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Stabilization of Heegaard splittings

JOEL HASS
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For each g � 2 there is a 3–manifold with two genus–g Heegaard splittings that
require g stabilizations to become equivalent. Previously known examples required
at most one stabilization before becoming equivalent. Control of families of Heegaard
surfaces is obtained through a deformation to harmonic maps.

57M25; 53C43

1 Introduction

While minimal surfaces have proved to be a powerful tool in the study of the topology
of 3–dimensional manifolds, harmonic maps of surfaces to 3–manifolds have not been
as widely applied in this setting, due to several limitations. A single homotopy class
of surfaces can give rise to a large number of harmonic maps. A harmonic map of a
surface need not minimize self-intersections, so that an embedding of a surface may
give rise to a homotopic harmonic map that is not embedded and may even fail to be
immersed. In negatively curved 3–manifolds, however, there is a unique harmonic map
in a homotopy class for each conformal class of metrics on the domain; see Hartman [7].
Moreover continuous families of maps and metrics give rise to continuous families of
harmonic maps; see Eells and Lemaire [4] and Sampson [17]. In addition, the area of a
harmonic map is bounded by a constant depending only on the genus and the sectional
curvatures of the 3–manifold. In this paper we use families of harmonic surfaces to
study Heegaard splittings of 3–manifolds.

A genus–g Heegaard splitting of a 3–manifold M is a decomposition of M into two
genus–g handlebodies with a common boundary. It is described by an ordered triple
.H1;H2;S/ where each of H1;H2 is a handlebody and the two handlebodies intersect
along their common boundary S , called a Heegaard surface. An orientation on S is
determined by @H1 , and an equivalent definition of a Heegaard splitting is given by an
oriented surface S in M whose complement consists of two handlebodies.

Two Heegaard splittings .H1;H2;S/ and .H 0
1
;H 0

2
;S 0/ of M are said to be equivalent

if an ambient isotopy of M carries .H1;H2;S/ to .H 0
1
;H 0

2
;S 0/. Every 3–manifold
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has a Heegaard splitting (see Moise [11]), and Heegaard splittings are one of the basic
structures used to analyze and understand 3–manifolds.

Corresponding to a Heegaard splitting is a Heegaard sweepout, a family of surfaces
that sweep out the manifold, starting with a spine of one handlebody and ending at a
spine of the second. We will see that this family can be geometrically controlled by
deforming it to a family of harmonic maps. When the manifold is negatively curved,
harmonic maps of genus–g surfaces have uniformly bounded area. In the manifolds
we consider, the geometry forces small area surfaces to line up with small area cross
sections of the manifold. As a result we obtain obstructions to the equivalence of
distinct Heegaard splittings.

A stabilization of a genus–g Heegaard surface is a surface of genus gC 1 obtained by
adding a trivial 1–handle, a handle whose core is parallel to the surface. Such a surface
splits the manifold into two genus gC 1 handlebodies, and thus gives a new Heegaard
splitting. Any two Heegaard splittings become equivalent after a finite sequence
of stabilizations; see Singer [21]. An upper bound on the number of stabilizations
needed to make two splittings equivalent is known in some cases. If Gp and Gq are
splittings of genus p and q with p � q , and M is non-Haken, then Rubinstein and
Scharlemann obtained an upper bound of 5pC 8q � 9 for the genus of a common
stabilization [15]. Less is known about lower bounds. In all previously known examples
of manifolds with distinct Heegaard splittings, the splittings become equivalent after
a single stabilization of the larger genus Heegaard surface. The question of whether
a single stabilization always suffices is sometimes called the stabilization conjecture;
see Kirby [9, Problem 3.89], Scharlemann [18], Schultens [19] and Sedgwick [20].
In Section 7 we show that this conjecture does not hold. There are pairs of genus–g

splittings of a 3–manifold that become equivalent after no fewer than g stabilizations.

Theorem 1.1 For each g > 1 there is a 3–manifold Mg with two genus–g Heegaard
splittings that require g stabilizations to become equivalent.

We note that there is an alternate way of defining a Heegaard splitting in which the
orientation of S , or the ordering of the handlebodies, is not considered. One can also
consider equivalence under homeomorphism rather than under isotopy. Our results do
not apply directly with these alternate definitions.

We outline the proof of Theorem 1.1 in Section 2. In Section 3 we describe the
construction of the negatively curved, but not hyperbolic 3–manifolds Mg . We derive
isoperimetric inequalities used in the proof in Section 4 and discuss deformations of
surfaces to harmonic maps in Section 5. In Section 6 we show how a Heegaard splitting
gives rise to a family of Heegaard surfaces that sweep out the 3–manifold. The proof
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of Theorem 1.1 is given in Section 7. Finally in Section 8 we show how a somewhat
weaker result can be obtained for an easily constructed class of hyperbolic manifolds.
In these manifolds g� 4 stabilizations are required.

This result was presented at the American Institute of Mathematics Conference on
Triangulations, Heegaard Splittings and Hyperbolic Geometry held in December 2007.
At this conference D Bachman announced, using different methods, examples giving a
lower bound of g� 3 for the number of required stabilizations.

The research of all three authors was partly supported by the National Science Founda-
tion.

2 Outline of the argument

Let M� be a hyperbolic 3–manifold that fibers over S1 with monodromy � and
let �M� denote its infinite cyclic cover. A pictorial representation of M� is given
in Figure 1. Cutting open M� along a fiber gives a fundamental domain B of the
Z–action on the infinite cyclic cover, which we call a block. Blocks are homeomorphic,
but not isometric, to the product of a surface and an interval. They are foliated by fibers
of M� , which in B we call slices. By cutting open a cyclic cover of M� we obtain a
hyperbolic 3–manifold with as many adjacent blocks as we wish.

Fg

M�

B

Figure 1: M� and one block B , a fundamental domain of the Z–action on
its infinite cyclic cover. B is homeomorphic to Fg � I .

The manifolds Mg used in our main result have sectional curvatures between �3=2 and
�1=2. They contain two handlebodies HL and HR with fixed Riemannian metrics,
separated by a region homeomorphic to the product of a surface of genus g with an
interval. This intermediate piece is hyperbolic and isometric to 2n adjacent blocks.
The first n blocks form a submanifold called L and the next n form a submanifold
called R, as in Figure 2. The value of n can be chosen as large as desired without
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HL HR

L R

Figure 2: M2 , constructed with 10 blocks, 5 in each of L and R

changing the geometry of HL and HR , or the areas of slices filling L and R. A more
detailed construction of Mg is given in Section 3.

Mg has two obvious Heegaard splittings E0 D .HL [ L;HR [R;S/ and E1 D

.HR [R;HL [L;�S/, where S is a surface of genus g separating HL [L and
HR [R and �S indicates S with reversed orientation. We will show that these
splittings are not equivalent with fewer than g stabilizations.

Let G0 be the Heegaard splitting obtained by stabilizing E0 .g� 1/ times and G1 be
the Heegaard splitting obtained by stabilizing E1 .g � 1/ times. If G0 and G1 are
equivalent, then there is an isotopy fIsW Mg!Mg; 0� s � 1g with I0 the identity
and I1 a diffeomorphism of Mg carrying G0 to G1 . A family of Heegaard splittings
fGs D Is.G0/; 0� s � 1g interpolates between G0 and G1 .

Associated to each Heegaard splitting Gs is a family of surfaces Fs;t sweeping out Mg

from one spine to the other. In Section 5 we show that such a family of surfaces can
be deformed to a family of harmonic, or energy minimizing, maps. These harmonic
surfaces have area uniformly bounded by a constant A0 that is independent of n. This
area bound restricts the way that a surface divides the volume of Mg . We will show
that a surface of area less than A0 and genus less than 2g cannot simultaneously split
in half the volumes of L and R. In Section 7 we use this to show that surfaces in such
bounded area families cannot interpolate between G0 and G1 . We conclude that E0

and E1 require at least g stabilizations to become equivalent.

Remark The two Heegaard splittings E0 and E1 of Mg do become equivalent
after g stabilizations. To see this, consider the graph formed by connecting the two
spines with an arc that intersects once each surface in the family of Heegaard surface
between them. A regular neighborhood of this graph gives a handlebody of genus 2g

with handlebody complement. Its boundary surface is obtained by adding g trivial
1–handles to either of the two Heegaard surfaces S and �S , and so gives a common
stabilization of each of them.

This genus 2g Heegaard surface can be isotoped to the surface formed by connecting
with a tube a slice that bisects the volume of L and a slice that bisects the volume
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of R. Such a surface arises in a family of bounded area surfaces interpolating between
stabilizations of E0 and E1 having genus 2g . As we will see, this property cannot be
achieved in a family of smaller genus surfaces.

3 Construction of the manifolds

In this section we describe a construction that gives negatively curved 3–manifolds Mg

of Heegaard genus g , based on the work of Namazi and Souto [12]. Each of these
manifolds has two genus–g splittings that require g stabilizations to become equivalent.
In Section 8 we give a simpler construction of a hyperbolic manifold, containing two
genus–g splittings that require g� 4 stabilizations to become equivalent.

We begin with a hyperbolic manifold M� that fibers over the circle, with fiber a
genus–g surface and pseudo-Anosov monodromy � . Fix a fibration of M� with fibers
fSt ; 0� t � 1g satisfying �.S0/D S1 . Define a block B to be the manifold obtained
by cutting open M� along S0 and a block manifold Bn to be a union of n blocks,
formed by placing n copies of B end to end. The manifold Bn is topologically, though
not geometrically, the product of a surface of genus g and an interval. Its geometry
can be obtained by cutting open the n–fold cover of M� along a lift of S0 . We call
the fibers of Bn slices and label them by St ; 0� t � n.

The manifold Mg is a union of four pieces, as in Figure 2. Two pieces are genus–g

handlebodies, HL and HR , and the other two L and R are each homeomorphic,
though not isometric, to a product Fg � Œ�1; 1�, where Fg is a surface of genus g .
L and R are each hyperbolic, and isometric to a block manifold Bn . The sectional
curvatures of Mg are pinched between �1� �0 and �1C �0 , where �0 > 0 can be
chosen arbitrarily small. For our purpose we take �0 D 1=2.

Namazi and Souto produced manifolds very similar to Mg [12]. The manifolds they
construct are suitable for the constructions we give, but the argument is somewhat
simpler if we modify the metric slightly so that the middle part L[R of Mg is precisely,
rather than approximately, hyperbolic. This can be arranged by beginning with the
manifold M in Theorem 5.1 of [12], which has sectional curvatures pinched between
�1� � and �1C � where � > 0 can be chosen arbitrarily small. The manifold M

contains a region separating two handlebodies whose Riemannian metric is � close (in
the C 2 –metric) to the Riemannian metric of a block. A small C 2 –perturbation gives
a new Riemannian metric on M with sectional curvatures between �3=2 and �1=2

and isometric to a block on a region separating the two handlebodies. Now cut open
the manifold along a slice in this hyperbolic block and insert a copy of B2n to obtain
Mg , where n can be chosen as large as desired. For any choice of n, the geometry of
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the two complementary handlebodies of B2n , which we call HL and HR , remains
unchanged. We split B2n along a slice into two halves L and R, each consisting of n

blocks. We will call the resulting manifold Mg , omitting the index n.

4 Isoperimetric inequalities

In this section we develop some isoperimetric inequalities for piecewise-smooth curves
in surfaces and for piecewise-smooth surfaces in 3–manifolds. The first isoperimetric
inequality holds for a curve in hyperbolic space H 2 [2]. A proof can be obtained by
using symmetry to show that a round circle bounds at least as much area as any other
curve, using no more length. Explicit formulas for length and area in hyperbolic space
then imply this Lemma. The curve does not need to be embedded or connected.

Lemma 4.1 Let c be a closed curve in H 2 with length L. Then c is the boundary of
a disk f W D2!H 2 of area A, with A<L.

We now consider more general isoperimetric inequalities for curves in surfaces and
surfaces in 3–manifolds. In these settings we consider the areas and volumes of
2–chains and 3–chains with boundary.

To simplify the next calculations, it is convenient to work with chains having Z2 –
coefficients. With this choice we do not need to pay attention to orientations, signs, or
multiplicity other than even or odd. A 2–chain spanning a general position curve in a
surface is obtained by 2–coloring the complement of the curve, dividing the surface
into black and white regions separated by the curve. The area of a spanning 2–chain is
the area of either the white or the black subsurface, and has a value between zero and
the area of the surface. The two choices of spanning 2–chain have areas that sum to the
area of the entire surface. A similar statement applies for 3–chains spanning a surface
in a 3–manifold. While many of these results hold equally well for Z–coefficients, we
will assume Z2 –coefficients below.

We first give an isoperimetric inequality for curves in a compact family of Riemannian
metrics on a surface. We consider the area of a 2–chain bounding a smooth curve on a
surface.

Lemma 4.2 Let .S;gr / be a closed 2–dimensional surface with Riemannian met-
ric gr ; r 2U , where gr is a family of smooth metrics continuously parameterized by a
compact set U �Rn . There is a constant K such that for any surface S in the family
.S;gr /:
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(1) A null-homotopic curve c in S is the boundary of a disk f W D! S with

Area.f .D//�K �Length.c/:

(2) A collection of curves c D
S

ci , with each ci null-homotopic in S , is the
boundary of a collection of disks fi W Di! S withX

Area.fi.Di//�K �Length.c/:

(3) A null-homologous curve c on S bounds a two-chain X2 in S with

Area.X2/�K �Length.c/:

Proof First consider the case where c is a null-homotopic curve. If it lies in a hyper-
bolic surface S , c lifts to the universal cover H 2 where it bounds a mapped in disk of
area less than Length(c ) by Lemma 4.1. The surface .S;gr / is conformally equivalent
to a hyperbolic surface, so there is a hyperbolic metric .S;g/ and a diffeomorphism
from .S;g/ to .S;gr / that stretches or compresses any vector in the tangent space
of .S;g/ by a factor of at most �. Since all quantities change continuously with the
metric, a single choice of � can be made for all the surfaces in the compact family
.S;gr /. Lengths of curves measured in .S;g/ differ from lengths in .S;gr / by a
factor of at most � and the area of a region in .S;g/ differs from the area in .Sgr /

by a factor of at most �2 . By comparing the area of a spanning disk and Length.c/ in
.S;g/, we see that in .S;gr /

Area.f .D//� �3
�Length.c/:

The same argument applies for a collection of null-homotopic components.

There is a constant � that gives a lower bound for the injectivity radius for the family
of metrics gr . If the length of c is less than � then each of the components of c is
null-homotopic and the above bound holds for the area of a collection of spanning
disks.

Now consider a general null-homologous curve c with length greater than � . A
small perturbation and cut and paste transforms c into a union of disjoint embedded
components that is homologous to c . A homology between this embedded curve and
c has arbitrarily small area if the perturbation is small, so we can assume that c is a
collection of embedded disjoint curves. Each side of c gives a 2–chain with boundary c ,
and so Area.S/ gives an upper bound to the area of a 2–chain X2 spanning c . Therefore

Area.X2/� Area.S/ <
Length.c/

�
�Area.S/D

Area.S/
�

�Length.c/:

The Lemma follows with K D �3CArea.S/=� .
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We now analyze the geometry of surfaces in block manifolds. The metrics on the
slices St of a block manifold, up to isometry, are parameterized by a closed interval,
so Lemma 4.2 applies. Therefore there is a constant K1 independent of n, such that a
null-homologous curve c on a slice St bounds a 2–chain X2 in that slice with

Area.X2/�K1 �Length.c/:

Each slice is an incompressible surface in Bn , so its induced metric has injectivity
radius greater or equal to that of M� . Set � to be the constant

� D min
t2Œ0;1�

finjectivity radius.M�/;Area.St /=2K1g

Now consider a proper separating surface .F; @F / in .Bn; @Bn/. Since F is null-homo-
logous F \St separates St into two regions. In slices St where Length.F \St /� � ,
each curve of F \St is null-homotopic. Lemma 4.2 implies that there is a collection
of disks spanning the components of F \St whose total area is less than Area.St /=2.
Call the subsurface of St missing these disks the large side of F \St . This subsurface
contains the connected complementary component of F \St in St of largest area.

Lemma 4.3 Suppose .F; @F / is a proper separating surface in .Bn; @Bn/ and F inter-
sects slices St1

;St2
transversely with Length.F \St1

/� � and Length.F \St2
/� � .

If the genus of F is less than g then an arc ˛ from the large side of F \St1
to the

large side of F \St2
intersects F algebraically zero times.

Proof Cap off the curves in F \ St1
;F \ St2

, each of which is shorter than the
injectivity radius, by adding disks missing the large side of each surface. These disks
do not intersect the arc ˛ . The resulting closed surface in the region between St1

and
St2

has genus less than g . Such a surface is null-homologous in the region between
these two slices, which is homeomorphic to the product of a genus–g surface and an
interval, and therefore cannot algebraically separate them.

The next lemma gives a 3–dimensional isoperimetric inequality for surfaces in block
manifolds.

Lemma 4.4 Let .F; @F /� .Bn; @Bn/ be a null-homologous proper surface in a block
manifold, having genus less than g and area less than a constant A0 . Then there is a
constant C0 , independent of n, such that F bounds a 3–chain X in .Bn; @Bn/ with
Volume.X / < C0 . As n grows,

lim
n!1

Volume.X /
Volume.Bn/

D 0:
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Proof Since F is null-homologous, we can 2–color its complement. This produces
two 3–chains with boundary F , and we take X to be the one of smaller volume.

A formula from differential geometry called the coarea formula states that the volume
of a region in a three dimensional manifold can be estimated by an integral of the
area of the intersection of the region with surfaces that sweep across it [6; 8]. The
coarea formula implies that the volume of X can be estimated by the integral of its
cross-sectional areas in St . There is a constant C1 such that

(1) Volume.X /=C1 �

Z n

0

Area.X \St / dt � C1 �Volume.X /:

The coarea formula also gives an inequality between the area of a surface F in Bn and
the lengths of the curves of intersection of F with slices of Bn . There is a constant
C2 such that

(2)
Z n

0

Length.F \St / dt � C2 �Area.F /:

The constants C1 and C2 are determined by the geometry of a single block B , and do
not depend on n. In a product metric C1DC2D 1, and equality occurs in Equation (2)
when F is itself a product surface, perpendicular to each slice.

The Riemannian metric on Bn is not a product metric and the magnitude of C1 and C2

gives a measure of how far this metric differs from a product metric in a neighborhood
of a slice. Since the local geometry near a slice in Bn is determined by the local
geometry of the slices in a single block, the constants C1 and C2 do not depend on
the number of blocks n.

To estimate the volume of X , we integrate the area of its cross sections. To do so, we
need to consistently specify for each slice St which of the two complementary subsur-
faces of F\St lies in X . If Length.F\St /< � then we take the side of F containing
the complementary subsurface of smaller area in St . This subsurface has area less than
K1� by Lemma 4.2 and misses the large side of F \St . Each such subsurface lies on
the same side of F (mod 2) by Lemma 4.3. For slices in which Length.F \St /� �

the construction given in Lemma 4.2 gives a bound K1 �Length.F \St / for the area
of each of the two sides in St of F \St , and in particular for the side lying in X . By
Equation (1), X has volume bounded above by

Volume.X /� C1

Z n

0

Area.X \St / dt � C1K1

Z n

0

Length.F \St / dt

� C1K1C2A0 D C0:

This bound is independent of n, so as n grows, Volume.X /=Volume.Bn/ tends to 0.
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Note that Lemma 4.4 is false for surfaces of genus k � g . A slice of genus g splits
the volume of Bn in half and the volume of each half is unbounded with n, showing
that one cannot hope to bound the volume of a spanning 3–chain by a function of the
area of a boundary surface when the surface has genus g .

Finally we give an isoperimetric inequality that states that small area surfaces in a
Riemannian 3–manifold bound regions of small volume. A more general result is
proved in Federer [6, Theorem 4.4.2]. The result is valid for both Z and Z2 coefficients,
though we need only the latter.

Lemma 4.5 Let M be a compact, connected Riemannian 3–manifold and F a proper
surface in M , not necessarily embedded or connected. Given �0 > 0 there is a ı0 > 0

such that if Area.F / < ı0 then F bounds a 3–chain X in M with Volume.X / < �0 .

5 Harmonic and bounded area maps

Eells and Sampson showed that a map from a Riemannian surface F with metric h to
a negatively curved manifold M is homotopic to a harmonic map. This harmonic map
is unique unless its image is a point or a closed geodesic, cases that we will not need
to consider [5; 7]. A map from a surface to a 3–manifold is elementary if it induces a
homomorphism of fundamental groups whose image is trivial or cyclic, and we will
be considering nonelementary maps. The harmonic map is obtained by deforming an
initial map of a surface with domain having a fixed Riemannian metric (or complex
structure) in the direction of fastest decrease for the energy, along a vector field called
the tension field. The resulting harmonic map depends continuously on the metrics of
both the domain and the image, as shown by Eells–Lemaire [4, Theorem 3.1] and also
by Sampson [17].

Lemma 5.1 [4] Let fgu W u 2 U g be a family of metrics on a closed surface,
parametrized by an compact set U � Rn and let M be a closed manifold with
negative sectional curvature. Then a continuous family of nonelementary smooth maps
ffuW .F;gu/!M g is homotopic to a family of harmonic maps fhuW .F;gu/!M g

by a homotopy along which the energy of each map is nonincreasing.

Since harmonic maps satisfy a maximal principle, their induced metric is more neg-
atively curved then the ambient manifold wherever they are immersed [17]. The
Gauss–Bonnet theorem then implies an area bound proportional to the genus. The
immersion assumption can be removed via an approximation of a general map by
immersions. A detailed argument is given in Theorem 3.2 of [10].
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Lemma 5.2 A harmonic map f W F !M from a Riemannian genus–g surface to a
hyperbolic 3–manifold M has area bounded above by 4�.g� 1/. If M has sectional
curvatures bounded above by �r2 then the area of the surface is bounded above by
4�.g� 1/=r2 .

For any Riemannian metric on F , a basic inequality relates the energy and area of a
map f [3]:

Energy.f /� 2Area.f /:

Equality occurs precisely when f is almost conformal, ie conformal except possibly
at finitely many singular points with zero derivative. In particular, equality holds for an
isometric immersion, an immersion of a surface into a Riemannian manifold in which
the domain has the induced metric.

Lemma 5.3 A continuous family of immersions ffu;0W F ! M;u 2 U g from a
surface F to a closed negatively curved 3–manifold M , parameterized by a compact
set U �Rn , is homotopic to a family of harmonic maps ffu;1W .F;gu/!M g through
maps ffu;s; 0� s � 1g satisfying

Area.fu;s/� Area.fu;0/:

Proof We begin by taking the induced family of metrics fgug on the surface F

obtained from the family of immersions fu;0 . This gives a family of isometric immer-
sions of F , for each of which the energy equals twice the area. The Eells–Sampson
process of deforming along the tension field gives an energy decreasing homotopy of
each surface in this family that converges to a harmonic map [5]. Since the energy is
nonincreasing during this flow, and the area is bounded above by twice the energy, the
area of each surface in this flow is bounded above by its initial value.

6 Sweepouts

Consider a 1–parameter family of maps kW F � .�1; 1/!M such that

lim
t!˙1

Area.k.F; t//D 0

and let Ft denote the surface k.F; t/. By Lemma 4.5 we know that there is a 3–
chain bounded by Ft whose volume approaches 0 as t !˙1. It follows that there
is a constant ˇ > 0 such that one side of Ft has volume less than Volume.M /=2 if
t 2 .�1;�1Cˇ�[ Œ1�ˇ; 1/. In particular F�1Cˇ bounds a 3–chain C�1Cˇ of volume
less than Volume.M /=2 and similarly F1�ˇ bounds such a chain C1�ˇ . Consider the
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3–cycle Z 2H3.M IZ2/ formed by the union of the 3–chains k.F � Œ�1Cˇ; 1�ˇ�/,
C�1Cˇ and C1�ˇ . We say the family of maps k has degree one if Z represents the
fundamental homology class of M (with Z2 –coefficients) and in that case we say k is
a sweepout of M . Note that changing the value of ˇ leads to a continuous change of
the volume of Z , while a change in the homology class of Z would cause the volume
to change by a multiple of the volume of M . Thus the choice of ˇ does not affect
whether k has degree one.

We digress somewhat to point out that harmonic maps gives a new approach to con-
structing sweepouts of bounded area. Pitts and Rubinstein showed the existence of an
unstable minimal surface in a 3–manifold using a minimax argument [13]. Starting with
a strongly irreducible Heegaard splitting, they obtain a minimal surface that has maximal
area in a 1–parameter family of surfaces obtained from a sweepout. Since a genus–g

minimal surface in a hyperbolic manifold has area less than 4�.g�1/, this implies the
same area bound for each surface in the sweepout. As noted by Rubinstein [16] and by
Bachman, Cooper and White [1], the existence of a sweepout by bounded area surfaces
has implications on the geometry and Heegaard genus of a 3–manifold. Bachman,
Cooper and White constructed a sweepout using piecewise-geodesic surfaces with two
vertices, which gives a somewhat weaker area bound.

Harmonic maps give an alternate way to obtain a sweepout by bounded area surfaces,
with the same area bound implied by Pitts–Rubinstein, but without assuming that the
Heegaard splitting is strongly irreducible. The harmonic sweepout has the drawback of
allowing singular surfaces, like [1], but unlike [13], where a sweepout by embedded
surfaces is implied.

Theorem 6.1 If M is a hyperbolic 3–manifold with a genus–g Heegaard splitting
then M has a sweepout in which each surface has area bounded above by 4�.g� 1/.

Proof Putting the induced metric on each surface associated to a Heegaard splitting
sweepout gives a continuous family of isometric embeddings

ff0;t W .F;gt /!M;�1< t < 1g;

with gt the induced metric on F under the map f0;t . By Lemma 5.1, this family of
maps is homotopic to a family of harmonic maps ff1;t W .F;gt /!M; �1< t < 1g.
Lemma 5.3 implies that during the homotopy from f0;t to f1;t , the area of .fs;t stays
below the initial area of f0;t . So for each s we have

lim
t!˙1

Area.fs;t /D 0:
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Since fs;t changes continuously with s the degree remains one and fs;t forms a
sweepout for each fixed value of s . Each map f1;t in the final sweepout has area
bounded above by 4�.g� 1/, by Lemma 5.2.

Given a sweepout of a 3–manifold M and two subsets L and R with disjoint interiors,
we can characterize the direction of the sweepout relative to L and R, describing
which of L and R is first engulfed. Let ˇ be a constant that satisfies the conditions
of Lemma 4.5, so that for �1 < s � �1C ˇ , Fs bounds a 3–chain of volume less
than Volume.L[R/=2. If �1 < t < �1C ˇ define Kt to be the Z2 3–chain Ct

with boundary Ft , given by the side of Ft having smaller volume. If t � �1C ˇ

define Kt to be the 3–chain with boundary Ft obtained by adding the 3–chains
k.F � Œ�1Cˇ; t �/ and C�1Cˇ (mod 2). As t increases on .�1; 1/ the volume of Kt

changes continuously, while

lim
t!�1

Volume.Kt \ .L[R//D 0

lim
t!1

Volume.Kt \ .L[R//D Volume.L[R/:and

Note that we are using Z2 –chains, so that the volume of Kt need not grow monotoni-
cally with t .

Let Y denote the set of points t 2 .�1; 1/ where the volume of Kt \ .L[R/ equals
half the volume of L[R,

Y D

�
t W

Volume.Kt \ .L[R//

Volume.L[R/
D

1

2

�
:

For a sweepout of disjoint embedded surfaces coming from a Heegaard splitting, Y

contains exactly one point. For a generic sweepout Y c is finite and contains an odd
number of points.

Definition A point t 2 Y is an L point if

Volume.Kt \L/ > Volume.Kt \R/

and an R point otherwise. A sweepout is an LR–sweepout if it has an odd number of
L points and an RL–sweepout if it has an odd number of R points.

The Heegaard splitting E0 gives rise to an LR–sweepout that begins with surfaces
near a graph at the spine of HL , sweeps out L[R with embedded slices, and ends
with surfaces that collapse to a graph at the spine of HR . The stabilized Heegaard
splitting G0 gives rise to an LR–sweepout by embedded surfaces of genus 2g� 1. A
stabilization adds a loop to each of the graphs forming the spines of E0 , the two loops
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linking once in Mg , and each crossing the separating surface S . Between the resulting
graphs is a product region which can be filled with Heegaard surfaces of the stabilized
splitting. See Figure 3, which shows two spines and a Heegaard surface that has been
stabilized once. Note that for arbitrarily large n and any ı > 0, the stabilizations can be
chosen so that the added area in going from the surfaces of E0 to those of G0 is less
than ı . When G0 and G1 are equivalent, composing the Heegaard sweepout of G0

with the diffeomorphisms fIs; 0� s � 1g gives a family of genus 2g� 1 Heegaard
sweepouts connecting G0 and G1 .

H1

H2

Figure 3: Stabilized spines

Lemma 6.1 Suppose that E0 is equivalent to E1 after .g� 1/ stabilizations. Then
there is a constant A0 , independent of the number of blocks n, and a family of
embedded surfaces

ffs;t W F !Mg; 0� s � 1; �1< t < 1g

satisfying the following conditions:

(1) F has genus 2g� 1.

(2) For each s , ffs;t W F !Mg; �1< t < 1g is a sweepout.

(3) ff0;t .F /; �1< t < 1g is an LR–sweepout.

(4) ff1;t .F /; �1< t < 1g is an RL–sweepout.

(5) Each surface in the two sweepouts f0;t .F / and f1;t .F / has area bounded above
by A0 .

Proof Mg is formed from the union of a handlebody HL , n–blocks forming L,
n–blocks forming R, and a second handlebody HR . The geometry of a single block,
and of each of HL;HR , does not depend on n. Pick a spine for each of HL;HR

and foliate the complement of this spine in each handlebody by embedded Heegaard
surfaces, connecting the spine to the slice that forms the boundary of each handlebody.
Then fill L and R with interpolating slices. This Heegaard sweepout is a foliation of
the complement of the two spines in Mg by genus–g leaves fLt ; �1< t < 1g.

Now stabilize by adding .g�1/ loops to each spine and .g�1/ handles to each surface
between the two spines, giving a Heegaard sweepout of G0 . Let a0 > 0 and v0 > 0
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be two constants. By adding thin handles in the stabilization, we can arrange that the
area of any surface increases by less than a0 and so that the volume bounded by the
additional .g� 1/ 1–handles is less than v0 . For our purpose it suffices to take

v0 D a0 Dminf1;Volume.B/=2g:

Let F be a surface of genus 2g� 1 and construct maps ff0;t W F !Mg; �1< t < 1g

that smoothly parametrize the stabilized surfaces. We will refer to f0;t .F / as F0;t . Set
the value of the constant A0 to be the largest area of the surfaces fF0;t ; �1< t < 1g.
Note that our construction gives a value for A0 that is determined by g , the area of
the slices in a single block, and the geometry of HL and Hr . In particular A0 is
independent of the number of blocks n used to construct Mg .

The Heegaard splitting G0 D . xH1; xH2; xS/ obtained by stabilizing E0 .g� 1/ times
is equivalent to the reversed splitting G1 D . xH2; xH1;�xS/, where xS D F0;0 and �xS
indicates the orientation of xS has reversed. So an isotopy Is; 0� s�1 from the identity
map I0 to a diffeomorphism I1 carries . xH1; xH2; xS/ to . xH2; xH1;�xS/. Construct the
family of surfaces fs;t W F !Mg by defining

fs;t D Is ıf0;t W F !Mg

and let Fs;t denote fs;t .F /.

For any constant 0 < ˛ < 1, we can arrange, by stretching out a collar around the
invariant surface F0;0 , that I1 carries F0;t to F0;�t for each t 2 Œ�1C˛; 1�˛�. For
˛ sufficiently small the embedded surfaces

fFs;t I t 2 .0;�1C˛�[ Œ1�˛; 1/g

lie in small neighborhoods of the images of the spines of G0 under Is , have area
uniformly bounded above by a0 , and bound submanifolds having volume less than v0 .

The Heegaard splitting E0 gives rise to a sweepout fLt ; �1 < t < 1g of Mg by
genus–g surfaces, starting near the spine of HL and ending near the spine of HR .
This sweepout foliates the complement of the two spines. The surface Lt bounds a
3–chain Kt that fills up the side containing f

S
Lt 0 W t 0 < tg. K0 bisects the volume

of L[R and contains L but not R. The surfaces Lt , when parametrized, give an
LR–sweepout with Volume.K0 \L/ D nVolume.B/, while Volume.K0 \R/ D 0.
The surface F0;t , obtained by stabilizing Lt , bounds a 3–chain K0;t whose volume
of intersection with L and R differs by less than v0 from that of Kt . Therefore F0;t

also gives an LR–sweepout. By the same argument applied to the stabilization of E1 ,
we have that F1;t gives an RL–sweepout. All properties now follow.
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We now show that a path of sweepouts in Mg whose surfaces have area uniformly
bounded by a constant A0 cannot start with an LR–sweepout and end with RL–
sweepout if n is sufficiently large. Define

VL D Volume .L/D Volume .R/

so that 2VL D Volume .L[R/:

Lemma 6.2 Given a constant A0 there is a constant n0 such that if n> n0 and Mg

is constructed with 2n blocks then there does not exist a smooth family of maps

fhs;t W F !Mg; 0� s � 1; �1< t < 1g

from a surface F to Mg satisfying the following conditions:

(1) F has genus less than 2g:

(2) For each fixed s , fhs;t W F !Mg � 1< t < 1g is a sweepout.

(3) Each surface hs;t .F / has area bounded above by A0 .

(4) fh0;t .F /; �1< t < 1g is an LR–sweepout.

(5) fh1;t .F /; �1< t < 1g is an RL–sweepout.

Proof Suppose such a family exists for all n and let Fs;t denote hs;t .F /. For each
s; t we now construct a 3–chain Ks;t with boundary Fs;t . First pick ˇ sufficiently
small to satisfy the conditions of Lemma 4.5 for each 0� s � 1. Then for each s and
each t0 2 .�1;�1Cˇ� there is a 3–chain Cs;t0

with boundary Fs;t0
and volume less

than VL=2. If �1< t <�1Cˇ take Ks;t to be equal to Cs;t . If �1Cˇ < t < 1 take
Ks;t to be the sum of Cs;�1Cˇ and

S
�1Cˇ�t 0�t Fs;t 0 .

Note that the chains Ks;t and their volumes are defined with Z2 –coefficients. Thus
even though for each s the chains Ks;t are images of nested sets that grow with t , as
Z2 –chains the volume of their image can both grow and shrink as t! 1. Since they are
null-homologous, the surfaces Fs;t have complement in Mg that can be two-colored
into black and white regions, and the volume of Ks;t is equal to the volume of one
of these regions. The volume of Ks;t varies continuously with s and t , giving a
continuous function from Œ0; 1�� .�1; 1/!R.

For each fixed s the surfaces Fs;t sweep out Mg with degree one , so

lim
t!�1

Volume.Ks;t \ .L[R//D 0

lim
t!1

Volume.Ks;t \ .L[R//D 2VL:and
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Set QD

�
.s; t/ W

Volume.Ks;t \ .L[R//

2VL

D
1

2

�
:

If necessary, perturb the value 1/2 used to define Q to a regular value of the volume
function evaluated on the rectangle. Then Q is a proper 1–manifold and any path from
the edge t D �1 to the edge t D 1 of the .s; t/ rectangle must cross Q. It follows
that there is a path contained in Q connecting the edges s D 0 and s D 1 of the .s; t/
rectangle, as in Figure 4.

1

t

s
�1

0 1

f0;t

f1;t

fs;1

fs;0

Figure 4: Each curve in Q consists entirely of L points or R points.

We now claim that each component of Q consists entirely of L points or entirely of
R points. If a component of Q has both L points and R points then there is a point
.s; t/ 2Q on that component where

Volume.Ks;t \L/D Volume.Ks;t \R/

and since these two volumes sum to Volume.Ks;t \ .L[R//D VL , we have

(3)
Volume.Ks;t \L/

2VL

D
Volume.Ks;t \R/

2VL

D
1

4
:

The area of Fs;t is bounded above by A0 , so Lemma 4.4 implies that for n sufficiently
large, Fs;t bounds a 3–chain Xs;t in .L; @L/ with volume less than VL=3. Now
.Ks;t \ L/ and Xs;t have the same boundary in .L; @L/. Any two 3–chains in
.L; @L/ with the same boundary sum to a 3–chain whose volume is a multiple of VL ,
so we have

0�
Volume.Ks;t \L/

VL

�
1

3

2

3
�

Volume.Ks;t \L/

VL

� 1:or
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As a fraction of 2VL

0�
Volume.Ks;t \L/

2VL

�
1

6

1

3
�

Volume.Ks;t \L/

2VL

�
1

2
:or

This contradicts Equation (3). We conclude that components of Q consist either entirely
of L points or entirely of R points.

A component curve in Q either

(1) meets each edge s D 0 and s D 1 once,

(2) meets one edge of the .s; t/ rectangle twice, or

(3) is a closed curve disjoint from both.

The parity of the number of L points and the number of R points on the two families
h0;t .F / and h1;t .F / is the same for each edge s D 0 and s D 1, and thus either both
are LR–sweepouts or both are RL–sweepouts.

We now show how to homotop a path of sweepouts whose initial and final sweepouts
contain surfaces with area less than A0 to a new path of sweepouts all of whose surfaces
have area bounded above by A0 .

Lemma 6.3 There is a constant n0 such if n> n0 such that if Mg is constructed with
2n blocks and ffs;t;0W F !Mg; 0� s � 1; �1< t < 1g is a family of surface maps
such that

(1) the genus of F is less than 2g ,

(2) for each s , ffs;t;0W F !Mg; �1< t < 1g is a sweepout,

(3) each surface in the two sweepouts f0;t;0.F / and f1;t;0.F / has area bounded
above by a constant A0 ,

(4) f0;t;0.F /; �1< t < 1 is an LR–sweepout,

(5) f1;t;0.F /; �1< t < 1 is an RL–sweepout,

(6) each surface ffs;t;0W F !Mg; 0� s � 1; �1< t < 1g is immersed,

then there is a homotopy

ffs;t;uW F !Mg; 0� s � 1; �1� t � 1; 0� u� 1g

to a family of maps fs;t;1 such that
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(1) for each fixed s;u; ffs;t;uW F !Mg; �1� t � 1g is a sweepout,

(2) each surface fs;t;1.F / is harmonic, with area at most 8�.2g� 1/,

(3) f0;t;1.F /; �1< t < 1 is an LR–sweepout,

(4) f1;t;1.F /; �1< t < 1 is an RL–sweepout.

Proof Construct a family of Riemannian metrics hs;t on F for each 0 � s � 1,
�1< t < 1 by taking the induced metric pulled back from Mg by the immersion fs;t;0 .

fs;1;0

f0;1;u

fs;1;1

f1;1;u

f0;t;1

f1;�1;u

fs;�1;1

fs;�1;0

f1;t;1 f1;t;0

u

t

s
0

Figure 5: Maps ffs;t;u; 0� s � 1; �1� t � 1; 0� u� 1g are parametrized
by points in a cube. The back face, where uD 0 , represents the initial path
of Heegaard surfaces that connects G0 and G1 . The front face corresponds
to harmonic maps giving a homotopic path of Heegaard sweepouts. The
curves indicate parameter values on the boundary of the cube corresponding
to surfaces that bisect L[R .

Then each map fs;t;0 is conformal and has energy equal to twice its area. We flow the
family fs;t;0 to a family of harmonic maps fs;t;1 as in Lemma 5.3. Each surface in the
sweepout f0;t;0.F / has area bounded above by A0 , and this area bound is maintained
for each surface ff0;t;u.F /; 0 � u � 1g in the homotopy to harmonic maps, as in
Lemma 5.2. Similarly the homotopy to harmonic maps of the sweepout f1;t;0.F /

given by ff1;t;u.F /; 0� u� 1g has surfaces whose area is uniformly bounded above
by A0 . Thus if n is sufficiently large, the sweepout ff0;t;1.F /g is an LR–sweepout,
by Lemma 6.2 and similarly ff1;t;1.F /g is an RL–sweepout.
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7 Inverting Heegaard surfaces

We now prove the main result:

Proof of Theorem 1.1 We begin with the two genus–g Heegaard foliations, E0

and E1 of Mg . We will show that if n is sufficiently large then these splittings are
not equivalent with fewer than g stabilizations. It suffices to show that they are not
equivalent after g� 1 stabilizations.

Assume to the contrary that for all n, G0 and G1 are equivalent after g�1 stabilizations.
Lemma 6.1 implies there is a constant A0 independent of n and a family of sweepouts

ffs;t;0W F !Mg; 0� s � 1; �1< t < 1g

of genus 2g�1 with ff0;t;0.F /; �1< t <1g an LR–sweepout, ff1;t;0.F /; �1< t <1g

an RL–sweepout with each surface in the two sweepouts f0;t;0.F / and f1;t;0.F /

having area bounded above by A0 . Lemma 6.3 implies that for n sufficiently large
this family can be deformed to a new family of sweepouts

ffs;t;1W F !Mg; 0� s � 1; �1< t < 1g

in which ff0;t;1.F /; �1< t < 1g is an LR–sweepout, ff1;t;1.F /; �1< t < 1g is an
RL–sweepout and each surface fs;t;1.F / also has area bounded above by A0 . Then
ffs;t;1; 0 � s � 1g is a path of sweepouts that connects an LR–sweepout f0;t;1 to a
RL–sweepout f1;t;1 , and all of the surfaces in this path of sweepouts have area less
than A0 . Lemma 6.2 states that no such path of sweepouts can exist, contradicting the
assumption that fewer than g stabilizations can make E0 and E1 equivalent.

8 Hyperbolic examples

The Riemannian manifolds Mg used in our construction were negatively curved, but not
hyperbolic. We now show how to construct a family of hyperbolic manifolds that give
somewhat weaker lower bounds on the number of stabilizations required to make two
genus–g splittings equivalent. Note that block manifolds cannot be isometrically embed-
ded into a hyperbolic 3–manifold in which their slices are Heegaard surfaces, because
the fibers of a surface bundle lift to planes in the universal cover H 3 , while Heegaard
surfaces lift to compressible surfaces. However there does exist an isometric embedding
of block manifolds into a hyperbolic manifold in which slices are separating incom-
pressible surfaces. These surfaces become Heegaard surfaces after two stabilizations.

Let N0 be a hyperbolic 3–manifold that is a union of two I –bundles over a nonori-
entable surface, glued along their common genus k boundary surface, where k is an

Geometry & Topology, Volume 13 (2009)



Stabilization of Heegaard splittings 2049

integer greater than one. Such hyperbolic manifolds are double covered by a hyperbolic
surface bundle over S1 . Some explicit examples can be found in [14]. The boundary
surface of each I –bundle has a neighborhood isometric to a neighborhood of a fiber
in its double cover. We can cut open along this fiber and insert a block manifold with
n blocks to obtain a hyperbolic manifold N , still homeomorphic to a union of two
I –bundles. We let S denote a surface separating the two I –bundles in the center of
the block manifold.

Removing a neighborhood of an interval fiber from a nontrivial I –bundle with a
genus k boundary surface results in a handlebody of genus kC 1. Thus N contains a
genus gDkC2 Heegaard surface S 0 obtained by adding a 1–handle to each side of S ,
with the core of each 1–handle an interval in each I –bundle. These two handlebodies
give rise to two Heegaard splittings of N , and to corresponding Heegaard sweepouts
that fill the two I –bundles in opposite order. The arguments applied to Mg in Section 7
now apply to show that N has two genus–g splittings that require no fewer than g�4

stabilizations to become equivalent.
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École Norm. Sup. .4/ 11 (1978) 211–228 MR510549

[18] M Scharlemann, Heegaard splittings of compact 3–manifolds, from: “Handbook of
geometric topology”, (R J Daverman, R B Sher, editors), North-Holland, Amsterdam
(2002) 921–953 MR1886684

[19] J Schultens, The stabilization problem for Heegaard splittings of Seifert fibered spaces,
Topology Appl. 73 (1996) 133–139 MR1416756

[20] E Sedgwick, An infinite collection of Heegaard splittings that are equivalent after one
stabilization, Math. Ann. 308 (1997) 65–72 MR1446199

[21] J Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer.
Math. Soc. 35 (1933) 88–111 MR1501673

JH, AT: Department of Mathematics, University of California
Davis, California 95616, USA
WT: Department of Mathematics, Cornell University
Ithaca, NY 14853, USA

hass@math.ucdavis.edu, thompson@math.ucdavis.edu,
wpt@math.cornell.edu

Proposed: Joan Birman Received: 22 April 2008
Seconded: Jean-Pierre Otal, Ron Stern Revised: 9 February 2009

Geometry & Topology, Volume 13 (2009)

http://dx.doi.org/10.2307/2154187
http://www.ams.org/mathscinet-getitem?mr=1100698
http://www.ams.org/mathscinet-getitem?mr=0488059
http://www.math.princeton.edu/~hossein/contents/pseudo8.pdf
http://www.ams.org/mathscinet-getitem?mr=924434
http://projecteuclid.org/getRecord?id=euclid.pjm/1102620979
http://www.ams.org/mathscinet-getitem?mr=1318168
http://dx.doi.org/10.1016/0040-9383(95)00055-0
http://dx.doi.org/10.1016/0040-9383(95)00055-0
http://www.ams.org/mathscinet-getitem?mr=1404921
http://www.ams.org/mathscinet-getitem?mr=2167286
http://www.numdam.org/item?id=ASENS_1978_4_11_2_211_0
http://www.ams.org/mathscinet-getitem?mr=510549
http://www.ams.org/mathscinet-getitem?mr=1886684
http://dx.doi.org/10.1016/0166-8641(96)00030-2
http://www.ams.org/mathscinet-getitem?mr=1416756
http://dx.doi.org/10.1007/s002080050064
http://dx.doi.org/10.1007/s002080050064
http://www.ams.org/mathscinet-getitem?mr=1446199
http://dx.doi.org/10.2307/1989314
http://www.ams.org/mathscinet-getitem?mr=1501673
mailto:hass@math.ucdavis.edu
mailto:thompson@math.ucdavis.edu
mailto:wpt@math.cornell.edu

	1. Introduction
	2. Outline of the argument
	3. Construction of the manifolds
	4. Isoperimetric inequalities
	5. Harmonic and bounded area maps
	6. Sweepouts
	7. Inverting Heegaard surfaces
	8. Hyperbolic examples
	References

