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Gromov–Witten theory of An–resolutions

DAVESH MAULIK

We give a complete solution for the reduced Gromov–Witten theory of resolved
surface singularities of type An , for any genus, with arbitrary descendent insertions.
We also present a partial evaluation of the T –equivariant relative Gromov–Witten
theory of the threefold An � P1 which, under a nondegeneracy hypothesis, yields
a complete solution for the theory. The results given here allow comparison of
this theory with the quantum cohomology of the Hilbert scheme of points on the
An surfaces. We discuss generalizations to linear Hodge insertions and to surface
resolutions of type D;E . As a corollary, we present a new derivation of the stationary
Gromov–Witten theory of P1 .

14N35

1 Introduction

1.1 Overview

Let � be a primitive .nC1/–th root of unity and consider the action of ZnC1 on C2

for which the generator acts via

.z1; z2/D .�z1; �
�1z2/:

Let An be the minimal resolution

An!C2=ZnC1:

The algebraic torus T D .C�/2 acts on C2 via the standard diagonal action. This
commutes with the action of the cyclic group, so there is an induced T –action on the
quotient singularity and its resolution An .

The Gromov–Witten theory of An is defined by integrating cohomology classes against
the virtual fundamental class of the moduli space of stable maps

xMg.An; ˇ/:

Since An admits a holomorphic symplectic form, it is a well-known fact that the virtual
fundamental class vanishes and the Gromov–Witten theory is trivial. In the case of
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compact K3 surfaces, for example, this vanishing is a consequence of the existence
of nonalgebraic deformations of the surface which do not contain any holomorphic
curves. In this case, one can correct for these deformations by instead working with a
reduced virtual class of dimension one larger than the usual expected dimension; for
K3 and abelian surfaces, reduced Gromov–Witten invariants have been used to study
enumerative conjectures of Yau and Zaslow. See Bryan and Leung [5].

In this paper, we completely solve the reduced Gromov–Witten theory of the An

surfaces in all genus with arbitrary descendants. In the case of A1 , this solution was
conjectured by R Pandharipande with motivation from the crepant resolution conjecture
(see Chen and Ruan [7] and Bryan and Graber [3]). These surfaces have the striking
property that the solution can be expressed by a closed formula. This is in contrast to
other varieties, such as a point or P1 , for which a complete solution only exists via
complicated recursions or differential equations. In this sense, the An surfaces have
the simplest known nontrivial Gromov–Witten theory.

We also study the T –equivariant relative Gromov–Witten theory of the threefold
An �P1 . We give a partial evaluation of relative invariants, corresponding to what we
call divisor operators; under the assumption of a nondegeneracy conjecture in Section
4.5, this gives a solution for the complete relative theory. As a corollary, these divisor
evaluations lead to closed formulas for linear Hodge integrals in the reduced theory of
the surface in terms of hypergeometric series. Our argument also yields a new derivation
of the stationary theory of P1 , first studied by Okounkov and Pandharipande [25].

1.2 Gromov–Witten theory of An

Viewed as a crepant resolution of a quotient singularity, the exceptional locus of An

consists of a chain of n rational curves E1; : : : ;En with intersection matrix given
by the minus of the Cartan matrix for the An root lattice. That is, each Ei has
self-intersection �2 and intersects Ei�1 and EiC1 transversely. These classes span
H 2.An;Q/ and, along with the identity class, span the full cohomology ring of An .
For 1� i < j � nC 1, we define the effective curve classes

˛ij DEi CEiC1C � � �CEj�1

corresponding to roots of the An lattice.

Given cohomology classes 1; : : : ; m 2H�.An;Q/, we are interested in descendent
invariants in the reduced Gromov–Witten theory� mY

kD1

�ak
.k/

�An;red

g;ˇ

D

Z
Œ xMg;m.An;ˇ/�red

mY
kD1

 
ak

k
ev�.k/
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where  k 2H 2. xMg;m.An; ˇ/;Q/ is the first Chern class of the cotangent line bun-
dle Lk on the moduli space of maps associated to the k –th marked point. Although An

is noncompact, the moduli space xMg;m.An; ˇ/ is compact for nonzero ˇ 2H2.An;Z/.
The notation Œ xMg;m.An; ˇ/�

red refers to the reduced virtual fundamental class on the
moduli space, which has dimension

gCm:

Fix a curve class ˛ D ˛ij and consider integers a1; : : : ; ar > 0, b1; : : : ; bs � 0, and
divisor classes !1; : : : !s 2H 2.An;Q/ which satisfy the dimension constraintX

ai C

X
bj D gC r:

We prove the following evaluation:

Theorem 1.1 For curve classes of the form ˇ D d˛ , we have� rY
kD1

�ak
.1/

sY
lD1

�bl
.!l/

�An;red

g;d˛

D

d2gCs�3
�

rY
pD1

.2gCpC s� 3/ �

rY
kD1

.ak � 1/!

.2ak � 1/!

�
�

1

2

�ak�1

(1)

�

sY
lD1

bl !

.2bl C 1/!

�
�

1

2

�bl

.˛ �!l/:

If ˇ is not a multiple of ˛ for any root ˛ , then all reduced invariants vanish.

There are several nice qualitative features of this formula. First, the answer is essentially
independent of which An surface we consider. Second, while a priori the number
of possible curve classes grows with n, we only need to look at multiples of roots
and in fact the answer is essentially independent of the choice of root. Moreover, the
degree dependence is monomial and the contributions of each insertion nearly factor
completely. Our strategy will be to prove these statements first and reduce the precise
evaluation to the simplest possible case. Using an argument due to Jim Bryan, the
formula above can be extended to resolutions associated to type D and E root lattices.

1.3 Gromov–Witten theory of An � P1

Consider the projective line P1 with k distinct marked points z1; : : : ; zk . Given a
curve class ˇ 2H2.An;Q/, an integer m� 0, and k partitions

�1; : : : ; �k
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of m, the moduli space

xM �
g .An �P1; .ˇ;m/I�1; : : : ; �k/

consists of (possibly disconnected) relative stable maps from genus g curves to the
threefold An�P1 , with target homology class given by .ˇ;m/ 2H2.An�P1;Z/ and
with ramification profile given by the partition �i over each divisor An�zi . We assume
that the ramification points over each relative divisor are marked and ordered; the �
here follows the notation from Bryan and Pandharipande [6] and indicates that we do
not allow collapsed connected components in the domain. Unlike the previous section,
where we only considered reduced theory of the surface, we are now interested in the
full T –equivariant theory of the threefold. This space possesses a virtual fundamental
class of dimension

�KAn
�ˇC 2mC

X
i

.l.�i/�m/D
X

i

l.�i/C .2� k/m:

Given a nonnegative integer m, a cohomology-weighted partition of m consists of an
unordered set of pairs

�!� D f.�.1/; 1/; : : : ; .�
.l/; l/g

where f�.1/; : : : ; �.l/g is a partition whose parts are labelled by cohomology classes
i 2H�.An;Q/.

Suppose that we have k weighted partitions of m:

�!�1; : : : ;
�!�k :

For each part �.s/r of the partition �r , there is an associated cohomology class  .s/r

on An as well as an evaluation map

xM �
g .An �P1; .ˇ;m/I�1; : : : �k/ �!An � zr DAn

associated to the corresponding ramification point. We define relative invariants by
pulling back each cohomology class by its associated evaluation map:

h
�!�1; : : : ;

�!�ki
An�P1

g;ˇ
D

1Q
jAut.�r /j

Z
Œ xM�g .An�P1/�vir

kY
rD1

l.�r /Y
sD1

ev� .s/r :

We have suppressed m in our notation since it is determined by the partitions �!� . The
automorphism prefactor corrects for the fact that our relative conditions are unordered
partitions while ordered partitions are required to define the moduli space and evaluation
maps. In the case where ˇ D 0, the space of relative stable maps is not compact in
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which case this integral must be defined as a localization residue with respect to the
T –action, as explained in [6].

We can encode these relative invariants in a partition function

Z0.An �P1/�!
�1;:::;

�!
�k
D

X
g;ˇ

h
�!�1; : : : ;

�!�ki
An�P1

g;ˇ
u2g�2sˇ 2Q.t1; t2/..u//ŒŒs1; : : : ; sn��

where sˇ D
Qn

iD1 s
ˇ�!i

i and f!1; : : : ; !ng is the dual basis to fEig in H 2.An;Q/
under the Poincare pairing. Again, the notation here follows that of [6]; the prime on Z

indicates that we do not allow contracted connected components.

Using the results of the previous section, we calculate

Z0.An �P1/�!
� ;
�!
� ;
�!
�

for �!� D f.1; 1/mg; f.2; 1/.1; 1/m�2
g or f.1; !i/.1; 1/

m�1
g:

These relative conditions correspond to unit and divisor operators for the Hilbert
scheme of points on An , under the Gromov–Witten/Hilbert correspondence discussed
in Section 4. Assuming a nondegeneracy conjecture for these operators, we explain
how to determine the full partition function above in terms of these evaluations and
gluing relations from the degeneration formula, in a manner analogous to the local
curve theory of Bryan and Pandharipande [6]. One can extend these results further to
twisted An –bundles over a genus g curve. This theory can be viewed as a deformation
of the enriched TQFT structure described in that paper.

1.4 Relation to other theories

As we explain in Section 4.3, using a construction that is valid for any surface, the
relative Gromov–Witten theory of An �P1 induces a ring structure on

H�T .Hilbm.An/;Q/˝Q.t1; t2/..u//ŒŒs1; : : : ; sn��

that is a deformation of the classical cohomology ring of the Hilbert scheme of points
on An . Our work here is the starting point of a series of comparisons of this ring to
related theories. In related work with A Oblomkov [17; 16], we will prove a triangle of
equivalences between the Gromov–Witten theory of An �P1 , the Donaldson–Thomas
theory of An �P1 , and the quantum cohomology of the Hilbert scheme of points on
the An surface, each of which provides a ring deformation of the classical cohomology
of the Hilbert scheme. We will explain the Gromov–Witten/Hilbert correspondence for
An in detail in Section 4.
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1734 Davesh Maulik

Gromov–Witten
theory of An �P1

Quantum cohomology
of Hilb.An/

Donaldson–Thomas
theory of An �P1

The above triangle was first shown to hold for C2 by Bryan and Pandharipande [6]
and Okounkov and Pandharipande [22; 23]. While the GW and DT vertices are always
conjectured to be equivalent for arbitrary threefolds, the relationship with the quantum
cohomology of the Hilbert scheme breaks down for general surfaces in the specific
form we describe here. Our work for An surfaces provide the only other examples for
which this triangle is known to hold.

These equivalences play an essential role in proving the primary Gromov–Witten/
Donaldson–Thomas correspondence for all toric varieties in Maulik, Oblomkov, Ok-
ounkov and Pandharipande [18]. The argument there provides an effective algorithm
that computes primary Gromov–Witten invariants for arbitrary toric threefolds starting
with the precise calculations of An�P1 of this paper as input. In particular, the results
here lead to expressions for the two-leg and three-leg equivariant vertices.

In addition to these equivalences, the An higher genus evaluation we give here should be
identical to the higher genus orbifold theory of the Deligne–Mumford stack ŒC2=ZnC1�.
More precisely, our formulas when applied to the crepant resolution conjecture [3]
yield a conjectural evaluation of certain Hurwitz–Hodge integrals on the moduli space
of .nC1/–fold covers of genus g curves. We plan to investigate these evaluations in
future work.

1.5 Outline

In Section 2, after explaining preliminary features of the reduced theory, we prove
the main theorem of the evaluation for An . In Section 3, we explain the evaluation
of the T –equivariant theory of a nonrigid An �P1 . As a corollary of this argument,
we present a new derivation of the stationary theory of P1 in terms of certain double
Hurwitz numbers. In Section 4, we explain how to use these basic integrals to calculate
the divisor operators discussed above and the generation conjecture that allows us to
reconstruct the full relative theory of the threefold. We also discuss the relationship
with the quantum cohomology of Hilb.An/. Finally, in Section 5, we use these basic
integrals to study linear Hodge series in the reduced theory of the surface, where we
again obtain essentially closed expressions.
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2 Proof of Theorem 1.1

We prove Theorem 1.1 in several steps. We first study the reduced virtual class and
explain how it is equivalent to the linear part of the full T –equivariant theory of An .
We then prove the degree scaling and root-independence properties of the evaluation
by a localization argument. This reduces the problem to the case of A1 , where we
finish the proof using exact calculations and a set of Virasoro relations for the reduced
theory. We close with an argument, suggested us by Jim Bryan, reducing the case of
surface resolutions of type D and E to the invariants calculated here.

2.1 Notation

Let us fix notation for our surfaces. Recall that the exceptional locus of An is given by a
chain E1; : : : ;En of rational .�2/–curves. Under the T –action, there are nC1 fixed
points p1; : : : ;pnC1 ; the tangent weights at the fixed point pi are .nC2�i/t1�.i�1/t2
and .i � n � 1/t1 C i t2 . The Ei are the T –fixed curves joining pi to piC1 . We
denote by E0 and EnC1 for the noncompact T –fixed curve direction at p1 and pnC1

respectively. On the A1 surface, we denote the exceptional curve by E DE1 and its
Poincare dual by ! D �1

2
ŒE�.

PP
PP

PP
@

@
@

@
@

3t1 @
@I

PPPq
PPPi

t2� 2t1
2t1� t2

àp1
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��
��

���1
���)
�
�
�
�
�

�
��àp3 3t2

2t2� t1

t1� 2t2

Figure 1: Tangent weights for A2

2.2 Reduced classes

In this section, we define the reduced virtual fundamental class for xMg;m.An; ˇ/.
We also explain a comparison statement between the reduced Gromov–Witten theory
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and the linear part of the T –equivariant Gromov–Witten theory, as defined in the
usual sense. The algebraic construction given here is due originally to Behrend and
Fantechi [2]. Our discussion closely follows the more detailed treatment given by
Okounkov and Pandharipande [23].

Heuristically, given any variety with a nonvanishing holomorphic symplectic form, this
form gives rise to a trivial factor of the obstruction theory which leads to the vanishing
of the usual nonequivariant virtual fundamental class. By removing this trivial factor
by hand, we obtain a nontrivial theory with virtual dimension increased by 1. In the
context of compact K3 surfaces, a symplectic construction can also be given in terms
of family Gromov–Witten invariants of the associated twistor fibration [5].

We first explain the standard and modified obstruction theory for a fixed domain
curve C . Given a fixed nodal, pointed curve C of genus g , let MC .An; ˇ/ denote the
moduli space of maps from C to An of degree ˇ ¤ 0. The usual perfect obstruction
theory for MC .An; ˇ/ is defined by the natural morphism

(2) R��.ev�TAn
/_!LMC

;

where LMC
denotes the cotangent complex of MC .An; ˇ/ and

evW C �MC .An; ˇ/!An;

� W C �MC .An; ˇ/!MC .An; ˇ/:

are the evaluation and projection maps.

Let  denote the holomorphic symplectic form on An induced by the standard form
dx ^ dy on C2 . The T –representation C �  has weight �.t1C t2/. Let �� and !�
denote the sheaf of relative differentials and the relative dualizing sheaf. The canonical
map

ev�.�An
/!�� ! !�

and the symplectic pairing

TAn
!�An

˝ .C /_:

induce a map of bundles

ev�.TAn
/! !� ˝ .C /

_:

This, in turn, yields a map of complexes

R��.!�/
_
˝C !R��.ev�.TAn

/_/

and the truncation

�W ���1R��.!�/
_
˝C !R��.ev�.TAn

/_/:
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This truncation is a trivial line bundle with equivariant weight �.t1C t2/.

Results of Ran [26] and Manetti [15] on obstruction theory and the semiregularity map
imply the following. First, there is an induced map

(3) C.�/!LMC

where C.�/ is the mapping cone associated to �. Second, this map (3) satisfies the
necessary properties of a perfect obstruction theory. This is precisely the modified
obstruction theory we use to define the reduced virtual class. Since all maps in this
section are compatible with the T –action, we have a T –equivariant reduced virtual
class.

There is one important subtlety regarding the semiregularity results of [26; 15]. In
order to apply their results, we require a compact target space. We can embed the An

singularity in a surface with a holomorphic symplectic form that is degenerate away
from the singularity. In the resolution, our curve maps entirely to the nondegenerate
locus, so Theorem 9.1 of [15] still gives the necessary vanishing statement for realized
obstructions.

As with the standard obstruction theory (2), we obtain the reduced T –equivariant
perfect obstruction theory on xMg;m.An; ˇ/ by varying the domain C , and studying
the relative obstruction theory over the Artin stack M of all nodal curves. Since the
new obstruction theory differs from the standard one by the 1–dimensional obstruction
space .C /_ , we have that the reduced virtual dimension is

1C .g� 1/Cm:

Furthermore we have the identity

Œ xMg;m.An; ˇ/�
vir
standard D c1.C

_/Œ xMg;m.An; ˇ/�
red

D .t1C t2/Œ xMg;m.An; ˇ/�
red:

We have proven the following:

Lemma 2.1 The standard T –equivariant Gromov–Witten invariants of An with
nonzero degree are divisible by .t1C t2/. Nonequivariant reduced Gromov–Witten
invariants are encoded in the coefficient of .t1C t2/ in the full T –equivariant standard
theory.

Finally, we close with a further comparison lemma in the case of A1 . In this case, the
surface is the cotangent bundle to P1 . For d > 0, we have an identification of moduli
spaces

xMg;m.A1; d ŒE�/D xMg;m.P1; d/:

Geometry & Topology, Volume 13 (2009)
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We can express the reduced virtual class of the left-hand side in terms of the virtual
class of the right-hand side with the following corollary.

Corollary 2.2

Œ xMg;m.A1; d ŒE�/�
red
D cgC2d�2.R��ev�O.�2//Œ xMg;m.P1; d/�:

Proof By Lemma 2.1, we want to calculate the linear part of the standard T –
equivariant theory of the total space of O.�2/. The obstruction theory of this space
differs from that of P1 by the total Chern class c.R��ev�O.�2//. It suffices to check
that the linear part of this expression is precisely the penultimate Chern class of degree
gC 2d � 2.

2.3 Degree dependence

We first analyze the degree dependence for the A1 surface and reduce the general An

surface to this case.

Proposition 2.3� rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�A1;red

g;d

D d2gCs�3
�

� rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�A1;red

g;1

Proof To simplify the analysis, assume r D 0. By the results of the last section, we
can compute these invariants by virtual localization and extract the term proportional
to .t1C t2/. Note that we have the equality

! DE0� t2 DE2� t1;

where E0 , E2 are the noncompact T –fixed divisors at the fixed points p1 , p2 . As
already discussed, any invariant must be divisible by .t1C t2/. Therefore, if we replace
any of the divisors in our invariant by 1, the invariant will vanish for dimension reasons.
In particular, we can replace ! with either E0 or E2 without affecting the answer. Let
us assume we have replaced them with E0 ; in Section 3.5, it will be useful to consider
different combinations of these insertions.

Virtual localization expresses the invariant as a sum over a large number of connected
components of fixed loci. Each such component consists of curves contracted over a
fixed point of A1 along with edges corresponding to rational curves totally ramified
over E . The key observation is that only graphs with a single edge contribute to the
linear term and each of these graphs has the same d –dependence. We refer the reader
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d

Figure 2: Localization configuration

to Graber and Pandharipande [11] for a detailed explanation of the contributions to
virtual localization.

Each edge corresponds to a totally ramified rational curve mapping to E with degree
a> 0. The contribution of this edge to the localization term for this graph is the product
of weights for H 1.P1;O.�2a//:

2t1; 2t1C
t2� t1

a
; : : : ; .t1C t2/; : : : ; 2t2�

t2� t1

a
; 2t2:

Therefore each edge contributes a factor of .t1C t2/. Moreover, it is easy to see that
all weights that occur in the denominator are of the form i t1C j t2 where i � j � 0.
Since we are trying to calculate the linear term of an equivariant polynomial, it suffices
to calculate the localization sum modulo .t1C t2/

2 , in which case only graphs with a
single edge contribute.

These graphs consist of a single contracted curve of genus g1 over p1 which contains
the s marked points, a single contracted curve of genus g2 D g�g1 over p2 , and a
single edge of degree d connecting them. The contribution of vertex over p1 of this
graph is

.t2� t1/
s

Z
xMg1;sC1

sY
iD1

 
bi

i

ƒ_.2t1/ƒ
_.t2� t1/

 sC1� .t2� t1/=d
:

In this expression, ƒ.t/D �gC�g�1tC� � �C tg is the Chern polynomial of the Hodge
bundle on xMg;n .
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Similarly, the contribution of the vertex over p2 of this graph isZ
xMg2;1

ƒ_.2t2/ƒ
_.t1� t2/

 � .t1� t2/=d
:

The edge contribution is given by

1

d

.t1C t2/
Qd�1

kD1

�
.t1C t2/C k.t2� t1/=d

�
�
�
.t1C t2/� k.t2� t1/=d

�Qd
kD1 k.t2� t1/=d � k.t2� t1/=d

:

We now analyze the d –dependence. Again, since we are working modulo .t1C t2/
2

and the edge term carries a factor of .t1C t2/, we can calculate the vertex terms and
the rest of the edge factors modulo .t1C t2/. The d –dependence of the edge term is
1=d . For the vertex terms, by Mumford’s relation on Hodge classes, we have that

ƒ_.2t1/ƒ
_.t2� t1/� .�1/gi .2t1/

2gi mod .t1C t2/:

Therefore the d –dependence is given entirely from the cotangent lines in the denomi-
nator of each expression. For the vertex over p1 , the exponent of d is

3g1C sC 1� 3�
X

bi C 1D 3g1�gC s� 1

and for the vertex over p2 this is

3g2� 2C 1:

The total d –dependence is exactly d2gCs�3 .

If we include descendants of 1 or Hodge classes, the argument applies unchanged.

2.4 An dependence

The same localization argument allows us to reduce the An geometry to the A1 surface
as described in Theorem 1.1. We give another argument for this reduction in Section
2.7.

Proposition 2.4 If ˇ D d˛ for a root class ˛ D ˛ij then we have� rY
kD1

�ak
.1/

sY
lD1

�bl
.!l/

�An;red

g;ˇ

Dd2gCs�3
�

sY
lD1

.˛ �!l/�

� rY
kD1

�ak
.1/

sY
lD1

�bl
.!/

�A1;red

g;1

:

Otherwise, the reduced theory vanishes.
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Proof Again, to simplify the analysis we ignore descendants of 1. As before, every
edge in a given localization graph carries a factor of .t1C t2/. However, unlike the A1

analysis, there are vertex contributions that have factors of .t1C t2/ in the denominator.
When an edge of degree a and an edge of degree b meet at a fixed point with tangent
weights v1 and v2 without a contracted curve joining them, there is a factor of

v1

a
C
v2

b

to the fixed locus corresponding to smoothing that node. In our case, this will be
proportional to t1C t2 if and only if the tangent directions are distinct and aD b .

Therefore, the multiplicity of .t1C t2/ in our graph is at least the number of edges
minus the number of these special nodes. This is always positive and the graphs with
multiplicity 1 have the following form. There is a curve of genus g1 contracted to
a fixed point pi , followed by a chain of rational curves mapping with degree d to
Ei ; : : : ;Ej�1 , and a curve of genus g � g1 contracted to the fixed point pjC1 . In
particular, if ˇ is not a multiple of a root, there are no such localization graphs and the
reduced invariant vanishes. If ˇ D d˛ij , then the d –dependence is again the same for
every relevant graph.

Finally, for the divisor insertions, we can assume ˇ D d˛1;nC1 . Since all marked
points must map to either p1 or pnC1 , any divisor insertion E2; : : : ;En�1 gives
vanishing. This is consistent with the fact that Ek �˛1;nC1 D 0 for these divisors. A
direct computation shows that the localization graph contribution with divisors E1

and En is identical to the corresponding graph contribution on A1 with �E0 and
�E2 insertions. As discussed, these can be replaced with ! insertions; the signs are
accounted for by the fact that E1 �˛1;nC1 DEn �˛1;nC1 D�1.

Again, adding descendants of 1 and Hodge classes does not affect the argument.

2.5 Stationary descendants

We have reduced the theorem to the case of A1 , degree d D 1. It is convenient to
treat this case using the expression from Corollary 2.2 for the reduced class in terms of
xMg.P1; d/ with obstruction bundle induced by O.�2/. The divisor insertion ! on
A1 is the cohomology class of a point in P1 . We first assume there are no descendants
of 1, ie the stationary case.

Proposition 2.5 � sY
jD1

�bj
.!/

�A1;red

g;1

D

sY
jD1

bj !

.2bj C 1/!

�
�

1

2

�bj

:
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Proof We evaluate using the degeneration formula. There exists a degeneration of A1

to a comb configuration consisting of a central P1 with normal bundle O.�2/ and s

rational teeth with trivial normal bundle. In the degenerate limit, each ! insertion lies
on a distinct tooth. Since our map has degree 1, there is no need to sum over possible
configurations or relative conditions.

The obstruction class insertion degenerates to cgC2d�2.R��ev�O.�2// on the spine
and �hi

on each tooth, where hi is the genus of the domain curve. The curve mapping
to the spine is forced to be genus 0 and its contribution is clearly 1. As a result, the
degree 1 computation in the stationary case is multiplicative in its insertions.

Finally, in the case s D 1, where g D b1 , we compute directly through a localization
calculation sketched in the proof of Proposition 2.3. We want the coefficient of u3g in
the following product� 1X

g1D0

h�g�3g1�giu
3g1

�
�

� 1X
g2D0

h�3g2�2iu
3g2

�

where we are using bracket shorthand for integrals on xMgi ;n . Both of these power
series have already been computed by Faber and Pandharipande [8]. It is easy to isolate
the desired coefficient as

g!

.2gC 1/!

�
�

1

2

�g

:

2.6 Virasoro rule for general insertions

It remains to prove Theorem 1.1 for A1 , degree 1, with descendants of 1. In nonequiv-
ariant Gromov–Witten theory, these insertions can conjecturally be removed using
Virasoro constraints. However, there is not even a conjectural picture of Virasoro
constraints for equivariant Gromov–Witten theory or reduced Gromov–Witten theory.
Instead, our strategy is to use degeneration arguments to embed our reduced invariants
in toric projective Fano surfaces where these constraints exist and are well understood.

More precisely, we will prove the following Virasoro-type relation. This relation
will uniquely determine the full degree 1 theory of A1 in terms of the stationary
case. A direct calculation shows that Equation (1) is the unique solution. Of course,
Equation (1) gives a much simpler removal rule for descendants of 1 but we know of
no direct proof.

In what follows, Œ˛�pq denotes the coefficient of xq in .xC˛/.xC˛C1/ � � � .xC˛Cp/.
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Proposition 2.6�
�aC1.1/

rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�A1;red

g;1

�

�
1

2

�a

0

D

� .2aC 2/ �

�
1

2

�a

0

�

�
�a.!/

rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�A1;red

g;1

C

rX
iD1

�
ai �

1

2

�a

0

�
�aiCa.1/

Y
k¤i

�ak
.1/

sY
jD1

�bj
.!/

�A1;red

g;1

C

��
ai C

1

2

�a

0

�

�
ai �

1

2

�a

0

��
�aiCa�1.!/

Y
k¤i

�ak
.1/

sY
jD1

�bj
.!/

�A1;red

g;1

C

sX
jD1

�
bj C

1

2

�a

0

�
�bjCa.!/

rY
iD1

�ai
.1/

Y
k¤j

�bk
.!/

�A1;red

g;1

C

X
m

.�1/m
�
�m�

1

2

�a

0

�
�m.!/�a�m�1.!/

rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�A1;red

g�1;1

Proof Following [6], we use the term level k to refer to the Gromov–Witten theory
of P1 with obstruction bundle insertion

R��ev�O.k/

on the target. We will only consider levels 0, �1, and �2, where in the first two cases
we consider the top Chern class of the obstruction bundle but in the last case we take
the penultimate Chern class to recover the reduced theory. In our notation, the level
will be indicated by superscripts above the brackets.

In order to prove the above relation for level �2, we can degenerate P1 to two rational
curves glued at node, each with normal bundle of degree �1. While we do not have
Virasoro rules for P1 relative to a point, we can continue the reduction process by
writing these invariants in terms of absolute theory of P1 at levels �1 and 0.

The invariants at level 0 and level �1 can be treated as (nonreduced) Gromov–Witten
invariants of toric projective Fano surfaces. In the case of level �1, consider the class E

of the exceptional divisor on the blowup

Y1 D Blp P2:

The Gromov–Witten invariants of Y1 along multiples E are precisely the level �1

invariants with the point class ! replaced by the insertion �ŒE�.
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For level 0, consider a fiber class F along one of the rulings of the surface Y2DP1�P1:

We consider Gromov–Witten invariants of Y2 along multiples of F . If we include
a point insertion �0.p/, then an obstruction bundle computation shows that level 0

invariants are the same as Gromov–Witten invariants of Y2 with �0.p/ added and
with ! replaced by fiber classes ŒC � in the other ruling. The Virasoro conjecture for Y1

and Y2 has been proven by Givental [9]. If we specialize to our situation, we obtain the
following rules for how to remove �aC1.1/ insertions for degree 1 theories at level 0

and level �1.

In our formulas, we require the function

F.c1; : : : ; cN /D .�1/h
Z
Mh;N

�h�h�1 
c1

1
: : :  

cN

N

where the genus h is determined by dimension constraints. This can be evaluated in
terms of Bernoulli numbers but that is not necessary for our purposes.

Level 0�
�aC1.1/

rY
iD1

�ai
.1/

�.0/
g;1

�

�
1

2

�a

0

D

�
� 2

�
1

2

�a

1

C .2aC 2/

�
1

2

�a

0

��
�a.!/

rY
iD1

�ai
.1/

�.0/
g;1

C

rX
iD1

�
ai �

1

2

�a

0

�
�aiCa.1/

Y
j¤i

�aj
.1/

�.0/
g;1

C

�
2

�
ai �

1

2

�a

1

C

�
ai �

1

2

�a

0

�

�
ai C

1

2

�a

0

��
�aiCa�1.!/

Y
j¤i

�aj
.1/

�.0/
g;1

C

X
StTDŒr �

X
m

.�1/mC1

�
�m�

1

2

�a

0

� 2 �F.m; ai 2 S/ �

�
�a�m�1.!/

Y
j2T

�aj
.1/

�.0/
h;1

Level �1�
�aC1.1/

rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�.�1/

g;1

�

�
1

2

�a

0

D

�

�
1

2

�a

1

�
�a.!/

rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�.�1/

g;1
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C

rX
iD1

�
ai �

1

2

�a

0

�
�aiCa.1/

Y
k¤i

�ak
.1/

sY
jD1

�bj
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�.�1/

g;1

C

�
ai �

1

2

�a

1

�
�aiCa�1.!/

Y
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�ak
.1/

sY
jD1

�bj
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�.�1/

g;1

C

sX
jD1

�
bj C

1

2

�a

0

�
�bjCa.!/

Y
i

�ai
.1/

Y
k¤j

�bk
.!/

�.�1/

g;1

C

X
StTDŒr �

X
m

.�1/mC1

�
�m�

1

2

�a

0

�F.m; ai 2 S/

�

�
�a�m�1.!/

Y
k2T

�ak
.1/

sY
jD1

�bj
.!/

�.�1/

h;1

C
1

2

X
m

.�1/m
�
�m�

1

2

�a

0

�
�m.!/�a�m�1.!/

rY
iD1

�ai
.1/

sY
jD1

�bj
.!/

�.�1/

g�1;1

The next step is to obtain removal rules for the relative Gromov–Witten theory of
.P1; 0/ at levels 0 and �1. Again, in general there are no known Virasoro constraints
for relative Gromov–Witten invariants. We only derive them here for the case we need,
namely degree 1, using the degeneration formula. The key feature is that, since we
are in degree 1, there is only one possible relative condition, so we only sum over
distributions of nonstationary insertions to the two possible components.

First, for level 0 relative invariants, we can degenerate the level 0 absolute theory into
two copies of the level 0 relative theory. For example, when there is a single insertion,
it is easy to see that

h�aC1.1/i
.0/
g;1
D 2h�aC1.1/i

.0/;rel
g;1

:

The Virasoro rule for the level 0 absolute theory implies the following rule for the
level 0 relative theory.

Level 0, relative�
�aC1.1/

rY
iD1

�ai
.1/

�.0/;rel

g;1

� 2 �

�
1

2

�a

0

D

�
� 2

�
1

2

�a

1

C .2aC 2/

�
1

2

�a

0

��
�a.!/

rY
iD1

�ai
.1/

�.0/;rel

g;1

C

rX
iD1

2

�
ai �

1

2

�a

0

�
�aiCa.1/

Y
j¤i

�aj
.1/

�.0/;rel

g;1
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C
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We have only written the case where all insertions are nonstationary, because that is all
that is needed for our purposes.

For the level �1 relative theory, we can degenerate the level �1 absolute theory into the
level �1 relative theory and the level 0 relative theory. As we sum over distributions
of marked points, if the �a.1/ insertion is assigned to the level 0 component, then we
already have determined how to remove it. As an example, we see that

h�aC1.1/i
.�1/;rel
g;1

D h�aC1.1/i
.�1/
g;1
� h�aC1.1/i

.0/;rel
g;1

;

which implies a removal rule for the left-hand side. Again, using the Virasoro rule for
level �1 invariant and the level 0 relative invariants we obtain the following rule.
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Finally, the level �2 absolute theory – our main objective – can be degenerated into
two copies of the level �1 relative theory. Applying the level �1 relative Virasoro
constraint to each side completes the proof. Fortunately, the function F cancels in the
process.

This concludes the proof of the proposition and also Theorem 1.1.

2.7 Generalization to D; E resolutions

We explain here how Theorem 1.1 can be extended to resolutions S� of rational surface
singularities associated to root lattices � of type D and E . The argument we use here
was suggested to us by Jim Bryan, motivated by a similar argument from [4]. As these
singularities are not toric, there is only a C�–action on S� and localization techniques
are not effective.

The main construction here is to study the versal deformation space of the singularity
associated to � and, via Brieskorn, to study the simultaneous resolution of the universal
family. Let X0!� be a smooth family of surfaces over the disk �, obtained from a
map from � to the versal deformation space of S� . While the family is topologically
trivial, its fiber over the origin is the resolved surface S� but all other fibers are given by
affine surfaces; in particular, all compact curves on X0 lie over the origin. Again, there
is an identification H2.S� ;Z/DH2.X0;Z/D � . This family admits a deformation
Xz!� so that for z¤ 0, there are a finite number of nonaffine fibers each isomorphic
to A1 . These nonaffine fibers are in bijection with positive roots ˛ of � , and the
smooth rational curve lies in the corresponding curve class ˛ .

An effective curve on X0 must be contained in S� and an effective curve on Xz must
be contained in one of the copies of A1 . The key observation is that, for noncontracted
curve classes ˇ , the reduced virtual class on S� is identical to the relative virtual class
of the family X0 over �:

Œ xMg.S� ; ˇ/�
red
D Œ xMg.X0=�; ˇ/�

vir:

The proof of this comparison can be found in [19]. Similarly, for Xz , we have

Œ xMg.A1; ˇ/�
red
D Œ xMg.Xz=�; ˇ/�

vir;

where ˇ is a multiple of a root curve class and A1 is the corresponding nonaffine fiber.
Deformation invariance of the relative virtual class implies that only root curve classes
contribute to S� and, in that case, the calculation is given by the case of A1 . The
result is the following generalization:
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Theorem 2.7 For curve classes of the form ˇ D d˛ and divisors !l 2 H 2.S� ;Q/,
we have� rY

kD1

�ak
.1/

sY
lD1

�bl
.!l/

�S� ;red

g;d˛

D

d2gCs�3
�

rY
pD1

.2gCpC s� 3/ �

rY
kD1

.ak � 1/!

.2ak � 1/!

�
�

1

2

�ak�1

�

sY
lD1

bl !

.2bl C 1/!

�
�

1

2

�bl

.˛ �!l/:

If ˇ is not a multiple of ˛ for any root ˛ , then all reduced invariants vanish.

3 Nonrigid An � P1

In this section, we begin to study the full T –equivariant theory of the threefold An�P1 .
The main evaluation of this section involves invariants associated to a nonrigid target.
We also explain how this geometry determines the Gromov–Witten theory of P1 .

3.1 Definitions

For a curve class ˇ 2 H2.An;Z/ and an integer m � 0, we fix two cohomology-
weighted partitions �!� ;�!� and consider the rubber moduli space

xM �
g .An �P1; .ˇ;m/I�; �/

defined as follows. This moduli space parametrizes stable maps to a nonrigid target
An � P1 ; that is, two maps are equivalent if they differ by the natural C�–scaling
action on the P1 factor. We require the stable maps to be transverse to the fibers over 0

and 1, with ramification profiles given by � and � , and to have finite automorphism
group with respect to this revised version of equivalence. In this section, we will be
working with connected domains and explain how to pass to the disconnected case
afterwards.

Rubber invariants of An �P1 are again defined by pulling back cohomology classes
via the evaluation maps to the relative divisors and integrating them against the virtual
fundamental class. Because of the C�–scaling, the virtual dimension is one less than
that of the usual moduli space of relative stable maps:

�1C 2mC .�KAn
�ˇ/C .l.�/�m/C .l.�/�m/D l.�/C l.�/� 1:
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We give an evaluation of the series

h
�!� j�!� i

An;�
ˇ

D

X
g�0

h
�!� j�!� i

An;�
g;.ˇ;m/

u2g

for nonzero ˇ . For the sake of simplicity, we focus on the case of A1 and explain how
to handle the general situation afterwards.

3.2 Evaluation for A1

For the surface A1 , the parts of a cohomology-weighted partition are labelled by either
1 or ! ; given a partition �, we use the notation �.!/ to denote the cohomology-
weighted partition where each part is labelled with ! . We then have the following
proposition:

Proposition 3.1 For ˇ D d ŒE�, we have

h�.!/j�.!/i
A1;�
ˇ

D
.t1C t2/d

l.�/Cl.�/�3

jAut.�/j � jAut.�/j

Q
S.d�iu/

Q
S.d�j u/

S.du/2

S.u/D
sin.u=2/

u=2
:where

If any of parts are labelled by 1, then the rubber invariant vanishes.

We first explain the vanishing statement. Since d > 0 and we consider connected
domain, the moduli space is compact so the rubber invariant lies in QŒt1; t2�. Moreover,
it must be divisible by .t1Ct2/, either by arguing via the reduced theory or by expressing
the invariant in terms of the T –equivariant theory of the A1 –surface as in the next
lemma. Therefore, if nonzero, its cohomological degree is at least 1. Since we have an
insertion of degree at most 1 at each insertion, the maximum possible degree of the
rubber invariant is

l.�/C l.�/� .2mC l.�/�mC l.�/�m� 1/D 1

and equality is achieved if and only if each insertion is labelled by ! .

3.3 Degree scaling

We next show that the degree dependence on ˇ D d ŒE� behaves exactly as in the
surface case. The point is that, although we are working with the full equivariant theory,
only linear terms show up in our calculation.

We will prove the following more general claim. Consider any genus g Gromov–
Witten invariant on A1 � P1 , either absolute, relative to one of the divisors A1 � 0
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and A1 �1, or relative to both divisors. In the latter case, we allow either rubber
or nonrubber invariants. Moreover, assume the dimensions of our insertions are such
that the invariant is linear in t1 , t2 , which then forces it to be proportional to .t1C t2/.
A cohomology class at an insertion is called stationary if it is either ! at a relative
marked point or ! or ��! at a nonrelative marked point, where � WA1 ,!A1 �P1 is
the inclusion of a fiber.

Lemma 3.2 Given a Gromov–Witten invariant on A1 �P1 of the type just discussed,
if s is the total number of stationary insertions, then the invariant is proportional to
d2gCs�3 as a function of d .

Proof We can show this using the machinery of [20]. In that paper, a systematic
procedure is given for reducing Gromov–Witten invariants on X �P1 to the Gromov–
Witten theory of X . To establish the degree dependence, we will show it is preserved
by each step of the algorithm. More precisely, each step of the algorithm is given by a
certain relation among invariants on A1 and A1�P1 , each of which can be viewed as
a function of d . Although both the genus and number of stationary terms will vary
among elements of the relation, we will show that, up to terms we can ignore, the
quantity d2gCs�3 is fixed among all terms in the relation. In particular, if every term
but one is proportional to d2gCs�3 , then this implies that the remaining term is also
proportional to d2gCs�3 . The endpoint of the algorithm is the Gromov–Witten theory
of A1 where we have already proven the correct d –dependence.

There are three moves involved in the reconstruction result.

Rigidification In this step, nonrigid invariants are expressed in terms of rigid relative
GW-invariants. In order to do this, we add a �0.!/ insertion using the divisor equation
and fix it in the P1 direction to obtain a nonrubber relative invariant

dh�!� j j�!� i�g;d D h
�!� j � �0.!/j

�!� i�g;d

D h
�!� j � �0.��!/j

�!� ig;d :

We pick up a factor of d from the divisor equation and increase the number of stationary
insertions by 1, leaving the genus unchanged. Therefore, d2gCs�3 is fixed.

Degeneration In this step, we have either a relative or absolute invariant and degen-
erate the P1 –bundle into two components along the P1 direction. A typical relation
obtained in this way has the schematic form

h ig;d D
X
�

h1j
�!� i�1

h
�!
�_j2i�2

;
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where � denotes the combinatorial configurations of the degeneration of the domain
into connected components. The degeneration formula includes a sum over partitions �,
giving relative conditions for each irreducible component of the degeneration, along
with a sum over Poincare-dual classes at each relative point. In our case, this sum over
Poincare-dual classes involves one of the following splittings:

.1; 2t1t2/; .!;�2!/:

Since we are only interested in invariants proportional to .t1 C t2/, we can extract
the linear part of this relation and ignore any terms that are divisible by .t1C t2/

2 or
which have degree at least 2 as a rational function in t1 , t2 . With this in mind, the only
allowed degeneration configurations have the following structure. There is only one
component C which maps nontrivially to A1 since every such component contributes a
factor of .t1Ct2/. Since the contribution of this component to the degeneration formula
has degree at least 1, if we remove this primary component, the remaining components
contribute degree 0. The term associated to each combinatorial configuration can be
factored into connected components

I
primary
d

�

Y
I contracted

0 ;

so that only the contribution of C has a nontrivial d –dependence. The degree of the
primary term is at least 1, since it is compactly supported and divisible by t1C t2 . The
degree of each connected contracted terms is at least 0, with equality if and only if the
degree of all insertions on the connected component equals 2. Moreover, any connected
component of degree 0 over A1 must have genus 0. Otherwise, there is a contribution
of c1.A1/ D .t1 C t2/ to the obstruction bundle. This restricts the possibilities as
follows.

First, we can have a tree of rational curves connected to C at a single node, with at
most one stationary marked point from the original insertions  . If there are more than
one stationary marked points on the tree, the contribution of the tree will be degree
� 1. If it contains no stationary marked point, then the Poincare splitting condition at
the node must be

.1; 2t1t2/:

If it contains one stationary marked point from  , then the Poincare splitting condition
at the node is forced to be

.!;�2!/;

so C has a new relative stationary insertion. In either case, genus and the number of
stationary insertions on C are unchanged.
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The second case is to allow a tree of rational curves connected to C at two nodes. In
this case, the tree cannot contain any stationary insertions for degree reasons, and the
Poincare splitting at each node must be .!;�2!/. Therefore the genus of the main
component has decreased by 1 but the number of stationary insertions has increased
by 2 so again the d –dependence is preserved.

Localization The third move in the reconstruction result is virtual localization in the
relative and absolute setting. As in the case of the degeneration step, there is a sum of
combinatorial configurations which can be separated into a primary component with
nontrivial d –dependence and contracted terms. A similar argument to the previous one
shows that the number of stationary insertions on the primary component is preserved
here as well. This concludes the proof.

3.4 Degree 1 evaluation

We now finish the proof of Proposition 3.1. By the previous lemma, we can assume
d D 1.

Proof As in Proposition 2.3, we can replace relative insertions labelled with ! with
labels of E0 . We then apply virtual localization with respect to the T –action on A1 .
Because of the C�–scaling, fixed loci on the rubber moduli space can typically be
quite complicated to describe. However, because we consider d D 1, the situation is
much simpler.

Suppose we have a curve mapping to A1 �P1 that is fixed under the T –action after a
possible rescaling in the P1 direction. If an irreducible component is contracted under
the projection to A1 , then it can be an arbitrary curve mapping to either p1 �P1 or
p2�P1 . Since d D 1, there is exactly one irreducible component that is not contracted
and it must map isomorphically to E �A1 . We can view this map as the graph of a
morphism

f W E! P1

defined up to scalar and identify E with P1 so that p1 and p2 are identified with
0 and 1. Under these identifications, the condition that our component is T –fixed
implies that the morphism f is of the form

z 7! zk

for some integer k . If k > 0 then f intersects A1 � 0 at p1 � 0 with multiplicity k

and intersects A1 �1 at p2 �1 with multiplicity k . We have the same analysis
if k < 0 with p1 and p2 reversed. If k D 0, then this component does not intersect
either relative divisor.
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Our relative insertions are all at p1 , so the only possible choice for this noncontracted
component is k D 0. Moreover the remaining components can only be noncontracted
over p1 since otherwise they would intersect the relative divisors over p2 . As a result,
the only allowed fixed loci have the following structure. For g1Cg2 D g , we have a
curve of genus g1 that maps to p1 �P1 with degree m and a curve of genus g2 that
is contracted over p2 �P1 that are connected by a rational curve mapping to a fiber of
the projection to P1 . We can rigidify the C�–scaling by requiring the connecting edge
to map to a fixed point of P1 . As a result, the fixed locus just described is

xMg1
.P1=0;1I�; �/� xMg2;1:

The analysis here is very similar to the localization analysis of Proposition 2.3. The

Al

�

P1

�

Figure 3: Rubber localization with E0 insertions

edge term contributes a factor of .t1C t2/ so the remaining terms can be calculated
modulo .t1C t2/. The contribution from the first factor of the fixed locus is�

�

ˇ̌̌̌
ƒ_.2t1/ƒ

_.t2� t1/
!

.t2� t1/� 

ˇ̌̌̌
�

�P1

g1;m

;

which is
.�1/gh� j �2g�2Cl.�/Cl.�/.!/ j �i

P1

g;m

modulo .t1C t2/ since the Hodge classes will cancel by Mumford’s relation.

This latter expression is the main calculation in the stationary theory of P1 , consisting
of those Gromov–Witten invariants with only descendants of ! . These invariants have
been computed by Okounkov and Pandharipande [25]; we will give a different proof
of this evaluation in the next section. In terms of the trigonometric function

S.u/D
sin.u=2/

u=2
;
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the generating function encoding the stationary theory of P1 is

(4)
X
g�0

.�1/gh� j �r .!/ j �i
P1

g;mu2g
D

1

jAut.�/jjAut.�/j

Q
S.�iu/

Q
S.�j u/

S.u/
:

In the above generating function, the index r of the insertion is fixed by the dimension
constraint to be 2g� 2C l.�/C l.�/.

Similarly, the contribution of the second factor of the fixed locus is the coefficient of
u2g2 in X

g�0

.�1/gu2g

Z
xMg;1

�g 
2g�2

D
1

S.u/
:

This evaluation has been computed in [8].

Combining the two generating functions gives the answer.

3.5 Stationary theory of P1

The rubber evaluation was derived using the stationary theory of P1 in (4). However,
another choice of insertions in our evaluation gives an answer in terms of certain
double Hurwitz numbers. As these double Hurwitz numbers are simple to calculate
directly, this gives a new derivation of the stationary theory of P1 . From that specific
expression, it is possible to derive the stationary theory of target curves of arbitrary
genus h by degeneration to a nodal configuration of rational curves. In particular, the
stationary theory of P1 directly yields the Gromov–Witten/Hurwitz correspondence of
[25]. In [24], the original derivation requires understanding the full equivariant theory
of P1 . While that approach is more involved than this one, it is of course a much
stronger result.

Given two partitions �; � of m, let
H

g

�;�

denote the number of disconnected genus g covers of P1 with a branch point of
ramification profile � , a branch point of ramification profile �, and simple ramification
everywhere else.

Consider the double Hurwitz series

H�;�.u/D
X

g

m1�r

r !
H

g

�;�
u2g;

where r D 2g � 2C l.�/C l.�/ and mD j�j D j�j. By comparing two evaluations
of the rubber A1 theory, we have the following proposition for the stationary theory
of P1 .
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Proposition 3.3X
g�0

.�1/gh� j �2g�2Cl.�/Cl.�/.!/ j �i
P1

g;mu2g

D
1

jAut.�/jjAut.�/j
H�;.m/.u/ �H�;.m/.u/ �S.u/:

Proof As before, we calculate the degree 1 rubber invariant

h�.!/ j �.!/i
A1;�
1

;

where � and � are partitions of m. However, we now replace the insertions at � with
E0 and the insertions at � with E2 before applying virtual localization. The fixed loci
can be analyzed as before. With our new choice of insertions, the intersection with
the relative divisor A1 � 0 is entirely over p1 and the intersection with A1 �1 is
entirely over p2 . As a consequence, the curve component that is not contracted by the
projection to A1 must correspond to the graph of

f W z 7! zm

in our previous notation.

Up to genus distribution, there is a unique configuration that allows this. The target
degenerates into three pieces. In the first piece, we have a genus g1 curve mapping
to p1 �P1 with ramification � over 0 and ramification .m/ over 1. In the central
piece, we have the rational curve that is not contracted by the projection to A1 ; its
ramification profile is .m/ over each relative divisor. Finally, in the third piece, we have
a genus g2 curve mapping to p2�P1 with ramification .m/ over 0 and ramification �
over 1. Stable maps to each piece are still defined only up to a C�–scaling.

Al

�

�

Figure 4: Rubber localization with E0 and E2 insertions

As this fixed locus features a degenerate target, there are now cotangent lines  0;  1
in the virtual normal bundle that correspond to smoothing the target. See Maulik and
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Pandharipande [20] for a careful description of these and how to remove them. As
before, we work mod .t1C t2/

2 ; let � D .t2� t1/ then the contribution is given by

.t1C t2/ �

�
�

ˇ̌̌̌
1

m� � 1

ˇ̌̌̌
.m/

�P1;�

g1

�m2
�

�
.m/

ˇ̌̌̌
1

�m� � 0

ˇ̌̌̌
�

�P1;�

g2

:

As always, the Hodge classes cancel by Mumford’s relation.

The following lemma is well-known (see Liu, Liu and Zhou [14] and Okounkov and
Pandharipande [25] for example); we sketch a brief justification below.

Lemma 3.4�
�

ˇ̌̌̌
1

1� 1

ˇ̌̌̌
�

�P1;�

g

D
1

jAut.�/Aut.�/j

H
g

�;�

.2g� 2C l.�/C l.�//!

The expression in the factorial is the number of simple ramification points.

Proof If we sum both sides over genus and view the result as operators on the space
of partitions, both sides satisfy a differential equation of the form

u
@

@u
SDMS;

where M is the cut-and-join operator in Hurwitz theory. On the left-hand side, this
follows by rigidifying the rubber geometry with a dilation insertion �1.1/ and removing
the cotangent lines  1 with topological recursion relations. On the right-hand side,
this is follows from picking a simple ramification point and degenerating it onto a
separate component. Since the lowest-order terms match, this forces the entire series
to agree.

If we compare this expression in Lemma 3.4 with the original choice of insertions from
the last section, we immediately have the proposition.

When one of the partitions is totally ramified, ie �D .m/, then double Hurwitz numbers
can be simply evaluated using the character theory of Sm . This computation has been
performed in [10].

Proposition 3.5

H.�; .m//.u/D

Ql.�/
iD1

S.�iu/

S.u/

If we combine these two propositions, we obtain a new proof of Equation (4).
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3.6 Extension to An

The nonrigid theory of An � P1 reduces to the case of A1 � P1 by reducing to the
surface calculations in a manner identical to the proof of degree scaling. Given two
cohomology-weighted partitions �!� ;�!� labelled with cohomology classes 1; : : : ; l.�/

and �1; : : : ; �l.�/ respectively.

Proposition 3.6 If ˇ D d˛ for a root curve class ˛ and each label i ; �j is a divisor,
we have

h
�!� j �!� i

An;�
ˇ

D
.t1C t2/d

l.�/Cl.�/�3

jAut.�/j � jAut.�/j

Q
i.˛ � i/S.d�iu/

Q
j .˛ � �j /S.d�j u/

S.du/2

S.u/D
sin.u=2/

u=2
:where

Otherwise, the series vanishes.

After specializing to t1 D t2 , the same statement holds for D;E resolutions.

4 Relative invariants of An � P1

In this section, we study the relative Gromov–Witten theory of An�P1 . The results
of the last section allow us to calculate

Z0.An �P1/�!
� ;
�!
� ;
�!
�
2Q.t1; t2/..u//ŒŒs1; : : : ; sn��

for �!� D f.2; 1/; .1; 1/m�2
g or �!� D f.1; !i/; .1; 1/

m�1
g:

We will abbreviate these partitions as .2/ and .1; !i/ respectively. In these cases,
we can establish the equivalence between this theory and the quantum cohomology
of Hilb.An/ computed in [17], where these partitions correspond to divisors on the
Hilbert scheme.

While we are unable to go further, we state a generation conjecture from that paper
and prove that it implies an algorithm for calculating the full relative series in terms of

(1) the local theory of C2 �P1 ;

(2) rubber invariants from the last section;

(3) degeneration techniques.

We sketch the extension of this algorithm to An –bundles over a higher genus curve.
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4.1 Rigidification

In this section, we will compute

Z0.An �P1/�!
� ;.2/;

�!
�

Z0.An �P1/�!
� ;.1;!i /;

�!
�
:and

Recall that the generating function is defined by allowing possibly disconnected domain
curves. If we fix a configuration of connected domain components, the associated
Gromov–Witten invariant is a product of the associated connected Gromov–Witten
invariants. It thus suffices to study the restricted generating function for connected
domain curves of genus g . That is, we compute the partition functions

Zı.An �P1/�!
� ;.2/;

�!
�
;Zı.An �P1/�!

� ;.1;!i /;
�!
�
;Zı.An �P1/�!

� ;.1/;
�!
�
;

defined using the moduli spaces

xM ı
g .An �P1; .ˇ;m/I�; �; �/

of relative stable maps of connected curves of genus g with the appropriate ramification
profile over the relative divisors. We split the generating function into the contribution
from curve classes .0;m/ and curve classes .ˇ;m/ with ˇ nonzero:

ZıˇD0.An �P1/�!
� ;
�!
� ;
�!
�
CZıˇ¤0.An �P1/�!

� ;
�!
� ;
�!
�
:

Proposition 4.1 The generating functions

ZıˇD0.An �P1/�!
� ;
�!
� ;
�!
�

are determined in terms of the theory of C2 �P1:

Proof This follows immediately from T –localization along the An –direction. Since
the domain is contracted by the projection to An , the contribution of each fixed locus
is given by the associated integral on C2 �P1 .

For the remaining contributions, the case where the relative partition is .1/m is the
easiest.

Lemma 4.2
Zıˇ¤0.An �P1/�!

� ;.1/;
�!
�
D 0:

Proof As ˇ¤ 0, the invariant is a polynomial in t1 , t2 divisible by .t1Ct2/. But from
dimension constraints, the maximum cohomological degree of the invariant occurs when
every part of �; � is labelled with a divisor in which case this only gives degree 0.
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For the remaining contribution with �!� D .2/ or �!� D .1; !i/, we have the following
evaluation. Given two cohomology-weighted partitions �!� ;�!� labelled with cohomol-
ogy classes 1; : : : ; l.�/ and �1; : : : ; �l.�/ respectively, let

‚ı.�!� ;�!� /D
.t1C t2/

jAut.�!�/j � jAut.�!� /j
�

X
1�i<j�nC1

1X
dD1

.du/l.�/Cl.�/�2

�Ql.�/

kD1
.˛i;j � k/S.d�ku/

Ql.�/

kD1
.˛i;j � �k/S.d�ku/

dS.du/2

� .si � � � sj�1/
d

�
:

Up to a monomial shift, this is precisely the rubber evaluation from last section.

Proposition 4.3 If �; � are partitions of m> 0 and the cohomology classes labelling
�; � are divisors, then we have

ul.�/Cl.�/�1Zıˇ¤0.An �P1/�!
� ;.2/;

�!
�
D

d

du
‚ı.�!� ;�!� /

ul.�/Cl.�/Zıˇ¤0.An �P1/�!
� ;.1;!k/;

�!
�
D sk

d

dsk

‚ı.�!� ;�!� /:and

Otherwise, we have

Zıˇ¤0.An �P1/�!
� ;.2/;

�!
�
D Zıˇ¤0.An �P1/�!

� ;.1;!k/;
�!
�
D 0:

In particular, after multiplication by a monomial in u, these three-point functions are
rational functions of eiu; s1; : : : ; sn .

Proof The vanishing statement for nondivisor insertions follows from dimension
constraints. For the rest, we proceed by applying a rigidification argument to our rubber
evaluation. For the relative insertion .2/, the dilation equation allows us to add a �1.1/

insertion to our rubber invariant. We can replace the nonrigid invariant with a rigid
relative invariant by using this marked point to fix the C� action; that is, if we impose
the condition that this point lies on a fixed An –fiber, we have

h
�!� j �1ŒF �j

�!� iıg;ˇ D h
�!� j �1.1/j

�!� i�g;ˇ

D .2g� 2C l.�/C l.�// � h�!� j�!� i�g;ˇ:

This last equality is precisely the dilation equation. Because of the monomial shift be-
tween ‚ı.�!� ;�!� / and our rubber evaluation, the generating function of these rigidified
invariants is precisely u d

du
‚ı .
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By degenerating the base P1 , we can arrange to have two components so that our
two relative points lie on one component C1 and our fiber insertion lies on the other
component, C2 . The degeneration formula gives

h
�!� j �1ŒF � j

�!� iıg;ˇ D
X
�!
�

ˇ1Cˇ2Dˇ
�1;�2

h
�!� ;�!� ;�!� i�1;ˇ1

1

z.�/
h
�!� _ j �1ŒF � j i�2;ˇ2

:

In this equation, we are summing over all possible combinatorial configurations �1; �2

of connected domain components so that the glued curve over C1[C2 is connected.
The notation �!� _ denotes the partition � with Poincare-dual cohomology insertions
and the factor

z.�!� /D
Y
j

�.j/ � jAut.�!� /j

is the gluing term from the degeneration formula.

First, if ˇ2 ¤ 0, then consider a connected component of �2 which is not contracted
under the projection to An . The dimension constraint from Lemma 4.2 again shows
that this invariant vanishes, unless the curve is contracted by the projection to P1 and
does not intersect the relative divisor. However, this violates the constraint that the total
degeneration configuration is connected. As ˇ2 D 0, we can use [6] to evaluate the
second factor in the right-hand side. The only term that contributes is with �!� D .2/
and �1 given by a connected curve of genus g :

h
�!� j �1ŒF � j

�!� iıg;ˇ D h
�!� ; .2/;�!� iıg;ˇ:

Along with the rigidification statement, this completes the proof.

The same argument applies for .1; !k/ with one modification. Instead of adding a
marked point via the dilation equation, we can use the divisor equation and again use
the marked point to rigidify the rubber scaling:

h
�!� j �0.��!k/ j

�!� iıg;ˇ D h
�!� j �0.!k/ j

�!� i�g;ˇ

D .!k �ˇ/h
�!� j �!� i�g;ˇ:

The rest of the argument goes through unchanged. The fact that derivatives of ‚ı are
rational functions is an elementary check.

We will write down an expression for the disconnected ˇ¤ 0 partition functions in the
next section.
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4.2 Fock space

We introduce the Fock space modelled on H�
T
.An;Q/. As we will discuss later, this

describes the T –equivariant cohomology of the Hilbert scheme of points of An . By
definition, the Fock space FAn

is freely generated over Q.t1; t2/ by the action of
commuting creation operators

p�k. /

for k > 0 and  2H�
T
.An;Q/ on the vacuum vector v∅ . The annihilation operators

pk. /

for k > 0 kill the vacuum vector

pk. / � v∅ D 0

and satisfy the commutation relations

Œpk.1/; pl.2/�D�kıkCl.1; 2/

where .1; 2/ denotes the Poincare pairing on H�
T
.An;Q/. We define a nondegenerate

pairing on FAn
by requiring

hv∅ j v∅i D 1

and specifying the adjoint
pk. /

�
D�p�k. /:

There is an orthogonal grading

FAn
D

M
m�0

F .m/An

induced by defining the degree of v∅ to be zero and the degree of each operator pk. /

to be �k .

If we work with a fixed basis f0; : : : ; ng, our Fock space has a natural basis indexed
by cohomology-weighted partitions with labels in our basis. Given

�!� D f.�1; i1
/; : : : ; .�l ; il

/g;

the associated basis element is given by

1Q
�i � jAut�!� j

p��1
.i1

/ � � � p��l
.il

/ � v∅:

A basis of the graded piece F .m/An
is given by cohomology-weighted partitions of m.

Under the inner product described before, the dual basis is given by cohomology-
weighted partitioning labelled with the dual basis of fig.
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The first application of this formalism is to handle the combinatorics of the disconnected
partition function. Let

‚�.�!� ;�!� /D
X

�!
�D
�!
�1[
�!
�

�!
� D
�!
�1[
�!
�

.�1/j�j�l.�/
h
�!� j �!� i‚ı.�!�1;

�!�1/;

where the brackets denote the Fock space inner product and the summation is over
common subpartitions �!� of both �!� and �!� .

Proposition 4.4

ul.�/Cl.�/�1Z0ˇ¤0.An �P1/�!
� ;.2/;

�!
�
D

d

du
‚�.�!� ;�!� /

ul.�/Cl.�/Z0ˇ¤0.An �P1/�!
� ;.1;!k/;

�!
�
D sk

d

dsk

‚�.�!� ;�!� /:

Proof We just prove the first case. It follows from Lemma 4.2 that there can only
be one connected component that is not contracted by the projection to An and it
must contain the relative marked point associated to the part 2. Let �!�1 , �!�1 be the
relative conditions associated to this primary component. By dimension counting, any
other connected component must be a rational curve with maximal ramification degree
over P1 , totally ramified over the relative divisors corresponding to � and � . This
already implies that the remaining relative conditions coincide:

�!�n�!�1 D
�!� n�!�1 D

�!� :

It is easy to check that the contribution of these rational curves matches the Fock space
inner product up to a sign.

In [17], this complicated expression is expressed in terms of operators arising from an
action of the affine algebra bgl.nC 1/ on Fock space.

4.3 Ring structure

Let
RDQ.t1; t2/..u//ŒŒs1; : : : ; sn��

denote the ring of Laurent series in u; s1; : : : ; sn with coefficients in Q.t1; t2/. We
will use the relative invariants of An �P1 to define the structure of an R–algebra on

R.m/GW.An/D F .m/An
˝Q.t1;t2/R:

Geometry & Topology, Volume 13 (2009)



Gromov–Witten theory of An –resolutions 1763

Given three cohomology-weighted partitions �!� ;�!� ;�!� of m, we define a product �
using the following structure constants

h
�!� ;�!� ��!� i D .�iu/�mCl.�/Cl.�/Cl.�/Z0.An �P1/�!

� ;
�!
� ;
�!
�

and extending by R–linearity.

Proposition 4.5 Under the product defined above, R.m/GW.An/ satisfies the axioms of
an R–algebra with .1; : : : ; 1/ as the identity element.

Proof Commutativity is obvious. The evaluation of the identity element follows from
Lemma 4.2. For associativity, we consider An �P1 relative to four points z1; : : : ; z4 .
If we degenerate P1 to a broken P1 with two points on each component, there are two
choices for the distribution of points. The degeneration formula with respect to these
two configurations yields the associativity constraint. The shift of u in the definition
of our structure constants ensures that the genus parameters match up correctly.

Except for the claim about the identity element, this construction of a ring structure
with a basis indexed by cohomology-weighted partitions is valid for any surface S .
For most surfaces, eg the Enriques surfaces, it is easy to see that the unit element of
the deformed algebra structure must be a nontrivial deformation of .1/m .

4.4 Comparison to quantum cohomology of the Hilbert scheme

The advantage of rewriting our relative theory in terms of a ring structure on Fock
space is that we can compare it to another such ring structure. The Hilbert scheme
of m points on An parametrizes subschemes of length m on the surface An . The
T –equivariant cohomology of Hilb.An/, taken over all numbers of points, has a
geometric identification with the Fock space FAn

: The Heisenberg operators are
geometrically defined using correspondences between Hilbert schemes of different
numbers of points [12; 21]. Our distinguished basis corresponds precisely to the
Nakajima basis indexed by cohomology-weighted partitions. Given a cohomology-
weighted partitioning .�1; ı1/; : : : ; .�l ; ıl/ of m, the associated cohomology class on
Hilbm.An/ has degree

2.m� l.�//C
X

deg.ık/:

In particular, the partitions .2; 1; : : : ; 1/ and .1; !k/ are divisors and give a basis
of H 2.Hilbm.An/;Q/. The inner product described matches the classical Poincare
pairing on T –equivariant cohomology.
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The classical ring structure on H�
T
.Hilbm.An/;Q/ induces a ring structure on each

graded part F .m/An
of our Fock space. We are interested in the quantum cohomology,

which defines a ring structure on

QH�T .HilbmAn/D F .m/An
˝Q.t1; t2/..q//ŒŒs1; : : : ; sn��:

with structure constants determined by rational curves on Hilb.An/. The variables q

and s1; : : : ; sn encode the degree of our curves with respect to the divisors �.2/ and
.1; !k/, k D 1; : : : ; n respectively. This ring structure has been computed explicitly
in [17]. We denote by

h
�!� ;�!� ;�!� iHilb

An

the structure constants of the quantum cohomology ring with respect to the Poincare
pairing.

Proposition 4.6 For the divisor class .2/ and .1; !k/, the structure constants

h
�!� ; .2/;�!� iHilb

An
; h�!� ; .1; !k/;

�!� iHilb
An

are explicitly given rational function in q and s1; : : : ; sn . Under the variable substitution
q D�eiu , we have

.�1/mh�!� ; .2/;�!� iHilb
An
D .�iu/�1Cl.�/Cl.�/Z0.An �P1/�!

� ;.2/;
�!
�

.�1/mh�!� ; .1; !k/;
�!� iHilb

An
D .�iu/l.�/Cl.�/Z0.An �P1/�!

� ;.1;!k/;
�!
�
:and

This proposition is proven by a direct computation of the Hilbert scheme three-point
invariant, followed by comparison with Proposition 4.4. This last statement is the
Gromov–Witten/Hilbert correspondence for divisor operators.

4.5 Generation conjecture

The following conjecture is presented in [17].

Conjecture For the surface An , the operators of quantum multiplication by .2/

and .1; !k/ have nondegenerate joint spectrum, ie their joint eigenspaces are one-
dimensional.

It is an immediate consequence of this conjecture that the divisors generate the quantum
cohomology ring for Hilbm.An/. The same approach proves that divisors generate the
quantum ring for Hilb.C2/. Unfortunately, while we are unable to prove the conjecture,
we do provide suggestive evidence for its validity. For the rest of the section, we explain
some consequences of this nondegeneracy claim. The following two corollaries are
directly implied by the above conjecture.
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Corollary* 4.7 Assuming the generation conjecture for the surface An , the partitions
.2/ and .1; !k/ generate the ring R.m/GW.An/ over the field Q..u//..s1; : : : ; sn//.

Corollary* 4.8 Assuming the generation conjecture, for any three cohomology-
weighted partitions, the structure constants

h
�!� ;�!� ;�!� iHilb

An

are rational functions in q and s1; : : : ; sn . Under the variable substitution q D�eiu ,
we have

h
�!� ;�!� ;�!� iHilb

An
D .�iu/�mCl.�/Cl.�/Cl.�/Z0.An �P1/�!

� ;
�!
� ;
�!
�
:

This last corollary is the full Gromov–Witten/Hilbert correspondence for An surfaces.
Equivalently, under a transcendental change of variables, the Gromov–Witten theory
of An �P1 defines a ring deformation of H�

T
.Hilb.An/;Q/ that is isomorphic to the

quantum cohomology ring.

From an algorithmic point of view, Corollary* 4.7 gives a concrete approach to calcu-
lating an arbitrary three-point invariant of An �P1 in terms of the divisor calculations
of Proposition 4.4.

Given any Nakajima basis element �!� , let

M�!
�

denote the matrix of multiplication by �!� in the Nakajima basis for RGW . After
applying the inner product, its entries are precisely the three-point invariants we are
trying to compute. For An , the statement of Corollary* 4.7 is that the vectors

M a
.2/ �

Y
M

bk

.1;!k/
� .1; : : : ; 1/

span RGW . In particular, for any �!� , we can explicitly calculate the linear dependence

�!� D
X

ca;bk
M a
.2/ �

Y
M

bk

.1;!k/
� .1; : : : ; 1/;

with coefficients ca;bk
2Q.t1; t2/..u; s1; : : : ; sn//. This implies

M�!
�
D

X
ca;bk

M a
.2/ �

Y
M

bk

.1;!k/
:

Finally, we extend the calculation for k D 3 to arbitrary k with the next proposition.

Proposition* 4.9 The k –point function

Z0.An �P1/�!
�1;:::;

�!
�k

is determined from the case k D 3.
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Proof If we have relative points z1; : : : ; zk for k � 3, we consider a degeneration
of P1 to a chain of rational curves of length k with each zi on a distinct component.
The degeneration formula reduces the computation to the individual components, each
of which has only three relative points. If k D 1 or 2, we can add relative insertions
with weighted partition .1; : : : ; 1/ while leaving the invariant unchanged since this
corresponds to multiplication by the identity.

4.6 An–bundles over higher genus curves

We again assume the generation conjecture in this section. Given a curve C of genus g

equipped with line bundles L1 , L2 of degrees a and b respectively. The total space

L1˚L2

admits a fiberwise T –action. In [6], the Gromov–Witten theory of these noncompact
threefolds is calculated using the formalism of a 1C1–dimensional topological quantum
field theory.

The above space also admits a fiberwise ZnC1 –action which commutes with the T –
action. By taking the quotient and passing to the resolution, we obtain the noncompact
threefold

Xn.a; b/ �! .L1˚L2/=ZnC1

which is an An –fiber bundle over C which again admits a fiberwise T –action. For
k points z1; : : : ; zk 2 C and k cohomology-weighted partitions �!�1; : : : ;

�!�k , we
are interested in the Gromov–Witten theory of Xn.a; b/ relative to the fibers over
z1; : : : ; zk . This can be encoded in a generating function

Z0.Xn.a; b//�1;:::;�k
2Q.t1; t2/..u//ŒŒs1; : : : ; sn��:(5)

Given the generation statement, it is again possible to determine the T –equivariant
Gromov–Witten theory using an enriched TQFT structure. As in [6], the calculation of
(5) for arbitrary C , a, b is reduced to the following cases.

(1) Xn.0; 0/ relative to 1,2, or 3 points: These invariants are precisely the relative
invariants of An �P1 that we have just calculated, under the assumption of the
generation conjecture.

(2) Xn.0;�1/ relative to 1 point: This is less trivial. For dimension reasons, the
only nonzero invariant has cohomological degree 0 and can thus be computed
by any specialization of the equivariant parameters. In particular, we can work
with the Calabi–Yau specialization, for which the equivariant parameters sum
to 0 at fixed points away from the relative fiber. The computation can then be
executed using the topological vertex formalism of [1], proven in [13; 18].
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5 Linear Hodge series

We apply the rubber evaluation of Section 3 to give a closed evaluation of reduced
Gromov–Witten invariants of An with a single Hodge class. Since the extension to
An is immediate, we will only write the evaluation in the case of A1 . For curve class
d ŒE�, we give a formula for the generating function

Fd .u; z1; : : : ; zr /

D

X
g;a1;:::;ar�0

˝
.�1/g�g�

P
ai
�a1
.!/ � � � �ar

.!/
˛A1;red
g;d

u2g.�z1/
a1 � � � .�zr /

ar :

Theorem 5.1

Fd .u; z1; : : : ; zr /D
1

d3S.du/2

rY
kD1

1

iu

�
G

�
i � d � zku

1� e�idu
; zk

�
�G

�
�i � d � zku

1� eidu
; zk

��

G.w; z/D

1X
mD1

wm

.z/ � .zC 1/ � � � .zCm/
:where

In the above expression, G.w; z/ should be expanded in positive powers of z . Because
of the factors of zk in our substitution for w , the expression gives a well-defined power
series in z1; : : : ; zk .

5.1 Degree scaling and factorization rule

The degree dependence from Theorem 1.1 applies here, so we immediately reduce to
the case of F1.u; z1; : : : ; zr /; from now on, we suppress the subscript.

As in the proof of Proposition 2.5, we can degenerate A1 to a comb of rational curves
so that the spine has normal bundle O.�2/ and each tooth has normal bundle O and
a single insertion. The factorization rule established there extends to include Hodge
classes by restricting the Hodge bundle on xMg to its boundary strata. The resulting
factorization rule is

F.u; z1; : : : ; zr /D f0.u/

rY
iD1

g.u; zi/

where f0.u/ is the contribution of the comb at level �2 and g.u; zi/ is the contribution
of P1 relative to 1 at level 0. By comparing with the case of r D 1, we can remove
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the dependence on g.u; z/:

F.u; z1; : : : ; zr /D f0.u/
1�r

rY
iD1

F.u; zi/:

As a warm-up calculation, we compute f0.u/.

Proposition 5.2 f0.u/D
P
.�1/gh�gi

red
g u2g D 1=S.u/2 .

Proof Consider the connected rubber evaluation from Section 3 for the threefold
A1 �P1 in degree .ˇ; 0/:

h∅ j∅i� D .t1C t2/ �
1

S.u/2

We can rewrite this integral by adding a �0.!/ insertion using the divisor equation
and rigidifying it by fixing this insertion to lie over a specified point in P1 . If we then
apply localization along the P1 direction, the answer is precisely the desired Hodge
integral.

5.2 Auxiliary evaluations

We now introduce two auxiliary series of Hodge integrals with a single stationary
insertion. Recall

ƒ.�1/D .�1/g�gC .�1/g�1�g�1 � � � C 1:

The generating functions we evaluate are

Ak.u/D
X

g

�
ƒ.�1/

!

1� k 

�red

g;1

u2g

Bl.u/D
X

g

�
ƒ.�1/

lY
jD1

.j C 1/.!/

�red

g;1

u2g:and

Each expression is a sum of invariants of the form h�j�g�j .!/i. We only sum over
terms that satisfy the dimension constraint; in particular, only finitely many terms
appear when we expand the geometric series appearing in Ak.u/. Finally, we will also
need the following series with two stationary insertions.

Ck;l.u/D
X

g

�
ƒ.�1/

!

1� k 1

l�1Y
jD1

.j 2C 1/.!/

�red

g;1

u2g:

Geometry & Topology, Volume 13 (2009)



Gromov–Witten theory of An –resolutions 1769

Here,  1;  2 denote the cotangent lines at the two marked points. The factorization
rule immediately yields the evaluation of C in terms of A and B

Ck;l.u/D
Ak.u/ �Bl.u/

f0.u/
:

The nice feature of these generating functions is that they admit simple evaluations via
localization arguments.

Proposition 5.3

Ak.u/D

kX
jD1

j !

�
k � 1

k � j

�
k�jS.j u/S.u/j�2

Bl.u/D
S..l C 1/u/

S.u/lC3
:

Proof Consider the threefold A1 �P1 relative to A1 �1, equipped with the C�–
action from the P1 . We will derive the two identities by applying relative localization
with respect to this torus action. Throughout this argument, we use the analysis of
possible localization configurations that was required in the proof of Proposition 3.6.
Let

ŒF0�; ŒF1�

denote the equivariant classes of the fibers over the fixed points of P1 with tangent
weights 1 and �1. We consider relative stable maps with target homology class .ˇ;m/
for m> 0.

Since ŒF1�2 D 0, we have the vanishing statement�
�0.! � ŒF1�

2/

mY
iD1

�0.! � ŒF0�/

ˇ̌̌̌
�.!/

�A1�P1

.ˇ;m/

D 0

for �D .m/. When we apply relative localization with respect to the torus action, the
fixed loci have the following structure.

As always, there is a unique irreducible component which maps nontrivially to A1 . If
the primary component maps to A1 �1, then the fixed locus consists of a degenerate
target which contributes a rubber integral. Each of the m distinct points mapping to
F0 must lie on a distinct rational tail because they are fixed with !–insertions. The
only possible contribution is

.m!/ �

�
1m.!/

ˇ̌̌̌
1

1�‰
� �0.1/

ˇ̌̌̌
.m; !/

�A1;�

ˇ

:
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In the above formula, ‰ represents the cotangent line to the moduli space of degener-
ations of the nonrigid target. The insertion �0.1/ arises from the marked point with
the F1 insertions. The factorial contribution occurs because the partition has ordered
parts. After applying the string equation and our rubber evaluation, the contribution of
this term to the localization sum is

mS.mu/S.u/m�2:

If the primary component maps to A1 � 0, then the allowed fixed loci are described
as follows. There is a single rational fiber tail of degree a < m attached to the
primary component. In the degenerate part of the target, there is a genus 0 curve with
ramification profile .m/ over 1 and profile .a; �/ over 0 for some partition � of
m� a. Finally, there is a rational curve for each part of � . Since the relative insertion
has an !–insertion, all the other marked points must lie on the primary component.

The contribution of this term is

�Aa.u/ �
aaC1

a!

1

Aut�

Y �
�i�1
i

�i !
.�m/l.�/

using genus 0 Hurwitz evaluations for the rational tail contributions. The m marked
points on the primary component can be removed with the divisor equation. The
summation over � is handled by the identityX

�

1

Aut�

Y �
�i�1
i

�i !
.�m/l.�/ D

�m.�a/m�a�1

.m� a/!
:

We thus have the identity

S.mu/S.u/m�2
D

1

m!

X
a

.�1/m�aAa.u/

�
m

a

�
am

which is easily inverted to yield the first statement.

For the second part of the proposition, we study the relative invariant in degree .ˇ;m/�m�1Y
jD1

.j 1C 1/.! � ŒF0�/�0.! � ŒF1�
2/

ˇ̌̌̌
.m; !/

�A1�P1

.ˇ;m/

D 0

which again vanishes for trivial reasons. Our analysis proceeds as before. If the primary
component maps to the degenerate part, then the first insertion forces a unique rational
tail of degree m. Indeed, a tail of smaller degree would give a vanishing contribution
in the localization expression for the first insertion. The contribution is now

mS.mu/2S.u/�2:
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In the other fixed loci, the primary component maps to A1 � 0 with a configuration of
rational tails identical to the last computation. The only difference is that we have a
more complicated insertion on the primary component. The contribution isX

a�m;�

�Ca;m�1.u/ �
aaC1

a!

1

Aut�

Y �
�i�1
i

�i !
.�m/l.�/:

By applying the factorization rule and our evaluation for Aa.u/, this is precisely

m �Bm�1.u/

f0.u/
S.mu/S.u/m�2:

Since the two fixed loci sum to zero, this gives the identity for Bm�1.u/.

5.3 Proof of Theorem 5.1

Proof In order to evaluate F.u; z/, we expand Bm.u/ in monomial form and invert
the resulting system. More precisely, if

F.u; z/D
X
m

Fm.u/z
m

Bm.u/Dm! �

mX
kD0

em�k

�
1;

1

2
; : : : ;

1

m

�
Fk.u/:then

Here, ej .a1; : : : ; ar / is the j –th elementary symmetric function. This inverts to give

Fm.u/D

mX
kD0

.�1/m�k Bk.u/

k!
hm�k

�
1;

1

2
; : : : ;

1

k

�
where hj .a1; : : : ; ar / is the j –th complete symmetric function. If we sum over m

and use the evaluation for Bk.u/, we have

F.u; z/D
X
k�1

zk�1 S.ku/

.k � 1/!S.u/kC2

kY
iD1

1

1C z= i
:

This is equivalent to the expression in the theorem statement.
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