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Packing subgroups in relatively hyperbolic groups

G CHRISTOPHER HRUSKA

DANIEL T WISE

We introduce the bounded packing property for a subgroup of a countable discrete
group G . This property gives a finite upper bound on the number of left cosets of
the subgroup that are pairwise close in G . We establish basic properties of bounded
packing and give many examples; for instance, every subgroup of a countable,
virtually nilpotent group has bounded packing. We explain several natural connections
between bounded packing and group actions on CAT.0/ cube complexes.

Our main result establishes the bounded packing of relatively quasiconvex subgroups
of a relatively hyperbolic group, under mild hypotheses. As an application, we prove
that relatively quasiconvex subgroups have finite height and width, properties that
strongly restrict the way families of distinct conjugates of the subgroup can intersect.
We prove that an infinite, nonparabolic relatively quasiconvex subgroup of a relatively
hyperbolic group has finite index in its commensurator. We also prove a virtual
malnormality theorem for separable, relatively quasiconvex subgroups, which is new
even in the word hyperbolic case.

20F65; 20F67, 20F69

1 Introduction

In treating groups as geometric objects, it is natural to emphasize certain subgroups
for special treatment, and these “quasiconvex” subgroups play a role akin to convex
subspaces of a geodesic metric space. While for arbitrary groups the quasiconvexity
of a subgroup is not even well-defined, for word-hyperbolic groups quasiconvexity is
independent of the choice of generating system, and there is a useful theory of such
subgroups which endows them with the properties of the ambient group, and then
examines the favorable way in which they are embedded.

There has been substantial progress in the past few years generalizing properties of word-
hyperbolic groups to properties of relatively hyperbolic groups with hypotheses on the
peripheral subgroups. This paper is part of this trend where we focus on generalizations
of ideas related to a certain important property of a quasiconvex subgroup. Let us first
discuss the background of this property before indicating our generalizations.
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An infinite quasiconvex subgroup H of a word-hyperbolic group G cannot be normal
unless it is of finite index (see Short [1]). More generally, there are substantial limits
on the way it intersects its conjugates. The definitive result in this direction, obtained
by Gitik–Mitra–Rips–Sageev [8], states that a quasiconvex subgroup has “finite width”.
This roughly means that there is an upper bound on the number of conjugates whose
pairwise intersection is infinite. More precisely the width of H in G equals .n� 1/

if n is the smallest number with the property that for any n distinct right cosets
g1H; : : : ;gnH the intersection giHg�1

i \ gj Hg�1
j is finite for some i; j . It is

unknown whether having finite width characterizes quasiconvexity, but it seems unlikely
that one could jump from an algebraic hypothesis to a geometric conclusion in this
context.

1.1 Bounded packing

The geometric mechanism lying behind the finite width conclusion is what we call
“bounded packing.” In a metric space .X; d/ the distance between two subsets Y and Z

is the infimum of distances between points y 2 Y and z 2 Z . If H is a subgroup
of G , then H has bounded packing in G if for each D , there is a bound M DM.D/

on the number of distinct cosets giH such that d.giH;gj H / <D for each i; j . (A
more precise statement can be found in Section 2 below.) The connection between
width and the bounded packing of a �–quasiconvex subgroup H of the ı–hyperbolic
group G , is that if giHg�1

i \gj Hg�1
j is infinite, then d.giH;gj H / <K DK.�; ı/.

The goal of this paper is to prove a bounded packing statement in the relatively
hyperbolic context, and to deduce from this an appropriate finite width consequence.

Bounded packing is the fundamental notion operating behind proofs about the widths
of subgroups and appears implicitly in Gitik–Mitra–Rips–Sageev [8]. It is a natural
algebraic generalization of the Finite Plane Intersection Property (FPIP) for universal
covers of surfaces in 3–manifolds (see, for instance, Rubinstein–Sageev [18]). It is
also the key point used by Sageev [21] to prove the finite dimensionality of the cube
complex arising from Sageev’s construction applied to a codimension–1 quasiconvex
subgroup of a word-hyperbolic group, as discussed in Section 3 below. In [11], the
authors apply the bounded packing property to generalize Sageev’s finite dimensional
cubulation result to codimension–1 relatively quasiconvex subgroups of relatively
hyperbolic groups. Our main theorem about bounded packing is the following result
about relatively hyperbolic groups.

Theorem 1.1 Let H be a relatively quasiconvex subgroup of a relatively hyperbolic
group G . Suppose H \gPg�1 has bounded packing in gPg�1 for each conjugate of
each peripheral subgroup P . Then H has bounded packing in G .
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This theorem generalizes a result of Gitik–Mitra–Rips–Sageev [8] on quasiconvex
subgroups of a word hyperbolic group and also generalizes a result of Rubinstein–
Sageev [18] on geometrically finite surfaces in 3–manifolds whose toral decomposition
has only hyperbolic components.

We note that the condition about intersections with peripheral subgroups is necessary.
Indeed, every group G is hyperbolic relative to itself, and in that case every subgroup
of G is relatively quasiconvex.

We have collected together a number of basic properties of bounded packing in Section 2,
and we state a variety of problems there for further thought. In general, we would like
to know:

Question 1.2 Which countable groups have the property that all their (finitely gener-
ated) subgroups have bounded packing?

We also show in Section 3 that under mild hypotheses an action of a group G on a
CAT.0/ cube complex C gives rise to natural subgroups of G with bounded packing.
These subgroups arise as stabilizers of hyperplanes in C .

1.2 Pairwise close spaces

Niblo–Reeves [13] proved that given n, � , D and ı there exists M DM.n; �;D; ı/

such that the following thinness condition holds: If A1; : : : ;An are �–quasiconvex
subspaces of a ı–hyperbolic space X such that d.Ai ;Aj / <D for all i; j , then there
is a point x 2 X with d.Ai ;x/ < M for all i . This statement is also implicit in
Sageev’s work in [21], and plays a fundamental role in both these papers in proving
the cocompactness of the cube complex associated with a finite set of quasiconvex
codimension–1 subgroups.

We generalize this statement in Proposition 7.7, which contains a slightly stronger
conclusion than the following assertion that there is either a point or a peripheral coset
nearby.

Proposition 1.3 Let G be a relatively hyperbolic group. Choose positive constants
� and D and an integer n� 1. Let A be an arbitrary set of �–relatively quasiconvex
subspaces of G such that for each A;A0 2 A the distance d.A;A0/ is less than D .
Then there is a constant M DM.�;D; n/ so that at least one of the following holds.

(1) For every set fA1; : : : ;Ang of n distinct elements of A, there is a point x 2X

such that d.x;Ai/ <M for each i .

(2) There is a peripheral coset gP such that d.gP;A/ <M for all A 2A.

Proposition 7.7 plays a significant role in our proof of Theorem 1.1.
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1.3 Bounded height and width

For relatively hyperbolic groups, the “small” subgroups are either “elliptic,” meaning
finite, or “parabolic,” which means conjugate into a peripheral subgroup. In this context,
we therefore redefine the height of H in G to be .n� 1/ if n is the smallest number
with the property that for any n distinct left cosets g1H; : : : ;gnH , the intersectionT

1�i�n giHg�1
i is elliptic or parabolic. Similarly, the width of H in G equals

.n� 1/ if n is the smallest number with the property that for any n distinct left cosets
g1H; : : : ;gnH the intersection giHg�1

i \gj Hg�1
j is elliptic or parabolic for some

i; j .

The following is our main theorem about finite height and width:

Theorem 1.4 Let G be a relatively hyperbolic group, and let H be a relatively
quasiconvex subgroup. Then H has finite height.

Suppose, furthermore that H \ gPg�1 has bounded packing in gPg�1 for each
conjugate of each peripheral subgroup P . Then H has finite width.

We hope that further work in this area will resolve the following:

Problem 1.5 Let G be relatively hyperbolic. Does every relatively quasiconvex
subgroup of G have finite width?

If H is a subgroup of G , the commensurator of H in G is the subgroup of all g 2G

such that H \gHg�1 has finite index in both H and gHg�1 . We prove the following
result on commensurators of relatively quasiconvex subgroups using ideas related to
Theorem 1.4.

Theorem 1.6 Let H be a relatively quasiconvex subgroup of a relatively hyperbolic
group G . Suppose H is infinite and nonparabolic. Then H has finite index in its
commensurator.

We use similar techniques to show that a separable (relatively) quasiconvex subgroup H

of a (relatively) hyperbolic group G is (relatively) malnormal in a finite index subgroup
K of G (see Theorem 9.3). This result is new even in the hyperbolic case.

1.4 Overview

In Section 2 we define the notion of bounded packing and prove a number of basic
results about this concept. We also give a number of examples and collect several
problems.
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In Section 3 we discuss the relation between bounded packing and actions on CAT.0/
cube complexes. By a result of Sageev, a codimension–1 subgroup H < G with
bounded packing gives rise to an action of G on a finite dimensional CAT.0/ cube
complex. In this section, we give a partial converse to Sageev’s result.

In Section 4 we prove the bounded width theorem of Gitik–Mitra–Rips–Sageev [8] in
the word hyperbolic setting. The reader is advised to understand this proof first, as our
relatively hyperbolic generalization will follow it closely, albeit with certain aspects
substantially more complicated.

In Section 5 we recount essential facts about the geometry of the Cayley graph of
a relatively hyperbolic group with a finite generating set that were established by
Dru,tu–Sapir in [5]. We use these results to prove two auxiliary results about triangles
and quadrilaterals with the property that each side lies near a peripheral subspace.

In Section 6 we discuss the geometry of relative Cayley graphs, concentrating on the
interplay between the usual (proper) metric and the relative metric as applied to thinness
conditions.

In Section 7 we analyze collections of relatively quasiconvex subspaces in a relatively
hyperbolic group. In particular, we prove Proposition 7.7, an important technical result
underlying this work that was described above.

In Section 8 we prove Theorem 1.4, our main result on bounded packing and bounded
width for a relatively quasiconvex subgroup of a relatively hyperbolic group. We also
prove Theorem 1.6 on the commensurator of a relatively quasiconvex subgroup.

Section 9 contains a brief proof of the relative malnormality result Theorem 9.3
mentioned above, using results from the previous section.

Acknowledgements The first author’s contribution to this material is based upon
work supported by the National Science Foundation under Grant Nos. DMS-0505659,
DMS-0754254 and DMS-0808809. The second author is supported by grants from
NSERC.

2 Bounded packing: First properties and examples

Definition 2.1 (Bounded packing) Let G be a discrete group with a left invariant
metric d . Suppose also that d is proper in the sense that every metric ball is finite. A
subgroup H has bounded packing in G (with respect to d ) if, for each constant D ,
there is a number N D N.G;H;D/ so that for any collection of N distinct cosets
gH in G , at least two are separated by a distance of at least D .
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A discrete group admitting a proper metric is necessarily countable. On the other hand,
if G is finitely generated then the word metric for any finite generating set is a proper,
equivariant metric. Restricting the word metric on G to a subgroup H gives a proper,
left invariant metric on H . Since every countable group is a subgroup of a finitely
generated group, it follows that a discrete group G admits a proper, left invariant metric
if and only if G is countable.

Lemma 2.2 If G is countable, then bounded packing of a subgroup H in G is
independent of the choice of proper, left invariant metric on G . In other words, if
d1; d2 are proper, left invariant metrics on G , then H has bounded packing in G with
respect to d1 if and only if it has bounded packing with respect to d2 .

Proof Define �W N!N so that �.n/ is the supremum of d1.1;g/ over all g with
d2.1;g/ < n. Note that there are only finitely many such g since d2 is proper, so �.n/
is finite for each n. By the left invariance of d1 and d2 , it follows that

d1.g1;g2/� �
�
d2.g1;g2/

�
for all g1;g2 2G .

Now if H is a collection of left cosets of H with pairwise d2 –distances at most D ,
their pairwise d1 –distances are at most �.D/. Thus if H has bounded packing with
respect to d1 , it also has bounded packing with respect to d2 .

The following result follows easily from the definition of bounded packing.

Lemma 2.3 Any finite index subgroup K of a countable group G has bounded
packing in G .

Proof The definition of bounded packing is vacuously satisfied once N is larger than
ŒG WH �, since there are no collections of N distinct cosets of H in G .

Lemma 2.4 Suppose that H �K �G and G is countable.

(1) If H has bounded packing in G then H has bounded packing in K .

(2) If H has bounded packing in K , and K has bounded packing in G then H has
bounded packing in G .

Proof We may assume the metric on K is a restriction of the metric on G , so that (1)
is immediate.

Geometry & Topology, Volume 13 (2009)



Packing subgroups in relatively hyperbolic groups 1951

Let H is a collection of left cosets of H in G with pairwise distances at most D . The
bounded packing of H in K bounds the number of elements of H that lie in each
left coset gK . Furthermore, the bounded packing of K in G bounds the number of
cosets gK that contain elements of H . Thus the size of H is bounded in terms of D ,
establishing (2).

Proposition 2.5 (Commensurability) Let G be a countable group.

(1) Suppose H �K �G and ŒK WH � <1. Then H has bounded packing in G if
and only if K has bounded packing in G .

(2) Suppose H �K �G and ŒG WK� <1. Then H has bounded packing in K if
and only if H has bounded packing in G .

(3) Suppose H;K �G and ŒG WK� <1. Then H \K has bounded packing in K

if and only if H has bounded packing in G .

Proof Let d be a proper, left invariant metric on G . To see (1) suppose ŒK WH � <1.
Then there is a constant C such that in the metric d each left coset gK is at most a
Hausdorff distance C from a left coset gH (the choice of g is irrelevant). Suppose
H has bounded packing in G . Let K be a collection of left cosets of K with pairwise
distances at most D . Replacing each coset gK with a corresponding coset gH gives
a collection H of left cosets of H with the same cardinality as K and with pairwise
distances at most DC 2C . The bounded packing of H in G bounds the size of H ,
and hence also the size of K , as a function of D . Thus K has bounded packing in G .

Conversely suppose K has bounded packing in G . By Lemma 2.3, we know that H

has bounded packing in K . Therefore H has bounded packing in G by Lemma 2.4(2),
completing the proof of (1).

Assertion (2) follows immediately from Lemmas 2.3 and 2.4.

Suppose now that H;K � G and ŒG WK��1. Then H \K has finite index in H .
Observe that (3) is an immediate consequence of (1) and (2), since H \K has bounded
packing in K if and only if H \K has bounded packing in G if and only if H has
bounded packing in G .

Corollary 2.6 If G is countable, any finite subgroup K � G has bounded packing
in G .

Proof Fix a proper, left invariant metric d on G . By Proposition 2.5(1) it suffices to
show that the trivial subgroup has bounded packing in G . A left coset of the trivial
subgroup is just a single element of G . If H is any collection of pairwise D–close
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left cosets of the trivial subgroup, (in other words, elements of G ) then H is a subset
of the ball of radius D centered at any of its elements. The number of elements in
such a ball is finite since d is proper, and this number depends only on D since d is
left-invariant.

Proposition 2.7 Suppose H and K have bounded packing in a countable group G .
Then H \K has bounded packing in G .

Proof Fix a proper, left invariant metric d on G . By Lemmas 2.4(2) and 2.2 it suffices
to show that L WDH \K has bounded packing in H with respect to d . Let L be a set
of left cosets of L in H whose pairwise d –distances are at most D . If hL and h0L

are distinct cosets of L in H then hLDH \ hK and h0LDH \ h0K for distinct
cosets hK and h0K in G . Thus L is in one-to-one correspondence with a set yL of left
cosets of K in G whose pairwise distances are at most D . But the bounded packing
of K in G bounds the size of yL as a function of D .

Lemma 2.8 Let 1!N !G!Q! 1 be a short exact sequence of countable groups.
Let H be a subgroup of G which projects to the subgroup xH of Q. Then xH has
bounded packing in Q if and only if HN has bounded packing in G .

Proof For each g 2G , let xg denote the image of g in Q. Fix a proper, left invariant
metric d on G . Define xd W Q!R so that xd.q1; q2/ is the infimum of d.g1;g2/ over
the set of all g1;g2 with qi D xgi . A straightforward argument shows that xd is a proper,
left invariant metric on Q.

The projection G!Q induces a one-to-one correspondence between left cosets of
HN in G and left cosets of xH in Q. It is clear that d.g1;g2/ � xd.Sg1; Sg2/ for all
g1;g2 2G . Therefore

d.xHN;yHN /� xd.xx xH ; xy xH /

for all x;y 2G .

Conversely, any element x 2 Q with xd.x;x1/ D a lifts to an element y 2 G with
d.y; 1/D a. If xd.Sg1

xH ; Sg2
xH /D n then there is an element x 2Q with xd.x;x1/D a

such that Sg1
xH xw intersects Sg2

xH . If y is a lift of x with d.y; 1/D a, then g1HyN D

g1HNy intersects g2HN , so d.g1HN;g2HN /� a.

Therefore the distance between left cosets of HN in G is equal to the distance between
corresponding left cosets of xH in Q. Evidently HN has bounded packing in G if
and only if xH has bounded packing in Q.
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Corollary 2.9 Each normal subgroup N of a countable group G has bounded packing.

Proof Apply Lemma 2.8 with H equal to the trivial subgroup.

Remark 2.10 In fact, a normal subgroup N has the stronger property that for each D

there exists M DM.D/ such that at most M left cosets gN satisfy d.N;gN / <D .

Corollary 2.11 Every subgroup of a countable abelian group has bounded packing.

Theorem 2.12 Let N be a countable, virtually nilpotent group. Then each subgroup
of N has bounded packing in N .

We note that this can be also be proven using either Lemma 2.17 or Corollary 2.15.

Proof By Proposition 2.5(3) it suffices to prove the theorem when N is a countable
nilpotent group. The theorem is obvious if N is the trivial group. We proceed by
induction on the length of the lower central series. Let H be a subgroup of N . Let Z

denote the center of N . Let xN WD N=Z and let xH be the image of H in xN . By
induction, xH has bounded packing in xN . Therefore by Lemma 2.8, HZ has bounded
packing in N . Because Z is central, H is normal in HZ and so H has bounded
packing in HZ by Corollary 2.9. Finally, by Lemma 2.4(2), H has bounded packing
in G since, H has bounded packing in HZ and HZ has bounded packing in G .

Question 2.13 Let S be a solvable group. Does every subgroup of S have bounded
packing in S ?

It seems too much to expect an affirmative answer to Question 2.13, however we do
expect the following to hold:

Conjecture 2.14 Let P be virtually polycyclic. Then each subgroup of P has
bounded packing in P .

The following is an immediate consequence of Corollary 2.9 together with Lemma
2.4(2).

Corollary 2.15 Let H be a subgroup of a countable group G . If H is subnormal
then H has bounded packing in G .
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Example 2.16 For n¤ 0, let BS.1; n/ be the group presented by h a; t j tat�1 D an i.
It is well-known that for n¤˙1, the subgroup hai is not quasi-isometrically embedded;
in fact, it is exponentially distorted. Nevertheless hai has bounded packing in BS.1; n/.
Indeed, there is a short exact sequence 1! A! BS.1; n/! Z! 1 with hai � A

such that A is isomorphic to ZŒ1=n�. Since A is abelian, hai is subnormal in BS.1; n/
and hence has bounded packing by Corollary 2.15.

It is interesting to note that A is not finitely generated. (Indeed, A is locally cyclic
but not itself cyclic.) Thus consideration of bounded packing in non–finitely generated
groups can give us useful information about finitely generated subgroups of a finitely
generated group.

As the following Lemma shows, the group F2 �Z has bounded packing with respect
to each of its finitely generated subgroups.

Lemma 2.17 Let 1! C ! G!Q! 1 be a short exact sequence with C central
in the countable group G . If every (finitely generated ) subgroup of Q has bounded
packing then every (finitely generated ) subgroup of G has bounded packing.

Proof Let H be a [finitely generated] subgroup of G . By hypothesis, its image xH
has bounded packing in Q. Now H has bounded packing in CH by Corollary 2.9,
and CH has bounded packing in G by Lemma 2.8. Therefore H has bounded packing
in G by Lemma 2.4.

Example 2.18 Let M be a Seifert-fibered 3–manifold. Then there is a short exact
sequence 1!Z!�1M !�1S! 1, where S is a 2–dimensional orbihedron. Since
every finitely generated subgroup of �1S has bounded packing (by local quasiconvexity
and Theorem 4.8 below) it follows from Lemma 2.17 that every finitely generated
subgroup of �1M has bounded packing.

Let us now examine subgroups that do not have bounded packing. At present surpris-
ingly few such examples are known. In fact, the authors know of only one basic example,
due to Rubinstein–Wang. The group is the fundamental group of a 3–dimensional
graph manifold; that is, a manifold formed by gluing Seifert fibered manifolds together
along tori. In light of the preceding example, we see that the bounded packing property
is not preserved by very simple graphs of groups.

Example 2.19 Rubinstein–Wang [19] constructed a finitely generated surface sub-
group of the fundamental group of a graph manifold that doesn’t have bounded packing.
Their example is an immersed �1 –injective surface S in a 3–dimensional graph

Geometry & Topology, Volume 13 (2009)



Packing subgroups in relatively hyperbolic groups 1955

manifold M . Let zS ! �M denote a lift of S !M to a map between the universal
covers. The various lifts correspond to translates g zS where g varies over the various
cosets g�1S . Remarkably, any two such lifts gi

zS and gj
zS intersect each other.

Consequently any two cosets gi�1S and gj�1S are a uniformly bounded distance
from each other in �1M .

It seems reasonable to expect subgroups without bounded packing to appear in the
fundamental groups of other graph manifolds. The following problem is a reasonable
test case for this phenomenon.

Problem 2.20 Determine exactly which subgroups of the following group G have
bounded packing:

G WD h a; b; c; d j Œa; b�; Œb; c�; Œc; d � i

(The group G is the fundamental group of a graph manifold.)

Since there are subgroups of countable groups without bounded packing, it follows
from Lemma 2.8 that (non–finitely generated) subgroups of the free group F2 do not
always have bounded packing. Notice that, since finitely generated subgroups of F2

are quasiconvex, Theorem 4.8 below implies that finitely generated subgroups of F2

always have bounded packing.

Rips gave the following construction in [16]:

Proposition 2.21 Let Q be a finitely presented group. Then there exists a short exact
sequence 1!N !G!Q! 1 such that N is finitely generated, and G is a finitely
presented C 0

�
1
6

�
group.

Example 2.22 Using Rips’s construction, we will construct a word hyperbolic group G

and a finitely generated subgroup K such that K does not have bounded packing in G .
Let Q be a finitely presented group with a subgroup H that fails to have bounded
packing in Q. Let 1!N !G!Q! 1 be the short exact sequence from Proposition
2.21. Let K be the preimage of H in G , and note that K is finitely generated since
both N and H are. By Lemma 2.8, K does not have bounded packing in G . Observe
that G is word hyperbolic, since it is finitely presented and C 0

�
1
6

�
.

Remark 2.23 We can choose H to be a codimension–1 subgroup without bounded
packing to make the group G in Example 2.22 have an exotic action on an infinite
dimensional cube complex.

Problem 2.24 Give an example of a cyclic subgroup Z of a finitely generated group G

such that Z does not have bounded packing in G .
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Question 2.25 Are there finitely generated subgroups of F2�F2 without bounded
packing?

Question 2.26 Let 1! N ! G ! A! 1 be an extension of finitely generated
groups. Suppose every subgroup of N has bounded packing in N , and A is abelian.
Does every subgroup of G have bounded packing in G ?

Problem 2.27 Let H be a retract of the finitely generated group G . Does H have
bounded packing in G ?

3 Bounded packing and actions on CAT.0/ cube complexes

Suppose G is a group with a finite generating set S . A subgroup H <G is codimension–
1 if there is a constant L> 0 so that the L–neighborhood of H in Cayley.G;S/ has
at least two “deep” complementary components. A complementary component is deep
if it contains elements whose distance from H is arbitrarily large.

A theorem of Sageev [20], together with a result proved independently by Gerasimov [7]
and Niblo–Roller [14], shows that a group G with a codimension–1 subgroup H has
an action on a CAT.0/ cube complex C without a global fixed point. All hyperplanes
in C lie in a single orbit under the action of G , and H is the stabilizer of some
hyperplane ƒ. The dimension of C is the maximal size of a set of pairwise transverse
hyperplanes. The relation to bounded packing is the following basic fact, observed
by Sageev [21]: If H is finitely generated and hyperplanes g0ƒ and g1ƒ in C are
transverse, then dS.g0H;g1H / <M for some universal constant M .

Corollary 3.1 (Sageev) Suppose H is a finitely generated codimension–1 subgroup
of a finitely generated group G . If H has bounded packing in G , then the corresponding
CAT.0/ cube complex C is finite dimensional.

The goal of this section is to prove the following converse, of sorts, to the preceding
result.

Theorem 3.2 Suppose the countable discrete group G acts on a CAT.0/ cube com-
plex C , and H �G is the stabilizer of a hyperplane ƒ.

(1) If C is locally finite, then H has bounded packing in G .

(2) Let V .ƒ/ be the set of vertices incident to the edges that cross ƒ. If G acts
metrically properly on C , and H acts on V .ƒ/ with only finitely many orbits
of vertices, then H has bounded packing in G .
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In a sense this theorem is optimal, as shown by the following example.

Example 3.3 Recall that Example 2.19 gives a group G and a subgroup H such that
H does not have bounded packing in G . The group H is the fundamental group of an
immersed surface S in a 3–dimensional graph manifold M with G D �1.M /. Since
H is a codimension–1 subgroup of G , it follows that G has an action on a CAT.0/
cube complex C such that H is the stabilizer of a hyperplane ƒ. Condition (1) fails
resolutely since C is an infinite dimensional cube, as any two translates of the surface S

cross. The authors believe failure of (2) can be traced to a failure of the cocompactness
of the action of H on V .ƒ/. Indeed even if the action of G on C is not proper,
the authors believe this can be remedied with the addition of further codimension–1

subgroups leading to a metrically proper action on a new cube complex C 0 . The action
of H on the new hyperplane ƒ0 would necessarily fail to be cocompact by Theorem
3.2, as H does not have bounded packing in G .

Theorem 3.2 follows from several results about convex subsets of a CAT.0/ cube
complex C . Let C 1 denote the 1–skeleton of a CAT.0/ cube complex with its induced
path metric d . It is well-known that the metric d on the vertices coincides with the
“wall metric.” That is to say, d.v; w/ is equal to the number of hyperplanes separating
v from w . The interval Œv; w� is the set of all vertices u that lie on some d –geodesic
from v to w . A subset S � C 0 is d –convex if every interval connecting two elements
of S is contained in S .

We also find it useful to consider the graph C� obtained from C 1 by including an
edge between two vertices if they lie in a common cube. Let d� be the path metric
on C� .

Lemma 3.4 Let C be a CAT.0/ cube complex, and let Œr; s� and Œt;u� be intervals
such that t and u lie in the 1–neighborhood of Œr; s� in C� . Then each vertex of Œt;u�
lies in the 1–neighborhood of Œr; s� in C� as well.

Proof It is enough to show that any geodesic c from t to u lies in the 1–neighborhood
of Œr; s� in C� if its endpoints lie in the 1–neighborhood of Œr; s� in C� . If d.t;u/� 1,
the result is trivial, so we induct on ` WD d.t;u/ for `� 2.

By hypothesis, there is a cube A containing t and intersecting Œr; s�. Let us choose A

minimal with this property. Then the hyperplanes ƒ1; : : : ; ƒn separating t from Œr; s�

are the same as the hyperplanes transverse to A. (In particular, A is an n–cube.)

Let v be the vertex of c adjacent to t , and let … be the hyperplane separating v from t .
If …Dƒi for some i , then v is a vertex of the cube A, and we are done by induction.
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If … is transverse with ƒi for all i , then the collection f…;ƒ1; : : : ; ƒng is pairwise
transverse. Since … and the ƒi are each transverse to edges incident to t , there is an
.nC1/–cube A0 containing A as a subcube, such that … and each ƒi are transverse to
A0 . Since A intersects Œr; s� and A0 contains v , the result follows from the inductive
hypothesis.

The only remaining possibility is that … is nested with some ƒi ¤ …. Then ƒi

separates Œr; s� from ft; vg and … separates Œr; s�[ ftg from fvg. In this case, any
path in C 1 from v to Œr; s� must cross … first and then ƒi . Since c is a geodesic in
the wall metric, it crosses … only once, so … lies in the pairwise transverse family
f…1; : : : ;…mg of hyperplanes separating u from Œr; s�, corresponding to a minimal
cube B that contains u and intersects Œr; s�. But then ƒi is also among the …j ,
contradicting our assumption that ƒi and … are nested.

Corollary 3.5 Let C be a CAT.0/ cube complex, and let K be a d –convex subset
of C 0 . For each n� 0, the n–neighborhood of K in C� is also d –convex.

Proof It is clearly sufficient to prove the result when nD 1, since the general result
follows by induction on n. But the case nD 1 is an immediate consequence of Lemma
3.4.

A collection of subsets F of a space has the Helly property if, whenever F0 � F is
a finite collection of pairwise intersecting subsets, the total intersection

T
F2F0

F is
nonempty.

Corollary 3.6 If C is any CAT.0/ cube complex, then the family of d –convex subsets
of C 0 has the Helly property.

Proof It has been shown by Gerasimov [7], Roller [17] and Chepoi [4], independently,
that the 1–skeleton of a CAT.0/ cube complex is a median graph, meaning that for any
three vertices x , y and z , the intervals Œx;y�, Œy; z� and Œx; z� have triple intersection
consisting of a single vertex. In a median graph, it is clear from the definition that any
collection of three pairwise intersecting convex sets has a nonempty triple intersection.
The Helly property now follows by an elementary induction argument.

The previous result generalizes a result of Bandelt and van de Vel [2] in the setting
of median graphs stating that the collection of all balls in C� has the Helly property.
Note that d�–balls are d –convex by Corollary 3.5. Graphs in which the family of
balls has the Helly property are known as Helly graphs.

We also record the following well-known fact about hyperplanes, which we derive from
results above.
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Proposition 3.7 Let ƒ be a hyperplane in a CAT.0/ cube complex, and let V .ƒ/ be
the set of vertices of the edges crossing ƒ. Then V .ƒ/ is d –convex.

Proof Each halfspace of ƒ is clearly d –convex. But V .ƒ/ is the set of points within
a d�–distance 1 of both halfspaces of ƒ. Since d�–neighborhoods of d –convex sets
are convex and intersections of d –convex sets are d –convex, the result is obvious.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2 Suppose H stabilizes the hyperplane ƒ in C . Let V .ƒ/ be
the convex set of vertices of the edges that cross ƒ. Fix a proper, left invariant metric
dG on G and a constant D > 0. Suppose H is a finite collection of cosets of H whose
pairwise distances in G are at most D .

Choose a basepoint x 2 V .ƒ/, and let

D0 WD sup d�
�
x;g.x/

�
where the supremum ranges over the finite set of group elements whose dG –distance
from 1 is at most D . If cosets gH and g0H are at a distance at most D in G , then
the sets gH.x/ � V .gƒ/ and g0H.x/ � V .g0ƒ/ are at a d�–distance at most D0 .
Therefore the translates V .gƒ/ and V .g0ƒ/ are at a d�–distance at most D0 as well.
It follows immediately that the D0–neighborhoods of the translates V .gƒ/ are pairwise
intersecting d –convex sets in C . Hence there is a point p within a d�–distance D0

of every V .gƒ/.

If C is uniformly locally finite, then there is a uniform bound on the number of
hyperplanes intersecting any d�–ball of radius D0 in C . Hence the cardinality of H
is bounded as well.

Now suppose G acts metrically properly on C , and H acts on V .ƒ/ with a finite
quotient. Then V .ƒ/ lies in the R–neighborhood of the orbit Hx in C� for some
R > 0. Thus the d�–ball centered at p with radius D0CR intersects gH.x/ for
each coset gH 2H . Since G acts metrically properly on C , there is a finite upper
bound on the size of H , as desired.

4 Bounded packing in hyperbolic groups

In this section, we give a self-contained proof in the word hyperbolic setting that
quasiconvex subgroups have bounded packing.
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Definition 4.1 Let H �G be a subgroup. The height of H in G , denoted heightG.H /,
is the maximal number of distinct cosets giH so that the intersection

T
i giHg�1

i is
infinite. The width of H in G , denoted widthG.H /, is the maximal number of distinct
cosets giH so that for all i; j the intersection giHg�1

i \gj Hg�1
j is infinite. In case

there is no maximum then we say that the height/width is infinite.

Finally, note that the height and width of a finite subgroup are both equal to zero.

Lemma 4.2 Suppose H � G has height 0 < n <1 in G . Choose g 2 G so that
gH ¤H , and let K WDH \gHg�1 . Then heightH .K/ < n.

Proof Choose h1; : : : ; hn 2H so that the cosets hiK are distinct. We will show that
the intersection

T
hiKh�1

i is finite. Note that\
hiKh�1

i D

\
hi.H \gHg�1/h�1

i DH \
�\

higHg�1h�1
i

�
is an intersection of nC 1 conjugates of H in G . Since heightG.H /D n, it suffices
to show that the elements 1; h1g; : : : ; hng represent distinct left cosets of H in G .

First note that H ¤ higH since H ¤ gH . Now suppose two cosets higH and hj gH

are equal. Then we have gH D h�1
i hj gH , which implies that h�1

i hj 2 gHg�1 . But
h�1

i hj 2H as well, so h�1
i hj 2H \gHg�1 DK . Thus hiK D hj K , and we must

have i D j .

Lemma 4.3 Let Y be a �–quasiconvex subspace of a ı–hyperbolic space X . Then
there exists �0 D �0.�; ı/ so that any geodesic line A in a finite neighborhood of Y lies
in a �0–neighborhood of Y .

Proof Let c be an arbitrary line in a finite neighborhood of Y . Then the endpoints
cC and c� of c lie in the limit set of Y . Let c0 be a line connecting cC and c� that
is a limit of geodesic segments connecting points of Y . In a ı–hyperbolic space, two
geodesic lines with the same endpoints at infinity are at a Hausdorff distance at most
2ı . But by quasiconvexity, c0 �N�.Y /, so c �N�C2ı.Y /.

Lemma 4.4 Let H be a �–quasiconvex subgroup of a ı–hyperbolic group G . Then
heightG.H / is finite.

Proof Let g1H; : : :gnH be distinct cosets in G , and suppose
T

giHg�1
i contains

an infinite order (hyperbolic) element x . Let A be a geodesic axis for x . Then A

lies in a finite neighborhood of each coset giH , so by Lemma 4.3 the size of these
neighborhoods is uniformly bounded by �0 . In particular, each coset giH intersects
the ball of radius �0 about some point a 2A. But there is a uniform bound N on the
number of cosets of H intersecting any metric ball of radius �0 .
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Lemma 4.5 Let G have a finite generating set A, and suppose xH and yK are
arbitrary left cosets of subgroups of G . For each constant L there is a constant
L0 DL0.G;A;xH;yK/ so that in G with the word metric dA we have:

NL.xH /\NL.yK/�NL0.xHx�1
\yKy�1/

Proof If there is no such L0 , then there is a sequence .zi/ in G so that zi is in the
L–neighborhood of both xH and yK , but i < d.zi ;xHx�1\yKy�1/ for each i . It
follows that zi D xhipi D ykiqi for some hi 2H , ki 2K and pi ; qi 2G with jpi jA
and jqi jA both less than L. Passing to a subsequence if necessary, we may assume
that pi and qi are constants p and q , so that for each i we have zi D xhip D ykiq .
Therefore

ziz
�1
1 D xhih

�1
1 x�1

D ykik
�1
1 y�1

2 xHx�1
\yKy�1:

It follows that the distance between zi and xHx�1\yKy�1 is at most jz1jA for all i ,
contradicting our choice of .xi/.

The following result follows immediately by induction from Lemma 4.5.

Corollary 4.6 Let G be a finitely generated group with a fixed generating set A. For
each finite set of cosets g1H1; : : :gnHn and each M > 0 there is a constant M 0 > 0

such that:

NM .g1H1/\ � � � \NM .gnHn/�NM 0.g1H1g�1
1 \ � � � \gnHng�1

n /

Lemma 4.7 Let X be a ı–hyperbolic space, and let Y be a �–quasiconvex subspace.
For any � > 0 there is an � D �.ı; �; �/ so that the �–neighborhood of Y is �–
quasiconvex.

Proof Choose points x;y 2N�.Y /, and z; w 2 Y so that d.x; z/ and d.y; w/ are
less than � . Since quadrilaterals in X are 2ı–thin, the geodesic Œx;y� lies in the
2ı–neighborhood of Œx; z�[ Œz; w�[ Œw;y�. But this piecewise geodesic lies in the
.�C�/–neighborhood of Y .

Theorem 4.8 (cf Gitik–Mitra–Rips–Sageev [8]) Let H be a quasiconvex subgroup
of a ı–hyperbolic group G . Then H has bounded packing in G .

Before giving the proof of Theorem 4.8, we record the following:

Corollary 4.9 (Gitik–Mitra–Rips–Sageev [8]) If H is a quasiconvex subgroup of a
ı–hyperbolic group G , then widthG.H / is finite.

Proof As in Lemma 4.4, apply Lemma 4.3 to see that any two conjugates with infinite
intersection have cosets uniformly close together.
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Proof of Theorem 4.8 Fix finite generating sets A and B for G and H respectively.
By Lemma 4.4, we know that heightG.H / is finite. We will prove the theorem by
induction on height. The case where H has height zero is easy, since in this case H is
finite and the result follows from Corollary 2.6.

Now assume by induction that the theorem holds for every hyperbolic group G0 and
quasiconvex subgroup H 0 with heightG0.H 0/ < heightG.H /. Let H be a set of left
cosets gH whose pairwise distances are at most D . Our goal is to show that H is finite
and to bound the cardinality of H as a function of D . Translating H if necessary, we
may assume that H 2H . Observe that if d.gH;H / <D then the coset hgH is within
a distance D of the identity for some h 2H . Since the metric dA is proper on G , the
ball of radius D centered at the identity is finite. It follows that the left cosets gH

intersecting ND.H / lie in at most f distinct H –orbits for some f D f .D/ <1.
Thus it suffices to bound the number of elements of H in the orbit H.gH / for each
fixed g …H .

If we let K WDH \gHg�1 , then Lemma 4.2 shows that

heightH .K/ < heightG.H /:

Since K is a quasiconvex subgroup of the hyperbolic group H , the inductive hypothesis
applied to K � H gives for each D0 a number M 0 D M 0.D0/ < 1 so that any
collection of M 0 distinct cosets hK in H contains a pair separated by a B–distance
at least D0 . Furthermore, the proof of Lemma 4.2 shows that there is a well-defined
map hgH ! hK taking left cosets of H in the orbit of gH to left cosets of K . A
similar argument shows that this map is bijective.

In order to complete the proof, we will show that D–closeness of distinct cosets h0gH

and h1gH in .G; dA/ implies D0–closeness of the corresponding cosets h0K and
h1K in .H; dB/ for some D0 depending on D . Roughly speaking, this claim is proved
by considering a ı–thin triangle in G whose sides are close to the three cosets H ,
h0gH and h1gH , and applying Lemma 4.5. More precisely, suppose we have points
x , y and z such that

x 2ND.H /\ND.h0gH /;

y 2ND.H /\ND.h1gH /

z 2ND.h0gH /\ND.h1gH /:and

By Lemma 4.7 we have

Œx;y��ND1
.H /; Œx; z��ND1

.h0gH / and Œy; z��ND1
.h1gH /
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for some D1 depending on D . By ı–hyperbolicity of .G; dA/, there is a point
w 2 Œx;y� within a distance ı of both Œx; z� and Œy; z�. Applying the isometry hi to
the conclusion of Lemma 4.5, we see that

ND1
.H /\ND1Cı.higH /�ND2

.hiK/;

where D2 depends on D1 but is independent of the choice of hi 2 H . In other
words, w lies within an A–distance D2 of both h1K and h2K in G . Since H is
an undistorted subgroup of G , it follows that the B–distance between h1K and h2K

in H is similarly bounded in terms of D , as desired.

5 Relatively hyperbolic groups and the word metric

Various equivalent formulations of relatively hyperbolic groups have been introduced
and studied by Gromov [9], Farb [6], Bowditch [3], Dru,tu–Sapir [5] and Osin [15].

In this section we discuss geometric features of the Cayley graph of a relatively
hyperbolic group with respect to a finite generating set. In particular, we prove two
results about triangles and quadrilaterals with the property that each side lies near a
peripheral subspace.

We begin by recalling the definition of a relatively hyperbolic group.

Definition 5.1 (Relatively hyperbolic) Let G be a finitely generated group and P
a finite collection of subgroups of G . Suppose G acts on a ı–hyperbolic graph K

with finite edge stabilizers and finitely many orbits of edges. Suppose K is fine in the
sense that for each n each edge of K is contained in only finitely many circuits of
length n. Suppose also that P is a set of representatives of the conjugacy classes of
infinite vertex stabilizers. Then the pair .G;P / is relatively hyperbolic. The subgroups
P 2 P are the peripheral subgroups of .G;P /, and their left cosets gP are peripheral
cosets.

Throughout this section all paths and distances are taken in the Cayley graph of a
relatively hyperbolic group with respect to a fixed finite generating set.

We now collect several results due to Dru,tu–Sapir on the geometry of the word metric
for a relatively hyperbolic group. The first states that peripheral cosets are “isolated.”

Theorem 5.2 (Dru,tu–Sapir [5, Theorem 4.1]) Suppose .G;P / is relatively hyper-
bolic. For each � <1 there is a constant � D �.�/ <1 so that for any two peripheral
cosets gP ¤ g0P 0 we have

diam
�
N�.gP /\N�.g0P 0/

�
< �:
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The next result quantifies the quasiconvexity of peripheral cosets with respect to
quasigeodesics.

Theorem 5.3 (Dru,tu–Sapir [5, Lemma 4.15]) Suppose .G;P / is relatively hyper-
bolic. Given positive constants � and � , there is a constant � D �.�; �/ so that the
following holds. Let c be an �–quasigeodesic with endpoints in the �–neighborhood
of a peripheral coset gP . Then c �N� .gP /.

The following proposition roughly states that a pair of quasigeodesics beginning in the
same peripheral coset and ending in the same peripheral coset must leave the former
coset and enter the latter coset close together.

Proposition 5.4 (Dru,tu–Sapir [5, Lemma 8.11]) Let .G;P / be relatively hyperbolic.
There is a constant �0 such that for each � > �0 there is a constant D1 DD1.�/ such
that the following holds. Let gP and g0P 0 be two distinct peripheral cosets and let c1

and c2 be two geodesics such that ci has endpoints xi and yi . If ci \N�.gP /D fxig

and ci \N�.g0P 0/D fyig then d.x1;x2/ and d.y1;y2/ are both less than D1 .

Dru,tu–Sapir also establish the following geometric description of quasigeodesic trian-
gles.

Theorem 5.5 (Dru,tu–Sapir [5, Section 8.1.3]) Let .G;P / be relatively hyperbolic.
For each � there are constants ı D ı.�/ and �D �.�/ such that the following holds.
Let � be an �–quasigeodesic triangle with sides c0 , c1 and c2 . Then either

(1) there is a point w such that the ball B.w; ı/ intersects all three sides of �, or
(2) there is a peripheral coset gP such that the neighborhood Nı.gP / intersects all

three sides of �.

In the second case, illustrated in Figure 1, let c0i be the smallest subpath of ci containing
ci \Nı.gP /. Then the terminal endpoint of c0i and the initial endpoint of c0

iC1
are

mutually within a distance � (indices modulo 3).

Roughly speaking, the following lemma deals with a triangle each of whose sides lies
close to a peripheral coset. The conclusion is that either all three peripheral cosets are
equal or one of the sides of the triangle is short.

Lemma 5.6 Let .G;P / be relatively hyperbolic. For each � > 0, there is a constant
� > 0 such that the following holds. Let g0P0 , g1P1 and g2P2 be peripheral cosets
such that g0P0 … fg1P1;g2P2g. Suppose for each fi; j ; kg D f0; 1; 2g there is a point

yi 2N�.gj Pj /\N�.gkPk/:

d.y1;y2/ < �:Then
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c0
1

c0
2

c0
0

gP

Figure 1: A quasigeodesic triangle in a relatively hyperbolic group with a
peripheral coset at the center

Proof For each choice of fi; j ; kgDf0; 1; 2g, pick a point yi2N�.gj Pj /\N�.gkPk/.
Consider a geodesic triangle � WD c0[ c1[ c2[ such that each ci has endpoints yj

and yk . By Theorem 5.3, there is a constant � depending on � such that ci lies in the
� –neighborhood of giPi .

Let ı D ı.1/ and � D �.1/ be the constants given by Theorem 5.5. Then there is
either a point z or a peripheral coset gP whose ı–neighborhood intersects all three
sides of �.

We will see that we must be in the former case, for a possibly larger constant ı0 .
Suppose Nı.gP / intersects all three sides of �. For each i , let c0i denote the smallest
subpath of ci containing ci \Nı.gP /.

Choose i 2f0; 1; 2g so that gP ¤giPi . Since c0i �Nı.giPi/, it follows from Theorem
5.2 that c0i has length less than � D �.2ı/. By Theorem 5.5, the endpoints zj and zk

of c0i are within a distance � of the segments cj and ck respectively. Thus we have

d.zj ; ci/D 0; d.zj ; cj / < � and d.zj ; ck/ < �C�:

In other words, the ball of radius �C� centered at zj intersects all three sides of �.

It follows that, in all cases, there exists a point z such that the ı0–ball centered at
z intersects all three sides of �, where ı0 D ı C � C �. Now for each choice of
fj ; kg D f1; 2g we have

z 2Nı0C� .g0P0/\Nı0C� .gj Pj /

yk 2N� .g0P0/\N� .gj Pj /:and

Consequently, Theorem 5.2 gives an upper bound �0 WD �.ı0 C �/ on the distance
d.yk ; z/. Varying k 2 f1; 2g, we see that d.y1;y2/ is less than 2�0 .
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The following result is analogous to the previous lemma, but for quadrilaterals instead
of triangles. If each side of a quadrilateral lies close to a peripheral coset, then either
all four cosets are equal or some pair of vertices of the quadrilateral is close together.

Lemma 5.7 Let .G;P / be relatively hyperbolic. For each � > 0, there is a constant
� > 0 such that the following holds. Let g0P0 , g1P1 , g2P2 and g3P3 be peripheral
cosets. Suppose for each i 2 f0; 1; 2; 3g there is a point

yi 2N�.gi�1Pi�1/\N�.giPi/ .indices modulo 4/:

If the pairwise distances between the points fy0;y1;y2;y3g are all at least � , then all
four peripheral cosets are equal.

Proof Suppose the four peripheral cosets are not all equal. We will show that one of
the pairwise distances between the yi is bounded above by an appropriate constant � .

For each i , let ci be a geodesic in X from yi to yiC1 . Then by Theorem 5.3, we have

ci �N� .giPi/

for some � depending on �.

If giPi D giC1PiC1 for some i , the result follows immediately from Lemma 5.6.
Now suppose giPi D giC2PiC2 for some i , but giC1PiC1 ¤ giPi . Then ciC1 lies
in the � –neighborhood of both giPi and giC1PiC1 . But then Theorem 5.2 gives an
upper bound �0 WD �.�/ on d.yiC1;yiC2/, completing the proof. Thus it suffices to
assume that the four peripheral cosets are all different.

By hypothesis, the points y0 and y1 lie in N�.g0P0/. Let u be the point where c3 first
enters the closed �–neighborhood of g0P0 when traversed from y3 to y0 . Similarly,
let v be the point where c1 first enters the closed �–neighborhood of g0P0 when
traversed from y2 to y1 . Since g0P0 … fg1P1;g3P3g, Theorem 5.2 gives an upper
bound �1 WD �.�/ on the distances d.y0;u/ and d.y1; v/. We may assume without
loss of generality that � is greater than the constant �0 given by Proposition 5.4. Since
g0P0 ¤ g2P2 , Proposition 5.4 gives an upper bound D1 D D1.�/ on the distance
d.u; v/. Thus we have

d.y0;y1/ <D1C 2�1

completing the proof of the lemma.
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6 The geometry of relative Cayley graphs

The results in this section and the next involve the interplay between two different
metrics on a relatively hyperbolic G with a fixed finite generating set S . When a
metric is not specified, all distances are assumed to refer to the word metric dS or
(equivalently) in the Cayley graph Cayley.G; dS/. Let P be the union of all the
peripheral subgroups of G . We will also use the word metric dS[P and the Cayley
graph Cayley.G;S[P/ for the (typically infinite) generating set S[P . Whenever we
use this “relative metric” or “relative Cayley graph,” we will explicitly call attention to
its use. In particular, if A�G the notation N�.A/ always refers to the �–neighborhood
of A using the metric dS , and the notation B.x; �/ refers to an S–metric ball.

Geodesics in the relative Cayley graph are sometimes referred to as relative geodesics
in G , etc. Observe that Cayley.G;S/ is a subgraph of Cayley.G;S [P/ containing
all the vertices but omitting the edges labelled by elements of P .

The next result is a relatively hyperbolic analogue of the Morse Lemma, dealing with a
pair of relative geodesics whose respective endpoints are close together in dS .

Proposition 6.1 (Osin [15, Proposition 3.15]) Let .G;P / be relatively hyperbolic.
For each k � 0, there is a constant �D �.k/ such that the following holds. Let c and c0

be relative geodesics in Cayley.G;S[P/ such that their initial endpoints are within an
S–distance k and their terminal endpoints are also within an S–distance k . Then the
set of vertices of c and the set of vertices of c0 are within a Hausdorff S–distance � .

The following result is an analogue of Theorem 5.5 for relative geodesic triangles.

Theorem 6.2 (Osin [15, Theorem 3.26]) Let .G;P / be relatively hyperbolic. Then
there is a constant � > 0 such that if c0 [ c1 [ c2 is a relative geodesic triangle in
Cayley.G;S [P/ then for each vertex v of c0 there is a vertex u in the union c1[ c2

such that
dS.u; v/ < �:

Subdividing an n–gon into n� 2 triangles and applying the previous theorem, we
get the following corollary. As an aside we note that the linear function n � 2 in
the conclusion of the corollary can be improved to a logarithmic function of n by
subdividing more carefully.

Corollary 6.3 Let .G;P / and � be as in the previous theorem. If c1 [ � � � [ cn is a
relative geodesic n–gon in Cayley.G;S [P/, then for each vertex v on c1 there is a
vertex u on the union c2[ � � � [ cn such that

dS.u; v/ < .n� 2/�:
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The notion of saturation of a quasigeodesic was introduced by Dru,tu–Sapir [5]. The
saturation of an arbitrary subset is defined similarly, as follows.

Definition 6.4 Suppose .G;P / is relatively hyperbolic, and let Y be a subset of G .
For each � > 0 the �–saturation of Y , denoted Sat�.Y /, is the union of Y and every
peripheral coset intersecting N�.Y /.

We conclude the section with a mild generalization of Proposition 6.1.

Proposition 6.5 Let .G;P / be relatively hyperbolic. For each � > 0 there is a
constant �D �.�/ > 0 such that the following holds. Let c and c0 be relative geodesic
segments in Cayley.G;S [ P/, such that the endpoints x0 and x1 of c0 lie within
an S–distance � of Sat�

�
Vert.c/

�
. Let v be a vertex of c0 . Then v lies within an

S–distance � of either x0 , x1 , or a vertex of c .

Proof For each i 2 f0; 1g, we define a path ci in Cayley.G;S [P/ from xi to c as
follows. If xi is within an S –distance � of a vertex of c , then let ci be an S –geodesic
of shortest length from xi to c . Otherwise, xi is within an S–distance � of a left
coset giPi that is within an S –distance � of a vertex of c . In the latter case, let ci be
the concatenation of an S –geodesic qi of shortest length from xi to giPi followed by
a peripheral edge ei in giPi followed by an S–geodesic ri of shortest length from
giPi to a vertex of c . Let ai 2 C denote the terminal vertex of ci , and let xc denote
the portion of c from a0 to a1 .

Note that ci is a concatenation of at most 2� C 1 edges, each of which is a relative
geodesic of length one. Thus c0[c0[xc[c1 is a relative geodesic polygon with at most
4�C4 sides. Consequently, by Corollary 6.3 each vertex of c0 is within an S –distance
.4� C 2/� of some vertex of c0[ xc [ c1 .

Choose a vertex v of c0 such that v is at an S –distance more than .4�C2/�C � from
x0 . If c0 is an S–geodesic of length at most � , then, by the triangle inequality, no
vertex of c0 can be within an S–distance .4� C 2/� of v . Thus v is within an S–
distance .4�C2/� of some vertex of xc[c1 . On the other hand, if c0 is a concatenation
q0[e0[r0 as described above, then q0 has S –length at most � . By a similar argument,
it follows that v is within an S–distance .4� C 2/� of some vertex of r0 [ xc [ c1 .
Since r0 has S–length at most � , each of its vertices lies within an S–distance � of
the vertex a0 . Thus in either case, v is within an S–distance .4� C 2/�C � of some
vertex of xc [ c1 .

Interchanging the roles of c0 and c1 , we see that if v is also at least an S–distance
.4�C2/�C� from x1 then it is within an S –distance .4�C2/�C� from some vertex
of xc . Setting �D .4� C 2/�C � completes the proof.
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Definition 6.6 Let .G;P / be relatively hyperbolic with a finite generating set S .
Let c be a geodesic of Cayley.G;S/ and let � and R be positive constants. A point
x 2 c is .�;R/–deep in a peripheral coset gP (with respect to c ) if x is not within
an S–distance R of an endpoint of c and if B.x;R/\ c lies in N�.gP /. If x is not
.�;R/–deep in any gP then x is an .�;R/–transition point of c .

Proposition 6.7 (Hruska [10, Proposition 8.13]) Let .G;P / be a relatively hyper-
bolic group with a finite generating set S . There exist constants � , R and L such
that the following holds. Let c be any geodesic of Cayley.G;S/ with endpoints in G ,
and let c0 be a relative geodesic in Cayley.G;S [P/ with the same endpoints as c .
Then the set of vertices of c0 is at a Hausdorff S–distance at most L from the set of
.�;R/–transition points of c .

Furthermore, let xc be a connected component of the set of all .�;R/–deep points of c .
Then there is a peripheral coset gP such that each x 2 xc is .�;R/–deep in gP and is
not .�;R/–deep in any other peripheral coset.

7 Relatively quasiconvex subspaces

In the theory of word hyperbolic groups, the most natural subgroups (and subspaces)
are the quasiconvex subgroups (and subspaces). In this section, we examine “relatively
quasiconvex” subspaces, which play an analogous role in the theory of relatively
hyperbolic groups. The definition of relative quasiconvexity given below was introduced
by Osin [15].

Definition 7.1 Let .G;P / be relatively hyperbolic such that G is generated by a finite
set S . For � � 0, a subset A�G is � –relatively quasiconvex in G if the following
condition holds: Let c be a relative geodesic in Cayley.G;S [P/ connecting two
points of Y . Then each vertex v of c lies in the � –neighborhood of A.

A subset A� G is relatively quasiconvex if it is � –relatively quasiconvex for some
� � 0.

Proposition 7.2 (Osin [15, Proposition 4.10]) Relative quasiconvexity of a subset
A�G is independent of the choice of finite generating set S for G .

The following result analogous to Theorem 5.5 follows immediately from the definition
of relative quasiconvexity.

Proposition 7.3 Each peripheral coset gP in a relatively hyperbolic group is 0–
relatively quasiconvex.
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The following result was proved independently by Hruska [10, Theorem 9.1] and
Martinez-Pedroza [12, Proposition 1.5].

Proposition 7.4 Let .G;P / be relatively hyperbolic and let H �G be � –relatively
quasiconvex. The infinite maximal parabolic subgroups QDH \gPg�1 of H lie in
finitely many H –conjugacy classes, and the corresponding peripheral cosets gP in G

lie in finitely many H –orbits.

Proposition 7.5 Let .G;P / be relatively hyperbolic. Choose positive constants �
and � . Then there is a constant RD R.�; �/ such that the following holds. Choose
n� 3, and let AD fA1; : : : ;Ang be a collection of � –relatively quasiconvex subsets
of G . Suppose for each i D 1; : : : ; n there is a point

xi 2

\˚
N� .Aj /

ˇ̌
1� j � n; j ¤ i

	
:

Then we have the following consequences:

(1) There exists a vertex

x0 2NR

�
SatR.A1/

�
\NR.A2/\ � � � \NR.An/:

(2) If A1 is a left coset of a peripheral subgroup, then there exists a vertex

x0 2NR.A1/\ � � � \NR.An/:

(3) If A0 is another � –relatively quasiconvex subset of G such that xi is contained
in N�

�
Sat� .A0/

�
for all i D 1; : : : ; n, then there exists a vertex x0 satisfying

(2) such that x0 2NR

�
SatR.A0/

�
.

Proof Choose relative geodesics

c1 D Œx2;x3�; c2 D Œx3;x1� and c3 D Œx1;x2�

in Cayley.G;S [P/, and consider the triangle � WD c1[ c2[ c3 . By Proposition 6.1
and the � –relative quasiconvexity of A` , there is a constant � D �.�/ such that if
i 2 f1; 2; 3g and ` 2 fig[ f4; : : : ; ng then each vertex of ci lies within an S –distance
� C � of A` .

By Theorem 6.2, there is a constant � such that for each choice of fi; j ; kg D f1; 2; 3g
each vertex of ci lies within an S –distance � of a vertex of cj [ ck . It follows that ci

contains a pair of adjacent vertices vij and vik connected by an edge ei such that vij

is within an S–distance � of a vertex of cj and vik is within an S–distance � of a
vertex of ck .
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If for some choice of fi; j ; kg D f1; 2; 3g, the edge ei is labelled by a generator in S ,
then for all ` 2 fig[ f4; : : : ; ng we have:

(7-1) vij 2N1C�C�C�.Ak/\N�C�C�.Aj /\N�C�.A`/

If not, then e3 is labelled by a generator in P and v32 and v31 are vertices of a
peripheral coset gP . Since dS.v31;A1/ < �C � C � , the coset gP is contained in
Sat�C�C�.A1/. Whenever `D 3; : : : ; n, we now have:

v32 2 Sat�C�C�.A1/\N�C�C�.A2/\N�C�.A`/

In either case, choosing x0 WD v32 and R� 1C �C � C � completes the proof of (1).

Now let us consider assertion (2). Suppose the subspace A1 is a peripheral coset
gP . If for some i 2 f1; 2; 3g the edge ei corresponds to a generator in S then we are
done, since (7-1) shows that vij is within an S–distance 1C �C � C � of A` for all
`D 1; : : : ; n.

It therefore suffices to assume that each ei corresponds to a generator from P such
that vij ; vik 2 giPi . for some peripheral coset giPi . If gP ¤ g1P1 , then by Theorem
5.2, the S–distance between v12 and v13 is at most � D �.� C �/. In this case, a
computation similar to (7-1) shows that v12 is within an S –distance �C �C� C� of
A` for all `D 1; : : : ; n. Similarly if the cosets g1P1 , g2P2 and g3P3 are not all the
same, then by Lemma 5.6 the S–distance between some pair vij and vik is bounded
above by � D �.�/. Therefore vij is within an S–distance �C �C � C � of A` for
all `D 1; : : : ; n.

The only remaining possibility is that the four cosets gP , g1P1 , g2P2 and g3P3 are
all equal. In particular, we have A1 D gP D g3P3 . It follows that

dS.v32;A1/D 0; dS.v32;A2/ < �C � C � and dS.v32;A`/ < � C �

for all `D 3; : : : ; n. In all possible cases, to complete the proof of (2) it suffices to
choose

R> 1C �C �C �C � C �:

Finally, we turn our attention to assertion (3). We have shown that assertions (1)
and (2) hold for sufficiently large R and for some vertex x0 lying on one of the
sides ci of the triangle �. Suppose the endpoints xj and xk of ci lie within an
S –distance � of Sat� .A0/. Choose points u and v in A0 such that xj 2N�

�
Sat� .u/

�
and xk 2N�

�
Sat� .v/

�
, and let xc be a geodesic in Cayley.G;S [P/ from u to v .

It follows from Proposition 6.5 that the vertex x0 of ci lies within a distance �D �.�/
of either xj , xk , or a vertex of xc . Since A0 is � –quasiconvex, it follows that x0 lies
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within a distance �C � of fxj ;xkg [A0 . In particular, x0 is within an S–distance
�C � C � of Sat� .A0/, establishing (3) for all R> �C � C � .

Corollary 7.6 Let .G;P / be relatively hyperbolic. Choose positive constants �
and D and an integer n � 1. There is a constant R1 D R1.�;D; n/ such that the
following holds. Let AD fA1; : : : ;Ang be a set of � –relatively quasiconvex subsets
of G . Suppose the following intersection is nonempty:

n\
iD1

ND.Ai/

If there is a peripheral coset gP such that for all i the intersection ND.Ai/\ND.gP /

is nonempty, then the following intersection is nonempty:

NR1
.gP /\NR1

.A1/\ � � � \NR1
.An/

Proof Recall that gP is 0–relatively hyperbolic. When n D 1, the result is trivial.
We proceed by induction on n for n� 2. Let � WDR1.�;D; n�1/ denote the constant
given by the inductive hypothesis. By assumption,

Tn
iD1ND.Ai/ is nonempty. By

induction, for each i D 1; : : : ; n the following intersection is nonempty:

N� .gP /\
\˚

N� .Aj /
ˇ̌

1� j � n; j ¤ i
	

Applying Proposition 7.5(2) to the collection fgP;A1; : : : ;Ang of � –quasiconvex
subspaces, the result now follows.

Proposition 7.7 Let .G;P / be relatively hyperbolic. Choose positive constants �
and D and an integer n � 1. Let A be an arbitrary set of � –relatively quasiconvex
subsets of G such that for each A;A0 2 A we have dS.A;A

0/ <D . Then there is a
constant M0 DM0.�;D; n/ so that whenever M �M0 at least one of the following
holds.

(1) For every subset fA1; : : : ;Ang �A, the following intersection is nonempty:

n\
`D1

NM .A`/

(2) There is a peripheral coset gP such that dS.gP;A/ <M for all A 2 A. Fur-
thermore, for all A;A0 2A, the following triple intersection is nonempty:

NM .gP /\NM .A/\NM .A0/
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Proof Recall that every peripheral coset gP is 0–quasiconvex, as observed in Propo-
sition 7.3. In order to establish (2), it is sufficient to find a constant M and a peripheral
coset gP such that dS.gP;A/ < M for all A 2 A. For then applying Proposition
7.5(2) to each collection fgP;A;A0g with A;A0 2A gives a larger constant M 0 so
that the following triple intersection is nonempty:

NM 0.gP /\NM 0.A/\NM 0.A0/

The proposition is trivial when n� 2. We proceed by induction on n for n� 3. Let �
denote the constant M0.�;D; n� 1/ given by the inductive hypothesis. We will show
that the proposition holds whenever M is sufficiently large (in terms of � and � ).

Suppose fA0; : : : ;An�1g is a subset of A such that

(7-2)
n�1\
`D0

NM .A`/D¿:

If no such set exists, there is nothing to prove. Furthermore, if there is a peripheral coset
gP such that dS.P;A/ < � for all A 2A, then we are done. Thus we may assume
that for every collection of n� 1 distinct elements of A, their �–neighborhoods have
a nonempty intersection.

Applying Proposition 7.5(1) to the collection fA0; : : : ;An�1g gives R0 D R0.�; �/

and a point

xn 2NR0

�
SatR0

.A0/
�
\NR0

.A1/\ � � � \NR0
.An�1/:

If we choose M greater than R0 , then (7-2) implies that dS.xn;A0/ is at least R0 .
Thus xn 2NR0

.g0P0/ for some peripheral coset g0P0 such that g0P0 � SatR0
.A0/.

Note that dS.g0P0;A`/ < 2R0 for all `D 0; : : : ; n� 1. If AD fA0; : : : ;An�1g, we
are done. Otherwise, choose an arbitrary An 2A�fA0; : : : ;An�1g. To complete the
proof, we will bound the S –distance from An to g0P0 in terms of � and � , provided
that M is sufficiently large.

For each i D 1; : : : ; n� 1, applying Proposition 7.5(1) to the collection

fA0; : : : ;Ai�1;AiC1; : : : ;Ang

gives a point

xi 2NR0

�
SatR0

.A0/
�
\NR0

.A1/\� � �\NR0
.Ai�1/\NR0

.AiC1/\� � �\NR0
.An/:

Notice that the points x1; : : : ;xn and subspaces A0;A1; : : : ;An satisfy the hypothesis
of Proposition 7.5(3). Therefore there exist a constant R1 WDR.�;R0/ and a point

x0 2NR1

�
SatR1

.A0/
�
\NR1

.A1/\ � � � \NR1
.An/:
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Choose a relative geodesic c from x0 to xn . Since the endpoints of c lie within a
distance R0CR1 of A` for each `D 1; : : : ; n�1, we know from Proposition 6.1 and
the � –relative quasiconvexity of A` that each vertex of c lies within an S–distance
� C � of A` , where �D �.R0CR1/. However, by (7-2) there is no vertex within a
distance M of every A` for `D 0; : : : ; n.

Roughly speaking, it follows that once M is sufficiently large, each vertex of c will
be far from A0 . We have already used this principle to conclude that xn is within an
S–distance R0 of g0P0 , which is itself within an S–distance R0 of A0 , once M

is sufficiently large. Let yn be a vertex of A0 within an S–distance R0 of g0P0 . A
similar argument shows that x0 is within a distance R1 of a peripheral coset g1P1 ,
which is itself within a distance R1 of A0 , for sufficiently large M . Let y0 be a
vertex of A0 within an S–distance R1 of g1P1 . Choose a relative geodesic xc of
Cayley.G;S [P/ from y0 to yn .

Since x0 and xn are both contained in NR0CR1

�
SatR0CR1

.xc/
�
, it follows from Prop-

osition 6.5 that each vertex of c lies within an S–distance � of either x0 , xn , or a
vertex of xc . By the � –relative quasiconvexity of A0 , each vertex of xc lies within an
S–distance � of A0 . Thus each vertex of c either lies within an S–distance � of
fx0;xng or lies within an S –distance �C� of A0 for some �D�.R0CR1/. Suppose
v is a vertex of c whose S –distance from A0 is less than �C� . Once M >�C�C� ,
the existence of such a vertex v contradicts (7-2). Therefore we may assume that each
vertex v of c lies within an S –distance � of fx0;xng. A similar argument shows that
each vertex v of xc lies within an S–distance � of fy0;yng, since otherwise v would
be close to both A0 and a vertex of c , contradicting (7-2) once M is sufficiently large.

Let e be an edge of c with endpoints v0 and vn such that v0 is within an S –distance �
of x0 and vn is within an S–distance � of xn . If e corresponds to a generator in S ,
then dS.x0;xn/< 2�C1. Since dS.xn;g0P0/<R0 and dS.x0;An/<R1 , it follows
that dS.An;g0P0/ < 2�C 1CR0CR1 and we are done. Thus we may assume that
e corresponds to a generator in P and that v0; vn 2 g2P2 for some peripheral coset
g2P2 .

Now let xe be an edge of xc with endpoints w0 and wn within a distance � of y0 and
yn respectively. We will see that xe must also correspond to a generator in P . Suppose
instead that xe corresponds to a generator in S . Then dS.y0;yn/ is less than 2�C1. In
this case, consider the three peripheral cosets g0P0 , g1P1 , and g2P2 . Recall that x0

lies within a distance R1C� of both g1P1 and g2P2 . If g0P0 2 fg1P1;g2P2g, then
d.x0;g0P0/ <R1C�, completing the proof as before since d.x0;An/ <R0 . On the
other hand, if g0P0 … fg1P1;g2P2g, we can apply Lemma 5.6 to g0P0 , g1P1 and
g2P2 to produce an upper bound � on the distance from xn to A0 , contradicting (7-2)

Geometry & Topology, Volume 13 (2009)



Packing subgroups in relatively hyperbolic groups 1975

once M is at least �C � C� as before. Therefore we may assume that xe corresponds
to a generator in P and that w0; wn 2 g3P3 for some peripheral coset g3P3 .

We now have a cycle of four peripheral cosets g0P0 , g2P2 , g1P1 , and g3P3 such
that the following hold for � WDR0CR1C�:

xn 2N�.g0P0/\N�.g2P2/

x0 2N�.g2P2/\N�.g1P1/

y0 2N�.g1P1/\N�.g3P3/

yn 2N�.g3P3/\N�.g0P0/and

Now Lemma 5.7 implies that either all four cosets are equal, or some pair from the set
fxn;x0;y0;yng has distance less than � , for some constant � D �.�/.

We can now complete the proof using arguments similar to the ones used above. As we
have seen, it suffices to assume that g0P0 … fg1P1;g2;P2g. Therefore some pair from
fxn;x0;y0;yng is within a distance � . If d.y0;yn/ < � , then the result follows from
an application of Lemma 5.6. If d.x0;xn/ < � , then d.An;g0P0/ < R0CR1C � .
If d

�
fx0;xng; fy0;yng

�
< � then, since y0;yn 2 A0 , it follows that either x0 or

xn is within a distance � of A0 and within a distance R0 CR1 of A1; : : : ;An�1 ,
contradicting (7-2) once M > �CR0CR1 .

Proposition 7.8 (Close to two peripherals) Let .G;P / be relatively hyperbolic. For
each M > 0 and � > 0 there exists M1 DM1.M; �/ such that the following holds.
Suppose A is a collection of � –relatively quasiconvex subsets and g0P0 ¤ g1P1 are
distinct peripheral cosets. If dS.giPi ;A/ < M for all i 2 f0; 1g and for all A 2 A,
then the following intersection is nonempty:\

A2A

NM1
.A/

Proof Let � , R and L be the constants given by Proposition 6.7, let �0 be the
constant given by Proposition 5.4, let � WD �0CM C � , and let D1 DD1.�/ be given
by Proposition 5.4. Let � D �.�/ be given by Theorem 5.3, and let � D �.�C �/ be
given by Theorem 5.2.

For each A 2 A there exists a geodesic c in Cayley.G;S/ whose endpoints x0;x1

satisfy dS.xi ;giPi/<M . Choose y 2 c to be the last point of c that lies in N�.g0P0/

(when c is traversed from x0 to x1 ).

We will see that y is within an S–distance � of an .�;R/–transition point of c .
Suppose y is not itself an .�;R/–transition point. Then by Proposition 6.7 there is
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a subgeodesic xc of c containing y each of whose interior points is .�;R/–deep in
a fixed peripheral coset gP and whose endpoints are .�;R/–transition points. It is
clear that gP ¤ g0P0 , since � � � . Let Œx0;y� denote the portion of c from x0

to y . Since M � � , the points x0 and y each lie in N�.g0P0/. Therefore, Œx0;y�

lies in N� .g0P0/. On the other hand, xc lies in N�.gP /. Thus xc \ Œx0;y� lies in
N�.gP /\N� .g0P0/ and hence has length at most � . In other words, y is within an
S–distance � of an .�;R/–transition point z of c , as desired.

By Proposition 6.7 this point z is within an S –distance L of a vertex w of yc , where yc is
any relative geodesic in Cayley.G;S[P/ with the same endpoints as c . Since A is � –
relatively quasiconvex, it follows that dS.w;A/<� . Therefore, dS.y;A/< �CLC� .

If we now vary the choice of A, the above argument produces for each A 2A a point
y D y.A/ within an S–distance �CLC � of A. Since y is the last point of c that
lies in N�.g0P0/, it follows from Proposition 5.4 that for each A;A0 2 A we have
dS
�
y.A/;y.A0/

�
<D1 . In particular, if we fix A2A, then every A0 2A comes within

an S–distance D1C �CLC � of the point y.A/. Setting M1 �D1C �CLC �

completes the proof.

The following corollary essentially states that, if we increase the constants given by
Proposition 7.7, then the peripheral coset appearing in conclusion (2) is unique.

Corollary 7.9 (Uniqueness of peripheral coset) Let .G;P / be relatively hyperbolic.
Choose � , D , n and A satisfying the hypothesis of Proposition 7.7, and let M0 D

M0.�;D; n/ be the constant given by Proposition 7.7. Then for each M �M0 there
exists M2 DM2.�;D; n;M / such that at least one of the following holds:

(1) For every fA1; : : : ;Ang �A, the following intersection is nonempty:

n\
`D1

NM2
.A`/

(2) There is a unique peripheral coset gP such that dS.gP;A/ <M for all A 2A.
Furthermore, for all A;A0 2A the following intersection is nonempty:

NM .gP /\NM .A/\NM .A0/

Proof Choose M �M0 arbitrary. If there does not exist a peripheral coset gP such
that for all A 2 A we have dS.gP;A/ < M , then Proposition 7.7 implies that (1)
holds for any M2 �M .

Geometry & Topology, Volume 13 (2009)



Packing subgroups in relatively hyperbolic groups 1977

On the other hand, suppose there are two peripheral cosets g0P0 ¤ g1P1 such that
dS.giPi ;A/ <M for all i 2 f0; 1g and all A2A. In this case, Proposition 7.8 implies
that \

A2A

NM2
.A/

is nonempty once M2 is larger than the constant M1 DM1.M; �/. Condition (1)
follows immediately.

8 Bounded packing in relatively hyperbolic groups

Let .G;P / be relatively hyperbolic. An element f 2 G is elliptic if it has finite
order. If f has infinite order, then f is parabolic if it is contained in a conjugate of a
peripheral subgroup P 2 P and loxodromic otherwise. A subgroup H �G is elliptic
if it is finite, and parabolic if it is infinite and contained in a conjugate of a peripheral
subgroup P 2 P . Otherwise H is loxodromic. Every loxodromic subgroup contains a
loxodromic element.

Definition 8.1 Let height.G;P/.H /D n if n is the maximal number of distinct cosets
giH such that the intersection

T
giHg�1

i is loxodromic. Let width.G;P/.H /D n if
n is the maximal number of distinct cosets giH such that for each i; j the intersection
giHg�1

i \ gj Hg�1
j is loxodromic. Note that an elliptic or parabolic subgroup has

both height and width zero.

Lemma 8.2 Let .G;P / be relatively hyperbolic, and let S be a finite generating set
for G . There is a universal constant L� 0 so that the following holds. Let c and c0 be
relative geodesic lines in Cayley.G;S [P/ with the same endpoints at infinity. Then
the set of vertices of c and the set of vertices of c0 are within a Hausdorff distance L

with respect to the metric dS .

Proof Since c and c0 have the same endpoints at infinity, they are at a finite Hausdorff
distance, say D , in the relative metric dS[P . Let � be the constant given by Theorem
6.2. Choose a vertex v of c . We will show that the S –distance from v to some vertex
v0 of c0 is bounded above by a constant that does not depend on D .

Let x and y be vertices of c on either side of v , at an .S [ P/–distance at least
D C 2� from v . Choose vertices x0 and y0 of c0 such that dS[P.x;x

0/ < D and
dS[P.y;y

0/ < D . Let xc be the subpath of c0 from x0 to y0 , and choose relative
geodesics c0 from x to x0 and c1 from y0 to y . By Corollary 6.3, the vertex v

is within an S–distance 2� of a vertex v0 of c0 [ xc [ c1 . However, by the triangle
inequality, the .S [P/–distance from v to any vertex of c0 [ c1 is greater than 2� .
Therefore v0 is a vertex of xc .
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Lemma 8.3 Let .G;P / be relatively hyperbolic with a finite generating set S . Sup-
pose H � G is � –relatively quasiconvex. If f is a loxodromic element of H , then
there exists a bi-infinite relative geodesic c in Cayley.G;S[P/ such that the following
hold:

(1) The Hausdorff S –distance between the set of vertices of c and the subgroup hf i
is finite.

(2) Each vertex v of c lies in the � –neighborhood of H .

Proof For each nD 1; 2; 3; : : : choose a relative geodesic cn connecting f �n with
f n . Since H is � –relatively quasiconvex, each vertex of cn lies in the � –neighborhood
of H . To complete the proof, it suffices to show that the sequence fcng has a subse-
quence that converges pointwise to a relative geodesic line c . In order to ensure the
existence of such a subsequence we will show that the vertices of cn track S–close to
the set ff i j �n� i � n g.

The subgroup hf i is L–relatively quasiconvex in G for some L D L.f /, and
hf i \ gPg�1 is finite for all conjugates of peripheral subgroups gP by Osin [15,
Theorem 4.19]. Furthermore, there exists � D �.f / such that the inclusion hf i !
Cayley.G;S [P/ is an �–quasi-isometric embedding with respect to the word metric
on hf i for the standard generating set ff g (see Osin [15, Corollary 4.20]). Let D be
an upper bound on the S –diameters of the finitely many finite subgroups hf i\gPg�1

with jgjS <L.

By quasiconvexity, each vertex of cn lies S–near hf i. We need to show that if
�n � i � n the vertex f i lies S–near some vertex of cn . Indeed, quasiconvexity
guarantees that some of the f i lie within an S–distance � 0 of vertices of cn , so we
only need to bound the size of the “gaps” between these elements f i .

Let us begin with a pair of vertices v and w in the L–neighborhood of hf i connected
by an edge e in Cayley.G;S[P/. Translate by an element of hf i so that v and w are
within an S–distance L of 1 and f k for some k � 0. If e is labelled by a generator
s 2 S then jf k jS is at most 2LC 1. On the other hand, suppose e is labelled by a
parabolic element p 2 P for some P 2 P . Then both endpoints of e lie in one of the
finitely many peripheral cosets gP with jgjS <L. By Lemma 4.5 we have

f1; f k
g �NL

�
hf i

�
\NL.gP /�NL0

�
hf i \gPg�1

�
for some constant L0 . Maximizing over the finitely many possibilities for gP , we can
assume that L0 does not depend on the choice of edge e . Observe that jf k jS <2L0CD .
Thus in all possible cases, we have

jf k
jS <M WDmaxf2LC 1; 2L0CDg:
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It follows that:

0� k � � jf k
jS[P C � � � jf

k
jS C � � �M C �

On the other hand, whenever 0� i � k we have:

jf i
jS � i jf jS � k jf jS � .�M C �/ jf jS

Therefore the S–distance from f i to fv;wg is bounded above by the constant:

R WDLC .�M C �/ jf jS

By quasiconvexity, each vertex of cn lies within an S –distance L of some element of
hf i. Since cn is an edge path, we can apply the above argument to the set of vertices of
the path cn to see that whenever �n� i � n the vertex f i lies within an S –distance R

of some vertex of cn . Since L�R, the Hausdorff distance between the vertices of cn

and the set ff i j �n� i � n g is at most R. An easy diagonal argument shows that
the sequence of relative geodesics fcng has a subsequence converging pointwise to a
relative geodesic line c .

Clearly the Hausdorff S–distance between the vertices of c and the subgroup hf i is
at most R. Since the vertices of cn lie in the � –neighborhood of H , the same holds
for the vertices of c , completing the proof of the lemma.

Lemma 8.4 (Loxodromic virtual intersection implies close) Let .G;P / be relatively
hyperbolic, let S be a finite generating set for G , and choose � � 0. There is a
constant C so that the following holds. Let H be a � –relatively quasiconvex subgroup
of .G;P / containing a loxodromic element f . Suppose A D fgiH j i 2 I g is a
collection of distinct cosets of H such that each conjugate giHg�1

i contains some
power f ki of f . Then there exists a vertex z 2 G such that the ball of radius C in
Cayley.G;S/ intersects every coset giH 2A.

Proof By Osin [15, Corollary 4.20], the map n 7! f n is a quasigeodesic line in
Cayley.G;S [P/. Therefore the set ff n j n 2 Z g has exactly two limit points f ˙1

in @Cayley.G;S [ P/. If giH 2 A then f ki 2 giHg�1
i for some ki 2 Z. Thus

f nki gi 2 giH for all n 2 Z. The sets ff nki gi j n 2 Z g and ff n j n 2 Z g are at a
finite Hausdorff S–distance and thus have the same limit points f ˙1 .

Translating giH by g�1
i , we see that the subgroup hg�1

i f ki gii of H has limit points
g�1

i f ˙1 . By Lemma 8.3 the points g�1
i f ˙1 can be connected by a relative geodesic

line ci such that each vertex of ci lies within an S–distance � of H . Translating
back by gi produces a relative geodesic line gici with endpoints f ˙1 such that each
vertex of gici lies in the � –neighborhood of giH .
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For each i; j 2 I the relative geodesics gici and gj cj have the same endpoints at
infinity. By Lemma 8.2 the Hausdorff S–distance between the vertex sets of gici and
gj cj is at most L. Therefore for each vertex z of gici , the coset gj H intersects the
ball of radius LC � in Cayley.G;S/ centered at z .

The following special case of Lemma 8.4 is the main connection between height/width
and packing. Roughly speaking, a collection of conjugates with loxodromic intersection
comes mutually close together in Cayley.G;S/.

Corollary 8.5 (Loxodromic intersection implies close) Let .G;P / be relatively
hyperbolic, let S be a finite generating set for G , and choose � � 0. There is a
constant C so that the following holds. Let H be a � –relatively quasiconvex subgroup
of .G;P /. Suppose fgiH j i 2 I g is a collection of distinct cosets of H such thatT

giHg�1
i is loxodromic. Then there exists a vertex z 2G such that the ball of radius

C in Cayley.G;S/ intersects every coset giH .

The following corollary is an immediate consequence of the preceding result together
with the local finiteness of Cayley.G;S/.

Corollary 8.6 Let .G;P / be relatively hyperbolic and let H �G be relatively quasi-
convex. Then height.G;P/.H / is finite.

Corollary 8.5 also has the following easy consequence.

Corollary 8.7 Let .G;P / be relatively hyperbolic and let H � G be a relatively
quasiconvex subgroup. There are only finitely many double cosets Hg1H; : : : ;HgnH

such that H \giHg�1
i is loxodromic.

Proof Suppose fgiH j i 2 I g is a collection of cosets such that H \ giHg�1
i is

loxodromic for each i . By Corollary 8.5, the distances dS.H;giH / are bounded above
by a constant C . Thus we can translate giH by an element of H to obtain a coset
hgiH intersecting the ball of radius C in Cayley.G;S/ centered at the identity. Since
this ball is finite, it follows that the cosets giH lie in only finitely many double cosets
HgiH .

Theorem 1.6 also follows from Lemma 8.4.

Proof of Theorem 1.6 Let AD fgiH j i 2 I g be the set of all cosets giH such that
giHg�1

i \H has finite index in both giHg�1
i and H . Then the union of all cosets in

A is the commensurator of H in G , and the cardinality of A is equal to the index of H
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in the commensurator. Since H is loxodromic, it contains a loxodromic element f . If
giH 2A then f ki 2 giHg�1

i for some ki 2 Z. Thus by Lemma 8.4 there is a vertex
z such that the ball of radius C in Cayley.G;S/ centered at z intersects each coset
giH 2A. The finite cardinality of this ball is an upper bound for the size of A.

Proposition 8.8 (Packing peripheral subgroups) If .G;P / is relatively hyperbolic
then each peripheral subgroup P 2 P has bounded packing in G .

Proof Choose a finite generating set S for G . Let A be a collection of left cosets
of P whose pairwise distances are less than D . Consider three distinct elements g0P ,
g1P , g2P of A. Choose points x0 2ND.g1P /\ND.g2P / and x1 2ND.g0P /\

ND.g2P /. Then by Lemma 5.6, there is a constant � D �.D/ such that d.x0;x1/ < � .
Therefore g0P intersects the ball of radius �CD centered at x0 . Keeping g1P and
g2P fixed and varying g0P over all elements of A�fg1P;g2Pg, we see that every
element of A intersects this ball. Since the metric dS is proper and left invariant, the
size of A is bounded in terms of D .

Theorem 8.9 (Packing relative to peripheral subgroups) Let .G;P / be relatively
hyperbolic, choose a finite generating set S for G , and let H be a finite collection of
� –relatively quasiconvex subgroups of G . For each constant D , there are constants R

and M3 such that the following holds. Let A be any set of left cosets gH with g 2G

and H 2H such that for all gH;g0H 0 2A we have dS.gH;g0H 0/ <D . Suppose the
following intersection is empty:

(8-1)
\

gH2A

NM3
.gH /D¿

Then we have the following:

(1) There is a unique peripheral coset gP such that for all aH 2A the intersection
NR.gP /\NR.aH / is nonempty.

(2) NR.gP /\NR.aH /\NR.a
0H 0/ is nonempty for all aH; a0H 0 2A.

(3) NR.gP /\NR.aH / is unbounded for all aH 2A.

(4) gPg�1\ aHa�1 is infinite for all aH 2A.

Proof We will first prove assertions (1) and (2). Let

nD 1C
X

H2H

height.G;P/.H /;

which is known to be finite by Corollary 8.6. Let M0DM0.�;D; nC1/ be the constant
given by Proposition 7.7, and let M2 DM2.�;D; nC1;M0/ be the constant given by
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Corollary 7.9. If there exist nC1 elements of A whose M2 –neighborhoods have empty
intersection, then Corollary 7.9 gives (1) and (2) immediately, using RDM0 . Thus it
suffices to assume that for all g1H1; : : : ;gnC1HnC1 2A the following intersection is
nonempty:

NM2
.g1H1/\ � � � \NM2

.gnC1HnC1/

Fix n distinct cosets g1H1; : : : ;gnHn 2 A. (If we choose M3 � M2 , then (8-1)
implies that A has at least nC 2 elements.) Consider the following intersection of
conjugates:

K WD g1H1g�1
1 \ � � � \gnHng�1

n

By our choice of n, some H 2 H appears at least 1C height.H / times in the list
H1; : : : ;Hn . Thus K is contained in the intersection of at least 1Cheight.H / distinct
conjugates of H , so that K is either elliptic or parabolic.

Case 1 Suppose K is elliptic. Once M3 is chosen sufficiently large, we will reach a
contradiction with (8-1). Translating A by an element of G , we can assume, without
loss of generality, that the cosets g1H1; : : : ;gnHn all intersect the ball of radius M2

centered at the identity. Since there are only finitely many possibilities for these cosets,
our choice of M3 is permitted to depend on g1H1; : : : ;gnHn . (Maximizing over all
such cosets would give a uniform constant M3 .)

By Corollary 4.6 we have

(8-2) NM2
.g1H1/\ � � � \NM2

.gnHn/�NM 0.K/

for some M 0 depending on M2 and the cosets g1H1; : : : ;gnHn . If aH is any left
coset in A, the following intersection is nonempty by hypothesis:

NM2
.aH /\

�
NM2

.g1H1/\ � � � \NM2
.gnHn/

�
:

Thus by (8-2) we have dS.aH;K/ <M2CM 0 . Since K is an elliptic subgroup, it has
a finite diameter DDD.K/ and contains the identity. Hence every aH 2A intersects
the finite ball of radius DCM2CM 0 centered at the identity, which contradicts (8-1)
if we choose M3 �DCM2CM 0 .

Case 2 Suppose K is parabolic. By Proposition 7.4, for each H 2 S and each
peripheral subgroup P , the peripheral cosets gP such that H \gPg�1 is infinite lie
in finitely many H –orbits. Let T be the maximum distance between H and any coset
gP such that H \gPg�1 is infinite. Equivalently, if gHg�1\P is infinite, then the
distance between gH and P is at most T .

Since K is parabolic, it is contained in a conjugate of some peripheral subgroup P .
Translating A by an element of G , we can assume that K is a subgroup of P itself.
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For each i D 1; : : : ; n the group giHig
�1
i \P is infinite, since it contains the infinite

group K . Therefore the distance between giHi and P is at most T . By assumption,
the following intersection is nonempty:

NM2
.g1H1/\ � � � \NM2

.gnHn/

Thus by Corollary 7.6 there is a constant R1 DR1.�;T CM2; n/ and a point

x 2NR1
.P /\NR1

.g1H1/\ � � � \NR1
.gnHn/:

Translating A by an element of P we can assume without loss of generality that
x lies in the ball of radius R1 centered at the identity. Consequently, the cosets
g1H1; : : : ;gnHn each intersect the ball of radius 2R1 centered at the identity. As in
the elliptic case, there are a uniformly bounded number of choices for g1H1; : : : ;gnHn .

As before, (8-2) holds for some M 0 depending on g1H1; : : : ;gnHn and M2 . Since
K � P , it follows from the same reasoning as above that dS.aH;P /� dS.aH;K/ <

M2 CM 0 for each aH 2 A. Furthermore, for each aH; a0H 0 2 A, the pairwise
distances between aH , a0H 0 and P are at most DCM2CM 0 . Thus Proposition
7.5(2) gives a constant RDR.�;DCM2CM 0/ such that for all aH; a0H 0 2A the
following intersection is nonempty:

NR.P /\NR.aH /\NR.a
0H 0/

Recall that R depends on the cosets g1H1; : : : ;gnHn , which each intersect the ball
of radius 2R1 centered at the identity. Maximizing over the finitely many possible
choices for these cosets gives a uniform constant—which we again call R—that does
not depend on our particular choice of A.

In order to prove (1) and (2) it suffices to establish the uniqueness of P in the sense of
(1) once M3 is chosen sufficiently large. Suppose by way of contradiction that there
were another peripheral coset g0P 0 ¤ P such that for all aH 2 A the intersection
NR.g

0P 0/\NR.aH / is nonempty. Then Proposition 7.8 implies that the intersectionT
aH2ANM1

.aH / is nonempty for M1 DM1.R; �/. If we choose M3 larger than
M1 , this clearly contradicts (8-1).

We will now show that (2) implies (3) when M3 is chosen sufficiently large. Indeed,
suppose by way of contradiction that there exists aH 2A such that NR.gP /\NR.aH /

is bounded. After translating A by an element of G , we can assume that gP and aH

both intersect the ball of radius R in G . Thus there are a bounded number of choices for
the cosets gP and aH , up to translation in G . Maximizing over all such choices gives
a uniform upper bound S on the diameter of the intersection I WDNR.gP /\NR.aH /.
If a0H 0 is any other element of A, then (2) implies that NR.a

0H 0/ intersects I .
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Therefore every a0H 0 2A intersects a fixed set of diameter S CR, which contradicts
(8-1) if we choose M3 larger than S CR.

Finally observe that (4) follows immediately from (3) using Lemma 4.5.

Theorem 8.10 (Packing relatively quasiconvex subgroups) Let .G;P / be relatively
hyperbolic, choose a finite generating set S for G , and let H be a � –relatively
quasiconvex subgroup of G . Suppose for each peripheral subgroup P 2 P and each
g 2G the intersection P \gHg�1 has bounded packing in P . Then H has bounded
packing in G .

Proof Let A be any set of left cosets gH whose pairwise distances are at most D .
Our goal is to show that A is finite and to bound the cardinality of A as a function
of D .

Let R and M3 be the constants given by Theorem 8.9. Suppose the following inter-
section is nonempty: \

gH2A

NM3
.gH /

Then there is a fixed ball of radius M3 in G that intersects every gH 2 A. The
cardinality of such a ball is an upper bound on the cardinality of A.

Thus it suffices to assume that the following intersection is empty:\
gH2A

NM3
.gH /

In this case, Theorem 8.9 applies. After translating A by an element of G , there exists
a peripheral subgroup P such that for all gH;g0H 2A the following intersection is
nonempty:

NR.P /\NR.gH /\NR.g
0H /

For each gH 2A, there is a point p 2 P such that dS.p;gH / < 2R. Translating by
p�1 , we see that the coset p�1gH intersects the ball of radius 2R centered at the
identity. Therefore every coset in A can be expressed as pgH for some p 2 P and
jgjS < 2R. The cosets gH 2A lie in a bounded number of orbits under the action of
P ; therefore it is enough to bound the number of elements of A lying in a single orbit
P .gH /; in other words, a double coset.

Setting Q WDP\gHg�1 the map pgH 7!pQ that takes a left coset of H in P .gH /

to the corresponding coset of Q in P is well-defined and injective; for pgH D p0gH

if and only if p�1p0 2 P \gHg�1 DQ if and only if pQD p0Q. By Lemma 4.5,
we have

NR.P /\NR.gH /�NM 0.Q/
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for some M 0 depending on P , gH and R. Translating by p gives

NR.P /\NR.pgH /�NM 0.pQ/

for each p 2 P , as illustrated in Figure 2.

P

pQ p0Q

pgH
p0gH

Figure 2: The coset pQ is coarsely the intersection of neighborhoods of P

and pgH . The existence of a point close to P , pgH and p0gH implies
that pQ and p0Q are close.

By hypothesis, for each pgH;p0gH 2A we have

NR.P /\NR.pgH /\NR.p
0gH /

D
�
NR.P /\NR.pgH /

�
\
�
NR.P /\NR.p

0gH /
�
¤¿:

Therefore NM 0.pQ/\NM 0.p0Q/¤¿:

But QD P \gHg�1 has bounded packing in P so we have an upper bound on the
number of cosets pQ in P that correspond to cosets pgH 2A.

Corollary 8.11 Let .G;P / be relatively hyperbolic and H � G a relatively quasi-
convex subgroup. Suppose P \gHg�1 has bounded packing in P for each peripheral
subgroup P 2 P and each g 2G . Then width.G;P/.H / is finite.

Proof If g0H and g1H are distinct cosets such that g0Hg�1
0
\ g1Hg�1

1
is lox-

odromic, then Corollary 8.5 implies that dS.g0H;g1H / < 2C . The result follows
immediately since H has bounded packing in G by Theorem 8.10.
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9 Quasiconvex and separable implies virtually malnormal

In this section we present a malnormality consequence of separability and finite height.
The results are new even in the word-hyperbolic case.

Definition 9.1 A subgroup H of G is malnormal if H \gHg�1 is trivial for each
g 2 G �H . In applications of malnormality it is usually sufficient to know that the
intersection of conjugates is finite instead of trivial, and so we have elsewhere defined
H to be almost malnormal if H \gHg�1 is finite for each g 2G �H .

In light of our earlier definitions of width and height of subgroups of a relatively
hyperbolic group G , it is natural to define a subgroup H of G to be relatively malnormal
if H \gHg�1 is either elliptic or parabolic for each g 2G �H .

Note that any malnormal subgroup and any parabolic or elliptic subgroup is immediately
relatively malnormal.

Definition 9.2 A subgroup H of a group G is separable if H is an intersection of
finite index subgroups of G .

Theorem 9.3 Let H be a separable, relatively quasiconvex subgroup of the relatively
hyperbolic group G . Then there is a finite index subgroup K of G containing H such
that H is relatively malnormal in K .

Proof By Corollary 8.7, there are only finitely many double cosets Hg1H; : : : ;HgnH

such that H \giHg�1
i is loxodromic. Since H is separable, there exists a finite index

subgroup K of G such that H � K but gi 62 K for 1 � i � n. If k 2 K �H and
H\kHk�1 is loxodromic, then kH DhgiH for some gi and some h2H . Therefore
hgiH �K and H �K so gi 2K , contradicting our choice of K . Consequently H

is relatively malnormal in K .

Problem 9.4 Find a relatively hyperbolic group G with a relatively malnormal sub-
group M that is not quasiconvex.

There is a related long-standing problem of constructing a malnormal subgroup of a
word-hyperbolic group that is not quasiconvex. One expects that Problem 9.4 won’t be
much easier, even if we relax the condition of malnormality to merely require finite
width.
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