature.

Recently Răsdeaconu and Şuvaina [9] proved the existence of a smooth structure on
each of the topological 4–manifolds CP2 ] kCP2 , for kD 6; 7, which has an Einstein
metric of negative scalar curvature. By applying their method on the surface Xt

constructed in Section 2, we can easily prove the existence of a Kähler–Einstein metric
on Xt with negative scalar curvature. We explain it in a detail in the rest of this section.
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First, note that there is a criterion for the existence of a Kähler–Einstein metric on a
compact complex 4–manifold with c1.M / < 0, which was found independently by
Aubin [1] and Yau [10]:

Theorem 4.2 (Aubin–Yau) A compact complex 4–manifold .M;J / admits a com-
patible Kähler–Einstein metric with negative scalar curvature if and only if its canonical
line bundle KM is ample. When such a metric exists, it is unique, up to an overall
multiplicative constant.

Proof of Theorem 4.1 Based on the idea Răsdeaconu and Şuvaina [9], we show
that the surface Xt has an ample canonical bundle. Then it follows from Theorem
4.2 of Aubin–Yau that there exists a Kähler–Einstein metric on Xt of negative scalar
curvature.

As we showed in the main construction, the pullback f �KX of the canonical divisor X

onto the rational surface Z is effective and nef; hence KX is also nef. Let E1; : : : ;E8

be the (�1)-curves on the rational surface Z and set

C252;145 D
�2
ı

G13

�
�4
ı

G12

�
�6
ı

G11

�
�2
ı

G10

�
�6
ı

G9

�
�2
ı

G8

�
�4
ı

G7

�
�2
ı

G6

�
�2
ı

G5

�
�2
ı

G4

�
�3
ı

G3

�
�2
ı

G2

�
�3
ı

G1

:

Then one may write

f �KX �Q

8X
iD1

aiEi C

13X
jD1

bj Gj

for some rational numbers ai ; bj � 0.

We first show that KX is ample. Suppose on the contrary that KX is not ample. Since
KX is already nef and K2

X
D 4> 0, according to the Nakai–Moishezon criterion, there

exists an irreducible curve C �X such that .KX �C /D 0. Let xC �Z be the proper
transform of C . Then we have

.KX �C /D .f
�KX �f

�C /D .f �KX �
xC /D

8X
iD1

ai.Ei �
xC /C

13X
jD1

bj .Gj �
xC /D 0:

Since Gj ’s are irreducible components of the exceptional divisors of f , it is obvious
that .Gj �

xC /� 0 (j D 1; : : : ; 13) with equality if and only if C does not pass through
the singular point of X . Hence it follows that

8X
iD1

ai.Ei �
xC /� 0:

Geometry & Topology, Volume 13 (2009)



A simply connected surface of general type with pg D 0 and K2 D 4 1493

Then either .Ei0
� xC /<0 for some i0 , or .Ei �

xC /D0 for all iD1; : : : ; 8 and .Gj �
xC /D0

for all j D 1; : : : ; 13. In the first case xC must coincide with Ei0
. However, by using

a similar technique to one in Lee and Park [5] and Park–Park–Shin [6], one may show
that .f �KX �Ei/ > 0 for all i D 1; : : : ; 8, which is a contradiction to our assumption
.KX �

xC /D 0. Therefore we have .Ei �
xC /D 0 for all i D 1; : : : ; 8 and .Gj �

xC /D 0

for all j D 1; : : : ; 13. On the other hand, note that the Poincaré duals of the irreducible
components Gj and of the (�1)-curves Ei generate H2.Z;Q/; hence xC must be
numerically trivial on Z . Then, for any ample divisor H on X , we have

0D . xC �f �H /D .f �C �f �H /D .C �H /;

which is again a contradiction. Therefore KX is ample.

Note that ampleness is an open property; cf Kollár and Mori [4]. So the canonical
divisor KXt

of a general fiber Xt of Q–Gorenstein smoothing is automatically ample.
Therefore, by Aubin and Yau’s criterion, Xt has a Kähler–Einstein metric of negative
scalar curvature.
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