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Intersection homology and Poincaré duality
on homotopically stratified spaces

GREG FRIEDMAN

We show that intersection homology extends Poincaré duality to manifold homotopi-
cally stratified spaces (satisfying mild restrictions). These spaces were introduced by
Quinn to provide “a setting for the study of purely topological stratified phenomena,
particularly group actions on manifolds.” The main proof techniques involve blending
the global algebraic machinery of sheaf theory with local homotopy computations. In
particular, this includes showing that, on such spaces, the sheaf complex of singular
intersection chains is quasi-isomorphic to the Deligne sheaf complex.

55N33, 57N80, 57P99

1 Introduction

The primary purpose of this paper is to extend Poincaré duality to manifold homotopi-
cally stratified spaces using intersection homology.

Intersection homology was introduced by Goresky and MacPherson [21] in order to
extend Poincaré duality to manifold stratified spaces – spaces that are not manifolds
but that are composed of manifolds of various dimensions. Initially, this was done for
piecewise-linear pseudomanifolds [21], which include algebraic and analytic varieties1,
but the result was soon extended to topological pseudomanifolds by Goresky and
MacPherson [22] and to locally conelike topological stratified spaces, also called
cs–spaces by Habegger and Saper [24]. The establishment of Poincaré duality for
pseudomanifolds has led to the successful study and application of further related
invariants. To name just a few: Right in [21], Goresky and MacPherson introduced sig-
natures and L–classes for pseudomanifolds with only even codimension strata; Siegel
extended signatures and bordism theory to Witt spaces [42]; and various extensions of
duality and characteristic classes have been studied by Banagl, Cappell and Shaneson
in various combinations [1; 2; 4; 10; 13]. The application of intersection homology to
the study of group actions both on smooth manifolds and on stratified spaces is also an
active field of research; see, eg, Brylinski [9], Cappell, Shaneson and Weinberger [13],

1excluding those with codimension one strata
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Curran [15], Hector and Saralegi [25], Padilla [36], Padilla and Saralegi-Aranguren [37]
and Saralegi-Aranguren [40]. For more on applications of intersection homology in
these directions, as well as in other fields, we refer the reader to the expository sources
Banagl [3], Kirwan [34] and Kleiman [35].

In [39], Quinn introduced manifold homotopically stratified spaces (MHSSs), with the
intent to provide “a setting for the study of purely topological stratified phenomena,
particularly group actions on manifolds.” These spaces are distinguished from much
more rigid classes of stratified spaces, such as pseudomanifolds and cs–spaces, in that
they need not satisfy local homeomorphism conditions (such as the requirement that
each point have a cone bundle neighborhood), but rather they need only satisfy more
global stratum-by-stratum homotopy conditions. This is the best one can hope for even
when studying orbit spaces of locally-linear group actions. In this context of topological
group actions on manifolds, MHSSs have been studied by Yan [47], Beshears [6] and
Weinberger and Yan [45; 46]. But MHSSs also arise in categories with more structure –
for example, Cappell and Shaneson showed that they occur as mapping cylinders of
maps between smoothly stratified spaces [12], and even stratified spaces comprised
of a manifold with a locally flat topological submanifold may not possess a stronger
structure (not even a mapping cylinder neighborhood of the submanifold is guaranteed
to exist); see Hughes et al [30] . A surgery theory for MHSSs has been developed by
Weinberger [44], and their geometric neighborhood properties have been studied by
Hughes, generalizing [30] and culminating in [28]. A further survey of MHSSs can be
found in Hughes and Weinberger [31].

In [38], Quinn noted that MHSSs “are defined by local homotopy properties, which
seem more appropriate for the study of a homology theory” than the local homeomor-
phism properties of pseudomanifolds, and he showed that intersection homology is a
topological invariant on these spaces, independent of the stratification. In this paper,
we prove an intersection (co)homology version of Poincaré duality for MHSSs. Such
theorems have heretofore been proven only for stratified spaces possessing local bundle
structures, such as pseudomanifolds and cs–spaces (see Goresky and MacPherson [22]
and Hector and Saralegi [24]). This provides a first step in extending to homotopically
stratified spaces and to the study of topological group actions results on signature and
characteristic class invariants previously known only in much more restrictive settings.
For example, it should now be possible to extend the results of Weinberger on Sullivan
classes and higher signatures of manifolds with circle actions [43] from the PL category
to the topological tame category. More generally, this work paves the way to extend
much work of Cappell, Shaneson and Weinberger on equivariant signature theorems
for stratified spaces [13], stratified surgery theory [14; 44] and topological analogues
[11; 10] of the Beilinson–Bernstein–Deligne–Gabber decomposition theorem [5].
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More precisely, we prove the following Poincaré duality theorem, which generalizes the
Goresky–Siegel extension [23] of Goresky and MacPherson’s intersection homology
duality. The stated neighborhood condition on the MHSS X is described more fully
below in Section 4 but includes MHSSs with compact singular set † such that all
nonminimal strata of X have dimension � 5. The condition of being homotopy locally
. xp;R/–torsion free is a weakening of Goresky and Siegel’s locally xp–torsion free and
is defined in Section 7; roughly, this condition requires the torsion to vanish from certain
local intersection homology groups that, for a pseudomanifold, would correspond to
certain intersection homology groups of the links.

Theorem 7.2 Let X be a homotopy locally . xp;R/–torsion free n–dimensional MHSS
with no codimension one stratum and with sufficiently many local approximate tubular
neighborhoods (in particular, if all nonminimal strata of X have dimension � 5).
Let O be the orientation sheaf of the n–manifold X �X n�2 , and let E be a local
coefficient system on X �X n�2 of finitely generated free modules over the principal
ideal domain R. Let xp and xq be dual perversities ( xp.k/C xq.k/D k � 2). Let TH�
and FH� denote, respectively, the R–torsion subgroup and R–torsion free quotient
group of IH� , and let Q.R/ denote the field of fractions of R.

Suppose that Hom.T xpH c
i�1
.X I E/;Q.R/=R/ is a torsion R–module (in particular, if

T xpH c
i�1
.X I E/ is finitely generated). Then

Hom.F xpH c
i .X I E/;R/Š F xqH1n�i.X IHom.E ;RX�X n�2/˝O/

Hom.T xpH c
i�1.X I E/;Q.R/=R/Š T xqH1n�i.X IHom.E ;RX�X n�2/˝O/:and

We record separately the case for field coefficients, for which all of the torsion conditions
are satisfied automatically.

Corollary 7.3 Let X be an n–dimensional MHSS with no codimension one stratum
and with sufficiently many local approximate tubular neighborhoods (in particular, if
all nonminimal strata of X have dimension � 5). Let O be the orientation sheaf of
the n–manifold X � X n�2 , and let E be a local coefficient system on X � X n�2

of finitely generated F –modules for a field F . Let xp and xq be dual perversities
( xp.k/Cxq.k/D k � 2). Then

Hom.I xpH c
n�i.X I E/IF/Š I xqH1i .X IHom.E ;FX�X n�2/˝O/:

In particular, if X is a compact orientable MHSS satisfying the hypotheses of the
corollary, we obtain the more familiar pairing

Hom.I xpHi.X IQ/;Q/Š I xqHn�i.X IQ/:
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If, in addition, X is homotopy locally . xp;Z/–torsion free, we have

Hom.F xpHi.X /;Z/Š F xqHn�i.X / and Hom.T xpHi.X /;Q=Z/Š T xqHn�i.X /;

which generalize the usual intersection and linking pairings for manifolds.

In the final section of the paper, Section 9, we explore conditions that would ensure an
appropriate duality over more general ground rings.

Outline Section 2 contains a brief overview of our need to utilize singular chain
intersection homology on MHSSs and the relationship between this approach and
the sheaf-theoretic point of view. In Section 3, we review the requisite background
technical material. In Section 4, we establish the notion of MHSSs with sufficiently
many approximate tubular neighborhoods; these are the spaces on which our results
will apply. Section 5 contains the proof that the sheaf complex of singular intersection
chains on an MHSS is quasi-isomorphic to the Deligne sheaf of [22]. In Section 6,
we demonstrate that these sheaves are constructible on MHSSs, and in Section 7, we
establish Poincaré duality. Section 8 contains a definition of Witt spaces in the class
of MHSSs, and Section 9 explores how our duality results extend for ground rings of
higher cohomological dimension. Finally, we provide a technical computation in the
Appendix.

Acknowledgments I thank Bruce Hughes and Markus Banagl each for several helpful
discussions.

Several diagrams in this paper were typeset using the TEX commutative diagrams
package by Paul Taylor.

2 Sheaves vs. singular chains

Intersection homology on piecewise linear (PL) pseudomanifolds was defined initially
in terms of simplicial chains, and the original proof of Poincaré duality over a field on
compact orientable PL pseudomanifolds in [21] was performed via a combinatorial
construction using the triangulations of the spaces. However, by [22] sheaf theory
had taken over. It was shown that intersection homology on a PL pseudomanifold
can be obtained as the hypercohomology of a certain sheaf complex, the Deligne
sheaf complex, that can be defined without any reference to simplicial chains. This
sheaf theoretic description of intersection homology was extremely successful – by
eliminating a need for simplicial chains, intersection homology could be extended to
topological pseudomanifolds (which need not be triangulable), and the existence of
an axiomatic characterization of the Deligne sheaf led to purely sheaf-theoretic proofs
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of topological invariance (independence of stratification) and of Poincaré duality, via
Verdier duality of sheaf complexes. It is in this sheaf-theoretic realm that many of the
most important applications of intersection homology have been attained, including
intersection homology versions of Hodge theory, the Lefschetz hyperplane theorem,
and the hard Lefschetz theorem for singular varieties, as well as applications to the
Weil conjecture for singular varieties, the Riemann–Hilbert correspondence, and the
proof of the Kazhdan–Lusztig conjecture (see Kirwan [34] for an exposition of these
applications).

However, the homotopy theoretic nature of MHSSs makes it difficult to work with
sheaves on these spaces – sheaf cohomology does not always behave well with respect
to homotopies and homotopy equivalences, and some of the spaces that occur in the
analysis of MHSSs, such as certain path spaces, are not locally compact, a property that
is often required in order to employ some of the most useful theorems of sheaf theory.
This discourages one from taking a purely sheaf theoretic approach to intersection
homology on these spaces. Fortunately, a singular chain version of intersection homol-
ogy exists, due initially to King [33], and this is the version of intersection homology
that Quinn demonstrated was a topological invariant of MHSSs in [38]. In [20], we
showed that the singular intersection chains also generate a sheaf complex and that it
is quasi-isomorphic to the Deligne sheaf complex on topological pseudomanifolds. In
this paper, we will show that these two versions of intersection homology also agree
on MHSSs, and then we will use this correspondence to obtain Poincaré duality by
applying chain-theoretic arguments to demonstrate properties of the sheaf complexes.

More specifically, the Goresky–MacPherson proof of Poincaré duality on topological
pseudomanifolds [22] proceeds by establishing that the Deligne sheaf complex is
characterized by its axiomatic properties and then by showing that the Verdier dual of a
perversity xp Deligne sheaf complex satisfies the axioms to be the Deligne sheaf complex
with the complementary perversity. Duality of intersection homology then follows by
general sheaf theory. Showing that the Verdier dual of a Deligne sheaf satisfies the
axioms to be another Deligne sheaf is done purely sheaf-theoretically and relies at certain
points upon the geometric form of local neighborhoods in pseudomanifolds – each point
has distinguished neighborhoods homeomorphic to Rn�k � cL, where cL is the open
cone on a lower-dimensional pseudomanifold.2 See Goresky and MacPherson [22]

2In particular, the proof of duality in [7] (which clarifies the proof in [22]) shows that the Verdier
dual of the Deligne sheaf satisfies the axioms AX2, which include a condition that this dual be stratified
cohomologically locally constant (X –clc). The satisfaction of this condition follows from the Deligne
sheaf itself being X –clc, the proof of which, given for pseudomanifolds in [7], relies on the distinguished
neighborhoods. In the context of MHSSs, it is not clear that it should follow from these methods that the
Deligne sheaf is X –clc and an alternative approach is therefore necessary; see Section 6, below.
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or Borel [7] for details. The key difficulty for MHSSs is that these distinguished
neighborhoods no longer necessarily exist, and so the local sheaf arguments of [22]
and [7] no longer apply. To overcome this difficulty, we establish a quasi-isomorphism
between the Deligne sheaf and the sheaf of singular intersection chains (of the same
perversity), and then we compute locally using the singular chains, which are much
better adapted to being manipulated by homotopy properties. Instead of distinguished
neighborhoods, we use local versions of the Approximate Tubular Neighborhoods of
Hughes [28], which exist on all MHSSs satisfying mild dimension requirements (see
Section 4, below).

3 Background and basic terminology

3.1 Intersection homology

In this section, we provide a quick review of the definition of intersection homology.
For more details, the reader is urged to consult King [33] and the author [20] for
singular intersection homology and the original papers of Goresky and MacPherson
[21; 22] and the book of Borel [7] for the simplicial and sheaf definitions. Singular
chain intersection homology theory was introduced in [33] with finite chains (compact
supports) and generalized in [20] to include locally finite but infinite chains (closed
supports).

We recall that singular intersection homology is defined on any filtered space

X DX n
�X n�1

� � � � �X 0
�X�1

D∅:

In general, the superscript “dimensions” are simply labels and do not necessarily reflect
any geometric notions of dimension. We refer to n as the filtered dimension of X , or
simply as the “dimension” when no confusion should arise. The set X i is called the
i –th skeleton of X , and Xi DX i �X i�1 is the i –th stratum.

Remark 3.1 Our definition of a filtered space is more specific than that found in,
eg, [27; 28] in that we require X to have a finite number of strata and that the strata
be totally ordered. If the skeleta X i are closed in X , then these spaces will also be
“stratified spaces satisfying the frontier condition” – see Hughes [27].

A perversity xp is a function xpW Z�1! Z such that xp.k/� xp.kC 1/� xp.k/C 1. A
traditional perversity also satisfies xp.1/D xp.2/D 0. One generally must restrict to
traditional perversities in order to obtain the most important topological invariance
and Poincaré duality results for intersection homology (see Borel [7], Goresky and
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MacPherson [22], King [33] and Quinn [38]), although many interesting results are now
also known for superperversities, which satisfy xp.2/>0 (see Cappell and Shaneson [10],
Friedman [18; 20], Habegger and Saper [24] and Saralegi-Aranguren [41]).

Given xp and X , one defines I xpC c
� .X / as a subcomplex of C c

� .X /, the complex of
compactly supported singular chains3 on X , as follows: A simplex � W �i ! X in
C c

i .X / is allowable if

��1.X n�k
�X n�k�1/� fi � kC xp.k/ skeleton of �i

g:

The chain � 2C c
i .X / is allowable if each simplex in � and @� is allowable. I xpC c

� .X /

is the complex of allowable chains. I xpC1� .X / is defined similarly as the complex of
allowable chains in C1� .X /, the complex of locally finite singular chains. Chains in
C1� .X / may be composed of an infinite number of simplices (with their coefficients),
but for each such chain � , each point in X must have a neighborhood that intersects
only a finite number of simplices (with nonzero coefficients) in � . I xpC1� .X / is
referred to as the complex of intersection chains with closed supports, or sometimes as
Borel–Moore intersection chains. See Friedman [20] for more details.

The associated homology theories are denoted I xpH c
�.X / and I xpH1� .X /. We will

sometimes omit the decorations c or 1 if these theories are equivalent, eg if X is
compact. We will also often omit explicit reference to xp below, for results that hold
for any fixed perversity.

Relative intersection homology is defined similarly, though we note that

(1) the filtration on the subspace will always be that inherited from the larger space
by restriction, and

(2) in the closed support case, all chains are required to be locally finite in the larger
space.

If .X;A/ is such a filtered space pair, we use the notation IC1� .AX / to denote the
allowable singular chains supported in A that are locally finite in X . The homol-
ogy of this complex is IH1� .AX /. Note that in the compact support case, the local
finiteness condition is satisfied automatically so we do not need this notation and may
unambiguously refer to IHc

�.A/. The injection 0! IC1� .AX /! IC1� .X / yields a
quotient complex IC1� .X;A/ and a long exact sequence of intersection homology
groups ! IH1i .AX /! IH1i .X /! IH1i .X;A/!.

3This is the usual chain complex consisting of finite linear combination of singular simplices, but we
emphasize the compact supports in the notation to distinguish C c

� .X / from C1� .X / , which we shall also
use.
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If X and Y are two filtered spaces, we call a map f W X ! Y filtered if the image of
each component of a stratum of X lies in a stratum of Y . NB: This property is often
referred to as “stratum-preserving”, eg in [39] and [16]. However, we must reserve the
term “stratum-preserving” for other common uses. In general, it is not required that
a filtered map take strata of X to strata of Y of the same (co)dimension. However,
if f preserves codimension, or if X and Y have the same filtered dimension and
f .Xi/� Yi , then f will induce a well-defined map on intersection homology (see [16,
Proposition 2.1] for a proof). In this case, we will call f well-filtered. We call a well-
filtered map f a stratum-preserving homotopy equivalence if there is a well-filtered
map gW Y !X such that fg and gf are homotopic to the appropriate identity maps
by well-filtered homotopies, supposing that X � I and Y � I are given the obvious
product filtrations. Stratum-preserving homotopy equivalences induce intersection
homology isomorphisms [16]. If stratum-preserving homotopy equivalences between
X and Y exist, we say that X and Y are stratum-preserving homotopy equivalent,
X �sphe Y .

In the sequel, all maps inducing intersection homology homomorphisms will clearly
be well-filtered. Hence, we will usually dispense with explicit discussion of this point.

It is shown in [20] that one can construct a sheaf of intersection chains IS� on
any filtered Hausdorff space X such that, if X is also paracompact and of finite
cohomological dimension, then the hypercohomology H�.IS�/ is isomorphic to
IH1n��.X /, where n is the filtered dimension of X . If X is also locally compact, then
H�c .IS�/Š IHc

n��.X /. We will use some properties of these sheaves below, but we
refer the reader to [20] for more detailed background.

3.1.1 A note on coefficients Often throughout this paper we will leave the coefficient
systems tacit so as not to overburden the notation. However, except where noted
otherwise, all results hold for any of the following choices of coefficients, where R is
any ring with unit of finite cohomological dimension:

� Any constant coefficient groups or R–modules.

� Any local system of coefficients of groups or R–modules with finitely generated
stalks defined on X �X n�2 [22; 7; 20].

� If xp is a superperversity (ie xp.2/ > 0; see [10; 20; 18]), any stratified sys-
tem of coefficients G0 with finitely generated stalks as defined in [20] such
that G0jX�X n�1 is a local coefficient system of groups or R–modules and
G0jX n�1 D 0. It is shown in [20] that this last coefficient system allows us to
recover from singular chains the superperverse sheaf intersection cohomology
on pseudomanifolds.
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3.2 Stratified homotopies and fibrations

If X is a filtered space, a map f W Z �A!X is stratum-preserving along A if, for
each z 2 Z , f .z �A/ lies in a single stratum of X . If A D I D Œ0; 1�, we call f
a stratum-preserving homotopy. If f W Z � I ! X is only stratum-preserving when
restricted to Z � Œ0; 1/, we say f is nearly stratum-preserving.

If X and Y are stratified spaces, a map pW X ! Y is a stratified fibration if it admits
solutions to stratified lifting problems, ie if given a commuting diagram of maps

Z
f- X

Z � I

�0
? F- Y;

p
?

such that Z is any space and F is a stratum-preserving homotopy, there exists a
stratum-preserving homotopy zF W Z � I !X such that p zF D F and zF jZ�0 D f .

See Hughes [27] and Friedman [16] for more on stratified fibrations.

3.3 Manifold homotopically stratified spaces

Even though the above definition of intersection homology applies to very general
spaces, one usually needs to limit oneself to smaller classes of spaces in order to obtain
nice properties. In this paper, we focus on the manifold homotopically stratified spaces
introduced by Quinn and refined by Hughes. These spaces were introduced partly with
the purpose in mind of being the “right category” for intersection homology – see
Quinn [38].

There is disagreement in the literature as to what to call these spaces. Quinn, himself,
calls them both “manifold homotopically stratified sets” [39] and “weakly stratified
sets” [38]. Hughes [28] prefers the term “manifold stratified spaces”. We use the term
manifold homotopically stratified space (MHSS), which seems to capture both that they
are stratified by manifolds and that there are additional homotopy conditions on the
“gluing”.

To define these spaces, we need some preliminary terminology. Except where noted,
we take these definitions largely from [28], with slight modifications to reflect the
restrictions mentioned above in Remark 3.1.
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3.3.1 Forward tameness and homotopy links If X is a filtered space, then Y is
forward tame in X if there is a neighborhood U of Y in X and a nearly-stratum-
preserving deformation retraction RW U � I ! X retracting U to Y rel Y . If the
deformation retraction keeps U in U , we call U a nearly stratum-preserving deforma-
tion retract neighborhood (NSDRN). This last definition was introduced in [17].

The stratified homotopy link of Y in X is the space (with compact-open topology) of
nearly stratum-preserving paths with their tails in Y and their heads in X �Y :

holinks.X;Y /D f! 2X I
j !.0/ 2 Y; !..0; 1�/�X �Y g:

The holink evaluation map takes a path ! 2 holinks.X;Y / to !.0/. For x 2Xi , the
local holink, denoted holinks.X;x/, is simply the subset of paths ! 2 holinks.X;Xi/

such that !.0/D x . Holinks inherit natural stratifications from their defining spaces:

holinks.X;Y /j D f! 2 holink.X;Y / j !.1/ 2Xj g:

If X is metric and ıW Y ! .0;1/ is a continuous function, then holinkıs.X;Y / is the
subset of paths ! 2 holinks.X;Y / such that !.I/ is contained inside the open ball
Bı.!.0//.!.0// with radius ı.!.0// and center !.0/.

3.3.2 Manifold homotopically stratified spaces (MHSSs) A filtered space X is a
manifold homotopically stratified space (MHSS) if the following conditions hold:

� X is locally-compact, separable and metric.

� X has finitely many strata, and each Xi is an i –manifold without boundary and
is locally-closed in X .

� For each k > i , Xi is forward tame in Xi [Xk .

� For each k > i , the holink evaluation holinks.Xi [Xk ;Xi/!Xi is a fibration.

� For each x , there is a stratum-preserving homotopy holink.X;x/� I !

holink.X;x/ from the identity into a compact subset of holink.X;x/.4

We say that an MHSS X is n–dimensional if its top manifold stratum has dimension n.
This implies that X is n–dimensional in the sense of covering dimension by [32,
Theorem III.2], which states that a space that is the union of a countable number of
closed subsets of dimension � n has dimension � n. This condition holds for X since
each stratum is a separable manifold of dimension � n (see also [32, Theorem V.1]).
It then follows from [32, Theorem III.1] and [8, Corollary II.16.34, Definition II.16.6

4This condition, requiring compactly dominated local holinks, was not part of the original definition of
Quinn [39]. It first appears in the work of Hughes leading towards his Approximate Tubular Neighborhood
Theorem in [28].
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and Proposition II.16.15] that the cohomological dimension dimR X of X is � n

for any ring R with unity (note that since X is metric, it is paracompact). Similarly,
dimR Z � n for any subspace Z of X .

A subset of an MHSS is pure if it is a closed union of components of strata. Each
skeleton X i is a pure subset. The skeleton X n�1 of an n–dimensional MHSS is also
referred to as the singular set †.

3.4 Neighborhoods in stratified spaces

3.4.1 Teardrops Given a map pW X ! Y �R, the teardrop X [p Y of p is the
space X qY with the minimal topology such that
� X ,!X [p Y is an open embedding and
� the function cW X [p Y ! Y � .�1;1� defined by

c.z/D

(
p.z/; z 2X;

.z;1/; z 2 Y

is continuous.

Given f W X!Y , the teardrop .X�R/[f�idY is the open mapping cylinder of f with
the teardrop topology. If f is a proper map between locally compact Hausdorff spaces,
then this is the usual mapping cylinder with the quotient topology (see Hughes [26]).
An alternative description of the teardrop topology of a mapping cylinder is as the
topology on X � .0; 1/qY generated by the open subsets of X � .0; 1/ and sets of
the form U [ .p�1.U /� .0; �//, where U is open in Y .

If N is a nearly stratum-preserving deformation retract neighborhood (NSDRN) of
a pure subset Y of a manifold homotopically stratified space (MHSS), then N is
stratum-preserving homotopy equivalent to the mapping cylinder M of the holink
evaluation holinks.N;Y /! Y , provided M is given the teardrop topology. A proof
can be found in [16, Appendix].

3.4.2 Approximate tubular neighborhoods We recall the definition of weak strati-
fied approximate fibrations. These are generalizations of fibrations that satisfy a weak
version of the lifting condition.

Suppose we are given a diagram

Z
f- A

Z � I

�0
? F- B;

q
?
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such that Z is arbitrary and F is a stratum-preserving homotopy. Suppose there is a
function zF W Z � I � Œ0; 1/! A that is stratum-preserving along I � Œ0; 1/, satisfies
zF .z; 0; t/D f .z/ and is such that the function xF W Z � I � I ! B defined by xF jZ �
I � Œ0; 1/D p zF and xF jZ � I � f1g D F is continuous. In this situation, we say that
zF is a weak stratified controlled solution to the lifting problem posed by the diagram.

If qW A! B is a map such that every such diagram extending q has a weak stratified
controlled solution, then q is called a weak stratified approximate fibration.

A manifold stratified approximate fibration (MSAF) is a proper map between MHSSs
that is also a weak stratified approximate fibration. One says that N is an approximate
tubular neighborhood of a pure subset Y of the MHSS X if there is a manifold
stratified approximate fibration (MSAF) pW N � Y ! Y �R such that the teardrop
.N �Y /[p Y is homeomorphic to N . Approximate tubular neighborhoods generalize
both tubular neighborhoods and mapping cylinder neighborhoods. In our proof of
Poincaré duality, below, local versions of approximate tubular neighborhoods will be
used to provide a stratified homotopy version of the structure that is usually provided
by distinguished neighborhoods for pseudomanifolds.

The following Approximate Tubular Neighborhood Theorem is due to Hughes [28],
generalizing earlier special cases due to Hughes, Taylor, Weinberger and Williams [30]
and Hughes and Ranicki [29]:

Theorem 3.2 (Approximate Tubular Neighborhood Theorem (Hughes)) Let X be
a MHSS with compact singular set † such that all nonminimal strata of X have
dimension � 5. If Y �† is a pure subset of X , then Y has an approximate tubular
neighborhood in X . If † is not compact, the theorem remains true if, in addition to
the previous dimension restrictions, all noncompact strata are of dimension � 5 and
the one-point compactification of X is a MHSS with the point at infinity constituting a
new stratum.

By [28, page 873], if N is an approximate tubular neighborhood, then the natural
extension of pW N �Y ! Y �R to zpW N ! Y � .�1;1� is also an MSAF.

4 Local approximate tubular neighborhoods

Let X be a manifold homotopically stratified space (MHSS), and suppose x is a point
in the k –th stratum Xk D X k �X k�1 . We will say that x has a local approximate
tubular neighborhood in X if there is an open neighborhood U of x in X such that

(1) U \X k�1 D∅,
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(2) U \Xk ŠRk and

(3) U is an approximate tubular neighborhood of U \Xk in .X �X k/[ .U \Xk/.

We note that .X � X k/ [ .U \ Xk/ is an open subset of X and thus is itself a
MHSS according to [17, Proposition 3.4]. Furthermore, U \Xk is a closed union of
components of strata in .X �X k/[ .U \Xk/ so that it is a pure subset.

We say that the MHSS X has sufficiently many local approximate tubular neighbor-
hoods if each point x 2† possesses a local approximate tubular neighborhood. Any
space for which Hughes’s Approximate Tubular Neighborhood Theorem holds has
sufficiently many local approximate tubular neighborhoods:

Proposition 4.1 Let X be a manifold homotopically stratified space with compact
singular space † such that all the nonminimal strata of X have dimension greater than
or equal to five (or alternatively such that all the noncompact strata are of dimension
greater than or equal to five and the one-point compactification of X is a MHSS with
the point at infinity constituting a new stratum). Then X has sufficiently many local
approximate tubular neighborhoods.

Proof By the Approximate Tubular Neighborhood Theorem [28, Theorem 1.1] (see
also [28, Remark 7.2]), any pure subset Y in X has an approximate tubular neighbor-
hood. We will use this to obtain local approximate tubular neighborhoods.

So suppose x 2Xk . Then X k itself is a pure subset, and we can suppose X k has an
approximate tubular neighborhood W . So there is a manifold stratified approximate
fibration (MSAF) pW W � X k ! X k � R that extends continuously to xpW W !

X k � .�1;1�. But now let V be a neighborhood of x in Xk homeomorphic to Rk ,
and let U D zp�1.V � .�1;1�/. We claim that U is a local approximate tubular
neighborhood of x .

It is apparent that U is an open neighborhood of x and that conditions (1) and (2)
of the definition for a local approximate tubular neighborhood are satisfied. So we
must check only that U is an approximate tubular neighborhood of V DU \Xk . The
restriction of zp to U remains continuous, so we need only show that pU D pjU �V

is an MSAF. U �V and V �R are both MHSSs, and since U �V D p�1.V �R/,
pU is proper (the inverse image in U �V of any compact set in V �R is the same as
its inverse image in W �X k ). Finally, we employ the fact that the restriction of any
weak stratified approximate fibration to the inverse image of any open set is itself a
weak stratified approximate fibration by the following lemma.
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Lemma 4.2 Let pW X ! Y be a weak stratified approximate fibration between metric
spaces, and let U be an open subset of Y . Then pU W p

�1.U /!U is a weak stratified
approximate fibration.

Proof We must show that pU possesses the weak stratified lifting property. So suppose
we have a stratified lifting problem specified by f W Z! p�1.U / and F W Z�I !U

for some metric space Z (we may assume Z to be metric by Remark 5.5b of [27]).
Certainly there is a weak stratified controlled solution zF W Z � I � Œ0; 1/! X such
that zF .z; 0; s/D f .z/ for all z; s and such that xF W Z � I � I is continuous, where
xF D p zF on Z � I � Œ0; 1/ and xF jZ�I�1 D F . We need to show that we can arrange

for a new zF whose image is contained completely in p�1.U /. By the continuity of xF ,
and since xF .Z; I; 1/� U , there exists a neighborhood W of Z � I � 1 in Z � I � I

such that xF .W /� U and zF .W �Z � I � 1/� p�1.U /. Let d W Z � I � 1! R>0

be the distance from .z; t; 1/ to Z � I � I �W . Now let zGW Z � I � Œ0; 1/! X

be given by zG.z; t; s/! zF .z; t; sC .1� s/.1� d.z; t/=2//. zG maps to p�1.U / by
construction, and it is a solution to the desired approximate lifting problem.

Lemma 4.3 Suppose that X is a MHSS and that x 2 X has a local approximate
tubular neighborhood U . Then x has a family U D U0 � U1 � U2 � � � � of local
approximate tubular neighborhoods that is cofinal among all neighborhoods of x .

Proof Suppose x 2Xk , and let V DU \Xk . Then U is the teardrop of pW U �V !

V �R. Let zpW U ! V � .�1;1� be the continuous extension. Since U is a local
approximate tubular neighborhood V Š Rk by definition, and we may assume that
x is the origin of Rk . Let Vm D

1
m

Dk , where Dk is the open unit disk in Rk .
Let Wm D Vm � .m;1/, and let Um D zp

�1.Wm [ Vm/. Then Um is certainly a
neighborhood of x , and it follows from the same arguments as used in the proof of
Proposition 4.1 that Um is an approximate tubular neighborhoods of x .

To see that this system is cofinal, let Z be any open neighborhood of x . We will show
that some Um is a subset of Z . Suppose not. Then for all m, Um \ .X �Z/¤ ∅.
So for each WM [ Vm , there is a point xm 2 Wm [ Vm such that zp�1.xm/ … Z .
But we must have fxmg converge to x and thus also zp�1.xm/ converges to x , by
definition of the teardrop topology. But then x is a limit point of the closed set X �Z ,
a contradiction to Z being an open neighborhoods of x .

5 IS� is the Deligne sheaf

In this section, we will demonstrate that if X is an MHSS with sufficiently many
approximate tubular neighborhoods, then the intersection chain sheaf IS� is quasi-
isomorphic to the Deligne sheaf P� . In [22], Goresky and MacPherson showed that
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the sheaf of simplicial intersection chains is quasi-isomorphic to P� on PL pseudo-
manifolds. It was shown much later by the author in [20] that the singular intersection
chain sheaf is quasi-isomorphic to the Deligne sheaf on topological pseudomanifolds.
However, it is by no means obvious that the Deligne sheaf and the intersection chain
sheaf are quasi-isomorphic on MHSSs. On pseudomanifolds, one makes strong use of
the geometric form of local distinguished neighborhoods Rn�k � cL, where L is a
compact pseudomanifold, but points in MHSSs have no such distinguished neighbor-
hoods. It is true that each point has a neighborhood stratum-preserving homotopically
equivalent to a space of the form Rn�k � cL, and this fact is utilized in Quinn’s proof
of topological invariance of compactly supported intersection homology on MHSSs
[38]. But to establish the desired sheaf quasi-isomorphism, it is necessary to consider
closed support intersection homology on local neighborhoods, and these groups are not
generally preserved under stratified homotopy equivalences (they would be preserved if
the homotopy equivalences were proper, but in general they will not be – L generally
will not even be locally compact). This necessitates the arguments to follow.

Let X be an n–dimensional MHSS with no codimension one stratum, let xp be a fixed
perversity, and let E be a local coefficient system on X �X n�2 . Let Uk DX �X k ,
let Xk DX k�X k�1 , and let ik W Uk!UkC1DUk[Xn�k denote the inclusion. We
will omit xp from the notation so long as it remains fixed.

We recall that the Deligne sheaf P�.E/ is defined inductively in [22] so that P�
2
D E

on U2 DX �X n�2 , and

P�jUkC1
D P�kC1 D ��xp.k/Rik�P�k

for k � 2. All formulas should be considered to live in the derived category of sheaves
on X . In particular, D really denotes quasi-isomorphism, Rik� is the derived functor
of the sheaf pushforward ik� , and ��xp.k/ is the sheaf truncation functor.

Let IS�.E/ denote the sheaf of intersection chains on X as defined in [20] with
perversity xp and local coefficients E . We prove the following theorem:

Theorem 5.1 Let X be an n–dimensional MHSS with no codimension one stratum
and with sufficiently many local approximate tubular neighborhoods. Let O be the
orientation sheaf of the n–manifold X �X n�2 , and let E be a local coefficient system
on X�X n�2 . Then the Deligne sheaf P�.E˝O/ and the sheaf of singular intersection
chains IS�.E/ are quasi-isomorphic.

We begin by recalling the basic axioms of the Deligne sheaf in the version of [7,
Section V.2]. Let S� be a differential graded sheaf on the filtered space X of finite
cohomological dimension, and let S�

k
denote S�jX�X n�k . Then the axioms AX1 xp;X E

are as follows:
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(1) S� is bounded, S i D 0 for i < 0, and S 2 is the local coefficient system E on
X �X n�2 .

(2) For k � 2 and x 2Xn�k , H i.S�x/D 0 if i > xp.k/.

(3) The attachment map ˛k W S�
kC1

,!Rik�S
�
k

is a quasi-isomorphism up to (and
including) xp.k/.

We recall that for an inclusion i W U ,! V , the attaching map of a sheaf complex S� is
simply the composition of the canonical sheaf maps S�! i�i

�S�!Ri�i
�S� . The

first of these sheaf maps corresponds to the restriction of sections of S� to U , and the
second map is induced by any quasi-isomorphism from S� to a sheaf complex adapted
to the functor i� . It follows that on hypercohomology the attaching map induces a
homomorphism H�.V IS�/!H�.U IS�/ that can be interpreted as being induced by
the restriction of sections of any appropriate resolution of S� . If x 2Xn�k , Axiom (3)
is therefore equivalent to the condition that H i.S�/xŠ lim

�!x2U
Hi.U�U\Xn�k IS

�/

for all i � xp.k/ [7, V.1.7; 3, Section 4.1.4].

By [7, Theorem V.2.5], any sheaf that satisfies the axioms AX1 xp;X E is quasi-iso-
morphic to P�.E/. This theorem is stated for pseudomanifolds, but the proof applies
for any filtered space. Thus we set out to show that IS� satisfies the axioms.

As observed in [7, Section V.2.7], since we are really working in the derived category, the
first two conditions of Axiom (1) can be replaced with the conditions that S� is bounded
below and that Hi.S�/D 0 for i < 0 and for i � 0. And, in fact, the strict bounded
below condition is never used in the proof of [7, Section V.2.7]; it seems to be invoked
only later in [7, Remark V.2.7.b] to assure the convergence of the hypercohomology
spectral sequence. Since we noted in [20] that the hypercohomology spectral sequence
of IS� does indeed converge with no difficulty (since IS� is homotopically fine), there
is both no such difficulty here and this condition is unnecessary to prove the desired
quasi-isomorphism. Thus it suffices to demonstrate that IS� satisfies the axioms,
except for the strict bounded below condition. (Additionally, once we have shown that
IS� satisfies the other properties, we can note that the condition Hi.IS�/ D 0 for
i < 0 implies that IS� is quasi-isomorphic to ��0IS� , which then itself satisfies all
of the axioms).

We begin with Axiom (2).

Proposition 5.2 Let IS� be the intersection chain sheaf on the MHSS X with suffi-
ciently many local approximate tubular neighborhoods. Then for k � 2 and x 2 Xn�k ,
H i.IS�x/D 0 if i > xp.k/ (ie IS� satisfies Axiom (2)).
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Proof Suppose x 2Xn�k . By elementary sheaf theory,

H i.IS�x/D lim
�!
x2U

Hi.U I IS�/:

By [20, Proposition 3.7], the restriction of IS� to an open subset is quasi-isomorphic
to the intersection chain sheaf on the subset, and thus Hi.U I IS�/Š IH1n�i.U /.

Now, suppose that U is a local approximate tubular neighborhood of x (and hence an
approximate tubular neighborhood of U \Xn�k ŠRn�k ). By [19, Corollary 9.2 and
Proposition 9.34], U is also an outwardly stratified tame nearly stratum-preserving
deformation retract neighborhood of U \Xn�k Š Rn�k (the reader who wants to
know what all that means is urged to consult [19]; we will merely use this fact to invoke
some other results from [19] regarding such neighborhoods).

Putting together Theorem 6.15 and Proposition 5.1 of [19], since U is an outwardly
stratified tame nearly stratum-preserving deformation retract neighborhood, IH1n��.U /
is the abutment of a spectral sequence with E2 terms

E
r;s
2
ŠH r .Rn�k

I IHc
n�.n�k/�s.cL;L�R//;

where here LD holinks.U;x/. The coefficient system is constant because the base
space is homeomorphic to Rn�k . We note also that the pair .cL;L � R/ is the
preimage of the point x under the collapse map .M;M �Rn�k/!Rn�k , where M

is the mapping cylinder of the holink evaluation � W holinks.U;Rn�k/. This mapping
cylinder, and hence also the cone, are given the teardrop topology.

This spectral sequence collapses immediately, all terms being 0 except for the terms
E

0;s
2

, at which we have E
0;s
2
Š IHc

k�s
.cL;L � R/. So we have Hi.U I IS�/ Š

IH1n�i.U /ŠE
0;i
2
Š IHc

k�i
.cL;L�R/. Now, L is an infinite dimensional space, but

under the conventions for intersection homology under stratified homotopy equivalences
(see, eg, Friedman [19]), all strata of M and L�R � cL �M simply inherit the
formal dimension labels of the strata they arise from in U under the stratum-preserving
homotopy equivalence M �sphe U (see Section 3.4.1). At the same time, it is not these
formal dimensions that really matter in intersection homology, only the codimensions,
so we are free to shift all dimension labels. If we subtract n� k from all the formal
strata dimensions on .cL;L�R/, then the cone point has dimension 0, as appropriate,
and we see that we are free to apply the usual intersection homology cone formula (see
King [33, Proposition 5]), as the standard arguments of its proof will apply with cL a
filtered space of filtered dimension k . Thus

IHc
j .cL;L�R/Š

(
0; j � k � 1� xp.k/;

IHc
j�1.L/; j > k � xp.k/:
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Thus Hi.U I IS�/D 0 for k � i � k � 1� xp.k/, ie for i > xp.k/.

Since x possesses a cofinal system of local approximate tubular neighborhoods, the
proposition follows.

Next we start work towards the proof that IS� satisfies Axiom (3).

Lemma 5.3 Let pW X ! Rm (or pW X ! Rm
C , the closed half space) be a proper

weak stratified approximate fibration. Then IH1� ..X � p�1.0//X / D 0, and hence
IH1� .X /Š IH1� .X;X �p�1.0//.

Proof The second statement follows from the long exact sequence of the pair, once
we prove the first. The proof that IH1� ..X �p�1.0//X / comes by showing that we
can “push cycles off to infinity”. A very similar statement and proof can be found in
Proposition 6.7 of [19], though in a slightly different context. The main point is that
we need to show that X �p�1.0/ possesses a version of the property that we refer to
in [19] as “outward stratified tameness” of approximate tubular neighborhoods. The
definition of this term in [19, Section 6.2] applies to certain neighborhoods, but the
appropriate modified condition here would say that for any metric space Z and any
proper map gW Z!X such that g.Z/ 2X �p�1.0/, there exists a proper stratum-
preserving homotopy H W Z � Œ0;1/! X such that H.Z � Œ0;1// � X �p�1.0/

and H jZ�0 D f . Once this condition is established, the proof that the intersection
homology groups are 0 follows by a direct modification of the proof of the cited
proposition. We let the reader consult that proof for precise details; the idea is that for
any intersection cycle � , this outward tameness property allows us to build a homotopy
of j�j out to infinity. Then, this homotopy is used to build the desired infinite-chain
null-homology.

Thus we should concentrate on the proof of existence of such proper open-ended
homotopies H . Here, also, the proof is very similar to that of the proof that approximate
tubular neighborhoods are outwardly stratified tame [19, Proposition 9.3]. The proof
of that proposition is rather lengthy, so we will not reproduce a modified version here.
The interested reader should note that the appropriate modification is to replace the
sets Ki � .�i;1/ with the closed disks (or half-disks for Rm

C ) Di of radius i in Rm ,
and the sets Ci with p�1.Di/. Then one proceeds as in that proof to construct H

so that H. � ; 0/D f and for each positive integer i , H.Z � Œi;1// � X �Ci , and
H.z; t/D f .z/ if t 2 Œ0; i � and z 2 f �1.X � int.CiC1// (this last condition is the key
to properness, since at each finite time only a compact set is moved by the homotopy).
The proofs that such an H suffices and that it can be constructed are similar to those
of [19, Proposition 9.3], and we leave the necessary modifications to the reader.
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Corollary 5.4 Let U be a local approximate tubular neighborhood of the point x

in the stratum Xn�k of the MHSS X . Let V D U � U \ Xn�k , and let pW V !

.U \X n�k/�R be the proper MSAF of the definition of approximate tubular neighbor-
hoods. Let y be a point in .U \X n�k/�R. Then IH1� .V /Š IH1� .V;V �p�1.y//Š

IHc
�.V;V �p�1.y//Š IHc

�.U;U �p�1.y//.

Proof By the definition of local approximate tubular neighborhoods, U \X n�k Š

Rn�k . Thus .U \X n�k/�RŠRn�kC1 . We can treat any y as the origin of Rn�k�1

and apply the preceding lemma to obtain the first isomorphism. Since y is compact
and p is proper, V �p�1.y/ is cocompact, and so the second isomorphism follows
by [20, Lemma 2.12]. The last isomorphism is by excision (see [20, Lemma 2.11]).

Corollary 5.5 Let U be a local approximate tubular neighborhood of the point x in
the stratum Xn�k of the MHSS X . Let zpW U ! .U \X n�k/�.�1;1� be the proper
MSAF arising from the definition of approximate tubular neighborhoods. Let .y; t/ be
any point in .U\X n�k/�.�1;1/. Then IH1� .U /Š IH1� .U;U� zp

�1.y�Œt;1�//Š

IHc
�.U;U � zp

�1.y � Œt;1�//.

Proof By the definition of local approximate tubular neighborhoods, U \X n�k Š

Rn�k . Thus .U \X n�k/� .�1;1� Š Rn�kC1
C , and we can treat y �1 as the

origin in Rn�kC1
C . Note also that zp�1.y �1/ is just a single point in Xn�k , which

we can also call y �1. Thus by Lemma 5.3,

IH1� .U /Š IH1� .U;U � .y �1�//Š IH1� .U;U � zp
�1.y �1�//:

By [20, Lemma 2.12], this is isomorphic to

IHc
�.U;U � .y �1�//Š IHc

�.U;U � zp
�1.y �1�//:

Finally, we see that this is isomorphic to IHc
�.U;U � zp

�1.y � Œt;1�//, by the long
exact sequence of the triple, since IHc

�.U � zp
�1.y � Œt;1�/;U � zp�1.y �1//D 0:

clearly Rn�kC1
C �y �1 deformation retracts into Rn�kC1

C �y � Œt;1�, and this may
be used to push chains around appropriately in U , using the MSAF zp .

Proposition 5.6 Let U be a local approximate tubular neighborhood of the point x

in the stratum Xn�k of the MHSS X . Let zpW U ! .U \X n�k/� .�1;1� be the
proper MSAF arising from the definition of approximate tubular neighborhoods. Then
IHc
�.U;U � zp

�1.x � Œt;1�//! IHc
�.U;U � zp

�1.x � t//, induced by inclusion, is an
isomorphism for � � n� xp.k/.
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Proof To simplify the notation, recall that U \Xn�k ŠRn�k and assume, without
loss of generality, that xD 0 2Rn�k . We will use the long exact sequence of the triple
.U;U � zp�1.0� t/;U � zp�1.0� Œt;1�//.

So consider IHc
�.U � zp

�1.0 � t/;U � zp�1.0 � Œt;1�//. By excision, this is iso-
morphic to IHc

�. zp
�1.Rn�k � .t;1�/; zp�1..Rn�k � 0/� .t;1�//. Using Lemma 4.2,

the restriction of a proper MSAF to the inverse image of an open subset is again a
proper MSAF, so zp�1.Rn�k � .t;1�/ and zp�1..Rn�k �0/� .t;1�/ are approximate
tubular neighborhoods respectively of Rn�k and Rn�k � 0. In particular, then, by [19,
Section 9], these neighborhoods are each stratum-preserving homotopy equivalent to
mapping cylinders of homotopy link evaluations.

Let M be the mapping cylinder of the holink evaluation

holinks. zp
�1.Rn�k

� .t;1�/;Rn�k/!Rn�k ;

which is a stratified fibration by [27], and let P be the mapping cylinder collapse,
which is also a stratified fibration by [17, Proposition 3.3]. We will show below
that IHc

�. zp
�1.Rn�k � .t;1�/; zp�1..Rn�k � 0/� .t;1�// Š IHc

�.M;M �P�1.0//.
Let us assume for now that this isomorphism holds. Then, using [16, Corollary
3.4], there is a stratum- and fiber-preserving homotopy equivalence from M to
Rn�k � F , where F D P�1.0/. Since M is a mapping cylinder of � , F D

P�1.0/D c��1.0/D c holinks. zp
�1.Rn�k � .t;1�/; 0/, where c indicates the open

cone. Thus IHc
�.M;M �P�1.0//Š IHc

�..R
n�k ;Rn�k � 0/�F /, which, employing

the intersection homology Künneth theorem (which is allowed since .Rn�k ;Rn�k�0/

is a manifold pair), is homeomorphic to IHc
��.n�k/

.F /. Since F is the cone on
holinks. zp

�1.Rn�k � .t;1�/; 0/, we may argue again as in Proposition 5.2 to conclude
we can employ the standard cone formula as though holinks. zp

�1.Rn�k � .t;1�/; 0/

were a k � 1 dimensional space.

Thus

IHc
j .F /Š

(
0; j � k � 1� xp.k/;

IHc
j .holinks. zp

�1.Rn�k � .t;1�/; 0//; j < k � 1� xp.k/:

So if ��n�1� xp.k/, IHc
�.U � zp

�1.0� t/;U � zp�1.0� Œt;1�//Š IHc
��.n�k/

.F /D

0, and by the long exact sequence of the triple, IHc
�.U;U � zp

�1.x � Œt;1�// Š

IHc
�.U;U � zp

�1.x � t// for � � n� xp.k/, as desired.

It remains to show that

IHc
�. zp
�1.Rn�k

� .t;1�/; zp�1..Rn�k
� 0/� .t;1�//Š IHc

�.M;M �P�1.0//:
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The proof is similar to some of those in [19]: Let ıW Rn�k � 0 ! .0;1/ be a
continuous function such that for z 2 Rn�k � 0, ı.z/ is less than the distance in
X from z to X � zp�1..Rn�k � 0/ � .t;1�/. Let M ı

0
be the mapping cylinder of

the evaluation holinkıs. zp
�1..Rn�k � 0/� .t;1�/;Rn�k � 0/!Rn�k � 0. Then the

inclusion .M;M ı
0
/ ,! .M;M � P�1.0// induces a stratum-preserving homotopy

equivalence M ı
0
!M �P�1.0/ by the arguments of Quinn [39]. So, employing the

five lemma, IHc
�.M;M ı

0
/Š IHc

�.M;M �P�1.0//.

On the other hand, by [19], the approximate tubular neighborhood zp�1.Rn�k�.t;1�/

is a nearly stratum-preserving deformation retract neighborhood, and so by [16, Propo-
sition A.1], it is stratum-preserving homotopy equivalent M . If we let g be the
modified path evaluation map of the proof of [16, Proposition A.1], we see that g maps
the pair .M;M ı

0
/ to the pair . zp�1.Rn�k � .t;1�/; zp�1..Rn�k � 0/� .t;1�//. But

gW M! zp�1.Rn�k�.t;1�/ is precisely the stratum-preserving homotopy equivalence
of the cited proposition. The restriction gW M ı

0
! zp�1..Rn�k � 0/� .t;1�/ is also a

stratum-preserving homotopy equivalence since it factors as the composition of two
stratum-preserving homotopy equivalences M ı

0
!M0! zp

�1..Rn�k � 0/� .t;1�/,
where M0 is the mapping cylinder of the holink evaluation

holinks. zp
�1..Rn�k

� 0/� .t;1�/;Rn�k
� 0/!Rn�k

� 0;

the first map is inclusion, which is a stratum-preserving homotopy equivalence by
Quinn [39], and the second map is again the homotopy equivalence of [16, Proposi-
tion A.1]. Note that the claimed factorization holds, since we may choose compatible
shrinking maps S , as defined in the proof of [16, Proposition A.1], for all involved
holink spaces. So IHc

�.M;M ı
0
/Š IHc

�. zp
�1.Rn�k�.t;1�/; zp�1..Rn�k�0/�.t;1�//

by the five-lemma. This completes the proof.

Corollary 5.7 Let U be a local approximate tubular neighborhood of the point x in the
stratum Xn�k of the MHSS X . Then the restriction IH1� .U /! IH1� .U �U \Xn�k/

is an isomorphism for � � n� xp.k/.

Proof Applying the preceding proposition, it suffices to show that the following
diagram commutes:

IH1� .U / - IH1� .U �U \Xn�k/

IHc
�.U;U � zp

�1.x � Œt;1�//

Š
?

- IHc
�.U;U � zp

�1.x � t//:

Š
?

The vertical maps are the isomorphisms of Corollaries 5.4 and 5.5. But the commuta-
tivity is easy to see at the chain level using representative cycles and the techniques of,
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for example, the proof of [20, Lemma 2.12]: One begins with a chain � representing a
cycle in IC1� .U / and ends up with a relative cycle in ICc

�.U;U � zp
�1.x � t// that

is obtained by sufficiently subdividing � and then excising all but a finite number of
singular simplices whose supports lie in U � zp�1.x � t/. We are not free to perform
excisions on intersection chains along just any boundaries of simplices but a procedure
for performing allowable excisions of intersection chains was well-established in [20]
and may be applied here. By considering what happens to � , one sees that the two
different ways of chasing around the diagram yield the same result.

Proposition 5.8 Let IS� be the intersection chain sheaf on the MHSS X with suffi-
ciently many local approximate tubular neighborhoods. Then ˛k W IS�kC1 ,!Rik�IS�k
is a quasi-isomorphism up to (and including) xp.k/ (ie IS� satisfies Axiom (3)).

Proof Let x 2Xn�k . Then

H i.IS�x/D lim
�!
x2U

Hi.U I IS�/Š lim
�!
x2U

IH1n�i.U /:

For the last isomorphism, we use that the restriction of IS� to an open subset is
quasi-isomorphic to the intersection chain sheaf on the subset by [20, Proposition 3.7].
Similarly,

H i.Rik�IS�k/x D lim
�!
x2U

Hi.U IRik�IS�k/

Š lim
�!
x2U

Hi.U �U \Xn�k I IS�/Š lim
�!
x2U

IH1n�i.U �U \Xn�k/:

By Corollary 5.7, for a fixed U , IH1n�i.U / Š H1n�i.U �U \Xn�k/ for i � xp.k/,
where the isomorphism is induced by restriction. But this restriction is compatible with
the attaching map (see the discussion of the attaching map following the statement of
Theorem 5.1), and it suffices to show that if V � U is another approximate tubular
neighborhood of x from the cofinal system of Lemma 4.3 then the vertical maps are
isomorphisms in the following commutative diagram, in which all maps are induced
by restrictions:

IH1n�i.U /
- H1n�i.U �U \Xn�k/

IH1n�i.V /

Š
?

- H1n�i.V �V \Xn�k/:

Š
?

For the lefthand vertical isomorphism, let us identify U \Xn�k with Rn�k , let xD 0,
and let zpW U � Rn�k ! Rn�k � .�1;1� be the proper MSAF of the definition
of the approximate tubular neighborhood. We may suppose as in Lemma 4.3 that
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V Š zp�1.Dm � Œm;1�/, where Dm is the disk of radius m in Rn�k . Let y D

0�.mC1/2Rn�k�.�1;1�. Then IH1n�i.U /Š IHc
n�i.U;U�p�1.y// by Corollary

5.4, and similarly IH1n�i.V /Š IHc
n�i.V;V �p�1.y//. But IHc

n�i.U;U �p�1.y//Š

IHc
n�i.V;V�p�1.y// by excision, and once again by using small enough representative

cycles (which we can choose to have support arbitrarily close to p�1.y/ by using
sufficiently fine subdivisions and excisions (see Friedman [20])), this isomorphism is
compatible with restriction of infinite chains. The proof for the righthand vertical maps
follows similarly from Corollary 5.5.

Finally, we attack Axiom (1).

Proposition 5.9 Let X be an MHSS, and let IS� be the intersection chain sheaf
with coefficients in the local system E on X �X n�2 . Then IS�jX�X n�2 is quasi-
isomorphic to E ˝O .

Proof By Proposition 3.7 of [20], the restriction of IS� to X � X n�2 is quasi-
isomorphic to the intersection chain sheaf on X �X n�2 . But X �X n�2 is a manifold,
so IS� is simply the ordinary singular chain sheaf, whose local cohomology groups
are H i.IS�x/ŠHn�i.X;X �xI E/. The proposition follows.

Proposition 5.10 Let X be an MHSS, and let IS� be the intersection chain sheaf
on X . Then H i.IS�x/D 0 for i < 0 and i > n.

Proof Since IS� is the sheafification of the presheaf U ! ICn��.X;X � xU /, it is
immediate that ISi is identically 0 for i > n.

For i < 0, we will induct down over the strata of X , starting with the top stratum
X �X n�2 . Since this stratum is a manifold and open in X , the restriction to it of IS�
is quasi-isomorphic to the ordinary singular chain sheaf, using [20, Proposition 3.7].
Thus H i.IS�x/ŠH1n�i.U /, where U is any Euclidean neighborhood of x . This is
certainly 0 for i < 0.

Now, we assume by induction that H i.IS�z /D 0 for i < 0 if z 2X �X n�k and show
that H i.IS�x/ D 0 for i < 0 if x 2 Xn�k D X n�k �X n�k�1 . By Proposition 5.8,
Hi.IS�kC1/x ŠH

i.Rik�IS�k/x for i � xp.k/, and since xp.k/ � 0, this applies for
i < 0. We have

Hi.Rik�IS�k/x Š lim
�!
x2U

Hi.U IRik�IS�k/Š lim
�!
x2U

Hi.U �U \Xn�k I IS�k/:

But now Hi.U �U \Xn�k I IS�k/ is the abutment of the hypercohomology spectral
sequence with E2 terms E

p;q
2
ŠH p.U �U \Xn�k IHq.IS�k//, and by the induction
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hypothesis, these groups are 0 if either q or p is < 0. So then any term of the spectral
sequence that would contribute to Hi.U �U \Xn�k I IS�k/ for i < 0 is trivial, and
all these hypercohomology groups are 0. Thus H i.IS�x/D 0 for i < 0 if x 2Xn�k ,
and the proof is completed by induction.

As noted in our discussion of the axioms following the statement of Theorem 5.1,
Propositions 5.2, 5.8, 5.9 and 5.10 suffice to demonstrate that IS� and the Deligne
sheaf are quasi-isomorphic, proving the theorem. We note also that we can make IS�
legitimately bounded below by replacing it with ��mIS� for any m� 0: It follows
from Proposition 5.10 that IS� and ��mIS� are quasi-isomorphic and so certainly
��mIS� satisfies Axioms (1) and (2). But also

Hi.Rik���mIS�k/x Š lim
�!
x2U

Hi.U IRik���mIS�k/

Š lim
�!
x2U

Hi.U �U \Xn�k I ��mIS�/

Š lim
�!
x2U

Hi.U �U \Xn�k I IS�/ŠHi.Rik�IS�k/x;

the next to last isomorphism since ��mIS� and IS� are quasi-isomorphic. Thus,
employing Proposition 5.8 and once again the quasi-isomorphism of ��mIS� and
IS� , Hi.Rik���mIS�k/x and ��mIS�kC1 are quasi-isomorphic in the appropriate
range. Thus ��mIS� satisfies all of the axioms spot on, including the boundedness,
and is quasi-isomorphic to the Deligne sheaf. Thus if desired (though not necessary),
we can use ��mIS� as a bounded below intermediary that is quasi-isomorphic both to
the Deligne sheaf and to IS� .

5.1 Superperversities and codimension one strata

For simplicity of the preceding discussion, we have assumed the MHSS X to have no
codimension one stratum, ie X n�1�X n�2D∅, and we have assumed the perversity xp
to be traditional, ie xp.1/D xp.2/D 0. These restrictions comply with those originally
imposed by Goresky and MacPherson in their initial development of intersection
homology theory [21; 22]. However, it became apparent in the work of Cappell and
Shaneson, particularly in their Superduality Theorem [10], that it is also fruitful in
the context of Deligne sheaf intersection homology to study superperversities – those
perversities xp for which xp.1/ or xp.2/ is greater than 0 (though we still require that
xp.k/� xp.kC 1/� xp.k/C 1).5 Superperverse intersection homology has since been

5By contrast, any consideration of Deligne sheaves using subperversities trivializes immediately, since
truncation ��xp.k/ yields the 0 sheaf complex if xp.k/ < 0 .
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studied in a variety of other contexts; see, eg, Habegger and Saper [24], Friedman [18;
20] and Saralegi-Aranguren [41].

It was shown in [20] that if X is a pseudomanifold, possibly with codimension one
stratum, and xp is a superperversity, then the Deligne sheaf intersection homology
is isomorphic to singular chain intersection homology with coefficients in a certain
stratified coefficient system E0 based on the coefficient system E . By definition, the
simplices in these singular chains carry coefficients over the subsets of their supports
that do not intersect X n�1 , and they carry a formal 0 coefficient over the subsets of
their supports that do intersect X n�1 . The reader is advised to consult [20] for further
details, but the point is that this coefficient convention allows for 1–chains whose
boundary 0–chains lie in X n�1 . This manages to correct a technical deficiency that
otherwise prevents sheaf-theoretic and singular chain-theoretic intersection homology
from agreeing. In particular, with this coefficient correction, superperverse singular
chain intersection homology satisfies the usual intersection homology cone formula, and
the superperverse singular intersection chain sheaf satisfies the Deligne sheaf axioms.

Returning now to MHSSs, our proof of Theorem 5.1 holds even if X has a codimension
one stratum or xp is a superperversity, provided we replace IS� with the sheaf of
singular intersection chains with stratified coefficients as in [20]. All of the arguments
we have employed involving excision, subdivision, Künneth theorems, and stratum-
preserving homotopy invariance of compactly supported intersection homology hold
for this variant [20], as well as the cone formulas, which are at the crux of all the
computational arguments. Thus we can generalize Theorem 5.1 as follows:

Theorem 5.11 Let X be an n–dimensional MHSS, possibly with codimension one
stratum and with sufficiently many local approximate tubular neighborhoods. Let xp be
any perversity or superperversity. Let O be the orientation sheaf of the n–manifold
X �X n�1 . Then P�.E ˝O/ and IS�.E0/ are quasi-isomorphic, where IS�.E0/ is
the singular intersection chain sheaf with stratified coefficients.

Of course one also modifies P� in the obvious way so that the construction begins
with P�

1
D E on X �X n�1 and

P�kC1 D ��xp.k/Rik�P�k

for k � 1. Also, in the proof, the axioms must be adjusted slightly in the obvious way
to account for the codimension one stratum.
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6 Constructibility

Goresky and MacPherson initially built certain notions of sheaf constructibility into
their axiomatic characterization of the Deligne sheaf on a pseudomanifold. Later,
Borel showed in [7, Section V.3] that constructibility follows as a consequence of the
other axioms. These arguments, however, use the local distinguished neighborhood
structure of pseudomanifolds quite strongly, and thus it does not follow immediately
from them that IS� is constructible on an MHSS just because we have demonstrated
that this sheaf complex satisfies the other axioms. So, in this section, we establish the
desired constructibility properties of IS� . Since we showed in the last section that
IS� satisfies the axioms and since we observed that any sheaf complex on an MHSS
that satisfies the axioms is quasi-isomorphic to the Deligne sheaf, this implies the
constructibility of any sheaf complex that satisfies the axioms on an MHSS. We note
that, since pseudomanifolds are MHSSs with sufficiently many approximate tubular
neighborhoods (the distinguished neighborhoods), this also provides an alternative
proof of constructibility of the Deligne sheaf on pseudomanifolds.

We first review the necessary concepts following the exposition in Borel [7, Section
V.3]. All rings R are Noetherian commutative of finite cohomological dimension and
possess a unity, and X is locally compact of finite cohomological dimension over R.
In particular, X may be an n–dimensional MHSS – see Section 3.3.2.
Definition 6.1 � A direct system of R–modules Ai is essentially constant if for

each i in the index set I there is an i 0 2 I , i 0 � i , such that ker.Ai!Ai0/D

ker.Ai! lim
�!

Aj / and if there is an i0 2 I such that Ai0
! lim
�!

Aj is surjective.
� An inverse system of R–modules Ai is essentially constant if for each i in the

index set I there is an i 0 2 I , i 0� i , such that im.Ai0!Ai/D im.lim
 �

Aj!Ai/

and if there is an i0 2 I such that lim
 �

Aj !Ai0
is injective.

If an inverse or direct system has a cofinal system, then it is essentially constant if and
only if the cofinal system is.

For the next definitions, we consider a bounded complex of sheaves S� and a space X

filtered by closed subspaces. We let X denote the space together with its filtration
information.
Definition 6.2 � S� is cohomologically locally constant (clc) if the derived sheaf

H�.S�/ is a locally constant sheaf complex.
� S� is X –cohomologically locally constant (X –clc) if H�.S�/ is locally con-

stant on each stratum X i �X i�1 .
� S� is X –cohomologically constructible (X –cc) if it is X –clc and, for each

x 2X , the stalk H�.S�/x is finitely generated.
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� S� is cohomologically constructible (cc) if:
– For each x 2X and m 2 Z, the inverse system Hm

c .UxIS�/ over all open
neighborhoods of x is essentially constant and its limit is finitely generated.

– For each x 2X and m 2 Z, the direct system Hm.UxIS�/ over all open
neighborhoods of x is essentially constant and its limit is finitely generated.

– For each x 2 X and m 2 Z, H m.f !
xS�/ D lim

 �
Hm

c .UxIS�/, where Ux

runs over open neighborhoods of x and fx W x ,!X is the inclusion.
– (Wilder’s Property .P;Q/) If P �Q are open in X , xP �Q, and xP is

compact, then the image of Hj
c .P IS�/ in Hj .QIS�/ is finitely generated

for each j .

As observed in [7, Section V.3.4], the four conditions for a sheaf complex to be cc
are not independent; in fact the first condition implies the last two, and there are other
interrelations.

We will show that IS� is X –clc, X –cc, and cc.

Proposition 6.3 Let IS� be the intersection chain sheaf on the MHSS X with suffi-
ciently many local approximate tubular neighborhoods. Then IS� is X –clc.

Proof As seen in the proof of Proposition 5.8, for any x 2X , H i.IS�x/Š IH1n�i.U /

for any local approximate tubular neighborhood U of x . But if x 2 Xn�k and y is
another point in U \Xn�k , then U is also a local approximate tubular neighborhood
of y , and H i.IS�y/ Š IH1n�i.U / Š H i.IS�x/. Since we also saw in the proof of
Proposition 5.8 that the direct systems IH1n�i.V / are constant over cofinal sets of
neighborhoods of x and y , it follows that H i.IS�x/ is locally-constant over Xn�k .

Theorem 6.4 If IS� be the intersection chain sheaf on the MHSS X with sufficiently
many local approximate tubular neighborhoods, then IS� is X –cc and cc.

Proof We have already seen that IS� is X –clc by Proposition 6.3. Furthermore,
we noted in the proof of that proposition that we have already seen in the proof of
Proposition 5.8 that for any point x 2X , the direct system H�.U I IS�/Š IH1n��.U /
is constant over a system of local approximate tubular neighborhoods of x that is
cofinal in the direct system of all open neighborhoods of x . Thus H�.V I IS�/ is
essentially constant over all open neighborhoods V of X [7, Remark V.3.2.b].

Next we consider the inverse system H�c .V I IS�/ over neighborhoods of x 2Xn�k �

X . Recall once again that by [20, Proposition 3.7], the restriction of IS� to any
open set V is quasi-isomorphic to the intersection chain sheaf of V . Since X is
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locally-compact, the family of compact supports is paracompactifying, and by the same
arguments as in the proof of Corollary 3.12 of [20], H�c .V I IS�/Š IHc

n��.V / (the
cited Corollary assumes that X is a topological stratified pseudomanifold, but this
strict assumption is not necessary for the proof – the same arguments apply to any
MHSS). But now by [19, Corollary 9.2 and Proposition 6.3], if U is a local approximate
tubular neighborhood of x , then IHc

n��.U /Š IHc
n��.MU /, where MU is the mapping

cylinder of the holink evaluation holinks..X �X n�k/[ .U \Xn�k/;U \Xn�k/!

U \Xn�k . The mapping cylinder collapse MU ! U \Xn�k is a stratified fibration
by [27, Corollary 6.2] and [17, Proposition 3.3]. Furthermore, since U \Xn�k is
homeomorphic to Rn�k , by [16, Corollary 3.14], MU is stratum- and fiber-preserving
homotopy equivalent to Rn�k times the fiber over x , which is the cone on holink.X;x/.
The same is true then for any smaller local approximate tubular neighborhood U 0 � U

of x . Piecing together the appropriate stratified homotopy equivalences, one can
see that the inclusion IHc

�.U
0/ ! IHc

�.U / is an isomorphism. (Alternatively, one
could also use the long exact sequence of the pair and show that IHc

�.U;U
0/D 0 by

using the MSAF property of approximate tubular neighborhoods to push any chain
representing a relative cycle in ICc

�.U;U
0/ into ICc

�.U
0/.) It follows that the inverse

system H�c .V I IS�/ is also essentially constant.

It remains to show for each x 2 X and a local approximate tubular neighborhood
U of x that H�c .U I IS�/Š lim

 �
H�c .V I IS�/ and H�.U I IS�/Š lim

�!
H�.U I IS�/Š

H�.IS�x/ are finitely generated. It will then follow from the definitions and [7, Remarks
V.3.4] that IS� is X –cc and cc.

We will proceed by induction over the strata of X . On the stratum X �X n�2 , IS� is
quasi-isomorphic to the sheaf of coefficients on a manifold and is both X –cc and cc.
Suppose now that IS�jX�X n�k is X –cc and cc, and let us add in the stratum Xn�k

and consider IS�jX�X n�k�1 . Obviously, the local conditions that made IS�jX�X n�k

both X –cc and cc continue to hold at points in IS�jX�X n�k , so we need only look at
points in Xn�k and show that the modules described in the last paragraph are finitely
generated.

So let x 2 Xn�k , U a local approximate tubular neighborhood of x . Once again,
H�c .U I IS�/ Š IHc

n��.M /, where M is the mapping cylinder of the appropriate
holink, and moreover M is stratum-preserving homotopy equivalent to Rn�k � cL,
where L D holinks.X;x/. By the cone formula then, H�c .U I IS�/ is 0 in some
dimensions and isomorphic to IHc

n��.L/ in others. Similarly, as calculated in the
proof of Corollary 5.5, H�.U I IS�/Š IHc

n��.U;U �x/, and by stratum-preserving
homotopy equivalence, this is isomorphic to IHc

n��.R
n�k � cL; .Rn�k � cL/� x/.

From the calculations of the proof of [20, Proposition 2.20], this is isomorphic to
IHc

k��
.cL; cL�x/. This too works out to be the compact intersection homology of L
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in some dimensions and 0 in others. Thus it suffices to prove that IHc
�.L/, is finitely

generated.

But it also follows from the various stratum-preserving homotopy equivalences we
have used that L must be stratum-preserving homotopy equivalent to U �U \Xn�k .
Also, IHc

�.U �U \Xn�k/ŠHn��
c .U �U \Xn�k I IS�/. Let pW U �U \Xn�k!

Rn�k�RŠRn�kC1 be the MSAF of the definition of an approximate tubular neighbor-
hood. Let D be the open unit disk in Rn�kC1 , and let W be p�1.D/. We will show
that the inclusion W ,!U�U\Xn�k , which induces IHc

�.W /! IHc
�.U�U\Xn�k/

and, equivalently, Hn��
c .W I IS�/!Hn��

c .U �U \Xn�k I IS�/ is an isomorphism.
This will suffice, since by the induction hypothesis that IS�jX�X n�k is cc, it must
satisfy Wilder’s .P;Q/ property. Here we take QDU �U \Xn�k and P DW , and
we note that xP �Q and xP is compact (since p is proper). The Wilder property then
allows us to conclude that the image of Hn��

c .W / in Hn��
c .U �U \Xn�k/, which

is equal to Hn��
c .U �U \Xn�k/, is finitely generated.

To complete the proof, consider the exact sequence of the pair .U �U \Xn�k ;W /.
We show IHc

�.U �U \Xn�k ;W / D 0. Let � 2 ICc
�.U �U \Xn�k ;W / D 0 be a

relative cycle. Let r W Rn�kC1 � I !Rn�kC1 be a radial deformation retraction from
the identity map to the collapse map to the origin. Consider F D r.p� idI /W j�j�I!

Rn�kC1 . As p is an MSAF, there is a stratified approximate lift zF W j�j � I � Œ0; 1/!

U�U\Xn�k , and the associated map xF W j�j�I�I!Rn�k . Note that xF .j�j�1�1/D

0�Rn�kC1 , so j�j � 1� 1� xF�1.D/, which is an open set. Since j�j is compact, it
follows from elementary topology, that there is an open neighborhood A of 1� 1 in
I �I such that j�j�A� xF�1.D/. Similarly, since xF .j@�j�I �1/�D and j@�j�I

is compact, there is a neighborhood B of 1 in I such that j@�j � I �B � xF�1.D/.
So now we choose a path 
 in I � Œ0; 1/ such that

(1) 
 .0/ 2 0� Œ0; 1/,
(2) 
 .1/ 2 1� Œ0; 1/,
(3) 
 � I �B and
(4) 
 .1/ 2A.

Then the homotopy zF ı .idj�j � 
 /W j�j � I ! U � Un�k retracts j�j into W in a
stratum-preserving manner and keeps @� in W . Thus this homotopy can be used to
construct a relative null-homology.

7 Poincaré duality

The initial impetus for the study of intersection homology was the goal of extending
Poincaré duality to manifold stratified spaces. This was first achieved with field
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coefficients for compact PL pseudomanifolds by Goresky and MacPherson in [21],
where it was shown that if X is an n–dimensional compact oriented PL stratified
pseudomanifold and if xp and xq are dual perversities ( xp.k/Cxq.k/D k�2), then there
is a nonsingular pairing I xpHi.X IQ/˝ I xqHn�i.X IQ/! Q. If X has only even-
codimension singularities (or more generally if X is a Witt space – see Siegel [42]), then
the upper and lower middle perversities, .0; 1; 1; 2; 2; 3; : : :/ and .0; 0; 1; 1; 2; 2; : : :/,
yield isomorphic intersection homology groups, and there is a pairing I xmHi.X IQ/˝
I xmHn�i.X IQ/!Q. If, in addition, nD 2k , one obtains an �–symmetric self-pairing
I xmHk.X IQ/˝I xmHk.X IQ/!Q, which leads to signature invariants, L–classes, etc.
Using sheaf-theoretic machinery, this version of Poincaré duality and its consequences
were extended to topological pseudomanifolds and more general coefficient systems
over fields in [22] (see also [7, Section V.9]).

Goresky and Siegel then showed in [23] that Poincaré duality on pseudomanifolds
holds over the integers, provided certain torsion subgroups of the intersection homology
groups of all links vanishes. In particular, they defined a pseudomanifold to be locally
xp–torsion free if, for all k and for each x 2 Xn�k with corresponding link Lx ,
I xpHk�2�xp.k/.Lx/ is torsion free. With this assumption, one obtains a nonsingular
pairing

I xpHi.X /=torsion˝ I xqHn�i.X /=torsion! Z;

as well as a nonsingular torsion pairing

T xpHi.X /˝T xqHn�i�1.X /!Q=Z;

where TH denotes the torsion subgroup of IH .

We now show that this version of Poincaré duality further extends to include MHSSs
with sufficiently many local approximate tubular neighborhoods. It will follow from
a theorem of Quinn concerning the topological invariance of IHc

�.X / for MHSSs
that IH1� .X / is also a topological invariant, assuming sufficiently many approximate
tubular neighborhoods.

First, we need an analogue of the Goresky–Siegel link condition:

Definition 7.1 Let R be a PID. We say that the MHSS X is homotopy locally . xp;R/–
torsion free if for all k and each x 2 Xn�k , I xpH c

k�2�xp.k/
.Lx/ is R–torsion free,

where Lx is the homotopy link of x in X . Utilizing the computations as in the proof of
Proposition 5.2, this condition is equivalent to H

n�kC2Cxp.k/
c .U I I xpS�/ being torsion

free for any local approximate tubular neighborhood U of x .

This definition is a direct analogue of the definition of locally xp–torsion free in Goresky
and Siegel [23]. Note that any X is automatically homotopy locally . xp;R/–torsion
free if R is a field.
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This leads to our main theorem:

Theorem 7.2 Let X be a homotopy locally . xp;R/–torsion free n–dimensional MHSS
with no codimension one stratum and with sufficiently many local approximate tubular
neighborhoods. Let O be the orientation sheaf of the n–manifold X �X n�2 , and let
E be a local coefficient system on X �X n�2 of finitely generated free modules over
the principal ideal domain R. Let xp and xq be dual perversities ( xp.k/Cxq.k/D k�2).
Let TH� and FH� denote, respectively, the R–torsion subgroup and R–torsion free
quotient group of IH� , and let Q.R/ denote the field of fractions of R.

Suppose that Hom.T xpH c
i�1
.X I E/;Q.R/=R/ is a torsion R–module (in particular, if

T xpH c
i�1
.X I E/ is finitely generated). Then

Hom.F xpH c
i .X I E/;R/Š F xqH1n�i.X IHom.E ;RX�X n�2/˝O/

Hom.T xpH c
i�1.X I E/;Q.R/=R/Š T xqH1n�i.X IHom.E ;RX�X n�2/˝O/:and

We record separately the case for field coefficients, for which all of the torsion conditions
are satisfied automatically.

Corollary 7.3 Let X be an n–dimensional MHSS with no codimension one stratum
and with sufficiently many local approximate tubular neighborhoods. Let O be the
orientation sheaf of the n–manifold X �X n�2 , and let E be a local coefficient system
on X �X n�2 of finitely generated F –modules for a field F . Let xp and xq be dual
perversities ( xp.k/Cxq.k/D k � 2). Then

Hom.I xpH c
n�i.X I E/IF/Š I xqH1i .X IHom.E ;FX�X n�2/˝O/:

When X is compact and orientable, we obtain as a special case the simpler, but more
familiar, statement

Hom.I xpHi.X IQ/;Q/Š I xqHn�i.X IQ/:

If, in addition, X is homotopy locally . xp;Z/–torsion free, we have

Hom.F xpHi.X /;Z/Š F xqHn�i.X / and Hom.T xpHi.X /;Q=Z/Š T xqHn�i.X /:

Proof of Theorem 7.2 Having established in previous sections that the singular chain
intersection homology on X corresponds to the Deligne sheaf hypercohomology and
having used this correspondence to establish the constructibility of IS� �q:i: P , the
main idea of the proof of Poincaré duality is the same as that in prior treatments for
pseudomanifolds: We consider the Verdier dual of an intersection chain sheaf and
show that it satisfies the axioms that make it the intersection chain sheaf with the dual
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perversity.6 Many of the details, though, rely on the properties we have divined for the
sheaf of singular intersection chains.

Let D�
X

be the Verdier dualizing functor on X , which takes a bounded sheaf complex
A� in Db.X /, the bounded derived category of sheaves on X , to R Hom�.A�;D�

X
/,

where D�
X
D f !Rpt , f the map from X to a point. Thorough expositions on D�

X
and

the functor f ! can be found in both [7] and [3]. Below, we will show the following:

Lemma 7.4 Under the assumptions of the theorem, D�
X
.I xpS�.E//Œ�n� is quasi-

isomorphic to IxqS�.D�
X�X n�2.E/Œ�n�/, where Œ�n� is the shift such that for a complex

A� , .A�Œ�n�/i DAi�n .

From this lemma, the duality theorem is proven just as in Goresky and Siegel [23] as
follows:

Given D�.S�/, for any sheaf S� over a principal ideal domain, there is a short exact
sequence (see [7, V.7])

0 - Ext.HiC1
c .X IS�/;R/ - H��.X ID�.S�// - Hom.Hi

c.X IS�/;R/ - 0

Applying the lemma with S� D I xpS�.E/, we have

H��.X ID�I xpS�.E//ŠHn��.X ID�I xpS�.E/Œ�n�/

ŠHn��.X I IxqS�.D�
X�X n�2.E/Œ�n�//

Š I xqH1� .X ID�X�X n�2.E/Œ�n�/:

Recall that, for a principal ideal domain, Ext.A;R/Š Hom.T .A/;Q.R/=R/, where
T .A/ is the R–torsion subgroup of A and Q.R/ is the field of fractions of R. So the
preceding exact sequence becomes

0! Hom.T xpH c
i�1.X I E/;Q.R/=R/! I xqH1� .X ID�.E/Œ�n�/

! Hom.I xpH c
i .X I E/;R/! 0:

Since we know Hom.T xpH c
i�1
.X I E/;Q.R/=R/ is R–torsion by hypothesis and

Hom.I xpH c
i .X I E/;R/ is torsion free, this exact sequence is naturally isomorphic to

0! T xqH1� .X ID�.E/Œ�n�/! I xqH1� .X ID�.E/Œ�n�/

! F xqH1� .X ID�.E/Œ�n�/! 0;

where the first nontrivial map is simply the inclusion of the torsion subgroup.

6In [22] and [7], it is shown for topological pseudomanifolds that the dual of the Deligne sheaf satisfies
the axioms AX2. We instead continue to utilize the axioms AX1, as already presented above.
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Thus we obtain isomorphisms

T xqH1� .X ID�.E�/Œ�n�/Š Hom.T xpH c
i�1.X I E/;Q.R/=R/;

F xqH1� .X ID�.E�/Œ�n�/Š Hom.I xpH c
i .X I E/;R/:

Finally, we note that D�.E/Œ�n�Š Hom.E ;RX�X n�2/˝O by [7, V.7.10.4].

We now prove the above-stated Lemma 7.4, showing that the Verdier dual of a perversity
xp intersection chain sheaf is a perversity xq intersection chain sheaf.

Proof of Lemma 7.4 As noted in the proof of Theorem 5.1, by [7, Theorem V.2.5] it
suffices to show D�.I xpS�.E//Œ�n� satisfies the axioms AX1xq;X .D�X�X n�2.E/Œ�n�/.

Let X � X n�2 D U2 . By [7, V.7.10(4)], D�
U2
.E/Œ�n��q:i:Hom.E ;RU2

/ ˝ O , so
D�

U2
.E/Œ�n� is indeed a local system of coefficients. Then,

.D�.I xpS�.E//Œ�n�/jU2
DD�U2

.I xpS�.E/jU2
/Œ�n�ŠD�U2

.E/Œ�n�

by [7, V.10.11, VI.3.11.2], and Axiom AX1 xp.E/a for I xpS�.E/. This establishes the
last part of Axiom (1).

Next, let x 2X n�k �X n�k�1 and consider

H�.D�.I xpS�.E//x Œ�n�/Š lim
�!
x2U

H��n.U ID�.I xpS�.E///:

For any sheaf complex A� over R in Db.X / and any open set U 2X , we have an
exact sequence

0! Ext.HiC1
c .U IA�/;R/!H�i.U IDXA�/! Hom.Hi

c.U IA�/;R/! 0

(see [3, Section 3.4]). Thus there is an exact sequence

0! Ext.IHc
��1.U I E/;R/!H��n.U ID�.I xpS�.E///!Hom.IHc

�.U I E/;R/! 0:

As shown in the proof of Proposition 5.2, if U is a local approximate tubular neigh-
borhood, then U is stratum-preserving homotopy equivalent to a cone cL, where we
can treat L as a k � 1 dimensional filtered space. Thus by the standard cone formula
for singular intersection homology [33], IHc

�.U I E/ D 0 for � > k � 2 � xp.k/ D

k � 2� .k � 2� xq.k// D xq.k/. Furthermore, since X is homotopy locally . xp;R/–
torsion free, Ext.IHc

k�2�xp.k/
.U I E/;R/ is also 0, so H��n.U ID�.I xpS�.E/// D 0

for �> xq.k/. It is also clear that these groups must be 0 for �< 0.

Finally, to verify the attaching axiom, we observe (by the discussion following the
statement of the axioms, above) that for any sheaf A� , the attaching map induces an
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isomorphism of cohomology stalks at x 2Xn�k DX n�k �X n�k�1 in dimension j

if and only if restriction induces an isomorphism

lim
�!
x2U

Hj .U IA�/! lim
�!
x2U

Hj .U �U \Xn�k IA�/;

where U runs over all open neighborhoods of x . Of course, we can limit ourselves
to a cofinal system of local approximate tubular neighborhoods, and it suffices to
find then isomorphisms Hj .U IA�/ ! Hj .U � U \ Xn�k IA�/ that are functo-
rial in that they commute with further restrictions. In the case at hand, we study
Hj .U ID�.I xpS�.E//Œ�n�/!Hj .U �U \Xn�k ID�.I xpS�.E//Œ�n�/, which induces
a map of short exact sequences

0 0

Ext.Hn�jC1
c .U I I xpS.E//;R/

?
- Ext.Hn�jC1

c .U �U \Xn�k I I xpS�.E//;R/
?

Hj .U ID�.I xpS�.E//Œ�n�/

?
- Hj .U �U \Xn�k ID�.I xpS�.E//Œ�n�/

?

Hom.Hn�j
c .U I I xpS.E//;R/

?
- Hom.Hn�j

c .U �U \Xn�k I I xpS�.E//;R/
?

0
?

0
?

where the maps of the outer terms are induced by the inclusion maps

I xpH c
j .U �U \Xn�k I E/! I xpH c

j .U I E/I

we present a proof of this below in the Appendix. Once again, we know that

Hn��
c .U �U \Xn�k I I xpS.E//Š I xpH c

�.U �U \Xn�k I E/

is isomorphic to I xpH c
�.LI E/ and Hn��

c .U I I xpS.E//ŠI xpH c
�.U I E/ŠI xpH c

�.cLI E/,
where L � holink.X;x/. The inclusion I xpH c

�.LI E/ ! I xpH c
�.cLI E/ is an iso-

morphism for � < k � 1 � xp.k/ by the cone formula. Thus, by the five lemma,
Hj .U ID.I xpS.E//Œ�n�/!Hj .U �U \Xn�k ID.I xpS�.E//Œ�n�/ is an isomorphism
for j � xq.k/. Since this computation is functorial with respect to restrictions, we
obtain the desired isomorphism in the limits.

Thus D�.I xpS�.E//Œ�n� satisfies the axioms AX1xq;X .D�X�X n�2.E/Œ�n�/, which com-
pletes the proof of the lemma.
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Corollary 7.5 Let X be a homotopy locally . xp;R/–torsion free n–dimensional
MHSS with no codimension one stratum and with sufficiently many local approximate
tubular neighborhoods. Suppose E is a local coefficient system on X �X n�2 of finitely
generated free R modules over a PID R. Then I xqH1� .X I E/ is a topological invariant,
ie it does not depend on the choice of stratification of X as an MHSS.

Proof Let E� D Hom.F IRX�X n�2/˝O . Then E D Hom.E� ˝OIR/. By the
proof of the theorem, we have that I xqH1� .X I E/ is part of a short exact sequence
with Hom.I xpH c

n��.X I E�/;R/ and Ext.I xpH c
n���1

.X I E�/;R/. But according to
[38, Section 2], I xpH c

�.X I E�/ is independent of the stratification of X , and thus the
same must follow for I xqH1� .X I E/ by the five lemma.

8 Homotopy Witt spaces and Poincaré duality spaces

Let xm and xn be the lower-middle and upper-middle perversities: xm.k/D b.k � 2/=2c

and xn.k/D b.k � 1/=2c. Let R be a fixed principal ideal domain.

Generalizing the definition of Siegel [42], we can define homotopy Witt spaces:

Definition 8.1 We say that the compact homotopy locally . xm;R/–torsion free n–
dimensional MHSS with sufficiently many approximate tubular neighborhoods X is a
homotopy R–Witt space (or HR–Witt space) if for each x in each odd-codimension
stratum Xn�.2kC1/ , we have H xn.k/.IxnS�x IR/DH k.IxnS�x IR/D 0.

Utilizing the computations as in the proof of Proposition 5.2, H k.IxnS�.R/x/ Š
I xnH c

k
.LIR/, where L is the homotopy link of x in X . We note that there is a

slight difference from the usual definition of Witt spaces in that our formula uses
the upper-middle perversity. For Siegel this is not an issue because for L a compact
orientable pseudomanifold, I xnH c

k
.LIQ/ŠI xmH c

k
.LIQ/ by the intersection homology

Poincaré duality of Goresky–MacPherson. But we cannot assume that we have such an
isomorphism for the homotopy link L.

We note, incidentally, that our “Witt condition” implies that X has no codimension
one stratum since, if x 2 Xn�1 , then H 0.IxnS�.R/x/ Š H 0..Ri1�RX�X n�1/x/ Š

lim
�!x2U

H0.U �U \X n�1IR/Š lim
�!x2U

H 0.U �U \X n�1IR/. This will never be
0.

If X is an HR–Witt space, then, by Theorem 5.1, each I xpS�.R/ is quasi-isomorphic to
the Deligne sheaf with the appropriate perversity, and it then follow immediately, as for
Siegel’s Witt spaces, that I xmS�.R/ is quasi-isomorphic to IxnS�.R/: each inclusion
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��xm.k/Rik�P�k ,! ��xn.k/Rik�P�k is a quasi-isomorphism. By [38, Section 2], these
groups are topological invariants, so in fact we will have I xmS�.R/�q:i: IxnS�.R/ if
the topological space X can be given the structure of an HR–Witt space with respect
to any stratification.

If X is a compact orientable HR–Witt space, then by Theorem 7.2, F xmHi.X IR/Š

Hom.F xmHn�i.X IR/IR/ and T xmHi.X IR/ Š Hom.T xmHn�i�1.X IR/IQ.R/=R/.
In particular, we have the following theorem:

Theorem 8.2 If X is a compact orientable HR–Witt space of dimension 2n, there is
a nonsingular pairing F xmHn.X IR/˝F xmHn.X IR/!R. If n is even, then X has a
well-defined signature.

9 More general ground rings

As shown by Goresky and MacPherson for pseudomanifolds [22], the duality quasi-
isomorphism D�

X
.I xpS�.E//Œ�n� �q:i: IxqS�.D�X�X n�2.E/Œ�n�/ holds with field co-

efficients with no further assumptions on the properties of the space. Goresky and
Siegel [23] extended this duality to integer coefficients (though their argument would
work for any principal ideal domain) at the expense of requiring a single torsion
condition on the links of each stratum. Above, we have considered the analogous
conditions and duality quasi-isomorphisms on MHSSs. In this section, we explore
what conditions may be imposed on our space in order for D�

X
.I xpS�.E//Œ�n� �q:i:

IxqS�.D�
X�X n�2.E/Œ�n�/ to hold for rings of greater cohomological dimension.

Throughout this section, let R be a fixed Noetherian commutative ring of finite coho-
mological dimension.

We must examine the proof of Lemma 7.4, in which we showed that D�
X
.I xpS�.E//Œ�n�

satisfies the Goresky–MacPherson axioms AX1xq;X .D�X�X n�2.E/Œ�n�/. There is
no problem with showing for any R that D�

X�X n�2.I xpS�.E/jX�X n�2/Œ�n��q:i:

D�
X�X n�2.E/Œ�n� in the same manner as above, so we move on to the other axioms.

In the proof of Lemma 7.4, we used the “universal coefficient” short exact sequence
to show that H�.D�.I xpS�.E//x Œ�n�/ D 0 for � > xq.k/. If R is not a PID, we
will not have this exact sequence in general, but we will have a spectral sequence
instead. In general, for any sheaf complex A� , there is a spectral sequence abutting to
H�.U ID�A�/ with E2 terms E

r;s
2
Š Extr .H�s

c .U IA�/;R/ (see [7, Section V.7.7]).
When R is a PID, it is the collapsing of this spectral sequence at the E2 terms that
leads to the short exact sequence.
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Now, suppose x 2 Xn�k and let U be a local approximate tubular neighborhood
of x . At the 1 stage, the terms that will influence Hi.U ID�.I xpS�.E//Œ�n�/ Š

Hi�n.U ID�.I xpS�.E/// are the terms E
r;i�n�r
1 ŠExtr .HrCn�i

c .U I I xpS�.E//;R/Š
Extr .I xpH c

i�r .U I E/;R/. Therefore, a sufficient condition to guarantee that
H�.D�.I xpS�.E//x Œ�n�/D 0 for �> xq.k/ would be to ask that Extr .I xpH c

i�r .U I E//
vanishes for i > xq.k/ and for all r . Recall that xq.k/ D k � 2 � xp.k/ and that
U �sphe cLx �Rn�k , where Lx has formal dimension k � 1. Thus when r D 0,
this condition is satisfied automatically due to the usual intersection homology cone
formula, according to which I xpH c

i .cLI E/D 0 for i > k � 2� xp.k/, and for r D 1,
this is precisely our earlier homotopy locally . xp;R/–torsion free condition, which
generalizes the Goresky–Siegel condition.

The situation for the attaching axiom is a little more complicated. We continue to let
U be a local approximate tubular neighborhood of x 2Xn�k . We would like for the
restrictions Hi.U ID�.I xpS�.E//Œ�n�/!Hi.U �U \Xn�k ID�.I xpS�.E//Œ�n�/ to
be an isomorphism for i � xq.k/. To study this map, we turn to the corresponding map
of spectral sequences, which we will denote E.U /! E.U �U \X n�k/. The E2

term maps will be Extr .I xpH c
i�r .U I E/;R/! Extr .I xpH c

i�r .U �U \X n�k I E/;R/.
A straightforward generalization of the argument in the Appendix shows that these
maps are induced by the obvious inclusion maps I xpH c

i�r .U � U \ X n�k I E/ !
I xpH c

i�r .U I E/. Under stratum-preserving homotopy equivalence, these correspond
to the inclusions I xpH c

i�r .LxI E/! I xpH c
i�r .cLxI E/ and hence are isomorphisms

for i � r < k � 1 � xp.k/ D xq.k/C 1 (ie for i � xq.k/C r ) and 0 otherwise. So
given any echelon of constant r C s D i in E2.U /, either the entire echelon maps
to 0 in E2.U �U \X n�k/ (when i > xq.k/), or it gets taken isomorphically to the
corresponding echelon in E2.U �U \X n�k/ (when i � xq.k/).

Now, the trouble, of course, is that the various echelons in a spectral sequence interact
as we “turn the crank”, but, fortunately, not so badly that we can’t impose some
conditions that will help. We are concerned about Hi.U ID�.I xpS�.E//Œ�n�/ !

Hi.U � U \ Xn�k ID�.I xpS�.E//Œ�n�/, and these terms come, at the 1 stage of
the spectral sequence, from the echelons with r C s D i . We just showed that the
corresponding E2 terms are isomorphisms in the echelons with r C s D i � xq.k/.
Thus we need only impose conditions that will guarantee that these echelons continue
to map isomorphically for all levels of the spectral sequence. Since each generalized
boundary map d at each stage of the spectral sequence never lets an echelon interact
with an echelon past the one on its right, we see then that it is sufficient to force
Extr .I xpH c

xq.k/C1�r
.U �U \X n�k I E/;R/Š Extr .I xpH c

xq.k/C1�r
.LxI E/;R/ to be 0

for all r . This corresponds to the echelon with i D r C s D xq.k/C 1. Since the corre-
sponding terms Extr .I xpH c

xq.k/C1�r
.U I E/;R/ŠExtr .I xpH c

xq.k/C1�r
.cLxI E/;R/ are
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already 0 in E2.U /, this guarantees an isomorphism at this echelon for all stages
of the spectral sequence (all entries in both corresponding echelons will be 0). This
suffices to ensure then that all maps below this echelon will continue to be isomor-
phisms at each stage, inducing the desired isomorphism Hi.U ID�.I xpS�.E//Œ�n�/!

Hi.U �U \Xn�k ID�.I xpS�.E//Œ�n�/ in the desired range.

Note that, since we consider the spectral sequence beginning at its E2 stage, we in
fact only need Extr .I xpH c

xq.k/C1�r
.U �U \X n�k I E/;R/ D 0 for r � 2, since no

nontrivial boundary dj , j � 2, will map into the r D 0 or r D 1 columns of the spectral
sequence. This illustrates why this issue doesn’t arise for principal ideal domains.
Notice also that these conditions form a subset of the conditions we determined for the
preceding axiom.

So, in summary, we have proven the following, which also extends the known results
on pseudomanifolds:

Theorem 9.1 Let X be a MHSS with no codimension one stratum and with suffi-
ciently many local approximate tubular neighborhoods. Let E be a local coefficient
system on X �X n�2 of finitely generated free modules over the commutative Noether-
ian ring R of finite cohomological dimension. Let xp and xq be dual perversities.

Suppose that for all k and each x 2Xn�k , Extr .I xpH c
i�r .LxI E/;R/D 0 for i > xq.k/

and r � 1. Then D�
X
.I xpS�.E//Œ�n� is quasi-isomorphic to IxqS�.D�

X�X n�2.E/Œ�n�/.

Appendix A Naturality of dualization

In this appendix, we will prove the following lemma, which is no doubt well-known
but which the author has had difficulty pinpointing in the literature:

Lemma A.1 Let V � U be open subsets of a locally compact space X of finite
cohomological dimension, and let S� 2Db.X / be a sheaf complex of R–modules for
a principal ideal domain R. Then there is a commutative diagram

(1)

0 - Ext.H1��
c .U IS�/;R/ - H�.U ID�.S�// - Hom.H��c .U IS�/;R/ - 0

0 - Ext.H1��
c .V IS�/;R/

?
- H�.V ID�.S�//

?
- Hom.H��c .V IS�/;R/

?
- 0;

where the middle vertical map is induced by restriction. If

H�c .W IS�/ŠH�.�c.W IS�//;

in particular if X is an MHSS and S�DIS� , then the side maps are, up to isomorphism,
induced by the map H��c .V IS�/!H��c .U IS�/ induced by inclusion of sections.
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Proof Recall [7, V.7.7] that D�.S�/ can be defined as the presheaf

U ! Hom�.�c.X; .S�˝K�/U /; I�/;

where I� is an injective resolution of R, K� is an injective resolution of RX (the
constant sheaf on X with stalks R), and the subscript U indicates extension by 0 of
the restriction to U . Note that S�˝K� is simply a convenient c–soft resolution of
S� ; any c–soft resolution would do. So, using this definition, the restriction of sections
of D�.S�/ from U to V is induced precisely by the inclusion �c.X; .S�˝K�/V /!
�c.X; .S�˝K�/U /.
Now, H�.U ID�.S�// Š Ext�.�c..S� ˝ K�/U /;R/ is the abutment of a spectral
sequence with E

p;q
2
ŠExtp.H�q

c .U IS�/;R/, as noted in [7, V.7.7]. This is the Cartan–
Eilenberg spectral sequence for the functors �c.X I � / and Hom�. � ; I�/, and it is from
the collapse of this spectral sequence, owing to R being a principal ideal domain, that
we obtain the “universal coefficient” exact sequences that are the rows of diagram (1).
The restriction .S�˝K�/U ! .S�˝K�/V induces a map of spectral sequences and
hence a map of the resulting exact sequences. We just need to check that these are
indeed the desired maps. But clearly the inclusion of sections �c.X; .S�˝K�/V /!
�c.X; .S�˝K�/U / is equivalent to the inclusion �c.V;S�˝K�/!�c.U;S�˝K�/,
which gives rise to the morphism i�W H�c .V IS�/! H�c .U IS�/. The maps of E2

terms, corresponding to the outer terms in (1), are then obtained as Ext�.i�;R/. The
second claim of the lemma now follows from the natural commutative diagram

�c.V;S�/ - �c.V;S�˝K�/

�c.U;S�/
?

- �c.U;S�˝K�/:
?

For the middle vertical map of diagram (1), note that, by the naturality of the spectral
sequence, this is the morphism obtained by applying the derived functor of the composite
functor Hom�.�c.X I � /; I

�/ to the sheaf inclusion .S�˝K�/V ! .S�˝K�/U . But
this is precisely the definition of the restriction map of the sheaf D�.S�/.
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pour les actions de groupes sur les espaces singuliers, C. R. Acad. Sci. Paris Sér. I
Math. 313 (1991) 293–295 MR1126399

[14] S E Cappell, S Weinberger, Classification de certains espaces stratifiés, C. R. Acad.
Sci. Paris Sér. I Math. 313 (1991) 399–401 MR1126422

[15] S J Curran, Intersection homology and free group actions on Witt spaces, Michigan
Math. J. 39 (1992) 111–127 MR1137893

[16] G Friedman, Stratified fibrations and the intersection homology of the regular neigh-
borhoods of bottom strata, Topology Appl. 134 (2003) 69–109 MR2009092

[17] G Friedman, Intersection homology of regular and cylindrical neighborhoods, Topol-
ogy Appl. 149 (2005) 97–148 MR2130860

[18] G Friedman, Superperverse intersection cohomology: stratification (in)dependence,
Math. Z. 252 (2006) 49–70 MR2209151

[19] G Friedman, Intersection homology of stratified fibrations and neighborhoods, Adv.
Math. 215 (2007) 24–65 MR2354985

Geometry & Topology, Volume 13 (2009)

http://www.ams.org/mathscinet-getitem?mr=1992279
http://www.ams.org/mathscinet-getitem?mr=751966
http://www.ams.org/mathscinet-getitem?mr=788171
http://www.ams.org/mathscinet-getitem?mr=1481706
http://www.ams.org/mathscinet-getitem?mr=1197827
http://dx.doi.org/10.2307/2944349
http://dx.doi.org/10.2307/2944349
http://www.ams.org/mathscinet-getitem?mr=1127478
http://dx.doi.org/10.2307/2939268
http://www.ams.org/mathscinet-getitem?mr=1102578
http://www.ams.org/mathscinet-getitem?mr=1368653
http://www.ams.org/mathscinet-getitem?mr=1126399
http://www.ams.org/mathscinet-getitem?mr=1126422
http://dx.doi.org/10.1307/mmj/1029004459
http://www.ams.org/mathscinet-getitem?mr=1137893
http://dx.doi.org/10.1016/S0166-8641(03)00088-9
http://dx.doi.org/10.1016/S0166-8641(03)00088-9
http://www.ams.org/mathscinet-getitem?mr=2009092
http://dx.doi.org/10.1016/j.topol.2004.09.004
http://www.ams.org/mathscinet-getitem?mr=2130860
http://dx.doi.org/10.1007/s00209-005-0844-3
http://www.ams.org/mathscinet-getitem?mr=2209151
http://dx.doi.org/10.1016/j.aim.2007.04.003
http://www.ams.org/mathscinet-getitem?mr=2354985


Intersection homology and Poincaré duality on homotopically stratified spaces 2203

[20] G Friedman, Singular chain intersection homology for traditional and super-
perversities, Trans. Amer. Math. Soc. 359 (2007) 1977–2019 MR2276609

[21] M Goresky, R MacPherson, Intersection homology theory, Topology 19 (1980) 135–
162 MR572580

[22] M Goresky, R MacPherson, Intersection homology. II, Invent. Math. 72 (1983) 77–
129 MR696691

[23] M Goresky, P Siegel, Linking pairings on singular spaces, Comment. Math. Helv. 58
(1983) 96–110 MR699009

[24] N Habegger, L Saper, Intersection cohomology of cs-spaces and Zeeman’s filtration,
Invent. Math. 105 (1991) 247–272 MR1115543

[25] G Hector, M Saralegi, Intersection cohomology of S1 –actions, Trans. Amer. Math.
Soc. 338 (1993) 263–288 MR1116314

[26] B Hughes, Stratifications of mapping cylinders, Topology Appl. 94 (1999) 127–145
MR1695351 Special issue in memory of B J Ball

[27] B Hughes, Stratified path spaces and fibrations, Proc. Roy. Soc. Edinburgh Sect. A 129
(1999) 351–384 MR1686706

[28] B Hughes, The approximate tubular neighborhood theorem, Ann. of Math. .2/ 156
(2002) 867–889 MR1954237

[29] B Hughes, A Ranicki, Ends of complexes, Cambridge Tracts in Math. 123, Cambridge
Univ. Press (1996) MR1410261

[30] B Hughes, L R Taylor, S Weinberger, B Williams, Neighborhoods in stratified spaces
with two strata, Topology 39 (2000) 873–919 MR1763954

[31] B Hughes, S Weinberger, Surgery and stratified spaces, from: “Surveys on surgery
theory, Vol. 2”, (S Cappell, A Ranicki, J Rosenberg, editors), Ann. of Math. Stud. 149,
Princeton Univ. Press (2001) 319–352 MR1818777

[32] W Hurewicz, H Wallman, Dimension theory, Princeton Math. Ser. 4, Princeton Univ.
Press (1941) MR0006493

[33] H C King, Topological invariance of intersection homology without sheaves, Topology
Appl. 20 (1985) 149–160 MR800845

[34] F Kirwan, An introduction to intersection homology theory, Pitman Research Notes in
Math. Series 187, Longman Scientific & Technical, Harlow (1988) MR981185

[35] S L Kleiman, The development of intersection homology theory, Pure Appl. Math. Q. 3
(2007) 225–282 MR2330160

[36] G Padilla, Intersection cohomology of stratified circle actions, Illinois J. Math. 49
(2005) 659–685 MR2164356

[37] G Padilla, M Saralegi-Aranguren, Intersection cohomology of the circle actions,
Topology Appl. 154 (2007) 2764–2770 MR2344739

Geometry & Topology, Volume 13 (2009)

http://dx.doi.org/10.1090/S0002-9947-06-03962-6
http://dx.doi.org/10.1090/S0002-9947-06-03962-6
http://www.ams.org/mathscinet-getitem?mr=2276609
http://dx.doi.org/10.1016/0040-9383(80)90003-8
http://www.ams.org/mathscinet-getitem?mr=572580
http://dx.doi.org/10.1007/BF01389130
http://www.ams.org/mathscinet-getitem?mr=696691
http://dx.doi.org/10.1007/BF02564627
http://www.ams.org/mathscinet-getitem?mr=699009
http://dx.doi.org/10.1007/BF01232267
http://www.ams.org/mathscinet-getitem?mr=1115543
http://dx.doi.org/10.2307/2154456
http://www.ams.org/mathscinet-getitem?mr=1116314
http://dx.doi.org/10.1016/S0166-8641(98)00028-5
http://www.ams.org/mathscinet-getitem?mr=1695351
http://www.ams.org/mathscinet-getitem?mr=1686706
http://dx.doi.org/10.2307/3597284
http://www.ams.org/mathscinet-getitem?mr=1954237
http://www.ams.org/mathscinet-getitem?mr=1410261
http://dx.doi.org/10.1016/S0040-9383(99)00038-5
http://dx.doi.org/10.1016/S0040-9383(99)00038-5
http://www.ams.org/mathscinet-getitem?mr=1763954
http://www.ams.org/mathscinet-getitem?mr=1818777
http://www.ams.org/mathscinet-getitem?mr=0006493
http://dx.doi.org/10.1016/0166-8641(85)90075-6
http://www.ams.org/mathscinet-getitem?mr=800845
http://www.ams.org/mathscinet-getitem?mr=981185
http://www.ams.org/mathscinet-getitem?mr=2330160
http://www.ams.org/mathscinet-getitem?mr=2164356
http://dx.doi.org/10.1016/j.topol.2007.06.001
http://www.ams.org/mathscinet-getitem?mr=2344739


2204 Greg Friedman

[38] F Quinn, Intrinsic skeleta and intersection homology of weakly stratified sets, from:
“Geometry and topology (Athens, Ga., 1985)”, (C McCrory, T Shifrin, editors), Lecture
Notes in Pure and Appl. Math. 105, Dekker, New York (1987) 233–249 MR873296

[39] F Quinn, Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988) 441–499
MR928266

[40] M Saralegi-Aranguren, Cohomologie d’intersection des actions toriques simples,
Indag. Math. .N.S./ 7 (1996) 389–417 MR1621397

[41] M Saralegi-Aranguren, de Rham intersection cohomology for general perversities,
Illinois J. Math. 49 (2005) 737–758 MR2210257

[42] P H Siegel, Witt spaces: a geometric cycle theory for KO–homology at odd primes,
Amer. J. Math. 105 (1983) 1067–1105 MR714770

[43] S Weinberger, Group actions and higher signatures. II, Comm. Pure Appl. Math. 40
(1987) 179–187 MR872383

[44] S Weinberger, The topological classification of stratified spaces, Chicago Lectures in
Math., Univ. of Chicago Press (1994) MR1308714

[45] S Weinberger, M Yan, Equivariant periodicity for abelian group actions, Adv. Geom.
1 (2001) 49–70 MR1823952

[46] S Weinberger, M Yan, Equivariant periodicity for compact group actions, Adv. Geom.
5 (2005) 363–376 MR2154831

[47] M Yan, The periodicity in stable equivariant surgery, Comm. Pure Appl. Math. 46
(1993) 1013–1040 MR1223661

Department of Mathematics, Texas Christian University
Box 298900, Fort Worth, TX 76129, USA

g.friedman@tcu.edu

Proposed: Steve Ferry Received: 18 April 2007
Seconded: Ralph Cohen, Tom Goodwillie Revised: 16 April 2009

Geometry & Topology, Volume 13 (2009)

http://www.ams.org/mathscinet-getitem?mr=873296
http://dx.doi.org/10.2307/1990924
http://www.ams.org/mathscinet-getitem?mr=928266
http://dx.doi.org/10.1016/0019-3577(96)83727-X
http://www.ams.org/mathscinet-getitem?mr=1621397
http://www.ams.org/mathscinet-getitem?mr=2210257
http://dx.doi.org/10.2307/2374334
http://www.ams.org/mathscinet-getitem?mr=714770
http://dx.doi.org/10.1002/cpa.3160400203
http://www.ams.org/mathscinet-getitem?mr=872383
http://www.ams.org/mathscinet-getitem?mr=1308714
http://dx.doi.org/10.1515/advg.2001.004
http://www.ams.org/mathscinet-getitem?mr=1823952
http://dx.doi.org/10.1515/advg.2005.5.3.363
http://www.ams.org/mathscinet-getitem?mr=2154831
http://dx.doi.org/10.1002/cpa.3160460704
http://www.ams.org/mathscinet-getitem?mr=1223661
mailto:g.friedman@tcu.edu

	1. Introduction
	2. Sheaves vs. singular chains
	3. Background and basic terminology
	3.1. Intersection homology
	3.1.1. A note on coefficients

	3.2. Stratified homotopies and fibrations
	3.3. Manifold homotopically stratified spaces
	3.3.1. Forward tameness and homotopy links
	3.3.2. Manifold homotopically stratified spaces (MHSSs)

	3.4. Neighborhoods in stratified spaces
	3.4.1. Teardrops
	3.4.2. Approximate tubular neighborhoods


	4. Local approximate tubular neighborhoods
	5. IS* is the Deligne sheaf
	5.1. Superperversities and codimension one strata

	6. Constructibility
	7. Poincaré duality
	8. Homotopy Witt spaces and Poincaré duality spaces
	9. More general ground rings
	Appendix A. Naturality of dualization
	References

