Geometry & Topology 13 (2009) 19892027 1989

Refined analytic torsion on manifolds with boundary

BORIS VERTMAN

We discuss the refined analytic torsion, introduced by M Braverman and T Kappeler
as a canonical refinement of analytic torsion on closed manifolds. Unfortunately there
seems to be no canonical way to extend their construction to compact manifolds with
boundary. We propose a different refinement of analytic torsion, similar to Braverman
and Kappeler, which does apply to compact manifolds with and without boundary. In
a subsequent publication we prove a surgery formula for our construction.
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1 Introduction

The refined analytic torsion, defined by M Braverman and T Kappeler [8; 6] on
closed manifolds, can be viewed as a refinement of the Ray—Singer torsion, since it
is a canonical choice of an element with Ray—Singer norm one, in case of unitary
representations.

The complex phase of the refinement is given by the rho-invariant of the odd-signature
operator. Hence one can expect the refined analytic torsion to give more geometric
information than the Ray—Singer torsion.

This is indeed the case in the setup of lens spaces with explicit formulas for the
associated Ray—Singer torsion and eta-invariants; see Huang [20, Section 5] and the
references therein. There it is easy to find explicit examples of lens spaces which are
not distinguished by the Ray—Singer torsion, however have different rho-invariants of
the associated odd-signature operators.

An important property of the Ray—Singer torsion norm is its gluing property, as estab-
lished by W Liick [23] and S Vishik [33]. It is natural to expect a refinement of the
Ray—Singer torsion to admit an analogous gluing property.

Unfortunately there seems to be no canonical way to extend the construction of Braver-
man and Kappeler to compact manifolds with boundary. In particular a gluing formula
seems to be out of reach.

We propose a different refinement of analytic torsion, similar to Braverman and Kappeler,
which does apply to compact manifolds with and without boundary. In the subsequent
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publication [32] we establish a gluing formula for our construction, which in fact can
also be viewed as a gluing law for the original definition of refined analytic torsion by
Braverman and Kappeler.

The presented construction is analogous to the definition in [8; 6], but refines the square
of Ray-Singer torsion, in contrast to the construction by Braverman and Kappeler,
which refines the Ray—Singer torsion itself. The doubling is essential to allow the
extension of the concepts to any smooth compact Riemannian manifold, with or without
boundary.

In case of empty boundary our construction can be identified with the square of refined
analytic torsion by Braverman and Kappeler, up to a defect in terms of a difference of
certain eta-invariants. Nevertheless we still refer to our concept as “refined analytic
torsion” within the present discussion.
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2 Motivation for the generalized construction

The essential ingredient in the definition of the refined analytic torsion in [6] is the
twisted de Rham complex with a chirality operator and the elliptic odd-signature
operator associated to the complex, viewed as a map between the even forms. Hence in
the case of a manifold with boundary we are left with the task of finding elliptic boundary
conditions for the odd-signature operator which preserve the complex structure and
provide a Fredholm complex, in the sense of [9].

The notions of a Hilbert and a Fredholm complex were studied systematically in [9] and
will be provided for convenience in the forthcoming section. The boundary conditions,
that give rise to a Hilbert complex are referred to as “ideal boundary conditions”. It is
important to note that the most common self-adjoint extensions of the odd-signature
operator between the even forms do not come from ideal boundary conditions.

The existence and explicit determination of elliptic boundary conditions for the odd-
signature operator between the even forms, arising from ideal boundary conditions, is
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Refined analytic torsion on manifolds with boundary 1991

an open question. However, it is clear that the absolute and relative boundary conditions
do not satisfy these requirements.

On the other hand the gluing formula in [33] and [23] for the Ray—Singer torsion makes
essential use of the relative and absolute boundary conditions. Since the establishment
of a corresponding gluing formula for the refined analytic torsion is a motivation for
our discussion, these boundary conditions seem to be natural choices.

We are left with a dilemma, since neither the relative nor the absolute boundary condi-
tions are invariant under the Hodge operator. We resolve this dilemma by combining
the relative and absolute boundary conditions. This allows us to apply the concepts of
[6] in a new setting and to establish the desired gluing formula.

3 Definition of refined analytic torsion

Let (M™, gM) be a smooth compact connected odd-dimensional oriented Riemannian
manifold with boundary dM , which may be empty. Let (E,V, hE) be a flat complex
vector bundle with any fixed Hermitian metric #£, which need not to be flat with
respect to V.

The flat covariant derivative V is a first order differential operator
V:T(E) > T(T*M Q E),
satisfying the Leibniz rule
Vx(fs)=(Xf)s+ fVxs, sel(E),X el (TM), feC®(M).

The covariant derivative V extends by the Leibniz rule to the twisted exterior differ-
ential V: Q’g (M, E)— Q]g *t1(M, E) on E—valued differential forms with compact
support in the interior of the manifold ng (M, E). The exterior differential satisfies
the (generalized) Leibniz rule

Vx(wAn) = (Vxw) An+(=DPw A Vyn,
forany w € QY (M), ne QI(M.E), X e T(TM).

Due to flatness of (£, V) the twisted exterior differential gives rise to the twisted de
Rham complex (25(M, E), V). The metrics g™ h¥ induce an L%—inner product
on Q%(M, E). We denote the L*—completion of Q%(M, E) by L3(M,E).

Next we introduce the notion of the dual covariant derivative V’. It is defined by
requiring

(3-1) dh (u, v)[X] = hE (Vxu,v) + hE @, Viv)
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to hold for all u,v € C*®°(M, E) and X € I'(TM). In the special case that the
Hermitian metric 4% is flat with respect to V, the dual V’ and the original covariant
derivative V coincide. More precisely the Hermitian metric 4/ can be viewed as
a section of E* ® E*. The covariant derivative V on E gives rise to a covariant
derivative on the tensor bundle E* ® E*, also denoted by V by a minor abuse of
notation.

For u, v, X as above one has
VAE (u,v)[X] = dh® (u,v)[X]— hE (Vxu,v)—hE (u, Vxv).

In view of (3-1) we find

VhiE =0 V=V,
As before, the dual V' gives rise to a twisted de Rham complex. Consider the differential
operators V, V’ and their formal adjoint differential operators V’, V7. The associated
minimal closed extensions Vi, V. and V. V. are defined as the graph-closures

in L2(M, E) of the respective differential operators. The maximal closed extensions
are defined by

. t
IIldX . ( mm) ’ max : (Vr/nm)*

These extensions define Hilbert complexes in the following sense, as introduced in [9].

Definition 3.1 [9] Let the Hilbert spaces H;,i =0, ...,m, Hy1 = {0} be mutually
orthogonal. For each i =0,...,m let D; € C(H;, Hi+1) be a closed operator with
domain D(D;) dense in H; and range in H;y1. Put D; :=D(D;) and R; := D;(D;)
and assume

R,-gDi+1, Dji10D; =0.
This defines a complex (D, D)

D D] Dml
0—>D0—>D1—> -— Dy, — 0.

Such a complex is called a Hilbert complex. If the homology of the complex is finite,
ie if R; is closed and ker D;/imD;_ is finite-dimensional for all i =0, ...,m, the
complex is referred to as a Fredholm complex.

Indeed, by [9, Lemma 3.1] the extensions define Hilbert complexes as follows:

(Dmina Vmin)’ where D := D(vmin)7
(Dmax> Vinax) where Diax 1= D(Vimax);
(Dmln’ mm) Where D;nm - D(vmm)

(Dmax’ max) Where D;nax - D( max)
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The Laplace operators, associated to Hilbert complexes (Duin, Vimin) and (Dmax, Viax) s
are respectively defined as follows:
Arel L= V:linvmin + Vminv:lin’

D(Arel) = {(»0 S D(ijn) N D(V:l
AEle L= V* Vmax + Vmaxv*

max max’

D(Agps) = {® € D(Vimax) N D(V,50) | Vinaxw € D(V

max

), Vi @€ D(Vimax) }.

ax max

The Laplace operators A’ and Al = of the Hilbert complexes (D/. ,V/. ) and

(D},0x» Viae) respectively, are defined in a similar way. Note the following well-known

central result on these complexes and their Laplacians.

Theorem 3.2 The Hilbert complexes (Dmin, Vinin) and (Dmax, Vmax) are Fredholm
with the associated Laplacians Ay and A, being strongly elliptic in the sense of
[17]. The de Rham isomorphism identifies the homology of the complexes with the
relative and absolute cohomology with coefficients:

H*(Dmina vmin) = H*(M, 8M, E),
H*(Dmax, Vmax) = H*(M, E)

Moreover the cohomology of the Fredholm complexes (Dmin, Viin) and (Dmax, Vimax)
can be computed from the smooth subcomplexes

(Qr. (M, E), V), QF (M, E):={weQ*(M, E)|*(w)=0}

min

Qr (M, E),V), QFf (M, E):=Q*(M,E),

max max

respectively, where we denote by 1: 0M — M the natural inclusion of the boundary.

In the untwisted setup this theorem is essentially the statement of [9, Theorem 4.1].
The theorem remains true in the general setup. An analogue of the trace theorem
[25, Theorem 1.9], in case of flat vector bundles, allows an explicit computation of
the boundary conditions for Ay and Aaps. Then [17, Lemma 1.11.1] implies strong
ellipticity of the Laplacians. Note that this result in the reference [17] is proved
explicitly, even though other aspects of [17, Section 1.11] are rather expository.

By strong ellipticity the Laplacians A and A,s are Fredholm and by [9, Theorem
2.4] the complexes (Dmin, Vmin) and (Dmax, Vmax) are Fredholm as well. By [9,
Theorem 3.5] their cohomology indeed can be computed from the smooth subcomplexes
(QF. (M, E), V) and (25, (M, E), V), respectively.

Finally, the relation to the relative and absolute cohomology (the twisted de Rham
theorem) is proved in [26, Section 4] for flat Hermitian metrics, but an analogous proof
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works in the general case. Corresponding results hold also for the complexes associated
to the dual connection V’.

Furthermore, the Riemannian metric g™ and the fixed orientation on M give rise to
the Hodge star operator for any k =0,...,m =dim M :

x: QK(M, E) > Q" (M, E).
Define
=" (—D)F&+D2 Qk(M, E) > Q" %M, E), r:=(dimM +1)/2.

This operator extends to a well-defined self-adjoint involution on L2 (M, E), which we
also denote by I'. The following properties of I' are essential for the later construction.

Lemma 3.3 The self-adjoint involution T on L2(M, E), restricted to the domains of
the minimal and maximal closed extension of V, acts as follows:

F|D(Vmin): D(len) - D((vr/nax)*)a
1_‘lD(me): D(Vmax) - D((Vllmn)*)

With T restricted to appropriate domains, we have

D) Vinin L 10((v7,0%) = (Vi)™ T1D(00) Vimax Clp(v7,0%) = (Vinin) ™

max

Proof One first checks explicitly (cf [3, Proposition 3.58])
IVl =(V)!, TVIT=V.

Recall that the maximal domain of V,V’ can also be characterized as a subspace
of L2(M, E) with its image under V, V' being again in L2(M, E). Since T is an
involution on L2(M, E), we obtain for the action of T" restricted to D((V)?,,,) and
D((V)inax)

max

Clpvnyr ) DUV ) aw) = PVimax),  Tlowy ) P(Via) = D(Via)-

With T restricted to appropriate domains, we have

LDV Vinax Do), = (Viax = (Vinin) ™

max

Clpw,

max min-*

)Vllnaxrl'D(Vrtnax) = Vrtnax =V,

Taking adjoints on both sides of the last relation, we obtain the full statement of the
lemma, since I is self-adjoint. a
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Next we introduce the following central concepts. The self-adjoint involution I" gives
rise to a self-adjoint involution I on L2(M, E)@® L2(M, E), the “chirality operator”,
acting by definition antidiagonally with respect to the direct sum of the components

0or

(3-2) f::(F O):Li(M,E)@Li(M,E)aLi(M,E)@Li(M,E).

Definition 3.4

(ﬁ, 6) = (Dmin’ vmin) S (DmaXa Vmax)a where Dmin = D(Vmin)’ Dmax = D(Vmax)-
(D, V') := (D, Vi) @ (Dl Vi ). where D =D(V. ). D, =D(V,.).

min’ max’ min in max max

All connections differ by an endomorphism-valued differential form of degree one,
which can be viewed as a differential operator of degree zero. A differential operator
of degree zero naturally extends to a bounded operator on the L2?—Hilbert space, and
hence does not pose additional restrictions on the domain. Therefore

DY) =DV, DE*)=D((V)".
As a consequence of Lemma 3.3 we now directly obtain the following proposition.
Proposition 3.5 The chirality operator T, restricted to the domains D(?) and D(?*),
acts in the following way:
Tlp@)y: PV) = D(V*),  Tlpge: DV*) = D).
Moreover I relates the operators V and V' as follows:
Flp@V = (V) Tlpge).
Remark 3.6 The Fredholm complex (75, 6), with the chirality operator [ restricted

to D, is in case of a flat Hermitian metric a complex with Poincare duality, in the sense
of [9, Lemma 2.16], ie

~ ~

ViE =0 = TV=V*T.
We now apply the concepts of Braverman and Kappeler to our new setup.
Definition 3.7 The odd-signature operator of the Hilbert complex (D, V) is defined

by
V+VT, DB =D )NDV*).

ol

B .=

Geometry & Topology, Volume 13 (2009)



1996 Boris Vertman

Before we can state some basic properties of the odd signature operator, let us recall
the notions of the Gauss—Bonnet operator and its relative and absolute self-adjoint
extensions. The Gauss—Bonnet operator

D=V 4V
admits two natural self-adjoint extensions

(3-3)  DSB =V + Vi, D(DSP) = D(Vimin) N D(VEL),

rel — rel min

(3-4) D‘S)E = Vmax + V* D(DGB) = D(Vmax) N D(V:lax)’

max’ abs

respectively called the relative and the absolute self-adjoint extensions. Their squares
are correspondingly the relative and the absolute Laplace operators

Arel = (DGB 2’ Aabs = (DGB 27

rel abs
associated to the Hilbert complexes (Dmin, Vimin) and (Dmax, Vmax), respectively. Sim-

ilar definitions, of course, hold for the Gauss—Bonnet operators D;CCI’B and D;SSB
associated to the dual covariant derivative V’. Their squares

r 1GBy\2 r 1GBy\2
rel — (Drel ’ abs — (Dabs ’
are the Laplace operators, associated to the Hilbert complexes (D). ,V/!. ) and

(D}0x» Vi) respectively. Now we can state the following basic result.

Lemma 3.8 The leading symbols of B and r (Dr(é{3 &) D;t)GSB) coincide and moreover

D(B) =D (Dg & Dy’) -
Proof First recall the relations
IVl =(V)!, TVr=v.

All connections differ by an endomorphism-valued differential form of degree one,
which can be viewed as a differential operator of order zero. This implies the statement
on the leading symbol of B and I" (DGB ® D' GB)

A differential operator of zero order naturally extends to a bounded operator on the
L?—Hilbert space, and hence does not pose additional restrictions on the domain, in
particular we obtain (compare Lemma 3.3)

D(Vy.) = DT Viax ), D(V).) = D(I'Vipin D).
Using these domain relations we find
DB) =D (FOF @ D)) =D (DF & D). 0
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Note by the arguments of the lemma above that B is a bounded perturbation of a closed
operator I (Dg{3 &) D;SSB) and hence is closed, as well. Before we continue analyzing
the spectral properties of the odd-signature operator B, let us recall the following

general result.

Theorem 3.9 (S Agmon, R Seeley) Let (K, gX) be a smooth compact oriented
Riemannian manifold with boundary 0K . Let (F, hF) be a Hermitian vector bundle
over K . The metric structures (g%, h¥') define an L?—inner product. Let

D: C®(K, F) — C®(K, F)

be a differential operator of order w such that w -rank F' is even. Consider a boundary
value problem (D, B) strongly elliptic with respect to C\R* in the sense of [17].
Then:

(i) Dp is a Fredholm operator with compact resolvent and discrete spectrum of
eigenvalues of finite (algebraic) multiplicity, accumulating only at infinity.

(ii) The operator Dg admits an Agmon angle 6 € (—m, 0) and the associated zeta-
function

dim K
((.Dp):= Y. m()-Ag% Re(s)> =,
AeSpec(Dp)\{0} @

where Ay* 1= exp(—s -logg A) and m(A) denotes the multiplicity of the eigen-
value A, is holomorphic for Re(s) > dim K/w and admits a meromorphic
extension to the whole complex plane C with s = 0 being a regular point.

For the proof of the theorem note that the notion of strong ellipticity in the sense
of [17] in fact combines ellipticity with Agmon’s conditions, as in the treatment of
elliptic boundary conditions by R Seeley in [28; 27]. The statement of the theorem
above follows then from [1] and [28; 27]. This result is also stated and discussed by
Burghelea, Friedlander and Kappeler in [11].

Remark 3.10 The definition of a zeta-function, as in Theorem 3.9 (ii), also applies to
any operator D with finite spectrum {A{,...,A,} and finite respective multiplicities
{my,...,my}. For a given Agmon angle 6 € [0, 27) the associated zeta-function

n

(s, D) := Z mi-(Ai)g®

i=1,1;5£0

is holomorphic for all s € C, since the sum is finite and the eigenvalue zero is excluded.
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Now we return to our specific setup. The following result is important in view of
the relation between B and the Gauss—Bonnet operators with relative and absolute
boundary conditions, as established in Lemma 3.8.

Proposition 3.11 The operators

D=T(D @ DS®), D? =N ® Al

abs

are strongly elliptic with respect to C\R* and C\R™, respectively, in the sense of
PGilkey [17].

The fact that D? = A & Al is strongly elliptic with respect to C\RT is already
encountered in Theorem 3.2. The strong ellipticity of D now follows from [17, Lemma
1.11.2]. Note that this result in the reference [17] is proved explicitly, even though
other aspects of [17, Section 1.11] are rather expository.

Since Lemma 3.8 asserts the equality between the leading symbols of the differential
operators 13, D and moreover the equality of the associated boundary conditions, the
odd signature operator B and its square B2 are strongly elliptic as well. This proves
together with Theorem 3.9 the next proposition.

Proposition 3.12 The operators B and B? are strongly elliptic with respect to C\R*
and C\R™, respectively, in the sense of PGilkey [17]. The operators B, 3> have
discrete spectrum accumulating only at infinity.

Let now A > 0 be any nonnegative real number. Denote by Ilpa [g 3 the spectral

projection of B2 onto eigenspaces with eigenvalues of absolute value in the interval
[0, A]: '
! 2 -1
HBZ,[O,)»] Sy C()L)(B X) dX,
with C(X) being any closed counterclockwise circle surrounding eigenvalues of absolute
value in [0, A] with no other eigenvalue inside. One finds using the analytic Fredholm
theorem that the range of the projection lies in the domain of 3% and that the projection

commutes with B2.

Since B2 has discrete spectrum accumulating only at infinity, the spectral projection
2 [o,3 s of finite rank, ie with a finite-dimensional image. In particular ITz2 [ 3]
is a bounded operator in L2(M, E @ E). Hence with [21, Section 4, page 155] the
decomposition

(3-5) L2(M, E @ E) = Image 2 0,0 © Image(1 — T2 16 3),

is a direct sum decomposition into closed subspaces of the Hilbert space L2(M, EQE).
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Note that if B2 is self-adjoint, the decomposition is orthogonal with respect to the fixed
L2—Hilbert structure, ie the projection IT B2,0,1] 1 an orthogonal projection, which is
the case only if the Hermitian metric 4% is flat with respect to V.

Since D(B?) C D, where D was introduced in Definition 3.4, decomposition (3-5)
induces a decomposition of D into nontrivial direct sum components:

D= 13[0’1] Y ﬁ(k,oo)-

Since V commutes with 18, B2 and hence also with TI B2,0,1]> We find that the decom-
position above is in fact a decomposition into subcomplexes:

(3-6) (D, V) = (5[o,x], Vioa) @ (15@,00), Vir.00))
where Vz:= V|5, for T =10.] or (A, 00).

Further T also commutes with /3, B2 and hence also with T B2,[0,A]- Thus as above
we obtain

T =T01® Ttr.00)-
Consequently the odd-signature operator of the complex (5, 6) decomposes corre-
spondingly:

(3-7) B = Bl g p-00)

where Bt = fzﬁz + 6If‘z for Z =[0,A] or (A, o0).

The closedness of the subspace Image (1—T12 ¢ 37) implies that the domain of B*:00)
D(B**)) := D(B) N Image(1 — M2 [ 1))

is closed under the graph-norm, hence the operator B*%) s a closed operator in the
Hilbert space Image(1 — T2 [g 37)-
We need to analyze the direct sum component B*:%) _ For this we proceed with the

following general functional analytic observations.

Proposition 3.13 Let D be a closed operator in a separable Hilbert space (H, (-, -)).
The domain D(D) is a Hilbert space with the graph-norm

{(x,y)p = (x,y) + (Dx, Dy)
for any x,y € D(D). Let ResD # &. Then the following statements are equivalent:

(1) The inclusion t: D(D) — H is a compact operator.

(2) D has a compact resolvent, ie for some (and thus for all) z € Res(D) the
resolvent operator (D —z)~! is a compact operator on H .
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Proof Assume first that the inclusion ¢: D(D) — H is a compact operator. Since
Spec D # C the resolvent set Res(D) is not empty. For any z € Res(D) the resolvent
operator

(D—z)"': H—D(D)

exists and is bounded, by definition of the resolvent set. With the inclusion ¢ being
a compact operator we find directly that (D —z)~! is compact as an operator from
H to H . Finally, if (D —z)~! is compact for some z € Res(D), then by the second
resolvent identity it is compact for all z € Res(D); see also [21, page 187].

Conversely assume that for some (and therefore for all) z € Res(D) the resolvent
operator (D —z)™! is compact as an operator from H into H . Observe

t=(D—-z2)"'o(D—-z):D(D)— H.

By compactness of the resolvent operator, ¢ is compact as an operator between the
Hilbert spaces D(D) and H. ad
Proposition 3.14 Let D be a closed operator in a separable Hilbert space H with
Res(D) # @ and compact resolvent. Then D is a Fredholm operator with

index D = 0.
Proof By closedness of D the domain D (D) turns into a Hilbert space equipped with
the graph norm. By Proposition 3.13 the natural inclusion

t: D(D)—H

is a compact operator. Therefore, viewing D(D) as a subspace of H, ie endowed with
the inner product of H, the inclusion

t:DD)CH—H

is relatively D—compact in the sense of [21, Section 4.3, page 194]. More precisely
this means, that if for a sequence {u,} C D(D) both {u,} and {Du,} are bounded
sequences in H, then {t(u,)} C H has a convergent subsequence.

Now for any A € C\Spec(D) the operator
(D—X):D(D)CH—H

is invertible and hence trivially a Fredholm operator with trivial kernel and closed range
H . In particular
index(D — At) = 0.
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Now, from stability of the Fredholm index under relatively compact perturbations (see
Kato [21, Theorem 5.26] and the references therein) we infer with the inclusion ¢ being
relatively compact, that D is a Fredholm operator of zero index:

index D = index(D — At) = 0. ad

Corollary 3.15 The operator B*-%): D(B*%°)) > Image(] — M2 [g,)) of the
complex (D 0). V(a,00)) With A > 0 is bijective.

Proof Consider any A € C\Spec B. By the strong ellipticity of B, the operator
(B—XA): D(B)— L2(M,E® E)
is bijective with compact inverse. Hence we immediately find that the restriction
(BH%) —2) = (B—2) Mm(1 =T [ 37): DB*) - Im(1 — Tz g 5))

is bijective with compact inverse, as well. Now we deduce from Proposition 3.14 that
B*:%) is Fredholm with

index B*>) = 0.
The operator B*-) g injective, by definition. Combining injectivity with the vanishing

of the index, we derive surjectivity of B*%)  This proves the statement. |

Note, that in case of a flat Hermitian metric the assertion of the previous corollary is
simply the general fact that a self-adjoint Fredholm operator is invertible if and only if
its kernel is trivial.

Corollary 3.16 The subcomplex (13(1,00), ﬁ(k,oo)) is acyclic and
H*((Dpo 5. Vio.a)) = H*(D. V).

Proof Corollary 3.15 allows us to apply the purely algebraic result [6, Lemma 5.8].
Consequently (D), 00). V(1,00)) 18 an acyclic complex. Together with the decomposi-
tion (3-6) this proves the assertion. a

Since the spectrum of B? is discrete accumulating only at infinity, (25[0, Al 6[0, A s a
complex of finite-dimensional complex vector spaces where I'[g 3): Dﬁ) i D[’g_)‘]]‘ is
the chirality operator on the complex in the sense of [6, Section 1.1].

We also use the notion of determinant lines of finite dimensional complexes, going
back at least to [22], which are given for any finite complex of finite-dimensional vector
spaces (C*, d4) as follows:

DetH*(C*,3,) = (X) det H* (C*, 9,0k,
k
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where the determinant det H¥ (C*, 3,) is the top exterior power of HX(C*, 3) and
det H* (C*,05) ' =det H k (C*,04)*. The notion of determinant lines of finite di-
mensional complexes is also discussed in [6]. We follow [6, Section 1.1] and form the
“refined torsion” (note the difference from “refined analytic torsion”) of the complex

(5[o,x], ﬁ[o,x]) :

_ 1) ~ 1)+
(3-8) ppoai=co® () @@ ()T @ (Tjo e D™
® - ® (Tjoa1¢1) ® (Tjo.27¢0) Y € Det(H* (Do 41, Vioa)

where ¢ € det H k (15[0, Al §[0, a]) are arbitrary elements of the determinant lines, f‘[oy Al
denotes the chirality operator

m—e

10,210 Doy — Ploa]

extended to determinant lines and for any v € det H k (5[0, Als 6[0, 1) the dual vle

det H* (Dro, 21 V[O’A])_l = det H¥ (Dyo,a1> Vo)™ is the unique element such that
-1

v (v) =1.

By Corollary 3.16 we can view pjo 3] canonically as an element of Det(H *(23, 6)),
which we do henceforth.

The second part of the construction is the graded determinant. The operator B*-00)
A > 0 is bijective by Corollary 3.15 and hence by injectivity (put Z = (A, 00) to
simplify the notation)

(3-9) ker(V7T7) Nker(T'zV7) = {0}.

Further the complex (751, %I) is acyclic by Corollary 3.16 and due to I being an
involution on Im(1 — T2 [g 37) we have

(3-10) ker(V7I7) = Trker(V7) = TzIm(Vy) = Im(T7 Vy),
(3-11) ker(TzV7) = ker(V7) = Im(V7) = Im(V7Ty).

We have Im(fzﬁz) + Im(ﬁzfz) = Im(B%) and by surjectivity of 37 we obtain from
the last three relations above

(3-12) Im(1 — Iz [ ) = ker(V7I'7) @ ker(T7 V7).
Note that B leaves ker(VI") and ker(I'V) invariant. Put
B 00 = p(-o0) } Deven e (VT),

B—>*:0) . g,00) b Deven ker(f‘%).

even
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We obtain a direct sum decomposition

B — g+, (1,00) gy g=s(h,00)

even even even

As a consequence of Theorem 3.9 (ii) and Proposition 3.12 there exists an Agmon
angle 0 € (—m, 0) for B, which is clearly an Agmon angle for the restrictions above,
as well.

By Theorem 3.9 and Proposition 3.12 the zeta function g (s, B) is holomorphic for
Re(s) sufficiently large. The zeta-functions (g (s, Bjsgf}"”)) of Bejiég}”’oo), defined with
respect to the given Agmon angle 6, are holomorphic for Re(s) large as well, since
the restricted operators have the same spectrum as B but in general with lower or at
most the same multiplicities.

We define the graded zeta-function

Car0 (5, BL:2) 1= Lo (5, BEL) — ¢ (s, —Bil+29), Re(s) > 0.

even even even

In the next subsection we prove in Theorem 4.4 that the graded zeta-function extends
meromorphically to C and is regular at s = 0. For the time being we shall assume
regularity at zero and define the graded determinant.

Definition 3.17 (Graded determinant) Let 6 € (—x,0) be an Agmon angle for
B*:%) Then the “graded determinant” associated to 8% and its Agmon angle 6
is defined as follows:

d
detg o685 = exp( — 51| a6 B3

Proposition 3.18 The element

p(V. M) := dety, 6 (BL:S®) - ppo,a) € Det(H*(D, V)

even

is independent of the choice of A > 0 and choice of Agmon angle 6 € (—m,0) for the
odd-signature operator B*-°) .

Proof Let 0 <A < < oo. We obtain 13[0#] = 5[0,A] ® 5(k,u] and also 5@,00):
1’5(;\, u] © 1’5(%00). Since the odd-signature operator respects this spectral direct sum
decomposition (see (3-7)), we obtain

detgr(B(}»,oo)) — detgr(lg(u,oo)) ) detgr(B(’\’/L]),

even even even
Further the purely algebraic discussion behind [6, Proposition 5.10] implies
Pro,u1 = deter (B - ppo 1.
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This proves the equality
detyr (BGen®)) - pro,a) = detgr (BY) - ppo -

even even

To see independence of 8 € (—, 0) note that the strongly elliptic operator (cf Lemma
3.8)

D:=T(DEF @ DS®
is self-adjoint and B differs from D by a bounded perturbation. By a Neumann-series
argument and the asymptotics of the resolvent for D (see Seeley [28, Lemma 15]) we

get:
(3-13) V0 € (—m,0): Spec(B) N Ry is finite.

By discreteness of Spec(B3) we deduce that if 8,60" € (—7,0) are both Agmon angles
for B*-%) | there are only finitely many eigenvalues of B%° in the solid angle
between 6 and 6. Hence

d d
_ A,00)\) — & , (A,00) .
Oé‘gr,G(S’ B )) = ds s=0§gr,0 (S’ B )) mod 27,

ds ls= even even

and therefore detyr g (B(’\"’o)) = dety; ¢/ (BO»,OO))‘

even even

This proves independence of the choice of 6 € (—m, 0) and completes the proof. O

Note that the construction of p(V, gM) is in fact independent of the choice of a
Hermitian metric #£ . Indeed, a variation of 2 does not change the odd-signature
operator B as a differential operator. However it enters a priori the definition of D(B),
since hE defines the L2—Hilbert space.

Nevertheless different Hermitian metrics give rise to equivalent L2 —norms over com-
pact manifolds. Hence a posteriori the domain D(B) is indeed independent of the
particular choice of #E . Independence of the choice of a Hermitian metric A% is
essential, since for nonunitary flat vector bundles there is no canonical choice of A%
and Hermitian metric is fixed arbitrarily.

In the next section we determine the dependence of p(V, g™) on the Riemannian
metric g™ | in order to construct a differential invariant, which will be called the refined
analytic torsion.

4 Metric anomaly and refined analytic torsion
We introduce the notion of eta-function leading to the notion of the eta-invariant of an

elliptic operator. The eta-invariant was first introduced by Atiyah, Patodi and Singer
in [2] as the boundary correction term in their index formula.
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Theorem 4.1 (PB Gilkey—L Smith) Let (K, gX) be a smooth compact oriented
Riemannian manifold with boundary 3K . Let (F, h*) be a Hermitian vector bundle
and let the metric structures (g%, hf') define an L*— scalar product. Let

D: C®(K, F) — C®(K, F)

be a differential operator of order w such that » - rankF is even. Let a boundary
value problem (D, B) be strongly elliptic with respect to C\R* and an Agmon angle
0 € (—m,0). Then we have:

(i) Dgp is a Fredholm operator in the Hilbert space L?(K, F) with discrete spectrum
and its eta-function

ne(s, D)= Y m@)-Ag"— Y m@A)-(=h)y’,

Re(1)>0 Re(A)<0

where m()\) denotes the finite (algebraic) multiplicity of the eigenvalue A, is
holomorphic for Re(s) large and extends meromorphically to C with at most
simple poles.

(ii) If D is of order one with the leading symbol op(x, &), x € K, € T} K satisfying

op(x.§)* = [§*- 1,

where I is rank F' x rank F' identity matrix, and the boundary condition B is of
order zero, then the meromorphic extension of ng(s, Dp) is regular at s = 0.

The proof of the theorem follows from the results in [18; 19] on the eta-function of
strongly elliptic boundary value problems. The fact that ng(s, Dp) is holomorphic
for Re(s) sufficiently large is asserted in [18, Lemma 2.3 (c)]. The meromorphic
continuation with at most isolated simple poles is asserted in [18, Theorem 2.7].

The fact that s = 0 is a regular point of the eta-function is highly nontrivial and cannot
be proved by local arguments. Using homotopy invariance of the residue at zero for
the eta-function, P B Gilkey and L Smith [19] reduced the discussion to a certain class
of operators with constant coefficients in the collar neighborhood of the boundary and
applied the closed double manifold argument. The reduction works for differential
operators of order one with 0—th order boundary conditions under the assumption on
the leading symbol of the operator as in the second statement of the theorem. The
regularity statement of Theorem 4.1 follows directly from [19, Theorem 2.3.5] and [19,
Lemma 2.3.4].

Remark 4.2 The definition of an eta-function, as in Theorem 4.1 (i), also applies to
any operator D with finite spectrum {A{,...,A,} and finite respective multiplicities
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{my,...,my}. For a given Agmon angle 6 € [0, 27) the associated eta-function
ne(s.D):= > mM)-A5 = Y m@)- (=1’
Re(L)>0 Re(A)<0

is holomorphic for all s € C, since the sum is finite and the zero-eigenvalue is excluded.

Proposition 4.3 The eta-function ng (s, Beven) associated to the even part Beye, of the
odd-signature operator and its Agmon angle 6 € (—m,0), is holomorphic for Re(s)
large and extends meromorphically to C with s = 0 being a regular point.

The statement of the proposition on the meromorphic extension of the eta-function is a
direct consequence of Theorem 4.1 (i) and Proposition 3.12. The regularity statement
follows from Theorem 4.1 (ii) and an explicit computation of the leading symbol of
the odd-signature operator; compare also [19, Example 2.2.4].

Using Proposition 4.3 we can define the eta-invariant in the manner of [6] for Beyen:

1
4-1) n(Beven) = 5 (UO(S =0, Beven) +m4 —m_ +my),

where m L is the number of Beyen—eigenvalues on the positive, respectively the negative
part of the imaginary axis and m¢ is the dimension of the generalized zero-eigenspace
of Beven .

Implicit in the notation is also the fact, that 17(Beyven) does not depend on the Agmon
angle 6 € (—m,0). This is due to the fact that, given a different Agmon angle 6’ €
(—m, 0), there are by (3-13) and discreteness of Spec(53) only finitely many eigenvalues
of Beyen in the acute angle between 6 and 6.

Similarly we define the eta-invariants of Bé&e’,fo ) and Bf[;(v)g?,”] and in particular we get

1(Beven) = n(BG®) +n(BEG)).
Before we prove the next central result, let us make the following observation.

Consider the imaginary axis iR C C. By (3-13) there are only finitely many eigenvalues
of B on iR. Further by the discreteness of Spec(3) small rotation of the imaginary
axis does not hit any further eigenvalue of B and in particular of Béégﬁ" ), A >0. More
precisely this means that there exists an € > 0 sufficiently small such that the angle

T
6:=-2
2 te
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is an Agmon angle for Beven °) and the solid angles
Lnj29:=1z€C|z=z|-¢"?,¢ € (-7/2,0]},
Lizj2.6+n:=4{z€C|z=z]-¢'® ¢ € (n/2,0 + x|}
do not contain eigenvalues of Béi‘e,i"’ ) With this observation we can state the following
central result:

Theorem 4.4 Let § € (—n/2,0) be an Agmon angle for Bé&g? ) such that there
are no eigenvalues of Bgven ) in the solid angles L(_ />, 9] and L(_z/2,047]- Then
26 is an Agmon angle for (Béven )2 and hence for B> FD o) in each degree
k=0,...,dim M . Then the graded zeta-function o g (s, Beven S) Re(s) > 0 extends
merommplncally to C and is regular at s = 0 with the following derivative at zero:

d I < d ~
B*,00)yy — k+1 2 k
7| Lot BY ))—52_;(—0 | bl B2 1 B )

Z( DF k- £29(0. B2 } DYy o)) +imn(BLE).

Proof For Re(s) > 0 the general identities [BK1 (4.10), (4.11)] imply the following
relation between holomorphic functions:

1+e—ins s s a
G5B = 15 (205, 088202 ) oo (5. (B2 )

(e (6. B8 + 70,

where f(s) is a holomorphic function (combination of zeta-functions associated to
finite-dimensional operators) with

£0) = my (BE:2) —m_(BL:2),

even even

where m4 (-) denotes the number of eigenvalues of the operator in brackets, lying on
the positive, respectively the negative part of the imaginary axis.

Put 7 = (X, 00) to simplify notation. Recall (3-11) and show that
(4—2) 61'1 ker(%II:I) — ker(f‘Iﬁz) = Im(%l'fz)

is bijective. Indeed, injectivity is clear by (3-9). For surjectivity let x = ViTzv e
Im(VzI'z) with (recall (3-12))

v=1v®v" e Im(ﬁzfz) &) Im(f‘zﬁz) =Im(1 — T2 (9 27)-
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In particular v” € Im(ffﬁf) = ker V7I'7 and v/ = V;T70 for some o. Hence we
obtain

X = ﬁzf‘jv = 611:1'1}/ = ﬁzf‘zﬁzf‘zw,
and f‘zﬁzf‘zw € ker 61’1:1.
In other words we have found a preimage of any x € Im(VI FI) under V7. This proves

bijectivity of the map in (4-2) and consequently, since V7 commutes with BZ and
(B%)?, we obtain in any degree k =0,...,m

4-3) $20(s. (BH)? 1 DF) = L9 (s, (B P DFH,

Using this relation we compute straightforwardly for Re(s) sufficiently large:
@-4)  Lap(s, (BEa®) = Lapls, (Bm)®) = Z( DEF kL (s. (BT)? |} D).

We arrive at the following preliminary result for Re(s) > 0

(4-5) Coro(s, Boen)) = 5 (1+e—””)2( DEFT k- L (s, (BT | DY)
k=0

+ %(1 _””)(TI(S Beven) + f(S))

We find with Theorem 3.9 and Proposition 4.3 that the right hand side of the equality
above is a meromorphic function on the entire complex plane and is regular at s = 0.
Hence the left hand side of the equality, the graded zeta-function, is meromorphic on
C and regular at s = 0, as claimed and as anticipated in Definition 3.17. Computing
the derivative at zero, we obtain the statement of the theorem. |

Fix now an Agmon angle 6 € (—x/2,0) for Beyen as in Theorem 4.4 for the remaining
part of the section. As a consequence of the theorem above, we obtain for the element
p(V, gM) defined in Proposition 3.18 the following relation:

4-6) (V. gM) = 8 (V&™) =i (Vg™ p=imnBL ™) o
Mmy_ 1 ¥ k.4 2
4-7) &(V.g )ZEZ(_I) 'k'd— fze(S (B FD@ o))
k=0
48 EV.gM=! Z( DF k- Lag(s =0, (B> 1 Dy o0)))-
2 o
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Now we can identify explicitly the metric dependence of p(V, g™) using the formula
(4-6).

Consider a smooth family g™ (¢), t € R of Riemannian metrics on M . Denote by
T'; the corresponding chirality operator in the sense of Equation (3-2) and denote the
associated refined torsion (cf (3-8)) of the complex (D¢ [0,1]. V+,[0,4]) bY 0¢,0,1]-

Let B(t) = B(V, g™ (¢)) be the odd-signature operator corresponding to the Riemann-
ian metric g™ (¢). Fix fo € R and choose A > 0 such that there are no eigenvalues of
B(ty)? of absolute value A. Then there exists § > 0 small enough such that the same
holds for the spectrum of B(¢)? for |t —ty| < §. Under this setup we obtain:

Proposition 4.5 Let the family g™ (t) vary only in a compact subset of the interior
of M . Then exp(&,(V, gM (1)) - Pt,[0,2] 1s independent of t € (tg — 6,19 +§).

Proof The arguments of [6, Lemma 9.2] are of local nature and transfer ad verbatim
to the present situation for metric variations in the interior of the manifold. Hence the
assertion follows for Riemannian metric remaining fixed in an open neighborhood of
the boundary. a

Proposition 4.6 Denote the trivial connection on the trivial line bundle M x C by
Viivial - Consider the even part of the associated odd-signature operator (recall Definition
3-7) Btrivial = Beven(vtrivial) and put

Muivial *= %’I(O, Buivial)-
Indicate the metric dependence as follows:
Buivial (1) := Buivia(g™).
Nuivial (1) 1= %77(0, Bisiviar (2))-

Then n(B&gﬁ") (1)) — rank(E) nyivial (¢) is modulo Z independent of t € (tg — 6,y + 8).

Proof Indicate the dependence of 5;‘0’ ») on gM (1) by

ﬁ{i),k](t) := Image HB(I)Z,[O,)»] N 5k.
Note first the by the choice of § > 0

dim Zﬁjﬁu](t) =const, € (tg—46,t9+6).
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Since Bgeéﬁ] (?) is finite-dimensional, we infer from the definition of the eta-invariant
(cf [6, (9.11)])

even

1 ~
(4-9) n(BOM (1)) = 5 dim D (1) = constmod Z, 1 € (1o —8.10 +5).

By construction
N(Beven(1)) = n(Bis® (1)) +n(BReg) (1)),

Hence, in view of (4-9), it suffices (modulo Z) to study the metric dependence of the
eta-invariant of n(Beyen(?)).

View Beven(?) as a pair of a differential operator Pg(¢) with its boundary conditions
Qg (t). Similarly view Byiyvia () as a pair (Pc(¢), Oc(¢)). Note that by construction
the pair (Pg (1), Q (1)) is locally isomorphic to (Pc (), Oc (7)) x 1¥, since the flat
connection V is locally trivial in appropriate local trivializations.

Since the variation of the eta-invariants is computed from the local information of the
symbols (cf [18, Theorem 2.8, Lemma 2.9]), we find that the difference

N (Beven (1)) — rank (E)n(Buiviai (1)) = n(Pg (1), Q£ (1)) —rank(E)n(Pc (1), Qc (1))

is independent of # € R modulo Z. The modulo Z reduction is needed to annihilate
discontinuity jumps arising from eigenvalues crossing the imaginary axis. Note that by
definition

1
Ntrivial (Z) =n (Btrivial (t)) - E dimker Biivial (t) .

However ker Byivia (1) =~ H®"(M, M, C) d H®*"(M, C), the direct sum of relative
and absolute cohomology of M with complex coefficients in even degrees. Hence
dim ker Byvia () is in fact independent of ¢ € R, which proves the statement of the
proposition. a

Proposition 4.7 Let B(Vyivia) denote the odd-signature operator (Definition 3.7)

associated to the trivial line bundle M x C with the trivial connection Viivia. Consider
in correspondence to (4-8) the expression

E(Visiviar. g™ (1) = % Y (=D k- La6(s = 0, (B(Viviai, € (1)* } D).
k=0

Then E.(V, g™ (1)) = rank(E) - € (Viriviat, g™ (1)) mod Z

is independent of t € R.
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Proof We show first that modulo Z it suffices to study the metric dependence of

~ ] — ~
E(V g™ () =5 Y (=D k- Lagls = 0, (BV, g (1)* 1 D).
k=0

Indeed, by construction we have

E(V. M) =6.(V.eM (1) + % > =Dk -k -dim Dfy 5(0).
k=0

Anticipating the auxiliary result of Lemma 4.8 (iii) below, we obtain
§V.gM @) =56(V.¢M (1) modZ.

Recall that B(Vyivial, gM ) X 1%E and B(V, gM ) are locally isomorphic, as already
encountered in the proof of Proposition 4.6. Now the statement of the proposition
follows from the fact that the value of a zeta function at zero is given, modulo Z in
order to avoid dimker B(¢) € Z, by integrands of local invariants of the operator and
its boundary conditions. a

Lemma 4.8 LetZ C R denote any bounded interval. Then:
(i) 17 o(=D¥*1.k . dim DK = (dim M/2) dim DL mod 2Z.
(ii) If0 ¢Z, then dim DS = 0 mod 27,
(i) IfO¢Z, then I Y7 o(—DF+! -k -dim DK = 0 mod Z.

Proof Note first the following relation:
Bi = f‘OBil_kOf‘.

Hence with r = (m 4 1)/2 we obtain

1 m _ 1 r—1 _
(4-10) 3 > (=DFF k- dim Dk = 3 > " (m—4k)-dim DFF
k=0 k=0
m _ r—1 _
= = dim D" 2 > k-dimDF.
k=0

This proves the first statement. For the second statement assume 0 ¢ 7 till the end of
the proof. Consider the operators

4-11) B;:’I = f‘j;%ji ﬁ% N ker(ﬁzf‘z) — ﬁ%”_k_l N ker(ﬁzfz),
4-12) B]:’I = ﬁzfzi '5% N ker(f‘zﬁz) — ﬁ%n—k-i—l N ker(f‘zﬁz).
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Since 0 ¢ 7, the maps B}:{l:,z are isomorphisms by bijectivity of the map in (4-2).
Furthermore they commute with (8%7)2 in the following way:

(4-13) Bt o[(BED)? ) DF) = [(BED)? } DT o B

Hence we obtain, denoting by ﬁ}t K the span of generalized eigenforms of (B3%7)?2 rﬁk ,
the relations

Ntk g S+ m—k—1
dimD; " =dim D ,

dimD;* = dim D™ * !

As dim Deven dim D+ even +d1mD Y this implies (recall M is odd-dimensional)

(4-14) dim D" = dim D **” mod 27, if dim M = 4p + 1,
(4-15) dim D" = dim D;**” mod 27, if dim M = 4p —1.

Finally recall the explicit form of (B%)?:

2 TVimaxT Vimin 0 (D} 0
B = 0 I'Vipin['V —\ o pf )
min max 2

Viinl Vimax I’ 0 Dy 0
—\2 _ min max . 1
B = ( 0 VmaxFVminI‘) o ( 0 D )

Moreover we put
-~ +.7 +.7
(B=H? 1D =D @ Dy
Note the relations
(T'Vinin) © DIF = D;_ 0 (I'Vinin).
D o (I'Vinax) = (['Vinax) 0 D
(Vmaxr) o Dl_ = D2_ o (vmaxr),
1 ° (vminr) = (Vminr) o D_-

Due to O ¢ T these relations imply, similarly to (4-13), spectral equivalence of D
and D 7 in the middle degree k =2p for dim M =4p £ 1, respectively. This ﬁnally
yields the desired relations:

dim D" = dim D} *” = 0 mod 2Z, if dim M =4p + 1,
dim D" = dim D;**” = 0 mod 27, if dim M =4p—1. O
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Propositions 4.5, 4.6 and 4.7 determine together the metric anomaly of p(V, g™) up
to a sign and we deduce the following central corollary.

Corollary 4.9 Let M be an odd-dimensional oriented compact Riemannian manifold.
Let (E,V, hE ) be a flat complex vector bundle over M . Denote by Vyivia the trivial
connection on M xC and let Byiyia denote the even part of the associated odd-signature
operator. Then

4-16)  pan(V) = p(V, gM)-exp (i 7 tk(E) (uiviar(€™) + E(Vusiviar, £)))

is independent of the choice of g™ in the interior of M .

Proof Consider a smooth family g (¢), t € R of Riemannian metrics, varying only in
the interior of M . Then p(V, g™ (¢)) is continuous in ¢, due to well-known continuity
of zeta-determinants; compare [11, Section 3.7]. Similarly we have continuity of
§ (Viivial, €M (7). The additional term

exp (i 70 tk(E)nyivial (8™ (¢)))

is also continuous in ¢ € R. For this note that the kernel of Byyia is given up to
isomorphism by a direct sum of relative and absolute cohomology of M with complex
coefficients in even degrees

ker Buivial (g™ (1)) = H®*™ (M, M, C) ® H®*(M, C).

Hence dim ker Byivial(g™ (¢)) is in fact independent of # € R and thus no eigenvalues
of Buiviar(g™ (¢)) can cross zero, as ¢ varies. Therefore p.n(V), where we denote its
a priori metric dependence by pu(V, g™ (7)), is continuous and in ¢ and nowhere
vanishing.

For gM (¢) varying only in the interior of M and any #,7; € R we infer from the
mod Z metric anomaly considerations in Proposition 4.6 and Proposition 4.7:

Pan(V. g™ (1)) = £pun (V. g™ (11)).

Since pan(V, gM (1)) is continuous and nowhere vanishing, the sign at the right hand
side of the equality must be positive. This proves the statement. O

In view of the corollary above we can now define the “refined analytic torsion”. It will
be a differential invariant in the sense, that even though defined by geometric data in
form of the metric structures, it is shown to be independent of their form in the interior
of the manifold.
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Definition 4.10 Let M be an odd-dimensional oriented Riemannian manifold. Let
(E,V) be a flat complex vector bundle over M . The refined analytic torsion pa,(V)
is an element of DetH* (D, V), defined by (4-16).

5 Comparison with Braverman and Kappeler’s refined ana-
lytic torsion

Let (M, gM) be a compact odd-dimensional oriented Riemannian manifold with
boundary dM , which may be empty. Let (E, V, hE) be a flat complex vector bundle
over M . The Hermitian metric 4% need not to be flat with respect to the connection V.

The refined analytic torsion by Braverman and Kappeler in [6, Definition 9.8] refines
analytic Ray—Singer torsion on closed manifolds. It can be applied to the Riemannian
manifold (M, g™) with the flat complex vector bundle (E, V) in case the boundary
oM is empty.

Assume dM = & and denote the associated odd signature operator, in the sense of [6,
Definition 7.3] by B and its even part by Beyen. The even part of the odd signature
operator in the sense of [6, Definition 7.3], associated to the trivial line bundle M x C,
shall be denoted by Byiyial. For any A > 0 one can decompose

Beven = Blo:A] ® B(X,OO)’

even even

similar to (3-7) and further define, following [6, Section 1.1] the associated refined
torsion element ,oﬁ)KM edet H*(M, E). Then the refined analytic torsion of Braverman
and Kappeler is given by

_ |
5-1 pfrf((V) = detgr(Be(i‘efo)) -exp (l]TI‘k(E) . Er}(O, Btrivial)) 'Pﬁ)l,(k]-

The construction of Braverman and Kappeler does not apply to manifolds with boundary.
Our construction of refined analytic torsion closes this gap, seems however slightly more
complicated. To illustrate the differences more precisely, let us apply our construction
to (M, gM) in case of nonempty boundary M .

Denote the associated odd signature operator in the sense of Definition 3.7 by I and
its even part by Bevwen. The even part of the odd signature operator in the sense of
Definition 3.7, associated to the trivial line bundle M x C, shall be denoted by Biiyial -
Moreover we consider the expression S;A' (Viivial, M), defined in Proposition 4.7 in
terms of zeta-functions associated to Biyial -

For any A > 0 we can decompose

Beven — ~even even
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as in (3-7) and further consider, following (3-8), the associated refined torsion element
P[0,1]- Then our definition of refined analytic torsion in Definition 4.10 is given by

. I -
pan(V) = detgr(Bé\);ér?O)) - €Xp (l mrk(E) (577(0, Biivial) + é(vtrivial, gM))) *Plo,A]-

Formal comparison of expressions pBK (V) and p, (V) shows that in contrast to refined
analytic torsion of Braverman and Kappeler, the complex phase of our construction
contains the term &(Viivial, gM ) in addition to the eta-invariant term.

Below we discuss the origin of the additional term &(Vyivial, gM ) in our construction
of refined analytic torsion. Furthermore we compare both constructions on a closed
Riemannian manifold.

5.1 Origin of the additional term § in the complex phase

The additional term S(valal, g ) is designed to annihilate the metric dependence of
EA (V,gM), 1 > 0. The term fk (V, gM) appears in Theorem 4.4 and is a weighted
alternating sum of zeta functions of B2 | Dé‘ 3,00)” evaluated at zero. Similar term
appears in the construction of refined analytic torsion in [6], as well.

However, on closed odd-dimensional manifolds zeta-functions ¢y (s, D) of bijective
differential operators of even order vanish at s = 0 and the general result [6, Proposition
6.5] holds. As a consequence, in case of empty boundary there is no metric dependence
to annihilate, other than that coming from the eta-invariant.

On compact odd-dimensional manifolds with boundary, zeta-functions of bijective
elliptic operators of even order need not to vanish at zero and hence we cannot apply
the general arguments of [6]. In particular the metric dependence of SAA (V,gM) may
be nontrivial.

If however 0M = &, then by the arguments of [6, Proposition 6.5] and Lemma 4.8 we
obtain for the additional term &(Viivial, gM )

dim M
(5-2) S(Vtrlvml g ) = mT di mHeven(M (C)

Hence é? (Viivial, ™) does not depend on the Riemannian metric g™ in case of empty
boundary. In particular there is no metric dependence of E;b (V, gM) to annihilate and
in the setup of closed Riemannian manifolds indeed only an additional complex phase
exp(inrk(E) - %U(O, Bhivial)) 18 required to turn detgr(Béégﬁ"’ )) * Plo,a] into a differential
invariant.
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Similar situation appears on compact manifolds with product metric structures near
the boundary, as in the setup of Theorem 6.3 below. In this case one can relate the
constructions to a closed smooth double manifold and argue as in the boundaryless
case.

5.2 Comparison of both constructions on a closed manifold

Theorem 5.1 Let (M, g™) be a closed odd-dimensional oriented Riemannian mani-
fold with a flat complex vector bundle (E,V,hT) over M . Let

w: det H*(M, E) @ det H*(M, E) — det (H*(M, E) ® H*(M. E))
be the fusion isomorphism of [6, Section 2.6]. Then we have in the notation of Section 5
11 (05 (V) ® i (V) = pan(V) -exp (imA),
where

A= =2(BE) + n(BY) + tk(E)n(0, Buivia)

even even

dim M

1 : even
—1k(E)- En(o’Btrivial) —1k(E)- -dim H®*"(M, C).

Proof Consider the usual odd signature operator on the flat vector bundle (£, V) over
the closed Riemannian manifold (M, g™)

B=TV+VIl: Q*(M, E)— Q*(M,E).

The odd signature operator in the sense of Definition 3.7, acting on smooth differential
forms, is then given by

B= (g g): Q*(M,E) ® Q" (M, E) > Q*(M, E) & Q" (M. E).

Consider for any fixed A > 0 the graded determinant dety, Bé&g;"’ ), defined in [6,
(7-10)], and the graded determinant detg, Béég,i"’ ) of Definition 3.17.

Note that Spec(B?) and Spec(B?) differ only by their multiplicities. Namely, the
multiplicity of any fixed eigenvalue in Spec(?) is double the multiplicity of this
eigenvalue in Spec(B?). Hence we find, using the relations [6, Proposition 8.1] and
Theorem 4.4, for the graded determinants

(5-3) detg B2 = (dety, B2 - exp (2i mn(BL:) — imn(BL:2)).

even even even even
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Furthermore, let us consider for the fixed A > 0 the refined torsion elements /OFOKA] €
det H*(M, E) and pyg 5] € det (H*(M, E) ® H*(M, E)). Similar arguments as in
[6, Lemma 4.7] show

BK BK
(5-4) M(P[o,x] ® P[o,x]) = P[0,A]-

Combination of (5-3) and (5-4), together with the formula (5-2) for g? (Viivia, gM)
leads then to the desired result.

6 Ray-Singer norm of refined analytic torsion

Recall first the construction of the Ray—Singer torsion as a norm on the determinant line
bundle for compact oriented Riemannian manifolds. Let (M, gM) and (E,V,hE) be
as in Section 3.

Let A be the Laplacian associated to the Fredholm complex (Dpin, Vimin) defined at
the beginning of Section 3. As in (3-6) in case of the squared odd-signature operator
B2, it induces a spectral decomposition into a direct sum of subcomplexes for any
A>0.
A A A A
(Diin: Vinin) = (D, VM) @ (D520, V152,

min ’ ° min min min
The scalar product on Dr[l?i’n)”] induced by g™ and 7 E induces a norm on the determinant
line Det(Dr[I?i’n”, VI[I?i’n)“]) (we use the notation of determinant lines of finite dimensional
complexes in [6, Section 1.1]). There is a canonical isomorphism

oa: Det(’D[O’” V[O’k]) — DetH™ (Duin, Vinin)

min ° ' min

induced by the Hodge decomposition in finite-dimensional complexes. Choose on

Det H* (Dmin, Vinin) the norm || - ||§fl such that ¢, becomes an isometry. Further denote

by T, (lisoo) (Vimin) the scalar analytic torsion associated to the complex (D, . i

1 « A
T(l}»S,OO)(Vmin) ‘= exp (5 Z(_l)k+l k .C/(S =0, AI(C’;;O) )’
k=1

where Ar%’oo) is the Laplacian associated to the complex (D(k.;loo), VO”’OO)). Note the

mi min
difference to the sign convention of [26]. However we are consistent with [6].

The Ray-Singer norm on Det H* (Diin, Viin) is then defined by

(6-1) 1 I8 Doy = 1 I TS o) (V).
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With a completely analogous construction we obtain the Ray—Singer norm on the
determinant line Det H* (Diax, Vinax)

(6-2) I ez (D vy 7= 113 T o0y (Vimax)-

Both constructions turn out to be independent of the choice of A > 0, which follows
from arguments analogous to those in the proof of Proposition 3.18. In fact we get for
0<Xi<upu,

|| . ”;i:l/abs _ ” ”rel/abs TRSM](me/max)

which implies that the Ray—Singer norms are well-defined. Furthermore by the argu-
ments in [24, Theorem 2.6] the norms do not depend on the metric structures in the
interior of the manifold.

Remark 6.1 Note that the Ray—Singer analytic torsion considered in [33] and [23]
differs from our setup in the sign convention and by the absence of factor 1/2.

We can apply the same construction to the Laplacian of the complex (23, 6) introduced
in Definition 3.4

(ﬁ’ 6) = (Dmin, Vmin) ©® (DmaXa Vmax)-

Similarly we obtain
(6-3) 1B e = 1 I Ty (D).

This “doubled” Ray—Singer norm is naturally related to the previous two norms in
(6-1) and (6-2). There is a canonical “fusion isomorphism”; see [6, (2.18)] for general
complexes of finite dimensional vector spaces

(6-4)  w: DetH* (Dmin, Vinin) D Det H* (Pmax, Vimax) — DetH* (D, V),
such that ey ® o)l = Al - 12113,

where we recall (25, 6) = (Dmin> Vmin) @ (Dmax> Vmax) by definition. Further we have
by the definition of (D, V) following relation between the scalar analytic torsions:

(6-5) T, (lisjoo) (6) =T, (]}LS,OO) (Viin) - T(i?w) (Vmax)-
Combining (6-4) and (6-5) we end up with a relation between norms

RS RS
66 Nul ®hI 1 55, = 1S+ (0 V1t 0 500

The next theorem provides a motivation for viewing p0.,(V) as a refinement of the
Ray-Singer torsion.
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Theorem 6.2 Let M be a smooth compact odd-dimensional oriented Riemannian
manifold. Let (E,V, h) be a flat complex vector bundle over M with a flat Hermitian
metric hE . Then

RS =
10 (Ve 7+ 5.5 = 1

Proof Recall from the assertion of Theorem 4.4

detgr(B()"oo)) = 5 (Vg™ ,e—ing,\(V,gM) o1 (Besen)

even

Flatness of hf implies by construction that 32 = A @ A,ps and hence
E.(V.8M) = —log T, (V). 0

Further Beyen is self-adjoint and thus has a real spectrum. Hence 7(Beven) and
£.(V, gM) are real-valued, as well. Thus we derive

1
(6-7) | detgr(B%:09)| = ————.
Too0 V)
Furthermore we know from [6, Lemma 4.5], which is a general result for complexes of

finite-dimensional vector spaces,

(6-8) loro,alla = 1.

Now the assertion follows by combining the definition of the refined analytic torsion
with (6-7), (6-8) and the fact that the additional terms annihilating the metric anomaly
are all of norm one. In fact we have

”pan(v)“giH*(ﬁﬁ) = |detgr(8glkefo))| : T(I}LS’OO) (6) ||/0[0,k]||k =1

If the Hermitian metric is not flat, the situation becomes harder. In the setup of closed
manifolds M Braverman and T Kappeler performed a deformation procedure in [6,
Section 11] and proved in this way the relation between the Ray—Singer norm and the
refined analytic torsion in [6, Theorem 11.3].

Unfortunately the deformation argument is not local and the arguments in [6] do not
apply in the setup of manifolds with boundary. Nevertheless we can derive appropriate
result by relating our discussion to the closed double manifold.

Assume the metric structures (g™, hE) to be product near the boundary dM . The
issues related to the product structures are discussed in detail in [4, Section 2]. More
precisely, we identify using the inward geodesic flow a collar neighborhood U C M
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of the boundary dM diffeomorphically with [0, €) x dM, € > 0. Explicitly we have
the diffeomorphism

¢ [0,€) xOM — U,
. p) = vp(0),

where y, is the geodesic flow starting at p € M and y,(¢) is the geodesics from p
of length ¢ € [0, €). The metric g™ is product near the boundary, if over U it is given
under the diffeomorphism ¢: U — [0, €) x M by

(6-9) pg™ |y = dx* ® gM|aur.

The diffeomorphism U = [0,€) x M shall be covered by a bundle isomorphism
¢: E|ly = [0,€) x E|ypr. The fiber metric A is product near the boundary, if it is
preserved by the bundle isomorphism, ie

(6-10) $xh® | ixyxams = hE o
The assumption of product structures guarantees that the closed double manifold
M= MUy M

is a smooth closed Riemannian manifold and the Hermitian vector bundle (E, /%)
extends to a smooth Hermitian vector bundle (I, #®) over the manifold M.

Moreover we assume the flat connection V on E to be in temporal gauge. The precise
definition of a connection in temporal gauge and the proof of the fact that each flat
connection is gauge-equivalent to a flat connection in temporal gauge, are provided
in [32].

The assumption on V to be a flat connection in temporal gauge is required in the
present context to guarantee that V extends to a smooth flat connection D on E, with

Dip = V.
Theorem 6.3 Let (M™, g™) be an odd-dimensional oriented and compact smooth

Riemannian manifold with boundary dM . Let (E,V, h¥) be a flat Hermitian vector
bundle with the Hermitian metric h® , not necessarily flat.

Assume the metric structures (g™ , h'®) to be product and the flat connection V to be
in temporal gauge near the boundary dM . Then

1P (DI 17+ 5.5 = exP(Im N (Beven(g ™))
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Proof By assumption we obtain a closed Riemannian double manifold (M, M) and
a flat Hermitian vector bundle (E, D, #®) over M with a flat Hermitian metric 4.
Denote by (D, D) the unique boundary conditions (see Briining and Lesch [9]) of
the twisted de Rham complex (Q*(M, E), D). Denote the closure of Q*(M, E) with
respect to the L2—scalar product defined by g™ and 4%, by L2(M, E).

The Riemannian metric g™ gives rise to the Hodge star operator * and we set
G :=i"(—)kEED24. QF (ML E) > Q¥ ' (ML E), r:=(dim M +1)/2

which extends to a self-adjoint involution on L2(M,E). We define the odd signature
operator B of the Hilbert complex (D, D):

B:=GD +DG.

This is precisely the odd-signature operator associated to the closed manifold M, as
used in the construction of [8; 6].

Note that we now have two triples: the triple (D, G,B) associated to the closed
manifold M and the triple (V, I, B) associated to (M, dM ), as defined in Section 3.

Consider now the diffeomorphic involution on the closed double
a: M — M,
interchanging the two copies of M . It gives rise to an isomorphism of Hilbert complexes
o*: (D,D) — (D,D),

which is an involution as well. We get a decomposition of (D, D) into the (41)—
eigenspaces of a*, which form subcomplexes of the total complex

(6-11) (D.D)=(D". D) (D.D7),
where the upper indices =+ refer to the (£1)—eigenspaces of a*, respectively.

The central property of the decomposition, by similar arguments as in [9, Theorem
4.1], lies in the observation

(6-12) DYy =Dmaxs: D7 | = Dnin.

By the symmetry of the elements in D we obtain the following natural isomorphism
of complexes:

®: (D,D) = (D+7 ]D)+) @ (D7,D7) = (Dmax, Vmax) @ (Dmin, Vimin),

o=0T®w =201y ®20 |y,

Geometry & Topology, Volume 13 (2009)



2022 Boris Vertman

which extends to an isometry with respect to the natural L2—structures. Using the
relations

(6-13) doDod =V, ®oGod !=T,
we obtain with A and A, denoting respectively the Laplacians of the complexes (D, D)
and (D, V) = (Dmins Vmin) Y (Dmax» vmax):

®DB) =D(B), PoBod ! =5,

OD(A) =D(A), PoAod ! =A.
Hence the odd-signature operators B, B as well as the Laplacians A, A are spectrally
equivalent. Consider the spectral projections Iz [o 37 and T2 19 ;7,4 = 0 of B and

B respectively, associated to eigenvalues of absolute value in [0, A]. By the spectral
equivalence B and B we find

®oIlg2 o, = Hp2,[0,510 P
Hence the isomorphism & reduces to an isomorphism of finite-dimensional complexes
@32 (Dpo,a3- Dpo.ap) = (Dpoag: Vio.a):
where Dio,a1 := D NImagellp2 [ 3,
25[0,;»] =Dn Imagellz2 14 5]
Moreover ®; induces an isometric identification of the corresponding determinant
lines, which we denote again by @, , by a minor abuse of notation

®,, : det(Dyo 1. Do, a) = det(Dyo 17, Vio.a1)s

where we use the notation for determinant lines of finite-dimensional complexes in [6,
Section 1.1]. By Corollary 3.16 we have the canonical identifications of determinant
lines

(6-14) det(D[o’)L], D[O,A]) ~det H* (D, D),
(6-15) det(ﬁ[o,x], 6[0’)\]) =~ det H*('ﬁ, 6),

The determinant lines on the left hand side of both identifications carry the natural
L2—Hilbert structure. Denote the norms on det H*(D, D) and det H* (25, 6) which
turn both identifications into isometries, by || - |[5 and |- |[}”, respectively. Then we
can view @) as

®, :det H*(D, D) — det H*(D, V),

isometric with respect to the Hilbert structures induced by || - || and | - |}~
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Finally, consider the refined torsion elements (not the refined analytic torsion) of the
determinant lines, as defined in [6, Section 1.1] (see also (3-8)):

P%,A] € det(Dyo 2], Dpo,1]) = det H*(D, D),
Plo.a € det(Dpo 3. Vioa)) = det H*(D. V).

We infer from (6-13) the following relation:

D.(pfgap) = Plosy:  hence o 5lla = llofgall3 -

Together with spectral equivalence of A and A, as well as of B and B, with similar
statements for constructions on trivial line bundles M x C and M x C, we finally
obtain

(6-16) 120 IES 1o .y = 12 (DIES 1o 5.,

where p,,(ID) denotes the refined analytic torsion as defined by M Braverman and
T Kappeler in [6] and p,,(V) denotes the refined analytic torsion in the sense of the
present discussion.

The statement now follows from [6, Theorem 11.3]. O

7 Open problems

Ideal boundary conditions As explained in the introduction, the approach of Braver-
man and Kappeler in [8; 6] requires ideal boundary conditions for the twisted de Rham
complex, which turn it into a Fredholm complex with Poincare duality and further
provide elliptic boundary conditions for the associated odd-signature operator, viewed
as a map between the even forms. In our construction we pursued a different strategy,
however the question about existence of such boundary conditions remains.

This question was partly discussed in [9]. In view of [9, Lemma 4.3] it is not even clear
whether ideal boundary conditions exist, satisfying Poincare duality and providing a
Fredholm complex. For the approach of Braverman and Kappeler we need even more:
the ideal boundary conditions need to provide elliptic boundary conditions for the
odd-signature operator. We arrive at the natural open question, whether such boundary
conditions exist.

Conical singularities Another possible direction for the discussion of refined analytic
torsion is the setup of compact manifolds with conical singularities. At the conical
singularity the question of appropriate boundary conditions is discussed by Cheeger [14],
as well as by Briining and Lesch [10].
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It turns out that on odd-dimensional manifolds with conical singularities the topological
obstruction is given by HY(N), where N is the base of the cone and v = dim N /2. If

H"(N)=0

then all ideal boundary conditions coincide and the construction of Braverman and
Kappeler [8; 6] goes through. Otherwise, see [14, page 580] for the choice of ideal
boundary conditions satisfying Poincare duality.

Combinatorial counterpart Let us recall that the definition of the refined analytic
torsion in [8; 6] was partly motivated by providing analytic counterpart of the refined
combinatorial torsion, introduced by V Turaev in [30].

In his work V Turaev introduced the notion of Euler structures and showed how it is
applied to refine the concept of Reidemeister torsion by removing the ambiguities in
choosing bases needed for construction. Moreover, Turaev observed in [31] that on
three-manifolds a choice of an Euler structure is equivalent to a choice of a Spin€—
structure.

Both the Turaev torsion and the Braverman—Kappeler refined torsion are holomorphic
functions on the space of representations of the fundamental group on GL (n, C), which
is a finite-dimensional algebraic variety. Using methods of complex analysis, Braverman
and Kappeler computed the quotient between their and Turaev’s construction.

A natural question is whether this procedure has an appropriate equivalent for our
proposed refined analytic torsion on manifolds with boundary. In our view this question
can be answered affirmatively.

Indeed, by similar arguments as in [8; 6] the proposed refined analytic torsion on
manifolds with boundary can also be viewed as an analytic function on the finite-
dimensional variety of representations of the fundamental group.

For the combinatorial counterpart note that M Farber introduced in [15] the concept
of Poincare—Reidemeister metric, where using Poincare duality in the similar spirit
as in our construction, he constructed an invariantly defined Reidemeister torsion
norm for nonunimodular representations. Further M Farber and V Turaev elaborated
jointly in [16] the relation between their concepts and introduced the refinement of the
Poincare—Reidemeister scalar product.

The construction in [15] extends naturally to manifolds with boundary by similar means
as in our definition of refined analytic torsion. This provides a combinatorial torsion
norm on compact manifolds, well-defined without unimodularity assumption. It can
then be refined in the spirit of [16]. This would naturally provide the combinatorial
counterpart for the presented refined analytic torsion.
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Complex-valued Ray—Singer torsion by Burghelea—Haller In the context of provid-
ing an analytic counterpart to the combinatorial refinement by V Turaev, the construction
by D Burghelea and S Haller in [12] is of great interest. There an alternative definition
of refined analytic torsion is considered and a conjecture on its relation to the Turaev
torsion is formulated. This conjecture has been proved independently by Burghelea
and Haller in [13] and Su and Zhang in [29].

The relationship of the construction by Burghelea and Haller with the refinement by
Braverman and Kappeler is discussed in [7] and [5]. A natural question in the context of
the present paper, whether any extension of the Burghelea-Haller torsion to manifolds
with boundary is possible.

Gluing formula for refined analytic torsion A refinement of analytic Ray—Singer
torsion should naturally resemble the striking property of the torsion invariant — its
gluing property, established by S Vishik in [33] and W Liick in [23]. This result is
surprising in view of the nonlocality of spectral invariants and is useful for computational
issues.

In the subsequent paper [32] we solve the problem affirmatively in case of a Hermitian
connection, presenting an explicit gluing formula for our construction. We use an
isomorphism between determinant lines, which takes the inner symmetry of refined
torsion elements into account and is not related to the isomorphism of Vishik [33].
Further we derive a gluing formula for the scalar analytic torsion.
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