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Abelian subgroups of Out.Fn/

MARK FEIGHN

MICHAEL HANDEL

We classify abelian subgroups of Out.Fn/ up to finite index in an algorithmic and
computationally friendly way. A process called disintegration is used to canonically
decompose a single rotationless element � into a composition of finitely many
elements and then these elements are used to generate an abelian subgroup A.�/ that
contains � . The main theorem is that up to finite index every abelian subgroup is
realized by this construction. As an application we give an explicit description, in
terms of relative train track maps and up to finite index, of all maximal rank abelian
subgroups of Out.Fn/ and of IAn .

20F65; 20F28

1 Introduction

In this paper we classify abelian subgroups of Out.Fn/ up to finite index in an al-
gorithmic and computationally friendly way. There are two steps. The first is to
construct an abelian subgroup D.�/ from a given � 2 Out.Fn/ by a process that we
call disintegration. The subgroup D.�/ is very well understood in terms of relative
train track maps and has natural coordinates that embed it into some ZM . The second
step is to prove the following theorem.

Theorem 7.2 For every abelian subgroup A of Out.Fn/ there exists � 2A such that
A\D.�/ has finite index in A.

To motivate the disintegration process, consider an element � of the mapping class
group MCG.S/ of a compact oriented surface S . After possibly replacing � by an
iterate, there is, by the Thurston classification theorem [17; 9], a decomposition of S

into subsurfaces Sl , some of which are annuli and the rest of which have negative
Euler characteristic, and there is a homeomorphism hW S!S representing �, called a
normal form for �, that preserves each Sl . If Sl is an annulus then hjSl is a nontrivial
Dehn twist. If Sl has negative Euler characteristic then hjSl is either the identity or
pseudo-Anosov. In all cases, hj@Sl is the identity.
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We may assume that the Sl ’s are numbered so that hjSl is the identity if and only if
l >M for some M . For each M –tuple of integers aD .a1; : : : ; aM / let haW S ! S

be the homeomorphism that agrees with hal on Sl for 1� l �M and is the identity
on the remaining Sl ’s. Then ha is a normal form for an element �a 2MCG.S/ and
we define D.�/ to be the subgroup consisting of all such �a . It is easy to check that
�a 7! a defines an isomorphism between D.�/ and ZM .

An element � of Out.Fn/ has finite sets of natural invariants on which it acts by
permutation. If these actions are trivial then we say that � is rotationless; complete
details can be found in Section 3. Suppose that � is a rotationless element of Out.Fn/.
The analog of a normal form hW S! S is a relative train track map f W G!G which
is a particularly nice homotopy equivalence of a marked graph that represents � in the
sense that the outer automorphism of �1.G/ that it induces is identified with � by the
marking. There is an associated maximal filtration ∅DG0 �G1 � � � � �GN DG by
f –invariant subgraphs. The i –th stratum Hi is the closure of Gi nGi�1 . The exact
properties satisfied by f W G!G and ∅DG0 �G1 � � � � �GN DG are detailed in
Section 2.

As a first attempt to mimic the construction of D.�/, let X1; : : : ;XM be the strata that
are not pointwise fixed by f , let a D .a1; : : : ; aM / be an M –tuple of nonnegative
integers and define fa to agree with f al on Xl and to be the identity on the subgraph
of edges fixed by f . Although it is not obvious, faW G!G is a homotopy equivalence
(see Lemma 6.7) and so defines an element �a 2 Out.Fn/.

Without some restrictions on a however, the subgroup generated by the �a ’s need not
be abelian. In the following examples, we do not distinguish between a homotopy
equivalence of the rose and the outer automorphism that it represents.

Example 1.1 Let G be the graph with one vertex and with edges labelled A, B

and C . Define f W G!G by

A 7!A B 7! BA C 7! CB:

Let X1 D fBg and X2 D fC g and aD .m; n/. Then

f.m;n/ ıf .C /D f.m;n/.CB/D f n.C /f m.B/

f ıf.m;n/.C /D f .f
n.C //D f n.f .C //D f n.CB/D f n.C /f n.B/:and

This shows that f.m;n/ commutes with f D f.1;1/ if and only if mD n.

The underlying problem is that strata are not invariant. It does not matter that the path
f .B/ crosses A since A is fixed by f . The lack of commutativity stems from the fact
that f .C / crosses B .
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To address this problem we enlarge the Xi ’s to be unions of strata. It is not necessary
to choose the Xi ’s to be fully invariant (ie to satisfy f .Xi/ � Xi ) but they must be
almost invariant as made precise in Definition 6.3.

The next example illustrates a more subtle relation on the coordinates of a that is
needed to insure that the fa ’s commute.

Example 1.2 Let G be the graph with one vertex and with edges labelled A, B , C

and D . Define f W G!G by

A 7!A B 7! BA2 C 7! CA5 D 7!DC xB

where xB is B with its orientation reversed. Let X1 D fBg, X2 D fC g and X3 D fDg

and let aD .m; n;p/. Then

f ıfa.D/D f .f
p.D//D f p.f .D//D f p.DC xB/D f p.D/f p.C xB/

fa ıf .D/D fa.DC xB/D f p.D/fa.C xB/:and

If f commutes with fa then

f p.C xB/D fa.C xB/:

Thus CA3p xB D CA5n�2m xB and 3p D 5n� 2m. One can check that the converse
holds as well. Namely if we require that a be an element of the linear subspace of
Z3 D f.m; n;p/g defined by 3p D 5n� 2m then the �a ’s commute.

The path C xB of Example 1.2 is quasi-exceptional as defined in Section 6. When the
image of an edge in Xk contains a quasi-exceptional path with initial edge in Xi and
terminal edge in Xj then there is an induced relation between the i –th, j –th and k –th
coefficients of a. These define a subgroup of ZM . The nonnegative M –tuples that lie
in this subspace are said to be admissible. The map a! �a on admissible M –tuples
extends to an injective homomorphism of this subgroup of ZM and we define the
image of this subspace to be D.�/.

The mapping class group version of Theorem 7.2 is a straightforward consequence of
two easily proved, well known facts. The first (see for example Corollary 5.2 of Franks,
Handel and Parwani [11]) is that the subsurfaces Sl can be chosen independently of
� 2A. The second (see for example Lemma 2.10 of Franks, Handel and Parwani [12])
is that an abelian subgroup containing a pseudo-Anosov element is virtually cyclic.

The proof for Out.Fn/ is considerably harder. This is due, in part, to the fact that dis-
integration in Out.Fn/ is a more complicated operation, as illustrated by the examples,
than it is MCG.S/. Another factor is that, unlike normal forms in the mapping class
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group, relative train track maps representing an element � 2 Out.Fn/ are not unique.
No matter how canonical a construction is with respect to a particular f W G!G , one
must still check the extent to which it is independent of the choice of f W G!G . The
most technically difficult argument in this paper (Section 7) is a proof that the rank of
the admissible linear subspace of ZM described above depends only on � and not the
choice of f W G!G .

Recall that IAn is the subgroup of Out.Fn/ consisting of elements that act as the
identity on H1.Fn/. As an application of Theorem 7.2 we classify, up to finite index,
maximal rank abelian subgroups of Out.Fn/ and of IAn . The exact statements appear
as Proposition 8.9 and Proposition 8.10. Roughly speaking, we prove that if D.�/ has
maximal rank in Out.Fn/ then f W G!G has 2n� 3 strata, each of which is either a
single linear edge or is exponentially growing and is closely related to a pseudo-Anosov
homeomorphism of a four times punctured sphere. If D.�/ has maximal rank in IAn

then f W G!G has 2n� 4 such strata and pointwise fixes a rank two subgraph.

From an algebraic point of view, the natural abelian subgroup associated to an element
� 2 Out.Fn/ is the center Z.C.�// of the centralizer C.�/ of � which can also be
described as the intersection of all maximal (with respect to inclusion) abelian subgroups
that contain � . In our context it is natural to look at the weak center WZ.C.�// of
C.�/ defined as the subgroup of elements that commute with an iterate of each element
of C.�/. The following result is a step toward an algorithmic construction of Z.C.�//.

Theorem 6.21 D.�/�WZ.C.�// for all rotationless � .

In Section 9 we apply this theorem to give algebraic characterizations of certain maximal
rank abelian subgroups of Out.Fn/ and IAn . This characterization is needed in the
calculation of the commensurator group of Out.Fn/ by the authors [8].

In Section 3 we define what it means for � 2 Out.Fn/ to be rotationless, prove that
the rotationless elements of any abelian subgroup A form a finite index subgroup AR

and consider lifts of AR from Out.Fn/ to Aut.Fn/. These lifts are essential to our
approach and are similar to ones used in Bestvina, Feighn and Handel [3].

In Section 4 we define a natural embedding of AR into a lattice in Euclidean space and
say what it means for an element of AR to be generic with respect to this embedding.

In Section 5 we associate an abelian subgroup A.�/ to each rotationless � and prove
that if � is generic in AR then AR � A.�/. We also prove (Corollary 5.6) that
A.�/�WZ.C.�//.

In Section 6 we define D.�/ and prove (Corollary 6.20) that D.�/�A.�/, thereby
completing the proof of Theorem 6.21.
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In Section 7 we prove (Theorem 7.1) that D.�/ has finite index in A.�/ by reconciling
the normal forms point of view used to define D.�/ with the “action on @Fn ” point of
view used to define A.�/. Theorem 7.2 is an immediate consequence of this result
and the fact, mentioned above, that AR �A.�/ for generic � 2A.

We make use of several important results from our paper [10], including the Recognition
Theorem and the existence of relative train track maps that are especially well suited to
disintegrating an element and forming D.�/. Section 2 reviews this and other relevant
material and sets notation for the paper.

Acknowledgements We thank Gilbert Levitt and the referee for many helpful com-
ments. This material is based upon work of the first author supported by the National
Science Foundation under Grant No. DMS0805440 and work of the second author
supported by the National Science Foundation under Grant No. DMS0405814.

2 Background

Fix n � 2 and let Fn be the free group of rank n. Denote the automorphism group
of Fn by Aut.Fn/, the group of inner automorphisms of Fn by Inn.Fn/ and the
group of outer automorphisms of Fn by Out.Fn/D Aut.Fn/=Inn.Fn/. We follow the
convention that elements of Aut.Fn/ are denoted by upper case Greek letters and that
the same Greek letter in lower case denotes the corresponding element of Out.Fn/.
Thus ˆ 2 Aut.Fn/ represents � 2 Out.Fn/.

Marked graphs and outer automorphisms Identify Fn with �1.Rn;�/ where Rn

is the rose with one vertex � and n edges. A marked graph G is a graph of rank n

without valence one vertices, equipped with a homotopy equivalence mW Rn ! G

called a marking. Letting b Dm.�/ 2G , the marking determines an identification of
Fn with �1.G; b/.

A homotopy equivalence f W G ! G and a path � from b to f .b/ determines an
automorphism of �1.G; b/ and hence an element of Aut.Fn/. As the homotopy class
of � varies, the automorphism ranges over all representatives of the associated outer
automorphism � . We say that f W G! G represents � . We always assume that f
maps vertices to vertices and that the restriction of f to any edge is an immersion.

Paths, circuits and edge paths Let � be the universal cover of a marked graph G

and let prW �!G be the covering projection. A proper map z� W J ! � with domain
a (possibly infinite) closed interval J will be called a path in � if it is an embedding
or if J is finite and the image is a single point; in the latter case we say that z� is a
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trivial path. If J is finite, then any map z� W J ! � is homotopic rel endpoints to a
unique (possibly trivial) path Œz��; we say that Œz�� is obtained from z� by tightening.
If zf W � ! � is a lift of a homotopy equivalence f W G ! G , we denote Œ zf .z�/� by
zf#.z�/.

We will not distinguish between paths in � that differ only by an orientation preserving
change of parametrization. Thus we are interested in the oriented image of z� and not
z� itself. If the domain of z� is finite, then the image of z� has a natural decomposition
as a concatenation zE1

zE2 � � �
zEk�1

zEk where zEi , 1 < i < k , is an edge of � , zE1

is the terminal segment of an edge and zEk is the initial segment of an edge. If the
endpoints of the image of z� are vertices, then zE1 and zEk are full edges. The sequence
zE1
zE2 � � �

zEk is called the edge path associated to z� . This notation extends naturally
to the case that the interval of domain is half-infinite or bi-infinite. In the former case,
an edge path has the form zE1

zE2 � � � or � � � zE�2
zE�1 and in the latter case has the form

� � � zE�1
zE0
zE1
zE2 � � � .

A path in G is the composition of the projection map pr with a path in � . Thus a
map � W J ! G with domain a (possibly infinite) closed interval will be called a path
if it is an immersion or if J is finite and the image is a single point; paths of the latter
type are said to be trivial. If J is finite, then any map � W J ! G is homotopic rel
endpoints to a unique (possibly trivial) path Œ� �; we say that Œ� � is obtained from � by
tightening. For any lift z� W J ! � of � , Œ� �D prŒz��. We denote Œf .�/� by f#.�/. We
do not distinguish between paths in G that differ by an orientation preserving change
of parametrization. The edge path associated to � is the projected image of the edge
path associated to a lift z� . Thus the edge path associated to a path with finite domain
has the form E1E2 � � �Ek�1Ek where Ei , 1 < i < k , is an edge of G , E1 is the
terminal segment of an edge and Ek is the initial segment of an edge. We will identify
paths with their associated edge paths whenever it is convenient.

We reserve the word circuit for an immersion � W S1!G . Any homotopically nontrivial
map � W S1 ! G is homotopic to a unique circuit Œ� �. As was the case with paths,
we do not distinguish between circuits that differ only by an orientation preserving
change in parametrization and we identify a circuit � with a cyclically ordered edge
path E1E2 � � �Ek .

A path or circuit crosses or contains an edge if that edge occurs in the associated
edge path. For any path � in G define x� to be “� with its orientation reversed”. For
notational simplicity, we sometimes refer to the inverse of z� by z��1 .

A decomposition of a path or circuit into subpaths is a splitting for f W G!G and is
denoted � D � � � �1 � �2 � � � if f k

# .�/D � � �f
k

# .�1/f
k

# .�2/ � � � for all k � 0. In other
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words, a decomposition of � into subpaths �i is a splitting if one can tighten the image
of � under any iterate of f# by tightening the images of the �i ’s.

A path � is a periodic Nielsen path if f k
# .�/D � for some k � 1. The minimal such k

is the period of � and if k D 1 then � is a Nielsen path. Two elements of Fix.f /
are in the same Nielsen class if they are the endpoints of a Nielsen path. A (periodic)
Nielsen path is indivisible if it does not decompose as a concatenation of nontrivial
(periodic) Nielsen subpaths. A path or circuit is root-free if it is not a multiple of a
simpler path or circuit.

Automorphisms and lifts Section 1 of Gaboriau et al [13] and Section 2.1 of Bestvina,
Feighn and Handel [3] are good sources for facts that we record below without specific
references. The universal cover � of a marked graph G with marking mW Rn!G is a
simplicial tree. We always assume that a base point zb 2 � projecting to bDm.�/ 2G

has been chosen, thereby defining an action of Fn on � . The set of ends E.�/ of �
is naturally identified with the boundary @Fn of Fn and we make implicit use of this
identification throughout the paper.

Each nontrivial c 2Fn acts by a nontrivial covering translation Tc W �!� and each Tc

induces a homeomorphism yTc W @Fn ! @Fn that fixes two points, a sink TCc and a
source T �c . The line in � whose ends converge to T �c and TCc is called the axis
of Tc and is denoted Ac . The image of Ac in G is the circuit corresponding to the
conjugacy class Œc� of c . We say that c is root-free if it is not a multiple of some other
element of Fn . In that case Tc is not a multiple of some other covering translation and
we say that Tc is root-free.

If f W G ! G represents � 2 Out.Fn/ then there is a bijection, defined by zf Tc D

Tˆ.c/ zf for all c 2 Fn , between the set of lifts zf W �! � of f W G!G and the set
of automorphisms ˆW Fn ! Fn representing � . We say that zf corresponds to ˆ
or is determined by ˆ and vice versa. Under the identification of E.�/ with @Fn , a
lift zf determines a homeomorphism yf of @Fn . An automorphism ˆ also determines
a homeomorphism ŷ of @Fn and yf D ŷ if and only if zf corresponds to ˆ. In
particular, yic D yTc for all c 2 Fn where ic.w/D cwc�1 is the inner automorphism of
Fn determined by c . We use the notation yf and ŷ interchangeably depending on the
context.

We are particularly interested in the dynamics of yf D ŷ . We denote the fixed point set
of ŷ by Fix. ŷ / and the fixed subgroup of ˆ by Fix.ˆ/. The following two lemmas
are contained in Lemma 2.3 and Lemma 2.4 of [3] and in Proposition 1.1 of [13].
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Lemma 2.1 Assume that zf W �!� corresponds to ˆ2Aut.Fn/. Then the following
are equivalent:

(i) c 2 Fix.ˆ/.

(ii) Tc commutes with zf .

(iii) yTc commutes with yf .

(iv) Fix. yTc/� Fix. yf /D Fix. ŷ /.

(v) Fix. yf /D Fix. ŷ / is yTc –invariant.

A point P 2 @Fn is an attractor for ŷ if it has a neighborhood U � @Fn such that
ŷ .U / � U and such that

T1
nD1
ŷ n.U /D P . If Q is an attractor for ŷ�1 then we

say that it is a repeller for ŷ .

Lemma 2.2 Assume that zf W �! � corresponds to ˆ 2 Aut.Fn/ and that Fix. ŷ /�
@Fn contains at least three points. Denote Fix.ˆ/ by F and the corresponding subgroup
of covering translations of � by T .ˆ/. Then:

(i) @F is naturally identified with the closure of fT˙c W Tc 2 T .ˆ/g in @Fn . None
of these points is isolated in Fix. ŷ /.

(ii) Each point in Fix. ŷ / n @F is isolated and is either an attractor or a repeller for
the action of ŷ .

(iii) There are only finitely many T .ˆ/–orbits in Fix. ŷ / n @F .

Lines and laminations Suppose that � is the universal cover of a marked graph G .
An unoriented bi-infinite path in � is called a line in � . The space of lines in �
is denoted zB.�/ and is equipped with what amounts to the compact-open topology.
Namely, for any finite path z̨0 � � (with endpoints at vertices if desired), define
N.z̨0/� zB.�/ to be the set of lines in � that contain z̨0 as a subpath. The sets N.z̨0/

define a basis for the topology on zB.�/.

An unoriented bi-infinite path in G is called a line in G . The space of lines in G is
denoted B.G/. There is a natural projection map from zB.�/ to B.G/ and we equip
B.G/ with the quotient topology.

A line in � is determined by the unordered pair of its endpoints .P;Q/, so it corre-
sponds to a point in the space of abstract lines defined to be zB WD ..@Fn�@Fn/n�/=Z2 ,
where � is the diagonal and where Z2 acts on @Fn�@Fn by interchanging the factors.
The action of Fn on @Fn induces an action of Fn on zB whose quotient space is
denoted B . The “ endpoint map” defines a homeomorphism between zB and zB.�/ and
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we use this implicitly to identify zB with zB.�/ and hence zB.�/ with zB.� 0/ where � 0

is the universal cover of any other marked graph G0 . There is a similar identification of
B.G/ with B and with B.G0/. We sometimes say that the line in G or � corresponding
to an abstract line is the realization of that abstract line in G or � .

A closed set of lines in G or a closed Fn –invariant set of lines in � is called a
lamination and the lines that compose it are called leaves. If ƒ is a lamination in G

then we denote its preimage in � by zƒ and vice-versa.

Suppose that f W G! G represents � and that zf is a lift of f . If z is a line in �
with endpoints P and Q, then there is a bounded homotopy from zf .z / to the line
zf#. / with endpoints yf .P / and yf .Q/. This defines an action zf# of zf on lines in � .

If ˆ 2 Aut.Fn/ corresponds to zf then ˆ# D zf# is described on abstract lines by
.P;Q/ 7! . ŷ .P /; ŷ .Q//. There is an induced action �# of � on lines in G and in
particular on laminations in G .

To each � 2 Out.Fn/ is associated a finite �–invariant set of laminations L.�/ called
the set of attracting laminations for � . The individual laminations need not be �–
invariant. By definition (see Definition 3.1.5 of [2]) L.�/D L.�k/ for all k � 1 and
each ƒ 2 L.�/ contains birecurrent leaves, called generic leaves, whose weak closure
is all of ƒ. Complete details on L.�/ can be found in Section 3 of [2].

A point P 2 @Fn determines a lamination ƒ.P /, called the accumulation set of P ,
as follows. Let � be the universal cover of a marked graph G and let zR be any ray
in � converging to P . A line z� � � belongs to Aƒ.P / if every finite subpath of z� is
contained in some translate of zR. Since any two rays converging to P have a common
infinite end, this definition is independent of the choice of zR. The bounded cancellation
lemma of Cooper [5] implies (cf Lemma 3.1.4 of [2]) that this definition is independent
of the choice of G and � and that

ŷ #.Aƒ.P //D C
ƒ. ŷ .P //:

In particular, if P 2 Fix. ŷ / then ƒ.P / is �# –invariant.

Free factor systems The conjugacy class of a free factor F i of Fn is denoted ŒŒF i ��.
If F1; : : : ;Fk are nontrivial free factors and if F1 � � � � �Fk is a free factor then we
say that the collection fŒŒF1��; : : : ; ŒŒFk ��g is a free factor system. For example, if G is a
marked graph and Gr �G is a subgraph with noncontractible components C1; : : : ;Ck

then the conjugacy class ŒŒ�1.Ci/�� of the fundamental group of Ci is well defined and
the collection of these conjugacy classes is a free factor system denoted F.Gr /; we
say that Gr realizes F.Gr /.
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The image of a free factor F under an element of Aut.Fn/ is a free factor. This induces
an action of Out.Fn/ on the set of free factor systems. We sometimes say that a free
factor is �–invariant when we really mean that its conjugacy class is �–invariant. If
ŒŒF �� is �–invariant then F is ˆ–invariant for some automorphism ˆ representing �
and ˆjF determines a well defined element �jF of Out.F /.

We say that the conjugacy class Œa� of a 2 Fn is carried by ŒŒF i �� if F i contains a
representative of Œa� and that an abstract line ` is carried by ŒŒF i �� if it is the limit of
periodic lines corresponding to conjugacy classes Œai � carried by ŒŒF i ��. A collection
W of abstract lines and conjugacy classes in Fn is carried by a free factor system
F D fŒŒF1��; : : : ; ŒŒFk ��g if each element of W is carried by some ŒŒF i ��. Sometimes
we say that a is carried by F i when we really mean that Œa� is carried by ŒŒF i ��. If Gr

is a subgraph of a marked graph G then Œa� (resp. `) is carried by F.Gr / if and only
if the circuit (resp. line) in G that represents Œa� (resp. `) is contained in Gr .

There is a partial order @ on conjugacy classes of free factors and on free factor systems
generated by inclusion. More precisely, ŒŒF1�� @ ŒŒF2�� if F1 is conjugate to a free
factor of F2 and F1 @ F2 if for each ŒŒF i �� 2 F1 there exists ŒŒFj �� 2 F2 such that
ŒŒF i ��@ ŒŒFj ��.

The complexity of a free factor system is defined on page 531 of [2]. We include the
following results for easy reference. The first is [2, Corollary 2.6.5]. The second is an
immediate consequence of the uniqueness of F.W /.

Lemma 2.3 For any collection W of abstract lines there is a unique free factor system
F.W / of minimal complexity that carries every element of W . If W is a single
element then F.W / has a single element.

Corollary 2.4 If a collection W of abstract lines and conjugacy classes in Fn is
�–invariant then F.W / is �–invariant.

Further details on free factor systems can be found in section 2.6 of [2].

Forward rotationless elements of Out.Fn/ and the Recognition Theorem In this
section we recall a key definition and the main theorem of [10].

Definition 2.5 For ˆ 2 Aut.Fn/ representing � , let FixN . ŷ /� Fix. ŷ / be the set of
nonrepelling fixed points of ŷ . We say that ˆ is a principal automorphism and write
ˆ 2 P.�/ if either of the following hold.
� FixN . ŷ / contains at least three points.
� FixN . ŷ / is a two point set that is neither the set of endpoints of an axis Ac nor

the set of endpoints of a lift z� of a generic leaf of an element of L.�/.

The corresponding lift zf W �! � is a principal lift.

Geometry & Topology, Volume 13 (2009)



Abelian subgroups of Out.Fn/ 1667

There is an equivalence relation, called isogredience, on automorphisms defined by
ˆ1 � icˆ2i�1

c for some c 2 Fn . There are only finitely many isogredience classes of
principal automorphisms. In fact by Levitt and Lustig [14], for all but finitely many
isogredience classes, the only fixed points of ŷ are a source and a sink.

We include the next lemma for easy reference.

Lemma 2.6 The following properties hold for all ˆ representing � and ‰ represent-
ing  .

(1) Fix.3‰ˆ‰�1 /D y‰.Fix. ŷ // and FixN .
3‰ˆ‰�1 /D y‰.FixN . ŷ //.

(2) Conjugation by ‰ defines a bijection i‰W P.�/ 7! P. � �1/ that preserves
isogredience classes. The induced bijection on the set of isogredience classes
depends only on  and not on the choice of ‰ .

Proof (1) is standard and easily checked; it implies that i‰W P.�/ 7! P . � �1/ is
a bijection. The rest of (2) follows from ‰.icˆi�1

c /‰�1 D i‰.c/‰ˆ‰
�1i�1

‰.c/
and

.id‰/.ˆ/.id‰/
�1 D id .‰ˆ‰

�1/i�1
d

.

Definition 2.7 For ˆ 2 Aut.Fn/ representing � , let PerN . ŷ / be the set of nonre-
pelling periodic points of ŷ . An outer automorphism � is forward rotationless if
FixN . ŷ /DPerN . ŷ / for all ˆ2P.�/ and if for each k�1, ˆ 7!ˆk defines a bijection
between P.�/ and P.�k/. Our standing assumption is that n � 2. For notational
convenience we say that the identity element of Out.F1/ is forward rotationless.

Remark 2.8 By [10, Lemma 4.43], there is a constant K , depending only on n, such
that �K is forward rotationless for each � 2 Out.Fn/.

As an illustration of the utility of being forward rotationless, and for convenient
reference, we recall [10, Corollary 3.30].

Lemma 2.9 The following properties hold for each forward rotationless � 2Out.Fn/.

(1) Each periodic conjugacy class is fixed and each representative of that conjugacy
class is fixed by some principal automorphism representing � .

(2) Each ƒ 2 L.�/ is �–invariant.

(3) A free factor that is invariant under an iterate of � is �–invariant.

The following theorem motivates the construction in Section 5 of a certain subgroup
A.�/ associated to � and is applied in the proof that A.�/ is abelian.
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Theorem 2.10 (Recognition Theorem [10]) Suppose that �; 2 Out.Fn/ are for-
ward rotationless and that:

(1) PFƒ.�/D PFƒ. /, for all ƒ 2 L.�/D L. /.
(2) There is bijection hW P.�/! P. / such that:

(i) (Fixed sets preserved) FixN . ŷ /D FixN .1h.ˆ//.
(ii) (Twist coordinates preserved) If u 2 Fix.ˆ/ and ˆ; iuˆ 2 P.�/, then

h.iuˆ/D iuh.ˆ/.

Then � D  .

Remark 2.11 In the special case that � is realized as an element of MCG.S/, a u

that occurs in item (2)(ii) has the form uD wd where w is root free and represents a
reducing curve and where d is the degree of Dehn twisting about that reducing curve.
See also the discussion of “ axes” at the end of this section.

Relative train track maps We assume some familiarity with the basic definitions of
relative train track maps. Complete details can be found in [10] and [2].

Suppose that f W G!G is a relative train track map defined with respect to a maximal
filtration ∅ D G0 � G1 � � � � � GN D G . A path or circuit has height r if it is
contained in Gr but not Gr�1 . A lamination has height r if each leaf in its realization
in G has height at most r and some leaf has height r . The r –th stratum Hr is defined
to be the closure of Gr nGr�1 . If f .Hr /� Gr�1 then Hr is called a zero stratum;
all other strata have irreducible transition matrices and are said to be irreducible. If Hr

is irreducible and if the Perron–Frobenius eigenvalue of the transition matrix for Hr is
greater than one, then Hr is exponentially growing or simply EG. All other irreducible
strata are non-EG or simply NEG.

A direction d at x 2G is the germ of an initial segment of an oriented edge (or partial
edge if x is not a vertex) based at x . There is an f –induced map Df on directions
and we say that d is a periodic direction if it is periodic under the action of Df ; if the
period is one then d is a fixed direction. Thus the direction determined by an oriented
edge E is fixed if and only if E is the initial edge of f .E/.

A turn is an unordered pair of directions with a common base point. The turn is
nondegenerate if is defined by distinct directions and is degenerate otherwise. A turn is
illegal with respect to f W G!G if its image under some iterate of Df is degenerate; a
turn is legal if it is not illegal. If .d1; d2/ is an illegal turn then the directions d1 and d2

are said to belong to the same gate. If E1E2 � � �Ek�1Ek is the edge path associated to
a path � , then we say that � contains the turns . xEi ;EiC1/ for 1� i � k � 1. A path
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or circuit � �G is legal if it contains only legal turns. If � �Gr does not contain any
illegal turns in Hr , meaning that both directions correspond to edges of Hr , then � is
r –legal. It is immediate from the definitions that Df maps legal turns to legal turns
and that the restriction of f to a legal path is an immersion.

If Hr is EG then a nontrivial path in Gr�1 with endpoints in Hr \Gr�1 is called a
connecting path. As discussed below, connecting paths that are contained in zero strata
play a special role.

For a 2 Fn , we let Œa�u be the unoriented conjugacy class determined by a. Thus,
Œa�u D Œb�u if and only if a is conjugate to either of a or xa. If � is a closed path then
we let Œ� �u be the unoriented conjugacy class determined by � , thought of as a circuit.

If an NEG stratum Hi is a single edge Ei satisfying f .Ei/DEiui for a nontrivial
closed Nielsen path ui then we say that Ei is a linear edge and we define the axis or
twistor for Ei to be Œwi �u where wi is root-free and ui D w

di

i for some di ¤ 0. If
Ei and Ej are distinct linear edges such that wi D wj and such that di and dj have
the same sign then a path of the form Eiw

p xEj where p 2 Z, is called an exceptional
path of height max.i; j / or just an exceptional path if the height is not relevant. The
set of exceptional paths of height i is invariant under the action of f# .

Notation 2.12 Suppose that u< r and that:
(1) Hu is irreducible.
(2) Hr is EG and each component of Gr is noncontractible.
(3) For each u< i < r , Hi is a zero stratum that is a component of Gr�1 and each

vertex of Hi has valence at least two in Gr .

We say that each Hi is enveloped by Hr and write H z
r D

Sr
kDuC1 Hk . We say that

H z
r is the extended EG stratum determined by Hr .

Definition 2.13 If E in an edge in an irreducible stratum Hr and k > 0 then a
maximal subpath � of f k

# .E/ in a zero stratum Hi is said to be r –taken or just
taken if r is irrelevant. Note that if Hi is enveloped by an EG stratum Hs then �
has endpoints in Hs and so is a connecting path. A nontrivial path or circuit � is
completely split if it has a splitting, called a complete splitting, into subpaths, each
of which is either a single edge in an irreducible stratum, an indivisible Nielsen path,
an exceptional path or a connecting path in a zero stratum Hi that is both maximal
(meaning that it is not contained in a larger subpath of � in Hi ) and taken.

Definition 2.14 A relative train track map is completely split if:
(1) f .E/ is completely split for each edge E in each irreducible stratum.
(2) If � is a taken connecting path in a zero stratum then f#.�/ is completely split.
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Remark 2.15 If f W G!G is a completely split relative train track map and � is a
completely split path or circuit then f#.�/ is completely split. This is immediate from
the definitions and the fact that f# carries exceptional paths to exceptional paths.

Remark 2.16 If f W G!G is a CT (see Definition 2.20) then each completely split
path or circuit has a unique complete splitting by [10, Lemma 4.12].

Definition 2.17 A periodic vertex w that does not satisfy one of the following two
conditions is principal.

� w is the only element of Per.f / in its Nielsen class and there are exactly two
periodic directions at w , both of which are contained in the same EG stratum.

� w is contained in a component C of Per.f / that is topologically a circle and
each point in C has exactly two periodic directions.

We also say that a lift of a principal vertex to the universal cover is a principal vertex.
If each principal vertex and each periodic direction at a principal vertex has period one
then we say that f W G!G is rotationless.

Remark 2.18 It is immediate from the definition that the initial endpoint of an NEG
edge is a principal vertex. By [10, Lemma 3.19] every EG stratum Hr contains a
principal vertex that is the basepoint for a periodic direction in Hr .

Complete details on principal vertices and rotationless relative train track maps, includ-
ing the relationship between principal lifts and principal vertices and the relationship
between forward rotationless outer automorphisms and rotationless relative train track
maps can be found in [10, Section 3].

For any finite graph K , the core of K is the subgraph of K consisting of edges that
are crossed by some circuit in K . The core of K contains no valence one vertices.

Definition 2.19 A filtration ∅DG0�G1� � � � �GN DG that satisfies the following
property is said to be reduced (with respect to � ) : if a free factor system F 0 is �k –
invariant for some k > 0 and if F.Gr�1/@ F 0 @ F.Gr / then either F 0 D F.Gr�1/

or F 0 D F.Gr /.

We now recall the properties of a very useful kind of relative train track map and the
existence theorem for relative train track maps with these properties.
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Definition 2.20 A relative train track map f W G ! G and filtration F given by
∅ D G0 � G1 � � � � � GN D G is said to be a CT (for completely split improved
relative train track map) if it satisfies the following properties.

(1) (Rotationless) f W G!G is rotationless.

(2) (Completely split) f W G!G is completely split.

(3) (Filtration) F is reduced. The core of each filtration element is a filtration
element.

(4) (Vertices) The endpoints of all indivisible periodic (necessarily fixed) Nielsen
paths are (necessarily principal) vertices. The terminal endpoint of each nonfixed
NEG edge is principal (and hence fixed).

(5) (Periodic edges) Each periodic edge is fixed and each endpoint of a fixed edge
is principal. If the unique edge Er in a fixed stratum Hr is not a loop then
Gr�1 is a core graph and both ends of Er are contained in Gr�1 .

(6) (Zero strata) If Hi is a zero stratum, then Hi is enveloped by an EG stratum
Hr , each edge in Hi is r –taken and each vertex in Hi is contained in Hr and
has link contained in Hi [Hr .

(7) (Linear edges) For each linear Ei there is a closed root-free Nielsen path wi

such that f .Ei/ D Eiw
di

i for some di ¤ 0. If Ei and Ej are distinct linear
edges with the same axes then wi D wj and di ¤ dj .

(8) (NEG Nielsen paths) If the highest edges in an indivisible Nielsen path �

belong to an NEG stratum then there is a linear edge Ei with wi as in (Linear
edges) and there exists k ¤ 0 such that � DEiw

k
i
xEi .

(9) (EG Nielsen paths) If Hr is EG and � is an indivisible Nielsen path of height r ,
then f jGr D � ıfr�1 ıfr where :

(a) fr W Gr!G1 is a composition of proper extended folds defined by iteratively
folding � .

(b) fr�1W G
1!G2 is a composition of folds involving edges in Gr�1 .

(c) � W G2!Gr is a homeomorphism.

Theorem 2.21 [10, Theorem 4.29] Suppose that � 2Out.Fn/ is forward rotationless
and that C is a nested sequence of �–invariant free factor systems. Then � is repre-
sented by a CT f W G!G and filtration ∅DG0 �G1 � � � � �GN DG such that the
nested sequence of �–invariant free factor systems defined by the Gj ’s contains C .
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Iterating an edge We make frequent use of isolated points in FixN . yf / for principal
lifts zf . For the reader’s convenience we quote three results that we refer to several
times.

Lemma 2.22 If f W G!G is a CT then zf is a principal lift if and only if some (and
hence every) element of Fix. zf / is a principal vertex.

Proof This follows from Remark 4.8, Corollary 3.22 and Corollary 3.27 of [10].

Lemma 2.23 The following properties hold for every principal lift zf W � ! � of a
CT f W G!G .

(1) If zv 2 Fix. zf / and a nonfixed edge zE determines a fixed direction at zv , then
zE � zf#. zE/� zf

2
# .
zE/� � � � is an increasing sequence of paths whose union is

a ray zR that converges to some P 2 FixN . yf / and whose interior is fixed point
free. If zE is a lift of an edge in an EG stratum then the accumulation set of P is
the element in L.�/ corresponding to that stratum.

(2) For every isolated P 2 FixN . yf / there exists zE and zR as in (1) that converges
to P .

Proof This a combination of [10, Lemma 3.26] and [10, Lemma 4.37].

If zE and P are as in Lemma 2.23 then we say that zE iterates to P and that P is
associated to zE .

Lemma 2.24 Suppose that  2Out.Fn/ is forward rotationless and that P 2FixN .y‰/

for some ‰2P. /. Suppose further that ƒ is an attracting lamination for some element
of Out.Fn/, that ƒ is  –invariant and that ƒ is contained in the accumulation set
of P . Then PFƒ. /� 0 and PFƒ. / > 0 if and only if P is isolated in FixN .y‰/.

Proof This is [10, Lemma 4.39].

Axes Assume that � is forward rotationless and that f W G! G is a CT. Following
the notation of [3] we say that an unoriented conjugacy class � of a root-free element
of Fn is an axis for � if for some (and hence any) representative c 2 Fn there exist
distinct ˆ1; ˆ2 2 P.�/ that fix c . Equivalently FixN . ŷ 1/\FixN . ŷ 2/ is the endpoint
set of the axis Ac for Tc . The number of distinct elements of P.�/ that fix c is called
the multiplicity of �. It is a consequence of Lemma 2.25 below that both the number
of axes and the multiplicity of each axis is finite.
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Lemma 2.9 implies that the oriented conjugacy class of c is �–invariant. By Lem-
mas 4.1.4 and 4.2.6 of [2], the circuit  representing c splits into a concatenation of
subpaths ˛i , each of which is either a fixed edge or an indivisible Nielsen path. (NEG
Nielsen paths) and [10, Corollary 4.20] imply that each turn .x̨i ; ˛iC1/ is legal. [10,
Lemma 4.12(1)] therefore implies that this splitting is the complete splitting of  .

There is an induced complete splitting of Ac into subpaths z̨i that project to either
fixed edges or indivisible Nielsen paths. The lift zf0W �! � that fixes the endpoints
of each z̨i is a principal lift by Lemma 2.22 and commutes with Tc . We say that zf0

and the corresponding ˆ0 2 P.�/ are the base lift and base principal automorphism
associated to � and the choices of Tc and f W G!G . By [10, Lemma 4.12(2)], for
each z̨i and for each zx 2 z̨i , the nearest point to zf0.zx/ in Ac is contained in z̨i .
It follows that Fix.T j

c
zf0/ D ∅ for all j ¤ 0 and hence that zf0 is the only lift that

commutes with Tc and has fixed points in Ac .

We recall [10, Lemma 4.14 ].

Lemma 2.25 Suppose that � is forward rotationless and that the unoriented conjugacy
class � is an axis for � . Assume notation as above. There is a bijection between the set
of principal lifts [principal automorphisms] zfj ¤

zf0 [respectively ĵ ¤ˆ0 2 P.�/]
that commute with Tc [fix c ] and the set of linear edges fEj g with axis equal to �.
Moreover, if f .Ej /DEjw

dj

j then zfj D T
dj

c
zf0 [ ĵ D i

dj

c ˆ0 ].

3 Rotationless abelian subgroups

The Recognition Theorem is stated purely in terms of � and its forward iterates. No
condition on ��1 is required. In the context of abelian subgroups, it is more natural to
give � and ��1 equal footing.

Definition 3.1 P˙.�/D P.�/[ P.��1/. An outer automorphism � is rotationless if
it satisfies the following two conditions.

(1) Fix. ŷ /D Per. ŷ / for all ˆ 2 P˙.�/.

(2) For each k � 1, ˆ 7!ˆk defines a bijection (see Remark 3.2) between P˙.�/
and P˙.�k/.

A subgroup of Out.Fn/ is rotationless if each of its elements is. Our standing as-
sumption is that n� 2. For notational convenience we say that the identity element of
Out.F1/ is rotationless.
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Remark 3.2 Assuming that the first item in Definition 3.1 is satisfied, the assignment
ˆ 7!ˆk defines an injection of P˙.�/ into P˙.�k/. Indeed if ˆ 7!ˆk is not injective
then there exist distinct ˆ1; ˆ2 2 P˙.�/ and k � 1 such that Fix. ŷ 1/D Fix. ŷ k

1
/D

Fix. ŷ k
2
/ D Fix. ŷ 2/, which contains at least two points and is not the endpoint set

of an axis, is contained in Fix. ŷ 2
ŷ�1

1
/ in contradiction to the fact that ˆ2ˆ

�1
1

is a
nontrivial covering translation. We may therefore replace the assumption in the second
item of Definition 3.1 that the assignment ˆ 7! ˆk defines a bijection with a priori
weaker assumption that ˆ 7!ˆk defines a surjection.

Remark 3.3 It is an immediate consequence of the definition that if � is rotationless
and ˆ0 is a principal lift of �k for k ¤ 0 then � has a principal lift ˆ such that
Fix. ŷ /D Fix. ŷ 0/.

The natural guess is that � is rotationless if and only if � and ��1 are forward
rotationless. The following lemma and corollary fall short of proving this (imagine ˆ
such that Fix. ŷ / consists of three fixed attractors and a repelling orbit of period two)
but is sufficient for our needs.

Lemma 3.4 (1) If � is rotationless then � and ��1 are forward rotationless.

(2) If � and ��1 are forward rotationless and (�) is satisfied for � D� and � D��1

then � is rotationless.

(�)
For all ‚ 2 P.�/, the set of repelling periodic points for y‚ is not a
period two orbit that is the endpoint set of a lift of a generic leaf  of
an element of L.��1/.

Proof Assume that � is rotationless. For k > 0, each element of P.�k/ has the
form ˆk where Fix. ŷ /D Per. ŷ / and hence FixN . ŷ /D PerN . ŷ

k/. Thus ˆ 2 P.�/
proving that � is forward rotationless. The symmetric argument showing that ��1 is
forward rotationless completes the proof of (1).

Assume now that the hypotheses of (2) are satisfied, that k � 1 and that ˆk 2 P˙.�k/.
The plus and minus cases are symmetric so we may assume that ˆk 2 P.�k/. Since �
is forward rotationless, ˆk Dˆ

k for some ˆ 2 P.�/ satisfying FixN . ŷ /D PerN . ŷ /.
To prove that Fix. ŷ /D Per. ŷ / it suffices to show that all periodic repelling points for
ŷ have period one. Since ��1 is forward rotationless, the only way this could fail
would be if the repelling set is a period two orbit and if ˆ2 62 P.��1/. This possibility
is ruled out by (�).

Corollary 3.5 If � and ��1 are forward rotationless then �2 is rotationless. There
exists k > 0, depending only on n, so that �2k is rotationless for every � 2 Out.Fn/.
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Proof The first statement follows from Lemma 3.4 and the second statement from
Remark 2.8.

Example 3.6 Let G be the graph with one vertex v and edges labelled A, B and C .
Let f W G!G be the homotopy equivalence defined by

A 7! B3A B 7! C 3B C 7! .B3A/3C:

The directions at v determined by xA; xB and xC are fixed by Df and those determined
by B and C are interchanged by Df . Thus f is not rotationless and the outer
automorphism � that it determined is neither forward rotationless nor rotationless.
The map f factors as f3f2f1 where f1 fixes A and B and f1.C /DA3C , f2 fixes
A and C and f2.B/ D C 3B and f3 fixes B and C and f3.A/ D B3A. It is easy
to check that each of these homotopy equivalence determines a rotationless element
of Out.Fn/. This shows that the composition of rotationless elements need not be
rotationless. Obviously, � induces the identity on H1.G;Z3/ and so illustrates that not
every such element is rotationless. We will see (Corollary 3.13) that the composition
of commuting rotationless elements is rotationless.

Lemma 3.7 If � is rotationless and if ˆ represents � , then FixN . ŷ
2/ 6D ∅. If, in

addition, ˆ 2 P˙.�/ then FixN . ŷ / and FixN . ŷ
�1/ are nonempty.

Proof The second statement follows from the first and the assumption that � is
rotationless.

Choose f W G ! G representing � and let zf W � ! � be the lift corresponding to
ˆ. It suffices to show that FixN . yf

2/ ¤ ∅. If Fix. zf / D ∅ then FixN . yf / ¤ ∅ by
[10, Lemmas 3.23 and 3.15] and we are done. If zx 2 Fix. zf / and zf fixes a direction
at zx then FixN . yf / ¤ ∅ by [10, Lemma 3.26] and again we are done. Since � is
rotationless, the only remaining case is that there are exactly two zf periodic directions
at zx . These directions are fixed by zf 2 so a second application of [10, Lemma 3.26]
completes the proof.

Abelian subgroups of Out.Fn/ are finitely generated [1]. Thus given any generating
set for an abelian subgroup, there is a finite subset which also generates. At the end of
this section (Corollary 3.13) we prove that an abelian subgroup A of Out.Fn/ that is
generated by rotationless elements, is rotationless.

Many of our arguments proceed by induction on the cardinality of a given set of
rotationless generators.
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Lemma 3.8 If � is rotationless and F is a �–invariant free factor then �jF is
rotationless.

Proof If F has rank one then this follows from the first item of Lemma 2.9 and
our convention that the identity element of Out.F1/ is rotationless. If F has rank
at least two then every automorphism ˆF representing �jF extends uniquely to an
automorphism ˆ representing � because no nontrivial covering translation restricts to
the identity on F . Since FixN .b̂F /� FixN . ŷ /, we have that ˆ is principal if ˆF is
principal and �jF is rotationless if � is rotationless.

We study lifts of an abelian subgroup of Out.Fn/ to Aut.Fn/ that is generated by
rotationless elements via the following definition and lemma.

Definition 3.9 A set X � @Fn with at least three points is a principal set for an abelian
subgroup A of Out.Fn/ if each  2 A is represented by ‰ 2 Aut.Fn/ satisfying
X � Fix.y‰/ and if this necessarily unique ‰ is an element of P˙. /. The assignment
 7!‰ is a lift of A from Out.Fn/ to Aut.Fn/.

Remark 3.10 If X a principal set for A and X0 � X contains at least three points
then X0 is a principal set for A and X0 and X determine the same lift of A to Aut.Fn/.
If  7!‰ is the lift of A determined by X then

T
 2A Fix.y‰/ is the unique maximal

principal set containing X .

Lemma 3.11 Suppose that A is an abelian subgroup of Out.Fn/ that is generated by
rotationless elements, that � 2A is rotationless and that ˆ 2 P˙.�/. Let F D Fix.ˆ/.

(1) If F has rank zero then Fix. ŷ / is a principal set for A.

(2) If F has rank one with generator c and if P is an isolated point in Fix. ŷ / then
fP;T˙c g is a principal set for A.

(3) If F has rank at least two then @Fix.ˆ/ contains at least one principal set X
for A and one can choose X to contain T˙c for any given A–invariant Œc� with
c 2 F . Moreover, for every isolated point P in Fix. ŷ / there is a principal set Y
for A that contains P and at least two elements of @F .

In particular, Fix. ŷ / contains at least one principal set for A and every isolated point
in Fix. ŷ / is contained in such a principal set. If sW A! Aut.Fn/ is the lift determined
by a principal set contained in Fix. ŷ / then s.�/Dˆ.
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Proof Let S be a finite rotationless generating set for A. For each  2 S , we choose
an automorphism ‰k that commutes with ˆ and that representing  k for some k � 1

as follows. Begin with any ‰ representing  . Lemma 2.6 implies that conjugation
by ‰ defines a permutation of the finite set of isogredience classes in P˙.�/. Choose
k > 0 so that the permutation induced by ‰k is trivial. Then ‰kˆ‰�k D ibˆi�1

b
for

some b 2 Fn and ‰k WD i�1
b
‰k commutes with ˆ. In particular, F is ‰k –invariant.

Assume at first that F has rank zero. By Lemma 2.2, Fix. ŷ / is a finite union of attractors
and repellers and by Lemma 3.7 there is at least one of each. Since ˆ 2 P˙.�/, there
are at least three points in Fix. ŷ /.

We claim that if ‚ represents � 2 A and if Fix. ŷ / � Fix.y‚/ then ‚ 2 P˙.�/. If
Fix.y‚/ contains at least five points then this is obvious. After replacing � with its
inverse if necessary, there are two potentially bad cases. The first is that Fix.y‚/ has
exactly one repelling point and exactly two attracting points and that the attractors
bound a lift z of a generic leaf of some ƒ 2 L.�/. Since the endpoints of z are
isolated fixed points of ŷ , ƒ 2 L.�/[L.��1/ by Lemma 2.24. After replacing �
with its inverse if necessary, we may assume that ƒ 2 L.�/ and that the endpoints of
z are attractors for ˆ. Since Fix. ŷ / contains only three points and by Lemma 3.7 has
at least one ŷ –repeller, this contradicts the assumption that ˆ 2 P˙.�/.

The other bad possibility is that Fix.y‚/ is a four point set with two repelling points
that bound a lift of a leaf of an element of L.��1/ and two attracting points that bound
a lift of a leaf of an element of L.�/. As in the previous case, this description also
applies to ˆ in contradiction to the assumption that ˆ 2 P˙.�/. This completes the
proof that ‚ 2 P˙.�/.

After replacing ‰k with an iterate, we may assume that Fix. ŷ / � Fix.y‰k/ and
hence that ‰k 2 P˙. k/. Since  is rotationless, there exists ‰ 2 P˙. / with
Fix. ŷ /� Fix.y‰/. As this holds for every element of S , we have proved (1).

Suppose next that F has rank one with generator c and that P is an isolated point
in Fix. ŷ /. Lemma 2.2 implies that there are only finitely many ic –orbits of isolated
points in Fix. ŷ /. After increasing k if necessary, we may assume that c 2Fix.‰k/ and
that ‰k preserves each such ic –orbit. In particular, y‰k.P /D yT

q
c .P / for some q . Let

‰0
k
WD i

�q
c ‰k . Then fT˙c ;Pg � Fix.y‰0

k
/ and ‰0

k
2 P˙. /. Since  is rotationless,

there exists ‰ 2 P˙. / such that fT˙c ;Pg � Fix.y‰/. As this holds for every element
of S , it follows that for each � 2A there exists ‚ such that fT˙c ;Pg � Fix.y‚/. In
this case it is obvious that ‚ 2 P˙.�/. This completes the proof of (2).

We turn next to the moreover part of (3). Assume that P is an isolated point in Fix. ŷ /.
As in the rank one case, the fact that there are only finitely many F –orbits of isolated
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points in Fix.ˆ/ allows us to choose ‰�
k

representing an iterate  k of  such that
P 2 Fix.c‰�

k
/ and such that F is ‰�

k
–invariant. We claim that .‰�

k
/2 2 P˙. 2k/.

Lemmas 3.8 and 3.7 together imply that 3.‰�
k
/2jF has at least one fixed nonattractor

Q� and symmetrically one fixed nonrepeller QC . Lemma 2.24 implies that QC and
Q� do not cobound a lift of a generic leaf of an attracting lamination. (This method
for proving that a pair of points do not cobound a lift of a generic leaf of an attracting
lamination is used implicitly throughout the rest of the proof.) Generic leaves of an
attracting lamination are birecurrent and so either have both endpoints in @F or neither
endpoint in @F . Thus P and Q˙ do not cobound a lift of a generic leaf of an attracting
lamination. This verifies our claim. Since  is rotationless, there exists ‰ 2 P˙. /
with fP;QC;Q�g � Fix.y‰/. These three points are also in Fix. ŷ /. It follows that ‰
commutes with ˆ and hence that F is ‰–invariant.

We have shown that if S D f 1; : : : ;  K g then for all 1 � j �K there exists ‰j 2

P˙. j ) such that P 2 Fix.y‰j / and such that F is ‰j –invariant. Item (i) of Lemma
2.2 implies that P is not fixed by any covering translation and hence that the ‰j ’s
commute.

We produce the desired principal set Y by induction on j . To this end, let

Yj D
�Tj

iD1
Fix.c‰i/

�
\ @F D

Tj
iD1

Fix.1‰i jF/;

Fj D
Tj

iD1
Fix.‰i jF/;

and let Ij be the statement that Fj is finitely generated and that Yj either contains at
least three points or contains two points that do not cobound a lift of a generic leaf of
any attracting lamination. If Yj contains the endpoint set of an axis then

Tj
iD1

Fix.c‰i /

is infinite. As noted above, P and an element of @F can not cobound a generic leaf of
an attracting lamination or any axis. Thus IK completes the proof of the moreover
part of (3).

I1 follows from Lemma 3.7 applied to ‰1jF . Assume that Ij�1 holds. Yj�1 is
y‰j –invariant and F is ‰j –invariant. If Yj�1 is finite then it is fixed by an iterate of
y‰j and hence by y‰j ; in this case Fj has rank zero. If Yj�1 contains T˙

b
for some

unique root-free unoriented b then T˙
b

is fixed by an iterate of y‰j and hence by y‰j ;
in this case Fj has rank one. In either case Ij holds. In the remaining case Fj�1

has rank at least two and Ij follows from Fj D Fix.‰j jFj�1/ and from Lemma 3.7
applied to y‰j jFj�1 , keeping in mind that Fix.y‰j jFj�1/ � Yj . This completes the
induction step and so proves IK .

It remains to prove the main statement of (3). We argue by induction on the cardinality K

of our given rotationless generating set S for A. If K D 1 and S D f g then there
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exists ‰ 2 P˙. / such that Fix.y‰/D Fix. ŷ / and Fix.y‰/ is obviously a principal set
for A. We now assume that K � 2 and that (3) holds for subgroups that are generated
by fewer than K rotationless elements.

The defining property of ‰k is that it commutes with ˆ. We may therefore replace our
current ‰k with any lift of any iterate of  that preserves F . By Lemma 5.2 of [3] or
Proposition 9.4 of [15], there is such a lift, still called ‰k , such that ‰k jF 2P˙. k jF/;
moreover if c 2 Fix.ˆ/ is A–invariant then we may choose ‰k so that c 2 Fix.‰k/.
Since  is rotationless, there exists ‰ 2 P˙. / such that Fix.y‰/D Fix.y‰k/. Thus
Fix.y‰/\Fix. ŷ / contains at least three points which implies that ‰ commutes with ˆ.
To summarize, we have ‰ 2 P˙. / that preserves F and such that ‰jF 2 P˙. jF/; if
c 2 Fix.ˆ/ is A–invariant then we may assume that c 2 Fix.‰/. As each ‰ preserves
F , it follows that ŒF � is A–invariant.

Let A0 DAjF , let  0 D  jF and let ‰0 D‰jF . As noted in the proof of Lemma 3.8,
a principal set for A0 is also a principal set for A. To prove the existence of a principal
set X (containing T˙c / for A it suffices to prove the existence of a principal set X 0
(containing T˙c / for A0 . If Fix.‰0/ has rank less than two then the existence of X 0
follows from (1) and (2) applied to ‰0 2 A0 . Suppose then that Fix.‰0/ has rank at
least two. By the same logic, it is sufficient to find a principal set X 00 (containing T˙c /

for A0jFix.‰0/ and this exists by the inductive hypothesis and the fact that A0jFix.‰0/
has a rotationless (by Lemma 3.8) generating set with fewer than K elements.

Lemma 3.12 An abelian subgroup A that is generated by rotationless elements is
torsion free.

Proof If � 2 A is a torsion element then [6] it is represented by a finite order
homeomorphism f 0W G0!G0 of a marked graph G0 . Suppose that X is a principal set
for A and that P1;P2;P32X . There is a lift zf 0W � 0!� 0 such that each Pi 2Fix.bf 0 /.
The line L12 with endpoints P1 and P2 and the line L13 with endpoints P1 and
P3 are zf 0# –invariant and since zf 0 is a homeomorphism they are zf 0–invariant. The
intersection L12 \ L13 is an zf 0–invariant ray and so is contained in Fix. zf 0/. It
follows that L12 � Fix. zf 0/ and that the image of L12 in G0 is contained in Fix.f 0/.
It therefore suffices to show that every edge of G0 is crossed by at least one such line.

For any set Y � @Fn , let CY be the set of bi-infinite lines cobounded by pairs of
elements of Y . Let WA D [CX where the union is over all principal sets X for A

and let F be the smallest free factor system that carries WA . It suffices to show that
F D fŒŒFn��g. The proof of this assertion is by induction on the cardinality K of a
given rotationless generating set S for A.
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Assume to the contrary that F is proper and choose  2 S . Choose a CT f W G!G

representing  in which F is realized as a filtration element Gr . Lemma 2.23(1)
implies that each ƒ 2 L. / is the accumulation set of an isolated point in FixN .y‰/

for some ‰ 2 P. /. By Lemma 3.11, P is contained in some principal set X . This
implies that F carries a line that accumulates on ƒ and so carries ƒ. Thus each
stratum above Gr is NEG. Items (Rotationless) and (Periodic edges) of Definition
2.20 and Remark 2.18 imply that every edge E of G nGr has an orientation so that its
initial vertex is principal and so that its initial direction is fixed. Choose a lift zE of E

and let zf W �! � be the principal lift that fixes the initial direction determined by zE .
There is a ray that begins with zE and converges to a point in FixN . yf /. This follows
from Lemma 2.23 if E is not a fixed edge and from Lemma 3.26 of [10] otherwise.
Let ‰ be the principal automorphism corresponding to zf . By Lemma 4.15 of [10]
there is at least one other fixed direction based at the initial vertex of zE . Applying
the same argument to this direction, we see that some element of CFix.y‰/ crosses zE .
It therefore suffices to show that each element of CFix.y‰/ is carried by F . This is
obvious if K D 1. We have now proved the basis step of our induction argument and
may assume that K > 1 and that F D fŒŒFn��g when A has a rotationless generating
set with fewer than K elements.

If Fix.‰/ has rank zero then Fix.y‰/ is a principal set for A by Lemma 3.11(1) and
CFix.y‰/ is carried by F . If Fix.‰/ has rank one with generator c then Lemma 3.11(2)
implies that the line connecting P to TCc is carried by F for each P 2 Fix.y‰/. It
follows that the line connecting any two points of Fix.y‰/ is carried by F .

We may therefore assume that Fix.‰/ has rank at least two. Let us show that Fix.‰/ is
carried by F . Lemma 3.8 implies that AjFix.‰/ has a rotationless generating set with
fewer than K elements. The inductive hypothesis therefore implies that no proper free
factor system of Fix.‰/ carries WAjFix.‰/ . The Kurosh subgroup theorem therefore
implies that any free factor system of Fn that carries WAjFix.‰/ also carries all of
Fix.‰/. Since WAjFix.‰/ �WA we conclude that Fix.‰/ is carried by F .

Lemma 3.11(3) implies that for each P 2 Fix.y‰/ there exists Q 2 @Fix.‰/ so that the
line connecting P to Q is carried by F . Since the line connecting any two points in
@Fix.‰/ is carried by F it follows that the line connecting any two points in Fix.y‰/
is carried by F .

Corollary 3.13 An abelian subgroup A that is generated by rotationless elements is
rotationless.

Proof Suppose that � 2 A, that k > 1 and that ˆk 2 P˙.�k/. Choose m � 1

so that �km is rotationless. By Lemma 3.11 there is a principal set X for A with

Geometry & Topology, Volume 13 (2009)



Abelian subgroups of Out.Fn/ 1681

X � Fix. ŷm
k
/. Let sW A! Aut.Fn/ be the lift determined by X and let ˆD s.�/.

Then ˆkm D s.�k/m Dˆm
k

and so ˆk D s.�k/Dˆk by Lemma 3.12. To complete
the proof it suffices by Remark 3.2 to show that ˆ 2 P˙.�/ and for this it suffices to
show that Fix. ŷ km/� Fix. ŷ /.

Since s.A/ is abelian, F WD Fix.ˆkm/ is s.A/–invariant. Lemma 3.12 implies that
ˆ is uniquely characterized by ˆkm Dˆm

k
and hence that ˆ is independent of the

choice of the principal set X � Fix. ŷm
k
/ for A. Thus each X � Fix. ŷ /. Lemma 3.11

implies that Fix. ŷ / contains each isolated point in Fix. ŷm
k
/ so it remains to show that

@F � Fix. ŷ /. This follows from (1) and (2) of Lemma 3.11 if F has rank less than
two and from Lemma 3.12 applied to AjF if F has rank at least two.

Corollary 3.14 For each abelian subgroup A of Out.Fn/, the set of rotationless
elements is a rotationless subgroup AR that has finite index in A.

Proof This follows immediately from Corollaries 3.5 and 3.13 and the fact that A is
finitely generated.

4 Generic elements of rotationless abelian subgroups

In this section we define an embedding of a given rotationless abelian subgroup A into
an integer lattice ZN and say what it means for an element of A to be generic with
respect to this embedding.

Definition 4.1 Suppose that X1 and X2 are principal sets for A that define distinct
lifts s1 and s2 of A to Aut.Fn/ and that T˙c 2 X1 \X2 . Then ic commutes with
s1. / and with s2. / and s2. /D i

d. /
c s1. / for all  2 A and some d. / 2 Z;

the assignment  7! d. / defines a homomorphism that we call the comparison
homomorphism !W A! Z determined by X1 and X2 .

Remark 4.2 Principal sets X1 and X2 for A define distinct lifts of A to Aut.Fn/ if
and only if X1[X2 is not a principal set for A.

Lemma 4.3 For any rotationless abelian subgroup A there are only finitely many
comparison homomorphisms !W A! Z.

Proof Distinct comparison homomorphisms must disagree on some element of each
basis of A so we can restrict attention to those comparison homomorphisms that
disagree on a single element  2 A. If ! is defined with respect to X1 , X2 and c

Geometry & Topology, Volume 13 (2009)



1682 Mark Feighn and Michael Handel

then Œc�u , the unoriented conjugacy class of c , is an axis of  . By Lemma 2.25,  
has only finitely many axes. We may therefore restrict attention to those comparison
homomorphisms that are defined with respect to the same Œc�u . If a 2 Fn and if !0 is
defined with respect to yiaX1 , yiaX2 and ia.c/ then !0 D ! . We may therefore restrict
attention to comparison homomorphisms that are defined with respect to the same c .
The number of such comparison homomorphisms is bounded by the multiplicity of
Œc�u as an axis for  by Lemma 2.25.

Lemma 4.4 If A is a rotationless abelian subgroup then L.A/ D
S
�2A L.�/ is a

finite collection of A–invariant laminations.

Proof Let f 1; : : : ;  K g be a basis for A. If L.�/ D fƒ1; : : : ; ƒqg and F.ƒi/ is
the smallest free factor that carries ƒi then the F.ƒi/’s are distinct by Lemma 3.2.4
of [2]. Each  j permutes the ƒi ’s by Lemma 3.1.6 of [2] and so permutes the F.ƒi/’s
by Corollary 2.4. Since  j is rotationless, each F.ƒi/, and hence each ƒi , is  j –
invariant by Lemma 2.9. This proves that ƒi is A–invariant and hence that PFƒi

is defined on A. Each PFƒi
must be nonzero when applied to some  j and by

Corollary 3.3.1 of [2] this is equivalent to ƒi 2 L. j /[L. �1
j /, which is a finite

set.

Definition 4.5 For each ƒ 2 L.A/, we say that PFƒjA is the expansion factor
homomorphism for A determined by ƒ. Let N be the number of distinct comparison
and expansion factor homomorphisms for A. Define �W A!ZN to be the product of
these homomorphisms. We say that � is the coordinate homomorphism for A and that
each comparison homomorphism and expansion factor homomorphism is a coordinate
of �.

Lemma 4.6 If A is a rotationless abelian subgroup then �W A! ZN is injective.

Proof Given nontrivial � 2A, choose a CT f W G!G and filtration ∅DG0�G1�

� � � �GN DG representing � and let Hl be the lowest nonfixed irreducible stratum.
If Hl is EG then PFƒ.�/¤ 0 for the attracting lamination ƒ 2 L.�/ associated to
Hl . Otherwise Hl is a single edge E and f .E/DE � u where u� Gl�1 is a loop
that is fixed by f .

Choose a lift zE � � , let zu be the lift of u whose initial endpoint is the terminal
endpoint of zE and let Tc be the covering translation that carries the initial endpoint of
zu to the terminal endpoint of zu. The initial and terminal endpoints of zE are principal;
the former by Remark 2.18 and the latter by property (Vertices) in the definition of
CT. Lemma 2.22 implies that the lifts zf1W �! � and zf2W �! � of f that fix the

Geometry & Topology, Volume 13 (2009)



Abelian subgroups of Out.Fn/ 1683

initial and terminal endpoints of zE respectively are principal. By construction, zf1

and zf2 are distinct and commute with Tc . By Lemma 3.11 there exist principal sets
X1 � Fix. yf1/ and X2 � Fix. yf2/ that contain T˙c . Since zf1 ¤

zf2 , � is not contained
in the kernel of the comparison homomorphism determined by X1 and X2 . We have
shown that some coordinate of �.�/¤ 0 and since � was arbitrary, � is injective.

Definition 4.7 Assume that A is a rotationless abelian subgroup and that �W A!ZN

is its coordinate homomorphism. Then � 2A is generic if all coordinates of �.�/ are
nonzero.

Remark 4.8 For ƒ2L.A/ and � 2A, Corollary 3.3.1 of [2] implies that PFƒ.�/¤0

if and only if ƒ 2 L.�/[L.��1/. Thus � is generic in A if and only if “� has the
same axes and multiplicity as A” and L.A/D L.�/[L.��1/.

Lemma 4.9 Every rotationless abelian subgroup A has a basis of generic elements.

Proof Given a basis  1; : : : ;  K for A and � 2 A let NZ.�/ � f1; : : : ;N g be
the nonzero coordinates of �.�/. For all but finitely many positive integers a2 ,
NZ. 1 

a2

2
/DNZ. 1/[NZ. 2/. Inductively choose positive integers ai for i > 1 so

that ‰0
1
WD‰1‰

a2

2
� � �‰

aK

K
satisfies NZ. 0

1
/D

SK
iD1 NZ. i/Df1; : : : ;N g. Replacing

 1 with  0
1

produces a new basis in which the first element is generic. For all but
finitely many positive integers m,  1;  2 

m
1
;  3 

m
1
� � � ;  K 

m
1

is a basis of generic
elements.

Lemma 4.10 If � 2 A is generic then fFix. ŷ / W ˆ 2 P˙.�/g is the set of maximal
(with respect to inclusion) principal sets for A.

Proof Each principal set X 0 for A determines a lift sW A! Aut.Fn/. If ˆ 2 P˙.�/
and Fix. ŷ / � X 0 then s.�/ D ˆ and X 0 � Fix. ŷ /. This proves that Fix. ŷ / is a
maximal principal set if it is a principal set. It therefore suffices to show that each
Fix. ŷ / is a principal set.

If F WD Fix.ˆ/ has rank zero then Fix. ŷ / is a principal set by Lemma 3.11(1). If
F has rank one with generator c and with isolated points P;Q 2 Fix. ŷ / then by
Lemma 3.11(2) there is a maximal principal set XP that contains P and T˙c and a
maximal principal set XQ that contains Q and T˙c . Let sQ and sP be the lifts of A

to Aut.Fn/ determined by XP and XQ respectively. If XP ¤XQ then the comparison
homomorphism that they determine evaluates to zero on � since sP .�/D sQ.�/Dˆ

in contradiction to the assumption that � is generic. Thus XP D XQ . Since P and Q

are arbitrary, XP D Fix. ŷ /.
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Suppose finally that F has rank at least two. We claim that AjF is trivial. If not,
let �0 be the homomorphism defined on AjF as the product of expansion factor and
comparison homomorphisms that occur for AjF . Each coordinate !0 of �0 extends
to a coordinate ! of �. Since �jF is the identity, !.�/D 0 in contradiction to the
assumption that � is generic. Thus AjF is trivial and @F is contained in a maximal
principal set X for A.

By Lemma 3.11(3), each isolated point P in Fix. ŷ / is contained in a maximal principal
set XP whose intersection Y with @F contains at least two points. If XP ¤ X
then Y has exactly two points and in fact equals fT˙

b
g for some b 2 F since every

lift of the identity outer automorphism is an inner automorphism. The comparison
homomorphism ! determined by XP and X evaluates to 0 on � in contradiction
to the assumption that � is generic. Thus XP D X for all isolated points P and
Fix. ŷ /D X as desired.

It is an immediate corollary, that from the point of view of fixed points of principal
lifts, generic elements are indistinguishable.

Corollary 4.11 For any generic �; 2 A there is a bijection hW P˙.�/! P˙. /
such that Fix. ŷ /D Fix.1h.ˆ// for all ˆ 2 P˙.�/.

5 A.�/

The data required in the Recognition Theorem (Theorem 2.10) has both qualitative
and quantitative components. If we fix the qualitative part and allow the quantitative
part to vary then we generate an abelian group that is naturally associated to the outer
automorphism being considered. This section contains a formal treatment of this
observation. A more computational friendly approach in terms of relative train track
maps is given in the next section.

Definition 5.1 Assume that � is rotationless. A.�/ is the subgroup of Out.Fn/

generated by rotationless elements � for which there is a bijection hW P˙.�/! P˙.�/
satisfying Fix.1h.ˆ//D Fix. ŷ / for all ŷ 2 P.�/.

Remark 5.2 It is an immediate consequence of the definitions that A.�/DA.�k/

for all k ¤ 0 and for all rotationless � .

Remark 5.3 If A is a rotationless abelian subgroup and � and  are generic in A

then Corollary 4.11 implies that A.�/DA. /. One can therefore define A.A/ to be
A.�/ for any generic � in A.
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Lemma 5.4 If A is a rotationless abelian subgroup and � is generic in A, then
A�A.�/.

Proof Lemma 4.9 and Corollary 4.11 imply that there is a generating set of A that is
contained in A.�/.

To prove that A.�/ is abelian we appeal to the following characterization of the
rotationless elements in the centralizer C.�/ of � .

Lemma 5.5 If �; 2 Out.Fn/ are rotationless, then  2 C.�/ if and only if the
following three properties are satisfied for all ˆ 2 P˙.�/:

(ˆ–1) There exists ‰ 2 P˙. / such that Fix. ŷ / is y‰–invariant.

(ˆ–2) If P 2 Fix. ŷ / is isolated then one may choose ‰ in (ˆ–1) such that P 2

Fix.y‰/.

(ˆ–3) If a 2 Fix.ˆ/ and Œa�u is an axis of � then one may choose ‰ in (ˆ–1) such
that a 2 Fix.‰/.

Moreover, if  2 C.�/ and ‰ is as in (ˆ–1) then ‰ commutes with ˆ.

Proof If  2 C.�/, let AD h�; i. Lemma 3.11 implies that for each ˆ 2 P˙.�/,
there is a principal set X for A whose associated lift sW A ! Aut.Fn/ satisfies
s.�/ D ˆ. Then s. / 2 P˙. / commutes with ˆ and (ˆ–1) is satisfied. (ˆ–2)
follows from Lemma 3.11. If Œa�u is an axis of � then Œa�u is  k –invariant for some
k > 0 and so is  –invariant by Lemma 2.9. Items (2) and (3) of Lemma 3.11 allow us
to choose X to contain T˙a which implies (ˆ–3). This completes the only if direction
of the lemma.

For the if direction, we assume that  satisfies the three items, define �0 WD  � �1

and prove that �0 D � by applying the Recognition Theorem.

For each ˆ2P.�/ choose ‰1 satisfying .ˆ�1/ and define ˆ0D‰1ˆ‰
�1
1
2P.�0/. If

‰2 also satisfies (ˆ–1) then ‰2D‰1ix where Fix. ŷ / is bix –invariant. By Lemma 2.1,
x 2 Fix.ˆ/. Thus ‰2ˆ‰

�1
2
D‰1ixˆi�1

x ‰�1
1
D‰1ˆ‰

�1
1

and ˆ0 is independent of
the choice of ‰1 . We denote ˆ 7!ˆ0 by hW P.�/! P.�0/ and note that Fix.1h.ˆ//D
y‰1.Fix. ŷ //D Fix. ŷ / and that FixN .1h.ˆ//D FixN . ŷ /. In particular, h is injective.
If ˆ is replaced by icˆi�1

c then ‰1 can be replaced by ic‰1i�1
c and ˆ0 is replaced

by icˆ
0i�1

c . Thus the restriction of h to an equivalence class in P.�/ is a bijection
onto an equivalence class in P.�0/. Lemma 2.6(2) implies that P.�/ and P.�0/ have
the same number of equivalence classes and hence that h is a bijection.
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Suppose that ˆ1 2 P.�/, that a 2 Fix.ˆ1/ is root-free and that ˆ2 WD id
a ˆ1 2 P.�/

for some d ¤ 0. Then Œa�u is an axis for � and by (ˆ1 –3) and (ˆ2 –3) we may
choose ‰1 for ˆ1 and ‰2 for ˆ2 to fix a. Thus ‰2 D im

a ‰1 for some m and
ˆ0

2
D im

a ‰1id
a ˆ1‰

�1
1

i�m
a D id

a ‰1ˆ1‰
�1
1
D id

a ˆ
0
1

which proves that h satisfies
Theorem 2.10(2)(ii).

By Lemma 2.23, for each ƒ 2 L.�/ there exists ˆ 2 P.�/ and an isolated point
P 2 FixN . ŷ / whose accumulation set equals ƒ. By (ˆ–2), we may assume that P is
y‰1 –invariant and hence that ƒ is  –invariant. It follows that ƒ is �0–invariant and that
PFƒ.�0/DPFƒ.�/. Theorem 2.10 implies that �D�0 and since FixN . ŷ

0/DFixN . ŷ /,
ˆDˆ0 , which proves that ‰ commutes with ˆ.

We denote the center of a group H by Z.H / and define the weak center WZ.H / to
be the subgroup of H consisting of elements that commute with some iterate of each
element of H .

Corollary 5.6 If � 2 Out.Fn/ is rotationless then A.�/ is an abelian subgroup of
C.�/. Moreover, each element of A.�/ commutes with each rotationless element of
C.�/ and so A.�/�WZ.C.�//.

Proof Lemma 5.5 implies that � 2 C.�/ for each � in the defining generating set of
A.�/ and that C.�/ and C.�/ contains the same rotationless elements. The corollary
follows.

Remark 5.7 In general, A.�/ is not contained in the center of C.�/. For example, if
nD2k and ˆ2P˙.�/ commutes with an order two automorphism ‚ that interchanges
the free factor generated by the first k elements in a basis with the free factor generated
by the last k elements of that basis, then A.�/ will contain elements that do not
commute with � .

It is natural to ask if � is generic in A.�/.

Lemma 5.8 If � is rotationless then � is generic in A.�/.

Proof We must show that if ! is a coordinate of �W A.�/! ZN then !.�/ ¤ 0.
Choose an element � of the defining generating set for A.�/ such that !.�/¤ 0. If
! D PFƒ then, after replacing � with ��1 if necessary, ƒ 2 L.�/. By Remark 2.18
and Lemma 2.23, there exist ‚ 2 P.�/ and an isolated point P 2 FixN .‚/ whose
accumulation set is ƒ. After replacing � with ��1 if necessary, there exists ˆ 2 P.�/
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such that Fix. ŷ /D Fix.y‚/ and such that P is an isolated point in FixN .‰/. Lemma
2.24 implies that !.�/¤ 0.

If ! is a comparison homomorphism determined by lifts s; t W A.�/! Aut.Fn/ then
s.�/ ¤ t.�/. Thus Fix.bs.�// D Fix.bs.�// ¤ Fix.bt.�// D Fix.bt.�// which implies
that !.�/¤ 0.

The following characterization of A.�/ is an immediate corollary of Lemma 5.4 and
Lemma 5.8.

Lemma 5.9 Suppose that � is rotationless. Then A.�/ is the maximal rotationless
abelian subgroup in which � is generic.

6 Disintegrating �

We have reduced the study of rotationless abelian subgroups of Out.Fn/, and so of
abelian subgroups of Out.Fn/ up to finite index, to the study of A.�/ for rotationless
� 2 Out.Fn/. In this section we construct the subgroup D.�/ of A.�/ described in
the introduction. In Section 7 we show that D.�/ has finite index in A.�/.

Let f W G! G be a CT representing � . We will need a coarsening of the complete
splitting of a path. If fEig is the set of linear edges associated to an axis � for �
then by (Linear edges) there is a root-free closed Nielsen path w and there are distinct
nonzero integers di such that f .Ei/DEi �w

di ; we say that di is the exponent of Ei .
For distinct Ei and Ej and for l 2Z, the path Eiw

l xEj is said to be quasi-exceptional.
The paths obtained by varying l but keeping i and j fixed are said to belong to the
same quasi-exceptional family. When l is unimportant we write Eiw

� xEj . If di and
dj have the same sign then Eiw

� xEj is an exceptional path but otherwise it is not.
Note also that since Ei and Ej are distinct, no Nielsen path is quasi-exceptional.

Assume that � D �1 � � � �s is the (necessarily unique) complete splitting of a path � . If
a� b and �ab WD �a � � � �b is quasi-exceptional then we say that �ab is a QE–subpath
of � .

Lemma 6.1 For any completely split path � , distinct QE–subpaths of � have disjoint
interiors.

Proof Suppose that � D �1 � � � �s is the complete splitting of � and that there exist
1� a� b � s and 1� a� c � d � s such that �ab WD �a � � � �b and �cd WD �c � � � �d

are distinct quasi-exceptional paths. We must show that c > b .
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If a < b then �a D Ei is a linear edge, �b D
xEj is the inverse of a linear edge and

each �l , a< l < b , is a Nielsen path. None of these terms is quasi-exceptional so we
may assume that c < d . The initial edge �c of �cd is a linear edge so is either equal
to a or greater than b . In the latter case we are done. In the former case, the terminal
edge of �cd must be �b since it is the first term after �c in the complete splitting of
� that is not a Nielsen path. This contradicts the assumption that �ab ¤ �cd and so
completes the proof if a< b . The case that c < d is proved similarly and the case that
both aD b and c D d is obvious.

Definition 6.2 The QE–splitting of a completely split path � is the coarsening of the
complete splitting of � obtained by declaring each QE–subpath to be a single element.
Thus the QE–splitting is a splitting into single edges in irreducible strata, connecting
subpaths in zero strata, Nielsen paths and quasi-exceptional paths. These subpaths are
the terms of the QE–splitting.

Definition 6.3 Define a finite directed graph B as follows. There is one vertex vB
i

for each nonfixed irreducible stratum Hi . If Hi is NEG then a vB
i –path is the unique

edge in Hi ; if Hi is EG then a vB
i –path is either an edge in Hi or a taken connecting

path in a zero stratum contained in H z
i . There is a directed edge from vB

i to vB
j if

there is a vB
i –path �i such that some term in the QE–splitting of f#.�i/ is an edge

in Hj . (Note that edges in B are defined with regard to f# rather than an iterate of f# .)
The components of B are labelled B1; : : : ;BM . For each Bs , define Xs to be the
minimal subgraph of G that contains Hi if vB

i 2Bs and Hi is NEG and contains H z
i

if vB
i 2Bs and Hi is EG. We say that X1; : : : ;XM are the almost invariant subgraphs

associated to f W G!G .

Remark 6.4 If a vertex v belongs to distinct almost invariant subgraphs then v is a
principal vertex by [10, Remark 4.9] and is hence fixed by f .

We could construct a directed graph with the same vertices as B by having a directed
edge from vB

i to vB
j if there is a vB

i –path �i such that some term in the QE–splitting of
f#.�i/ is a vB

j –path. The following lemma shows that this produces the same graph B .

Lemma 6.5 If i¤j and there is a vB
i –path �i such that some term in the QE–splitting

of f#.�i/ is a vB
j –path �j then some term in the QE–splitting of f#.�i/ is an edge in

Hj ; in particular there is a directed edge in B from vB
i to vB

j .

Proof We may assume without loss that Hj is EG and that some term �k in the
QE–splitting of f#.�i/ is a connecting path in some zero stratum in H z

j . If Hi is NEG
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then the endpoints of �i , and hence the endpoints of f#.�i/, are contained in Fix.f /
by Remark 2.18 and (Vertices). If Hi is EG then the endpoints of f#.�i/ belong to
both Hi and Hj and so belong to Fix.f / by Remark 6.4. Since the endpoints of �k

are not fixed by f , �k is neither the first nor last term in the QE–splitting of f#.�i/.
The terms adjacent to �k in the QE–splitting of f#.�i/ must be edges in Hj .

Definition 6.6 For each M –tuple a of nonnegative integers, define faW G!G by

fa.E/D

�
f

ai

# .E/ for each edge E �Xi ,
E for each edge E that is fixed by f .

Lemma 6.7 faW G!G is a homotopy equivalence for all a.

Proof Let NI be the number of irreducible strata in the filtration and for each 0 �

m� NI, let Gi.m/ be the smallest filtration element containing the first m irreducible
strata. We will prove by induction that each fajGi.m/ is a homotopy equivalence.

Since H1 is never a zero stratum, i.1/ D 1. If G1 is not a single edge fixed by f ,
then every edge in G1 is contained in a single almost invariant subgraph Xi . Thus
fajG1 is either the identity or is homotopic to f ai jG1 ; in either case it is a homotopy
equivalence.

We assume now that fajGi.m/ is a homotopy equivalence. Define g1W Gi.mC1/ !

Gi.mC1/ on edges by

g1.E/D

�
fa.E/ if E �Gi.m/,
E if E �Gi.mC1/ nGi.m/.

Remark 6.4 guarantees that g1 is well defined. It is easy to check that g1 is a homotopy
equivalence. If the edges of Hi.mC1/ are fixed by f , then g1 D fajGi.mC1/ and we
are done.

If f jHi.mC1/ is not the identity, then the edges in Gi.mC1/ nGi.m/ are contained in a
single almost invariant subgraph, say Xk . Define g2W Gi.mC1/!Gi.mC1/ on edges
by

g2.E/D

�
f

ak

# .E/ if E �Gi.m/,
E if E �Gi.mC1/ nGi.m/,

and g3W Gi.mC1/!Gi.mC1/ on edges by

g3.E/D

�
E if E �Gi.m/,
f

ak

# .E/ if E �Gi.mC1/ nGi.m/.

Then g2 is a homotopy equivalence and f ak jGi.mC1/ D g3g2 . Each component of
Gi.mC1/ is noncontractible by [10, Lemma 4.16], so f ak jGi.mC1/ is a homotopy
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equivalence. It follows that g3 , and hence also fajGi.mC1/ D g3g1 is a homotopy
equivalence.

Almost invariant subgraphs are defined without reference to the quasi-exceptional paths
in the QE–splitting of edge images. The next definition brings these into the discussion.

Definition 6.8 Suppose fX1; : : : ;XM g are the almost invariant subgraphs of f W G!
G . An M –tuple a D .a1; : : : ; aM / of nonnegative integers is admissible if for all
axes �, whenever

� Xs contains a linear edge Ei associated to � with exponent di ,

� Xt contains a linear edge Ej associated to � with exponent dj ,

� there exists a vertex vB of B and a vB –path � �Xr such that some element in
the quasi-exceptional family determined by Ei

xEj is a term in the QE–splitting
of f#.�/,

then ar .di � dj /D asdi � atdj .

Example 6.9 Suppose that G is the rose with edges E1;E2;E3 and E4 and that
f W G ! G is defined by E1 7! E1 , E2 7! E2E2

1
, E3 7! E3E1 and E4 7!

E4E3E3
xE2 . Then M D 2 with X1 having the single edge E2 and X2 consisting of

E3 and E4 . In the notation of Definition 6.8, s D 1, i D 2, di D 2, t D 2, j D 3,
dj D 1, r D 2 and � D E4 . The pair .a1; a2/ is admissible if a2 D 2a1 � a2 or
equivalently a2 D a1 . Thus fa D f

a1 for each admissible a.

Definition 6.10 Each fa determines an element �a 2 Out.Fn/ and also an element
Œfa� in the semigroup of homotopy equivalences of G that respect the filtration modulo
homotopy relative to the set of vertices of G . Define D.�/D h�a W a is admissiblei.
Both �a and D.�/ depend on the choice of f W G ! G ; see Example 6.11 below.
Since we work with a single f W G! G throughout the paper and since D.�/ is well
defined up to finite index by Theorem 7.1, we suppress this dependence in the notation.

Example 6.11 Let G be the rose with edges E1 , E2 and E3 . Subdivide E3 into
E3 D

xD1D2 . Define f1W G!G by

E1 7!E1 E2 7!E1E2 D1 7!D1
xE2

1 D2 7!D2E1

and f2W G!G by

E1 7!E1 E2 7!E2E1 D1 7!D1
xE1 D2 7!D2E2

1 :
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The automorphisms of Fn determined by f1 and f2 differ by iE1
and so determine

the same element � 2 Out.Fn/. The homotopy equivalence of G that fixes E1 , D1

and D2 and satisfies E2 7!E2E1 represents an element �2Out.Fn/ that is contained
in D.�/ if f2 is used but not if f1 is used. Note that �2 is contained in D.�/ if either
f2 or f1 is used.

Notation 6.12 The set of Nielsen paths for f (resp. fa ) with endpoints at vertices is
denoted N .f / (resp. N .fa/). For each 1� s �M , let Ks be the set of vB –paths for
vB 2Bs . Equivalently, Ks consists of all edges in irreducible nonfixed strata in Xs and
all taken connecting paths in zero strata in Xs . Let Qs be the set of quasi-exceptional
subpaths for f that belong to the same quasi-exceptional family as a quasi-exceptional
subpath in the QE–splitting of f#.�/ for some � 2 Ks . Finally, let Ps be the set of
paths that have complete splittings with respect to f each of whose terms is an element
of N .f /, Qs or Ks .

Lemma 6.13 The following hold for all admissible a.

(1) If � 2N .f / then � 2N .fa/.

(2) If � 2Qs then .fa/#.�/D f
as

# .�/. In particular, Qs is .fa/# –invariant.

Proof Our proof is by induction on the height r of � . In the context of (1), we may
assume that � is indivisible.

G1 is either a single fixed edge or is contained in a single almost invariant subgraph.
Thus fajG1 is either the identity or an iterate of f jG1 . In either case (1) is obvious
for � � G1 . Since G1 does not contain any quasi-exceptional paths, the lemma holds
for � �G1 . We assume now that r � 2, that the lemma holds for paths in Gr�1 and
that � has height r and is either an element of N .f / or an element of Qs . Since f
satisfies (NEG Nielsen paths), Hr is either EG or linear.

Let Xu be the almost invariant subgraph containing Hr . Suppose at first that Hr is
linear and is hence a single edge Er such that f .Er /DErw

dr for some nontrivial
root-free Nielsen path w and dr ¤ 0. If � 2 N .f /, then � D Erw

p xEr for some
integer p . By the inductive hypothesis, .fa/#.w/D w so

.fa/#.�/D Œ.Erw
audr /wp. xwaudr xEr /�DErw

p xEr D �:

If � 2 Qs , then up to a reversal of orientation, � D Erw
p xEj where f .Ej / D

Ejw
dj . Let Xt be the almost invariant subgraph containing Ej . Since a is admissible,

as.dr � dj /D audr � atdj .
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.fa/#.�/D Œf
au

# .Er /.fa.w//
pf

at

# . xEj /�Thus

D ŒErw
audrwp

xwat dj xEj �

D ŒErw
audr�at djCp xEj �

D ŒErw
as.dr�dj /CpEj �

D ŒErw
asdrwp

xwasdj xEj �

D Œf
as

# .Er /.f
as

# .w//pf
as

# . xEj /�

D f
as

# .�/:

Suppose now that Hr is EG. There are no quasi-exceptional paths of height r so � is
an indivisible Nielsen path of height r . By [10, Lemma 4.25], � decomposes as a
concatenation of edges in Hr and Nielsen paths in Gr�1 . By definition and by the
inductive hypothesis, .fa/# equals f as

# on all terms in this decomposition and hence
on � .

The next two corollaries are immediate consequences of Lemma 6.13, the definition
of Xs and the definition of fa .

Corollary 6.14 For 1� i �M , Ps is preserved by both f# and .fa/# and moreover
.fa/#.�/D f

as

# .�/ for all � 2 Ps . Thus .f k
a /#.�/D f

kas

# .�/ for all � 2 Ps and all
k � 1.

Corollary 6.15 Suppose that Ei and Ej are linear edges with the same axis and that
w; di and dj are as in (Linear edges). Suppose further that Ei � Xs and Ej � Xt .
Then .fa/#.Erw

p xEj /DErw
asCp�at xEj .

Corollary 6.16 For each admissible a and b, Œfa�Œfb�D Œfb�Œfa�D ŒfaCb�: In particular,
D.�/ is abelian.

Proof Let 1; : : : ; n be closed paths based at a vertex v 2G that represent a basis
for �1.G; v/. Choose K so large that ˇi D f K

# .i/ is completely split for all i .
After increasing K if necessary we may also assume that each connecting path in a
zero stratum that is a term in the complete splitting of ˇi is an element of Ks for
some s . Thus ˇ1; : : : ; ˇn represent a basis for �1.G; v/ and each term in the QE–
splitting of ˇi is either an element of some Ps or a quasi-exceptional path (remember
that not every quasi-exceptional path belongs to some Qs ). It suffices to show that
.faCb/# D .fa/#.fb/# on each such term and by Corollary 6.14 we are reduced to
showing that .faCb/#.�/D .fa/#.fb/#.�/ for each quasi-exceptional path � .
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Let � D Erw
p xEj where w 2 N .f /, f .Er / D E

dr
r and f .Ej / D E

dj

r . Let Xu

be the almost invariant subgraph containing Hr and let Xt be the almost invariant
subgraph containing Hj . Then

.faCb/#.Erw
p xEj /D f

auCbu

# .Er /w
pf

atCbt

# . xEj /

D ŒErw
audrCbudrwp

xwat drCbt dr xEj �

D ŒErw
audrwbudrwp

xwbt dr xwat dr xEj �

D Œf
au

# .Er /w
budrCp�bt dr f

at

# . xEj /�

D .fa/#.ŒErw
budrCp�bt dr xEj �/

D .fa/#.fb/#.Erw
p xEj /:

Definition 6.17 An admissible a is generic if each ai > 0 and if whenever Ei 2Xr

and Ej 2Xs are distinct linear edges associated to the same axis, then ar di ¤ asdj

where di and dj are the exponents of Ei and Ej respectively.

Lemma 6.18 If a is generic then faW G ! G is a CT and has the same principal
vertices and Nielsen paths as f . In particular, fa is rotationless.

Proof We first note (justification below) that:

(1) fa has the same periodic edges and the same periodic directions at vertices as f .

(2) fa preserves the filtration ∅DG0 �G1 � � � � �GN DG and each stratum Hi

has the same type (zero, EG, NEG, linear) for fa as it does for f .

(3) faW G ! G is a relative train track map; ie the following hold for each EG
stratum Hr .
(a) Dfa preserves the set of directions that are based at vertices and determined

by edges in Hr .
(b) A path � �Gr is r –legal for f if and only if it is r –legal for fa .
(c) If � is a connecting path for Hr then .fa/#.�/ is nontrivial.

Properties (1), (2) and (3)(a) follow from Corollary 6.14 and the assumption that each
as > 0. Suppose that � is a connecting path � for Hr �Xs . If � is contained in a zero
stratum, then it decomposes as a concatenation (not necessarily a splitting) of edges
in Ps by (Zero strata) and so .fa/#.�/D f

as

# .�/ by Corollary 6.14. The nontriviality
of .fa/#.�/ therefore follows from the fact that (3)(c) holds for f . In the remaining
case � is contained in a noncontractible component of Gr�1 and (3)(c) is equivalent
to the endpoints of � being fixed points by [10, Remark 2.8]. Since Fix.f /� Fix.fa/,
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(3)(c) for fa follows from (3)(c) for f . Now that (3)(c) is verified, (3)(b) follows from
Corollary 6.14.

If Ej 2 Xs is a linear edge for f and f .Ej / D Ejw
dj

j then fa.Ej / D Ejw
asdj

j .
From this and the fact that a is generic, it follows that fa satisfies (Linear edges).

Properties (Completely split), (Filtration), (Periodic edges) and (Zero strata) for fa
follow from items (1) and (2), Corollary 6.14 and the corresponding property for f .

By Lemma 6.13, every Nielsen path for f is a Nielsen path for fa . We prove the
converse below. Assuming for now that f and fa have the same Nielsen paths, we
complete the proof of the lemma. Property (NEG Nielsen paths) for fa follows from
the corresponding property for f as do (Rotationless) and (Vertices) for fa by applying
item (1).

If Hr is EG and � is an indivisible Nielsen path of height r , then � splits into a
concatenation of edges in Hr and Nielsen paths in Gr�1 by [10, Lemma 4.25]. It
follows that the extended fold determined by � is the same with respect to fa as it
is with respect to f and that this remains true as one iteratively folds � . Property
(EG Nielsen paths) for fa follows from the corresponding property for f and [10,
Corollary 4.34] which states that (EG Nielsen paths) holds if and only if the illegal turn
at each indivisible Nielsen path obtained by iteratively folds � is proper.

It remains to assume that � is an indivisible Nielsen path for fa and prove that it is
a Nielsen path for f . If an endpoint of � is not a vertex then it is contained in an
EG stratum. Subdividing at this point and declaring both new edges to be in the same
stratum as the original edge preserves all the properties of a CT . We may therefore
assume that the endpoints of � are vertices. Once we have established that � is a
Nielsen path for f it will follow that this subdivision was unnecessary.

Let i be the height of � and let Xr be the almost invariant subgraph that con-
tains Hi . We consider first the case that Hi , which is necessarily irreducible, is
EG. By Lemma 5.11 of [4], �D ˛ˇ where ˛ and ˇ are i –legal paths for fa that begin
and end in Hi . Let E˛ be the initial edge of ˛ . By Corollary 6.14, there exists k � 1

so that f k
# .E˛/ contains ˛ . Since both E˛ and the terminal edge of ˛ are edges of

height i , the QE–splitting of f k
# .E˛/ restricts to a QE–splitting of ˛ . Corollary 6.14

therefore implies that .fa/#.˛/D f
ar

# .˛/. The analogous argument applies to ˇ and
we conclude that � is a Nielsen path for f ar . By [10, Lemma 4.14], every periodic
Nielsen path for f has period one. In particular, � is a Nielsen path for f .

Suppose next that Hi is a single NEG edge Ei . After reversing the orientation on � if
necessary, we may assume by Lemma 4.1.4 of [4] applied to fa that Ei is the initial
edge of � and that Ei is not fixed by fa and hence not fixed by f . Choose lifts z�� �
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and zfaW �! � such that zfa fixes the endpoints of z� . Let zf W �! � be the lift of f
that fixes the initial endpoint and direction of z� . By Lemma 2.23, there is a ray zR1

with the same initial vertex and direction as z�1 and satisfying the following properties.

(i) Fix. zf /\ zR1 is the initial endpoint of zR1 .

(ii) If zR1 D z�1 � z�2 � � � � is the QE–splitting of zR1 and if zxl is the terminal endpoint
of z�l then zf .zxl/D zxk for some k > l and Df maps the turn taken by zR1 at
zxl to the turn taken by zR1 at zxk .

Corollary 6.14 implies that . zfa/#j zR1 D f
ar

# j
zR1 and hence that (ii) holds with zf

replaced by zfa . If (i) fails with zf replaced by zfa then there is a fixed point for zfa
in the interior of some z�l and so by (ii) for zfa there exists an initial subpath z� of z�l

such that . zfa/#.z�/ is trivial. But no such z� can exist. This follows from Corollary
6.14 if �l is a single edge and is easy to check by inspection (see [10, Lemma 4.12])
if �l is either a quasi-exceptional path or a Nielsen path for f . Since �l contains a
fixed point for zfa it is not a connecting subpath in a zero stratum. This completes the
proof that (i) and (ii) hold with zf replaced by zfa . In particular, zR1 does not contain
the terminal endpoint of z� .

Let P1 2 @� be the terminal endpoint of zR1 , let z�1 be the common initial segment
of zR1 and z� and let z�2 be the terminal segment of z� such that z� D z�1z�2 . By an
argument exactly analogous to the one in the previous paragraph, zfa moves the terminal
endpoint zw of z�1 toward P1 ; more precisely, the ray from zfa. zw/ to P1 does not
contain zw . Since zw is the initial endpoint of z�2 and since the interior of z�2 is disjoint
from Fix. zfa/, Lemma 3.16 of [10] (see also Section 2 of [4]) implies that zfa moves
each point in the interior of z�2 toward P1 . In particular, the initial direction of ��1 is
fixed by fa .

Let zEj be the initial edge of z��1
2

. There is a ray zR2 with initial edge zEj that satisfies
(i) and (ii) with zR1 replaced by zR2 and zf replaced by zfa . If zEj is NEG, or more
generally if the initial endpoint of Ej is principal, then the existence of zR2 follows
from Lemma 2.23 as above. If zEj is contained in an EG stratum but the initial endpoint
of Ej is not principal then Lemma 2.23 does not apply. In this case we define zR2 to
be the increasing union zEj �

zfa. zEj / � . zf
2

a /#.
zEj / � . zf

3
a /#.

zEj / � � � � . It is shown
in (the proof of) [10, Lemma 2.13] that (i) and (ii) with zR1 replaced by zR2 and zf
replaced by zfa are satisfied,

Let P22@� be the terminal endpoint of zR2 . If P1¤P2 , let zL12 be the line connecting
P1 to P2 . Then zL12 is contained in zR1[ z�[ zR2 and does not contain the endpoints
of z� , which are also the endpoints of zR1 and zR2 . It follows that zL12\ Fix. zfa/D∅
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which contradicts the fact that there are points arbitrarily close to Pi that are moved
toward Pi by zfa . We conclude that P1 D P2 .

The lift of f ar that fixes the initial endpoint of z� and the lift of f ar that fixes the
terminal endpoint of z� both fix P1 D P2 . If these lifts are the same then z� is a
Nielsen path for zf r , � is a Nielsen path for f r and by [10, Lemma 4.14], � is a
Nielsen path for f . We may therefore assume that these lifts are distinct, in which
case P1 D P2 D T˙

b
for some b 2 Fn and Ei and Ej are distinct linear edges for f

associated to the axis Œb�u (with associated root-free w ) and �DEiw
p xEj . But this

contradicts Corollary 6.15 and the assumption that � is a Nielsen path for fa . This
completes the proof that f and fa have the same Nielsen paths and so the proof of the
lemma.

We now relate D.�/ to A.�/, using the correspondence between principal lifts of
relative train track maps and principal automorphisms.

Corollary 6.19 For each generic a there is a bijection hW P.�/! P.�a/ such that
FixN .1h.ˆ//D FixN . ŷ / for all ŷ 2 P.�/. If zf corresponds to ˆ and zfa corresponds
to h.ˆ/ then Fix. zf /D Fix. zfa/.

Proof By Lemma 6.18, f and fa have the same Nielsen classes of principal vertices.
There is an induced bijection h between principal lifts of fa and principal lifts of f ; if
zfa D h. zf / then Fix. zf /D Fix. zfa/. Lemma 2.2 implies that FixN . yf / and FixN . yfa/

have the same nonisolated points. Lemma 2.23 and Corollary 6.14 imply that FixN . yf /

and FixN . yfa/ have the same isolated points.

Corollary 6.20 D.�/ is contained in A.�/ and is generated by elements of the form
�a with a generic.

Proof Let S 0Df�b W b2Bg be any generating set for D.�/. If I is the M –tuple with
1’s in each coordinate then I is generic and �I D � is represented by fI D f . There
exists k > 0 so that aD bCkI is generic (because it is projectively close to I) for each
b 2 B . Corollary 6.16 implies that �a D �

k�b and Corollary 6.19 that �k�b 2A.�/.
Thus S D f�; �k�b W b 2 Bg �A.�/ is a generating set for D.�/.

Theorem 6.21 D.�/�WZ.C.�// for all rotationless � .

Proof D.�/�A.�/�WZ.C.�// by Corollary 6.20 and Corollary 5.6.
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7 Finite index

Our goal in this section is to prove:

Theorem 7.1 D.�/ has finite index in A.�/ for all rotationless � .

Before turning to the proof of Theorem 7.1 we use it to prove one of our main results.

Theorem 7.2 For every abelian subgroup A of Out.Fn/ there exists � 2A such that
A\D.�/ has finite index in A.

Proof Corollary 3.14 and Lemma 5.4 imply that A\A.�/ has finite index in A for
each generic � 2AR . Theorem 7.1 therefore completes the proof.

Choose once and for all a CT f W G!G representing � .

We set notation for the linear edges associated to an axis Œc�u of � following (Linear
edges). If Œc�u has multiplicity mC 1 then there is a root-free closed path w whose
circuit represents Œc�u and for 1� j �m, there are linear edges Ej and distinct nonzero
integers dj such that f .Ej / D Ej �w

dj . Choose a lift zw of w that is contained in
the axis Ac � � and let zEj be the lift of Ej whose terminal endpoint is the initial
endpoint of zw . The lift zfj of f that fixes the initial endpoint of zEj is principal; the
associated principal automorphism is denoted ĵ . Both zfj and ĵ are independent
of the choice of zw . By Lemma 4.10 and Lemma 5.8, Fix. ŷj / is a maximal principal
set for A.�/ that we denote Xj . The lift sj of A.�/ to Aut.Fn/ determined by Xj

satisfies sj .�/D ĵ . The principal lift of f that fixes the terminal endpoint of zEj

is denoted zf0 , its associated principal automorphism is denoted ˆ0 , the maximal
principal set Fix. ŷ 0/ is denoted X0 and the lift to Aut.Fn/ determined by X0 is
denoted s0 . The automorphisms ˆ0; : : : ; ˆm are the only elements of P.�/ that
commute with Tc (Lemma 2.25).

Recall that in Definition 6.10, the notation �a was introduced and D.�/ was defined
as h�a j a is admissiblei. In particular, we only write �a if a is admissible. We saw
that D.�/�A.�/ in Corollary 6.20.

For 1 � j ¤ k �m, let !c;j be the comparison homomorphism determined by X0

and Xj and let !c;j ;k be the comparison homomorphism determined by Xj and Xk .
Thus !c;j ;k D !c;j �!c;k . There is an obvious bijection between the !c;j ’s and the
linear edges Ej associated to c . There is also a bijection between the !c;j ;k ’s and the
families of quasi-exceptional paths Ejw

� xEk associated to c . We make use of these
bijections without further notice.
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For each ƒ2L.�/ let !ƒDPFƒ jA.�/. We also identify ƒ with !ƒ when convenient.

We define a new homomorphism �� W A.�/!ZK whose coordinates are in one to one
correspondence with the linear and EG strata of f W G!G by removing extraneous
coordinates from �W A.�/! ZN .

Definition 7.3 �� W A.�/! ZK is the product of the !c;j ’s and the !ƒ ’s as Œc�u
varies over the axes of � and as ƒ varies over L.�/.

Lemma 7.4 �� W A.�/! ZK is injective.

Proof The coordinates of �� are coordinates of the injective homomorphism �. It
therefore suffices to assume that !. /¤ 0 for a coordinate ! of � and prove that the
image of  under some coordinate of �� is nonzero. There is no loss in assuming that
! is not a coordinate of �� and so by Lemma 5.8 and Remark 4.8 is either some !c;j ;k

or !ƒ for some ƒ2L.��1/. In the former case, !c;j . /¤ 0 or !c;k. /¤ 0 and we
are done. In the latter case, Corollary 3.3.1 of [2] implies that ƒ2L. /[L. �1/. By
Lemma 3.2.4 of [2] there is a unique ƒ0 2 L.�/[L.��1/ such that ƒ0 ¤ƒ and such
that ƒ and ƒ0 are carried by the same minimal rank free factor; moreover, ƒ0 2 L.�/.
Similarly there is a unique ƒ00 2 L. /[L. �1/ such that ƒ00 ¤ƒ and such that ƒ
and ƒ00 are carried by the same minimal rank free factor. Lemma 5.8 and Remark
4.8 imply that ƒ00 2 L.�/[L.��1/ and hence that ƒ00 Dƒ0 2 L.�/. Thus !ƒ00 is a
coordinate of �� and !ƒ00. /¤ 0.

Lemma 7.5 If �a 2 A.�/ and if a coordinate ! of �� corresponds to a stratum in
the almost invariant subgraph Xs then !.�a/D as!.�/.

Proof We may assume by Corollary 6.20 that a is generic. If !D!ƒ then the lemma
follows from Corollary 6.14 and the definition of the expansion factor homomorphism.
Suppose then that ! D !c;j . Lemma 2.25 implies that sj .�a/ corresponds to the
principal lift of fa that fixes the initial endpoint of zEj and s0.�a/ corresponds to the
principal lift of fa that fixes the terminal endpoint of zEj . Since fa.Ej /DEj �w

asdj

we have !c;j .�a/D asdj .

Corollary 7.6 The rank of D.�/ is equal to the rank of the subgroup L of ZM

generated by the admissible M –tuples for f W G!G .

Proof By Corollaries 6.16 and 6.20, a 7! �a determines a homomorphism �W L!

A.�/. It suffices to show that � is injective. The subgroup L contains the M –tuple I,
all of whose coordinates are 1. Given distinct x; y 2 L there exists k � 0 so that
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aD xCkI and bD yCkI are admissible. Lemma 7.5 implies that ��.�a/¤�
�.�b/

and hence by Lemma 7.4 that �.x C kI/ D �a ¤ �b D �.y C kI/. Since � is a
homomorphism �.x/¤ �.y/.

We now come to our main technical proposition, a generalization of Lemma 2.24. (The
process of iterating an edge is discussed in Section 2. Coordinate homomorphisms are
reviewed at the beginning of this section.)

Proposition 7.7 Suppose that zf W �! � is a principal lift of f , that zE is an oriented
edge whose initial direction is fixed by D zf and that the ray zR determined by iterating
zE converges to P 2 FixN . yf /. Let sW A.�/ ! Aut.Fn/ be the lift determined by

the maximal principal set Xs WD Fix. yf /. Suppose further that � is a term in the QE–
splitting of R that is either an edge in an EG or linear stratum or a quasi-exceptional
path. Let !W A.�/! Z be the coordinate homomorphism associated to �. Then the
following are equivalent for all  2A.�/.

(1) P is isolated in Fix. bs. //.
(2) !. /¤ 0.

Before proving Proposition 7.7 we derive a corollary and use that corollary to prove
Theorem 7.1. The set Qs is defined in Notation 6.12.

Corollary 7.8 Suppose that Xs is an almost invariant subgraph and that Ws is the
set of coordinate homomorphisms !W A.�/! Z associated to either an edge in an
irreducible stratum in Xs or to an element of Qs . Then for all  2 A.�/ either
!. /D 0 for all ! 2Ws or !. /¤ 0 for all ! 2Ws .

Proof Recall from Definition 6.3 that Bs is a connected directed graph with one
vertex for each nonfixed irreducible stratum in Xs . Define a new directed graph Cs

with the same set of vertices and with an edge from the vertex wi corresponding to Hi

to the vertex wj corresponding to Hi if i ¤ j and if for some (hence every) edge Ei

in Hi and some (hence every) edge Ej in Hj there exists k > 0 so that Ej occurs as
a term in the QE–splitting of f k

# .Ei/.

If there is a directed edge from wi to wj in Bs but not in Cs then Hi is EG and
there is a taken connecting path �i in a zero stratum of H z

i such that some term in the
QE–splitting of f#.�i/ is an edge in Hj . Since �i is taken it occurs as a term in the
QE–splitting of f l

# .Em/ for some edge Em in an irreducible stratum Hm . There are
directed edges in Cs from wm to wi and from wm to wj ; the existence of the latter
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is immediate from the definition of Cs and the existence of the former follows from
Lemma 6.5 applied to f l . This proves that Cs is connected.

Enlarge Cs to C 0s by adding a vertex for each quasi-exceptional family ˛ in Qs and a
directed edge from wi to the vertex corresponding to ˛ if some element of ˛ occurs
as a term in the QE–splitting of f k

# .Ei/ for some (hence every) edge Ei in Hi and
some k > 0. The graph C 0s is still connected. Note also that if � is a directed edge
path in C 0s then there is a directed edge from the initial endpoint of � to the terminal
endpoint of � .

For each vertex wi 2 Cs let Ys.i/ be the subgraph of C 0s consisting of all directed
edges with initial vertex vi and let Ws.i/ be the set of !p 2Ws whose associated
vertex is contained in Ys.i/. Note that Ys.i/ contains the terminal endpoint of every
edge path in Ys.i/ starting at vi . We claim that for all  2 A.�/, either !p. / is
zero for all !p 2Ws.i/ or !p. / is nonzero for all !p 2Ws.i/.

The claim is obvious if Ws.i/ contains only one element so we may assume that Hi

is either EG or nonlinear NEG. If Hi is NEG then it is a single edge Ei whose initial
vertex is principal and whose initial direction is fixed. If Hi is EG then we can choose
such an Ei by Remark 2.18. Choose a lift zEi , let zf be the principal lift that fixes the
initial endpoint of zEi , let P 2 Fix. yf / be the terminal endpoint of the ray zR obtained
by iterating zEi by zf and let sW A.�/!Aut.Fn/ be the lift determined by the maximal
principal set Fix. yf /. For each !p 2Ws.i/, there is a term in the QE–splitting of zR
that corresponds to !p . The claim therefore follows from Proposition 7.7 since P

being isolated in Fix. yf / is independent of !p .

To complete the proof of the corollary it suffices to show that if Ys.i/\Ys.j /¤∅ then
Ws.i/\Ws.j /¤∅. This could only fail if every vertex in Ys.i/\Ys.j / corresponds
to a nonlinear NEG stratum. But this is impossible since every such vertex has at least
one outgoing edge.

Proof of Theorem 7.1 For each coordinate !i of �� and each  2 A.�/, define
ai. /D !i. /=!i.�/ 2Q. Since ai.� /D ai. /C1 there is a finite generating set
of elements  with the property that each ai. / > 0. It suffices to show that under
this hypothesis,  K 2D.�/ for some K > 0.

As we are now working with a single  , we refer to ai. / simply as ai . After
replacing  with an iterate, we may assume that each ai is a positive integer. Define
�i D  �

�ai and note that

!i.�i/D !i. /� ai!i.�/D 0:
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Let Xs be the almost invariant subgraph that contains the stratum associated to !i and
let !j be another coordinate of �� that is associated to a stratum in Xs . Corollary
7.8 implies that

!j . /� ai!j .�/D !j .�i/D 0

and hence that
!j . /D ai!j .�/:

This shows that aiDaj so the ai ’s determine a well defined M –tuple yaD .ya1; : : : ; yaM /

with one yas for each almost invariant subgraph Xs .

Suppose that ! 2Qs corresponds to the quasi-exceptional family containing E˛ xEˇ
where E˛ �X˛ and Eˇ �Xˇ are linear edges with exponent d˛ and dˇ . As above,
Corollary 7.8 implies that

!. /D yas!.�/:

Letting !˛ and !ˇ be the coordinates of �� associated to E˛ and Eˇ we have

yas.d˛ � dˇ/D yas.!˛.�/�!ˇ.�//D yas!.�/

!. /D !˛. /�!ˇ. /D ya˛!˛.�/� yaˇ!ˇ.�/D ya˛d˛ � yaˇdˇ:and

The last three displayed equations show that ya is admissible.

Corollary 6.20 implies that �ya 2A.�/. Lemmas 7.5 and 7.4 then imply that  D �ya 2
D.�/ as desired.

The remainder of the section is devoted to the proof of Proposition 7.7. For motivation
we consider the proof as it applies to a simple example.

Example 7.9 Suppose that G D R3 with edges A, B and C and that f W G ! G

representing � is defined by A 7! A, B 7! BA and C 7! CB . In the notation of
Proposition 7.7, C plays the role of E and B plays the role of �.

Let TA be the covering translation corresponding to A and let zB be a lift of B with
terminal endpoint in the axis of TA . Denote the principal lifts of f that fix the initial
and terminal endpoints of zB by zf� and zfC respectively. The fixed point sets X˙ of
yf˙ are maximal principal sets for A.�/ and so determine lifts s˙W A.�/! Aut.Fn/

such that X˙ � Fix. 1s˙. // for all  2 A.�/. The coordinate homomorphism !

corresponding to B satisfies !. /D 0 if and only if sC. /D s�. /. Note that T˙
A

is contained in both XC and X� .

Choose a lift zC of C and let zf be the principal lift that fixes its initial endpoint. Iterating
zC by zf produces a ray zR that converges to some P 2 Fix. yf / and that projects to an
f –invariant ray R D CBBABA2 � � �BAlBAlC1BAlC2 � � � . The maximal principal
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set Fix. yf / determines a lift sW A.�/! Aut.Fn/. Denote the subpath BBABA2 of R

that follows the initial C by �0 and the subpath f l
# .�0/D BAlBAlC1BAlC2 of R

by �l . There are lifts z�l �
zR of �l , l!1, that are cofinal in zR and so limit on P .

There are also lifts zıl of �l for which zB is the edge that projects to the middle B in
�l . The endpoints of zıl are denoted zxl and zyl . The path connecting zxl to the initial
endpoint of zB is a lift of BAl and the path connecting the terminal endpoint of zB to
T �l

A
zyl is a lift of ABAlC2 . Thus zxl!Q� 2X�nT

˙
A

and T �l
A
zyl!QC 2XCnT

˙
A

.
The line connecting Q� to QC projects to A1BABA1 .

Choose a CT gW G0! G0 representing  . For simplicity, we assume that G0 D G .
The lift zgW �! � corresponding to s. / satisfies P 2 Fix.yg/.

If P is not isolated in Fix.yg/ then Lemma 2.2 implies that zg moves the endpoints of z�l

by an amount D that is bounded above independently of l . Since zıl is a translate of z�l

there is a lift zgl of g that moves zxl and zyl by at most D . In Lemma 7.11 below we
show that under these circumstances, zgl commutes with TA for all sufficiently large l .
The lift s�. / of g commutes with TA and fixes Q� . Since zgl also commutes with
TA there exists dl such that zgl D T

dl

A
s�. /. In particular, zgl.Q�/D T

dl

A
.Q�/. If

dl ¤ 0 and zxl is sufficiently close to Q� then the distance between zxl and zgl.zxl/

would be greater than D which is a contradiction. Thus dl D 0 and Q� 2 Fix.bgl / for
all sufficiently large l . A second consequence of the fact that zgl commutes with TA

is that zgl moves T �l
A
zyl by a uniformly bounded amount. Arguing as in the previous

case we conclude that QC 2 Fix.bgl / for all sufficiently large l . For these l , Fix.bgl /

intersects both XC and X� in at least three points which implies that zgl is the lift
associated to both s�. / and sC. / and hence that !. /D 0.

If P is isolated in Fix.yg/ then by Lemma 2.23 there is an edge zE0 of � 0 that iterates
toward P under the action of zg . The ray zR0 connecting zE0 to P eventually agrees
with zR and so contains z�l for large l . Lemma 7.13 below states, roughly speaking, that
since iterating E0 by g produces segments of the form BAlB for arbitrarily large l , it
must be that g#.BAB/D BAkB for some k > 1. This implies that A1BABA1 is
not g# –invariant and hence that the lifts of g0 corresponding to s�. / and to sC. /

are distinct. Equivalently, !. /¤ 0.

We now turn to the formal proof.

Remark 7.10 For the following lemmas it is useful to recall that if the circuits rep-
resenting the conjugacy classes Œb� and Œc� of root-free elements b; c 2 Fn have edge
length Lb and Lc and if Ab\Ac has edge length at least LbCLc then Tc commutes
with Tb because the initial endpoint zx of Ab \Ac satisfies TbTc.zx/D TcTb.zx/. It
follows that Ab DAc and that Tb D T˙c .
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Lemma 7.11 Suppose that  2 Out.Fn/ is rotationless and that gW G0 ! G0 is a
CT representing  . Then for any root-free covering translation Tc of the universal
cover � 0 of G0 , there exists K > 0 with the following property. If � �G0 is a Nielsen
path for g and z� � � 0 is a lift whose intersection with the axis Ac of Tc contains at
least K edges, then the lift zg that fixes the endpoints of z� commutes with Tc .

Proof Choose L greater than the number of edges in each of the following:

(1) the loop in G0 that represents c

(2) each of the loops in G0 representing an axis of  

(3) any indivisible Nielsen path associated to an EG stratum for gW G0!G0 .

There is a decomposition z� D z�1 � � � z�N into subpaths z�i that are either fixed edges or
indivisible Nielsen paths. The endpoints of the z�i ’s are fixed by zg . There is no loss in
assuming that each z�i intersects Ac in at least an edge.

If N � LC 1 then by (1), there exist z�i with initial endpoint zx and z�j with initial
endpoint T l

c .zx/ for some l ¤ 0. Thus zgT l
c .zx/D T l

c .zx/D T l
c zg.zx/. Since lifts of a

map that agree on a point are identical, zgT l
c D T l

c zg . It follows that yg fixes T˙c which
then implies that zg commutes with Tc .

We may therefore assume N <L. In fact we may assume that N D 1 : if K works in
this case then .LC 2/K works in the general case. If � is a fixed edge then K D 2

vacuously works. We may therefore assume that � is indivisible.

Let K D 2LC 2. We may assume by (3) that � is not associated to an EG stratum.
By the (NEG Nielsen paths) property for g , z� D zEi zw

p zE�1
i for some linear edge

Ei satisfying f .Ei/DEiw
di where w represents an axis � of  and therefore has

fewer than L edges. There is an axis Ab for a root-free b 2 Fn that contains zwp and
whose projection into G0 is the loop determined by w . Remark 7.10 and our choice
of K imply that Tb D T˙c . Both T

p

b
zg and zgT

p

b
take the initial endpoint of z� to the

terminal endpoint of z� . Since these are both lifts of g they must be equal. This proves
that zg commutes with Tb and so also commutes with Tc .

Suppose that Ei is a linear edge and that f .Ei/ D Eiw
di . If either Ei or a quasi-

exceptional path Eiw
� xEj occurs as a term in the quasi-exceptional splitting of some

f l
# .�/ then f m

# .�/ contains subpaths of the form wk where k!˙1 as m!1.
This is essentially the only way that such paths develop under iteration. Lemma 7.13
below is an application of this observation stated in the way that it is applied in the
proof of Proposition 7.7.
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We use EL. � / to denote edge length of a path or circuit. By extension, for c 2 Fn , we
use EL.c/ to denote the edge length of the circuit representing Œc�.

Directions based at nonprincipal vertices of a CT f W G!G need not stabilize under
iteration by Df . It is sometimes convenient to pass to a power of f W G!G so that
every direction d based at a vertex of G is pre-fixed, meaning that Df i.d/ is fixed by
Df for some i > 0.

Lemma 7.12 Suppose that gW G0! G0 is a CT, that every direction based at a vertex
of g is pre-fixed, and that � �G0 is a completely split path such that EL.gm

# .�// is not
uniformly bounded from above. Then for all L> 0 there exists M > 0 so that for all
m�M , EL.gm

# .�// > 2L and the initial and terminal subpaths of gm
# .�/ with edge

length L are independent of m.

Proof The proof is by induction on the height r of � . The r D 0 case is vacuous so
we may assume that the lemma holds for paths of height less than r . By symmetry
it is sufficient to show that EL.gm

# .�//!1 and that initial segment of gm
# .�/ with

edge length L stabilizes under iteration.

Let � D �1 � � � �s be the complete splitting of � and let �i be the first term such that
EL.gm

# .�i// is not uniformly bounded from above. The terms preceding �i , if any, are
Nielsen paths or pre-Nielsen (meaning that they are mapped by some iterate of g# to
a Nielsen path) connecting paths in zero strata. Their iterates stabilize so there is no
loss in truncating � by removing them. We may therefore assume that i D 1. It now
suffices to show that EL.gm

# .�1//!1 and that initial segment of gm
# .�1/ with edge

length L stabilizes under iteration. If �1 is a connecting path in a zero stratum then
this follows by induction on r . The remaining cases are that �1 is a nonfixed edge in
an irreducible stratum or a quasi-exceptional path and the result is clear in both these
cases.

The following lemma is a case-by-case analysis of the occurrence of long periodic
segments in iterates of a single path. The basic observation is that once a periodic
segment reaches a certain length it continues to get longer under further iteration.

Lemma 7.13 Suppose that gW G0! G0 is a CT, that every direction based at a vertex
of g is pre-fixed, that c 2 Fn is root-free and that zgW � 0 ! � 0 is a lift of g that
commutes with Tc . Then for all completely split paths � � G0 , there exists L� > 0

so that if m � 0 and z�m is a lift of �m D gm
# .�/ such that EL.z�m \Ac/ > L� then

EL.zg#.z�m/\Ac/ > EL.z�m\Ac/.
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Proof It suffices to show that the lemma holds for all sufficiently large m so there is
no loss in replacing � by g#.�/ when this is useful.

Lemma 2.1 implies that the circuit � corresponding to c is g# –invariant. Since some
g# –iterate of � has a complete splitting [10, Lemma 4.26], � has a complete splitting;
each term in this complete splitting is either a g–fixed edge or an indivisible Nielsen
path for g . There is an induced complete splitting of Ac with respect to zg . There is a
lift of g that fixes the endpoints of each term in this splitting and that commutes with
Tc , and so equals T k

c zg for some k . After replacing zg by T k
c zg , we may assume that

all the terms in the complete splitting of Ac are zg–Nielsen paths. The endpoints of
these Nielsen paths are called splitting vertices. Note that the set of splitting vertices
coincides with the set of zg–fixed vertices in Ac .

The proof is by induction on the height r of � . The induction statement is enhanced
to include the following property: if EL.z�m\Ac/ >L� and if z�m\Ac contains an
endpoint zv of z�m then zv is a splitting vertex.

In certain cases we will show that EL.Ac \ z�m/ is uniformly bounded, meaning that it
is bounded independently of m. One then chooses L� greater than that bound. The
r D 0 case is vacuously true so we may assume that the inductive statement holds for
all paths of height less than r .

Assume for now that there is only one term in the QE–splitting of � . There are five
cases, two of which are immediate. If � is a Nielsen path then EL.Ac \ z�m/ is
uniformly bounded and we are done. If � is a connecting path in a zero stratum then
we let L� D Lg#.�/ where the latter exists by the inductive hypothesis and the fact
that g#.�/ has height less than r .

If � is a linear edge E then �m D Ewdm for some Nielsen path w that forms a
root-free circuit and some d > 0. Let L� D EL.c/CEL.w/. If EL.z�m\Ac/ >L�
then by Remark 7.10 there is a lift zw of w such that z�m\Ac D zw

dm contains all of
z�m but the initial edge, and zg#.z�m/\Ac D zw

d.mC1/ . Since w is a Nielsen path and
zw is a fundamental domain of Ac the endpoints of zw are splitting vertices.

If � is a quasi-exceptional path Eiw
p xEj where g.Ei/DEiw

di and g.Ej /DEjw
dj ,

then the proof is similar to the linear case and we can use the same value of L� . If
EL.z�m\Ac/ >L� then there is a lift zw of w such that z�m\Ac D zw

m.di�dj /Cp con-
tains all of z�m but the initial and terminal edges, and zg#.z�m/\Ac D zw

.mC1/.di�dj /Cp .
In this case the endpoints of z�m are not contained in Ac .

The fifth and hardest case is that � is a single edge E in a nonlinear irreducible
stratum Hr . If the height of Ac is greater than r then Ac\ z�m has uniformly bounded
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length. We may therefore assume that Ac has height at most r . We consider the EG
and NEG subcases separately.

If Hr is EG then �m is r –legal and so does not contain an indivisible Nielsen path of
height r . If Ac contains an indivisible Nielsen path of height r then EL.Ac \ z�m/ <

EL.c/ and we are done. We may therefore assume that Ac has height less than r . In
particular, the endpoints of z�m are not contained in Ac . There are no quasi-exceptional
paths and no fixed edges of height r . Thus the terms in the QE–splitting of g.E/ are
either single edges in Hr or are contained in Gr�1 . After amalgamating terms we
have a splitting of g.E/ into r –legal subpaths in Hr and completely split subpaths
in Gr�1 . There is a similar splitting of g.E0/ for each edge E0 of Hr . Let f�j g be
the set of completely split paths of Gr�1 that occur in this way as E0 varies over all
edges of Hr . An easy induction argument shows that �mD gm

# .E/ has a splitting into
r –legal subpaths in Hr and completely split subpaths in Gr�1 ; each of the subpaths
in Gr�1 equals gl

#.�j / for some �j and some 0� l �m. We may therefore choose
L� DmaxfL�j

g.

Finally, suppose that Hr is nonlinear and NEG. There is a path u�Gr�1 such that
gm.E/DE �u �g#.u/ � � �g

m�1
# .u/ for all m and such that EL.gj

# .u//!1. We may
assume without loss that Ac has height less than r and hence that z�m\Ac projects
into u �g#.u/ � � �g

m
# .u/. In particular, the initial endpoint of z�m is not contained

in Ac . We claim that if r is sufficiently large, say r > R, then the projection
of z�m\Ac does not contain gr

# .u/ for any m. Assume the claim for now. If
EL.z�m\Ac/>EL.u �g#.u/ � � �g

RC1
# .u// then the projection of z�m\Ac is contained

in g
q�1
# .u/ �g

q
# .u/D g

q�1
# .u �g#.u// for some q . We may therefore choose L� to

be the maximum of EL.u �g#.u/ � � �g
RC1
# .u// and Lu�g#.u/ . If EL.z�m\Ac/ > L�

and if the terminal vertex zv of z�m is contained in Ac then z�m \Ac is a terminal
segment of a lift of gm�1

# .u �g#.u// and zv is a splitting vertex of Ac by the inductive
hypothesis.

The claim is obvious is unless u and Ac have the same height, say t , so assume that
this is the case. The claim is also obvious if the maximal length of a subpath of g

q
# .u/

with height less than t goes to infinity with q . We may therefore assume that the
number of height t edges in g

q
# .u/ goes to 1 with q . Thus Ht is EG and gr

# .u/

contains t –legal subpaths of length greater than EL.c/ for all sufficiently large r . Since
no such subpath is contained in Ac this completes the proof of the claim and so also
the induction step when there is only one term in the QE–splitting of � .

Assume now that � D �1 � � � �s is the QE–splitting of � and that s > 1. Let L1 D

maxfL�i
g. By Lemma 7.12 there exists M > 0 so that for all m>M and all �i , either

gm
# .�i/ is independent of m or EL.gm

# .�i//>2L1 and the initial and terminal segments
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of gm
# .�i/ with edge length L1 are independent of m. The former corresponds to �i

being a Nielsen path or a pre-Nielsen connecting path in a zero stratum and the latter
to all remaining cases. Choose L� > sL1 so that EL.gm

# .�// <L� for all m�M .

Denote gm
# .�i/ by �i;m and write z�m D z�1;m � � � z�s;m . If EL.z� \ Ac/ � L� then

EL.z�i;m\Ac/�L�i
for some 1� i � s . Thus EL.zg#.z�i;m/\Ac/ > EL.z�i;m\Ac/.

If z�m \Ac � z�i;m we are done. Otherwise we may assume that z�iC1;m \Ac is a
nontrivial initial segment of z�iC1;m that begins at a splitting vertex of Ac . (This is
where the enhanced induction hypothesis is used.) If �iC1;m is a Nielsen path then
zg#.z�iC1;m/D z�iC1;m so g#.z�iC1;m/\Ac D z�iC1;m\Ac . This same equality holds if
EL.z�iC1;m\Ac/�L1 by our choice of M . Finally, if EL.z�iC1;m\Ac/ >L1 then
EL.g#.z�iC1;m/\Ac/ > EL.z�iC1;m \Ac/. This completes the proof if z�m \Ac �

z�i;mz�iC1;m . Iterating this argument completes the proof in general.

We need one more lemma before proving the main proposition.

Lemma 7.14 Suppose that g0W G0 ! G0 is a CT, that � is a completely split non-
Nielsen path for g and that z� � � 0 is a lift of � with endpoints at vertices zx and
zy . If zg0W � 0! � 0 is a principal lift that fixes zx then limk!1 zg

0k.zy/!Q for some
Q 2 FixN .yg/.

Proof There is no loss in assuming that � is either a single nonfixed edge or an
exceptional path E� l xE0 . In the former case the lemma follows from Lemma 2.23. In
the latter case, Q is an endpoint of the axis of a covering translation corresponding
to � .

Proof of Proposition 7.7 Without loss we may replace f by a power and so may
assume that all directions based at vertices are pre-fixed.

The case that � is an EG edge follows from Lemma 2.24. In the remaining cases there
is an axis Œc�u associated to � and we let Tc , ˆ0 , fˆig, fEig and fdig be as chosen
at the beginning of this section; see also Lemma 2.25. Thus � is either Ej for some
j or an element of the quasi-exceptional family determined by Ej

xEj 0 for some j

and j 0 .

Letting zu be the path such that zf . zE/ D zE � zu, we have zR D zE � zR0 where zR0 D

zu � zf#.zu/ � zf
2

# .zu/ � � � . Since zE is not linear, z� occurs infinitely often as a term in
the QE–splitting of zR0 , where we do not distinguish between elements of the same
quasi-exceptional family of subpaths. There is a completely split subpath z�0 of zR0

and a coarsening z�0 D z�1 � z� � z�2 of the QE–splitting of �0 where z� is a lift of � and
where �1 and �2 are not Nielsen paths. Denote the initial and terminal endpoints of z�0

by za0 and zb0 and for l � 1, let z�l D
zf l
# .z�0/, zal D

zf l.za0/, and zbl D
zf l.zb0/. Then:

(1) z�l �
zR0 and z�l ! P .
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Let zfj be the lift of f corresponding to ĵ and let zEj be a lift of Ej whose initial
endpoint is fixed by zfj and whose terminal endpoint is contained in Ac . There is a
covering translation S0W �! � such that zEj is the initial edge of S0.z�/. Let zı0 D
S0.z�0/. For l � 1, let Sl W �! � be the covering translation such that zf l

j S0D Sl
zf l ,

let zıl D Sl.z�l/ and let zxl and zyl be the endpoints of zıl . It is immediate that:

(2) zEj �
zıl .

(3) zıl D �fj
l
#.zı0/.

(4) the length of zıl \Ac goes to infinity with l .

Lemma 7.14 applied to zfj and S0.z�1/ implies that:

(5) zxl !Q� 2 FixN . ŷj / n fT
˙
c g.

If � corresponds to Ej , let m D dj and t D 0. If � corresponds to Ej
xEj 0 , let

mD dj � dj 0 and t D j 0 . Thus T �m
c
zfj D

zft and the terminal endpoint of S0.z�/ is
fixed by T �m

c
zfj . Lemma 7.14 applied to T �m

c
zfj and S0.z�2/ implies that:

(6) T �ml
c zyl !QC 2 FixN . ŷ t / n fT

˙
c g.

The maximal principal sets XjDFix. ĵ / and XtDFix.ˆt / contain T˙c and determine
lifts sj ; st W A.�/! Aut.Fn/.

We have so far only focused on � . We now bring in  . Let gW G0 ! G0 be a CT
representing  and let zg; zgj and zgt be lifts of g to the universal cover � 0 corresponding
to ‰D s. /, ‰j D sj . / and ‰t D st . / respectively. The following are equivalent.

� !. /D 0.

� ‰j D‰t .

� QC 2 Fix.y‰j /.

It suffices to show that P is isolated in Fix.y‰/ if and only if QC 62 Fix.y‰j /.

To compare points in � and � 0 , choose an equivariant map hW �! � 0 ; equivalently,
when @� and @� 0 are identified with @Fn then yhW @�! @� 0 is the identity. Let C be
the bounded cancellation constant [5] (see also Lemma 2.3.1 of [2]) for hW �! � 0 and
let zR0 D h#. zR/. We use prime notation for covering translations and axes of � 0 . Thus
S 0

l
W � 0!� 0 is the covering translation such that S 0

l
hD hSl . Denote h.zal/, h.zbl/ and

the path that they bound by za0
l
, zb0

l
and z� 0

l
. Let zx0

l
DS 0

l
.za0

l
/DS 0

l
h.zal/DhSl.zal/Dh.zxl/,

let zy0
l
D S 0

l
.zb0

l
/ D h.zyl/ and let zı0

l
D S 0

l
.z� 0

l
/ D h#.zıl/ be the path connecting zx0

l
to

zy0
l
. We have:
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(10 ) z� 0
l

is C –close to R0 and z� 0
l
! P .

(40 ) the length of zı0
l
\A0c goes to infinity with l .

(50 ) zx0
l
!Q� 2 Fix.y‰j / n fT

0˙
c g.

(60 ) T 0
�ml
c zy0

l
!QC 2 Fix.y‰t / n fT

0˙
c g.

If P is not isolated in Fix.y‰/ then Lemma 2.2 implies, after increasing C if necessary,
that za0

l
and zb0

l
are C –close to Fix.zg/ for all sufficiently large l . After replacing za0

l

and zb0
l

with C –close elements of Fix.zg/, replacing z� 0
l

with the path connecting the
new values of za0

l
and zb0

l
, and replacing C by 2C , properties .10/, .40/, .50/ and .60/

still hold and each � 0
l

is a Nielsen path for g . Since zı0
l

is a lift of � 0
l
, Lemma 7.11

implies that for all sufficiently large l , the lift of g that fixes zx0
l

and zy0
l

commutes with
T 0c and so equals T 0

dl
c zgj for some dl . Since Q� 2 Fix.ygj / there is a neighborhood of

Q� in � 0 that is disjoint from Fix.T 0mc zgj / for all m¤ 0. Since zx0
l
!Q� , it follows

that dl D 0 and hence that zy0
l
2 Fix.zgj / for all sufficiently large l . Since Fix.zgj / is

T 0c –invariant, T 0
�ml
c zy0

l
2 Fix.zgj / and so QC 2 Fix.ygj / as desired.

Suppose then that P is isolated in Fix.y‰/. After replacing za0
l

and zb0
l

by their nearest
points in zR0 , we may assume that z� 0

l
�R0 and that properties .10/; .40/; .50/ and .60/

still hold. Lemma 2.23 implies that there is a nonlinear edge zE0 that iterates toward P

under the action of zg . Denoting gm
# .E

0/ by �m we have that for all sufficiently large l

there exists m>0 such that � 0
l

is a subpath of �m . There is a lift z�m of �m that contains
zı0

l
and so has endpoints @˙z�m such that @�z�m!Q� and T 0

�ml
c @Cz�m!QC . The

former implies that for sufficiently large m, the initial endpoints of z�m \ A0c and�gj #.z�m/\A0c are equal and the latter implies that if QC 2 Fix.ygj /D Fix.y‰j / then
the terminal endpoints of z�m \A0c and �gj #.z�m/\A0c are equal. On the other hand,
z�m \A0c and zgj #.z�m/\A0c have different lengths by Lemma 7.13 so we conclude
that QC 62 Fix.‰j /.

8 Abelian subgroups of maximal rank

By Theorem 7.2, all abelian subgroups are realized, up to finite index, as subgroups of
some D.�/. In this section we describe those � for which D.�/ has maximal rank.
As usual, � is represented by a CT f W G!G with filtration ∅DG0 �G1 � � � � �

GN DG .

For the simplest example, start with G2 having one vertex v1 , two edges E1 and
E2 and with f defined by f .E1/ D E1 and f .E2/ D E2E

m1

1
for some m1 2 Z.

For k D 1; : : : ; n� 2, add pairs of linear edges, E2kC1 and E2kC2 , initiating at a
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new common vertex vkC1 , terminating at v1 and satisfying f .Ej / D Ej E
mj

1
for

distinct mj . Thus G has 2n� 3 linear edges and the resulting D.�/ has rank 2n� 3,
which is known [7] to be maximal. In this example all edges terminate at the same
vertex and there is only one axis, but this is just for simplicity. One could, for example,
take the terminal vertex of E5 equal to v2 and define f .E5/DE5w5 where w5 is a
closed Nielsen path based at v2 . Similar modifications can be done to the other edges
as well.

Another simple modification is to redefine f jG2 so that G2 is a single EG stratum with
Nielsen path � and redefine f on the other edges to be linear with axis represented by � .
We may view the original example as being built over a Dehn twist of the punctured
torus and this modification as being built over a pseudo-Anosov homeomorphism of
the punctured torus.

A perhaps more surprising example of a maximal rank abelian subgroup is constructed
as follows. Let S be the genus zero surface with four boundary components ˇ1; : : : ; ˇ4

and let hW S!S be a homeomorphism that represents a pseudo-Anosov mapping class
and that pointwise fixes each ˇm . Let A be an annulus with boundary components
˛1 and ˛2 and with its central circle labeled ˛3 . Define Djk W A ! A to be the
homeomorphism that restricts to a Dehn twist of order j on the subannulus bounded by
˛1 and ˛3 and to a Dehn twist of order k on the subannulus bounded by ˛2 and ˛3 .
Finally, define Y D S [A= � where � identifies ˛m to ˇm for 1 � m � 3. The
homeomorphisms gijk W Y ! Y induced by hi and Djk for i; j ; k 2 Z define a rank
three abelian subgroup A0 . The fundamental group of Y is a free group of rank three
and the image of A0 in Out.F3/ is an abelian subgroup A of maximal rank.

We present a slight generalization of this example in terms of relative train track maps
as follows.

Example 8.1 Suppose that G is a rank three marked graph with vertices v1; : : : ; v4 ,
that ∅DG0 �G1 � � � � �G4DG is a filtration and that f W G!G is a relative train
track map such that:

� G1 is a single fixed edge E1 with both ends attached to v1 .

� For mD 2; 3, Hm is a single edge Em with terminal endpoint v1 and initial
endpoint vm ; f .Em/DEmE

dm

1
where d2 and d3 are distinct nonzero integers.

� H4 is an EG stratum with three edges, one connecting v4 to vl for each l D

1; 2; 3; for each edge E of H4 , f .E/ is a concatenation of edges in H4 and
Nielsen paths in G3 . (The Nielsen paths are iterates of E1 , E2E1

xE2 and
E3E1

xE3 and their inverses.)

Geometry & Topology, Volume 13 (2009)



Abelian subgroups of Out.Fn/ 1711

Then f determines an element � 2 Out.F3/ such that D.�/ has rank three. The
example described above using a four times punctured sphere is a special case of this
construction. In general, H4 is not a geometric stratum in the sense of [2].

We think of the strata H2[H3[H4 in Example 8.1 as being a single unit added on to
the lower filtration element, which in this case is a single circle. To this end we choose
notation as follows.

Notation 8.2 Recall from (Filtration) that the core of each filtration element is a
filtration element. The core filtration ∅D G0 � Gl1

� Gl2
� � � � � GlK D GN D G

is defined to be the coarsening of the full filtration obtained by restricting to those
elements that are their own cores or equivalently have no valence one vertices. Note
that l1 D 1 by (Periodic edges). For each Gli

, let H c
li

be the i –th stratum of the
core filtration. Namely H c

li
D
Sli

jDli�1C1
Hj . The change in Euler characteristic

�.Gli�1
/��.Gli

/ is denoted �i�. We will also use the notation Gui
defined in item

(2) of Lemma 8.3.

We also make use of the following notation.

Lemma 8.3 (1) If H c
li

does not contain any EG stratum then one of the following
holds.
(a) li D li�1C 1 and the unique edge in H c

li
is a fixed loop that is disjoint from

Gli�1
.

(b) li D li�1C 1 and both endpoints of the unique edge in H c
li

are contained in
Gli�1

.
(c) li D li�1C 2 and the two edges in H c

li
are nonfixed and have a common

initial endpoint that is not in Hli�1
and terminal endpoints in Gli�1

.

In case (a), �i�D 0; in cases (b) and (c), �i�D 1.

(2) If H c
li

contains an EG stratum then Hli
is the unique EG stratum in H c

li
and

there exists li�1 � ui < li such that both of the following hold.
(a) For li�1 < j � ui , Hj is a single nonfixed edge Ej whose terminal vertex

is in Gli�1
and whose initial vertex has valence one in Gui

. In particular,
Gui

deformation retracts to Hli�1
and �.Gui

/D �.Gli�1
/.

(b) For ui < j < li , Hj is a zero stratum. In other words, the closure of
Gli
nGui

is the extended EG stratum H z
li

.

If some component of H c
li

is disjoint from Gui
then H c

li
DHli

is a component
of Gli

and �i�� 1; otherwise �i�� 2.
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Proof Suppose at first that H c
li

does not contain any EG stratum and hence does not
contain any zero strata. Then Hj is a single edge Ej for each li�1C1� j � li and if
some Ej is fixed then either (1)(a) or (1)(b) is satisfied by (Periodic edges). We may
therefore assume that each Ej is nonfixed. The terminal endpoint of Ej must have
valence at least two in Gj�1 by [10, Lemma 4.22]. Thus Ej adds a valence one vertex
to Gli�1 for j < li , and all such vertices must be endpoints of Eli

. It follows that
either (1)(b) or (1)(c) holds. The Euler characteristic statements are obvious.

We now consider the case that H c
li

contains an EG stratum Hs . Since the core of
each filtration element is a filtration element and Gs�1 does not carry the attracting
lamination associated to Hs , Gs is its own core. This proves that Hli

is the unique EG
strata in H c

li
. The existence of ui satisfying (a) and (b) follows from (Zero strata) and

[10, Lemma 4.22]. Since f is rotationless, H z
li

is contained in a single f –invariant
component M of Gli

. The lowest stratum in M can not be a zero stratum, so if
M \Gui

D∅ then M DHli
DH c

li
. By Corollary 3.2.2 of [2], Gli

is not homotopy
equivalent to a graph obtained from Gli�1

by adding a single edge. This proves that
�i�� 1 if Hli

is a component of Gli
and �i�� 2 otherwise.

Returning now to our examples of maximal rank abelian subgroups, we formalize the
class to which Example 8.1 belongs as follows, where the acronym FPS is chosen to
remind the reader of the four times punctured sphere.

Notation 8.4 Assume that H c
li

is a core filtration element that contains an EG stratum
and that ui is as in Lemma 8.3. We say that H c

li
is a partial FPS core stratum if:

(1) ui D li�1C 2 and both edges in Gui
nHli�1

are linear.

(2) �i�D 2 and H z
li

is a tree.

(3) Each zero stratum in H z
li

is a single edge.

(4) For each edge E of H z
li

, f .E/ has a complete splitting each of whose terms is
either an edge in H z

li
or a Nielsen path in Gui

.

There is also the option of adding an additional linear edge. In the geometric case this
amounts to Dehn twisting on three boundary components of the four times punctured
sphere instead of just two. We formalize this as follows.

Notation 8.5 Assume that H c
li

is a core filtration element that contains an EG stratum
and that ui is as in Lemma 8.3. We say that H c

li
is a FPS core stratum if:

(1) ui D li�1C 3 and all three edges in Gui
nHli�1

are linear.
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(2) �i�D 2 and H z
li

is a tree.

(3) Each zero stratum in H z
li

is a single edge.

(4) For each edge E of H z
li

, f .E/ has a complete splitting each of whose terms is
either an edge in H z

li
or a Nielsen path in Gui

.

Remark 8.6 The second items of Notation 8.4 and Notation 8.5 imply that Gu\H z
li

is a three point set. In the context of Notation 8.5 this intersection equals the initial
endpoints of the linear edges in H c

li
; in the context of Notation 8.4 it equals the union

of the initial endpoints of the linear edges in H c
li

and one vertex in Gli�1
.

Remark 8.7 We allow zero strata as in the third items of Notation 8.4 and Notation
8.5 because it is not worth modifying the CTs that occur in our proofs to remove them.

Remark 8.8 The core filtration of the CT f W G!G of Example 8.1 has two strata.
The first is a fixed loop and the second is a partial FPS core stratum. If one replaces the
partial FPS core stratum with an FPS core stratum then the resulting map is not a CT
because the fixed loop is a component of Fix.f / that has no fixed outgoing directions
in violation of the fact (Periodic edges) that endpoints of fixed edges are principal. On
the other hand, adding a second partial FPS core stratum will result in D.�/ not having
maximal rank.

We can now state the main results of this section.

Proposition 8.9 Suppose that � 2 Out.Fn/ is rotationless and that DR.�/ has rank
2n�3. Then � is represented by a CT f W G!G and filtration ∅DG0 �G1 � � � � �

GN DG with the following properties.

(A) One of the following holds.
(a) Gl1

has rank two and is a single EG stratum.
(b) G1 is a fixed loop and H c

l2
is a single linear edge E2 which both endpoints

in G1 . In particular, l2 D 2 and Gl2
has rank two.

(c) G1 is a fixed circle and H c
l2

is a partial FPS core stratum. In particular, Gl2

has rank three.

(B) In case (1) above let mD 1; for cases (2) and (3) let mD 2. Then for all i >m,
H c

li
is either

(a) a pair of linear edges with a common initial vertex that is not contained in
Gli�1

or
(b) an FPS core stratum.
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There is an analogous result for abelian subgroups of the subgroup IAn of Out.Fn/

consisting of elements that act trivially in homology.

Proposition 8.10 Suppose that � 2 Out.Fn/ is rotationless and that D.�/� IAn has
rank 2n�4. Then � is represented by a CT f W G!G and filtration ∅DG0 �G1 �

� � � �GN DG with the following properties.

(A) l2 D 2 and G2 is connected, has rank two and is contained in Fix.f /.

(B) For i > 2, H c
li

is either
(a) a pair of linear edges with homologically trivial axes and with a common

initial vertex that is not contained in Gli�1
or

(b) an FPS core stratum whose linear edges have homologically trivial axes.

Recall that one uses the QE–splitting of the f –image of edges of G to define almost
invariant subgraphs X1; : : : ;XM of G and that if ai is a nonnegative integer assigned
to Xi then .a1; : : : ; aM / is admissible (Definition 6.8) if it satisfies certain linear
relations involving two or three of the ai ’s. The rank of D.�/ is equal (Corollary
7.6) to the rank of the subspace of RM generated by the admissible M –tuples for
f W G!G .

After renumbering the Xi ’s we may assume that there exist 0 �M1 �M2 � � � � �

MN DM such that X1; : : : ;XMj
is the smallest set of almost invariant subgraphs

that contain all the nonfixed strata of Gj . Let Rj be the rank of the subspace of RMj

generated by the restriction of admissible M –tuples to the first Mj coordinates.

Lemma 8.11 (1) Rj �Rj�1 for all j .

(2) If Hj is a fixed edge then Rj DRj�1 .

(3) If Hj is a linear edge then Rj �Rj�1C 1.

(4) If Hj is a nonfixed nonlinear NEG edge then Rj DRj�1 .

(5) If H c
li

is a core filtration element that contains an EG stratum then Rli
�Rui

C1

with equality holding only if the following condition is satisfied.
(a) If � is either an edge in Hli

or a taken connecting path in a zero stratum
of H z

li
then the terms in the QE–splitting of f#.�/ are either edges in Hli

,
taken connecting paths in a zero stratum of H z

li
or Nielsen paths in Gui

.
(b) The almost invariant subgraph Xq that contains H z

li
is otherwise disjoint

from Gui
. Moreover, aq is not part of any relation that involves only

.a1; : : : ; aMli
/.

Geometry & Topology, Volume 13 (2009)



Abelian subgroups of Out.Fn/ 1715

Proof The first item is immediate from the definitions. If Hj is a fixed edge then
Mj DMj�1 . If Hj is a linear edge then Mj �Mj�1C 1. This proves (2) and (3). If
Hj is a nonfixed nonlinear NEG edge Ej then at least one term � in the QE–splitting
of f .Ej / is contained in Gj�1 and is not a Nielsen path. If � is a single nonfixed
edge in an irreducible stratum or a connecting path in a zero stratum then Ej � Xi

for some i �Mj�1 so Mj DMj�1 and (4) follows. If � is a quasi-exceptional path
then, assuming without loss that Mj DMj�1C 1, there is a relation involving aMj

and one or two ai ’s with i �Mj�1 . Thus aMj
is determined by .a1; : : : ; aMj�1

/ and
Rj DRj�1 . This completes the proof of (4).

If H c
li

is a core filtration element that contains an EG stratum then Mli
�Mui

C 1

and hence Rli
� Rui

C 1. Suppose that Rli
D Rui

C 1. Item (b) is an immediate
consequence of the definitions and (a) follows from (b) by the argument used to
prove (4).

Notation 8.12 Suppose that H c
li

is a core stratum for a CT f W G!G . Let �iRD

Rli�1
�Rli

and let ıi be the number of components of Gli�1
that contain the base

point of an edge in H c
li

that determines a fixed direction.

Corollary 8.13 Suppose that H c
li

is a core stratum for a CT f W G!G and that H c
li

does not contain an EG stratum. Then

�iR� 2�i�� ıi

and if equality holds then one of the following is satisfied.

(1) �iRD�i�D ıi D 0 and H c
li
� Fix.f / is a component of Gli

.

(2) �iRD�i�D ıi D 1 and H c
li

is a single linear edge.

(3) �iR D 2, �i� D 1, ıi D 0 and H c
li

is a pair of linear edges with a common
initial vertex.

Proof This follows immediately from Lemma 8.3 and Lemma 8.11.

The analog of Corollary 8.13 for the case that H c
li

contains an EG stratum is the main
step in the proofs of Proposition 8.9 and Proposition 8.10.

Proposition 8.14 Suppose that H c
li

is a core stratum for a CT f W G ! G and that
H c

li
contains an EG stratum. Then

�iR� 2�i�� ıi

and if equality holds then the following are satisfied.
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(1) Hp is a single linear edge for each li�1 < p � ui .

(2) �iRD VLC 1 where VL D ui � li�1 is the number of linear edges in H c
li

.

(3) If an almost invariant subgraph Xq contains either Hp for some li�1 < p � ui

or contains H z
li

, then Xq is otherwise disjoint from Gui
. Moreover aq is not

part of any relation that involves only .a1; : : : ; aMli
/.

(4) If ıi � 1 then:
(a) H c

li
is an FPS core stratum and ıi D 0.

(b) H c
li

is a partial FPS core stratum and ıi D 1.

Proof If some component X of H z
li

is disjoint from Gui
then Lemma 8.3 implies

that H c
li
DHli

is a component of Gli
and that �i� � 1. In this case �iRD 1 and

ıi D 0 so the lemma is clear. We assume for the remainder of the proof that each
component of H z

li
has nonempty intersection with Gui

.

Denote Gui
\H z

li
by V , the cardinality of V by V and the number of components in

H z
li

by Ci . Adding a component X of H z
li

to Gui
and then collapsing a maximal tree

in X to a point is the same as identifying all the elements of the nonempty set V \X

to a single point and possibly adding some loops. If V \X is a single point then there
must be at least one loop because each vertex of Gli

has valence at least two. This
proves

(1) �i�� V �Ci

with equality if and only each component of H z
li

is a tree (in other words, no loops are
added after the elements of V \X are identified) and

�i�� Ci

with equality if and only if each component of H z
li

is topologically either an arc that
intersects Gui

in exactly two points or a loop that intersects Gui
in a single point.

Adding these inequalities we get

2�i�� V

with equality if and only if each component of H z
li

is topologically an arc that intersects
Gui

in exactly two points.

On the other hand, there must be at least one illegal turn in Hli
. (If there were

no illegal turns in Hli
there would be m > 0 so that for any loop  � Gli

that
intersects Hli

nontrivially, the number of edges of Hli
in f m

# . / would be strictly
larger than the number of edges of Hli

in  . This can not be true as one easily sees
by considering loops �m satisfying f m

# .�m/D  . ) This rules out the possibility
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that each component of H z
li

is topologically an arc that intersects Gui
in exactly two

points and we conclude that

(2) 2�i�� V C 1:

For li�1 < j � ui , the stratum Hj is a single edge Ej . We write Ej 2 EL if Ej

is linear. The initial endpoints VL of the edges in EL have valence one in Gui
. We

denote the cardinality of VL by VL . Lemma 8.11 implies that

�iR� VLC 1:

Note also VL � V � ıi . Thus

(3) �iR� VLC 1� V C 1� ıi � 2�i�� ıi

which completes the proof of the main inequality.

We assume now that all the inequalities in Equation (3) are equalities. From VLC 1D

V C 1� ıi it follows that V �VL D ıi which implies item (1). Item (2) follows from
�iRD VLC 1 and implies item (3). We now assume that ıi � 1 and prove that either
(4)(a) or (4)(b) holds.

Suppose that Ci > 1. Since V �VL D ıi � 1 there is a component Y of H z
li

whose
intersection with Gui

is contained in VL . By (NEG Nielsen paths) each Nielsen path
in Gui

with an endpoint in VL\Y is a closed path and in particular has both endpoints
in VL \ Y . Choose an edge E in Hli

and k � 1 so that f k
# .E/ intersects each

component of H z
li

. Since �iR D VL C 1, Lemma 8.11(5) implies (by an obvious
induction argument) that the terms in the QE–splitting of f k

# .E/ are either edges in
Hli

, connecting paths in zero strata of H z
li

or Nielsen paths in Gui
. But this contradicts

the fact that some maximal subpath of f k
# .E/ in Gui

must have one endpoint in Y

and the other in a different component of Hli
. We conclude that Ci D 1.

Recall from Lemma 8.3 that �i� � 2. Combining this with �i� � V � 1 from
Equation (1) and with 2�i�D V C1 we see that �i�D 2 and V D 3. It follows that
�iRCıi D 2�i�D 4 and VLD V �ıi is either 2 or 3. Equation (1) implies that H z

li

is a tree. Lemma 8.11 will complete the proof that H c
li

is an FPS core stratum when
ıi D 0 and is a partial FPS core stratum when ıi D 1 once we show that each zero
stratum in H z

li
is an edge.

Topologically (meaning that we ignore valence two vertices whose link in Gli
is

contained in H z
li

) there are two possibilities for H z
li

. One is that H z
li

has one valence
three vertex that is disjoint from Gui

and three valence one vertices that are contained
in Gui

. The other is that H z
li

has one valence two vertex and two valence one vertices,
all of which are contained in Gui

. In both cases the illegal turn in H z
li

is based at
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the unique vertex with valence greater than one. (Zero strata) implies that each zero
stratum in H z

li
is a single edge as desired.

Proof of Proposition 8.9 Choose a CT f W G ! G and filtration ∅ D G0 � G1 �

� � � �GN DG representing � . Let ∅DG0 �Gl1
� � � � �GlK DG be the associated

core filtration. Recall that Gl1
DG1 . Let mD��.G1/ and let dD

PK
iD2 ıi . Corollary

8.13 and Proposition 8.14 implies that

2n� 3�R1 DRN �R1 D

KX
iD2

�iR�

KX
iD2

.2�i�� ıi/

D 2�.Gl1
/� 2�.G/� d D 2n� 2� 2m� d

which implies that
2mC d �R1C 1

with equality if and only if �iRD 2�i�� ıi for each i � 2.

If G1 is EG then R1 D 1 and m � 1 by Lemma 8.3. Thus m D 1, d D 0 and
�iRD 2�i�� ıi with ıi D 0 for each i � 2. Corollary 8.13, Proposition 8.14 and
(Periodic edges), which (since d D 0) implies that case (1) of Corollary 8.13 does not
happen, complete the proof.

If G1 is NEG then G1� Fix.f /, R1D 0 and mD 0. Thus d � 1 and (Periodic edges)
implies that d � 1. It follows that d D 1 and �iR D 2�i�� ıi for each i � 2. If
ı2 D 1 then Corollary 8.13, Proposition 8.14 and (Periodic edges) complete the proof.

It remains to show that if G1 is a fixed loop and ı2D 0 then we can modify f W G!G

and the filtration, without changing G1 , to arrange that ı2 D 1. Let v and E1 be the
unique vertex and edge in G1 and let Ei be an edge in H c

li
that determines a fixed

direction at v pointing out of G1 . Inspecting the possibilities in Corollary 8.13 and
Proposition 8.14 we see that Hli

is the only stratum containing an edge that determines
a fixed direction at v pointing out of G1 and that the link L.G; v/ consists of E1 , xE1 ,
edges in Hli

and the terminal ends of some linear edges.

As a first case suppose that Hli
is EG. By (NEG Nielsen paths), (EG Nielsen paths)

and [10, Remark 4.21] every closed Nielsen path based at v is an multiple of E1

or its inverse. Thus each linear edge Ek whose terminal endpoint is v satisfies
f .Ek/DEkE

dk

1
for some dk ¤ 0. Create a new graph G0 by replacing v with a pair

of vertices v1 and v2 , attaching the edges in L.G; v/ coming from Hli
to v2 , attaching

all the remaining edges in L.G; v/ to v1 and by adding an oriented edge E0 with
initial endpoint v2 and terminal endpoint v1 . There is an induced map f 0W G0!G0

that fixes E0 . This process is the inverse of collapsing an edge to a point and it is
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straightforward to check that f 0W G0!G0 satisfies all of the properties of a CT except
for (Periodic edges).

The link L.G0; v1/ consists of E1 , xE1 , xE0 and the terminal ends of linear edges
Ek satisfying f .Ek/ D EkE

dk

1
. Choose an Ek , say E2 , that is contained in H c

l2
.

Define a new homotopy equivalence gW G0!G0 by replacing dk with dk � d2 and
by replacing f 0.E0/ D E0 with g.E0/ D E0E

�d2

1
. Note that f and g are freely

homotopic (the homotopy can be chosen to have support in a small neighborhood of
E1 and to restrict to a homotopy on E1 from the identity to rotation by �2d2� ) and
so represent the same element of Out.Fn/. We have changed the fixed edge from E0

to E2 . Finally, modify g by collapsing E2 to a point. The resulting map is a CT with
ı2 D 1 as desired.

The remaining case is that Hli
is NEG and so is a single linear edge Eli

satisfying
f .Eli

/ D Eli
�d for some closed Nielsen path � and some d ¤ 0. In this case

Eli
� xEli

is a closed Nielsen path based at v so there may be linear edges Ek with
f .Ek/DEk�k where �k not an iterate of E1 or its inverse. To take this into account
we attach the terminal end of Ek to v1 if �k is a multiple of E1 or its inverse and to
v2 otherwise. As above E1 , xE1 and xE0

1
are attached to v1 and E0

1
is attached to v2 .

The rest of the construction is the same as in the previous case. We leave the details to
the reader.

Proof of Proposition 8.10 Choose a CT f W G! G and filtration ∅D G0 � G1 �

� � � �GN DG representing � . Let ∅DG0 �Gl1
� � � � �GlK DG be the associated

core filtration. Since IA2 is trivial [16], either there are no �–invariant free factors
of rank two or there is a �–invariant free factor of rank two on which � acts trivially.
In the latter case we may assume by [10, Theorem, 4.29 and Remark 4.42] that
Gl2
D G2 � Fix.f /. For 0 � j � K , let dj D

PK
iDj ıi and let mj D ��.Glj /.

Proposition 8.14 implies that

2n� 4�Rlj D

KX
iDjC1

�iR�

KX
iDjC1

.2�i�� ıi/

D 2�.Glj /� 2�.G/� djC1 D 2n� 2� 2mj � djC1

which implies that

(4) Rlj � 2mj C djC1� 2

and that if Equation (4) is an equality then �iR D 2�i�� ıi for each i � j C 1.
Equation (4) with j D 0 implies that d1 � 2.
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Suppose at first that Gl2
DG2�Fix.f /. Then m2D1 and Rl2

DR2D0. Equation (4)
implies that d3 D 0 and that �iRD 2�i�� ıi with ıi D 0 for each i � 3. Corollary
8.13, Proposition 8.14 and (Periodic edges), which implies that case (1) of Corollary
8.13 does not happen, reduce the proof to showing that the axis associated to each linear
edge Ej is homologically trivial. From the explicit descriptions given in Corollary
8.13 and Proposition 8.14 we see that Ej does not disconnect G and that the almost
invariant subgraph containing Ej contains no other stratum and is not part of any
relation. Thus the homotopy equivalence gW G! G that fixes G nEj and satisfies
gjEj D f jEj represents an element of D.�/ and so acts by the identity on homology.
Since there are loops in G that cross E exactly once, the axis associated to Ej must
be homologically trivial.

We assume now that G2 6� Fix.f / and argue to a contradiction.

As noted above, no rank two free factor is �–invariant. Since R1 � 1 and m1 ¤ 1,
Equation (4) implies that m1 D 0. Thus G1 is a fixed loop, R1 D 0 and 1� d2 � 2.
Suppose that H c

l2
is disjoint from G1 . Since we can switch the order of H1 and Hl2

in this case, Gl2
is a fixed loop, l2 D 2, m2 D �2RD 0 and d3 D 2. By the same

logic, if H c
l3

is disjoint from G1[G2 then d4 would be at least three in contradiction
to d3 � d1 � 2. It follows that Gl3

has at most two components. After switching the
order of H1 and H2 if necessary, we may assume that either Gl2

or Gl3
is connected;

define q D 2 if Gl2
is connected and q D 3 otherwise. Since Glq

does not have rank
two, Hlq

is EG. Let VL be the number of linear edges in Guq
.

If q D 2 then dqC1 � 1� ıq and if q D 3 then dqC1 � 2� ıq . Equation (4) therefore
implies that

(5) �qRDRlq
� 2mq � ıq � 1� 3� ıq

if q D 2 and
�qRDRlq

� 2mq � ıq � 4� ıq

if qD3. Combining this with Equation (3) we conclude that Rlq
DVL or Rlq

DVLC1

if q D 2 and Rlq
D VLC 1 if q D 3. The proof now divides into cases.

Case 1 (Rlq
DVLC1.) Choose an edge E in Hlq

and k � 1 so that f k
# .E/ crosses

every edge in H z
lq

. Item (5)(a) of Lemma 8.11 implies (by an obvious induction argu-
ment) that the terms in the QE–splitting of f k

# .E/ are either edges in Hlq
, connecting

paths in a zero stratum of H z
lq

or Nielsen paths in Gui
. Since all Nielsen paths in Gui

are closed paths there is a path in H z
lq

that contains every edge in H z
lq

. This proves
that H z

lq
is connected.

The number of edges in Guq
that separate Glq

is at most 1 � ıq if q D 2 and at
most 2 � ı2 if q D 3. We may therefore choose a nonseparating linear edge Ej
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in Glq
. By item (5)(b) of Lemma 8.11 there is a homotopy equivalence gW G! G

that represents an element of D.�/ and whose restriction to Glq
fixes Glq

nEj and
satisfies gjEj D f jEj . Since gjGlq

acts by the identity on homology and since
there are loops in Glq

that cross Ej exactly once, the axis associated to Ej must be
homologically trivial in contradiction to the fact that the axis of Ej is represented by
the basis element E1 .

Case 2 (Rlq
D VL .) In this case we have q D 2. Choose an edge E in Hl2

and
k � 1 so that f k

# .E/ crosses every edge of H z
l2

. If each term � in the QE–splitting
of f k

# .E/ is either an edge in Hl2
, a connecting path in a zero stratum of H z

l2
or a

Nielsen path in Gu2
then H z

l2
is connected by the argument used in case 1. Otherwise

some � is a linear edge or a quasi-exceptional path.

If � is a linear edge Ei then Ei and H z
l2

belong to the same almost invariant subgraph,
the other almost invariant subgraphs that contain strata in Gl2

contain a unique stratum
in Gl2

and there are no relations between any of these almost invariant subgraphs. The
terms in the QE–splitting of f k

# .E/ that intersect Gu2
are closed paths or Ei or its

inverse. It follows that each component of H z
l2

contains either the initial endpoint of
Ei or the unique vertex in G1 . These components can be the same or different.

If � is a quasi-exceptional path with initial and terminal edges say Ej and Ek then
the almost invariant subgraphs that contain strata in Gl2

contain a unique stratum in
Gl2

and the only relation between them is the one determined by � . The terms in the
QE–splitting of f k

# .E/ that intersect Gu2
are closed paths or a quasi-exceptional path

in the same family as Ej
xEk . It follows that each component of H z

l2
contains the initial

endpoint of either Ej of Ek . These components can be the same or different.

Case 2a (H z
l2

is connected.) If H z
l2

is connected then

m2 � VL� 1C ı2:

Combining this with Equation (5) and the assumption that Rlq
D VL we have

VL � 2m2� ı2� 1� 2VL� 2C 2ı2� ı2� 1D 2VL� 3C ı2

which implies that
VL � 3� ı2

and hence by Equation (5) that
VL D 3� ı2:

If ı2 D 0 then H z
l2

and the three linear edges in Gu2
are contained in either three or

four almost invariant subgraphs; in the former case there are no relations between them
and in the latter case there is one relation between two or three of them. In either case
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there exist admissible M –tuples a and b such that a˛ D b˛ , aˇ D bˇ and a ¤ b
where X˛ contains H z

l2
and where Xˇ and X contain linear edges Eˇ and E in

Gu2
. Choose a path � in H z

l2
connecting the initial vertex of Eˇ to the initial vertex of

E . Then � D xEˇ�E is a loop such that .fa/#.�/ and .fb/#.�/ determine different
homology classes in contradiction to the assumption that D.�/� IAn .

If ı2D 1 then H z
l2

and the two linear edges in Gu2
are contained in either two or three

almost invariant subgraphs; in the former case there are no relations between them and
in the latter case there is one relation between two or three of them. In either case
there exist admissible M –tuples a and b such that a˛ D b˛ and aˇ ¤ bˇ where X˛
contains H z

l2
and where Xˇ contains a linear edge Eˇ in Gl2

. Choose a path � in
H z

l2
connecting the initial vertex of Eˇ to the unique vertex in G1 . Then � D xEj�

is a loop such that .fa/#.�/ and .fb/#.�/ determine different homology classes in
contradiction to the assumption that D.�/� IAn .

Case 2b (H z
l2

is not connected.) If H z
l2

is not connected then it has two components.
Equation (5) implies that VL � 3� ı2 .

If ı2 D 0 then neither component of H z
l2

contains the unique vertex of G1 so some
term in the QE–splitting of f k

# .E/ is quasi-exceptional with one endpoint in each
component of H z

l2
. All the linear edges in Gu2

and H z
l2

are contained in distinct
almost invariant subgraphs and there is a relation between the almost invariant subgraph
containing H z

l2
and two of the almost invariant subgraphs containing linear edges

whose initial edges are contained in distinct components of H z
l2

. In this case the proof
concludes as when ı2 D 0 for case (2)(a) where Eˇ and E have initial endpoints in
the same component of H z

l2
.

If ı2D 1 then H z
l2

and a linear edges in Gu2
with initial endpoint in the component of

H z
l2

that does not contain the unique vertex of G1 belong to the same almost invariant
subgraph, the other linear edges are in distinct almost invariant subgraphs and there are
no relations between any of these almost invariant subgraphs. In this case the proof
concludes as when ı2D 1 for case (2)(a) where the initial endpoint of Eˇ is contained
in the component of H z

l2
that contains the unique vertex of G1 .

9 Two families of abelian subgroups

We now return to the simplest examples of maximal rank abelian subgroups: those
that are rotationless, have linear growth and have only one axis. We prove that these
subgroups and their standard generators can be characterized using only algebraic (as
opposed to dynamical systems) properties. These results are needed in the calculation [8]
of the commensurator of Out.Fn/.
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We begin by relating the rank of A. / to the dynamical properties of  in a special
case. Recall that L. / is the set of attracting laminations for  .

Lemma 9.1 Suppose that A is a maximal rank rotationless abelian subgroup of
Out.Fn/ or IAn , that  2 A and that A. / has rank one. Then either L. / has
exactly one element and  has no axes or L. /D∅ and  has exactly one axis and
that axis has multiplicity one.

Proof We show below that each ƒ 2 L. / is minimal, meaning that every line in ƒ
is dense in ƒ, and that if gW G0!G0 is a CT representing  then each nonfixed NEG
edge is linear. The former implies that if E0 is an edge of an EG stratum H 0t and k � 0

then the terms in the QE–splitting of gk
# .E

0/ are edges in H 0t , connecting paths in the
zero strata that are enveloped by H 0t and Nielsen paths. It follows that each almost
invariant subgraph is a single core stratum and that there are no relations between the
almost invariant subgraphs. This implies that the rank of D. /, and hence the rank of
A. /, is equal to the number of nonfixed core strata. The lemma follows immediately.

By Lemma 5.4 there exists a rotationless � 2 A so that A � A.�/. Choose a CT
f W G ! G and filtration ∅ D G0 � G1 � � � � � GN D G representing � . Let
∅DGc

0
�Gc

l1
� � � � �Gc

lK
DG be the associated core filtration. Proposition 8.9 and

Proposition 8.10 imply that if ƒ 2 L.�/ corresponds to an EG stratum Hr then both
ends of every leaf of ƒ intersect Hr infinitely often. By Lemma 3.1.15 of [2] each leaf
of ƒ is dense in ƒ. In other words ƒ is minimal. The symmetric argument applied to
��1 shows that every element of L.�/[L.��1/ is minimal. Lemma 5.8 and Remark
4.8 therefore imply that every element of L. / is minimal.

The proof that nonfixed NEG edges of gW G0!G0 are linear is less direct. The first
step is to show that there does not exist a proper free factor system F that carries
each element of L.�/[L.��1/ and each �–invariant conjugacy class. We do this by
assuming that F exists and arguing to a contradiction.

Suppose that A is a subgroup of IAn . Proposition 8.10 implies that there is a �–
invariant free factor of rank two on which � acts trivially. This free factor is carried
by F so by Theorem 2.21 and [10, Remark 4.42] we may assume that F D F.Gr /

for some Gr and that f jG2 is the identity. As shown in the proof of Proposition 8.10,
f W G ! G satisfies the conclusions of Proposition 8.10. In particular, H c

lK
either

contains an EG stratum or is a pair of linear edges with a common initial vertex not in
Gr . In the former case there is an element of L.�/ not carried by Gr and in the latter
case there is a �–invariant conjugacy class not carried by Gr .

In the case that A is not a subgroup of IAn , we may still assume that F D F.Gr /

for some Gr . As shown in the proof of Proposition 8.9, there is one additional
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possibility for H c
lK

. Namely, H c
lK

can be a single linear edge with initial base point in
G1�Fix.f /. But this also contradicts the assumption that Gr carries every �–invariant
conjugacy class. This completes the proof that F as above does not exist.

After replacing  with an iterate if necessary we may assume that  2D.�/. Lemma
6.13 and Corollary 6.20 imply that each �–invariant conjugacy class is  –invariant.

We can now complete the proof by assuming that there is a nonfixed nonlinear NEG
edge for gW G0! G0 and arguing to a contradiction. The highest such edge Ej can
not be a term in the QE–splitting of f k.E/ for any edge E in a linear or EG stratum.
This is obvious for linear strata and follows from the minimality of ƒ 2 L.�/ for EG
strata. In conjunction with (Zero strata), this proves that Ej is not in the image of any
edge above it. We may therefore assume that Ej is the top stratum. But then Gj�1

carries each element of L.�/[L.��1/ and each �–invariant conjugacy class. This
contradiction completes the proof.

Let G be the rose with n� 2 of its n edges subdivided into two edges. Thus there
are edges E1; : : : ;E2n�2 and vertices v1; : : : ; vn�1 with v1 the terminal vertex of all
edges and the initial edges of E1 and E2 and with vk the initial vertex of E2k�1 and
E2k for 2� k � n� 1.

For 1� i � 2n�3, define fi W G!G by EiC1 7!EiC1E1 and all other edges fixed.
Choose a basis x1; : : : ;xn for Fn and a marking on G that identifies xj with the j –th
loop of G . The elements �i 2 Out.Fn/ determined by fi are a basis for an abelian
subgroup A1 of rank 2n�3. If i D 2k � 2 for k � 2 then y�i is defined by xk 7!xkx1 .
If i D 2k � 1 for k � 2 then y�i is defined by xk 7! xx1xk . The remaining element y�1

is defined by x2 7! x2x1 . Borrowing notation from [8] we say that A1 is the type E
subgroup associated to the basis x1; : : : ;xn and that �1; : : : ; �2n�3 are its standard
generators.

Remark 9.2 It is not hard to check (see for example [8, Lemma 2.14]) that �1 is
conjugate to each �j and to �j�l if fj ; lg¤ f2k�2; 2k�1g for some k � 2. Corollary
5.6 and [8, Lemma 4.4] imply that A.�1/ has rank one. This explains the hypothesis
in the next lemma.

Lemma 9.3 Suppose that �1; : : : ; �2n�3 form a rotationless basis for an abelian
subgroup A of Out.Fn/, n� 3, that each A.�j / has rank one and that A.�j�l/ has
rank one if fj ; lg ¤ f2k � 2; 2k � 1g for some k � 2. Then there is a basis x1; : : : ;xn

for Fn , standard generators �j of the type E subgroup associated to this basis and t > 0

so that �j D �
t
j for all j .
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Proof Corollary 3.13 implies that A is rotationless. By Lemma 5.4 there exists
� 2 A such that each A � A.�/. Choose a CT f W G ! G representing � as in
Proposition 8.9. In particular, each nonfixed NEG edge is linear. The coordinates of
�� W A.�/! Z2n�3 (Definition 7.3) are in one to one correspondence with the linear
edges and EG strata.

By hypothesis, for each �j there exists �j 0 ¤ �j such that A.�j�j 0/ has rank one.

Suppose that  2A.�/, that !i is a coordinate of �� and that !i. /¤0. If !iDPFƒ
then ƒ 2 L. /[L. �1/ by Remark 4.8. If !i corresponds to a linear edge with
associated axis Œc�u then Œc�u is an axis for  ; if !r also corresponds to a linear edge
with associated axis Œc�u and if !r . /¤ !i. / and !r . /¤ 0 then Œc�u is an axis
for  with multiplicity greater than one. Lemma 9.1 therefore implies that for each �j

the coordinates of �� .�j / takes on a single nonzero value and that if more than one
coordinate takes this value then all such coordinates come from linear edges associated
to the same axis. The same holds true for the coordinates of �� .�j�j 0/.

Suppose that !i D PFƒ and that !i.�j /¤ 0. At least one of !i.�j 0/ or !i.�j 0�j / is
nonzero, say !i.�j 0/. Then �� .�j / and �� .�j 0/ are contained in a cyclic subgroup
of Z2n�3 in contradiction to the fact that �j and �j 0 generate a rank two subgroup
and the injectivity of �� . We conclude that each coordinate of �� corresponds to a
linear edge of f W G!G .

Since �� .�j / and �� .�j 0/ are not contained in a cyclic subgroup of Z2n�3 , the
coordinates on which they are nonzero can not be identical. It follows that these
coordinates are disjoint and correspond to the same axis of � ; moreover, the unique
nonzero values taken by �� .�j / and �� .�j 0/ are the same. For each i this applies to
all but one j . It follows that all linear edges correspond to the same axis, that only
one coordinate of �� .�j / can be nonzero and that the nonzero value t that is taken is
independent of j . The lemma now follows from the explicit description of f W G!G

given by Proposition 8.9 and the definition of �� .

There is an analogous result for IAn . For the model subgroup, we use the same
marked graph G as in the definition of type E subgroups. Choose a closed path in
G2 based at v1 that forms a circuit and determines a trivial element of homology. For
1� i � 2n�4 define fi W G!G by EiC2 7!EiC2w . The elements �i;w 2Out.Fn/

determined by fi are a basis for an abelian subgroup Aw of IAn with rank 2n�4. We
think of w as both a path in G2 and an element of the free factor hx1;x2i. If iD2k � 5

then y�i;w is defined by xk 7! xkw and if i D 2k � 4 then y�i is defined by xk 7! xwxk .
Borrowing notation from [8] we say that Aw is the type C subgroup associated to w
and to the basis x1; : : : ;xn and that �1;w; : : : ; �2n�4;w are its standard generators.
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Lemma 9.4 Suppose that �1; : : : ; �2n�4 are a rotationless basis for an abelian sub-
group of IAn , n � 4, that each A.�j / has rank one and that A.�j�l/ has rank one
if fj ; lg ¤ f2k; 2k C 1g. Then there exists a basis x1; : : : ;xn for Fn , a homologi-
cally trivial element w 2 hx1;x2i and standard generators �j of the type C subgroup
associated to w and this basis, and t > 0 so that �j D �

t
j

Proof We have assumed that n � 4 so that for all �j there exists �j 0 such that
A.�j�j 0/ has rank one. Otherwise the proof of Lemma 9.3 carries over to this context
without modification, w representing the unique axis of the elements �j .
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