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A general Fredholm theory III:
Fredholm functors and polyfolds

HELMUT HOFER

KRIS WYSOCKI

EDUARD ZEHNDER

This is the third in a series of papers devoted to a general Fredholm theory in a new
class of spaces, called polyfolds. We first introduce ep–groupoids and polyfolds. Then
we generalize the Fredholm theory, which for M–polyfolds has been presented in our
paper [22], to the more general polyfold setting. The Fredholm theory consists of a
transversality and a perturbation theory. The results form the basis for our application
to Symplectic Field Theory.

58B99, 58C99; 46T99, 57R17

1 Introduction and survey of results

This paper is the third in a series of papers devoted to a generalized Fredholm theory.
In Part I [21], the “splicing-based differential geometry” is developed. In this theory the
familiar local models for spaces (open subsets of finite-dimensional spaces or Banach
spaces) are replaced by more general local models, namely by open subsets of so-called
splicing cores. Further, the notion of smoothness, as well as the notion of a smooth
map, is generalized from the standard notion in finite dimensions to infinite dimensions
in a new way. This generalization allows to extend the category of manifolds to a
category of new smooth objects which open up the possibility to identify new structures
in situations which could not be handled before. For example, the moduli space in
Symplectic Field Theory (SFT) can be viewed as the zero-set of a Fredholm section (in
a generalized sense) defined on bundles on spaces belonging to our new category. Under
the appropriate transversality assumptions the solution sets are still “old-fashioned”
manifolds or orbifolds and in bad cases branched manifolds or branched orbifolds. It
still makes sense to talk about orientations in all cases and the structures suffice to
establish a theory of integration in which Stokes’ theorem holds true. This is all one
needs in order to define invariants.
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1.1 Background

If one uses the new local models, the recipe for defining manifolds produces so-called
M–polyfolds which are the starting point for further developments. In the following we
assume the reader to be familiar with the concepts and results in [21]. More specifically,
we assume familiarity with the notion of an M–polyfold, its degeneration index, the
notion of a strong bundle splicing and that of a filled section. Moreover, with the
notion of an scC–section of a strong M–polyfold bundle, the notion of linearization,
the notion of being linearized Fredholm, and the definition of the Fredholm index for
an sc–Fredholm operator.

In the first part of the present paper we shall develop the theory of ep–groupoids
and polyfolds. We shall modify the approach to orbifolds based on étale proper Lie
groupoids, as presented in Moerdijk [28] and Moerdijk and Mrčun [29], and replace
étale proper Lie groupoids by ep–groupoids which are based on M–polyfolds. In the
second part of the paper we generalize the Fredholm theory in M–polyfolds from [22]
to a theory of Fredholm functors and polyfold Fredholm sections. Fredholm functors
can be viewed as Fredholm sections compatible with local symmetries represented by
the morphisms. In general, it is not possible to bring a Fredholm functor into a general
position by a functorial perturbation. However, if we allow multivalued perturbations
are used this becomes possible. The price to pay is that the solution sets in case
of transversality are neither manifolds nor orbifolds, but merely weighted branched
submanifolds or suborbifolds. Nevertheless these objects have enough structure in
order to establish a well-defined integration theory for so-called sc–differential forms
as demonstrated in our preprint [20]. The integration on a branched ep–subgroupoid in
[20] is used to construct invariants. Our paper extends some of the ideas from Cieliebak,
Mundet i Riera and Salamon [2] to the functorial setting and it is also related to the
recent work by McDuff [26]. The results of the present paper form the basis for the
application to SFT given in our future works [15; 16].

1.2 Survey of the main results

We now describe some of the main results postponing the precise definitions to the
later sections. A manifold is a second countable paracompact space with an additional
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structure (the overhead) of equivalence classes of atlases of smoothly compatible charts.
One can formalize the equivalence of atlases in a category-theoretic way as some kind
of Morita-equivalence. From this point of view the step to an orbifold structure on a
topological space is small. Here again we have an underlying topological space equipped
with an the overhead of a Morita-equivalence class of étale proper Lie groupoids as
described by Moerdijk [28]. Polyfolds are second countable paracompact spaces with an
overhead of Morita-equivalence classes of étale proper M–polyfold groupoids. An étale
proper M–polyfold groupoid, in short an ep–groupoid, generalizes the notion of an étale
proper Lie groupoid. In particular, an ep–groupoid Q is a category and jQj denotes
the orbit space in which two objects are identified if there is a morphism between them.
In the polyfold theory the role of an atlas for a manifold is played by a pair .Q; ˛/ in
which Q is an ep–groupoid and ˛W jQj !Z is a homeomorphism between an orbit
space jQj and a polyfold Z . However, one needs the whole ep–groupoid to encode
the smooth structure on the polyfold.

In the following description of the main results we ignore the all important overhead and
just note that it defines a smooth structure (in some new sense) on an otherwise second
countable paracompact space Z . The topological space Z equipped with this for the
moment suppressed additional structure is called a polyfold. If one accepts a polyfold
as a generalization of a (possibly infinite-dimensional) orbifold the results surveyed in
the following appear familiar. In fact our results can be viewed as generalizations of
known results in Banach manifolds to much more general spaces.

It is a part of its structure that a polyfold Z is equipped with a filtration

Z DZ0 �Z1 �Z2 � � � � �Zi �ZiC1 � � � � �Z1 WD
\
i�0

Zi

into subsets Zi of Z which have topologies such that the inclusions ZiC1 ! Zi

are continuous and enjoy some compactness properties. Moreover, Z1 is dense in
every space Zi . In fact every Zm carries some smooth structure (again in the new
sense) as well and smooth maps between polyfolds have to preserve these levels of
smoothness. We can define strong polyfold bundles pW W !Z . The space W carries
a double integer-filtration Wn;k for 0 � k � nC 1, where we may view k as the
fiber regularity. A smooth section f of the bundle pW W !Z maps Zm to Wm;m .
The collection of smooth sections is denoted by �.p/. There is an additional class of
so-called scC–sections. They are smooth sections mapping Zm to Wm;mC1 . Due to a
compactness property of the fiberwise embeddings Wm;mC1!Wm;m , the space of
scC–sections can be viewed as a well-defined universe of compact perturbations. Of
particular importance will be the set of scC–multisections. An scC–multisection can be
identified with a functor �W W !QC such that near every point z 2Z there exist a
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finite number of scC–sections si for i 2 I , and associated positive rational weights �i

satisfying for w 2W ,
�.w/D

X
fi2I jsi .p.w//Dwg

�i :

The sum over the empty set is defined to be zero. As it turns out two such scC–
multisections � and � can be added resulting in the scC–multisection �˚ � . Our
notion of multisections generalizes ideas in Cieliebak, Mundet i Riera and Salamon [2]
(where group actions were studied) to a functorial context. In [22] we have introduced
Fredholm sections which now will be generalized to the polyfold context. For a pair
.f; �/ in which f is a Fredholm section and � an scC–multisection, we define the
solution set S.f; �/ to be the set

S.f; �/ WD fz 2Z j �.f .z// > 0g:

S.f / WD fz 2Z j f .z/D 0gBy

we shall denote the solution set of the Fredholm section f W Z!W where 0 is the
zero section of the bundle p . We should point out that the fiber of a strong polyfold
bundle does not have a linear structure but it has a preferred section 0. We also define
the notion of an auxiliary norm N W W0;1! RC in order to measure the size of an
scC–section or scC–multisection. (It is not a real norm but related to a norm in the
overhead).

Theorem 1.1 (Compactness) Let pW W !Z be a strong polyfold bundle possibly
with boundary with corners and let f be a proper Fredholm section of p . Then, given
an auxiliary norm N for the strong bundle p , there exists an open neighborhood
U of the solution set S.f / so that the solution set S.f; �/ is compact for every
scC–multisection � having its support in U and satisfying N.�/� 1.

We should point out that the boundary of a polyfold has very little to do with the set
theoretic boundary of the underlying topological space (whatever it means in any given
context). For example, the subspace Z of R2 given by

Z D ..�1; 0/�R/[ .Œ0; 1�� f0g/

with the induced topology admits a smooth polyfold structure without boundary. (One
might think that .1; 0/ is a boundary point!)

The next result shows that we can perturb the multisections to obtain as a solution set
a branched suborbifold of Z . The advantage is that we can integrate over branched
suborbifold, once they are equipped with an orientation, as is demonstrated in [20].
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Theorem 1.2 (Perturbation) Let f be a proper (oriented) Fredholm section of the
strong polyfold bundle pW W !Z with boundary with corners and assume that the
polyfold structure for Z is built on separable Hilbert spaces. Let N be an auxiliary
norm for p and U an open neighborhood of the solution set S.f /Dfz 2Z jf .z/D 0g

so that the pair .N;U / controls compactness. Then for every scC -multisection �
having support in U and satisfying N.�/ < 1

2
and every " 2 .0; 1

2
/, there exists an

scC–multisection � having support in U and satisfying N.�/ < ", so that the pair
.f; �˚ �/ is in general position. In particular, the solution set S.f; �˚ �/ is an
(oriented) compact branched suborbifold with boundary with corners. The solution set
S.f; �˚�/ is equipped with the natural weight function wW S.f; �˚�/! .0;1/\Q
defined by

w.z/D .�˚ �/.f .z//:

A branched suborbifold is essentially a pair .S; w/ in which S is a subset of Z as
the above set S.f; �˚ �/ and w is a map associating with a point in S a positive
rational weight. If f is a proper Fredholm section and �i , i D 0; 1, are generic
scC–multisections, then there exists a generic family �t interpolating between them
so that the solution set f.t; z/ 2 Œ0; 1� � Z j �t .f .z// > 0g is a smooth branched
suborbifold with boundary with corners interpolating between the solution sets S0

and S1 . Next assume @Z D ∅. Using determinant bundles one can introduce the
notion of an orientation o for a Fredholm section f leading to the notion of an oriented
Fredholm section .f; o/. We summarize the results needed in the Appendix, Section
5.4. The constructions of determinant bundles are in principle well-known (see for
example Donaldson and Kronheimer [4] and Floer and Hofer [6]), however, in the
polyfold context they are not entirely standard since the linearized Fredholm sections
do not depend continuously as operators on the points at which they are linearized.
This requires some extra work carried out in [17]. Transversal pairs .f; �/, pairs in
good position, and pairs in general position occurring in the following result are defined
in Definition 4.7 below.

Theorem 1.3 (Invariants) Let f be a proper oriented Fredholm section of the strong
polyfold bundle pW W !Z without boundary and assume that the polyfold structure
for Z is based on separable Hilbert spaces. Assume that N is an auxiliary norm for p

and U an open neighborhood of the solution set S.f / so that the pair .N;U / controls
compactness. Then there is a well-defined map

f̂ W H
�
dR.Z;R/!R

defined on the deRham cohomology group H�dR.Z;R/ and having the following prop-
erty. For any scC–multisection � having support in U and satisfying N.�/ < 1 so that
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.f; �/ is a transversal pair (in particular, the associated solution set S D S.f; �/ is an
oriented compact branched suborbifold), the map f̂ is represented by the formula

f̂ .Œ!�/D

Z
.S;w/

! D �.S;w/! .S/:

The weight function wW S !QC is defined by w.z/D �.f .z//. Moreover, if t ! ft

is an sc–smooth proper oriented homotopy of Fredholm sections, then

f̂0
D f̂1

:

Here �.S;w/! is a natural signed measure associated with an sc–differential form !

on the polyfold Z and the branched suborbifold .S; w/ (of course the measure can
only be nonzero provided the degree of the form and the dimension of S match). The
underlying measure space is .S;L.S//. The � –algebra L.S/ of subsets of S is a
natural generalization of the Lebesgue � –algebra on a smooth manifold. We refer to
[20] for more details.

For example, as sketched in Section 1.3, the disjoint union of the Gromov-compactified
moduli spaces of pseudoholomorphic curves with varying arithmetic genus and rep-
resenting the various second homology classes in a compact symplectic manifold
.Q; !/ can be viewed as the zero set of a Fredholm section f of some strong polyfold
bundle pW W !Z , which in every connected component is proper. The evaluation
map evl W Z!Q at the l –marked point is smooth (in the new sense) and pulls back
every differential form on Q to an sc–differential form ! on Z . Also the map which
associates with a point in Z the underlying stable part of the domain defines a smooth
map into the Deligne–Mumford stack and pulls back differential forms on the stack
to sc–differential forms ! on Z . Wedges of suitable forms can be integrated over a
(generic) branched suborbifold which is the solution set for a suitable scC–multisection
perturbation, and organizing the data in the usual way we obtain the GW–potential as
defined in McDuff and Salamon [27]. That the GW–theory fits into our framework
will be shown in detail in [15], though the main point of [15] is the construction of the
polyfold structures in the presence of nodes. The understanding of the nodes presents
already all the analytical difficulties related to the phenomenon called breaking of
trajectories occurring, for example, in Floer theory and in SFT.

Using the previous theorem one can associate with a proper Fredholm section a Q–
valued degree as follows. If f is an oriented proper Fredholm section of Fredholm
index 0 we can integrate the class Œ1� 2H 0

dR.Z;R/, ie the cohomology class of the
constant 1–function. Then we define the degree of f by

deg.f /D f̂ .Œ1�/:
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This degree takes, as one can show, values in Q and has the usual properties of a
degree.

There is also a version for the boundary case. Consider the inclusion j W @Z ! Z

which restricted to the local faces is sc–smooth. We can introduce the notion of an
sc–differential form on @Z by taking sc–differential forms on the local faces which
are compatible at their intersections. Let us denote by �k.j / the collection of pairs
.!; �/ 2 �k.Z/ ˚ �k�1.@Z/. The Cartan derivative d is defined as d.!; �/ D

.d!; j �!�d�/ and the associated deRham cohomology group H�dR.j / is denoted by
H�dR.Z; @Z/.

Theorem 1.4 (Invariants in case of boundary) Let f be a proper oriented Fredholm
section of the strong polyfold bundle pW W ! Z with boundary with corners and
assume that the polyfold structure for Z is built on separable Hilbert spaces. Assume
that N is an auxiliary norm for p and U an open neighborhood of the solution set
S.f / so that the pair .N;U / controls compactness. Then there exists a well-defined
map

‰f W H
�
dR.Z; @Z/!R

having the following property. For any scC–multisection � having support in U and
satisfying N.�/ < 1 so that .f; �/ is in general position (in particular, the associated
solution set S.f; �/ is an oriented compact branched suborbifold with boundary with
corners), the map ‰f has the representation

‰f .Œ!; � �/ WD

Z
.S.f;�/;�f /

! �

Z
.@S.f;�/;�f /

�:

Moreover, if t 7! ft is an sc–smooth proper oriented homotopy of Fredholm sections,
then

‰f0
D‰f1

:

As already mentioned there are approaches to the structure of moduli spaces of stable
maps which are different from ours. In some approaches so-called Kuranishi structures
are used; see Fukaya and Ono [8], Fukaya, Oh, Ohta and Ono [7] and Lu and Tian [24].
We would like to point out that it is quite straightforward to construct a “forgetful”
functor from the polyfold Fredholm theory to a class of Kuranishi structures; see
Hofer [14].

1.3 Sketch of the application to Gromov–Witten

As an illustration of the new concepts in this paper, we sketch an application to the
Gromov–Witten (GW)–invariants referring to [15] for the details and the proofs. The
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GW–invariants are invariants of symplectic manifolds deduced from the structure of
stable pseudoholomorphic maps from Riemann surfaces to the symplectic manifold. The
construction of GW–invariants for general symplectic manifolds goes back to Fukaya
and Ono [8] and Li and Tian [23]. Earlier work for special symplectic manifolds are
due to Ruan [31; 30]. Recently, Cieliebak and Mohnke [1] proved the genus zero case
using Donaldson’s theory [3] of codimension two symplectic hypersurfaces in order
to establish the crucial transversality property. Our approach is quite different. As a
consequence of general principles, compact smooth moduli spaces are produced over
which one can integrate. In the GW–case, the theory applies for arbitrary genus and
since the theory also solves all the smoothness problems automatically, many results,
as for example the composition formula for the GW–invariants, do not require extra
work.

We start our sketch recalling some concepts from the theory of Riemann surfaces. Nodal
Riemann surfaces show up in the compactification of the moduli space of compact
Riemann surfaces S . A nodal Riemann surface is a multiplet

.S; j ;M;D/

in which the pair .S; j / is a closed, not necessarily connected, Riemann surface S

equipped with the complex structure j . So, S is the disjoint union of finitely many
connected compact Riemann surfaces. The set M � S is an ordered finite subset of
points, called marked points. The unordered set D consists of finitely many unordered
pairs fx;yg of points in S satisfying x ¤ y and called nodal pairs. Moreover,
fx;yg \ fx0;y0g ¤ ∅ implies that the two sets are equal. The points of a nodal pair
may belong to the same component or to different components of S . Denoting by jDj
the collection of all the points of S contained in the set of nodal pairs D , we assume,
in addition, that jDj \M D∅. We call jDj the nodal set and the points in jDj the
nodal points. A special point of the nodal Riemann surface is a point in S which is
either a nodal point or a marked point. The nodal Riemann surface .S; j ;M;D/ is
called connected if the topological space obtained by identifying x � y for all nodal
pairs fx;yg 2D is a connected space. In this terminology it is possible that the nodal
surface .S; j ;M;D/ is connected but the Riemann surface S has several connected
components C , namely its domain components. The arithmetic genus ga agrees with
the genus of the connected compact Riemann surface obtained by properly gluing the
components C of S at all the nodes. The arithmetic genus ga of the connected nodal
Riemann surface .S; j ;M;D/ is the nonnegative integer ga defined by

ga D 1C ]DC
X
C

.g.C /� 1/
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where ]D is the number of nodal pairs in D and where the sum is taken over the
finitely many domain components C of the Riemann surface S . Two connected nodal
Riemann surfaces

.S; j ;M;D/ and .S 0; j 0;M 0;D0/

are called isomorphic, if there exists a biholomorphic map

'W .S; j /! .S 0; j 0/;

(ie, the map ' satisfies T ' ıj D j 0 ıT ' ), mapping marked points onto marked points
(preserving the ordering) and nodal pairs onto nodal pairs. If the two nodal Riemann
surfaces are identical, the isomorphism above is called an automorphism of the nodal
surface .S; j ;M;D/. In the following we denote by

Œ.S; j ;M;D/�

the equivalence class of all connected nodal surfaces isomorphic to the connected nodal
Riemann surface .S; j ;M;D/.

A crucial role play the so-called stable nodal surfaces.

Definition 1.5 The connected nodal Riemann surface .S; j ;M;D/ is called stable,
if the group of its automorphisms is finite.

One knows that a connected nodal Riemann surface .S; j ;M;D/ is stable if and only
if every connected domain component C of S satisfies

2g.C /C ]MC � 3;

where g.C / is the genus of C and where MC DC \ .M [jDj/ are the special points
lying on C .

After having recalled the concepts from Riemann surface theory we start with the
analytical set up of our approach to the GW–invariants. We consider a symplectic
manifold .Q; !/ and assume, for simplicity, that @QD∅. We study maps uW S !Q

defined on Riemann surfaces S into the symplectic manifold having special regularity
properties introduced below. By

uW O.S; z/!Q

we shall denote a germ around the point z 2 S defined on a piece of the Riemann
surface S .
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Definition 1.6 Let m � 2 be an integer and ı > 0. The germ of a continuous
map uW O.S; z/! Q is called of class .m; ı/ at the point z if for a smooth chart
'W U.u.z//!R2n of Q mapping u.z/ to 0 and for holomorphic polar coordinates
� W Œ0;1/�S1! S n fzg around z , the map

v.s; t/D ' ıu ı �.s; t/;

which is defined for s large, has partial derivatives up to order m, which if weighted
by eıs , belong to L2.ŒR;1/�S1;R2n/ if R is sufficiently large. The germ is called
of class m around the point z 2 S , if u belongs to the class H m

loc near z .

The above definition does not depend on the choices involved, like charts on Q and
holomorphic polar coordinates on S .

We next consider multiplets

˛ WD .S; j ;M;D;u/

in which .S; j ;M;D/ is a connected nodal Riemann surface and

uW S !Q

is a continuous map.

Definition 1.7 Let m� 2 be an integer and ı > 0. The multiplet ˛D .S; j ;M;D;u/

is a stable map of class .m; ı/, if it satisfies the following properties:

� The map u is of class .m; ı/ around the points belonging to the nodal set jDj
and of class m around all the other points of S .

� For every nodal pair fx;yg 2D , u.x/D u.y/.

� If a connected component C of S has genus gC and MC special points, and
satisfies 2 �gC CMC � 2, thenZ

C

u�! > 0:

Two stable maps ˛ D .S; j ;M;D;u/ and ˛0 D .S 0; j 0;M 0;D0;u0/ are called equiv-
alent if there exists an isomorphism 'W .S; j ;M;D/! .S 0; j 0;M 0;D0/ between the
connected nodal Riemann surfaces satisfying

u0 ı' D u:

An equivalence class Œ˛�D Œ.S; j ;M;D;u/� is called a stable curve of class .m; ı/.

The following space Z will be equipped with a polyfold structure.
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Definition 1.8 Fix ı0 2 .0; 2�/. The collection of all equivalence classes Œ˛� D
Œ.S; j ;M;D;u/� of class .3; ı0/ is called the space of stable curves into the symplectic
manifold Q of class .3; ı0/, and is denoted by Z .

In [15] the following result is proved for the set Z of the stable curves of class .3; ı0/.

Theorem 1.9 (1) The space Z has a natural second countable paracompact topol-
ogy.

(2) Given a strictly increasing sequence .ım/ starting at the previously chosen ı0
and staying below 2� and given the exponential gluing profile 'W .0; 1�! Œ0;1/

defined by '.r/D e1=r � e , the space Z has a natural polyfold structure where
the m–th level consists of equivalence classes Œ.S; j ;M;D;u/� in which u is
of class .mC 3; ım/.

Formulated in the technical terms introduced below, given the sequence .ıi/ and the
exponential gluing profile ' , there exists a natural collection of pairs .X; ˇ/ in which
X is an ep–groupoid and ˇW jX j !Z is a homeomorphism from the orbit space jX j
of the ep–groupoid onto the topological space Z , so that for any two pairs .X; ˇ/ and
.X 0; ˇ0/ there exists a third pair .X 00; ˇ00/ and equivalences F W .X 00; ˇ00/! .X; ˇ/

and F 0W .X 00; ˇ00/! .X 0; ˇ0/ satisfying

ˇ00 D ˇ ı jF j D ˇ0 ı
ˇ̌
F 0
ˇ̌
:

Such pairs define the smooth structure on the topological space Z . The construction
of the natural polyfold structure is carried out [15].

There are natural maps which play an important role in the GW–theory. Let us first
note that Z has many connected components. If g; k � 0 are integers we denote by
Zg;k the subset of Z consisting of all classes Œ˛� D Œ.S; j ;M;D;u/� of arithmetic
genus g and k marked points. This subset is open in Z and therefore is equipped
with the induced polyfold structure. If A 2H2.Q;Z/ is a homology class, we can also
consider the open subset ZA;g;k consisting of elements in Zg;k for which the map u

represents A. Now we consider for the fixed pair .g; k/ the space Zg;k . For every
i D 1; : : : ; k , we define the evaluation map at the i –th marked point by

evi W Zg;k !QW Œ˛�D Œ.S; j ;M;D;u/�! u.mi/:

If 2gCk � 3, the forgetful map associates with Œ˛� the underlying stable part of the
domain S . It is obtained as follows.

We take a representative .S; j ;M;D;u/ of our class Œ˛� and first forget the map u.
Now we take a component C satisfying 2g.C /C ].C \ .M [ jDj// < 3. Since,
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by definition, our nodal surface .S; j ;M;D/ is connected, the following cases arise.
Firstly, C is a sphere with one node. In this case we remove the sphere and the node.
Secondly, C is a sphere with two nodal pairs fx;yg and fx0;y0g, where x and x0

lie on the sphere. In this case we remove the sphere but shortcut the two nodes by
removing the two nodal pairs but adding the nodal pair fy;y0g. Thirdly, C is a sphere
with one node and one marked point. In that case we remove the sphere but replace the
corresponding node on the other component by the marked point. Continuing this way
we end up with a stable nodal Riemann surface whose biholomorphic type does not
depend on the order we weeded out the unstable components. The procedure leads to
the forgetful map

� W Zg;k !
SMg;k ; Œ.S; j ;M;D;u/�! Œ.S; j ;M;D/stab�

where SMg;k is the standard Deligne–Mumford compactification of the moduli space
of marked stable Riemann surfaces.

�

Figure 1: The forgetful map � W Zg;k !
SMg;k

Theorem 1.10 The evaluation maps evi W Zg;k!Q and the forgetful map � W Zg;k!

SMg;k are sc–smooth.
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As a consequence, we can pullback the differential forms on Q and on SMg;k to obtain
sc–differential forms on the polyfold Zg;k which can be, suitably wedged together,
integrated over the smooth moduli spaces obtained from transversal Fredholm sections
of strong bundles over Z , using the branched integration theory from [20].

Next we introduce a strong polyfold bundle W over Z . The objects of W are defined
as follows. We consider multiplets

y̨ D .S; j ;M;D;u; �/

in which the underlying stable map ˛ D .S; j ;M;D;u/ is a representative of an
element in Z and � is a continuous section along u such that the mapping

�.z/W TzS ! Tu.z/Q

is complex antilinear at every z 2 S . The domain S is equipped with the complex
structure j and the target Q is equipped with the almost complex structure J . We
require that the map z 7! �.z/ is of class H 2

loc on S n jDj and it is of class .2; ı0/
at the points in the nodal set jDj. The last requirement means, taking holomorphic
polar coordinates � around a nodal point z and a smooth chart  around its image
u.z/ 2Q, that the map

.s; t/ 7! pr2 ıT .u.�.s; t///�.�.s; t//

�
@�

@s
.s; t/

�
and all its partial derivatives up to order 2, if weighted by eı0jsj , belong to the space
L2.ŒR;1/� S1;R2n/ for R large enough. The definition does not depend on the
choices involved.

We call two such tuples .S; j ;M;D;u; �/ and .S 0; j 0;M 0;D0;u0; � 0/ equivalent if
there exists an isomorphism

'W .S; j ;M;D/! .S 0; j 0;M 0;D0/

between the nodal Riemann surfaces satisfying

u0 ı' D u and � 0 ıT ' D �:

We denote an equivalence class by Œy̨� D Œ.S; j ;M;D;u; �/�. The collection of all
such equivalence classes constitutes the space W .

We have defined what it means that an element ˛ represents an element on level m. Let
us observe that if u has regularity .mC3; ım/, it makes sense to talk about elements �
along u of regularity .kC 2; ık/ for 0� k �mC 1. In the case k DmC 1 the fiber
regularity is .mC 3; ımC1/ and the underlying base regularity is .mC 3; ım/.
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The requirement of an exponential decay in the fiber towards a nodal point which is
faster than the exponential decay of the underlying base curve is well-defined and
independent of the charts picked to define it. Our conventions for defining the levels are
governed by the overall convention that sections should be horizontal in the sense that
they preserve the level structure, ie an element on level m is mapped by the section to
an element on bilevel .m;m/. Hence if the section comes from a first order differential
operator we need the convention we have just used. Therefore it makes sense to say
that an element

y̨ D .S; j ;M;D;u; �/

has (bi)regularity ..mC3; ım/; .kC2; ık// as long as k satisfies the above restriction
0� k �mC 1. The equivalence class Œy̨� 2W is said to be on level .m; k/ provided
the pair .u; �/ has the above regularity. One of the main consequences of [15] is
the following theorem in which Z denotes the space of stable curves introduced in
Theorem 1.9 and W is the space defined above.

Theorem 1.11 (1) The set W has a natural second countable paracompact topology
so that the natural projection map

pW W !Z; Œy̨� 7! Œ˛�

(forgetting the �–part) is continuous.

(2) If Z is equipped with its polyfold structure, then the bundle pW W !Z has the
structure of a strong polyfold bundle in a natural way.

Finally, we can introduce, for a compatible smooth almost complex structure J on the
symplectic manifold .Q; !/, the section x@J of the strong polyfold bundle pW W !Z

defined by
x@J .Œ.S; j ;M;D;u/�/D Œ.S; j ;M;D;u; x@J ;j .u//�

where x@J ;j is the Cauchy–Riemann operator defined by

x@J ;j .u/D
1

2
.T uCJ ıT u ı j /:

Let us call a Fredholm section of a strong polyfold bundle component-proper if the
restriction to every connected component of the domain is proper. Then the following
crucial result which is a special case of results proved in [17; 18] holds true.

Theorem 1.12 The section x@J is an sc–smooth component-proper Fredholm section
of the strong polyfold bundle pW W !Z having a natural orientation.

Geometry & Topology, Volume 13 (2009)



A general Fredholm theory III: Fredholm functors and polyfolds 2293

Applying Theorem 1.3, one derives the following invariants. We abbreviate by .M; w/D

.S.x@J ; �/; �x@J
/ the oriented and weighted solution set of the pair .x@J ; �/ where � is

an scC–multisection and where the solution set is given by S.x@J ; �/ D fz 2 Zg;k j

�.x@J z/ > 0g and the weight function w is defined as w.z/D �.x@J z/. The set M is
an oriented compact branched suborbifold of Zg;k provided � is generic, ie, .x@J ; �/

is a transversal pair.

Theorem 1.13 Let .Q; !/ be a closed symplectic manifold. Then given a homology
class A 2H2.Q/ and natural numbers g; k � 0 there exists a multilinear map

‰
Q

A;g;k
W H�.QIR/˝k

˝H�. SMg;k IR/!R

which on H�.QIR/˝k is supersymmetric with respect to the grading by even and
odd forms. This map is uniquely characterized by the following formula. For a given
compatible almost complex structure J on Q and a given small generic perturbation
by an scC–multisection � we have the presentation

‰
Q

A;g;k
.Œ˛1�; : : : ; Œ˛k �I Œ� �/D

Z
.M;w/

ev�1.˛1/^ � � � ^ ev�k.˛k/^ �
�.PD.�//:

Here PD denotes the Poincaré dual.

The a priori real number ‰Q

A;g;k
.Œ˛1�; : : : ; Œ˛k �I Œ� �/ is called a GW–invariant. It is

zero unless the Fredholm index and the degree of the differential form which is being
integrated are the same. One can show that the numbers ‰Q

A;g;k
.Œ˛1�; : : : ; Œ˛k �I Œ� �/ are

rational if the (co)homology classes are integer. The defining integral can be interpreted
as a rational count of solutions of some nonlinear problem. The integration theory used
above is the “branched integration” introduced in [20].

The various maps ‰Q

A;g;k
are interrelated by the so-called composition law, which

also forms the basis for the Witten–Dijkgraf–Verlinde–Verlinde equation for which we
refer to Manin [25], McDuff and Salamon [27] and Tian [32] and we would like to
mention that the composition law follows readily from our transversality theory as will
be shown in [15].

2 Ep–groupoids and generalized maps

In this section we shall introduce the concept of an ep–groupoid. Ep–groupoids
will serve later on as models for polyfolds which is the central topic of this paper.
Ep–groupoids are generalizations of proper étale Lie groupoids in which the local
models for the object and morphism sets are M–polyfolds instead of finite-dimensional
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manifolds. Different ep–groupoids can serve as models for the same polyfold. This
leads to the study of equivalences between ep–groupoids. We shall also introduce the
concept of a generalized map and describe a construction for inverting equivalences. Our
presentation of ep–groupoids follows the presentation of Lie groupoids in Moerdijk [28]
and Moerdijk and Mrčun [29]. The ideas go back to A Haefliger and we refer to [10;
11; 12; 13].

2.1 Ep–groupoids

We begin by recalling the notion of a groupoid.

Definition 2.1 A groupoid G is a small category whose morphisms are all invertible.

Recall that the category G consists of the set of objects G , the set G of morphisms
(or arrows), and the five structure maps .s; t; i;u;m/. Namely, the source and the
target maps s; t W G!G assign to every morphism, denoted by gW x! y , its source
s.g/ D x and its target t.y/ D y , respectively. The associative multiplication (or
composition) map

mW Gs�t G!G; m.h;g/D h ıg

is defined on the fibered product

Gs�t GD f.h;g/ 2G�G j s.h/D t.g/g:

For every object x 2 G , there exists the unit morphism 1x W x! x in G which is a
2–sided unit for the composition, that is, g ı1x D g and 1x ıhD h for all morphisms
g; h 2G satisfying s.g/D x D t.h/. These unit morphisms together define the unit
map uW G!G by u.x/D1x . Finally, for every morphism gW x!y in G, there exists
the inverse morphism g�1W y ! x which is a 2–sided inverse for the composition,
that is, g ı g�1 D 1y and g�1 ı g D 1x . These inverses together define the inverse
map i W G!G by i.g/D g�1: The orbit space of a groupoid G,

jGj DG=�;

is the quotient of the set of objects G by the equivalence relation � defined by x� y if
and only if there exists a morphism gW x! y . The equivalence class fy 2G j y � xg

will be denoted by
jxj D fy 2G j y � xg:

If x;y 2G are two objects, then G.x;y/ denotes the set of all morphisms gW x! y .
In particular, for x 2G fixed, we denote by G.x/DG.x;x/ the stabilizer (or isotropy)
group of x ,

G.x/D fmorphisms gW x! xg:
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For the sake of notational economy we shall denote in the following a groupoid as well
as its object set by the same letter G and its morphism set by the bold letter G.

A homomorphism F W G! G0 between two groupoids is, by definition, a functor. In
particular, the two induced maps F W G!G0 and F W G!G0 between the object sets
and the morphism sets commute with the structure maps

s0 ıF D F ı s t 0 ıF D F ı t

i 0 ıF D F ı i u0 ıF D F ıu

m0 ı .F �F /D F ım:

Ep–groupoids, as defined next, can be viewed as M–polyfold versions of étale and
proper Lie-groupoids discussed eg in [28] and [29].

Definition 2.2 An ep–groupoid X is a groupoid X together with M–polyfold struc-
tures on the object set X as well as on the morphism set X so that all the structure
maps .s; t;m;u; i/ are sc–smooth maps and the following holds true:

� (Étale) The source and target maps s and t are surjective local sc–diffeo-
morphisms.

� (Proper) For every point x 2X , there exists an open neighborhood V .x/ so
that the map t W s�1.V .x//!X is a proper mapping.

We point out that if X is a groupoid equipped with M–polyfold structures on the object
set X as well as on the morphism set X; and X is étale, then the fibered product
Xs�t X has a natural M–polyfold structure so that the multiplication map m is defined
on an M–polyfold. Hence its sc–smoothness is well-defined. This is proved in Lemma
2.8 below.

In an ep–groupoid every morphism gW x ! y can be extended to a unique local
diffeomorphism t ıs�1 satisfying s.g/D x and t.g/D y . The properness assumption
implies that the isotropy groups G.x/ are finite groups.

The local structure of the morphism set of an ep–groupoid in a neighborhood of an
isotropy group is described in the following theorem whose proof can be found in the
Appendix, Section 5.1.

Theorem 2.3 Let x be an object of an ep–groupoid X . Then every open neighborhood
V �X of x contains an open neighborhood U � V of x , a group homomorphism

'W G.x/! Diffsc.U /; g 7! 'g;
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of the isotropy group into the group of sc–diffeomorphisms of U , and an sc–smooth
map

�W G.x/�U ! X

having the following properties:

� �.g;x/D g .

� s.�.g;y//D y and t.�.g;y//D 'g.y/.

� If hW y! z is a morphism between two points in U , then there exists a unique
element g 2G.x/ satisfying �.g;y/D h.

The group homomorphism 'W G.x/! Diffsc.U / is called a natural representation
of the isotropy group G.x/ of the element x 2 X . The diffeomorphism 'g is given
by t ı s�1 where s.g/ D t.g/ D x . We see that every morphism between points in
U belongs to the image of the map � and so has an extension to precisely one of the
finitely many diffeomorphisms 'g of U where g 2G.x/.

An M–polyfold X is, in view of its definition in [21], equipped with a filtration

X DX0 �X1 �X2 � � � � �X1 WD
\
k�0

Xk

into subsets such that the injection maps XkC1!Xk are continuous and X1 is dense
in all the sets Xk . Points or subsets contained in X1 are called smooth points or
smooth subsets. On the space Xk there is the induced filtration Xk �XkC1�� � ��X1 .
This M–polyfold structure of Xk will be denoted by X k .

If x 2 X , we denote by ml.x/ 2N0[f1g the largest nonnegative integer m or 1
so that x 2Xm . We call m.x/ the maximal level of x .

In an ep–groupoid the object set X as well as the morphism set X are M–polyfolds
and hence are both equipped with filtrations. Since the source and the target maps are
local sc–diffeomorphisms and therefore preserve by definition the levels, we conclude
that

ml.x/Dml.y/Dml.g/

if gW x! y is a morphism. Consequently, the filtration of the object set X induces
the filtration

jX j D jX0j � jX1j � � � � � jX1j D
\
k�0

jXk j

of the orbit space jX j DX=� :
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2.2 Functors and equivalences

In this section we introduce the notion of an equivalence which plays an important role
in the construction of polyfolds later on.

Definition 2.4 A functor F W X ! Y between two ep–groupoids is called sc–smooth
provided the induced maps between object- and morphism- spaces are sc–smooth.

In view of the functoriality of F , the two induced maps commute with the structure maps
and therefore an sc–smooth functor F W X ! Y induces an sc0 –map jF j W jX j ! jY j
between the orbit spaces. A continuous map is called sc0 if it preserves the natural
filtrations. An important class of sc–smooth functors are the equivalences defined next.

Definition 2.5 An sc–smooth functor F W X ! Y between two ep–groupoids is called
an equivalence provided it has the following properties:

� The map F is a local sc–diffeomorphism on objects as well as morphisms.

� The induced map jF j W jX j ! jY j between the orbit spaces is an sc–homeo-
morphism.

� For every x 2X , the map F induces a bijection X.x/!Y.F.x// between the
isotropy groups.

Clearly, if F W X ! Y and GW Y ! Z are equivalences, then the composition G ı

F W X !Z is also an equivalence.

In general, an equivalence is not invertible as a functor. Later on, we will discuss a
general procedure of inverting arrows in a category by only changing the morphism set
but keeping the object set. This “inverting of arrows” for a given class of arrows is a
standard procedure in category theory and we refer to Gabriel and Zisman [9].

Definition 2.6 Two sc–smooth functors F W X ! Y and GW X ! Y between ep–
groupoids X and Y are called naturally equivalent, if there exists an sc–smooth map
� W X ! Y which associates with every object x 2 X an arrow �.x/W F.x/! G.x/

in Y and which is “natural in x” in the sense that for every arrow hW x! x0 in X the
identity

�.x0/ ıF.h/DG.h/ ı �.x/
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holds. The map � is called a natural transformation.

F.x/
�.x/
� G.x/

F.x0/

F.h/

g
�.x0/
� G.x0/:

G.h/

g

Two naturally equivalent functors F W X ! Y and GW X ! Y induce the same map
between the orbit spaces,

jF j D jGj W jX j ! jY j :

From the definitions one deduces the following result.

Proposition 2.7 Assume that the sc–smooth functors F W X ! Y and GW X ! Y

between ep–groupoids are naturally equivalent. Then if one of the functors is an
equivalence so is the other.

Proof Assume that F W X ! Y is an equivalence. As remarked above the functors
F;G induce the same mappings between the orbit spaces so that jF jD jGj W jX j! jY j.
Hence jGj is a homeomorphism. If x 2 X , we have to show that G induces a
bijection between the isotropy groups X.x/ and Y.G.x//. It suffices to show that given
g 2Y.G.x//, there exists a unique h 2X.x/ such that G.h/D g . Let � W X !Y be a
natural transformation and define the morphism f WD �.x/�1ıgı�.x/W F.x/!F.x/.
Since there is a bijection between X.x/ and Y.F.x//, there exists a unique morphism
hW x! x satisfying F.h/D f . From �.x/ ıF.h/DG.h/ ı �.x/ one concludes that
g D �.x/ ıF.h/ ı �.x/�1 DG.h/ which proves our claim.

Next we show that G is a local sc–diffeomorphism on objects. Fix x0 2 X . Let
U.�.x0// be an open neighborhood in Y of the morphism �.x0/W F.x0/! G.x0/

such that the source and the target maps W U.�.x0//! U.F.x0// and t W U.�.x0//!

U.G.x0// are sc–diffeomorphisms. Since, by assumption, F is a local sc–diffeo-
morphism on objects, there exists a an open neighborhood U.x0/ of x0 in X such
that F W U.x0/! F.U.x0// is an sc–diffeomorphism. We take U.x0/ so small that
�.U.x0// � U.�.x0//. Moreover, we may assume that sW U.�.x0//! F.U.x0// is
an sc–diffeomorphism. Then G.x/D t ı s�1 ıF.x/ for x 2 U.x0/ and G.U.x0//D

U.G.x0//. Because t; s�1 and F are sc–diffeomorphisms also the composition G is
an sc- diffeomorphism on the neighborhood U.x0/.

To complete the proof we have to show that GW X ! Y is a local sc–diffeomorphism
on the morphisms set. To do this we fix a morphism gW x0! y0 between the objects
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x0 and y0 in X . By assumption, there exists an open neighborhood U.g/ of g in X
such that F W U.g/! F.U.g// is an sc–diffeomorphism. Since F and G are local sc–
diffeomorphism, we find open neighborhoods U.x0/ and U.y0/ of the objects x0 and
y0 such that the maps F and G are sc–diffeomorphism on U.x0/ and U.y0/. We may
choose the neighborhoods U.x0/, U.y0/ and U.g/ so that the source and the target
maps sW U.g/! U.x0/ and t W U.g/! U.y0/ are sc–diffeomorphisms. Then the set
G.U.g// is an open subset of Y and the sc–smooth map GW U.g/! G.U.g// has an
inverse given by G�1.h/DF�1.�.x/ıhı.�.y//�1/ for a morphism hW G.x/!G.y/

belonging to G.U.g//. Since this inverse is an sc–diffeomorphism, we have proved
that also G is a local sc–diffeomorphism.

Next we shall define the weak fibered product LD X �Y Z in which X;Y , and Z

are ep–groupoids. Consider two sc–smooth functors F W X ! Y and GW Z ! Y

between ep–groupoids having the same target ep–groupoid Y . We first define the
fibered product LDX �Y Z as a groupoid and then, under an additional assumption,
as an ep–groupoid.

The object set of L consists of triples .x; '; z/ 2X �Y�Z where 'W F.x/!G.z/

is a morphism in Y. Hence

LD f.x; '; z/ 2X �Y�Z j s.'/D F.x/ and t.'/DG.z/g:

In short notation, LDX F�sYt�GZ . A morphism l W .x; '; z/! .x0; '0; z0/; between
two objects in L is a triple l D .h; '; k/ 2 X�Y�Z with morphisms hW x! x0 and
kW z! z0 satisfying

'0 DG.k/ ı' ıF.h/�1:

Hence the set of morphisms is equal to LD XsıF�sYt�sıGZ or, explicitly,

LD f.h; '; k/ 2 X�Y�Z j s ıF.h/D s.'/ and t.'/D s ıG.k/g

and the source and the target maps s; t W L! L are defined by

(1) s.h; '; k/D .s.h/; '; s.k// and t.h; '; k/D .t.h/; '0; t.k//

where '0 WDG.k/ ı' ıF.h/�1 . The multiplication of two morphisms is defined as

.h; '; k/ ı .h0;  ; k 0/D .h ı h0;  ; k ı k 0/:

The identity morphisms 1.x;';z/ 2 L at the object .x; '; z/ 2 L is the triple 1.x;';z/ D

.1x; '; 1z/. The inversion map is defined by i.h; '; k/D .h�1;G.k/ı'ıF.h/�1; k�1/.
With the above definitions the fibered product LDX �Y Z becomes a groupoid called
the weak fibered product.
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In the next step we describe conditions which guarantee that L is an ep–groupoid. We
need a lemma which is a special case of a more general result in [19].

Lemma 2.8 Let X , Y and Z be M–polyfolds. Assume that f W X ! Y is a local
sc–diffeomorphism and gW Z! Y is an sc–smooth map. Then the fibered product

Xf�gZ D f.x; z/ 2X �Z j f .x/D g.z/g

has a natural M–polyfold structure and the projection map �2W Xf�gZ!Z is a local
sc–diffeomorphisms.

Proof Denote by 4 D f.y;y/ j y 2 Y g the diagonal in the space Y � Y . Then
Xf�gZ D .f;g/�1.4/ � X �Z . Hence Xf�gZ is a closed subset of X �Z

and consequently carries a paracompact second countable topology. Fix a point
.x; z/ 2 Xf�gZ . Since f W X ! Y is a local sc–diffeomorphism, we find two
open neighborhoods U.x/�X and V .g.z//�Z of the points x and g.z/ such that
f W U.x/! V .g.z// is an sc–diffeomorphism. Next we find an open neighborhood
W .z/�Z of z so that there exists a chart 'W W !O onto an open subset O of a splic-
ing core K and, in addition, g.W .z//�V .g.z//. Then N WD .U.x/�W .z//\Xf�gZ

is an open neighborhood of .x; z/ in Xf�gZ and the map

ˆW N !O; .x; z/ 7! '.z/

is a bijection and of class sc0 . The inverse map ˆ�1W O!N is equal to

ˆ�1.k/D .f �1
ıg ı'�1.k/; '�1.k///

and is an sc0 –map. If ˆ1W N1!O1 is defined by .x; z/ 7! '1.z/, where '1W W1!

O1 �K1 is another such chart map, then ˆ1 ıˆ
�1W ˆ.N \N1/!ˆ1.N \N1/ is

equal to ˆ1ıˆ
�1.k/D'1ı'

�1.k/ for k 2ˆ.N\N1/. Hence ˆ1ıˆ
�1 is sc–smooth.

Consequently, the above charts .ˆ;N / define an M–polyfold structure on Xf�gZ .
The construction also shows that the projection �2 is a local sc–diffeomorphism.

We shall use the previous lemma in the construction of the weak fibered product of
ep–groupoids.

Theorem 2.9 Let X , Y and Z be ep–groupoids. Assume that the functor F W X ! Y

is an equivalence and GW Z ! Y an sc–smooth functor. Then the fibered product
X �Y Z has in a natural way the structure of an ep–groupoid. Moreover, the projection
functor pW X �Y Z!Z is an equivalence.
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Proof We apply Lemma 2.8 and view the object set of the fibered product X �Y Z

as

(2) X F�sı�1
ŒYt�GZ� :

Since the target map t is a local sc–diffeomorphism and GW Z ! Y is sc–smooth,
Lemma 2.8 implies that Yt�GZ is in a natural way an M–polyfold. The map s ı

�1W Yt�GZ!Y is sc–smooth and F W X!Y is a local sc–diffeomorphism. Applying
Lemma 2.8 again, we conclude that the set of objects X �Y Z has a natural M–polyfold
structure. We could have also used instead of (2) the different bracketing

(3) ŒX F�sY� tı�2
�GZ;

which would lead to the same M–polyfold structure.

Using the fact that s ıF , s , and t are local sc–diffeomorphisms one also shows that
the set of morphisms LD XsıF�sYt�sıGZ has a natural M–polyfold structure. With
these M–polyfold structures on L and L, the source map

sW L! L; s.h; '; k/D .s.h/; '; s.k//

is sc–smooth and we show that s is a local diffeomorphism. Fix a morphism .h; '; k/2

L. Since the target map sW Z ! Z is a local sc–diffeomorphism, we find open
neighborhoods V.k/�Z of the morphism k and an open neighborhood V .s.k//�Z

of the point s.k/ such that sW V.k/!V .s.k// is an sc–diffeomorphism. Using Lemma
2.8 and shrinking these neighborhoods if necessary, we find an open neighborhood U
of the morphism .h; '; k/ in L such that the projection pW U� L! V.k/� Z is an
sc–diffeomorphism. Using the second bracketing (3) and Lemma 2.8 again, we find
an open neighborhood W � L of the object .s.h/; '; s.k// such that the projection
pW L!Z is an sc–diffeomorphism from W onto V .s.k//. Now observe that

s.h0; '0; k 0/D p�1
ı s ıp.h0; '0; k 0/

for every .h0; '0; k 0/ 2 U. Since the right-hand side is a composition of local sc–
diffeomorphisms, the source map sW L ! L on the left-hand side is a local sc–
diffeomorphism. Also the inversion map i W L ! L is an sc–diffeomorphism and
since the target map is the composition t D s ı i of the source map with the inverse,
we conclude that the target map t W L ! L is a local sc–diffeomorphism as well.
Consequently, the multiplication map

mW Ls�t L! L; m..h; '; k/; .h0; '0; k 0//D .h ı h0; '0; k ı k 0/

is well-defined and clearly sc–smooth. Next we show that L is proper. Pick a point
a D .x; '; z/ 2 L. By the properness of the groupoids X and Z , there are open
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neighborhoods U.x/ and V .z/ so that the maps

t W s�1.U.x//!X and t W s�1.V .z//!Z

are proper. Define the open W .a/� L by

W .a/D f.x0; '0; z0/ 2L j x0 2 U.x/; z0 2 V .z/ and '0W F.x0/!G.z0/g:

We claim that t W s�1.W .a//!L is proper. To see this, we take a sequence .hj ; 'j ; kj /2

L such s.hj ; 'j ; kj / 2 W .a/. We may assume that after taking a subsequence
t.hj ; 'j ; kj / ! .x0; '0z0/ DW b . By the definition of the target map t W L ! L, we
have t.hj ; 'j ; kj /D .t.hj /; '

0
j ; t.kj // where '0j D G.kj / ı'j ıF.hj /

�1 . Hence the
convergence of t.hj ; 'j ; kj / to .x0; '0; z0/ implies that t.hj /! x0 , t.kj /! z0 , and
'0j D G.kj / ı 'j ı F.hj /

�1 ! '0 . Since s.hj / 2 U.x/, the properness of the map
t W s�1.U.x// ! X implies that after taking a subsequence, hj ! h. The same
argument shows that after taking a further subsequence we have kj ! k . In particular,
F.hj /! F.h/ and G.kj /! G.k/ and since the inversion i is sc–smooth, we also
have the convergence G.kj /

�1 ! G.k/�1 . From 'j D G.kj /
�1 ı'0j ıF.hj / and

'0j ! '0 , we deduce that 'j !G.k/�1 ı'0 ıF.h/. Hence the sequence .hj ; 'j ; kj /

has a convergent subsequence which proves that L is proper.

Next we shall show that the projection functor

pW X �Y Z!Z

is an equivalence. We already know from Lemma 2.8 that the projection p is an
sc–smooth functor which is a local sc–diffeomorphism on objects and morphisms. To
see that p induces a bijection L.a/! Z.z/ between the isotropy groups L.a/ and
Z.z/, we take aD .x; '; z/ 2 L and z D p.a/. The isotropy group of a is equal to

L.a/D f.h; '; k/ j hW x! x; kW z! z; ' ıF.h/DG.k/ ı'g:

Given k 2Z.z/, the morphism '�1 ıG.k/ı' belongs to the isotropy group Y.F.x//.
Since F is an equivalence, there is unique morphism h belonging to the isotropy group
X.x/ such that F.h/ D '�1 ı G.k/ ı ' . Hence the map L.a/! Z.z/ defined by
.h; '; k/ 7! k is a bijection.

It remains to prove that jpj W jLj!jZj is an sc–homeomorphism. As p is an sc–smooth
functor, the induced map jpj is of class sc0 . If jp.x; '; z/j D jp.x0; '0; z0/j, then
'W F.x/!G.z/ and 'W F.x0/!G.z0/. Moreover, there exists a morphism kW z! z0 .
Then .'0/�1ıG.k/ı' is a morphism between F.x/ and F.x0/. Because jF j W jX j!
jY j is a bijection, there exists a unique morphism hW x ! x0 such that F.h/ D

.'0/�1 ıG.k/ ı ' . This implies that .h; '; k/ 2 L is a morphism between .x; '; z/
and .x0; '0; z0/ showing that both of these triples belong to the same equivalence class
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in the orbit space jLj. So, jpj is an injection. If jzj 2 jZj, then jF j jxj D jGj jzj
for some jxj 2 jX j, that is, jG.z/j D jF.x/j. This means that there is a morphism
'W F.x/!G.z/ so that the morphism '�1 ı 1G.z/ ı' belongs to the isotropy group
Y.F.x//. Hence there exists an element h 2 X.x/ so that F.h/ D '�1 ı 1G.z/ ı ' .
This implies that .x; h;y/ 2 L and jpj j.x; h; z/j D jzj proving that jpj is a surjection.
Consider jaj 2 jLj with the representative a D .x; '; z/ 2 L. Since pW L! Z is a
local sc–diffeomorphism, there exists an open neighborhood U.a/ of the point a in L
and an open neighborhood V .z/ of the point z in Z so that pW U.a/! V .z/ is an sc–
diffeomorphism. The quotient maps �1W L! jLj and �2W Z! jZj are open. Hence
jU.a/j and jV .z/j are open neighborhoods of the equivalence class Œa� and Œz� in jLj
and jZj, respectively. From jpj .jU.a/j/D�2ıpı�1.jU.a/j/D jV .z/j it follows that
jpj maps open sets in jLj onto open sets in jZj. Therefore, jpj�1

D
ˇ̌
p�1

ˇ̌
W jZj! jLj

is continuous. Because also jpj W jLj ! jZj is continuous and a bijection, the map jpj
is a homeomorphism. This finishes the proof of Theorem 2.9.

The next result is important for our constructions later on.

Proposition 2.10 Assume that the functors F W X ! Y and GW Z! Y between ep–
groupoids are equivalences. Then there exists a third ep–groupoid L and equivalences

ˆW L!X and ‰W L!Z

so that the compositions F ıˆ and G ı‰W L! Y are naturally equivalent.

Proof Set L D X �Y Z . Since F and G are equivalences and therefore local
sc–diffeomorphisms, Theorem 2.9 implies that the projections

�1W L!X and �2W L!Z

are equivalences. A natural transformation between F ı�1 and G ı�2 is given by the
sc–smooth map � defined by �.x; '; z/D ' .

2.3 Inversion of equivalences and generalized maps

As we shall see later on the ep–groupoids can be viewed as models for polyfolds. If
two ep–groupoids have an equivalence between them they will turn out to be models
for the same polyfold. In this subsection we introduce the notion of a generalized
map between ep–groupoids. Later on generalized maps will descend to maps between
polyfolds.

So far we have constructed a category whose objects are the polyfold groupoids and
whose morphisms between them are the sc–smooth functors. There is a distinguished
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family of morphisms, namely the equivalences. Equivalences are usually not invertible
(as functors). However, there is a category-theoretic procedure for inverting a class
of prescribed arrows in a given category while at the same time keeping the objects
and only minimally changing the morphisms. The general procedure is described in
Gabriel and Zisman [9]. In [28], Moerdijk describes the procedure in the case of Lie
groupoids, which are used to give a definition of an orbifold. Modulo the modifications
necessitated by the fact that we work in the splicing world we follow Moerdijk’s
description. We define a new category whose objects are the ep–groupoids and whose
morphisms “X H) Y ” are equivalence classes of diagrams of the form

X
F
 �A

ˆ
�! Y

where X;Y , and A are ep–groupoids and where F is an equivalence and ˆ is an
sc–smooth functor. A second such diagram

X
F 0

 �A0
ˆ0

�! Y

is called a refinement of the first diagram, if there exists an equivalence H W A0!A so
that the functors F ıH and F 0W A0!X are naturally equivalent as well as ˆıH and
ˆ0W A0! Y as illustrated in the diagram below. It is clear that given three diagrams
which connect X with Y so that d 0 refines d and d 00 refines d 0 , then d 00 refines d .

X �
F

A
ˆ
� Y

X �
F 0

A0

H

f

ˆ0
� Y:

Definition 2.11 Two diagrams X
F
 �A

ˆ
�!Y and X

F 0

 �A0
ˆ0

�!Y as above are called
equivalent if they have a common refinement.

The notion of having a common refinement is clearly reflexive and symmetric on
diagrams of the above form. Let us show that it is also transitive, so that it indeed
defines an equivalence relation.

Proposition 2.12 Assume that d; d 0 and d 00 are three diagrams connecting the ep–
groupoids X with Y and assume that the diagrams .d; d 0/ and .d 0; d 00/ have common
refinements. Then also the two diagrams d; d 00 have a common refinement.

Proof Assume that b and b0 are the common refinements of the diagrams .d; d 0/ and
.d 0; d 00/ , respectively. In particular, the diagrams b and b0 are common refinements of
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the diagram d 0 . In view of the remarks proceeding the proposition, it suffices to prove
that b and b0 have a common refinement. To prove this, assume that the diagrams

bW X
G
 � B

‰
�! Y and b0W X

G0

 � B0
‰0

�! Y

are refinements of the diagram X
F
 �A

ˆ
�! Y . This situation is illustrated by the two

diagrams
X �

F
A

ˆ
� Y

X �
G

B

H

f

‰
� Y

X �
F

A
ˆ
� Y

X �
G0

B0

H 0
f

‰0
� Y

where the functors H W B!A and H 0W B0!A are equivalences. We take the fibered
product LD B �A B0 and define the diagram c by

cW X
Gı�1
 ���� L

‰ı�1
����! Y:

We claim that c is a common refinement of the diagrams b and b0 . In view of Theorem
2.9, the projections �1W L!B and �2W L!B0 are equivalences. We have to show
that ‰ ı �1 and ‰0 ı �2W L ! Y are naturally equivalent as well as G ı �1 and
G0 ı�2W L!X . Note that if .x; ';x0/ 2 L, then

‰0 ı�2.x; ';x
0/D‰0.x0/; ‰ ı�1.x; ';x

0/D‰.x/:

and 'W H.x/!H 0.x0/: Since the functors ˆıH and ‰ as well as ˆıH 0 and ‰0 are
naturally equivalent, there exist two sc–smooth maps �1W B!Y and �2W B

0!Y such
that �1.x/ is a morphism ˆıH.x/!‰.x/ and �2.x

0/ is a morphism ˆıH 0.x0/!

‰0.x0/. The sc–smooth map � W L! Y, given by

�.x; ';x0/D �2.x
0/ ıˆ.'/ ı �1.x/

�1;

defines the natural equivalence between the functors ‰0 ı �2 and ‰ ı �1W L! Y .
Similar arguments prove that the two functors G ı�1 and G0ı�2W L!X are naturally
equivalent. This completes the proof of the proposition.

Definition 2.13 Let X and Y be ep–groupoids. A generalized map aW X ) Y is by
definition the equivalence class of a diagram

d W X
F
 �A

ˆ
�! Y

where A is an ep–groupoid and where F is an equivalence and ˆ is an sc–smooth
functor. We shall use the notation

aD Œd �D ŒX
F
 �A

ˆ
�! Y �:
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The composition b ı a of the generalized maps aW X ) Y and bW Y )Z is defined
as follows. We choose representatives

X
F
 �A

ˆ
�! Y and Y

G
 � B

‰
�!Z

of the equivalence classes a and b, and consider the diagram

X
F
 �A

ˆ
�! Y

G
 � B

‰
�!Z:

We replace the middle portion A
ˆ
�! Y

G
 � B of the diagram by the ep–groupoid

A�Y B . In view of Theorem 2.9, the projection �1W A�Y B!A is an equivalence
and we can build the diagram

(4) X
Fı�1
 ����A�Y B

‰ı�2
����!Z:

The map F ı�1 is an equivalence and the map ‰ ı�2 an sc–smooth functor. If

X
F 0

 �A0
ˆ0

�! Y

is equivalent to the diagram d and

Y
G0

 � B0
‰0

�!Z

is equivalent to the diagram d1 , then the two diagrams

X
Fı�1
 ����A�Y B

‰ı�2
����!Z and X

F 0ı�1
 ����A0 �Y B0

‰0ı�2
����!Z

are equivalent. Therefore, the composition of the equivalence classes having the
representatives

X
F
 �A

ˆ
�! Y and Y

G
 � B

‰
�!Z

can be defined as the equivalence class of the diagram (4). The composition of the
equivalence classes is associative. The identity morphism 1X of the groupoid X can
be identified with the equivalence class of the diagram

(5) X
1X
 ��X

1X
��!X:

The compositions of the generalized map aW X ) Y with the equivalence classes of
the diagrams

X
1X
 ��X

1X
��!X and Y

1Y
 �� Y

1Y
��! Y

give the generalized map a. Consequently, we have constructed the category whose
objects are ep–groupoids and whose morphisms are generalized maps. We denote this
category by Ep.
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If the functor F W X ! Y is an equivalence, then the diagram Y
F
 � X

F
�! Y is a

refinement of (5) and hence belongs to the class 1Y . A smooth functor ˆW X ! Y

can be identified with the equivalence class of the diagram

X
1X
 ��X

ˆ
�! Y;

denoted by Œˆ�. As a special case, an equivalence functor F W X ! Y is identified
with the equivalence class of the diagram

X
1X
 ��X

F
�! Y:

This diagram defines the equivalence class ŒF �. Its inverse, denoted by ŒF ��1 , is readily
identified with the equivalence class of the diagram

Y
F
 �X

idX
��!X

so that ŒF � ı ŒF ��1 D 1Y and ŒF ��1 ı ŒF �D 1X .

We see that those functors which originally are equivalences become invertible in the
new category.

The following lemma explains the relationship between generalized maps and induced
maps between the underlying orbit space. The proof is straightforward.

Lemma 2.14 Let d W X
F
 � A

ˆ
�! Y be a diagram between ep–groupoids in which

F is an equivalence and ˆ an sc–smooth functor. Then d induces an sc0 –map
jd j W jX j ! jY j between the orbit spaces defined by

jd j D jˆj ı jF j�1 :

If a second diagram d 0 refines d , then jd 0j D jd j. In particular, equivalent diagrams
induce the same map jX j ! jY j between orbit spaces.

Hence a generalized map X ) Y between ep–groupoids which is an equivalence class
Œd � of diagrams induces the canonical map jŒd �j WD jd j W jX j ! jY j between the orbit
spaces.

One might ask if one can characterize invertible generalized maps, ie, generalized maps
a which have an inverse in Ep. An obvious conjecture is that an invertible generalized
map aW X H) Y can be represented by a diagram

X
F
 �A

G
�! Y
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in which F and G are equivalences. This is, in fact, true if one deals with the special
case of étale proper Lie groupoids (of finite dimension). The standard proof of the above
fact uses the inverse function theorem and a dimension argument and this part cannot
be generalized. In fact, it seems doubtful to be true in our more general framework.
Therefore, we introduce the following two notions.

Definition 2.15 A generalized map aW X ) Y is called invertible if there exists
a generalized map bW Y H) X satisfying b ı a D 1X and a ı b D 1Y . We call a
generalized map a strongly invertible, or s–invertible for short, if it is the equivalence
class of a diagram

X
F
 �A

G
�! Y

in which both functors F and G are equivalences. An s–invertible element is called
an s–isomorphism.

If aD ŒX
F
 �A

G
�! Y � is s–invertible, then its inverse a�1 can be represented by the

diagram

Y
G
 �A

F
�!X:

Indeed, the composition

ŒY
G
 �A

F
�!X � ı ŒX

F
 �A

G
�! Y �

is represented by the diagram

X
Fı�1
 ����A�Y A

Fı�2
����!X

which is refined by the diagram X
F
 �A

F
�!X in view of the equivalence A!A�Y A

defined as a! .a; 1G.a/; a/. The diagram

X
F
 �A

F
�!X

also refines the identity diagram

X
1X
 ��X

1X
��!X

via the equivalence F W A! X . Hence our candidate for a�1 is indeed the inverse
of a.

This shows that the inverse of an s–invertible element is s–invertible. It is easily verified
that the composition of two s–invertible maps is s–invertible.
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2.4 Strong bundles over ep–groupoids

In this section we introduce the notion of a strong bundle over ep–groupoid and extends
the previously developed ideas of equivalences and generalized maps to this context.

We consider an ep–groupoid X D .X;X/ and a strong M–polyfold bundle

pW E!X

over the object space X of the ep–groupoid. Strong M–polyfold bundles are defined
in Definition 4.9 of [21]. In particular, E is an M–polyfold of type 1 and X is an
M–polyfold of type 0. Moreover, pW E!X is a surjective sc–smooth map and the
fibers

p�1.x/DEx

over x 2X carry the structure of a Banach space. Since the source map sW X!X is
by definition a local sc–diffeomorphism, the fibered product

Xs�pE D f.g; e/ 2 X�E j s.g/D p.e/g

is an M–polyfold in view of Lemma 2.8. Moreover, the bundle

ED Xs�pE
�1
�! X

is, as the pullback of a strong M–polyfold bundle, also a strong M–polyfold bundle in
view of Proposition 4.11 in [21].

Now we assume that there exists a strong bundle map �W E! E which covers the
target map t W X!X of the ep–groupoid so that

t ı�1.g; e/D p ı�.g; e/

for all .g; e/ 2 Xs�pE :

Xs�pE
�
� E

X

�1g
t
� X:

p
g

In addition, we assume that the postulated bundle map � satisfies the following
properties:

� � is a surjective local sc–diffeomorphism and linear on the fibers Ex .

� �.1x; ex/D ex for all x 2X and ex 2Ex .

� �.g ı h; e/D �.g; �.h; e// for all g; h 2 X and e 2E satisfying s.h/D p.e/

and t.h/D s.g/D p.�.h; e//.
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It follows, in particular, that

�.g; � /W Ex!Ey

is a linear isomorphism if gW x! y is a morphism in X.

With the above data we shall define the ep–groupoid

E D .E;E/

in which the object set E is the M–polyfold E we started with and the morphism set
E is the above fibered product Xs�pE . The source and target maps s; t W E!E are
defined as follows:

s.g; e/D e

t.g; e/D �.g; e/

for .g; e/ 2 Xs�pE: These maps s and t are fiberwise linear surjective local scG–
diffeomorphisms covering the source and target maps X!X . Indeed,

p ı s.g; e/D p.e/D s.g/

p ı t.g; e/D p ı�.g; e/D t ı�1.g; e/D t.g/:

The identity morphism at ex 2 Ex is the pair .1x; ex/ 2 X and if gW x ! y is a
morphism in X, the inverse of .g; ex/ 2 E is the pair i.g; ex/D .g

�1; �.g; ex//. The
multiplication map in E is defined by

.h; f / ı .g; e/ WD .h ıg; e/

whenever f D �.g; e/ 2E .

The two sc–smooth projection maps pW E! X and �1W E! X together define an
sc–smooth functor denoted by

P W E!X

between the two ep–groupoids E D .E;E/ and X D .X;X/.

We shall refer to this functor P W E!X as to a strong bundle over the ep–groupoid X .

Such a strong bundle is, in particular, an ep–groupoid together with a functor P onto
the base ep–groupoid and we shall use the same letter for the two induced maps on the
object and the morphism sets, namely,

E
P
�!X and E

P
�! X:
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Definition 2.16 A linear strong bundle morphism ˆW P!P 0 between the two strong
bundles P W E!X and P 0W E0!X 0 over the ep–groupoids X and X 0 consists of
a functor ˆW E D .E;E/!E0 D .E0;E0/ between ep–groupoids which is linear on
the fibers and which covers an sc–functor 'W X !X 0 between the bases. Moreover,
the functor ˆ induces strong bundle maps ˆW E!E0 and ˆW E! E0 between the
object sets and morphism sets:

E
ˆ
� E0

X

P
g

'
� X 0:

P 0g

There is a distinguished class of linear strong bundle morphisms which generalizes
equivalences between ep–groupoids.

Definition 2.17 A linear strong bundle equivalence ˆW P ! P 0 between the two
strong bundles P W E ! X and P 0W E0 ! X 0 over ep–groupoids is a linear strong
bundle morphism ˆW P ! P 0 satisfying the following properties:

(1) The functor ˆW E!E0 is an equivalence of ep–groupoids, covering the equiv-
alence 'W X !X 0 between the underlying ep–groupoids.

(2) The induced maps ˆW E ! E0 and ˆW E! E0 between the object sets and
the morphism sets preserve the strong bundle structures and are locally strong
bundle isomorphisms.

For notational convenience we shall abbreviate these notions as follows:

bundle map WD linear strong bundle morphismI

bundle equivalence WD linear strong bundle equivalence:

To generalize the notion of natural equivalence, we consider two strong bundles P W E!

X and P 0W E0!X 0 over ep–groupoids and two bundle maps

ˆ;‰W P ! P 0:

Definition 2.18 The bundle maps ˆ and ‰ are called naturally equivalent, if there
exists a natural transformation

T W E! E0

for the two functors ˆ;‰W E!E0 between ep–groupoids (in the sense of Definition
2.6) and a natural transformation

� W X ! X0
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between the underlying functors '; W X ! X 0 which commute with the functors
P W E!X and P 0W E0!X 0 so that

� ıP .e/D P 0 ıT .e/; e 2E:

To reformulate the above definition we derive a simple description of the natural
transformation T W ˆ!‰ as a canonical lift of the underlying natural transformation
� W '!  . By definition, the map

T W E! E0 WD X0s�P 0E
0;

which covers the natural transformation � W X ! X0 has the form

T .e/D .�.P .e//;A.e//:

Since ˆ.e/D s.T .e//D A.e/ and ‰.e/D t.T .e//D �.�.P .e//;A.e//, it follows
that

T .e/D .�.P .e//; ˆ.e// and ‰.e/D �.�.P .e//; ˆ.e//:

This implies that T is a strong bundle map between the bundles E ! X and
X0s�P 0E

0 ! X0 covering � . In view of this discussion we obtain an equivalent
definition as follows.

Definition 2.19 A natural transformation T between bundle maps ˆW P ! P 0 and
‰W P ! P 0 (covering the underlying functors 'W X ! X 0 and  W X ! X 0 ) is a
strong bundle map

T W E! X0s�P 0E
0

covering a natural transformation � W X ! X0 between the functors ' and  of the
form

T .e/D .�.P .e//; ˆ.e//

and satisfying �.�.P .e//; ˆ.e//D‰.e/:

Let us denote by SEp the category whose objects are strong bundles over ep–groupoids.
As in the case of the category Ep we take as morphisms a class of generalized maps
introduced next. We consider two strong bundles P W E!X and P 0W E0!X 0 over
ep–groupoids and study the diagrams

E
ˆ
 �E00

‰
�!E0;

where P 00W E00!X 00 is a third strong bundle over an ep–groupoid, and where ˆ is
a bundle equivalence and ‰ a bundle map. Following the earlier construction of a
generalized map between ep–groupoids, one introduces the notion of a refinement of a
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diagram and then calls two diagrams equivalent, if they possess a common refinement.
The equivalence class of the diagram

E
ˆ
 �E00

‰
�!E0;

is then, by definition, a generalized strong bundle map, for simplicity called a general-
ized bundle map and denoted by

AW E)E0:

aW X )X 0By

we shall denote the associated underlying generalized map between the base ep–
groupoids. One has to keep in mind that in the fibers the induced maps are linear
and preserve the strong bundle structure. The notion of invertible and s–invertible are
defined as before (Definition 2.15), namely as follows.

Definition 2.20 A generalized bundle map AW E) E0 is called invertible if there
exists a generalized bundle map BW E0)E satisfying BıAD 1E and AıBD 1E0 :

The generalized bundle map AW E)E0 is called s–invertible, if it can be represented
by a diagram

E
ˆ
 �E00

‰
�!E0

in which both bundle maps are equivalences.

An s–invertible generalized bundle map AW E)E0 will in the following be called an
s–bundle isomorphism.

We point out that an s–bundle isomorphism AW E ) E0 covers automatically an
s–isomorphism aW X )X 0 between the underlying base ep–groupoids.

Definition 2.21 The two strong bundles P W E ! X and P 0W E0 ! X 0 over ep–
groupoids are called strong bundle equivalent, if there exists an s–bundle isomorphism
AW E)E0 .

Definition 2.22 A (sc–smooth) section of the strong bundle P W E ! X over the
ep–groupoid X is an sc–smooth functor F W X !E satisfying P ıF D idX . An scC–
section is an sc–smooth section F W X !E inducing an sc–smooth functor X !E0;1 ,
where E0;1 has the grading .E0;1/m DEm;mC1 for all m� 0:

A Fredholm section F of the strong bundle P W E ! X is an sc–smooth functor
which, as a section on the object sets, is an M–polyfold Fredholm section as defined in
Definition 3.6 in [22].
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The functoriality of the section F W X !E requires that

(6) �.g;F.x//D F.y/

whenever there is a morphism gW x! y in X.

The space of sc–smooth sections of the bundle P W E!X is denoted by �.P /, the
space of scC–sections is denoted by �C.P /, and the space of Fredholm sections by
F.P /. The following observation will be useful later on.

Proposition 2.23 Consider the two strong bundles P W E!X and P 0W E0! Y over
the ep–groupoids X and Y and let ˆ;‰W P 0! P be two bundle equivalences which
are naturally equivalent. If F W X !E is an sc–smooth section of the strong bundle P ,
then the pullback sections ˆ�.F / and ‰�.F /W Y !E0 of the bundle P 0 agree:

ˆ�.F /.y/D‰�.F /.y/; y 2 Y:

Proof Denote by '; W Y ! X the functors on the base ep–groupoids associated
with the bundle equivalences ˆ;‰W P 0! P , respectively. Then by definition of the
pullback of a section we have the equalities

ˆ ıG.y/D F ı'.y/ and ‰ ıH.y/D F ı .y/

where we have abbreviated G Dˆ�.F / and H D‰�.F /. If T W E0! E is a natural
transformation between the bundle maps ˆW P 0 ! P and ‰W P 0 ! P covering a
natural transformation � W Y ! X, then, in view of Definition 2.19,

T .e/D .�.Pe/; ˆ.e// and �.�.Pe/; ˆ.e//D‰.e/

for e 2 E0 . Then, since �.y/W '.y/ !  .y/ is a morphism and F a functor, (6)
implies that

‰.G.y//D �.�.y/; ˆ.G.y//

D �.�.y/;F.'.y//D F. .y//

D‰.H.y//

for all y 2 Y . By assumption, ‰ is a bundle equivalence and H and G are sections.
Therefore, G.y/DH.y/ for all y 2 Y as we wanted to prove.

In order to apply Proposition 2.23, we consider the diagram

E �
ˆ

E00
‰
� E0

E �
‚

A

†

f

„
� E0

Geometry & Topology, Volume 13 (2009)



A general Fredholm theory III: Fredholm functors and polyfolds 2315

representing a bundle diagram refinement in which all the functors are bundle equiva-
lences. By definition there are the natural equivalences ˆ ı†' ‚ and ‰ ı†'„
and we conclude from Proposition 2.23 for a section F W X !E of the strong bundle
P W E!X over the ep–groupoid X that

.ˆ ı†/�.F /D‚�.F /:

Similarly, if G is a section of the strong bundle P 0W E0!X 0 over the ep–groupoid
X 0 , then „�.G/D .‰ ı†/�.G/ and we can formulate the following definition.

Definition 2.24 Let P W E! X and P 0W E0! X 0 be two strong bundles over ep–
groupoids, and let F;G be sections of P and P 0 , respectively. The sections F and G

are called equivalent, if there exists a diagram

E
ˆ
 �E00

‰
�!E0

of strong bundle equivalences such that for the pullback sections, we have

ˆ�.F /D‰�.G/:

This is well-defined in the following sense. If we have two equivalent diagrams
connecting E with E0 and the above equality holds for one diagram, then it holds for
the other diagram as well. Indeed, by the preceding discussion, it holds for a common
refinement and therefore the sections obtained by the pullbacks of the second diagram
must be the same on the image of the refinement. But since the latter is a bundle
equivalence this implies the assertion.

Also observe that given a bundle equivalence ˆW P!P 0 and a section F of the strong
bundle P W E!X , there is a well-defined push forward section ˆ�.F / of the strong
bundle P 0W E0!X 0 . Consequently, we obtain the following result.

Proposition 2.25 Let P W E ! X and P 0W E0 ! X 0 be two strong bundles over
ep–groupoids. Then an s–invertible generalized bundle map AW E ) E0 induces a
well-defined pushforward map A�W �.P /!�.P 0/ between sc–smooth sections which
is a bijection. Its inverse is the pullback map A�W �.P 0/! �.P /. The same holds true
for the pushforward maps �C.P /!�C.P 0/ for the scC–sections and F.P /!F.P 0/
for the Fredholm sections.

2.5 Auxiliary norms

In [22], we introduced the notion of an auxiliary norm for an M–polyfold. In this
section we generalize this concept to ep–groupoids by incorporating morphisms.
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We recall from Definition 5.5 in [22] that an auxiliary norm N for the M–polyfold
bundle pW Y !X consists of a continuous map N W Y0;1! Œ0;1/ having the following
properties:

� For every x 2X , the induced map N j.Y0;1/x! Œ0;1/ on the fiber .Y0;1/x is
a complete norm.

� If yk

m
�! y , then N.y/� lim infk!1N.yk/:

� If N.yk/ is a bounded sequence and the underlying sequence xk D p.yk/

converges to x 2X , then yk has an m–convergent subsequence.

For the so-called m–convergence yk

m
�!y we refer to Definition 5.4 in [22]. Roughly it

means for the sequence yk D .p.yk/; ek/ 2 Y0;1 that the base points p.yk/D xk 2X

converge in the M–polyfold to x 2 X and the fiber components ek * e converge in a
weak sense to e 2 Y1 satisfying p.e/D x .

Definition 2.26 Let P W E ! X be a strong bundle over the ep–groupoid X . An
auxiliary norm for the strong bundle P is a map N �W E0;1 ! Œ0;1/ having the
following properties:

� As a map on the object set, the map N � is an auxiliary norm as defined above.

� If 'W e! e0 is a morphism in E, then N �.e/DN �.e0/.

The existence of an auxiliary norm is guaranteed by the following proposition which
uses the existence result of Proposition 5.6 in [22]. We assume that the local models
for P have reflexive fibers, for example Hilbert spaces.

Proposition 2.27 Every strong bundle P W E ! X over an ep–groupoid admits an
auxiliary norm.

Proof We begin with a strong local bundle K! O . The existence of an auxiliary
norm in this case has been proved in [22, Proposition 5.6]. Next consider a strong
bundle P W E!X over the ep–groupoid X . By the discussion in Section 2.4, we have
the strong M–polyfold bundle P W E ! X over the ep–groupoid X and the strong
bundle map �W E!E having the property that if gW x! y is a morphism in X, then
�.g; � /W Ex!Ey is a linear isomorphism.

Around every point x 2 X , we choose a strong bundle chart (as in Definition 4.8 in
[21])

ˆW EjUx!KR
jO
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covering the sc–diffeomorphism 'W Ux!O between an open neighborhood Ux �X

of the point x and the open subset O of the splicing core KS associated with the
splicing S . The open neighborhood Ux can be taken so small that the isotropy group
X.x/ acts on it by the natural representation 'gW Ux! Ux for g 2 X.x/ in view of
Theorem 2.3. Since an auxiliary norm exists on KRjO , we pull it back to EjUx via
the chart ˆ to obtain an auxiliary norm N 0x on EjUx . We use the following notation.
If y 2 X and gW y ! y0 is a morphism, then we write y0 D g � y . In particular,
y0 D g �y if y0 D 'g.y/. Also, we write e0 D g � e if e 2Ex and e0 D �.g; e/ 2Ey .

For ye D .y; e/ 2 Ux˚Ey , we define

yN 0x.ye/D
yN 0x.y; e/ WD

1

]X.x/

X
g2X.x/

N 0x.'g.y/; �.g; e//

D
1

]X.x/

X
g2X.x/

N 0x.g �y;g � e/:

Then yN 0x is an auxiliary norm for EjUx having the additional property that if there is
a morphism in E between two objects ye and ye0 belonging to EjUx , then yN 0x.ye/D
yN 0x.ye

0/.

Next we extend yN 0x to Ej yUx where yUx D�
�1.�.Ux// is the saturation of the set Ux .

Here � W X !jX j is the quotient map onto the orbits space jX j of the ep–groupoid X .

If ye D .y; e/ 2Ej yUx , then there is a morphism g having the source y and the target
in Ux such that .y0; e0/D .g �y;g � e/ 2 Ux˚Ey0 and we define

yNx.ye/D yNx.y; e/ WD yN
0
x.g �y;g � e/D

yN 0x.y
0; e0/:

This definition is independent of the choice of a morphism having its source equal to
y and its target in Ux . Indeed, if there is another morphism g0 satisfying .y00; e00/D
.g0�y;g0�e/2Ux˚Ey0 , we define the morphism hDg0 ıg�1W y0!y00 . It follows that
.y00; e00/D .h �y0; h � e0/, and since yN 0x is, by construction, an invariant auxiliary norm
for Ej yUx , we conclude yN 0x.y

0; e0/D yN 0x.y
00; e00/ showing that yNx is well-defined.

To see that the map yNx is continuous on E0;1j
yUx we take .x; e/ 2 E0;1j

yUx . Then
there is a morphism g such that .y0; e0/ D .g � y;g � e/ 2 Ux ˚Ey . By definition,
yNx.x; e/ D yN

0
x.y
0; e0/ and yN 0x is continuous near .y0; e0/. The morphism g has

an extension to an sc–diffeomorphism of the from t ı s�1 defined near x and the
map � is also a local sc–diffeomorphism. It follows that the map yNx near .y; e/
is equal to the composition of a continuous map yN 0x with the sc–diffeomorphisms
.t ı s�1; � ı .t ı s�1; id//, and hence is continuous.
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Finally, we glue all the local auxiliary norms yNx to obtain a globally defined auxiliary
norm N for E . To do this we consider the open covering

�
��1.�.Ux//

�
x2X

of X .
The ep–groupoid X is a paracompact space. In view of Theorem 4.8 in [20], there
exists a continuous partition of unity .ˇx/x2X subordinated to the open covering�
��1.�.Ux//

�
x2X

which is invariant under morphisms of X . For simplicity we use
here for the partition of unity the same indices as for the open covering, allowing the
supports of ˇx to be empty. We would like to point out that Theorem 4.8 in [20]
requires the assumption that the sc–structure of X is based on separable sc–Hilbert
spaces in order to obtain an sc–smooth partition of unity, however, in our case at hand
we don’t need this assumption since we are only interested in a continuous partition of
unity. Finally we set

N.ye/DN.y; e/D
X
x2X

ˇx.P .ye// � yNx.ye/

for ye D .y; e/ D .P .ye/; e/. Then N is the desired auxiliary norm for E which is
compatible with the morphisms.

3 Polyfolds

Polyfolds and their bundles are the basic spaces on which we will study Fredholm
sections. The ep–groupoids can be viewed as the models for this new class of spaces.
The strong bundles over ep–groupoids are the models for strong polyfold bundles.

3.1 Basic definitions and results

In the following we shall use the category Ep whose objects are ep–groupoids and
whose morphisms are generalized maps.

Definition 3.1 Let Z be a second countable paracompact topological space. A poly-
fold structure on Z is a pair .X; ˛/ consisting of an ep–polyfold groupoid X and a
homeomorphism ˛W jX j !Z between the orbit space and the space Z .

Given a polyfold structure .X; ˛/ on Z , the sc0 –structure on jX j defines an sc0 –
structure on Z .

To formulate the equivalence relation between two polyfold structures, we recall from
the previous section that an s–isomorphism aW X ) Y between two ep–groupoids is
the equivalence class of a diagram

X
F
 �W

G
�! Y
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connecting ep–groupoids in which both functors F and G are equivalences. Since
equivalences induce sc0 –homeomorphism between orbit spaces, we obtain the sc0 –
homeomorphism jGj ı jF j�1

W jX j! jY j. This homeomorphism is independent of the
choice of a representative in the equivalence class. Indeed, if

X
F 0

 �W 0
G0

�! Y

is an equivalent diagram, it follows from the definition of the equivalence thatˇ̌
G0
ˇ̌
ı
ˇ̌
F 0
ˇ̌�1
D jGj ı jF j�1

and we see that the s–isomorphism aW X)Y induces a canonical sc0 –homeomorphism

jaj W jX j ! jY j

between the orbit spaces.

Definition 3.2 Let Z be a second countable paracompact topological space. Two
polyfold structures .X; ˛/ and .Y; ˇ/ on Z are called equivalent, .X; ˛/' .Y; ˇ/, if
there exists an s–isomorphism aW X ) Y satisfying ˇ ı jaj D ˛ :

jX j
jaj

� jY j

Z

ˇ
�

˛ �

In more detail, two polyfold structures on Z are equivalent if and only if there exists a
third ep–groupoid W and two equivalences in the diagram

X
F
 �W

G
�! Y

satisfying ˛ ı jF j D ˇ ı jGj :

Definition 3.3 A polyfold is a second countable paracompact topological space Z

equipped with an equivalence class of polyfold structures.

Consider a polyfold Z and a polyfold structure .X; ˛/ on Z . The orbit space jX j
of the ep–groupoid X is equipped with the filtration jX0j D jX j � jX1j � � � � �

jX1j WD
ˇ̌T

i�0 Xi

ˇ̌
where jX1j is dense in every jXi j. This filtration induces, via

the homeomorphism ˛W jX j !Z , the filtration

Z0 DZ �Z1 � � � � �Z1 WD
\
i�0

Zi
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on the polyfold Z in which the space Z1 is dense in every Zi . Any other equivalent
polyfold structure on Z induces the same filtration. Every space Zi carries a polyfold
structure which we denote by Zi .

Next we define an sc–smooth map between two polyfolds Z and Z0 . We assume that
the polyfold structures of Z and Z0 are represented by the pairs .X; ˛/ and .X 0; ˛0/,
respectively, and consider a pair .a; a/ consisting of a continuous map aW Z!Z0 and
a generalized map aW X H)X 0 satisfying

˛0 ı jaj D a ı˛ W

jX j
jaj
�
ˇ̌
X 0
ˇ̌

Z

˛
g

a
� Z0

˛0g

Now we take two other equivalent representatives of the polyfold structures of Z and
Z0 , namely .Y; ˇ/' .X; ˛/ and .Y 0; ˇ0/' .X 0; ˛0/. Hence there exist s–isomorphisms

fW Y H)X and f0W Y 0 H)X 0

satisfying ˛ ı jfj D ˇ and ˛0 ı jf0j D ˇ0 .

If .b; b/ is another pair consisting of a continuous map bW Z!Z0 and a generalized
map bW Y H) Y 0 satisfying ˇ0 ı jbj D b ıˇ , we introduce the following definition.

Definition 3.4 The two pairs .a; a/ and .b; b/ are called equivalent provided aD b

and f0 ı bD a ı f:

This defines indeed an equivalence relation. (The composition ı of two generalized
maps is defined in Section 2.3.) The situation is illustrated by the following diagram.

jX j
jaj //

jfj

��

˛

yyssssss
jX 0j

jf0j

��

˛0

&&LLLLLL

Z

aDb

BBZ
0

jY j
jbj //

ˇeeKKKKKK
jY 0j

ˇ0 88rrrrrr

Finally, we can define the notion of an sc–smooth polyfold map.

Definition 3.5 An sc–smooth map Z!Z0 between two polyfolds is an equivalence
class Œ.a; a/� of pairs consisting of a continuous map aW Z!Z0 between the underlying
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topological spaces and a generalized map

aW X )X 0

where .X; ˛/ and .X 0; ˛0/ are representatives of the polyfold structures of Z and Z0 ,
so that

˛0 ı jaj D a ı˛:

Sometimes we shall call the map aW Z ! Z0 a polyfold map and do not explicitly
mention the “overhead” a if there is no danger of confusion. So we might say aW Z!

Z0 is an sc–smooth map between polyfolds, but the reader must be aware that this is
just an abbreviation for a lot of data.

The standard example of a polyfold is the orbit space jX j of an ep–groupoid X . The
polyfold structure on jX j is given by the pair .X; idjX j/. Given two such polyfolds
jX j and jY j, the space of sc–smooth polyfold maps jX j ! jY j is nothing else but all
equivalence classes Œ.jaj ; a/� of pairs .jaj ; a/ in which a is a generalized map X) Y .
A representative (something one can work with if one has to make constructions) for
such a generalized map is a diagram

X
F
 �A

G
�! Y

in which F is an equivalence and G an sc–smooth functor.

In [21] we have introduced the degeneracy index d W X ! N on an M–polyfold X

as follows. Around a point x 2 X we choose an M–polyfold chart 'W U ! KS

where KS is the splicing core associated with the splicing S D .�;E;V /. Here V

is an open subset of a partial quadrant C contained in the sc–Banach space W . By
definition there exists a linear sc–isomorphism from W to Rn˚Q mapping C onto
Œ0;1/n˚Q. Identifying the partial quadrant C with Œ0;1/n˚Q we shall use the
notation ' D .'1; '2/ 2 Œ0;1/

n˚ .Q˚E/ according to the splitting of the target
space of ' . We associate with the point x 2 U the integer d.x/ defined by

d.x/D ]fcoordinates of '1.x/ which are equal to 0g:

By Theorem 3.11 in [21], the integer d does not depend on the choice of the M–polyfold
chart used. A point x 2X satisfying d.x/D 0 is called an interior point of X . The
set @X of boundary points of X is defined as

@X D fx 2X j d.x/ > 0g:

A point x 2X satisfying d.x/D 1 is called a good boundary point. A point satisfying
d.x/� 2 is called a corner and d.x/ is the order of this corner.
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Definition 3.6 The closure of a connected component of the set X.1/ D fx 2 X j

d.x/D 1g is called a face of the M–polyfold X .

Around every point x0 2 X there exists an open neighborhood U D U.x0/ so that
every x 2 U belongs to precisely d.x/ many faces of U . This is easily verified.
Globally it is always true that x 2X belongs to at most d.x/ many faces and the strict
inequality is possible.

In order to define the degeneracy index on a polyfold we first look at an ep–polyfold
groupoid X . Its degeneracy index d W X ! N is defined on the M–polyfold X of
objects as well as the M–polyfold X of morphisms. As usual we denote by s; t W X!X

the source and target maps of X . We have already seen that the existence of a morphism
gW x! x0 implies that these three items x;x0 and g have the same maximal level.
The degeneracy map is another integer valued map defined on X having this property.

Lemma 3.7 The following statements hold for ep–polyfold groupoids X and Y :

(i) If gW x! x0 is a morphism, then d.x/D d.x0/D d.g/.

(ii) If the functor F W X ! Y is an equivalence, then dX .x/ D dY .F.x// for all
x 2X .

Proof Since s and t are local sc–diffeomorphisms, we conclude from the statement
about the corner recognition, Proposition 3.13 in [21], that d.g/D d.s.g//D d.t.g//.
The same proposition implies also the second assertion because the map F W X ! Y is
a local sc–diffeomorphism.

The lemma allows us to define the degeneracy index of the polyfold Z . Suppose the
pair .X; ˛/ is a polyfold structure on Z . If jxj 2 jX j and x;x0 2 jxj, then there exists
a morphism gW x! x0 and we conclude from Lemma 3.7 that d.x/D d.x0/. Hence
the map jd j W jX j ! N0 given by jd j .jxj/D d.x/ is well-defined. Using this map,
we define the map d W Z!N0 on the polyfold by setting

(7) d.z/D jd j .˛�1.z//; z 2Z:

The definition does not depend on the particular choice of the polyfold structure in the
equivalence class. To prove this claim we consider two equivalent polyfold structures
.X; ˛/ and .Y; ˇ/ on Z . Hence there exists a diagram

X
F
 �W

G
�! Y

connecting ep–groupoids in which the functors F and G are equivalences satisfying
˛ıjF jDˇıjGj W jW j!Z . If ˛�1.z/Djxj and ˇ�1.z/Djyj, then jGjıjF j�1 .jxj/D
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jyj. Hence we find w 2 W such that jF j .jwj/ D jF.w/j D jxj and jGj .jwj/ D
jG.w/j D jyj. Therefore, there exists x0 2 jxj and y0 2 jyj satisfying F.w/D x0 and
G.w/D y0 and with Lemma 3.7 we compute,

jdX j .˛
�1.z//D jdX j .jxj/D dX .x/

D dX .x
0/D dX .F.w//D dW .w/

D dY .G.w//D dY .y
0/D dY .y/

D jdY j .jyj/D dY .ˇ
�1.z//

proving the claim.

Definition 3.8 The function d W Z!N0 defined by (7) is called the degeneracy index
of the polyfold Z .

The corner structure of a polyfold will play an important role in the Symplectic Field
Theory in [16]. Therefore, we shall look at the faces, introduced in [21], in more detail.

Definition 3.9 A connected component C of an ep–groupoid X is a full subcategory
having the following properties:

� If x 2 C and if x0 2X is in the same component of X as x , then x0 2 C .

� If x 2 C and hW x! x0 for some h 2 X, then x0 2 C .

� The orbit space jC j is connected.

Note that a connected component is an ep–groupoid by definition. We denote by X.1/

the set of all good boundary points:

X.1/D fx 2X j d.x/D 1g:

The space X.1/ carries in a natural way the structure of an M–polyfold induced by that
of X . The set of morphisms between points in X.1/ is an M–polyfold denoted by X.1/.
Together with the structure maps induced from X we obtain the ep–polyfold groupoid
X.1/. If C is a connected component of this groupoid X.1/, then the closure xC is
defined as the full subcategory whose set of objects is the set theoretical closure of the
object set C . It is called a face of the ep–groupoid X . In general, a face need not to
have the structure of an ep–groupoid. Given a ep–groupoid we can view a subset C of
the object set as a groupoid by taking the full subcategory of X whose objects are the
points in C . For C as just described we can first take the set theoretic closure xC and
then the associated full subcategory.
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Lemma 3.10 An object x 2X belongs globally to at most d.x/–many faces. Locally
it belongs to precisely d.x/ many faces (this will be made precise during the proof).

Proof Take an object x 2 X and let U.x/ be an open neighborhood of x which is
homeomorphic by means of a chart .U.x/; '; .O;S// to an open set O in a splicing
core defined by

O WD f..v; f /; e/ j .v; f / 2 Œ0;1/n˚W and e 2E;

�v.e/D e; j.v; f /j< 1; jej< 1g:

We may assume that x corresponds to ..0; f0/; e 0/ for some f0 2W and some e0 2E .
Observe that only in the case that x is smooth we may assume that also f 0 D 0 and
e0 D 0. The set X.1/\U.x/ corresponds to the points ..v; f /; e/ in O for which
v D .v1; : : : vn/ has precisely one coordinate vj with 1� j � n vanishing. Define the
subset Oj �O by

Oj D
˚
..v; f /; e/ 2O j vj D 0 and vi ¤ 0 for i 2 f1; : : : ; j � 1; j C 1; : : : ; ng

	
and put Uj D '

�1.Oj /. The closure O�j of Oj in O consists of all ..v; f /; e/ 2 O

having the j –coordinate vanishing. It corresponds under ' to the closure U �j of Uj in
X.1/\U.x/. If a point ..v; f /; e/2O satisfies d..v; f /; e/Dm� n, then there exist
indices j1; : : : jm 2 f1; : : : ; ng so that vji

D 0. Hence the point ..v; f /; e/ belongs to
O�ji

for all i D 1; : : : ;m. The converse is also true. Finally we observe that globally,
two different (local) closed sets U �i and U �j might belong to the same face. This shows
that x belongs to at most d.x/Dm faces.

In our applications the so-called face-structured ep–groupoids show up. We introduce
this notion in the next definition.

Definition 3.11 An ep–groupoid X is called face-structured if every object x 2 X

belongs to exactly d.x/–many faces.

Lemma 3.12 Let X be a face-structured ep–groupoid and C a connected component
of the good boundary points X.1/. Then its closure xC is an ep–groupoid. In other
words, the faces are ep–groupoids.

Proof Let F be a face in X . Take an object x0 2 F and take a chart .U; '; .O;S//
around x0 . We may assume that

'.x0/D ..0; f /; e/ 2 Œ0;1/
n
˚W ˚E:

Since X is face-structured x0 belongs globally to exactly d.x0/ many faces. This
implies that there exists an index j 2 f1; : : : ; ng so that F \ U corresponds to all
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points ..v; f /; e/ 2O with vj D 0. We abbreviate this set by Oj . We can define in an
obvious way a new splicing as follows. We keep E , replace V by an open subset V �

in Œ0;1/n�1˚W and � by the family of projections

�.v1;:::;vj�1;vjC1;:::;vn;f / D �.v1;:::;vj�1;0;vjC1;:::;vn;f /:

Now we can use the chart map ' to define a chart .U \X.1/; '; .Oj ;S�// with the
splicing S�D .�;E;V �/ . All charts obtained in this way are sc–smoothly compatible.

Denote by F the morphism set coming from the full subcategory associated with
the face F . If a morphism has its source in F , then its target is also in F since
its degeneracies are the same. Because s; t W X! X are local sc–diffeomorphisms
the maps s; t W F! F are local homeomorphisms. The local transition maps t ı s�1

and s ı t�1 are restrictions of sc–smooth maps. Hence we can use them to define
a M–polyfold structure on F for which s; t W F! F are local sc–diffeomorphisms.
Finally, the groupoid F is proper. Indeed, if x is an object in F we take an open
neighborhood U �X of x so that

t W s�1. xU /!X

is proper. Taking U 0 WD U \F the result follows because the object set F is closed
in X .

Next we study the geometry of faces in more detail.

Lemma 3.13 Let F W X ! Y be an equivalence between two ep–groupoids. Assume
that D is a connected component of Y .1/. Then there exists a unique connected
component C of X.1/ so that for every y 2D there is a morphism 'W F.x/! y for
some x 2 C . Conversely, if C is a connected component of X.1/, then there exists a
unique connected component D of Y .1/ satisfying F.C /�D .

Proof Let D be a connected component of Y .1/ and y0 2 D . Since F W X ! Y

is an equivalence, the map jF j W jX j ! jY j is an homeomorphism. Hence there
exists a morphism '0W F.x0/! y0 for some x0 2 X . From Lemma 3.7 we deduce
d.x0/D d.y0/D 1 implying that x0 2X.1/. Define the subset C of the object set by

C D fx 2X.1/ j there are an y 2D and a morphism 'W F.x/! y g:

We claim that C is a connected component of X.1/. Take x 2 C and assume that
x0 2 X.1/ belongs to a path component of X.1/. Then there is a continuous path
˛W Œ0; 1�! X.1/ such that ˛.0/ D x and ˛.1/ D x0 . Consider the continuous path
ˇ D F ı ˛ . Then ˇ.0/D F.x/ and ˇ.1/D F.x0/. Since x 2 C , there exists y 2D

and a morphism '0W F.x/! y . By the definition of the connected component D

Geometry & Topology, Volume 13 (2009)



2326 Helmut Hofer, Kris Wysocki and Eduard Zehnder

we have F.x/ 2 D and hence F.x0/ 2 D . This implies that x0 2 C . If x 2 C and
hW x! x0 is a morphism, then F.h/W F.x/! F.x0/. From F.x/ 2D we conclude
F.x0/ 2D , and consequently x0 2 C . Finally, jC j WD jF j�1 .jDj/ is connected since
jF j W jX j ! jY j is a homeomorphism and jDj is connected.

Conversely, assume that C is a connected component of X.1/. Define the subset

D D fy 2 Y .1/ j there are an x 2 C and a morphism 'W F.x/! y g:

Then F.C /�D and we claim that D is a connected component of Y .1/. If y 2D and
y0 belongs to the path component of Y .1/, then there is a continuous path ˇW Œ0; 1�!
Y .1/ such that ˇ.0/D y and ˇ.1/D y0 . By the definition of D , there is x 2 C and
a morphism 'W F.x/! y . Since F is an equivalence, we find a continuous path
˛W Œ0; 1�!X such that jF j ı�X ı˛ D �Y ıˇ . Since C is the connected component,
the point x0 D ˛.1/ belongs to C and since there is a morphism 'W F.x0/! y0 , the
point y0 belongs to D . Next assume y 2D and there is a morphism hW y! y0 . Then
there are x 2C and a morphism 'W F.x/!y . Hence hı'W F.x/!y0 is a morphism
showing that y0 2D . Also, jDj D jF j .jC j/ showing that jDj is connected. We have
proved that the equivalence F W X ! Y induces a bijective map between connected
components of X.1/ and connected components of Y .1/ by

C ! D;

where we associate with a connected component C the connected component D

of Y .1/ satisfying F.C / � D and with a connected component D the connected
component C consisting of those x 2 X.1/ for which there is a morphism between
F.x/ and a point in D .

If F W X ! Y is an equivalence and C a connected component of X.1/, we denote by
F�.C / the component of Y .1/ containing F.C /. If D is a connected component of
Y .1/, we denote by F�.D/ the component of X.1/ mapped into D . We denote by xC
the closure of the connected component C of X.1/ and similarly by xD the closure of
the connected component D in Y .1/.

Lemma 3.14 If C is a connected component of X.1/, then F. xC /� F�.C /. If D is
a connected component of Y .1/, then the set

W D fx 2X.1/ j there are an y 2 xD and a morphism 'W F.x/! y g

is contained in F�.D/. In other words, F� and F� map faces to faces.

Proof Take x 2 xC and a sequence .xn/� C converging to x . Then F.xk/ 2 F�.C /

and F.xk/! F.x/ implying that F.x/ 2 F�.C /. Next take x 2W . Then there is
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y 2 xD and a morphism 'W F.x/! y . Since F is a local sc–diffeomorphism, we find
open neighborhoods U.x/ � X and U.F.x// � Y of the points x and F.x/ such
that F W U.x/! U.F.x// is an sc–diffeomorphism. The morphism 'W F.x/! y

extends to a local sc–diffeomorphism of the form y' D t ı s�1 . Shrinking the set
U.x/ if necessary, we may assume that y'W U.F.x//!U.y/ is an sc–diffeomorphism.
Take any sequence .yn/ � D such that yn ! y . Then .yn/ � U.y/ and we find
a sequence .xn/ 2 U.x/ such that xn ! x and y'.F.xn// D yn . By Lemma 3.7,
d.xn/ D d.yn/ D 1 and since y' defines a morphism between F.xn/ and yn , we
conclude that xn 2 F�.D/. This implies x 2 F�.D/ as claimed.

We summarize the previous discussion in the following proposition.

Proposition 3.15 Assume that F W X ! Y is an equivalence between ep–groupoids.
Then the maps F� and F� map faces to faces and are mutual inverses. In particular, if
one of the ep–groupoids is face-structured so is the other.

Proof It only remains to prove the last statement. We assume that X is face-structured
and prove that Y is also face-structured. Take a point y 2 Y . Then there is x 2 X

and a morphism 'W F.x/ ! y . By Lemma 3.7, d WD d.x/ D d.y/. Since X is
face-structured, the point x belongs to d –many faces. By Lemma 3.14, the map F�
takes these faces onto exactly d –many faces of Y containing the point y . Conversely,
assume that Y is face-structured. Take a point x 2 X and set y D F.x/. Then
d WD d.x/ D d.y/ and since Y is face-structured, the point y belongs to exactly
d faces. Then the map F� takes these faces to d –many faces of X containing the
point x . Hence X is face-structured and the proof of the proposition is complete.

Proposition 3.16 Let X be a face-structured ep–groupoid. Then the intersection of
an arbitrary number of faces carries in a natural way the structure of an ep–groupoid.

Proof The ep–structure on a finite intersection of faces can be defined as we did for a
face in Lemma 3.12.

We next consider two pairs .X; ˛/ and .X 0; ˛0/ of equivalent polyfold structures on
polyfold Z . This means that there exist a third ep–groupoid X 00 and two equivalences
F W X 00! X and F 0W X 00! X 0 satisfying ˛ ı jF j D ˛0 ı jF 0j. If D is a connected
component of X.1/, then by Lemma 3.14, F�.D/ is the associated connected com-
ponent of X 00.1/ and D0 D F 0� ıF�.D/ the connected component of X 0.1/. Hence
there is a one–one correspondence between the faces of X.1/ and X 0.1/. In particular,
if the ep–groupoid X is face-structured, then the same is true for the ep–groupoid X 0 .
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If C is a face of X.1/ and C 0DF 0� ıF�.C / is the corresponding face of X 0.1/, then
jF j�1 .jC j/D jF 0j

�1
.jC 0j/ and

˛0.
ˇ̌
C 0
ˇ̌
/D ˛0 ı

ˇ̌
F 0
ˇ̌
ı jF j�1 .jC j/D ˛ ı jF j ı jF j�1 .jC j/D ˛.jC j/:

This allows to introduce the concepts of a face and of face-structured polyfolds.

Definition 3.17 Let Z be a polyfold and let .X; ˛/ be a polyfold structure on Z .
The polyfold Z is said to be face-structured if the ep–groupoid X is face-structured.
A face D of the polyfold Z is the image D D ˛.jC j/ of the orbit space of a face C

in X .

3.2 Branched suborbifolds

In this section we shall introduce the notion of a branched suborbifold of a polyfold Z

and start with the definition of a branched ep–subgroupoid of an ep–groupoid X . It
generalizes ideas from [2] where quotients of manifolds by global group-actions are
studied.

We shall view the nonnegative rational numbers, denoted by QC DQ\ Œ0;1/, as the
objects in a category having only the identities as morphisms. We would like to mention
that branched ep–subgroupoids will show up as solution sets of polyfold Fredholm
sections.

Definition 3.18 A branched ep–subgroupoid of the ep–groupoid X is a functor

‚W X !QC

having the following properties:

(1) The support of ‚, defined by supp‚ D fx 2 X j ‚.x/ > 0g, is contained in
X1 .

Every point x 2 supp‚ is contained in an open neighborhood U.x/D U �X such
that:

(2) supp‚\U D
[
i2I

Mi ;

where I is a finite index set and where the sets Mi are finite dimensional
submanifolds of X (in the sense of Definition 4.19 in [22], recalled in the
Appendix, Section 5.3) all having the same dimension, and all in good position
to the boundary @X in the sense of Definition 4.14 in [22]. The submanifolds
Mi are called local branches in U .
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(3) There exist positive rational numbers �i , i 2 I , (called weights) such that if
y 2 supp‚\U , then

‚.y/D
X

fi2I jy2Mi g

�i :

(4) The inclusion maps Mi! U are proper.

(5) There is a natural representation of the isotropy group X.x/ acting by sc–
diffeomorphisms on U .

The branches .Mi/i2I together with the weights .�i/i2I constitute a local branching
structure of X in U . The role of local branchings structures and their properties have
been studied in detail in [20] where also the notion of an orientation for a branched
ep–subgroupoid as well as for a branched suborbifold is introduced.

Remark Given a branched ep–subgroupoid ‚ of the ep–groupoid X we obtain the
induced ep–subgroupoids ‚ i W X i ! QC for i � 1. Observe that the supports of
‚D‚0 and ‚i coincide. The reader should notice that all upcoming constructions
carried out for ‚ will lead to the same result if carried out for ‚i .

Definition 3.19 A branched ep–subgroupoid is called n–dimensional if all its local
branches are n-dimensional submanifolds of M . It is called compact if j supp‚j is
compact.

From the assumption that ‚W X !QC is a functor it follows that

‚.x/D‚.y/

if there is a morphism 'W x! y . Therefore, a branched ep–subgroupoid ‚ induces a
canonical map j‚j W jX j !QC defined as

j‚j .jxj/D‚.x/:

Next we recall the definition of an orientation from [20].

Definition 3.20 Let ‚W X !QC be a branched ep–subgroupoid on the ep–groupoid
X and S its support. An orientation for ‚, denoted by o, consists of an orientation for
every local branch of the tangent set TxS at every point x 2 S so that the following
compatibility conditions are satisfied:

� At every point x , there exists a local branching structure .Mi/i2I where the
finite dimensional submanifolds Mi of X can be oriented in such a way that
the orientations of TxMi induced from Mi agree with the given ones for the
local branches of the tangent set TxS .
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� If 'W x! y is a morphism between two points in S‚ , then the tangent map
T 'W TxS ! TyS maps every oriented branch to an oriented branch preserving
the orientation.

Next we consider triples .X; ˛;‚/ in which the pair .X; ˛/ is a polyfold structure on
Z and ‚W X !QC is a branched ep–subgroupoid of the ep–groupoid X . Two such
triples .X; ˛;‚/ and .X 0; ˛0; ‚0/ are called equivalent if there exists a third triple
.X 00; ˛00; ‚00/ and two equivalences

X
F
 �X 00

F 0

�!X 0

satisfying ˛00 D ˛ ı jF j D ˛0 ı jF 0j for the induced maps jF j and jF 0j on the orbit
spaces, and in addition,

‚00 D‚0 ıF 0 D‚ ıF:

We denote by Œ.X; ˛;‚/� the equivalence class of the triple .X; ˛;‚/. Since F;F 0

and ‚;‚0 are functors, we conclude thatˇ̌
‚00
ˇ̌
D j‚j ı jF j D j‚j ı jF j :

This implies that jF j .jsupp‚j/D jF 0j .jsupp‚0j/ and since ˛00 D ˛ ı jF j D ˛0 ı jF 0j,
we conclude that

˛.jsupp‚j/D ˛0.
ˇ̌
supp‚0

ˇ̌
/:

In addition, since j‚j ı ˛�1 D j‚0j ı .˛0/�1; the function # W Z ! QC defined by
#.z/ D j‚j .˛�1.z// does not depend on the choice of the triple .X; ˛;‚/ in its
equivalence class and satisfies

#.˛.jxj/D‚.x/ for all x 2X :

This prompts the following definition.

Definition 3.21 A branched suborbifold of the polyfold Z is an equivalence class
Œ.X; ˛;‚/�.

Associated with Œ.X; ˛;‚/� we have the subset S contained in Z1 defined by

S D ˛.jsupp‚j/

and the function # W Z!QC , called weight function, defined by

#.˛.jxj//D‚.x/:

Observe that S consists of all points z 2Z such that #.z/ > 0. On should also view
.S; #jS/ as a weighted space. Quite often we shall identify # with the equivalence
class # D Œ.X; ˛;‚/�.
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The diagram

X
F
 �X 00

F 0

�!X 0

above defines the s–isomorphism

aD ŒX
F
 �X 00

F 0

�!X 0�W X )X 0:

Then ˛0 ı jaj D ˛ for the induced map jaj D jF 0j ı jF j�1
W jX j ! jX 0j. Consequently,

the identity j‚00j D j‚j ı jF j D j‚j ı jF j, gives following relation between branched
ep–subgroupoid ‚ and ‚0 in equivalent triples .X; ˛;‚/ and .X 0; ˛0; ‚0/.ˇ̌

‚0
ˇ̌
ı jaj D j‚j :

The branched suborbifold S of the polyfold Z is called n–dimensional, resp. compact,
resp. oriented, if the representative .X; ˛;‚/ of the ep–groupoid is n–dimensional,
resp. compact, resp. oriented. In the latter case the equivalences F and F 0 involved
are required to preserve the orientations.

3.3 Branched integration

There is a canonical measure on an oriented branched suborbifold of a polyfold and an
associated integration theory which we would like to describe briefly in this section
referring to [20] for details and proofs.

The measure will be induced from the overhead .X; ˛;‚/ where ‚W X !QC is a
branched ep–subgroupoid of the ep–groupoid X of dimension n. We assume that the
orbit space of ‚, namely S D jsupp‚j, is compact. We abbreviate the orbit space of
the boundary by

@S D jsupp‚\ @X j D fjxj 2 S j x 2 supp‚\ @X g:

The orbit space @S , in general, is not necessarily the boundary of S in the sense of
topology. Locally the sets S and @S can be represented as quotients of finite unions
of smooth submanifolds by a sc–smooth group action on the ambient space. This
structure suffices to generalize the familiar notion of the Lebesgue � –algebra of subsets
of smooth manifolds as follows.

Theorem 3.22 (Canonical � –algebra) The compact topological spaces S and @S
possess canonical � –algebras L.S/ and L.@S/ of subsets containing the Borel � –
algebras of S and @S , respectively.
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The sets belonging to L.S/ and L.@S/ are called measurable. The precise definition
of the � –algebras is given in [20]. The canonical � –algebras for the branched ep–
subgroupoid ‚ and the induced ep–subgroupoids ‚i are identical.

If X is an ep–groupoid, then the tangent space TX is again an ep–groupoid. Recall that
TX is defined by equivalence classes ŒU; '; .O;S/;x; h�, where x 2X 1 , 'W U!O is
a chart where O is open in the splicing core KS and h2TxO . The map TX !X 1 is
given by ŒU; '; .O;S/;x; h� 7!x . If  W x!y is a morphism between points x;y2X1 ,
then  belongs to X1 and extends to an sc–diffeomorphism t ı s�1W O.x/!O.y/.
We define T W TxX ! TyX to be the linearization of t ı s�1 at x . Hence TX is
an ep–groupoid whose structure maps are the tangents of the structure maps of X .
If F W .X; ˛/! .X 0; ˛0/ is an equivalence of polyfold structures, then TF W TX !

TX 0 is an equivalence. It also defines an equivalence between the Whitney sumsL
k TX !

L
k TX 0 covering the equivalence F W X ! X 0 . In the following we

denote by
L

k TX !X 1 the Whitney sum of k –many copies of TX .

At this point we would like to make some comments about our notation. For us the
tangent bundle of X is TX !X 1 , that is, it is only defined for the base points in X 1 .
An sc–vector field on X is an sc–smooth section of the tangent bundle TX !X 1 and
hence it is defined on X 1 . Similarly, an sc–differential form on X which we will define
next, is only defined over the base points in X 1 . The definition of a vector field and
the following definition of an sc–differential form are justified since the construction
of TX , though only defined over X 1 , requires the knowledge of X .

Definition 3.23 An sc–differential k –form on the ep–groupoid X is an sc–smooth
map !W

L
k TX!R which is linear in each argument separately and skew symmetric.

In addition, we require that
.T '/�!y D !x

for all morphisms 'W x! y in X1:

If ! is an sc–differential form on X , we may also view it as an sc–differential form on
X i . We denote by ��.X i/ the graded commutative algebra of sc–differential forms
on X i . Then we have the inclusion map

��.X i/!��.X iC1/:

which is injective since XiC1 is dense in Xi and the forms are sc–smooth. Hence we
have a directed system whose direct limit is denoted by ��1.X /. An element ! of
degree k in ��1.X / is a skew-symmetric map

L
k.TX /1!R such that it has an

sc–smooth extension to an sc–smooth k-form
L

k TX i ! R for some i . We shall
refer to an element of �k

1.X / as an sc–smooth differential form on X1 . We note,
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however, that it is part of the structure that the k –form is defined and sc–smooth on
some X i .

Next we associate with an sc–differential k –form ! its exterior differential d! which
is a .k C 1/–form on the ep–groupoid X 1 . The compatibility with morphisms will
be essentially an automatic consequence of the definition. Hence it suffices for the
moment to consider the case that X is an M–polyfold. Let A0; : : : ;Ak be kC1 many
sc–smooth vector fields on X . We define d! on X 1 , using the familiar formula, by

d!.A0; : : : ;Ak/D

kX
iD0

.�1/iD.!.A0; : : : ; yAi ; : : : ;Ak// �Ai

C

X
i<j

.�1/.iCj/!.ŒAi ;Aj �;A0; : : : ; yAi ; : : : ; yAj ; : : : ;Ak/:

The right-hand side of the formula above only makes sense at the base points x 2 X2 .
This explains why d! is a .k C 1/–form on X 1 . By the previous discussion the
differential d defines a map

d W �k.X i/!�kC1.X iC1/

and consequently induces a map

d W ��1.X /!��C1
1 .X /

having the usual property d2 D 0. Then .��1.X /; d/ is a graded differential algebra
which we shall call the de Rham complex.

If 'W M ! X is an sc–smooth map from a finite-dimensional manifold M into an
M–polyfold X , then it induces an algebra homomorphism

'�W ��1.X /!��1.M /

d.'�!/D '�d!:satisfying

To formulate the next theorem we recall the natural representation 'W G.x/!Diffsc.U /

of the isotropy group G.x/DG . This group can contain a subgroup acting trivially
on U . Such a subgroup is a normal subgroup of G called the ineffective part of G

and denoted by G0 . The effective part of G is the quotient group

Ge WDG=G0:

We denote the order of Ge by ]Ge .
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Theorem 3.24 (Canonical measures) Let X be an ep–groupoid and assume that
‚W X ! QC is an oriented branched ep–subgroupoid of dimension n whose orbit
space S D jsupp‚j is compact and equipped with the weight function # W S !QC

defined by
#.jxj/ WD‚.x/; jxj 2 S:

Then there exists a map

ˆ.S;#/W �
n
1.X /!M.S;L.S//; ! 7! �.S;�/!

which associates to every sc–differential n–form ! on X1 a signed finite measure

�.S;#/! � �!

on the canonical measure space .S;L.S//. This map is uniquely characterized by the
following properties:

(1) The map ˆ.S;�/ is linear.

(2) If ˛ D f � where f 2�0
1.X / and � 2�n

1.X /, then

�˛.K/D

Z
K

fd��

for every set K � S in the � –algebra L.S/.

(3) Given a point x 2 supp‚ and an oriented branching structure .Mi/i2I with
the associated weights .�i/i2I on the open neighborhood U of x according to
Definition 3.18, then for every set K 2 L.S/ contained in a compact subset of
jsupp‚\U j, the �! –measure of K is given by the formula

�!.K/D
1

]Ge

X
i2I

�i

Z
Ki

!jMi

where Ki is the preimage of K under the projection map Mi! jsupp‚\U j

defined by x! jxj.

In the theorem above we denoted by
R

Ki
!jMi the signed measure of the set Ki with

respect to the Lebesgue signed measure associated with the smooth n–form !jM i on
the finite dimensional manifold Mi . It is given byZ

Ki

!jMi D lim
k

Z
Uk

j �!

where j W Mi ! X is the inclusion map and .Uk/ is a decreasing sequence of open
neighborhoods of Ki in Mi satisfying

T
k Uk DKi .
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The analogous result holds true for the orbit space @S D fjxj 2 S j x 2 supp‚\ @X g
of the boundary.

Theorem 3.25 (Canonical boundary measures) Under the same assumptions as in
Theorem 3.24 there exists a map

ˆ.@S;#/W �
n�1
1 .X /!M.@S;L.@S//; � 7! �.@S;#/

�

which assigns to every sc–differential .n� 1/–form � on X1 a signed finite measure

�.@S;#/
� � ��

on the canonical measure space .@S;L.@S//. This map is uniquely characterized by
the following properties:

(1) The map ˆ.@S;#/ is linear.

(2) If ˛ D f � where f 2�0
1.X / and � 2�n�1

1 .X /, then every K 2 L.@S/ has
the �˛–measure

�˛.K/D

Z
K

fd�� :

(3) Given a point x 2 supp‚\ @X and an oriented branching structure .Mi/i2I

with weights .�i/i2I on the open neighborhood U �X of x , then the measure
of K 2 L.@S/ contained in a compact subset of jsupp‚\U \ @X j is given by
the formula

�� .K/D
1

]Ge

X
i2I

�i

Z
Ki

� j@Mi

where Ki � @Mi is the preimage of K under the projection map @Mi !

jsupp‚\U \ @X j defined by x 7! jxj.

Finally, the following version of Stokes’ theorem holds.

Theorem 3.26 (Stokes’ theorem) Let X be an ep–groupoid and let ‚W X ! QC

be an oriented n–dimensional branched ep–subgroupoid of X whose orbit space
S D jsupp‚j is compact. Then, for every sc–differential .n� 1/–form ! on X1 ,

�
.S;#/

d!
.S/D �.@S;#/

! .@S/:

Our construction is compatible with equivalences between ep–groupoids as the follow-
ing theorem shows.
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Theorem 3.27 (Equivalences) Assume that F W X ! Y is an equivalence between
the ep–groupoids X and Y . Assume that ‚W Y !QC is an oriented n–dimensional
branched ep–subgroupoid of Y whose orbit space S D jsupp‚j is compact and
equipped with the weight function # W S!QC defined by #.jyj/D‚.y/ for jyj 2 S .
Define the n–dimensional branched ep–subgroupoid on X by ‚0 WD‚ ıF W X !QC

and denote by S 0 and # 0 the associated orbit space and the weight function on S 0 .
Moreover, assume that ‚0 is equipped with the induced orientation. Then, for every
sc–differential n–form ! on Y1 ,

�.S;#/! ı jF j D �
.S 0;# 0/
!0

where the n–form !0 on X1 is the pull back form !0 D F�! . Similarly,

�.@S;#/
� ı jF j D �

.@S 0;# 0/
� 0

for every .n� 1/–form � on Y1 .

Theorem 3.27 allows to rephrase the previous theorems in the polyfold set-up.

An sc–differential form on the topological space Z or Zi is defined via the overhead of
the postulated polyfold structures. We define an sc–differential form � on the polyfold
Z as an equivalence class of triples .X; ˇ; !/ in which the pair .X; ˇ/ is a polyfold
structure on Z and ! an sc–differential form on X1 . Two such triples .X; ˇ; !/
and .X 0; ˇ0; !0/ are called equivalent, if there is a third ep–groupoid X 00 and two
equivalences

X
F
 �X 00

F 0

�!X 0

satisfying ˇ ı jF j D ˇ0 ı jF 0j and, in addition,

F�! D .F 0/�!0

for the pull back forms on X 00 . We shall abbreviate an equivalence class by � D Œ!�
where .X; ˇ; !/ is a representative of the class and call � an sc–differential form
on the polyfold Z . Again we have a directed system obtained from the inclusions
ZiC1!Zi which allows us to define, analogously to the ep–groupoid-case, the notion
of a differential form on Z1 . We shall still use the symbol Œ!� for such forms. It is
important to keep in mind that a representative ! of Œ!� is an sc–differential form on
X1 where .X; ˇ/ is a polyfold structure on Z .

The exterior derivative of an sc–differential form Œ!� is defined by

d Œ!�D Œd!�:

Let S be a branched suborbifold S of a polyfold Z equipped with a weight function
wW S!QC\ .0;1/ together with an equivalence class of triples .X; ˇ;‚/ in which
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the pair .X; ˇ/ is a polyfold structure on Z and ‚W X !QC is an ep–subgroupoid of
X satisfying S Dˇ.jsupp‚j/ and w.ˇ.jxj//D‚.x/ for x 2 supp‚. The “boundary”
set @S of a branched suborbifold S is defined by setting @S D ˇ.jsupp‚\ @X j/ for a
representative .X; ˇ;‚/ of the equivalence class. From the previous results it follows
that for a compact and oriented branched suborbifold S �Z of a polyfold Z there is
a canonical � –algebra .S;L.S// of measurable subsets and a well-defined integration
theory for which Stokes’ theorem holds.

Theorem 3.28 Let Z be a polyfold and S � Z be an oriented compact branched
suborbifold defined by the equivalence class Œ.X; ˇ;‚/� and equipped with the weight
function wW S!QC\.0;1/. For an sc–differential n–form � on Z1 and K2L.S/,
we define Z

.K ;w/

� WD

Z
ˇ�1.K /

d�.ˇ
�1.S/;#/

! D �.ˇ
�1.S/;#/

! .ˇ�1.K//;

where the equivalence class � is represented by the triple .X; ˇ; !/ and where the
weight function # on ˇ�1.S/ D jsupp‚j is defined by #.jxj/ D ‚.x/: Then the
integral

R
.K ;w/ � is independent of the representative .X; ˇ; !/ in the equivalence

class. Moreover, if � is an sc–differential .n� 1/–form on Z1 , thenZ
.@S;w/

� D

Z
.S;w/

d�:

For all the details and the proofs of the results of Section 3.3 we refer to [20].

3.4 Strong polyfold bundles

In the following we assume that pW W !Z is a continuous and surjective map between
two paracompact second countable spaces.

Definition 3.29 A strong (polyfold) bundle structure for p consists of a triple .E; �;  /
in which P W E!X is a strong bundle over the ep–groupoid X , � is a homeomorphism
between the orbit space jEj and W , and  is a homeomorphism from the orbit space
jX j to Z . Further, we require that

p ı� D  ı jP j :

jEj
jP j
� jX j

W

�

g
p
� Z



g
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The two triples .E; �;  / and .E0; � 0;  0/ are called equivalent if there exists an s–
bundle isomorphism AW E ) E0 with the underlying s–isomorphism aW X ) X 0

satisfying on the orbit spaces

� D � 0 ı jAj and  D  0 ı jaj :

We note that the second relation is a consequence of the first relation.

jEj
A
�
ˇ̌
E0
ˇ̌

W

� 0
�

� �

We are in the position to define the notion of a strong polyfold bundle.

Definition 3.30 A strong polyfold bundle pW W !Z consists of a surjective contin-
uous map between two second countable paracompact topological spaces together with
an equivalence class of strong bundle structures .E; �;  / for p .

Next we introduce the notion of an sc–smooth section of the strong polyfold bundle
pW W !Z . In order to do so, we take a model .E; �;  / where P W E!X is a strong
bundle over the ep–groupoid X and consider a pair .f;F / in which f is a continuous
section of the bundle p and F 2�.P / an sc–smooth section of the bundle P satisfying

f ı  D � ı jF j;

in diagrams:
jX j


� Z

jEj

jF j

g
�
� W

f

g

Let .E0; � 0;  0/ be an equivalent strong bundle structure for p where P 0W E0!X 0 is
a strong bundle over the ep–groupoid X 0 . We consider the pair .f 0;F 0/ of sections
of the bundle p and F 0 2 �.P 0/ satisfying f 0 ı  0 D � 0 ı jF 0j and call the two pairs
.f;F / and .f 0;F 0/ equivalent if f 0 D f and if there exists an s–bundle isomorphism
AW E)E0 whose pushforward satisfies

A�.F /D F 0:

Definition 3.31 With the above notation an equivalence class f D Œf;F � of sections
is called an sc–smooth section of the polyfold bundle pW W !Z and the pair .f;F /
is called a representative of the map f for the model P W E!X . The scC–sections
and the Fredholm sections are defined similarly.
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In view of Proposition 2.25, these concepts are well-defined. We will denote the space
of sc–smooth sections of the bundle pW W !Z by �.p/ and the corresponding space
of scC–sections by �C.p/.

The auxiliary norm for a strong polyfold bundle is defined as follows.

Definition 3.32 An auxiliary norm for the strong polyfold bundle pW W !Z consists
of a map N W W0;1 ! Œ0;1/ having the following property. If the strong bundle
P W E!X over the ep–groupoid X is a model representing the strong bundle structure
for p , then

N �W E0;1! Œ0;1/; e 7!N.�.jej//

is an auxiliary norm for the bundle P W E!X . The subset W0;1 �W is defined by
W0;1 D �.jE0;1j/:

Let us observe that in general N is fiberwise not a norm since the fibers do not
have a linear structure. Nevertheless, a local representative N � is an auxiliary norm
having the additional property that the existence of a morphism 'W h! h0 implies
N �.h/ D N �.h0/. Alternatively, given an auxiliary norm N � for the local model
E!X satisfying N �.h/DN �.k/ if there exists a morphism h! k , we can define
N.w/ for w 2W0;1 by N.w/DN �.h/ if �.jhj/Dw . This defines an auxiliary norm
for the strong polyfold bundle p .

Next we introduce the notion of mixed convergence in W .

Definition 3.33 A sequence .wk/ in W0;1 is called mixed convergent to w if there
exists a local model .E; �;  / so that the sequence .jhk j/ WD .�

�1.wk// � jEj has
suitable representatives, say hk of jhk j and h of jhj so that hk is m-convergent to h

on E0;1 . Let us note that the particular choice of local coordinates in the definition is
irrelevant.

For the definition of the m-convergence we refer to [22].

3.5 ScC–multisections

In this section we define scC–multisections. Again we view the nonnegative rational
numbers QC D Q \ Œ0;1/ as a category with the identities as morphisms. The
following definition brings a definition in Cieliebak, Mundet i Riera and Salamon [2]
into the groupoid framework.
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Definition 3.34 Let P W E! X be a strong bundle over the ep–groupoid X . Then
an scC–multisection of P is a functor

ƒW E!QC

such that the following local representation (called local section structure) holds true.
Every object x 2X possesses an open neighborhood Ux on which the isotropy group
Gx acts by its natural representation 'g 2 Diffsc.Ux/ and finitely many scC–sections
s1; : : : ; sk W Ux!E (called local sections) with associated positive rational numbers
�1; �2; : : : ; �k (called weights) satisfying the following properties:

kX
jD1

�j D 1;

ƒ.e/D
X

fj2I j sj .P.e//Deg

�j :

for all e 2EjU for which there exists a section sj satisfying sj .P .e//D e . If there is
no such section, then ƒ.e/D 0.

The functoriality of ƒ implies ƒ.e0/ D ƒ.e/ if there is a morphism e0 ! e in E.
Explicitly,

ƒ.�.'; e//Dƒ.e/

for all .'; e/ 2Xs�pE: Hence ƒ induces the map jƒj W jEj!QC on the orbit space.
We shall denote the collection of all scC–multisections of the strong bundle P W E!X

by �Cm .P /. For every x 2X , the set

supp.x/ WD fe 2E j P .e/D x; ƒ.e/ > 0g

is finite, and
P

e2supp.x/ƒ.e/D 1. Moreover, if x 2 U , then

supp.x/D fs1.x/; : : : ; sk.x/g;

where s1; : : : ; sk W U !E are the local scC–sections.

Definition 3.35 The scC–multisection ƒ is called trivial on the set V � X if ƒ is
identically equal to 1 on the zero section over V , ie, ƒ.0x/D 1 for all x 2 V (and
hence ƒ.ex/D 0 for all ex ¤ 0x ).

The support of the scC–multisection ƒ is the smallest closed set in X outside of which
ƒ is trivial.
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U

s1

s2

s3

s4

e1

e2

e3

e4

x

e0
1

e0
2

yz

0z

Figure 2: Here k D 4 . If P .ej / D x for j D 1; 2; 3; 4 , then ƒ.ej / D �j

while if P .e0j /D y for j D 1; 2 , then ƒ.e0
1
/D �1C�3 and ƒ.e0

2
/D �2C�4 .

Moreover, ƒ.0z/ D
P4

jD1 �j D 1 where 0z 2 E is the zero vector in the
fiber over z .

If ƒ and ƒ0 are two multisections in �Cm .P / we define their sum as the multisection

.ƒ˚ƒ0/.e/D
X

e0Ce00De

ƒ.e0/ �ƒ0.e00/:

Explicitly, if the local section structure of ƒ is represented by the scC–sections
s1; : : : ; sk W U ! E having the associated weights �1; : : : �k and the local section
structure of ƒ0 by the scC–sections s0

1
; : : : ; s0

l
W U ! E with the associated weights

� 0
1
; : : : � 0

l
, then at the vector ex 2E satisfying P .ex/D x ,

.ƒ˚ƒ0/.ex/D
X

si .x/Cs0
j
.x/Dex

�i � �
0
j :

Hence si C s0j W U !E are the scC–sections and �i � �
0
j the associated weights of the

multisection ƒ˚ƒ0 2 �Cm .P / where 1� i � k and 1� j � l .

The sum of two scC–multisections is by definition their associated convolution product.
We prefer to call it sum rather than convolution product since in the single-valued case
it precisely corresponds to the sum.

If ƒ0; ƒ1 2 �
C
m .P / and ˛ 2 .0; 1/\QC , we can define the scC–multisection ƒ˛ 2

�Cm .P / by
ƒ˛.e/D ˛ƒ1.e/C .1�˛/ƒ0.e/:

It is locally represented by all the local sections of ƒ0 and ƒ1 , together with all the
associated weights multiplied by ˛ , respectively by .1�˛/.

We shall make use of an auxiliary norm N � for a strong bundle P W E!X over the
ep–groupoid X .
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The first step in the construction of an scC–multisection is the following lemma.

Lemma 3.36 Consider the strong bundle P W E!X over the ep–groupoid X equipped
with a compatible auxiliary norm N � and modeled on separable sc–Hilbert spaces.
Then, given a smooth point x0 2 X , a smooth h0 2Ex0

, and an open neighborhood
U �X of x0 , there exists an scC–section s of the strong bundle E!X (of objects,
ignoring the morphisms) satisfying

s.x0/D h0

and having its support in U . If N �.h/ < ", we can choose the section s in such a way
that

N �.s.y// < " for all y 2X .

Proof The result is local. We take a strong M–polyfold bundle chart ˆW p�1.U /!

KR covering the sc–diffeomorphism 'W U ! O as defined in [21, Definition 4.8].
The set O is an open subset of the splicing core KS D f.v; e/ 2 V ˚E0 j �v.e/D eg

associated with the splicing SD .�;E0;V / and KRDf..v; e/;u/2O˚F j�.v;e/.u/D

ug is the splicing core associated with the strong bundle splicing RD .�;F; .O;S//.
In these coordinates the smooth point x0 corresponds to the smooth point '.x0/D

W .v0; e0/ 2 O . Moreover, ˆ.x0; h0/ D ..v0; e0/; h
0
0
/ 2 KR where h0

0
is a smooth

point in F , ie, h0
0
2 F1 . For points .v; e/ 2O close to .v0; e0/ we define the local

section sW KR!O by

s.v; e/D ..v; e/; �.v;e/.h
0
0// 2KR:

At the point .v0; e0/ we have �.v0;e0/.h
0
0
/ D h0

0
and s.v0; e0/ D ..v0; e0/; h

0
0
/ as

desired. In view of the definition of a strong bundle splicing, �.v;e/.u/ 2 FmC1 if
.v; e/ 2 Om ˚ Fm and u 2 FmC1 ; see [21, Definition 4.2]. Moreover, the triple
R1D .�;F1; .O;S// is also a general sc–splicing which together with the fact that h0

0

is a smooth point in F implies that the section s of the bundle KR1

!O is sc–smooth.
Consequently, s is an scC–section of the local strong M–polyfold bundle KR!O .
We transport this section by means of the map ˆ to obtain a local scC–section s of
the given strong bundle P W E! X ; it satisfies s.x0/D h0 . Using Lemma 5.6 in the
Appendix (whose proof makes use of the sc–Hilbert structure), we find an sc–smooth
bump-function ˇ which is equal to 1 near x0 so that the section ˇ � s has the desired
properties.

In general, the section constructed in the proof of Lemma 3.36 will not be compatible
with morphisms. Below we shall describe a general recipe for the construction of scC–
multisections which are compatible with the morphisms. We fix a smooth point x 2X
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and an open neighborhood U �X of x which has the distinguished properties listed in
the structure Theorem 5.4. In particular, we have the natural representation 'W Gx!

Diffsc.U / of the isotropy group Gx at x and an sc–smooth map �W Gx � U ! X
having the following properties:

� �.g;x/D g .

� s.�.g;y//D y and t.�.g;y//D 'g.y/.

� If hW y! z is a morphism between y; z 2U , then there exists a unique g 2Gx

with �.g;y/D h.

� Assume that y0 2X is an object for which there exists no morphism y0! x0

for an x0 in xU . Then there exists an open neighborhood V of y0 so that for
every z 2 V there is no morphism to an element in xU .

� Assume that y0 2X is an object for which there exists no morphism y0! x0

for every x0 2 U , but there exists a morphism to some element in xU . Then,
given an open neighborhood W of @U (the set theoretic boundary of U ), there
exists an open neighborhood V of y0 so that if there is a morphism y! x0 for
some y 2 V and x0 2 U , then x0 2W .

With the smooth point x 2 U � X already chosen above we now choose a smooth
vector e0 2E satisfying P .e0/D x and take, using Lemma 3.36, an scC–section h

of the strong bundle E!X (of objects) satisfying h.x/D e0 and having its support
in an open neighborhood V of x which is invariant under the sc–diffeomorphism
'g 2 Diffsc.U / for all g 2Gx and whose closure satisfies xV � U .

Recall the definition of the strong bundle map �W Xs�pE!E from Section 2.4. It
acts as follows. If 'W x! y is a morphism in X, then

�.'; � /W Ex!Ey

is a linear isomorphism. For every g 2Gx , we define the scC–section hg of EjU by

hg.'g.y// WD �.�.g;y/; h.y//; y 2 U;

and introduce the map

ƒU W EjU !QC

ƒU .e/D
1

]Gx
� ]fg 2Gx j hg.P .e//D eg:by

Lemma 3.37 The map ƒU defined on EjU satisfies ƒU .e/DƒU .e
0/ if there exists

a morphism e! e0 in E.
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UV xy
0

E

hg4

Figure 3: The associated weights are 1=]Gx

Proof Assume that e and e0 2 EjU are related by a morphism in E. Hence, if
P .e/D y and P .e0/D y0 where y and y0 2U so that we can use the notation eD ey

and e0 D ey0 , then there is a morphism  in X satisfying

 W y! y0 and �. ; ey/D ey0 :

By Theorem 2.3 there exists a uniquely determined g0 2Gx satisfying �.g0;y/D  

and 'g0
.y/D y0 . If g 2 Gx we compute, using the properties of the strong bundle

map �W E!E ,

hg.'g0
.y//D �.�.g; 'g�1.y0//; h.'g�1.y0///

D �.�.g; 'g�1g0
.y//; h.'g�1g0

.y///

D �.�.g0g�1
0 g; 'g�1g0

.y//; h.'g�1g0
.y///

D �. ı�.g�1
0 g; 'g�1g0

.y//; h.'g�1g0
.y///

D �. ;�.�.g�1
0 g; 'g�1g0

.y//; h.'g�1g0
.y///

D �.�.g0;y/; hg�1
0

g.y//:

Since �. ; � /W Ey!Ey0 is an isomorphism, it follows that hg�1
0

g.y/D ey for some
g 2Gx if and only if hg.'g0

.y//D ey0 . This implies

ƒU .e/DƒU .e
0/:

The proof of Lemma 3.37 is complete.

Lemma 3.37 shows that the map ƒU W EjU !QC possesses on U the local section
structure defined by the scC–sections hgW U !EjU for all g 2Gx .
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Next we extend the local scC–multisection ƒU from EjU to all of E . In order to
first extend ƒU from EjU to Ej xU we recall that the invariant set V � U contains
the supports of all sections hg for g 2 Gx and satisfies xV � U . Consequently, the
scC–multisection ƒU is trivial over the set U nV and, in view of the properties listed
in the structure theorem, Theorem 5.4, we can define the multisection ƒ on the fiber
Ey over the boundary point y 2 xU nU by ƒ.e/D 0 if e ¤ 0y and by ƒ.0y/D 1 for
the zero 0y in Ey . If y 62 xU and if there is no morphism y! x0 to some x0 2 xU we
define ƒ to be trivial over y . On the other hand, if there exists a morphism e! e0

with P .e0/ 2 xU , we define ƒ.e/Dƒ.e0/.

So far we have defined a map ƒW E!QC and it follows from the construction of ƒ
and from Lemma 3.37 that ƒ.e/Dƒ.e0/ if there is a morphism e0! e in E, so that
ƒ induces a functor ƒW E!QC .

Proposition 3.38 Let P W E! X be a strong bundle over the ep–groupoid X . We
assume that the sc–smooth structures are based on separable Hilbert spaces. Then the
functor ƒW E!QC constructed above is an scC–multisection.

Proof Let U � X be the distinguished open set considered above and let y 2 U .
Then there are by construction finitely many local scC–sections, namely hg for g 2Gx

with associated weights 1=]Gx , so that ƒ has the desired local structure. If y 62 U

and if there is no morphism y! x0 to some point x0 2 xU , then ƒ is trivial over y .
By the structure theorem, Theorem 5.4, there is an open neighborhood V of y which
does not admit morphisms into xU . Consequently, the multisection ƒ is trivial over
the open set V . Finally, if y 62 U and if there exists a morphism y! x0 2 xU , then
t ı s�1 defines a local diffeomorphism U.y/! U.x0/ between open neighborhoods
so that ƒjU.y/ inherits the local section structure from ƒjU.x0/. This completes the
proof of Proposition 3.38.

We summarize the previous discussion in the following theorem.

Theorem 3.39 Let P W E!X be a strong bundle over an ep–groupoid X and let N �

be an auxiliary norm for P . Assume the sc–smooth structures are based on separable
Hilbert spaces. Assume that e is a smooth point in E and U is a saturated open
neighborhood in X of the point x D P .e/. Then there exists an scC–multisection
ƒW E!QC having its support in U (ie, ƒ is trivial on X nU ) and satisfying ƒ.e/>0.
In addition, if N �.e/ < ", then N �.h/ < " for all h satisfying ƒ.h/ > 0.

If ƒW E!QC is an scC–multisection for the strong bundle E!X and ˆW E0!E a
strong bundle equivalence covering the equivalence 'W X 0!X between the underlying
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ep–groupoids, then the pullback ˆ�ƒW E0!QC is again an scC–multisection. If ‚
is an scC–multisection for E0!X 0 we can also define the pushforward ˆ�.‚/ which
is an scC–multisection for the strong bundle E!X . As in the discussion of sections
and generalized isomorphisms we have the following result.

Proposition 3.40 Let P W E ! X and P 0W E0 ! X 0 be strong bundles over ep–
groupoids and let AW P!P 0 be an s–bundle isomorphism. Then A induces a bijection

A�W �
C
m .P /! �Cm .P

0/

between the corresponding spaces of scC–multisections. The inverse is the pullback A� .

The previous construction of the scC–multisection ƒ allows also a parametrized version
as explained in the following remark, which will be useful in the perturbation theory
later on.

Remark (Parametrized scC–multisections) Take a point x 2X and choose an open
neighborhood U of x in the object set of the ep–groupoid X . We take the set U

so small that the isotropy group Gx acts on U by its natural representation. By
means of Lemma 3.36, we choose a finite number of scC–sections h1; : : : ; hk of the
strong polyfold bundle P W E!X (of objects ignoring the morphisms) having their
supports in U and taking at some smooth point x0 2 U the prescribed smooth values
ej WD hj .x0/. Assuming that N �.ej / < "=k , we may achieve, again by Lemma 3.36,
that

N �.hj .y// <
"

k
for all 1� j � k and all y 2 U .

By jt j1 we denote the `1–norm of t D .t1; : : : ; tk/2Rk . For every t 2Rk satisfying
jt j1 < 1, we define the scC–section ht as the linear combination

ht .y/D

kX
jD1

tj � h
j .y/:

The support of the section ht is contained in U and N �.ht .y// < " for all y 2X and
all jt j1 < 1. Using the group action by the isotropy group Gx , we define for every
g 2Gx the scC–sections ht;g of EjU by

ht;g.'g.y//D �
�
�.g;y/; ht .y/

�
D

kX
jD1

tj ��
�
�.g;y/; hj .y/

�
:
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Now proceeding as in Lemma 3.36 and Proposition 3.38, we obtain for every jt j1 < 1

an scC–multisection ƒt W E!QC .

In order to construct transversal perturbations of Fredholm sections later on we will
make use of the free choice of the smooth images ej at the smooth point x0 to fill up
the cokernel of the linearized Fredholm section at x0 .

Multisections for polyfolds will also be defined by means of the overheads as follows.
If pW W !Z is a strong polyfold bundle, we choose a strong polyfold bundle structure
.E; �;  / for p in which P W E!X is a strong bundle over the ep–groupoid X and
�W jEj !W the homeomorphism covering the homeomorphism  W jX j !Z .

Consider a pair .�;ƒ/ in which ƒW E ! QC is an scC–multisection on P and
�W W !QC is the function satisfying

�.w/Dƒ.e/ if w D �.jej/:

If .E0; � 0;  0/ is a second such model for our strong polyfold bundle p and if .�0; ƒ0/
is the corresponding pair, we call the two pairs equivalent if

�D �0

and, moreover, if there exists an s–bundle isomorphism AW E ) E0 so that for a
representative

E
ˆ
 �E00

‰
�!E0

(in which ˆ and ‰ are strong bundle equivalences), the scC–multisections ƒW E!QC

and ƒ0W E0!QC are related by

ˆ�ƒD‰�ƒ0:

Definition 3.41 An scC–multisection for the strong polyfold bundle pW W !Z is an
equivalence class Œ�;ƒ� of pairs.

4 Global Fredholm theory

In this section we transplant the basic ideas from the Fredholm theory in [22] to the
polyfold set-up.
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4.1 Fredholm sections

We begin with the notion of a Fredholm section of a strong polyfold bundle.

Definition 4.1 The section f of the strong polyfold bundle pW W !Z is called a
Fredholm section provided there exists a representative F of f which is a Fredholm
section of the strong bundle P W E! X over the ep–groupoid X . The latter means
that F W X !E is an sc–smooth functor and a Fredholm section of the strong bundle
E!X , where X is the M–polyfold of objects, as defined in [22, Definition 3.6].

The Fredholm section f is called proper provided the solution set

S D S.f /D fz 2Z j f .z/D 0g

is compact in Z .

Let us observe the following fact, already established in the M–polyfold case.

Proposition 4.2 If f is a proper Fredholm section of the strong polyfold bundle
pW W !Z , then the solution set S D f �1.0/ is compact in Z1 .

Proof Let .E; �;  / be a strong bundle structure for p in which P W E!X is a strong
bundle over the ep–groupoid X , � is a homeomorphism between the orbit space jEj
and W , and  W jX j!Z is a homeomorphism. Assume that the section F of the bundle
P W E!X is a representative of the section f . Then F is a proper Fredholm section
of the bundle P and, in addition, the section F is a functor. Since F is regularizing the
solution set F�1.0/ consists of smooth points and therefore f �1.0/D  .jF�1.0/j/

consists of smooth points in Z . Take a sequence .zk/�f
�1.0/. Since, by assumption,

the solution set S is compact in ZDZ0 , we may assume possibly taking a subsequence
that zk! z in ZDZ0 . Choose a point x 2X such that �.x/D jxj D �1.z/ where
� W X ! jX j is the quotient map. Take an open neighborhood U of x in X which is
invariant under the isotropy group Gx . Then the set �.U / is an open neighborhood
of jxj D  .z/ and �1.zk/ 2 �.U / for k large. Since the set ��1.�.U // consists of
points which can be connected by morphisms with points in U , we find points xk 2U

such that �.xk/ D jxk j D 
�1.zk/. Consequently, the sequence .xk/ converges to

x in X0 . Since F.xk/D 0 and xk ! x , it follows from the local normal form of a
Fredholm section, arguing as in the proof of Theorem 5.11 in [22], that xk ! x in
X1 . Therefore, zk ! z in Z1 as claimed.
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4.2 Properness

We shall introduce a useful notion for the constructions later on. Assume that pW W !

Z is a strong polyfold bundle and let f W Z ! W be a Fredholm section of p .
We assume further that N W W0;1 ! Œ0;1/ is an auxiliary norm and U is an open
neighborhood of f �1.0/.

Definition 4.3 We say that the pair .U;N / controls compactness if every sequence
.zk/� xU satisfying

lim inf
k!1

N.f .zk//� 1

possesses a converging subsequence.

Lemma 4.4 Let P W E!X be a local model for the strong polyfold bundle p and let
F W X !E be a Fredholm section representing f . Assume that N �W E0;1! Œ0;1/

is the auxiliary norm for P representing N . If the pair .U;N / controls compactness,
then the pair .U �;N �/ where U � D ��1.U / has the following property. If .xk/ is
any sequence in U � satisfying

lim inf
k!1

N �.F.xk//� 1;

then there exist a sequence .yk/ of points in U � and a sequence .'k/ of morphisms
'k W xk ! yk so that .yk/ has a converging subsequence.

Proof Without lost of generality we may assume that Z D jX j and W D jEj. Take a
sequence .xk/�U � satisfying lim infk!1N �.F.xk//� 1. Consider the equivalence
classes zkDjxk j. Because xk 2U � , the points zk belong to xU . By definition, f .zk/D

jF.xk/j and it follows that N.f .zk//DN �.F.xk// so that lim infk!1N.f .zk//�1.
Since, by assumption, the pair .U;N / controls compactness, it follows that there is
a subsequence, again denoted by .zk/, converging to some point z 2 xU . Choose a
point x such that z D jxj. There exists a neighborhood basis .Vj /j2N of x such that
VjC1 � Vj for all j 2N . Then the sets �.Vj / form a decreasing sequence of open
neighborhoods of z in jX j. Since zk ! z , we find for every j 2 N an index kj

such that zkj
2 �.Vj / and kjC1 > kj . Hence xkj

2 ��1.�.Vj // and since the set
��1.�.Vj // consists of points which are related by morphisms to the points in Vj , we
find for every index kj a point ykj

2 Vj and a morphism 'kj
W xkj

! ykj
. We note

that ykj
! x as j !1. For k ¤ kj , we choose yk D xk and take as morphism 'k

the identity morphism 1xk
. Then .ykj

/ is the desired subsequence of the sequence
.yk/ converging to x . The proof of the lemma is complete.
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As a consequence of the local properness of a Fredholm section [22, Theorem 5.9], we
obtain the following result.

Theorem 4.5 Let pW W !Z be the strong polyfold bundle with reflexive fibers and
let N be an auxiliary norm for p . Assume that f is a proper Fredholm section of the
bundle p . Then there exists an open neighborhood U of the set S D f �1.0/ so that
the pair .U;N / controls compactness.

Proof We choose a local model P W E!X for the strong polyfold bundle p and a
proper Fredholm section F of the bundle P representing the section f . Without loss of
generality we may assume that Z D jX j and W D jEj. The map N �W E0;1! Œ0;1/

defined by N �.e/ D N.jej/ is an auxiliary norm for the strong polyfold bundle P .
The solution set S D f �1.0/ �Z is, by assumption, compact. Take a point x 2 X

for which jxj 2 S . Then F.x/D 0 and, by the regularizing property of the Fredholm
section F , the solution x is a smooth point in X . In view the local compactness for
Fredholm sections of fillable strong M–polyfold bundles, there exists [22, Theorem
5.9] an open neighborhood U.x/�X so that every sequence .xk/ in U.x/ satisfying

lim inf
k!1

N �.F.xk//� 1

possesses a convergent subsequence. Shrinking U.x/ is necessary, we may assume that
U.x/ is invariant under the action of the isotropy group Gx . Then the set jU.x/j is
open in Z . By the compactness of S in Z we find finitely many points x0; : : : ;xK 2

X so that U WD jU.x0/j [ � � � [ jU.xK /j is an open neighborhood of S . The set
U � D ��1.U /, where � W X ! jX j DZ is the quotient map onto the orbit space, is
an open neighborhood of F�1.0/. Let .zk/ be a sequence of points in xU satisfying

lim
k!1

N.f .zk//� 1:

Then we find a sequence .yk/ 2 U.x0/[ � � � [U.xK / satisfying jyk j D zk . Conse-
quently,

lim
k!1

N �.F.yk//� 1:

By construction, the sequence .yk/ has a convergent subsequence. Therefore, the
sequence zk D jyk j in the orbit space jX j DZ has a convergent subsequence and the
proof of the theorem is complete.

4.3 Transversality and solution set

We consider a strong polyfold bundle pW W ! Z and let f and � be a proper
Fredholm section and an scC–multisection of the bundle p , respectively. We denote by
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P W E!X the local model of the bundle p and by F the Fredholm section representing
f and by ƒW E!QC the corresponding scC–multisection representing �. First we
define the solution set.

Definition 4.6 The solution set S WD S.f; �/ of the pair .f; �/ is the set

S.f; �/D fz 2Z j �.f .z// > 0g:

At this point S as a subset of Z is just a second countable paracompact topological
space (as a closed subset of Z ). We shall see, however, that in case a certain transver-
sality condition is met, S carries an additional structure so that not only one can talk
about orientability of S but also about the integration of sc–differential forms over S .
Of course, in developing this additional structure, the overhead given by the various
representatives .F; ƒ/ describing .f; �/ will be important. Taking the representative
.F; ƒ/ of .f; �/, we consider the solution set

S D S.F; ƒ/D fx 2X jƒ.F.x// > 0g:

Recall that if x belongs to the solution set, then there exist, in view of the definition
of an scC–multisection, an open neighborhood U �X of x and finitely many local
scC–sections si W U !E , for i 2 I , having the associated positive rational weights �i ,
i 2 I , so that X

i2I

�i D 1 and ƒ.F.x//D
X

fj2I jF.x/Dsj .x/g

�j

and there is at least one index j 2 I such that

F.x/D sj .x/:

If ƒ.F.x//D 0, then there is no index j 2 I for which F.x/D sj .x/:

The natural map
S! S; x 7!  .jxj/

induces a homeomorphism jSj ! S . The solution set S comes with the natural map
�f W S !QC\ .0;1/, defined by

�f .z/D �.f .z//;

and called the weight function on S .

We want to study the pairs .S.f; �/; �f / provided some transversality conditions are
met so that the pair .S.f; �/; �f / has the structure of a smooth branched suborbifold
with boundary with corners. These transversality conditions are defined in terms of a
representative .F; ƒ/ as follows.
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Definition 4.7 Let pW W !Z be a strong polyfold bundle and let .f; �/ be a pair
in which f is a Fredholm section of p and �W W !QC an scC–multisection on p .
Assume that the strong bundle P W E!X over the ep–groupoid X is a model represent-
ing p and the Fredholm section F W X !E of the bundle P and the scC–multisection
ƒW E!QC of P are representatives of f and �.

(1) The pair .f; �/ is called a transversal pair if for every z 2 S.f; �/ the fol-
lowing holds. If x 2 X represents z and .ai/ is a local section structure for
ƒ near x , then for every i for which F.x/ � ai.x/ D 0, the linearization
.F � ai/

0.x/W TxX !Ex is surjective.

(2) The pair .f; �/ is in good position if for every z 2 S.f; �/ the following holds.
If x 2X represents z and .ai/ is a local section structure for ƒ near x , then for
every i for which F.x/�ai.x/D 0, the linearization .F �ai/

0.x/ is surjective
and its kernel is in good position to the corner structure of X in the sense of
Definition 4.14 in [22].

(3) The pair .f; �/ is in general position to the boundary @Z if for every z 2S.f; �/

the following holds. If x represents z and .ai/ is a local section structure for ƒ
near x , then for every i for which F.x/�ai.x/D0 the linearization .F�ai/

0.x/

is surjective and the kernel of .F �ai/
0.x/ is transversal to T @

x X in TxX . Here
T @

x X is the intersection of all tangent spaces at x to the local faces containing
x and we refer to [22] for more details.

Proposition 4.8 If one of the above properties holds true for one local section structure,
then it holds true for all the other local sections structures.

To prove the proposition we first introduce the concept of a linearization of a Fredholm
section with respect to a multisection. This concept allows a new elegant formulation
of Definition 4.7. We consider the Fredholm section F W X !E of the strong bundle
pW E! X and let ƒW E!QC be an scC–multisection. We fix a point x belonging
to the solution set S.F; ƒ/D fx 2X jƒ.F.x// > 0g and define the linearization of
F at the solution x with respect to ƒ as follows.

In view of the definition of the scC–multisection ƒ, there exist an open neighborhood
Ux of x and a finite collection of local sections .ai/i2I with associated weights
.�i/i2I such that

ƒ.e/D
X

fi2I jai .Pe/Deg

�i :

By I 0 we denote the set of indices i 2 I for which F.x/�ai.x/D 0. If i; j 2 I 0 , we
call the two linearizations .F � ai/

0.x/ and .F � aj /
0.x/W TxX !Ex equivalent if

.F � ai/
0.x/ � ıx D .F � aj /

0.x/ � ıx for all ıx 2 TxX :
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Denoting by Œ.F � ai/
0.x/� the equivalence class of the operator .F � ai/

0.x/, we
define the linearization F 0

ƒ
.x/ of F at x with respect to the multisection ƒ to be the

finite collection of all equivalence classes

Œ.F � ai1
/0.x/�; Œ.F � ai2

/0.x/�; : : : ; Œ.F � ain
/0.x/�:

The notion of the linearization F 0
ƒ
.x/ is independent of the choice of the local section

structure of the multisection ƒ as the following proposition, which has Proposition 4.8
as an immediate consequence, shows.

Proposition 4.9 Assume that .ai/i2I and .bj /j2J are two local section structures for
the multisection ƒ in Ux and let

Œ.F � ai1
/0.x/�; Œ.F � ai2

/0.x/�; : : : ; Œ.F � ain
/0.x/�

Œ.F � bj1
/0.x/�; Œ.F � bj2

/0.x/�; : : : ; Œ.F � bjm
/0.x/�and

be the equivalence classes defined above. Then nDm and for every i 2 fi1; : : : ; ing,
there exists exactly one j 2 fj1; : : : ; jmg such that

Œ.F � ai/
0.x/�D Œ.F � bj /

0.x/�:

To prove the proposition we will need the following lemma.

Lemma 4.10 Let .ai/i2I and .bj /j2J be two local section structures for the multi-
section ƒ in the open neighborhood Ux �X around the solution x 2 S.F; ƒ/. Then
given i 2 I for which F.x/� ai.x/D 0 and given ıx 2 TxX , there exists an index
j 2 J such that F.x/� bj .x/D 0 and

ŒF.x/� ai.x/�
0
� ıx D ŒF.x/� bj .x/�

0
� ıx:

Proof Since the smooth tangent vectors are dense on every level, we first consider
the case of smooth tangent vectors and deal with the arbitrary tangent vectors later
on. We fix an index i 2 I for which F.x/� ai.x/D 0. We work in local coordinates
around the solution x . Hence we assume that U D Ux is a Gx –invariant open set of
the splicing core KS D f.v; e/ 2 V ˚G j �.v; e/ D eg associated with the splicing
SD .�;V;G/ in which V is an open subset of the partial quadrant C of the sc–Banach
space W D Rn˚Q for some n, and G is an sc–Banach space. We introduce the
notation x D .v0; e0/ and define for y D .v; e/ 2 Ux � V ˚G the map AW Ux!E

by
A.y/D F.y/� ai.y/:

If ıx D .ıv; ıe/ 2W ˚G is a smooth tangent vector in TxU , then

.Dv�/.x/ � ıvC�v0
.ıe/D ıe:
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Therefore, for small t ,

�v0Ctıv.e0C tıe/

D �v0
.e0/C t �D�.v0; e0/Œıv; ıe�C o.t/

D e0C t � Œ.Dv�/.v0; e0/ � ıvC�v0
.ıe�C o.t/

D e0C tıeC o.t/;

where o.t/=t ! 0 as t ! 0 on every level of the sc–Banach space G . Consequently,
applying the linear projection �v0Cıv to both sides,

�v0Ctıv.e0C tıeC o.t//D .�v0Ctıv/
2.e0C tıe/

D �v0Ctıv.e0C tıe/

D e0C tıeC o.t/:

This implies that the curve t 7! .v0 C tıv; e0 C tıe C o.t// through x D .v0; e0/

belongs to Ux �KS for small values of t . Let .tn/ be any sequence converging to 0.
We define the sequence of points xn 2 Ux by

xn D .v0C tnıv; e0C tnıeC o.tn//:

Then xn ! x D .v0; e0/ as n!1. Since the local system sections .ai/i2I and
.bj /j2J define the multisection ƒ, it follows that

ƒ.ai.xn//D
X

fj2J jbj .xn/Dai .xn/g

�j > 0

for every n. Therefore, there exists a sequence .jn/ 2 J of indices such that

bjn
.xn/D ai.xn/:

Because J is a finite set, there must exist an index j 2 I and a subsequence of .xn/

(denoted again by .xn/) such that for all n

bj .xn/D ai.xn/:

As n!1, it follows that
bj .x/D ai.x/:

Introducing the map BW Ux!E by

B.y/D F.y/� bj .y/

we have proved
A.x/D B.x/D 0 and A.xn/D B.xn/

for all n.
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Hence, in view of A.xn/ D A.x/CDA.x/ � .xn � x/C o.xn � x/ and B.xn/ D

B.x/CDB.x/ � .xn�x/C o.xn�x/, we conclude that

ŒDA.x/�DB.x/� � .xn�x/D o.xn�x/

on every level. Dividing by tn and taking the limit as n!1 we find for the tangent
vector ıx ,

DA.x/ � ıx DDB.x/ � ıx:

If ıx 2 TxX is an arbitrary tangent vector, we take a sequence .ıxn/ of smooth
tangent vectors converging to ıx . By the first part of the proof, there exists a sequence
.jn/� J such that

DŒF � ai �.x/ � ıx
n
DDŒF � bjn

�.x/ � ıxn:

Because J is a finite set, there exist an index j and a subsequence, again denoted by
.ıxn/, such that

DŒF � ai �.x/ � ıx
n
DDŒF � bj �.x/ � ıx

n

for all n. Taking the limit as n!1, we conclude

DA.x/ � ıx DDB.x/ � ıx:

This completes the proof of Lemma 4.10.

Proof of Proposition 4.9 We abbreviate by I 0 the set of indices i 2 I for which
F.x/�ai.x/D 0 and by J 0 the set of indices j 2 J for which F.x/�bj .x/D 0. To
prove the proposition it suffices to show that for given i 2I 0 there exists j 2J 0 such that
.F�ai/

0.x/�ıxD .F�bj /
0.x/�ıx for all ıx2TxX . If this is not the case, then for every

j 2J 0 , there exists a vector ıxj 2TxX such that .F�ai/
0.x/�ıxj ¤ .F�bj /

0.x/�ıxj

for all j 2 J 0 . From

(8) a0i.x/� b0j .x/D .F � bj /
0.x/� .F � ai/

0.x/;

if follows that the kernels ker .a0i.x/� b0j .x// are closed proper subspaces of TxX .
Consequently, applying the Baire category theorem, we conclude

TxX n
[

j2J 0

ker
�
a0i.x/� b0j .x/

�
¤∅:

Hence, in view of (8),

(9) .F � ai/
0.x/ � ıx ¤ .F � bj /

0.x/ � ıx

for every ıx 2 TxX n
S

j2J 0 ker
�
a0i.x/� b0j .x/

�
and every j 2 J 0 . But by Lemma

4.10, given ıx 2 TxX n
S

j2J 0 ker .F � bj /
0.x/, we find some j 2 J 0 such that
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.F �ai/
0.x/ �ıxD .F �bj /

0.x/ �ıx , contradicting (9). Consequently, for given i 2 I 0 ,
there exists an index j 2J 0 such that Œ.F�ai/

0.x/�D Œ.F�bj /
0.x/�. By the same token,

for given j 2 J 0 , there exists an index i 2 I such that Œ.F � bj /
0.x/�D Œ.F �ai/

0.x/�.
It follows that the number of equivalence classes is the same, that is, nDm. The proof
of Proposition 4.9 is complete.

Definition 4.11 The linearization F 0
ƒ
.x/ at the solution x with respect to the multisec-

tion ƒ is called surjective, in good position, or in general position, if the representatives
of each of the equivalence classes

Œ.F � ai1
/0.x/�; Œ.F � ai2

/0.x/�; : : : ; Œ.F � ain
/0.x/�:

are surjective, in good position, or in general position.

In view of Proposition 4.9, we can reformulate Definition 4.7 independently of the
choice of the local section structure of the scC–multisection � as follows.

Definition 4.12 Let pW W ! Z be a strong polyfold bundle and let .f; �/ be a
pair in which f is a Fredholm section of p and �W W !QC an scC–multisection
on p . Assume that the strong bundle P W E! X over the ep–groupoid X is a model
representing the bundle p and let the Fredholm section F W X !E of the bundle P

and the scC–multisection ƒW E!QC of P be representatives of f and �.
(1) The pair .f; �/ is called a transversal pair if for every x satisfying ƒ.F.x//>0,

the linearization F 0
ƒ
.x/ is surjective.

(2) The pair .f; �/ is in good position if for every x satisfying ƒ.F.x// > 0, the
linearization F 0

ƒ
.x/ is surjective and in good position to the corner structure

of X .
(3) The pair .f; �/ is in general position to the boundary @Z if for every x satisfying

ƒ.F.x// > 0, the linearization F 0
ƒ
.x/ is surjective and in general position to

the boundary @X .

We note that the actual choice of the representing pair .F; ƒ/ in the previous definition
is irrelevant. As a consequence of Lemma 5.19 in [22], the condition that the pair
.f; �/ is in general position to the boundary implies that the pair .f; �/ is in good
position. The condition of being in good position is very important and we refer to
[22] for a comprehensive discussion.

Theorem 4.13 Let f be a proper Fredholm section of the strong polyfold bundle
pW W !Z without boundary. Assume that the pair .f; �/ is transversal and that the
solution set S D S.f; �/D fz 2Z j �.f .z// > 0g is compact. Then the pair .S; �f /
carries in a natural way the structure of a compact branched suborbifold of Z without
boundary. If f is oriented, then the branched suborbifold S is oriented.
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The theorem is proved along the lines of the next theorem using [22, Theorem 5.14].

In the case with boundary we have the following result.

Theorem 4.14 Let f be a proper Fredholm section of the strong polyfold bundle
pW W ! Z with boundary with corners. Assume that the pair .f; �/ is in general
position and the solution set S DS.f; �/Dfz 2Z j �.f .z//> 0g is compact. Then the
pair .S; �f / carries in a natural way the structure of a compact branched suborbifold of
Z with boundary with corners. If f is oriented, then the branched suborbifold .S; �f /
is oriented.

Proof Let .E; �;  / be a strong bundle structure for p in which P W E ! X is
a strong bundle over the ep–groupoid X and �W jEj ! W is the homeomorphism
covering the homeomorphism  W jX j !Z . We choose a Fredholm section F of the
bundle P representing the section f and an scC–multisection ƒW E ! QC of the
bundle P representing the scC–multisection � of the strong polyfold bundle p . The
scC–multisections � and ƒ are related as follows:

�.w/Dƒ.e/ if w D �.jej/:

We define the functor ‚W X !QC by

‚.x/Dƒ.F.x// for x 2X

and recall that �f .z/D �.f .z// for z 2Z . We claim that ‚W X !QC is a branched
ep–subgroupoid of the ep–groupoid X with boundary with corners.

To see this we take x 2 X such that ƒ.F.x// > 0. In view of the definition of an
scC–multisection, there exist an open neighborhood U of x in X , finitely many local
scC–sections si for i 2 I , and positive rational weights .�i/i2I so that

kX
jD1

�j D 1 and ƒ.F.x//D
X

fj jF.x/Dsj .x/g

�j :

The sum over the empty set is equal to 0. Since ƒ.F.x// > 0 there exists at least
one index i 2 I such that F.x/D si.x/. In view of the regularizing property of F

and the fact that si is an scC–section, it follows that the point x is smooth. Hence
the support of ‚, defined by supp‚ D fx 2 X j ‚.x/ > 0g, is contained in X1 .
By our assumption, for every i 2 I for which the point x solves F.x/D si.x/, the
linearization .F � si/

0.x/ is in general position to the boundary @X . Consequently, in
view of Theorem 5.18 in [22], the solution set

Mi WD fy 2 U j .F � si/.y/D 0g
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is a smooth manifold with boundary with corners. If F.x/� si.x/¤ 0, then we set
Mi D∅. Hence

supp‚\U D
[
i2I

Mi :

In addition,

‚.y/Dƒ.F.y//D
X

fi2I j F.y/Dsi .y/g

�i D

X
fi2I j y2Mi g

�i

for every y 2 U . Since U can also be taken so that the isotropy group Gx acts on U

by sc–diffeomorphisms of U , we have proved our claim, that ‚Dƒ ıF W X !QC

is a branched ep–subgroupoid of the ep–groupoid X .

Let z 2 S , ie, �.f .z// > 0. Since, by the definition of the overhead, f .z/ D
� ı jF j ı �1.z/D � ı jF j .jxj/D �.jF.x/j/, it follows that �.f .z//Dƒ.F.x//D
‚.x/, where z D  .x/. Hence, x 2X1 . We conclude that S D  .jsupp‚j/ and that
if z D  .jxj/, then �f .z/Dƒ.F.x//D‚.x/.

For orientation questions we make use of the results in [17]. The relevant facts are
briefly summarized in the Appendix, Section 5.4. Recall that an orientation for f
is given by an orientation of the determinant bundle DET.F /!X1 defined by the
projection map DET.F;x/ 7! x introduced in the Appendix, Section 5.4. In contrast
to the usual definition of a determinant bundle det.F /! X the fiber over a smooth
point x consists of a convex family of linear sc–Fredholm operators which differ
by scC–operators and are obtained as linearizations (These are not unique except at
solutions!). Since locally the multisection is represented by scC–sections we conclude
from [17] that the local solution sets have natural orientations compatible with the
morphisms. This completes the proof of Theorem 4.14.

Next we shall prove parts of Theorem 1.4. We consider a strong polyfold bundle
pW W !Z and two pairs .f0; �0/ and .f1; �1/ in general position where fj W Z!W

are proper oriented Fredholm sections and where �j W W !QC are scC–multisections
of p . Abbreviating by � W Œ0; 1��Z ! Z the projection onto the second factor we
denote by ��.p/ the strong polyfold pullback bundle over Œ0; 1��Z . Let t 7! �t be
an sc–smooth homotopy of scC–multisections of the bundle p connecting the scC–
multisection �0 with �1 . This means that y�.t; z/D�t .z/ for .t; z/2 Œ0; 1��W defines
an scC–multisection on Œ0; 1��W . If t 7! ft is an sc–smooth oriented homotopy of
Fredholm sections connecting f0 with f1 , then we consider the pair . yf ; y�/ consisting
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of the Fredholm section yf and the scC–multisection y� of ��.p/ defined by

yf .t; z/D ft .z/ for .t; z/ 2 Œ0; 1��Z

y�.t; z/D �t .z/ for .t; z/ 2 Œ0; 1��W :

Now we assume that the pair . yf ; y�/ is in general position and that the solution set
S D f.t; z/ 2 Œ0; 1� � Z j y�.t; yf .t; z// > 0g is compact. Then by Theorem 4.14
the solution set carries the structure of an oriented compact branched suborbifold of
Œ0; 1��Z whose boundary is in good position to @.Œ0; 1��Z/. Introducing the weight
function w.t; z/D y�.t; yf .t; z// on S , the pair .S; w/ contains two obvious boundary
pieces, namely .S1; w1/ associated with the pair .f1; �1/ and �.S0; w0/ associated
with .f0; �0/. Here we have to take the minus sign if we equip .S0; w0/ with the
orientation coming from .f0; �0/ by using the obvious orientation convention for the
family ft as explained in [17]. These two pieces can be identified as part of the
solution space contained in the two faces of Œ0; 1��Z defined by fig�Z for i D 0; 1.
There is another boundary piece @S which lies in faces of the form Œ0; 1�� .face in Z /

intersecting S0 and S1 only in points of degeneracy at least 2 (with respect to the
degeneracy index of the polyfold Œ0; 1��Z ) and which is denoted by .y@S; w/. The
boundary .@S; w/ has a natural orientation, it is a branched suborbifold only after
having removed the points of degeneracy at least 2 which is a closed set of measure 0.

If the pair .!; #/ represents a cohomology class in H�dR.Z; @Z/ and j W @Z!Z is
the inclusion map, then

d! D 0 and j �! D d�:

Lemma 4.15 For a pair .f; �/ in general position in which f is an proper oriented
Fredholm section, the integration map

Œ!; #�!

Z
.S;w/

! �

Z
.@S;w/

#

defines a linear map on the deRham cohomology group H�dR.Z; @Z/ which is an
invariant under nice homotopies.

Proof We compute, assuming that ! is of degree n and S0 and S1 are of dimension n,�Z
.S1;w1/

! �

Z
.@S1;w1/

�

�
�

�Z
.S0;w0/

! �

Z
.@S0;w0/

�

�
D

Z
.S1;w1/

! �

Z
.S0;w0/

!C

Z
.y@S;w/

! �

Z
.@S1;w1/

# C

Z
.@S0;w0/

# �

Z
.y@S;w/

!
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D

Z
.@S;w/

! �

Z
.@S1;w1/

# C

Z
.@S0;w0/

# �

Z
.y@S;w/

!

D

Z
.S;w/

d! �

Z
.S1;w1/

d# C

Z
.S0;w0/

d# �

Z
.y@S;w/

!

D�

Z
.S1;w1/

d# C

Z
.S0;w0/

d# �

Z
.y@S;w/

d#

D�

Z
.@S;w/

d# D 0:

The last integral vanishes since integration of a global sc–form over the boundary
.@S; w/ is like integration over a closed manifold, so that in particular the integral of
an exact form vanishes.

The perturbation theory below guarantees such nice homotopies referred to in the
lemma, and will then complete the proof of Theorem 1.4.

4.4 Perturbation results

In this section we shall adapt the techniques introduced for M–polyfolds in [22] to
the functorial setting and show how given sections can be made transversal by small
perturbations.

We first recall the kind of problems studied in [22]. In there we consider a proper
Fredholm section of the strong M–polyfold bundle P W E!X and want to bring the
compact set of solutions of F.x/D 0 into a general position by a small perturbation
section s , ie, we study the solution set of F.x/�s.x/D 0. To do so one first constructs
finitely many scC–sections sj , j D 1; : : : ; k , so that they fill up the cokernel of the
linearizations F 0.x/ at all solutions x of F.x/D 0 and then considers the parametrized
proper Fredholm section F.t;x/D F.x/C

Pk
jD1 tj sj .x/ for .t;x/ 2 Rk �X with

small parameters t D .t1; : : : ; tk/. It has the property that its linearizations F 0.0;x/ at
t D 0 and the solutions x 2X of F.x/D 0 are surjective. Assuming that @X D∅ one
concludes that the set M D f.t;y/ 2Rk �X j F.t;x/D 0 and jt j sufficiently smallg
of the parametrized Fredholm section is a smooth manifold. Then the regular values of
the projection M !Rk given by .t;y/ 7! t give the parameter value t�D .t�

1
; : : : ; t�

k
/

near t D 0 for which the perturbation s D
Pk

jD1 t�j sj has the desired properties in
order to conclude that the solution set fx 2X jF.t�;x/D 0g of the perturbed problem
is a compact smooth manifold.

In the case of @X ¤∅, one has to add enough scC–sections so that also the kernels
of the linearizations F 0.x/ at the solutions x of F.x/D 0 are in good position to the
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boundary @X . Then the corresponding solution set M of the parametrized Fredholm
section for small parameter values is a smooth manifold with boundaries with corners.
Again one looks at the projection map M ! Rk defined by .t;y/ 7! t . This map
can be restricted to the local faces (which are smooth manifolds with boundaries with
corners) and one finds small regular values t� for a finite number of problems. For
these parameter values the solution set fx 2X jF.t�;x/D 0g of the perturbed problem
is in general position to the boundary @X and is, therefore, a compact manifold with
boundaries with corners.

In the multivalued case we shall have to consider locally a finite number of problems
of the kind just described and, using a compactness and a covering argument, in
total a finite number of such problems. This way we shall obtain finitely many finite
dimensional submanifolds (perhaps with boundary with corners) and look again at the
projection map .t;y/ 7! t . A common regular value t� which exists by Sard’s theorem
gives rise to an scC–multisection ƒt� , so that the pair .F; ƒt�/ is in general position
and gives rise to the branched ep–subgroupoid ƒt� ıF W X !QC of the ep–groupoid
X .

Now we assume that � is an scC–multisection on the strong bundle pW W !Z and
let N W W0;1! Œ0;1/ be an auxiliary norm for p . We choose an scC–multisection
ƒW E!QC on the strong bundle P W E! X representing � and let N �W E0;1!

Œ0;1/ be an auxiliary norm for P representing N . Then we define the auxiliary norm
N.�/ of the multisection � as follows.

We start by defining the auxiliary norm N �.ƒ/ of the scC–multisection ƒ. For every
x 2X , there exists an open neighborhood Ux of x on which there is a local section
structure .si/i2I consisting of scC–sections and the associated set of positive rational
numbers .�i/i2I so that ƒ.e/D

P
fi j si .Pe/Deg �i and we define

N �.ƒ/.y/Dmax
i2I

N �.si.y//; y 2 Ux :

This definition is independent of the choice of the local section structure. Indeed, if
.tj /j2J is another local sections structure on Ux defining the multisection ƒ and
y 2 Ux , then for every i 2 I there exists an index j 2 J such that si.y/ D tj .y/.
Conversely, for every j 2 J there is an index i 2 I such that tj .y/D si.y/. Hence
maxi2I N �.si.y//Dmaxj2J N �.ti.y// as claimed. Since the morphisms extend to
local sc–diffeomorphisms, it follows that N �.ƒ/ is invariant under morphisms, that
is, N �.ƒ/.x/DN �.ƒ/.x0/ if there exists a morphism 'W x! x0 . Consequently, we
define the auxiliary norm of the scC–multisection � by

N.�/.z/DN �.ƒ/.x/ for z D jxj:
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Lemma 4.16 Assume that f W Z ! W is a proper Fredholm section of the strong
polyfold bundle pW W ! Z and that the pair .U;N / controls compactness. Then
given an scC–multisection � satisfying N.�/� 1, the solution set

S.f; �/D fz 2Z j �.f .z// > 0g

is compact.

Proof It suffices to prove the result in local models. Hence we assume that P W E!X

is a local model for p and that F W X !E is a proper Fredholm section representing
f and we assume that ƒW E ! QC is an scC–multisection representing �. Then
N �.ƒ/DN.�/� 1. Set U � D ��1.U /. The result will follow by showing that the
solution set

S.F; ƒ/D fx 2X jƒ.F.x// > 0g

is compact. To see this we take a sequence .xn/ � S.F; ƒ/. Then ƒ.F.xn// > 0.
Hence given the point xn , there exists a neighborhood Uxn

and a local section structure
.si/i2I together with associated weights .�i/i2I so that ƒ.F.xn//D

P
�i where the

sum is taken over the indices i for which F.xn/ D si.xn/. From ƒ.F.xn// > 0

one concludes F.xn/ D si.xn/ for some i , and from N �.ƒ/ � 1 one concludes
N �.F.xn// � 1 for all n. By assumption, the pair .U;N / controls compactness
so that by Lemma 4.4 there is a sequence of points .yn/ 2 U � and a sequence of
morphisms 'nW xn ! yn such that .yn/ contains a converging subsequence. We
assume without loss of generality that yn ! y . In an open neighborhood Uy of
y there is a local section structure .tj /j2J with associated weights .�j /j2J so that
ƒ.F.z//D

P
fj jtj .z/DF.z/g �j for z 2 Uy . For large n, xn 2 Uy and since the index

set J is finite, F.xn/D tj0
.xn/ for some fixed index j0 2 J and some subsequence,

denoted again by .xn/. Hence F.y/D tj0
.y/ showing that ƒ.F.y// > 0. Moreover,

y 2 U � since the support of ƒ is contained in U � . This completes the proof.

We are ready to prove the perturbation result in the case of no boundary, @Z D∅. In
order to have sc–smooth functions and sc–smooth sections with supports in preassigned
open sets available (see the Appendix, Section 5.2), we shall assume in the following
that the sc–structures of the ep–groupoids X used as models of the polyfold Z are
based on sc–separable Hilbert spaces. However, we would like to point out that what
is really required is that the ep–groupoids are modeled on sc–scales .Ej /j�0 in which
only the space E0 is required to be a separable Hilbert space.

Theorem 4.17 Let f be a proper (oriented) Fredholm section of the strong polyfold
bundle pW W ! Z having empty boundary and assume that the polyfold structure
Z is based on separable Hilbert spaces. Fix an auxiliary norm N for p and an open
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neighborhood U of the solution set S.f /Dfz 2Z j f .z/D 0g so that the pair .U;N /

controls compactness. Assume that " 2 .0; 1
2
/. Then for every scC–multisection �

supported in U and satisfying N.�/< 1
2

, there exists an scC–multisection � W W !QC

supported in U and satisfying N.�/ < ", so that the pair .f; �˚ �/ is a transversal
pair. In particular, the associated solution set

S.f; �˚ �/D fz 2Z j .�˚ �/.f .z// > 0g

is an (oriented) compact branched suborbifold of Z without boundary.

Proof Take an scC–multisection �W W ! QC satisfying N.�/ < 1
2

. In view of
Lemma 4.16, the solution set

S.f; �/D fz 2Z j �.f .z// > 0g

is compact subset of the polyfold Z .

We choose a strong polyfold bundle P W E!X over the ep–groupoid X as a model for
pW W !Z and let the proper Fredholm section F W X !E of the bundle P represent
the proper Fredholm section f of p . We may assume without loss of generality that

Z D jX j and W D jEj :

Assume that the scC–multisection ƒW E!QC of P represents the scC–multisection
� of p . If � W X ! jX j denotes the quotient map onto the orbit space, the set
U � D ��1.U / is an open neighborhood of the compact solution set

S.F; ƒ/D fx 2X jƒ.F.x// > 0g;

and since N.�/DN �.ƒ/, we have N �.ƒ/ < 1
2
:

We fix a solution x 2 S.F; ƒ/ and take an open neighborhood Ux �X of x on which
the isotropy group Gx acts by its natural representation 'g 2 Diffsc.Ux/. The local
system of sections of Ux we shall denote by .ai/i2I and the associated weights by
.�i/i2I . Then, if y 2 Ux ,

ƒ.F.y//D
X

fi2I jF.y/Dai .y/g

�i :

Moreover, ƒ.F.y// D 0 if there is no index i 2 I satisfying F.y/ D ai.y/. By
assumption on the solution, ƒ.F.x// > 0, so that there is a subset J � I such that

F.x/� ai.x/D 0 for all i 2 J :
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Recall that for g 2 Gx the map �.g; � /W Ex ! Ex is a linear sc–isomorphism.
Therefore, we can choose smooth linearly independent vectors e1; : : : ; em 2Ex such
that for every g 2Gx the vectors

�.g; e1/; : : : ; �.g; em/

in Ex span the cokernels of the linearizations

.F � ai/
0.x/

for every i 2 I 0 . If gD id 2Gx is the identity element of the isotropy group Gx , then
�.id; ej /D ej for 1� j �m.

By means of Lemma 3.36, we find scC–sections s1; : : : ; smW Ux!EjUx having their
supports in Ux and satisfying sj .x/D ej for 1� j �m.

For every g 2Gx , we next define the scC–sections s
j
g W Ux!EjUx by

sj
g.'g.y// WD �.�.g;y/; s

j .y//;

where y 2 Ux and 1� j �m. Introducing the sum

st
g.y/ WD

mX
jD1

tj sj
g.y/;

where y 2Ux and t D .t1; : : : ; tn/2Rn , we have defined the ]Gx –many parametrized
scC–sections st

gW Ux!EjUx having their supports in Ux . If id 2Gx is the identity
element, then the morphism �.id;y/ is equal to 1y W y! y and using that �.1y ; ey/D

ey for all ey 2Ey , the scC–sections st
g satisfy

st
g.'g.y//D �.�.g;y/; s

t
id.y//

st
id.y/D

mX
jD1

tj sj .y/:with

ƒt
Ux
W EjUx!QCThe map

ƒt
Ux
.e/D

1

]Gx
� ]fg 2Gx j s

t
g.P .e//D eg:is defined by

Proceeding as in Proposition 3.38, one extends the local multisection ƒt
Ux

from EjUx

to the parametrized scC–multisection

ƒt
x W E!QC:
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Continuing with the proof of Theorem 4.17, we introduce for i 2 J and g 2Gx the
perturbed sections F i

gW R
m˚Ux!EjUx by

F i
g.t;y/D F.y/� ai.y/�

mX
jD1

tj sj
g.y/;

where t D .t1; : : : ; tm/ 2Rm . In the special case g D id 2Gx one has

F i
id.t;y/D F.y/� ai.y/�

mX
jD1

tj sj .y/:

In view of Theorem 3.9 in [22], the perturbed sections F i
g are proper Fredholm sections

of the bundle E1!Rm˚X 1 over the set Rm˚ .Ux/
1 .

Lemma 4.18 For every i 2 J and g 2Gx the linearization

DF i
g.0;x/W T0Rm

˚TxX !Ex

of the map .t;y/ 7! F i
g.t;y/ at the special point .0;x/ at which F.x/� ai.x/D 0, is

surjective.

Proof The linearization of the map .t;y/ 7! F i
g.t;y/ is equal to

DF i
g.t;y/ � .ıt; ıy/D .F

0.y/� a0i.y// � ıy �

mX
jD1

ıtj � s
j
g.y/�

mX
jD1

tj �Dysj
g.y/ � ıy;

where ıt D .ıt1; : : : ; ıtm/ 2Rm and ıy 2 TxX . At the point y D x we have, using
'g.x/D x , that s

j
g.x/D�.�.g;x/; s

j .x//D�.g; sj .x//D�.g; ej /. Therefore the
linearization at .t;y/D .0;x/ is represented by the linear map

DF i
g.0;x/ � .ıt; ıy/D .F

0.x/� a0i.x// � ıy �

mX
jD1

ıtj ��.g; e
j /;

which, in view of the definition of �.g; ej / for 1� j �m, is obviously surjective as
claimed in the lemma.

Since by Lemma 4.18 the linearizations DF i
g.0;x/ at the point .0;x/ are surjective, it

follows, by the arguments in Section 4.2 in [22], that the linearizations DF i
g.t;y/ at

the points solving F i
g.t;y/D 0 are also surjective if jt j is small and y belongs to a

possibly smaller invariant neighborhood Vx � Ux of the distinguished point x .

By assumption, the solution set S.f; �/ of the proper Fredholm section f of p is
compact. Consequently, there exist finitely many solutions x1; : : : ;xm belonging
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to the solution set S D S.F; ƒ/ so that for the corresponding open neighborhoods
Vx1

; : : : ;Vxm
in X , the subsets

ˇ̌
Vx1

ˇ̌
; : : : ; jVxm

j of the orbit space jX j cover f �1.0/.
Then we define the parametrized scC–multisection ƒt as the sum

ƒt Dƒ
t1
x1
˚ � � �˚ƒtm

xm

where tD .t1; : : : ; tm/2Rn1�� � �RnmDRN with N Dn1C� � �Cnm . By construction,
at every point .t;x/ D .0;x/ 2 f0g � S , for the new parametrized local branching
structure at x 2X , we have surjectivity of the linearizations of every local problem, so
that the set M D f.t;x/2RN �X j .ƒ˚ƒt /.F.x// > 0g and jt j small g is locally a
collection of finitely many finite dimensional submanifolds of X . The projection maps
M !RN given by .t;x/ 7! t can be viewed as finitely many maps defined on smooth
submanifolds so that it makes sense to talk about regular values. We choose by means
of Sard’s theorem a small regular value t� 2RN . Then the pairs .F; ƒt�/ and .f; �t�/

are transversal and the map ‚W X !QC defined by ‚.x/D .ƒ˚ƒt�/.F.x// is a
branched ep–subgroupoid of the ep–groupoid X . This completes the proof of Theorem
4.17.

We point out that, in view of Proposition 4.9, the perturbation ƒt is independent of
local section structures of the unperturbed scC–multisection ƒ.

Next we consider the case in which the polyfold Z possesses a boundary @Z .

Theorem 4.19 Let f be a proper (oriented) Fredholm section of the strong polyfold
bundle pW W !Z with boundary with corners and assume that the polyfold structure
for Z is built on separable Hilbert spaces. Fix an auxiliary norm N for p and an
open neighborhood U of the solution set S.f /D fz 2Z j f .z/D 0g so that the pair
.U;N / controls compactness. Then for every scC–multisection � supported in U and
satisfying N.�/< 1

2
and every "2 .0; 1

2
/, there exists an scC–multisection � supported

in U and satisfying N.�/ < ", so that .f; �˚ �/ is in general position. In particular,
the solution set

S.f; �˚ �/D fz 2Z j .�˚ �/.f .z// > 0g

is an (oriented) compact branched suborbifold of the polyfold Z with boundary with
corners.

The proof is a variation of the corresponding proof of Theorem 5.22 in [22] for Fredholm
sections on M–polyfold bundles. Before we start proving the theorem we recall some
notation. If x is a point of the M–polyfold X , we denote by d D d.x/ the degeneracy
index of x defined in Section 3.1. By F1; : : : ;Fd we abbreviate the local faces of
X at the point x . Every local face Fj has the tangent space TxFj at the point
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x 2X . The subset T @
xj

X � TxX is the intersection T @
x X D

T
1�j�d TxFj . In the

case that x is an interior point, the degeneration index d.x/ is equal to 0 and we set
T @

x X D TxX .

Proof Proceeding as in the proof of Theorem 4.17, we let �W W !QC be an scC–
multisection satisfying N.�/ < 1

2
. Since .N;U / controls compactness, the solution set

S.f; �/ is a compact subset of jX j in view of Lemma 4.16. Set U � D ��1.U /. Let
ƒW E!QC be the scC–multisection representing the scC–multisection �W W !QC

in the strong polyfold bundle P W E!X . We assume that the proper Fredholm section
F W X !E of P represents the proper Fredholm section f W Z!W of p . Again we
may assume that Z D jX j and W D jEj.

Fix a solution x belonging to the compact solution set S.F; ƒ/ and take an open
neighborhood Ux �X of x which is invariant under the action of the isotropy group
Gx . On the neighborhood Ux we have a local system of sections .ai/ for i 2 I with
associated weights .�i/i2I , so that

ƒ.F.x//D
X

fi2I jF.x/Dai .x/g

�i :

A subset J of the index set I such that F.x/� ai.x/D 0 for all i 2 J is nonempty
because ƒ.F.x// > 0:

Next we construct the parametrized scC–perturbation of the section F � ai for all
i 2 J . As in the proof of Theorem 4.17, choose smooth linearly independent vectors
e1; : : : ; em2E with the property that for all g2Gx the vectors �.g; e1/; : : : ; �.g; em/

span all the cokernels of the linearizations F 0.x/�a0i.x/W TxX !Ex for every i 2 J .
By Lemma 3.36, there are scC–sections s1; : : : ; smW Ux!EjUx having their supports
in Ux and satisfying sj .x/ D ej for j D 1; : : : ;m. To achieve transversality of
the kernels of the linearized perturbed Fredholm sections we choose additional scC–
sections smC1; : : : ; sN W Ux ! EjUx having their supports in Ux . This is done as
follows. First observe that the kernel of the linear map

.�; h/ 7! .F � ai/
0.x/ � hC

NX
jD1

�j � s
j .x/

consists of f0g ˚ ker.F � ai/
0.x/ together with the vectors .�; h/ which are the

solutions of the equation .F � ai/
0.x/D�

PN
jD1 �j � s

j .x/. Since the space T @
x X is

of finite codimension in the tangent space TxX , we find finitely many smooth linearly
independent vectors hmC1; : : : ; hn so that

spanfhmC1; : : : ; hn
g˚T @

x X D TxX:
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With this choice of the vectors hmC1; : : : ; hn , we define the smooth vectors ei;l;g 2Ex

by
ei;l;g

WD ��.g; .F � ai/
0.x/hl/

for all i 2 J , mC1� l � n, and g 2Gx . We extend, using Lemma 3.36, these vectors
to scC–sections having their supports in Ux and label them by smC1; : : : ; sN .

Next we introduce the perturbed sc–smooth section Fi W RN ˚Ux!E by

Fi.t;y/ WD F.y/� ai.y/C

NX
jD1

tj � s
j .y/;

where y 2Ux and t D .t1; : : : ; tN /2RN . This is a proper Fredholm section having the
following additional properties. Its linearization F 0i .0;x/ at the point .0;x/ is surjective
and its kernel is transversal to RN ˚T @

x X in RN ˚TxX for every i 2 J . Moreover,
for every subset � of the set f1; : : : ; d.x/g, the linearization F 0i .0;x/ restricted to the
tangent space T.0;x/.R

N ˚
T

j2� Fj / is surjective and the kernel of this restriction is
transversal to the subspace T @

.0;x/
.RN ˚

T
j2� Fj /.

For g 2Gx and 1� j �N , we define the scC–section s
j
g W Ux!EjUx by

sj
g.'g.y// WD �.�.g;y/; s

j .y//

and the scC–section st
g by

st
g.y/ WD

NX
jD1

tj � s
j
g.y/

for y 2 Ux and t D .t1; : : : ; tN / 2RN : Hence we have the ]Gx –many parametrized
scC–sections Ux!EjUx having supports in Ux , which define the map ƒt

Ux
W EjUx!

QC by

ƒt
Ux
.e/D

1

]Gx
� ]fg 2Gx j s

t
g.P .e//D eg:

As in Proposition 3.38 we extend the local scC–multisection ƒt
Ux

from EjUx to the
parametrized scC–multisection

ƒt
x W E!QC:

If i 2 J and g 2Gx , we introduce the perturbed section F i
gW R

N �Ux!E by

F i
g.t;y/D F.y/� ai.y/C st

g.y/:

It is a proper Fredholm section which as we show next has the same properties as the
section Fi .
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Lemma 4.20 The linearization DF i
g.0;x/W R

N ˚ TxX ! Ex is surjective and
its kernel is transversal to RN ˚ T @

x X in RN ˚ TxX . Moreover, for every sub-
set � of the set f1; : : : ; d.x/g, the restriction of DF i

g.0;x/ to the tangent space
T.0;x/.R

N ˚
T

j2� Fj / is surjective and the kernel of this restriction is transversal to
the subspace T @

.0;x/
.RN ˚

T
j2� Fj /.

Proof Fix i 2 J and g 2Gx . In view of the fact that spanfhmC1; : : : ; hng˚T @
x X D

TxX , it suffices to show that for every vector hl , there is a point �l 2RN such that
.�l ; hl/ 2 RN ˚TxX belongs to the kernel of the linearization .F i

g/
0.0;x/. Recall

that vectors ei;l;h for i 2 J , mC 1 � l � n and h 2 Gx are denoted as sj .x/ with
mC 1� j �N . Hence given mC 1� l � n there is an index mC 1� j �N such
that ei;l;g�1

D sj .x/. By definition, ei;l;g�1

D �.g�1; .F � ai/
0.x/hl/ so that

�sj
g.x/D��.g; s

j .x//D �.g; �.g�1; .F � ai/
0.x/hl//

D �.g�1
ıg; .F � ai/

0.x/hl/D .F � ai/
0.x/hl :

Hence if �l 2RN is defined by �l
k
D1 if kD j and �l

k
D0 for k¤ j , the pair .�l ; hl/

belongs to the kernel of the linearizations .F i
g/
0.0;x/ as claimed. The remaining part

of the lemma is proved in a similar way.

Lemma 4.21 There exist a Gx –invariant open neighborhood Vx � Ux and a para-
metrized scC–multisection ƒt

x W E ! QC which is supported in Ux and linear in t

such that for " > 0 sufficiently small the solution set

Sx;" D f.t;y/ 2RN
�X 1

j .ƒ˚ƒt
x/.F.y// > 0, jt j< ";and y 2 Vx g

has the following properties. For every i 2 I and g 2Gx and .t;y/ 2 Sx;" solving the
equation

F i
g.t;y/D F.y/� ai.y/C st

g.y/D 0

the following holds true:

(1) The linearization DF i
g.t;y/ is surjective.

(2) The kernel of DF i
g.t;y/ is transversal to the subspace T @

.t;y/
.RN �X / of the

tangent space T.t;y/.R
N �X /.

(3) For every subset � of f1; : : : d.y/g, the linearization of DF i
g.t;y/ restricted to

the tangent space T.t;y/.R
N �

T
j2� F

j
/ is surjective, and the kernels of these

restrictions are transversal to the subspace T @
.t;y/

.RN �
T

j2� Fj / in the tangent
space T.t;y/.R

N ˚
T

j2� Fj /.
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Proof We already know from Lemma 4.20 that the conclusions of the lemma hold
true at the special point .t;y/D .0;x/. Working in local coordinates as in the proof
of Lemma 5.23 in [22], we find for every i 2 J and g 2 Gx a positive number "i;g

and an open neighborhood Vi;g � Ux of x such that the conclusions (1)–(3) hold for
.t;y/ 2 RN ˚Vi;g if jt j < "i;g . Then the lemma follows by taking for the set Vx a
Gx –invariant open neighborhood of x which is contained in the intersection of the
sets Vj ;g and choosing for " a positive number smaller than the numbers "i;g .

Finally we can finish the proof of Theorem 4.19.

By assumption, the solution set S.f; �/ of the proper Fredholm section f of the
bundle p is a compact subset of the orbit space jX j. Consequently, there exist finitely
many solutions x1; : : : ;xm belonging to S.F; ƒ/ so that for the corresponding open
neighborhoods Vx1

; : : : ;Vxm
in X , the subsets

ˇ̌
Vx1

ˇ̌
; : : : ; jVxm

j of the orbit space
jX j cover S.f; �/. Then we define the parametrized scC–multisection ƒt as the sum

ƒt Dƒ
t1
x1
˚ � � �˚ƒtm

xm

where t D .t1; : : : ; tm/ 2RN1 � � � �RNm DRN with N DN1C � � �CNm .

Using Lemma 4.21 one concludes that the solution set

S" D f.t;y/ 2RN
�X 1

j .ƒ˚ƒt /.F.y// > 0 and jt j< "g

consists of a finite collection of finite dimensional manifolds with boundary with
corners. Now one studies the projection map S"!Rl defined by .t;x/ 7! t and finds
a small common regular value t� for various restrictions of the map to intersections of
local faces. For this parameter value t� , the pair .F; ƒ˚ƒt�/ is in general position
and the associated solution space has an orbit space which is a compact branched
suborbifold of the polyfold Z D jX j in general position to the boundary. In particular,
the associated solution set S.f; �˚#t�/Dfz 2Z j .�˚#t�/.f .z// > 0g is a compact
branched orbifold with boundary with corners. This finishes the proof of Theorem
4.19.

The following result is proved along the lines of the previous result. In contrast to
Theorem 4.19, we impose conditions on the Fredholm sections at those solutions which
are located at the boundary @X , while the perturbation has its support away from the
boundary.

Let f be a proper (oriented) Fredholm section of the strong polyfold bundle pW W !Z

with boundary with corners and assume that the polyfold structure for Z is built on
separable Hilbert spaces. Fix an auxiliary norm N for p and an open neighborhood U

of the solution set S.f / D fz 2 Z j f .z/ D 0g so that the pair .U;N / controls
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compactness. Then for every scC–multisection � supported in U and satisfying
N.�/ < 1

2
and every " 2 .0; 1

2
/, there exists an scC–multisection � supported in U

and satisfying N.�/ < " , so that so that .f; �˚ �/ is in general position. In particular,
the solution set

S.f; �˚ �/D fz 2Z j .�˚ �/.f .z// > 0g

is an (oriented) compact branched suborbifold of the polyfold Z with boundary with
corners.

Theorem 4.22 Let f be a proper (oriented) Fredholm section of the strong polyfold
bundle pW W !Z with boundary with corners and assume that the polyfold structure
for Z is built on separable Hilbert spaces. Fix an auxiliary norm N for p and an open
neighborhood U of the solution set S.f /Dfz 2Z j f .z/D 0g so that the pair .U;N /

controls compactness. Assume that �is an scC–multisection supported in U , satisfying
N.�/ < 1

2
, and such that the pair .f; �/ is in good position. Then, given " 2 .0; 1

2
/,

there exists an scC–multisection � supported in U and satisfying N.�/ < ", so that
� is trivial at the boundary and the pair .f; �˚ �/ is in good position. In particular,
the solution set S.f; �˚ �/ is an (oriented) compact branched suborbifold of Z with
boundary with corners.

Proof The proof is straightforward. By assumption, the pair .f; �/ is already transver-
sal and in good position to the boundary so that the solution space of .f; �/ near @Z
is already a branched orbifold. Then we can perturb the scC–multisection � by an
arbitrarily small scC–multisection � by the same argument as in the proof of Theorem
4.17, where, in addition, � is trivial near @Z , so that the pair .f; �˚ �/ is transversal
and, by construction, still in good position at solutions x 2 @Z . The last statement is
proved along the lines of Theorem 4.14 using [22, Theorem 5.16].

Theorem 4.22 and variants thereof are important in the “coherent perturbation theory”
used in Symplectic Field Theory where one deals simultaneously with infinitely many
Fredholm problems and where the boundaries are explained as products (or fibered
products) of Fredholm problems. In this case one has an algorithm how the data are
being perturbed which defines inductively perturbations on the boundary so that the
problem at the boundary is already in good position. Then one extends the perturbation
by keeping compactness and transversality.

4.5 Invariants

The results above allow to define invariants. The first result is an abstract version of
the argument used in order to define the Gromov–Witten invariants in [15].
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Theorem 4.23 Assume that f is a proper oriented Fredholm section of the strong
polyfold bundle pW W !Z and @Z D∅.

Then there exists a well-defined map

f̂ W H
�
dR.Z/!R

defined on the deRham cohomology group H�dR.Z/ so that the following holds. If
.N;U / is a pair controlling compactness, where N is an auxiliary norm and U a
corresponding open neighborhood of the solution set S.f /D fz 2Z j f .z/D 0g, then
for any scC–multisection � with support in U and satisfying N.�/ < 1 and such that
the pair .f; �/ is transversal, the following representation of f̂ holds:

(10) f̂ .Œ!�/ WD

Z
.S.f;�/;�f /

!:

Here the pair .S.f; �/; f�/ is a compact oriented branched suborbifold of Z in which
S.f; �/D fz 2Z j �.f .z// > 0g is the solution set equipped with the weight function
�f .z/ WD �.f .z//:

Proof In view of Theorem 4.14 the map z 7! �f .z/ defines a compact oriented
branched suborbifold of Z . Hence, by the results in [20], the integrals

R
.S.f;�/;�f /

!

are well-defined real numbers. To show that they do not depend on the choice of � we
choose a second transversal pair .f; �0/ whose scC–multisection �0 is supported in U

and view f as a Fredholm section of the strong polyfold bundle W ! Œ0; 1��Z . Now
we take a parametrized scC–multisection �t having its support in Œ0; 1��U such that
the pairs .f; �t / are transversal and connect the scC–multisection �0 D � with the
scC–multisection �1 D �

0 . The disjoint union S.f; �0/
`
�S.f; �/ is the boundary of

the solution set S.f; �t /D f.t; z/ 2 Œ0; 1��Z j �t .z/ > 0g which is a compact oriented
suborbifold of Œ0; 1��Z . Stokes’ theorem from [20] leads toZ

.S.f;�/;�f /

! D

Z
.S.f;�0/;�0

f
/

!:

Hence the right hand side of (10) is indeed independent of the choice of the transversal
pair .f; �/ in U and hence f̂ .Œ!�/ is well defined by the formula (10). The proof of
Theorem 4.23 is complete.

Note that we have a distinguished 0–form on the polyfold Z , namely the constant
1–function. Assume that f is a proper and oriented Fredholm section of the strong
polyfold bundle W !Z and has Fredholm index 0. Then f̂ .Œ1�/ is a rational number
and is a version of a degree for oriented proper Fredholm sections of strong polyfold
bundles.
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The application of Theorem 4.23 to the Gromov–Witten invariants sketched in the
introduction is as follows. We consider the polyfold Z whose elements are the equiv-
alence classes Œ.S; j ;M;D;u/� introduced in Definition 1.8 and the strong polyfold
bundle W ! Z in Theorem 1.11. Let x@J be the sc–smooth component-proper
Fredholm section of the bundle according to Theorem 1.12. Given the homology class
A2H2.Q;Z/ of the closed symplectic manifold Q and two integers g; k � 0, we look
at the polyfold Zg;k �Z of equivalence classes Œ.S; j ;M;D;u/� in which the nodal
Riemann surface S has arithmetic genus g and is equipped with k marked points, and
the map u represents the homology class A of the manifold Q. The evaluation maps
evi W Zg;k!Q and � W Zg;k!

SMg;k are defined in the introduction and allow to pull
back the differential forms on Q and on SMg;m to obtain sc–differential forms on the
polyfold Zg;k . Wedging combinations of these forms together, we can integrate over
the oriented solution set .M; w/D .S.x@J ; �/; �x@J

/ assuming that the pair .x@J ; �/ is
transversal. Here

MD S.x@J ; �/D fz 2Zg;k j �.x@J z/ > 0g

and the weight function w D �x@J
W Zg;k !QC is defined by �x@J

.z/D �.x@J z/: The
pair .M; w/ is an oriented compact branched suborbifold of the polyfold Zg;k . Hence,
in view of the abstract Theorem 4.23, the Gromov–Witten invariants can be constructed
by means of the map

ˆ
Q
A;g;m

W H�.Q/˝k
˝H�. SMg;m/!R

defined by the formula

‰
Q

A;g;k
.Œ˛1�; : : : ; Œ˛k �I Œ� �/D

Z
.M;w/

ev�1.˛1/^ : : :^ ev�k.˛k/^ �
�.PD.�//

where ˛1; : : : ; ˛k 2 H�.Q/ and where � 2 H�. SMg;k/ and where PD denotes the
Poincaré dual. That the formula is independent of the choice of the scC–multisection �
follows from Theorem 4.23.

Finally, we shall complete the proof of Theorem 1.4.

Proof Using Theorem 4.19 we take a generic perturbation � so that the solution set
S D S.f; �/ is in good position to the boundary. Assume that S is of dimension n.
Then for Œ!; � � 2H n

dR.Z; @Z/ we have the well-defined integral
R
.S;w/ ! �

R
.@S;w/ � .

If t ! ft is an sc- smooth proper oriented homotopy of Fredholm sections connecting
f0 with f1 we can view

F.t;x/D ft .x/
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as a proper Fredholm section of W pulled-back by the projection map Œ0; 1��Z!Z .
Then we can fix an open neighborhood U of the solution set S.f /Dfz 2Z jf .z/D0g

and an auxiliary norm so that the pair .N;U / controls compactness. Assume that
.fi ; �i/ are two admissible perturbations so that the corresponding solution sets are
in good position to the boundary. The homotopy t 7! ft can be perturbed generically
by the same argument as before to find a homotopy �t , which for t D 0; 1 coincides
with the perturbations we already have, so that away from the boundaries f0g �Z

and f1g �Z the perturbed pair .ft ; �t / is in good position to the boundary. Now the
previous discussion about the behavior of our invariant under our homotopy finishes
the proof of Theorem 1.4.

5 Appendix

In the following we explain some of the more technical results as well as some of the
necessary background material.

5.1 Natural representation of stabilizers

We shall study the local structure of the morphism set of an ep–polyfold groupoid in
more detail.

We choose an object x0 2 X . By the ep–assumption, its stabilizer group X.x0/ is a
finite group and we denote it by Gx0

. The following theorem describes the structure
of the morphism set near the isotropy group.

Theorem 5.1 Given an ep–groupoid X , an object x0 2X , and an open neighborhood
V � X of x0 . Then there exist an open neighborhood U � V of x0 , a group
homomorphism

'W Gx0
! Diffsc.U /; g 7! 'g D tg ı s�1

g ;

and an sc–smooth map
�W Gx0

�U ! X

having the following properties:

� �.g;x0/D g .

� s.�.g;y//D y and t.�.g;y//D 'g.y/ for all y 2 U and g 2Gx0
.

� If hW y! z is a morphism connecting two objects y; z 2 U , then there exists a
unique g 2Gx0

such that �.g;y/D h.
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In particular, every morphism between points in U belongs to the image of the map � .
We call the group homomorphism 'W Gx! Diffsc.U / a natural representation of the
stabilizer group Gx0

.

Proof For every g 2Gx0
we choose two contractible open neighborhoods N t

g and
N s

g � X on which the target and source maps t and s are sc–diffeomorphisms onto
some open neighborhood U0 � X of x0 . Since the isotropy group Gx0

is finite we
can assume that the open sets N t

g[N s
g for g 2Gx0

are disjoint and define the disjoint
open neighborhoods Ng � X of g by

Ng WDN t
g \N s

g ; g 2Gx0
:

We abbreviate the restrictions of the source and target maps by

sg WD sjNg and tg WD t jNg:

Lemma 5.2 With the choices made above there exists an open neighborhood U1�U0

of x0 so that every morphism h 2 X with s.h/ and t.h/ 2 U1 belongs to Ng for some
g 2Gx0

.

Proof Arguing indirectly we find a sequence hk 2 X with hk 62Ng for all g 2Gx0

and satisfying s.hk/; t.hk/! x0 as k !1. By the properness assumption of ep–
polyfolds there is a convergent subsequence hkl

! h 2 X. Necessarily h 2Gx0
and

hence h 2Ng for some g 2Gx0
. This contradiction implies the lemma.

Lemma 5.3 If U1 is the open neighborhood of x0 guaranteed by Lemma 5.2, then
there exists an open neighborhood U2 � U1 of x0 so that the open neighborhood U of
x0 , which is defined as the union

U WD
[

g2Gx0

tg ı s�1
g .U2/;

is contained in U1 and invariant under all the maps tg ı s�1
g for g 2Gx0

.

Proof We choose an open neighborhood U2 � U1 of x0 so small that the union
U and also tg ı s�1

g .U / are contained in U1 for all g 2 Gx0
. Consider the map

tg ı s�1
g W U ! X and choose x 2 U . Then we can represent it as x D th ı s�1

h
.u/

for some h 2Gx0
and some u 2 U2 . Now, v WD tg ı s�1

g ı th ı s�1
h
.u/ belongs to U1

and the formula implies the existence of a morphism u! v in X. By Lemma 5.2 the
morphism has necessarily the form v D tg0 ı s�1

g0 .u/ for some g0 2Gx0
. Since u 2U2

it follows that v D tg ı s�1
g .x/ 2 U implying the desired invariance of U .
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In view of Lemma 5.3 we can associate with every g 2Gx0
the sc–diffeomorphism

'.g/ WD tg ı s�1
g W U ! U

of the open neighborhood U of x0 , and obtain the mapping

'W Gx0
! Diffsc.U /; g 7! 'g:

Since the neighborhoods Ng � X of g are disjoint and since the structure maps are
continuous we conclude that ' is a homomorphism of groups, in the following called
the natural representation of the stabilizer group Gx0

by sc–diffeomorphisms of the
open neighborhood U �X of x0 . Then we define

�W Gx0
�U ! X; �.g;y/D s�1

g .y/:

Summing up the consequences of Lemmas 5.2 and 5.3 we have proved Theorem 5.1.

The following structure theorem is fundamental for the constructions of perturbations.

Theorem 5.4 Every object x02X of an ep–groupoid possesses an open neighborhood
U �X having the following properties:

� On U , the stabilizer group Gx0
has the natural representation

'W Gx0
! Diffsc.U /:

� Assume y0 2X is an object for which there exists no morphism y0! x , where
x in xU . Then there exists an open neighborhood V of y0 so that for every
z 2 V there is no morphism to an element in xU .

� Assume y0 2 X is an object for which there exists no morphism y0! x for
every x 2 U , but there exists a morphism to some element in xU . Then given
an open neighborhood W of @U (the set theoretic boundary of U ), there exists
an open neighborhood V of y0 so that if there is a morphism y! x for some
y 2 V and x 2 U , then x 2W .

Moreover, the open set U can be taken as small as we wish.

Proof For the first statement we refer to Theorem 5.1. We can choose the neighbor-
hood U of x0 as small as we wish. Hence we may assume that

t W s�1. xU /!X

is proper. To prove the second statement we assume for y0 2 X that there is no
morphism to any element in xU . If no neighborhood V with the desired properties
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exist, we find sequences yk! y0 and xk 2
xU so that there exist morphisms yk! xk .

Inverting these morphisms we obtain a sequence of morphisms gk W xk ! yk , and the
sequence of points in X ,

yk D t.gk/ 2 t.s�1. xU //:

By the properness assumption we may assume without loss of generality that gk!g2X
implying xk ! x0 in X for some x0 . Therefore,

gW x0! y0 and x0 2 xU :

This contradiction proves the second assertion.

Assume, finally, that there exists no morphism y0! x for x 2 U , but a morphism
y0! xx 2 xU . Pick an arbitrary open neighborhood W of @U . If V with the desired
properties does not exist we find sequences of morphisms yk ! y0 and elements
xk 2 U nW admitting morphisms gk W yk ! xk . Using the properness assumption
again we may assume that gk ! g in X where gW y0 ! x and x 2 U , giving a
contradiction. The proof of Theorem 5.4 is complete.

5.2 Sc–smooth partitions of unity

In this section we prove the existence of an sc–smooth partition of unity on an ep–
groupoid. We consider an ep–groupoid whose sc–structure is based on separable
sc–Hilbert spaces. But we would like to point out that what is really needed is that
the ep–groupoids are modeled on sc–scales .Ej /j�0 in which only the space E0 is
required to be a separable Hilbert space.

We view Œ0; 1� as a category with only the identity morphisms. An sc–smooth functor
f W X ! Œ0; 1� on X is an sc–smooth map on the object M–polyfold which is invariant
under morphisms, that is, f .x/D f .y/ if there exists a morphism hW x! y .

Definition 5.5 Let X be an ep–groupoid and let U D .U˛/˛2A be an open cover of
X consisting of saturated sets. An sc–partition of unity .g˛/˛2A subordinate to U
consists of the locally finite collection of sc–smooth functors g˛W X ! Œ0; 1� satisfyingP
˛2A g˛ D 1 and supp g˛ � U˛ for every ˛ 2A.

The existence of an sc–smooth partition of unity depends on a sufficient supply of
sc–smooth functions. We shall make use of the following result for separable Hilbert
spaces proved in Fathi [5].

Lemma 5.6 Let U and W be open subsets of a separable Hilbert space H such
that SW � U . Then there exists a smooth function f W H ! Œ0; 1� having its support
contained in U and satisfying f D 1 on SW .
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The proof of Lemma 5.6 extends easily to the case in which U and W are open subsets
of a partial quadrant in a separable Hilbert space. In the next lemma we extend Lemma
5.6 to the sc–setting.

Lemma 5.7 Let U and W be open subsets of a splicing core K such that SW � U .
Then there exists an sc–smooth function f W K ! Œ0; 1� such that f has its support
in U and is equal to 1 on W .

Proof Assume that K D KS D f.v; e/ 2 V ˚E j �v.e/ D eg is the splicing core
associated with the splicing S D .�;E;V /. Here V is an open subset of a partial
cone C in a separable sc–Hilbert space Z , E is a separable sc–Hilbert space, and
� W V ˚E!E is an sc–smooth map such that �.v; � / WD �vW E!E is a bounded
linear projection for every v 2 V . Consider ˆW W ˚ E ! W ˚ E defined by
ˆ.v; e/D .v; �.v; e//. The map ˆ is sc–smooth and, in particular, continuous from
level 0 to level 0 of V ˚E . Moreover, ˆ.V ˚E/ D K . Put W 0 D ˆ�1.W / and
U 0 D ˆ�1.U /. Then W 0 and U 0 are open and since ˆ�1. SW / is closed, we get
W 0 D ˆ�1.W / � ˆ�1. SW / � U 0: By Lemma 5.6, there exists a smooth function
f0W V ˚ E ! Œ0; 1� such that suppf0 � U 0 and f D 1 on W 0 . Since f0 is sc–
smooth in view of Proposition 2.15 in [21] and since the map � is sc–smooth, the
composition f0 ı� is also sc–smooth by the chain rule [21, Theorem 2.16]. Hence,
putting f WD f0jK , we obtain an sc–smooth function defined on K having its support
in U and equal to 1 on W .

If gW X ! Œ0; 1� is an sc–smooth functor on the ep–groupoid X , we denote by jgj
the continuous function defined on the orbit space jX j by jgj .jxj/ WD g.x/. Now we
come to the statement of the main theorem of this section.

Theorem 5.8 (Sc–smooth partition of unity) Let X be an ep–groupoid whose sc–
structure is based on separable sc–Hilbert spaces, and let O D .O˛/˛2A be an open
cover of the orbit space jX j. Then there exists an sc–smooth partition of unity .g˛/˛2A

on X so that the associated continuous partition of unity .jg˛j/˛2A of jX j is subordi-
nate to OD .O˛/˛2A .

The proof of Theorem 5.8 will follow from the next two lemmata which make us of
Theorem 5.4 in the Appendix, Section 5.1.

Lemma 5.9 Let O D .O˛/˛2A be an open cover of jX j. Then there exist locally
finite open covers .Wj /j2J and .Uj /ˇ2J subordinate to O and such that Wj � Uj .
The sets Wj and Uj are invariant under the natural representations of the isotropy
groups Gxj

on Uj for some xj 2 Uj , and the open cover .��1.�.Uj //j2J is locally
finite.
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Proof In view of the paracompactness of jX j, there is a locally finite refinement
.Q˛/˛2A of the cover .O˛/˛2A . Then .��1.Q˛//˛2A is a locally finite refinement
of .��1.O˛//˛2A . For every point x 2 X , we choose an open neighborhood Vx

intersecting only a finite number of sets ��1.Q˛/. We replace Vx by its intersection
with those ��1.Q˛/ which contains the point x . Observe that there is no morphism
between the point x and the sets ��1.Q˛/ which don’t intersect Vx . Hence, shrinking
Vx further, we may assume that Vx has the properties listed in Theorem 5.4 and
that there are no morphisms between points in Vx and points in the sets ��1.Q˛/

not intersecting Vx . The collection .Vx/x2X is an open cover of X and since X

is paracompact, there exists a locally finite refinement .U 0j /j2J of .Vx/x2X . For
every j 2 J , choose a point x.j / such that U 0j � Vx.j/ . We abbreviate by Gj

the isotropy group Gx.j/ acting on Vx.j/ by its natural representation. We claim
that .��1.�.U 0j ///j2J is a locally finite cover of X . Indeed, take y 2 X . Then
y 2 U 0

k
� Vx.k/ for some k 2 J . Since .U 0j /j2J is locally finite, there exists an open

neighborhood Wy of y contained in U 0
k

and intersecting only a finite number of the sets
U 0j , say U 0j1

; : : : ;U 0jN
. Hence kD ji for some 1� i �N . Replacing Wy by a smaller

set, we may assume that Wy is Gk –invariant. Assume that z 2 Wy \ �
�1.�.U 0j //

for some j ¤ j1; : : : ; jN . Then there is a morphism between some point v 2 Vj and
z D 'g.v/ for some g 2 Gj . In view of the definition of Vx.k/ , we have v 2 Vx.k/ .
Hence there is h 2Gk such that vD 'h.z/, and since z 2Wy and Wy is Gj –invariant
v 2Wy . Consequently, Wy \U 0j ¤∅ and it follows that Wy intersects only the sets
��1.�.U 0j1

//; : : : ; ��1.�.U 0jN
//. For every j 2 J , set Uj D

S
g2Gj

'g.U
0

j /. Then
��1.�.Uj //D �

�1.�.U 0j // and since the isotropy groups Gj are finite, it follows that
.Uj /j2J is a locally finite cover of X such that Uj � Vx.j/ . Using paracompactness
of X again, we find a locally finite cover .W 0j /j2J such that W 0j � Uj . Define
Wj D

S
g2Gj

'g.W
0

j /. Then Wj is a Gj –invariant open subset of Vj such that
Wj � Uj , and the open cover .Wj /j2J is locally finite. This completes the proof of
the lemma.

Lemma 5.10 Let U DU.x0/�X be an open neighborhood of x0 with the properties
as listed in Theorem 5.4 and let 'W U !KS be a coordinate chart onto an open subset
of the splicing core KS . Assume that W is a Gx0

–invariant open subset of U such
that SW � U . Then there exists an sc–functor f W X ! Œ0; 1� satisfying f D 1 on SW
and suppf � ��1.�.U //:

Proof We choose an open Gx0
–invariant set V such that SW � V � xV � U . With

the help of Lemma 5.7 and the chart 'W U ! KS , we find an sc–smooth function
f0W X ! Œ0; 1� satisfying suppf0 � V and f0 D 1 on SW . Define the function f1 on
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U by

f1.x/D
1

]Gx0

X
g2Gx0

f0.'g.x//; x 2 U:

Then f1 is sc–smooth as a finite sum of sc–smooth functions, 0�f1�1, and f1D1 on
x 2 SW since SW is Gx0

–invariant. Since f0D 0 on U n xV and U n xV is Gx0
–invariant,

it follows that also f1 D 0 on U n xV . In particular, f1 D 0 on @V .

We extend f1 to the function f W X! Œ0; 1� as follows. If x 2U , then f .x/ WD f1.x/:

If there exists a morphism between x and some point y2U , then we set f .x/ WDf1.y/:

Finally, if there is no morphism between x and a point in U , then we set f .x/ WD 0:

Clearly, f .x/D f .y/ if there is a morphism hW x! y . Note also that f .x/D 0 for
x 2 @U . Indeed, if there are no morphisms between x and points of U , then f .x/D 0

by the definition of f . If there exists a morphism between x and y 2 U , then by
Theorem 5.4, the point x belongs to U n xV , so that again f .x/D f1.y/D 0.

We already know that f is sc–smooth on U . To show that it is sc–smooth on X , we
take x 2 X nU and consider the following cases. If there is no morphism between
x and a point in xU , in particular, there is no morphism between x and a point in U ,
then f .x/D 0. By part (b) of Theorem 5.4, f D 0 on some open neighborhood Ux

of x and so f is sc–smooth on Ux .

Next assume that there exists a morphism hW x ! y between the point x and a
point y 2 U . According to the definition of f , f .x/ D f1.y/. We find two open
neighborhoods Ux and Uy of x and y such that Uy � U and t ı s�1W Ux ! Uy is
an sc–diffeomorphism. Then, f D f1 ı t ı s�1 on Ux and since the right hand side is
an sc–smooth function, the function f is sc–smooth on Ux .

In the last case, assume that there is no morphism between x and points of U but
there is a morphism between x and some point y 2 @U . Then again we find open
neighborhoods Ux and Uy of points x and y such that t ı s�1W Ux ! Uy is an
sc–diffeomorphism. By Theorem 5.4, we may take these neighborhoods so small that
the following holds. If there exists a morphism between a point y0 2 Uy and a point
z 2U , then necessarily z 2U nW . At y0 we have f .y0/D 0 since f1D 0 on U nW .
If there are no morphism between y0 2 Uy and points in U , then f .y0/D 0. Hence
f is equal to 0 on Uy and since f jUx D .f jUy/ ı .t ı s�1/, we conclude that f is
equal to 0 on Ux . So we proved that the function f is sc–smooth on X .

It remains to prove that suppf � ��1.�.U //. At every point x 62 ��1.�.U //,
f .x/D 0. Hence it is enough to show that for every x 2 @��1.�.U // there exists a
neighborhood Ux of x such that f D 0 on Ux . To see this, we prove that there is an
open neighborhood Ux of x such that if there is a morphism between x0 2 Ux and
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a point in y 2 U , then y 2 U nW . Otherwise, we find a sequence .xn/ converging
to x , a sequence .yn/�W , and a sequence .hn/ of morphisms hnW yn! xn . Since
the map t W s�1.U.x0//! X is proper, there is subsequence of the morphisms .hn/

converging to the morphism h. This implies that the subsequence of .yn/ converges to
the point y 2W and that hW y! x , contradicting the fact that there are no morphisms
between points in @��1.�.U // and points in U . Hence f D 0 on Ux and this proves
that suppf � ��1.�.U //:

Proof of Theorem 5.8 Let .O˛/˛2A be an open cover of jX j. In view of Lemma
5.9, there are open covers .Wj /j2J and .Uj /j2J subordinate to .��1.O˛// such that
Wj � Uj . Moreover, the sets Wj and Uj are invariant with respect to the natural
representation of Uj and the cover .��1.�.Uj ///j2J is locally finite. By Lemma 5.10,
for every j 2 J , there is an sc–smooth functor f 0j W X ! Œ0; 1� which is equal to 1 on
Wj and suppf 0j � �

�1.�.Uj //. Set f 0 D
P

j2J f
0

j . In view of the local finiteness of
.��1.�.Uj ///j2J , the sum has only a finitely many nonzero terms in a neighborhood
of each point and thus defines an sc–smooth function. Because fj D 1 on Wj and
every point of X is in some Wj , the sum is also positive. Now define fj D f

0
j =f

0 .
Then each fj is an sc–smooth functor such that suppfj � �

�1.�.Uj //. Finally, we
may reindex our functions fj so that they are indexed by the indices in the set A. Since
the cover .Uj /j2J is a refinement of .��1.O˛//, we choose for each j an index ˛.j /
such that Uj � �

�1.O˛.j//. Then for each ˛ 2 A, we define g˛ D
P

j ; ˛.j/D˛ fj .
If there is no index j satisfying ˛.j /D ˛ , we set g˛ D 0. Every g˛ is smooth and
invariant under the morphisms, satisfies 0 � g˛ � 1 and supp g˛ � �

�1.O˛/. In
addition,

P
˛2A g˛ D

P
j2J fj D 1. Consequently, .g˛/˛2A is a desired sc–smooth

partition of unity.

5.3 Submanifolds of M–polyfolds

In [21, Definition 3.19], we have introduced the concept of a strong finite dimensional
submanifold of an M–polyfold. It carries the structure of a manifold in a natural way.
In [22] we have introduced the more general notion of a finite dimensional submanifold
which we recall here for the convenience of the reader. Again, submanifolds according
to the new definition will have natural manifold structures and, moreover, strong finite
dimensional submanifolds are also submanifolds according to the new definition. The
manifold structures induced in both cases are the same.

Definition 5.11 Let X be an M–polyfold and M � X a subset equipped with the
induced topology. The subset M is called a finite dimensional submanifold of X

provided the following holds:
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� The subset M lies in X1 .

� At every point m 2M there exists an M–polyfold chart

.U; '; .�;E;V //

where m 2 U � X and where 'W U ! O is a homeomorphism satisfying
'.m/D 0, onto the open neighborhood O of 0 in the splicing core K associated
with the sc–smooth splicing .�;E;V /. Here V is an open neighborhood of 0 in
a partial quadrant C of the sc–Banach space W . Moreover, there exists a finite-
dimensional smooth linear subspace N �W ˚E in good position to C and
a corresponding sc–complement N? , an open neighborhood Q of 0 2 C \N

and an sc–smooth map AW Q!N? satisfying A.0/D 0, DA.0/D 0 so that
the map

�W Q!W ˚E; q! qCA.q/

has its image in O and the image of the composition ˆ WD '�1 ı�W Q! U is
equal to M \U .

� The map ˆW Q!M \U is a homeomorphism.

We call the map ˆW Q! U a good parametrization of a neighborhood of m 2M

in M .

In other words, a subset M � X of an M–polyfold X consisting of smooth points
is a submanifold if for every m 2 M there is a good parametrization of an open
neighborhood of m in M . The following proposition shows that the transition maps
ˆı‰�1 defined by two good parametrizations ˆ and ‰ are smooth, so the inverses of
the good parametrizations define an atlas of smoothly compatible charts. Consequently,
a finite dimensional submanifold is in a natural way a manifold with boundary with
corners.

Proposition 5.12 Any two parametrizations of a finite dimensional submanifold M

of the M–polyfold X are smoothly compatible.

Proof Assume that m0 WD '�1.q0 C A.q0// D  �1.p0 C B.p0// for two good
parametrizations. Since both good parameterizations are local homeomorphisms onto an
open neighborhood of m0 in M , we obtain a local homeomorphism O.p0/!O.q0/,
p 7! q.p/, where the domain and codomain are relatively open neighborhoods in
partial quadrants. We have

q.p/CA.q.p//D ' ı �1.pCB.p//:
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Recall that q.p/2N and A.q.p/2N? , where N ˚N?DW ˚E is an sc–splitting.
If P W W ˚E!N is an sc–projection along N? , then

q.p/D P .' ı �1.pCB.p//:

The map p ! q.p/ is sc–smooth as a composition of sc–smooth maps. However,
since the domain and codomain lie in finite dimensional smooth subspaces, the map is
smooth in the usual sense.

5.4 Orientations and determinants

We begin by recalling determinants of linear Fredholm operators. More details and
proofs can be found in Donaldson and Kronheimer [4] and Floer and Hofer [6], and,
particularly, relevant in our context, in our papers [22] and [17].

The determinant of a linear Fredholm operator T W E!E between two Banach spaces
is the one-dimensional real vector space

det.T /D .^max ker.T //˝ .^maxcokern.T //�

where the star � refers to the dual space. The orientation of the Fredholm operator T

is, by definition, the orientation of the vector space det.T /. If �W X ! F.E;F / is a
continuous family of Fredholm operators T W E! F , then the bundle

det.�/D
[

x2X

fxg � det.�.x//!X

carries the structure of a topological line-bundle. The same result holds true if the
domains and targets of the operators vary in vector bundles.

We shall consider now a Fredholm section f of the strong polyfold bundle pW W !Z

and let P W E ! X be a model for p over the ep–groupoid X and let the proper
Fredholm section F W X ! E be the corresponding representative of the section f .
As shown in [21; 22] there is a well-defined notion of a linearization of F at a smooth
point x 2 X . It is a class of sc–Fredholm operator differing by scC–operators and
defined as follows. If x is the smooth point, we take a germ of scC–sections s defined
near x and satisfying

F.x/D s.x/:

Then .F �s/.x/D 0 so that the linearization .F �s/0.x/W TxX !Ex is well-defined.
It is a classical Fredholm operator and hence possesses the determinant det..F�s/0.x//.
It depends clearly on the choice of the scC–section s . If s1 is another such scC–section,
then the linearizations .F � s/0.x/ and .F � s1/

0.x/ differ only by an scC–operator
and, therefore, have the same Fredholm index. The space of all these linearizations
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at the point x is a contractible convex space, and we denote the collection of the
associated determinants by DET.F;x/. Consequently, if the determinant of one of
these Fredholm operators is oriented, then, by continuation, every other linearization
becomes canonically oriented as well.

To describe the behavior of the determinants under the morphisms, we look at the
morphism 'W x!y between two smooth points in X . We choose open neighborhoods
U.'/�X of the morphism ' and U.x/ and U.y/ of the points x;y 2X (as small as
necessary) such that the source and the target maps sW U.'/! U.x/ and t W U.'/!
U.y/ are sc–smooth diffeomorphisms. Then the morphism ' extends to the sc–
diffeomorphism � W U.x/! U.y/ defined by � WD t ı s�1 and satisfying �.x/D y .
With an scC–germ s0W U.x/!E satisfying s0.x/DF.x/ we associate the scC–germ
s1W U.y/!E defined by

s1.�.z// WD �.s
�1.z/; s0.z//; z 2 U.x/:

Since F W X !E is a functor, it satisfies the identity

(11) F.�.z//D �.s�1.z/;F.z//; z 2 U.x/

where �W Xs�pE! E is the strong bundle map defined Section 2.4. In particular,
F.y/DF.�.y//D�.';F.x//D�.'; s0.x//D s1.y/: Linearizing both sides of (11)
at the point x we find that

.F � s1/
0.y/ ıT�.x/ � hD �.'; .F � s0/

0.x/ � h:

Abbreviating the linear isomorphism

ˆ WD �.'; � /W Ex!Ey

and recalling that, by definition T ' D T�.x/, one obtains

ˆ�1
ı .F � s1/

0.y/ ıT ' D .F � s0/
0.x/:

This formula shows that the morphism 'W x! y determines the natural isomorphism

'�W det..F � s0/
0.x//! det..F � s1/

0.y//

between the determinants of the linearizations at the source and the target of ':

To define the continuation of the orientations along an sc–smooth curve, we consider
the sc–smooth path ‚W Œ0; 1�!X connecting the smooth point ‚.0/ with the smooth
point ‚.1/. It is easy to construct an sc–smooth family of germs of scC–sections st

satisfying
st .‚.t//D F.‚.t//;
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where st is defined on an open neighborhood of the point ‚.t/. Using the Fredholm
property of the section F one proves in [17], that the bundle[

t2Œ0;1�

ftg � det..F � st /
0.‚.t///! Œ0; 1�

has in a natural way the structure of a real topological line-bundle over Œ0; 1�. (We
should point out that this is not entirely trivial because the linearizations do not depend
continuously as bounded operators on the points ‚.t/ at which the section is linearized.)
As a consequence, we can define the continuation of the orientations of the linearizations
along an sc–smooth path in X .

Definition 5.13 An orientation for the sc–Fredholm section F of the strong bundle
P W E!X consists of an orientation for the linearization of F at every smooth point
x 2X , which is invariant under the morphisms and stable under continuation along
sc–smooth paths in X .

Two oriented sc–Fredholm sections F of P W E ! X and F 0 of P 0W E0 ! X 0 are
called equivalent, if there is a common bundle refinement pulling back the sections to
the same oriented section. Since bundle equivalences induce isomorphisms between
the determinants, we can therefore define an orientation for a Fredholm section f of a
strong polyfold bundle pW W !Z .

If F is an oriented Fredholm section and .F; ƒ/ is a transversal pair and ƒ.F.x// > 0,
then the linearization at the smooth solution x is an intrinsic finite collection of
sc–Fredholm operators which all differ by scC–operators. Therefore, we obtain an
orientation for the manifolds of the local solution structure. In view of the compatibility
with morphisms and the stability under continuation, the solution set inherits the
structure of an oriented branched suborbifold. The details and the proofs will be carried
out in [17].
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