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Polynomial Bridgeland stability conditions
and the large volume limit

AREND BAYER

We introduce the notion of a polynomial stability condition, generalizing Bridgeland
stability conditions on triangulated categories. We construct and study a family of
polynomial stability conditions for any normal projective variety. This family includes
both Simpson-stability and large volume limits of Bridgeland stability conditions.

We show that the PT/DT–correspondence relating stable pairs to Donaldson–Thomas
invariants (conjectured by Pandharipande and Thomas) can be understood as a wall-
crossing in our family of polynomial stability conditions. Similarly, we show that
the relation between stable pairs and invariants of one-dimensional torsion sheaves
(proven recently by the same authors) is a wall-crossing formula.

14F05, 18E30; 14J32, 14D20, 14N35

1 Introduction

In this article, we introduce polynomial stability conditions on triangulated categories.
They are a generalization of Bridgeland’s notion of stability in triangulated categories.
The generalization is motivated by trying to understand limits of Bridgeland’s stability
conditions; it allows for the central charge to have values in complex polynomials
rather than complex numbers.

While Bridgeland stability conditions have been constructed only in dimension � 2

and some special cases, we construct a family of polynomial stability conditions on the
derived category of any normal projective variety. This family includes both Simpson-
stability of coherent sheaves and stability conditions that we expect to be the large
volume limit of Bridgeland stability conditions.

We interpret both the PT/DT–correspondence conjectured by Pandharipande and
Thomas [30], and the relation between stable pair invariants and one-dimensional
torsion sheaves which they proved in [31], as a wall-crossing phenomenon in our family
of polynomial stability conditions.
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1.1 Bridgeland’s stability conditions

Since their introduction by Bridgeland [9], stability conditions for triangulated cate-
gories have drawn an increasing amount of interest from various perspectives. They
generalize the concept of stability from abelian categories to triangulated categories.

Originally, Bridgeland introduced the concept as an attempt to mathematically under-
stand Douglas’ construction [13] of …–stability of D–branes. Following Douglas’
ideas, Bridgeland showed that the set of stability conditions on Db.X / has a natural
structure as a smooth manifold. There are also various purely mathematical reasons to
study the space of stability conditions.

Definition 1.1.1 [9] A stability condition on Db.X / is a pair .Z;P/ where Z is
a group homomorphism from K.X / Š K.Db.X // to C , and P is a collection of
extension-closed subcategories P.�/ for � 2R, such that

(a) P.�C 1/D P.�/Œ1�,
(b) Hom.P.�1/;P.�2//D 0 for all �1 > �2 ,

(c) if 0¤E 2 P.�/, then Z.E/ 2R>0 � e
i�� , and

(d) for every 0 ¤ E 2 Db.X / there is a sequence �1 > �2 > � � � > �n of real
numbers and a sequence of exact triangles

0DE0
// E1

//

��~~
~~

~
E2

//

}}{{
{{

� � � // En�1
// En DE

yyttt
ttt

A1

cc

A2

aa

An

cc

with Ai 2 P.�i/.

Objects of P.�/ are called semistable of phase � , and the group homomorphism Z

is called the central charge. We now restrict our attention to “numerical” stability
conditions: these are stability conditions for which Z.E/ is given by numerical
invariants of E , ie where Z factors via the projection K.Db.X // ! N .X / WD
N .Db.X // to the numerical K–group.1

1.2 The space of stability conditions

The role of P (called “slicing”) is easily understood, as it naturally generalizes the
notion of semistable objects in an abelian category, together with the ordering of their
slopes and the existence of Harder–Narasimhan filtrations. The role of Z is less
obvious; we will explain two aspects in the following paragraphs.

1The numerical K –group N .Db.X // is the quotient of K.Db.X // by the zero-space of the bilinear
form �.E;F /D �.RHom.E;F // .
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It seems unsatisfactory that semistable objects in the derived category have to be given
explicitly, rather than characterized intrinsically by a slope function. This deficiency is
somewhat corrected by the following observation:

Given a slicing P , consider the category AD P..0; 1�/ generated by all semistable
objects of phase 0<��1 and extensions. It can be seen that A is the heart of a bounded
t–structure (and in particular an abelian category); the slicing is thus a refinement of
the datum of a bounded t–structure. Bridgeland showed that this refinement is uniquely
determined by Z :

Proposition 1.2.1 [9, Proposition 5.3] To give a stability condition .Z;P/ is equiva-
lent to giving the heart A�Db.X / of a bounded t–structure, and a group homomor-
phism ZW K.A/!C with the following properties:

(a) For every object E 2A, we have Z.E/ 2R>0 � e
i��.E/ with 0< �.E/� 1.

(b) We say an object is Z–semistable if it has no subobjects A ,!E with �.A/ >
�.E/. We require that every object has a Harder–Narasimhan filtration with
Z–semistable filtration quotients.

Given A and Z , the semistable objects in the derived category are the shifts of the Z–
semistable objects in A. The positivity property (a) is somewhat delicate; for example,
it can’t be satisfied for the category of coherent sheaves on a projective surface.

There is a natural topology on the space of slicings. However, only together with
the central charge does the topological space of stability conditions become a smooth
manifold. One can paraphrase Bridgeland’s result as follows: One can equip the
space Stab.X / of “locally finite”2 numerical stability conditions with the structure of
a smooth manifold, such that the forgetful map ZW Stab.X /!N .X /� , .Z;P/ 7!Z

gives local coordinates at every point. In other words, a stability condition can be
deformed by deforming its central charge.

The space Stab.X / is closely related to the moduli space of N D 2 superconformal
field theories; see Bridgeland [8]. The existence of Z has interesting implications for
the group of auto-equivalences of Db.X /, as one can study its induced action on Z ;
see eg Bridgeland [10] and Huybrechts, Macrı̀ and Stellari [17].

2[9, Definition 5.7]
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1.3 Reconstruction of X from Db.X/

If the canonical bundle !X , or its inverse !�1
X

, of a smooth variety X is ample, then
the variety can be reconstructed from its bounded derived category; see Bondal and
Orlov [7]. Without the assumption of ampleness, this statement is wrong, and the proof
already breaks down at its first step: the intrinsic characterization of point-like objects
in Db.X / (the shifts Ox Œj � of skyscraper sheaves for closed points x 2 X ) by the
action of the Serre-functor.

However, the mathematical translation of ideas by Aspinwall, originally suggested in [2],
suggests that a stability condition provides exactly the missing data to characterize the
point-like objects. Inside the space of stability conditions, there should be a special
chamber, which we will call the ample chamber, with the following property: When
.Z;P/ is a stability condition in the ample chamber, and E 2Db.X / an object with
class ŒE�D ŒOx � in the numerical K–group, then E is .Z;P/–stable if and only if
E is isomorphic to the shift of a skyscraper sheaf ŒOx �. One could then reconstruct X

as the moduli space of .Z;P/–stable objects.

Moving to a chamber of the space of stability conditions adjacent to the ample chamber,
the moduli space zX of semistable objects of the same class ŒOx � comes with a fully
faithful functor ˆW Db. zX /!Db.X / induced by the universal family. This suggests
that zX could be a birational model of X with isomorphic derived category (eg a flop),
it could be isomorphic to X with ˆ being a nontrivial auto-equivalence of X , or it
could be a birational contraction or a flip of X . It seems an intriguing question to what
extent the birational geometry of X can be captured by this phenomenon.

This suggestion is consistent with many of the known examples of Bridgeland stability
conditions. Maybe most convincing is the case of a crepant resolution Y !C3=G of
a three-dimensional Gorenstein quotient singularity. The results of Craw and Ishii [12]
can be reinterpreted as saying that every other crepant resolution Y 0 ! C3=G can
be constructed as a moduli space of Bridgeland-stable objects in Db.Y /; see also
Toda [37] for the local construction of a flop along these lines.

1.4 Examples of stability conditions

The existence of stability conditions on Db.X / for X a smooth, projective variety has
only been shown in very few cases:

� For a smooth curve C , stability conditions were constructed by Bridgeland [9],
and Stab.C / has been described by Macrı̀ [25] and Okada [29]; in Burban and
Kreußler [11] the case of singular curves of genus one was considered.
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� For the case of a K3 surface S , Bridgeland completely described one connected
component of Stab.S/ in [10] (including a complete description of the ample
chamber). Macrı̀, Mehrotra and Stellari [26] studied the space of stability
conditions on Kummer and Enriques surfaces. For arbitrary smooth projective
surfaces, stability conditions have recently been constructed by Arcara and
Bertram [1].

� If Db.X / has a complete exceptional collection, then stability conditions exist
by Macrı̀ [24].

For complex nonprojective tori, stability conditions were studied by Meinhardt [28].

1.5 Stability conditions related to � –models

Let X be a smooth projective variety. Following ideas in the physical literature
(see Douglas [13], Aspinwall and Douglas [3], Aspinwall [2] and Aspinwall and
Lawrence [4]), it should be possible to construct stability conditions on Db.X / coming
from the nonlinear � –model associated to X . At least for an open subset of these
stability conditions, skyscraper sheaves of points should be stable. Further, it is known
how the central charge should depend on the complexified Kähler moduli space: if
ˇ 2H 2.X / is an arbitrary class, and ! 2H 2.X / and ample class, then the central
charge should be given as

(1) Zˇ;!.E/D�

Z
X

e�ˇ�i!
� ch.E/

p
td X :

However, in general not even a matching t–structure whose heart A would satisfy the
positivity property (a) of Proposition 1.2.1 is known; in fact no example of a stability
condition on a projective Calabi–Yau threefold is known.

1.6 Polynomial stability conditions

However, if we replace ! by m! and let m!C1 (this is the large volume limit),
then a matching t–structure can be constructed: If E is a coherent sheaf and d its
dimension of support, then Z.E/.m/!�.�i/d � 1 as m!1. Thus the central
charge Z.EŒbd

2
c�/.m/ of the shift of E will go to �1 or i1; this suggests that a

t–structure can be constructed by a filtration of dimension of support, ie a t–structure of
perverse coherent sheaves. However, the limit of the phase �.E/.m/ is too coarse as
an information to characterize semistable objects; instead, it is more natural to consider
the central charge Zˇ;m! given by Equation (1) as a polynomial in m: then we can
say a perverse coherent sheaf E is semistable if there is no perverse coherent subsheaf
A ,!E with �.A/.m/ > �.E/.m/ for m being large.
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Motivated by this observation, we introduce a notion of polynomial stability condition
in Definition 2.3.1. It allows the central charge to have values in polynomials CŒm�
instead of C ; accordingly, the slicing P has to depend not on real numbers, but on
phases of polynomials (considered for m� 0). It gives a precise meaning to the notion
of a “stability condition in the limit of m!1”.

1.7 Results

Our main result is Theorem 3.2.2. It shows the existence of a family of polynomial
stability conditions for every normal projective variety. Its associated bounded t–
structure is a t–structure of perverse coherent sheaves. The family contains stability
conditions corresponding to Simpson stability (see Section 2.1) and stability conditions
that should be the large volume limit of Bridgeland stability conditions (see Section 4).

In the case of surfaces, Proposition 4.1 makes the last statement precise: the polynomial
stability condition .Z;P/ at the large volume limit is the limit of Bridgeland stability
conditions .Zm;Pm/, depending on m, in the sense that objects are P –stable if and
only if they are Pm –stable for m� 0, and the Harder–Narasimhan filtration with
respect to P is the same as the Harder–Narasimhan filtration with respect to Pm for
m� 0.

The polynomial stability conditions provide many new t–structures on the derived
category of a projective variety.3 They might help to construct Bridgeland stability
conditions on higher-dimensional varieties.

With Proposition 5.1, we observe that the polynomial stability conditions constructed
in Theorem 3.2.2 are “ample” in the sense of Section 1.3: X can be reconstructed
from Db.X /, the stability condition and the class of ŒOx � 2N .X / as a moduli space
of semistable objects.

1.8 PT/DT—correspondence as a wall-crossing

Pandharipande and Thomas [30] introduced new invariants of stable pairs on smooth
projective threefolds. In the Calabi–Yau case, they conjecture a simple relation between
their generating function and the generating function of Donaldson–Thomas invariants
(introduced in Maulik, Nekrasov, Okounkov and Pandharipande [27]). With Proposition
6.1.1, we show that this relation can be understood as a wall-crossing phenomenon (in
the sense of Joyce [19]) in a family of polynomial stability conditions.

3The t–structures used in the construction are those described in [6], but tilting with respect to different
phase functions yields new torsion pairs, and thus new t–structures, in the same way that Gieseker- or
slope-stability yield new t–structures by tilting the category of coherent sheaves.
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Similarly, we show in Section 6.2 that the relation between stable pair invariants
and invariants counting one-dimensional torsion sheaves can be understood as a wall-
crossing formula.

1.9 The space of polynomial stability conditions

In Section 8, we discuss to what extent the deformation result by Bridgeland carries
over to our situation. We introduce a natural topology on the set of polynomial stability
conditions and show that the forgetful map

ZW StabPol.X /! Hom.N .X /;CŒm�/; .Z;P/ 7!Z

is continuous and locally injective. Under a strong local finiteness assumption, we can
also show that it is a local homeomorphism.

1.10 Notation

If † is a set of objects in a triangulated category D (resp. a set of subcategories of D ),
we write h†i for the full subcategory generated by † and extensions; ie the smallest
full subcategory of D that is closed under extensions and contains † (resp. contains
all subcategories in †).

We will write H�C for the semiclosed upper half plane

HDfz 2C
ˇ̌
z 2R>0 � e

i��.z/; 0< �.z/� 1
	
;

and �.z/ for the phase of z 2H .
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2 Polynomial stability conditions

2.1 Example: Simpson/Rudakov stability as a polynomial stability condi-
tion

Before giving the precise definition of polynomial stability conditions, we give an
example that is more easily constructed than the large volume limit considered in the
introduction, which will hopefully motivate the definition.

Let AD Coh X �D.X / be the standard heart in the derived category of a projective
variety X with a chosen ample line bundle L. Pick complex numbers �0; �1; : : : ; �n in
the open upper half plane H with �.�0/ > �.�1/ > � � �>�.�n/ as in Figure 1. For any

�0

�1

�2
�3

�4
�5

Figure 1: Stability vector for Simpson stability

coherent sheaf E 2 Coh X , let �E.m/D
Pn

iD0 ai.E/m
i be the Hilbert polynomial

with respect to L. We define the central charge by

Z.E/.m/D

nX
iD0

�iai.E/m
i :

Then Z.E/.m/ 2 H for E nontrivial and m� 0, and we can consider the phase
�.E/.m/ 2 .0; 1�. We say that a sheaf if Z–stable if for every subsheaf A ,!E , we
have �.A/.m/� �.E/.m/ for m� 0.

Then a sheaf E is Z–stable if and only if it is a Simpson-stable sheaf; this is most
easily seen by using Rudakov’s reformulation in [33]. In particular, stability does not
depend on the particular choice of the �i . In order not to lose any information, we
should consider the phase of a stable object to be the function �.E/.m/ defined for
m� 0 rather than the limit limm!1 �.E/.m/; in other words, we consider its phase
to be the function germ

�.E/W .R[fC1g/!R:

Geometry & Topology, Volume 13 (2009)
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Then we can define an object E 2Db.X / to be stable if and only if it is isomorphic to
the shift F Œn� of Z–stable sheaf; its phase is given by the function germ �.F /C n.

Combining the Harder–Narasimhan filtrations of arbitrary sheaves with respect to
Simpson stability with the filtration of a complex by its cohomology sheaves, we obtain
a filtration of an arbitrary complex similar to the filtration in part (d) of Definition 1.1.1.

2.2 Slicings

Definition 2.2.1 Let .S;�/ be a linearly ordered set, equipped with an order-pre-
serving bijection S ! S; � 7! � C 1 (called the shift) satisfying � C 1 � � . An
S –valued slicing of a triangulated category D is given by full additive extension-closed
subcategories P.�/ for all � 2 S , such that the following properties are satisfied:

(a) For all � 2 S , we have P.�C 1/D P.�/Œ1�.
(b) If � �  for �; 2 S , and A 2 P.�/;B 2 P. /, then Hom.A;B/D 0.

(c) For all nonzero objects E 2D , there is a finite sequence �1 � �2 � � � � � �n of
elements in S , and a sequence of exact triangles

(2)
0DE0

// E1
//

��~~
~~

~
E2

//

}}{{
{{

� � � // En�1
// En DE

yyttt
ttt

A1

cc

A2

aa

An

cc

with Ai 2 P.�i/.

This was called “stability data” or “t-stability” in [14]. If SDZ, this notion is equivalent
to a bounded t–structure (see Bridgeland [10, Lemma 3.1]), and for S D R, it is a
“slicing” as defined in [9]. The objects in P.�/ are called semistable of phase � . The
sequence of exact triangles in part (c) is also called the Harder–Narasimhan filtration
of E . If a Harder–Narasimhan filtration exists, then Definition (b) forces it to be
unique.

Definition 2.2.2 The set S of polynomial phase functions is the set of continuous
function germs

�W .R[fC1g;C1/!R

such that there exists a polynomial Z.m/ 2 CŒm� with Z.m/ 2 R>0 � e
�i�.m/ for

m� 0. It is linearly ordered by setting

� �  , �.m/ <  .m/ for 0�m<C1;

and its shift � 7! �C 1 is given by point-wise addition.
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The condition that �; can be written as arguments of polynomial functions guarantees
that either � �  or � �  holds; given Z.m/, the function �.m/ is of course
determined up to an even integer constant.

From now on, S will be the set of polynomial phase functions. In our construction,
S –valued slicings will play the role of R–valued slicings in Bridgeland’s construction.

The following easy lemma is implicitly used in both [9] and [14], but we will make it
explicit:

Lemma 2.2.3 Let S1;S2 be two linearly ordered sets equipped with shifts �1; �2 , and
let � W S1!S2 be a morphism of ordered sets commuting with �1; �2 . Then � induces
a pushforward of stability conditions as follows: If P is an S1 –valued slicing, then
��P.�2/ for some �2 2 S2 is defined as hfP.�1/ j �.�1/D �2gi.

The proof is an exercise in the use of the octahedral axiom.

We will make use of the following pushforwards: By the projection � W S !R; � 7!
�.1/, we obtain an R–valued slicing from every S –valued slicing. Further, for each
�0 2 S we get a projection ��0 W S ! Z; � 7! maxn2Z �0C n � � (we could also
choose � 7! maxn2Z �0C n � � ). This produces a bounded t–structure from every
S –valued slicing; in other words, an S –valued slicing is a refinement of a bounded
t–structure, breaking up the category into even smaller slices.

For any interval I in the set of phases, we get an extension-closed subcategory P.I/D
hfP.�/ j � 2 Igi. In the case of an S –valued slicing, the categories P.Œ�; �C1// and
P..�; �C 1�/ are abelian, as they are the hearts of the t–structures constructed in the
last paragraph. The proof for these statements carries over literally from the one given
by Bridgeland: we can include these categories into the abelian category P.Œ�; �C1//.
The slices P.�/ are abelian.

2.3 Central charge

We now come to the main definition:

Definition 2.3.1 A polynomial stability condition on a triangulated category D is
given by a pair .Z;P/, where P is an S –valued slicing of D , and Z is a group

Geometry & Topology, Volume 13 (2009)
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homomorphism ZW K.D/! CŒm�, with the following property: if 0 ¤ E 2 P.�/,
then

Z.E/.m/ 2R>0 � e
�i�.m/

for m� 0.

In the case where Z maps to constant polynomials C � CŒm�, this is equivalent
to Bridgeland’s notion of a stability condition. Similarly to that case, a polynomial
stability condition can be constructed from a bounded t–structure and a compatible
central charge Z :

Definition 2.3.2 A polynomial stability function on an abelian category A is a group
homomorphism ZW K.A/!CŒm� such that there exists a polynomial phase function
�0 2 S with the following property:

For any 0¤E2A, there is a polynomial phase function �.E/ with �0��.E/��0C1

and Z.E/.m/ 2R>0 � e
�i�E.m/ for m� 0.

This definition allows slightly bigger freedom than requiring Z.E/.m/2H for m� 0.

We call �.E/ 2 S the phase of E ; the function ObA n f0g ! S , E 7! �.E/ is
a slope function in the sense that it satisfies the see-saw property on short exact
sequences (cf [33]). An object 0 ¤ E is called semistable with respect to Z if
for all subobjects 0 ¤ A � E , we have �.A/ � �.E/; equivalently, if for every
quotient E � B in A we have �.E/ � �.B/. We say that a stability function
has the Harder–Narasimhan property if for all E 2 A, there is a finite filtration
0 D E0 ,! E1 ,! : : : ,! En D E such that Ei=Ei�1 are semistable with slopes
�.E1=E0/� �.E2=E1/� � � � � �.En=En�1/.

Finally, note that the set of polynomials Z.E/ for which a polynomial phase function
�.E/ as in the above definition exist forms a convex cone in CŒm�. Its only extremal
ray is the set of polynomials with �.E/D �0C 1. This is an important reason why
many of the proofs of [9] carry over to our situation.

We restate two propositions by Bridgeland in our context; the proofs are identical to
the ones given by Bridgeland:

Proposition 2.3.3 [9, Proposition 5.3] Giving a polynomial stability condition on D
is equivalent to giving a bounded t–structure on D and a polynomial stability function
on its heart with the Harder–Narasimhan property.

The following proposition shows that the Harder–Narasimhan property can be deduced
from a finiteness assumption of A with respect to Z :

Geometry & Topology, Volume 13 (2009)
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Proposition 2.3.4 [9, Proposition 2.4] Let A be an abelian category, ZW K.A/!
CŒm� a polynomial stability function, and assume that they satisfy the following chain
conditions:

� (Z–Artinian) There are no infinite chains of subobjects

: : : ,!EjC1 ,!Ej ,! : : : ,!E2 ,!E1

with �.EjC1/� �.Ej / for all j .

� (Z–Noetherian) There are no infinite chains of quotients

E1 � E2 � : : :� Ej � EjC1 � : : :

with �.Ej /� �.EjC1/ for all j .

Then A;Z have the Harder–Narasimhan property.

3 The standard family of polynomial stability condition

In this section, we will construct a standard family of stability conditions on the bounded
derived category Db.X / of an arbitrary normal projective variety X . Let n be the
dimension of X .

3.1 Perverse coherent sheaves

The t–structures relevant for our stability conditions are t–structures of perverse coherent
sheaves. The theory of perverse coherent sheaves is apparently originally due to Deligne,
and has been developed by Bezrukavnikov [6] and Kashiwara [20]. We will need only
a special case of perverse coherent sheaves, which are given by filtrations of dimension.

Definition 3.1.1 A function pW f0; 1; : : : ; ng ! Z is called a perversity function if p

is monotone decreasing, and if xpW f0; 1; : : : ; ng ! Z (called the dual perversity) given
by xp.d/D�d �p.d/ is also monotone decreasing.

In other words we require that p.d/ � p.d C 1/ � p.d/ � 1. Given a perversity
function in the above sense, the function X top! Z;x 7! p.dim x/ is a monotone and
comonotone perversity function in the sense of [6].

Let Ap;�k be the following increasing filtration of Coh X by abelian subcategories:

Ap;�k
DfF 2 Coh X

ˇ̌
p.dim suppF/� �k
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Theorem 3.1.2 [6; 20] If p is a perversity function, then the following pair defines a
bounded t–structure on Db.X /:

Dp;�0
DfE 2Db.X /

ˇ̌
H�k.E/ 2Ap;�k for all k 2 Z

	
(3)

Dp;�0
DfE 2Db.X /

ˇ̌
Hom.A;E/D 0 for all k 2 Z and A 2Ap;�k ŒkC 1�

	
(4)

This description is slightly different to the one given in [6; 20] but easily seen to
be equivalent. Once Dp;�0 is given, Dp;�0 is of course determined as the right-
orthogonal complement of Dp;��1 . Our notation is somewhat intuitive as Ap;�k can
be recovered as A\Dp;�k , which completely determines the t–structure.

Objects in the heart Ap DDp;�0\Dp;�0 are called perverse coherent sheaves.

3.2 Construction of polynomial stability conditions

Definition 3.2.1 A stability vector � is a sequence .�0; �1; : : : ; �n/ 2 .C�/nC1 of
nonzero complex numbers such that �d=�dC1 is in the open upper half plane for
0� d � n� 1.

Given a stability vector � , we call pW f0; 1; : : : ; ng!Z a perversity function associated
to � if it is a perversity function satisfying .�1/p.d/�d 2H for all 0� d � n.

Such p is uniquely determined by p.0/, and given p.0/ such a perversity function
exists if p.0/ is of the correct parity; see Figure 2 for an example on a 5–fold. The

�0

�1

�2

�3

�4

�5

Figure 2: A stability vector with associated perversity function p.0/ D

p.1/D 0 , p.2/D p.3/D�1 , p.4/D p.5/D�2

number p.0/�p.d/ counts how often the piecewise linear path �0! �1! � � � ! �d

crosses the real line. We will construct stability conditions by giving a polynomial
stability functions on Ap .
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In the following, a Weil divisor ! 2A1.X /R is called ample if for any effective class
˛ 2Ad .X /, we have !d �˛ > 0.

Theorem 3.2.2 Let the data �D .!; �;p;U / be given, consisting of

� an ample class ! 2A1.X /R ,
� a stability vector �D .�0; : : : ; �n/,
� a perversity function p associated to � , and
� a unipotent operator U 2A�.X /C (ie U D 1CN where N is concentrated in

positive degrees).

Let Z�W K.X /!CŒm� be the following central charge:

Z�.E/.m/D

Z
X

nX
dD0

�d!
dmd

� ch.E/ �U

Then Z�.E/.m/ is a polynomial stability function for Ap with the Harder–Narasimhan
property.

By Proposition 2.3.3, this gives a polynomial stability condition .Z�;P�/ on Db.X /.

We will drop the subscript � from the notation. In this section we will just prove that
Z is a polynomial stability function according to Definition 2.3.2 with �0D � for some
small constant � � 0. In other words, we have to prove that for every E 2 Ap , we
have Z.E/.m/2 ei� �H for m� 0. The proof of the existence of Harder–Narasimhan
filtrations will be postponed until Section 7.

We start the proof with the following immediate observation:

Lemma 3.2.3 Given a nonzero object E 2Ap , let k be the largest integer such that
H�k.E/¤ 0, and let d be the dimension of support of H�k.E/. Then p.d/D�k ,
the sheaf H�k.E/ has no torsion in dimension d 0 whenever p.d 0/ >�k , and all other
cohomology sheaves of E are supported in smaller dimension.

We call d the dimension of support of E .

Proof By E 2Dp;�0 we have p
�

dim supp H�k.E/.E/
�
� �k . The claim follows

from E 2Dp;�0 and

Hom.Ap;�k�1;H�k.E//D Hom.Ap;�k�1Œk�;H�k.E/Œk�/

D Hom.Ap;�k�1Œk�;E/D 0:
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Choose � > 0 such that .�1/p.d/�d is in the interior of H� D ei� �H for all d ; we
will first show that Z.E/.m/ 2H� for m� 0.

Let k be as in the lemma, and d D dim supp H�k.E/. Since all other cohomology
sheaves of E are supported in lower dimension, we have

.ch.E/ �U /n�d D .�1/k chn�d .H
�k.E//:

Since ! is ample and chn�d .H
�k.E// is effective, the intersection product a WDR

X !d � chn�d .H
�k.E// is positive. Therefore the leading term of Z.E/.m/ is

a.�1/d�dmd . Since a.�1/d�d 2H� , the same must hold for Z.E/.m/ and large m.

3.3 Dual stability condition

Let !X be a local dualizing complex of X , and let

DW Db.X /!D.X /; E 7! RHom.E; !X /

be the associated dualizing functor. Let D be such that !X jX smooth is the shift of a line
bundle by D .

To every polynomial stability condition .Z�;P�/ of Theorem 3.2.2 one can explicitly
construct a stability condition dual to .Z;P/ under D . In the case where X is not
smooth, this will be a stability condition on D.Db.X // rather than Db.X /; however,
its associated heart is still given by a category of perverse coherent sheaves as described
earlier.

Let P W A�.X / ! A�.X / be the parity operator acting by .�1/n�d on Ad .X /.
Given the data � D .!; �;p;U / as in Theorem 3.2.2, we define the dual data
��D .!; ��; xp;U �/ by ��

d
D .�1/DCd�d , U �D .�1/D ch.!X /

�1 �P . xU /. Consider
the central charge Z�� W K.X /!CŒm� defined by the same formula as Z� in Theorem
3.2.2.

Proposition 3.3.1 The central charge Z�� induces a polynomial stability function on
D.Ap/. The induced polynomial stability condition .Z�� ;P��/ is dual to .Z�;P�/
in the following sense:

(a) An object E is .Z�;P�/–stable if and only if D.E/ is .Z�� ;P��/–stable.

(b) If E;F are .Z�;P�/–stable, then

�.E/� �.F / , �.D.E//� �.D.F //:

(c) The Harder–Narasimhan filtration of D.E/ with respect to .Z�� ;P��/ is ob-
tained from that of E with respect to .Z�;P�/ by dualization.

Geometry & Topology, Volume 13 (2009)



2404 Arend Bayer

By the uniqueness of HN filtrations, (a) and (b) imply (c). The proof of (a) and (b) will
also be postponed until Section 7.

4 The large volume limit

Fix ˇ 2A1.X /R and an ample class !0 2A1.X /R . Let �d D�.�i/d=d! and let

U D e�ˇ �
p

td.X /:

Then p.d/D�bd=2c is a perversity function associated to �D .�0; : : : ; �n/, and the
central charge Z DZ� of Theorem 3.2.2 for �D .!; �;p;U / is given by

Z.E/.m/D�

Z
X

e�ˇ�im!
� ch.E/

p
td.X /

This is the central charge Zˇ;m! discussed in Section 1.6 as the central charge at the
large-volume limit.

This stability condition has many of the properties predicted by physicists for the
large volume limit. For example, both skyscraper sheaves of points and �–stable
vector bundles are stable; the prediction that their phases differ by n=2 is reflected by
�.Ox/.C1/D 1 and �.E/.C1/D 1� n=2.

It may be worth mentioning that even for vector bundles and ˇ D 0, stability at the
large volume limit does not coincide with Gieseker-stability. Both stability conditions
are refinements of slope stability, but they are different refinements.

If X is a smooth Calabi–Yau variety, and if 2ˇ D c1.L/ is the first Chern class of a
line bundle L, then the stability condition is self-dual in the sense of Proposition 3.3.1,
with respect to L�1Œn� as dualizing complex.

Now consider the case of a smooth projective surface. Then Ap is the category of
two-term complexes E with H�1.E/ being torsion-free, and H 0.E/ being a torsion
sheaf.

In the case of a K3 surface, the ample chamber is described completely by [10, Propo-
sition 10.3]; and for an arbitrary smooth projective surface, the stability condition
constructed in [1, Section 2] are also part of the ample chamber. The following
proposition gives a precise meaning to the catch phrase “polynomial stability conditions
at the large volume limit are limits of Bridgeland stability conditions in the ample
chamber”:

Geometry & Topology, Volume 13 (2009)



Polynomial Bridgeland stability conditions and the large volume limit 2405

Proposition 4.1 Let S be a surface, ˇ 2 A1.X /R be a divisor class, ! 2 A1.X /Q
a rational ample class, and let �;p be as above. Consider either of the following
situations:

(a) S is a K3 surface; let .Zm;Pm/ be the stability condition constructed in [10]
from ˇ and ! D n �!0 (assuming !2 > 2), and let .Z;P/ be the polynomial
stability condition constructed from the data �.

(b) S is a smooth projective surface; let .Zm;Pm/ be the stability condition con-
structed in [1] from ˇ and !D n �!0 , and let .Z;P/ be the polynomial stability
condition constructed from �0 D .!; �;p;U D e�ˇ/.

Then E 2Db.S/ is .Zm;Pm/–stable for m� 0 if and only if it is .Z;P/–stable. If
E 2Db.S/ is an arbitrary object, then the HN-filtration of E with respect to .Z;P/
is identical to the HN-filtration with respect to .Zm;Pm/ for m� 0.

In either case, the stability function is of the form

(5) Z.E/.m/D ch0.E/!
2
�
m2

2
C i

�
! ch1.E/� ch0.E/ˇ!

�
mC c.E/

for some real constant c.E/. Let �! D ch1.E/ �!=ch0.E/ be the slope function for
torsion-free sheaves on S defined by ! .

Lemma 4.2 Let E 2Db.S/ be a .Z;P/–semistable object with 0��.E/� 1. Then
E satisfies one of the following conditions:

(a) E is a �! –semistable torsion sheaf.

(b) E is a torsion-free �! –semistable sheaf with �!.E/ > ˇ �! .

(c) H�1.E/ is torsion-free �! –semistable sheaf of slope �!.H�1.E// � ˇ �! ,
H 0.E/ is zero-dimensional, and all other cohomology sheaves vanish.

Proof Note that such an E satisfies E 2Ap or E 2Ap Œ�1�, as Ap D P..1
4
; 5

4
�/.

If E 2Ap Œ�1�, then H 1.E/ is a torsion sheaf by the definition of Ap . In fact, H 1.E/

has to vanish: otherwise �.H 1.E//� 1, and because of �.EŒ1�/D �.E/C1� 1 the
surjection EŒ1�� H 1.E/ would destabilize EŒ1� in Ap . Hence E is a torsion-free
sheaf. Further, E must be �! –semistable: for any surjection E � B with B torsion-
free and �!.E/ > �!.B/, the surjection that EŒ1�� BŒ1� would destabilize EŒ1� in
Ap . Since �.EŒ1�/� 1, we must have =.Z.E/.m/ < 0 for m� 0; this is equivalent
to ! ch1.EŒ1�/� ch0.EŒ1�/ˇ! < 0 or �!.E/ > ˇ �! .
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Similarly, one shows that if E 2Ap and H�1.E/ does not vanish, then it is torsion-
free and �! –semistable of slope �!.H�1.E//� ˇ �! . Also, H 0.E/ is of dimension
zero: otherwise �.H 0.E//.C1/D 1

2
, in contradiction to �.E/.C1/D 1 and the

surjection E � H 0.E/ in Ap .

Finally, if E 2Ap and H�1.E/ vanishes, then E is a torsion sheaf, which is easily
seen to be �! –semistable.

One-dimensional torsion sheaves

Zero-dimensional
torsion sheaves
E of type (c) E of type (b)

Figure 3: Asymptotic directions of Z.E/ for Z –stable objects E 2A.ˇ; !/

Proof of Proposition 4.1 Let AD P..0; 1�/. We first show that A is identical to the
heart A.ˇ; !/ defined in [10, Lemma 6.1], respectively A]

.D;F /
defined in [1, Section 2].

Recall that A.ˇ; !/ is characterized as the extension-closed subcategory of Db.S/

generated by torsion sheaves, by �! –semistable sheaves F of slope �!.F / > ˇ �! ,
and by the shifts F Œ1� of �! –semistable sheaves F of slope �!.F /� ˇ �! .

Since A.ˇ; !/ is extension-closed and every E in the above list is an element of
A.ˇ; !/, it follows that A�A.ˇ; !/. As both categories are the heart of a bounded
t–structure, they must be equal.

The first statement of the Proposition thus simplifies to the claim that an object E 2A
is Z–stable if and only if E is Zm –stable for m � 0. By definition, we have
�.E/� �.F / if and only if �m.E/D �.E/.m/ > �m.F /D �.F /.m/ for m� 0; in
particular, if E 2A is Z–unstable, then it will be Zm –unstable for m� 0.

Conversely, assume that E is Z–semistable. In case (a) of the lemma, E is Zm –stable
for all m. We now assume case (c); case (b) can be dealt with similarly. We need to
show the following: Given E , there is a constant M such that whenever A ,!E � B

is a short exact sequence in A, then �.E/.m/� �.B/.m/ for all m�M .

If B is a zero-dimensional torsion sheaf, the claim is evidently satisfied. Otherwise
write E WDH�1.E/, B WDH�1.B/; let F be the image of the induced map E!B , and
G the cokernel. The induced map G ,!H 0.A/ has zero-dimensional cokernel; hence
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ˇ �! < �!.H
0.A//D �!.G/. Since E surjects onto F , we have �!.E/ � �!.F/.

Combined with the definition of A.ˇ; !/, we obtain

(6) �!.E/� �!.B/� ! �ˇ:

Since Z.B/.m/ and Z.E/.m/ are in the semiclosed upper half plane H for all m,
the assertion is equivalent to =

�
Z.E/.m/Z.B/.m/

�
� 0. Using Equation (5) with

ch0.E/D� rk.E/ and ch1.E/D� ch1.E/ etc., this can be simplified to:

!2m2

2

�
�!.B/��!.E/

�
�

c.B/

rk.B/
�
ˇ! ��!.E/

�
�

c.E/

rk.E/
�
ˇ! ��!.B/

�
By inequality (6), all the expressions in parentheses are nonnegative. Since E is
Z–semistable, the inequality is satisfied for m� 0; in particular, in the case �!.B/D
�!.E/ it holds for all m. Excluding this case, the claim follows if we can bound
�!.B/��!.E/ from below by a positive constant and c.B/=rk.B/ from above.

If GD0, then the rank of B is bounded above. By the rationality of ! , the set of possible
values of ! � ch1.B/ is discrete, giving a positive lower bound for �!.B/��!.E/.
Otherwise, the lower bound follows from �!.G/ > ˇ �! and the upper bound on the
rank of F .

To prove the upper bound of c.B/=rk.B/, we restrict to the case (b) of the proposition.
Case (a) can be proved similarly (and similarly to the proof of [10, Proposition 14.2]);
the argument is similar to the proof of the existence of stability conditions in [1,
Section 2].

It is sufficient to bound the number c.Bj /=rk.Bj / for every HN filtration quotient Bj

of B with respect to Z , and Bj D H�1.Bj /. Then Bj is �! –semistable, and its
slope still satisfies the inequality

(7) �!.E/� �!.Bj /� ˇ �!:

Using the Bogomolov–Gieseker inequality for ch2.Bj /, we get:

c.Bj /D�e�ˇ � ch.Bj /D ch2.Bj /� ch2.H
0.Bj //�ˇ � ch1.Bj /C rk.Bj /

ˇ2

2

�
ch1.Bj /

2

2 � rk.Bj /
�ˇ � ch1.Bj /C rk.Bj /

ˇ2

2
;

c.Bj /

rk.Bj /
�

1

2

�
ch1.Bj /

rk.Bj /
�ˇ

�2

Due to inequality (7) and the Hodge index theorem, this number is bounded from
above.
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It remains to show the statement about the Harder–Narasimhan filtrations. It is enough
to show this for E 2 A, as we already showed P..0; 1�/ D A D Pm..0; 1�/. Let
A1;A2; : : : ;An be the Harder–Narasimhan filtration quotients of E with respect to P .
Then the claim follows if m is big enough such that every Aj is Zm –semistable, and
such that �.A1/.m/ > �.A2/.m/ > � � �> �.An/.m/.

5 X as the moduli space of stable point-like objects

As a toy example of moduli problems in the derived category we will show that in
the smooth case, the moduli space of stable point-like objects is given by X itself. It
shows that all our polynomial stability conditions are “ample” in the sense of the ample
chamber in the introduction.

Given a polynomial stability condition .Z;P/ on X , a family of stable objects over
S is an object E 2 Db.X � S/ such that for every closed point s 2 S , the object
Li�s E 2Db.X / is .Z;P/–stable. Since Ext<0.E;E/D 0 for any stable object, it is
known that the moduli problem of stable objects is an abstract stack (see Lieblich [23,
Proposition 2.1.10] for a precise statement and references). However, in general it is
not known whether this stack is an algebraic Artin stack; see Toda [35] for a proof in a
large class of examples.

Let c be a class in the numerical K–group. By some abuse of notation, we denote by
Mc.Z;P/ the substack of .Z;P/–stable objects such that Li�s E is an element of Ap

and of class c .

Proposition 5.1 Assume that X is a smooth projective variety over C . Let .Z;P/
be any of the polynomial stability conditions constructed in Theorem 3.2.2 that has
p.0/D 0. The moduli stack MŒOx �.Z;P/ of stable objects of the class of a point is
isomorphic to the trivial C�–gerbe X=C� over X .

The assumption ensures that every skyscraper sheaf Ox is an objects of Ap (otherwise
the same would be true after a shift, and we might have to replace ŒOx � by �ŒOx � in
the proposition).

Proof If A ,! Ox � B is a short exact sequence in Ap , then the long exact
cohomology sequence combined with Lemma 3.2.3 shows that H k.A/D 0DH k.B/

for k ¤ 0, and so AŠOx or B ŠOx . Hence every Ox is stable.

Conversely, let E 2Ap be any object with ŒE�D ŒOx �. From Lemma 3.2.3 it follows
that H k.E/D 0 for k ¤ 0, and hence E ŠOx for some x 2X .
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Hence the map X!MŒOx �.Z;P/ given by the structure sheaf of the diagonal in X�X

is bijective on closed points. By the deformation theory of complexes (see Lieblich [23,
Section 3] or Inaba [18]) and TxX Š Ext1.Ox;Ox/, it induces an isomorphism on
tangent spaces. Since X is smooth, the map is surjective.

6 Wall-crossings: The PT/DT–correspondence and 1–dimen-
sional torsion sheaves

In [30], Pandharipande and Thomas introduced new invariants of smooth projective
threefolds. They are obtained from moduli spaces of stable pairs constructed by Le
Potier in [22]; in their context, a stable pair is a section sW OX ! F of a pure one-
dimensional sheaf F that generically generates F .

In the Calabi–Yau case, the authors conjecture that the generating function of stable
pairs invariants equals the reduced generating function of Donaldson–Thomas invariants
introduced in [27]. A heuristic justification of the conjecture was given in [30, Section
3.3] by interpreting the formula as a wall-crossing formula under a change of Bridgeland
stability conditions, assuming the existence of certain stability conditions.

With Proposition 6.1.1, we will show that this wall-crossing can actually be achieved
in a family of polynomial stability conditions, thus making the heuristic justification
one step more rigorous.

Further, in the subsequent article [31], the authors give a new geometric definition of
BPS state counts. It relies on a relation between invariants of stable pairs and invariants
of one-dimensional torsion sheaves (see [31, Proposition 2.2]). In Section 6.2, we
show that this relation can similarly be interpreted as a wall-crossing in our family of
polynomial stability condition; in fact the wall-crossing formula is much simpler than
in the case of the PT/DT–correspondence.

We refer to [36] for a similar use of a wall-crossing to relate (differently defined) BPS
state counts on birational Calabi–Yau threefolds.

6.1 PT/DT–correspondence

Let X be a smooth complex threefold. Fix an ample class ! 2A1
R , and let p be the

perversity function p.d/ D �bd
2
c. Then the category of perverse coherent sheaves

Ap can be described explicitly: a complex E 2Db.X / is an element of Ap if

� H i.E/D 0 for i ¤ 0;�1,
� H 0.E/ is supported in dimension � 1, and
� H�1.E/ has no torsion in dimension � 1.
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Consider stability vectors � such that p is an associated perversity function, ie �0; �1 2

H and �2; �32�H . Let U be arbitrary, and consider the polynomial stability functions
given by

Z.E/.m/D

3X
dD0

�dmd!d
� ch.E/ �U:

We further assume �.��3/ > �.�1/. We call it a DT–stability function if �.��3/ >

�.�0/ and a PT–stability function if �.�0/ > �.��3/; see Figure 4.

��2

��3

�0

�1

�2

�3

(a) DT–stability

��2

�0

��3

�1

�2

�3

(b) PT–stability

Figure 4: PT/DT wall-crossing

If ! is the class of an ample line bundle L, U D td X and h.E/.m/D
P3

dD0 admd

is the Hilbert polynomial of E with respect to L, then the central charges can also be
written as the complexified Hilbert polynomial Z.E/.m/D

P3
dD0 d!�dadmd .

Fix numerical invariants ˇ 2 Anum
1

and n 2 A0 Š Z. We consider the moduli prob-
lem M 0

.�1;0;ˇ;n/
.Z;P/ of Z–stable objects in Ap with trivialized determinant and

numerical invariants in Anum
� given by ch.E/D .�1; 0; ˇ; n/.

Proposition 6.1.1 Let S be of finite type over C , and I 2Db.X�S/ be an object with
ch.Is/D .�1; 0; ˇ; n/ for every closed point s 2 S , and with trivialized determinant.

If Z is a DT–stability function, then I is a Z–stable family of objects in Ap if and
only if it is quasi-isomorphic to the shift J Œ1� of a flat family of ideal sheaves of
one-dimensional subschemes.

If Z is a PT–stability function and ˇ ¤ 0, then I 2Db.X �S/ is a Z–stable family
of objects in Ap if and only if it is quasi-isomorphic to the complex OX�S !F (with
F in degree zero) of a family of stable pairs as defined in [22; 30].
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Thus in both cases we get an isomorphism of moduli spaces of ideal sheaves/stable
pairs with the moduli space M 0

.�1;0;ˇ;n/
.Z;P/ of Z–stable objects with trivialized

determinant.

If ˇ D 0 and Z is a PT–stability function, then the only semistable object is OX Œ1�

of class .�1; 0; 0; 0/. This does not agree with the definition of stable pairs, but does
give the correct generating function, so that the conjectured wall-crossing formula of
[30] holds for all ˇ .

Proof Let Z be a DT–stability function, and let assume that I is a family of sta-
ble objects. If for any closed point s 2 S , we would have both H�1.Is/ ¤ 0 and
H 0.Is/¤ 0, then the short exact sequence

H�1.Is/Œ1�! Is!H 0.Is/

would destabilize Is : for large m, the phase of Z.H�1.Is/Œ1�/.m/ is approaching
�.��2/ or �.��3/ (depending on the dimension of support of Is ); while the phase
of Z.H 0.Is//.m/ is approaching �.�1/ or �.�0/. Hence I is the shift of a flat
family J of sheaves of rank one.4 To be both stable and an element of Ap , it has
to be torsion-free. Its double dual is locally free by [21, Lemma 6.13]. Since J has
trivialized determinant, the double dual J �� is the structure sheaf OX�S ; the natural
inclusion J ,!J �� exhibits J as a flat family of ideal sheaves. Conversely, any such
flat family of ideal sheaves gives a family of stable objects in Ap .

(In fact, the DT–stability conditions are obtained from the stability conditions of
Section 2.1 corresponding to Simpson stability by a rotation of the complex plane and
accordingly tilting the heart of the t–structure. Hence the stable objects are exactly the
shifts of Simpson-stable sheaves; their moduli space is well-known to be isomorphic to
the Hilbert scheme.)

Now let Z be a PT–stability function. We have to show that Is is stable for all s if
and only if I is quasi-isomorphic to a family of stable pairs: a complex OX�S ! F
such that

(1) F is flat over S , and

(2) OX ! Fs is a stable pair for all s 2 S .

4Here, and again later in the proof of the PT-case, we are using the following standard fact (cf [16,
Lemma 3.31]): If I is a complex on X �S such that for every closed point s 2 S , the derived pullback
Is is a sheaf, then I is a sheaf, flat over S .
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Given such a family of stable pairs, the associated complex is a family of objects in
Ap with trivialized determinant.

First assume that I is Z–stable. By the same argument as in the DT-case, H 0.Is/

must be zero-dimensional, and H�1.Is/Œ1� torsion-free of rank one with trivialized
determinant.

It follows that Q WDH 0.I/ is zero-dimensional over S , and that H�1.I/ is a torsion-
free rank one sheaf with trivialized determinant. Let U �X �S be the complement
of the support of Q, and let IU WD I jU Œ�1� be the restriction of I Œ�1� to U . Then
the derived pullback of IU to every fiber over s 2 S is a sheaf; so IU ŠH�1.I/jU is
itself a sheaf, flat over S . Hence H�1.I/ is flat over S outside a set of codimension 3.

By the same arguments as in the proof of [30, Theorem 2.7] it follows that H�1.I/

is a family of ideal sheaves JZ of one-dimensional subschemes of X . The complex
I is the cone of a map Q ! JZ Œ2�. Since Q is zero-dimensional over S , we
have Ext1.Q;OX�S /D 0D Ext2.Q;OX�S /; combined with the short exact sequence
JZ !OX�S !OZ , we get a unique factorization Q!OZ Œ1�! JZ Œ2�. Using the
octahedral axiom associated to this composition, we see that I is the cone of a map
OX�S ! F , where F (in degree zero) is the extension of OZ and Q given as the
cone of the map Q!OZ Œ1� above.

It remains to prove that Is is Z–stable if and only if OX !Fs is a stable pair. Assume
that Is is Z–stable, and note that �.Is/.C1/D �.��3/.

Since ˇ ¤ 0, the sheaf Fs is one-dimensional. It cannot have a zero-dimensional
subsheaf Q ,!Fs , as this would induce an inclusion Q ,! Is in Ap , destabilizing Is

due to �.Q/D �.�0/ > �.��3/. Thus Fs is purely one-dimensional, and OX ! Fs

is stable by [30, Lemma 1.3].

Conversely, assume that Is is a stable pair. Consider any destabilizing short exact
sequence A ,! Is � B in Ap with �.A/ � �.Is/ � �.B/, and its long exact
cohomology sequence

H�1.A/ ,!H�1.Is/!H�1.B/!H 0.A/!H 0.Is/� H 0.B/:

If H�1.A/ ,!H�1.Is/ is a proper inclusion, then H�1.B/ is supported in dimension
2, and we get the contradiction �.B/.C1/ D �.��2/ > �.Is/.C1/. So either
H�1.A/ D H�1.Is/ or H�1.A/ D 0. In the former case, H�1.B/ D 0; since
BDH 0.B/ is supported in dimension zero, we get the contradiction �.B/D �.�0/ >

�.Is/.C1/. In the latter case, ADH 0.A/ must be zero-dimensional to destabilize
Is ; by the purity of Fs , this implies Hom.A;Fs/D 0. Together with Ext1.A;OX /D 0

and the exact triangle Fs! Is!OX Œ1�, this shows the vanishing of Hom.A; Is/.
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The reason to expect a wall-crossing formula in a situation as above is the following:
Denote by ZPT a PT–stability function, and by ZDT a DT–stability function. If E

is ZPT –semistable but ZDT –unstable, then we can write E as an extension of ZDT –
semistable objects (by the existence of Harder–Narasimhan filtrations); and conversely
for ZDT –semistable but ZPT –unstable objects. Hence one can expect an expression for
the difference between the counting invariants of ZDT – respectively ZPT –semistable
objects in terms of lower degree counting invariants. This observation (due to Joyce [19])
can be made more concrete and precise in the situation considered below.

6.2 Stable pairs and one-dimensional torsion sheaves

Let X be a Calabi–Yau threefold, and ˇ; n as before. By a counting invariant we will
always denote the signed weighted Euler characteristic (in the sense of [5]) of a moduli
space of stable objects of some fixed numerical class, and with trivialized determinant.

In the very recent preprint [31], the authors give a new geometric description of BPS
state counts for irreducible curve classes on X . They use the counting invariants Nn;ˇ

of the moduli spaces Mn.X; ˇ/ of stable one-dimensional torsion sheaves of class
.0; 0; ˇ; n/. At the core of their argument is the following relation: if ˇ is an irreducible
effective class and Pn.X; ˇ/ denotes the counting invariant of stable pairs of class
.�1; 0; ˇ; n/, they prove that

(8) Pn.X; ˇ/�P�n.X; ˇ/D .�1/n�1nNn;ˇ:

To make the subsequent discussion more specific, we fix �0 2R>0 � .�1/, �1 2R>0 � i ,
�2 2R>0 . We keep !;p , and in particular continue to work with the same category of
perverse coherent sheaves Ap . Assume that P . xU /DU , eg U 2Aeven.X /R . For a>0

write Za for the polynomial stability function on Ap obtained from �3 D�b � i C a

(for some b > 0), and similarly Z�a for �3 D�b � i � a; see also Figure 5.

Then Za is a “PT–stability function” (in the terminology of the previous section), hence
the stable objects of class .�1; 0; ˇ; n/ are the stable pairs I ŠOX ! F . If we cross
the wall aD 0 (the large volume limit), then short exact sequence F ! I !OX Œ1�

destabilizes I for a< 0.

Let D be the dualizing functor E 7!RHom.E;OX Œ2�/. Then the polynomial stability
condition obtained from Za is dual to that of Z�a ; this can be seem from Proposition
3.3.1 and the fact that in our case Ap is a tilt of Ap� , compatible with the stability
condition.

It follows that if a< 0, then the stable objects of same class are the derived duals of
stable pairs of class .�1; 0; ˇ;�n/; their counting invariant is thus given by P�n.X; ˇ/.
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Figure 5: Wall-crossing between PT invariants and BPS state counts

If we additionally assume that ˇ is irreducible, then F is stable for both Za and Z�a ,
and the short exact sequence F! I!OX Œ1� is the HN filtration with respect to Z�a

of a stable pair I . Conversely, the dual short exact sequence OX Œ1�D D.OX Œ1�/!

D.I/!D.F / will be the HN filtration of D.I/ with respect to Za (where D.F / is
a stable sheaf of class .0; 0; ˇ; n/). Hence the wall-crossing formula can be written
schematically as

Pn.X; ˇ/�P�n.X; ˇ/D ]
�
Extensions of OX Œ1� with F

�
� ]
�
Extensions of F 0 with OX Œ1�

�
;

where F ;F 0 can be any stable sheaf of class .0; 0; ˇ; n/.

If the dimensions of Ext1.OX Œ1�;F/ D H 0.F/ and Ext1.F 0;OX Œ1�/ D H 1.F 0/�
were constant, then the moduli spaces of extensions would be projective bundles
over Mn.X; ˇ/; in this case, formula (8) would follow immediately. Without this
simplifying assumption, one can still hope to prove formulas such as (8) using a
stratification of the moduli spaces and the formalism of [5]. In fact, the proof in
[31] exactly follows this general principle, the key ingredient being a control of the
constructible functions of [5] by [31, Theorem 3].

7 Existence of Harder–Narasimhan filtrations

In this section we will prove that the category of perverse coherent sheaves has the
Harder–Narasimhan property for the polynomial stability function Z defined in Theo-
rem 3.2.2. The proof is complicated by the fact that Ap is in general neither Z–Artinian
nor Z–Noetherian.
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7.1 Perverse coherent sheaves and tilting

Essential for the proof is a more detailed understanding of the category of perverse
coherent sheaves, more precisely the existence of certain torsion pairs in that category.
We recall briefly the notion of a torsion pair and a tilt of a t–structure:

Definition 7.1.1 A torsion pair in an abelian category A is a pair of full subcategories
T ;F such that

(a) Hom.T;F /D 0 for all T 2 T and F 2 F , and

(b) for every E 2A there is a short exact sequence T ,!E � F in A with T 2 T
and F 2 F .

If .T ;F/ satisfy both conditions, then T;F are uniquely determined by E . They
depend functorially on E , and the functors E 7! T and E 7! F are left-exact and
right-exact, respectively.

Now assume A is the heart of a bounded t–structure in a triangulated category D , with
associated cohomology functors H i

AW D!A. Given a torsion pair T ;F in A, then
the following defines the heart A] of a related t–structure (called the tilt of A; see
Happel, Reiten and Smalø [15]): An object A is in A] if

H 0
A.A/ 2 T ; H�1

A .A/ 2 F and H i
A.A/D 0 if i ¤ 0;�1.

The new heart A] evidently satisfies A] � hA;AŒ1�i, and on the other hand every
heart of a bounded t–structure with this property is obtained as a tilt. This is shown by
the following lemma, which is a slight reformulation of a lemma in [32]:

Lemma 7.1.2 Let A;A] be the hearts of bounded t–structures in a triangulated
category D . If they satisfy A] � hA;AŒ1�i (or, equivalently, A � hA];A]Œ�1�i),
then

T WDA\A]; F WDA\A]Œ�1�

defines a torsion pair in A, the heart A] is obtained from A by tilting at this torsion
pair, and F Œ1�; T is a torsion pair in A] .

Proof If .D�0;D�0/ and .D];�0;D];�0/ are the two t–structures, either assumption
is equivalent to either of the following equivalent assumptions:

D�0
�D];�0

�D��1 or D�0
�D];�0

�D��1

This is the assumption of [32, Lemma 1.1.2].
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Now consider a perversity function p and any k 2 Z such that k D�p.d/ for some
0� d � n. Consider the function pk W f0; : : : ; ng defined by

pk.d/D

(
p.d/ if p.d/� �k;

p.d/C 1 if p.d/ < �k:

Then pk.d/ is a perversity function, and the hearts of perverse coherent sheaves
Apk

;Ap satisfy the assumptions of the lemma. Hence

Fk DAp
\Apk

; Tk DAp
\Apk

Œ1�

defines a torsion pair in Ap .

From the definition of the t–structures in Theorem 3.1.2, and from Lemma 3.2.3, it can
easily be seen that the torsion pairs can be described as below:

Proposition 7.1.3 Let p be a perversity function and k 2 Z such that p.0/� �k >

p.n/. There is a torsion pair .Tk ;Fk/ in Ap defined as follows:

Fk DfE 2Ap
ˇ̌
H�k0.E/D 0 for k 0 > k

	
Tk DfE 2Ap

ˇ̌
H�k0.E/ 2Ap;�k0�1 for k 0 � k

	
The subcategory Fk is closed under subobjects and quotients.

The only thing left to prove is the statement about Fk . It is always the case for a torsion
pair that F is closed under subobjects and T under quotients. That Fk is additionally
closed under quotients follows easily from the long exact cohomology sequence.

We denote by �k
T W Ap! Tk and �k

F W Ap! Fk the associated functors; then for any
short exact sequence A ,!E � B in Ap there is a (not very) long exact sequence

(9) �k
T A ,! �k

T E! �k
T B! �k

FA! �k
FE � �k

FB:

Note that �k
F will in general not coincide with the truncation functor ���k of the

standard t–structure; in fact, given E 2Ap there is no reason why ���k.E/ should
also be an object of Ap .

7.2 Dual stability condition

The proof in the following section is substantially simplified by the use of the dual
stability condition constructed in Proposition 3.3.1. To use it, we need a partial proof
of the duality here.

It is constructed from the dual t–structure. Let !X ;D;D be as in Section 3.3.
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Proposition 7.2.1 [6] Let p be a perversity function, and xp the dual perversity
function (cf Definition 3.1.1); let p� D xpCD� n be the dual perversity normalized
according to the choice of !X . Define Dp�;�0;Dp�;�0�D.Db.X // by the analogues
of Equations (3) and (4), respectively. Then the t–structures associated to p;p� are
dual to each other with respect to D :

D.Dp;�0/DDp�;�0 and D.Dp;�0/DDp�;�0

By abuse of notation, we write Ap� for the intersection Dp�;�0\Dp�;�0�D.Db.X //.

Lemma 7.2.2 Given � and �� as in Proposition 3.3.1, Z�� is a polynomial stability
function for the category of perverse sheaves Ap� of the dual perversity. If �; �� are
the polynomial phase functions of Ap;Z� and Ap� ;Z�� , respectively, then

(10) �.E1/� �.E2/ , �.D.E2//� �.D.E1//:

An object E 2Ap is Z�–stable if and only if D.E/ 2Ap� is Z�� –stable.

Proof Since ch.D.E//D P .ch.E// � ch.!X /, we have

Z��.D.E///.m/D

Z
X

nX
dD0

.�1/dCD
S�d!

dmd
�P .ch.E// ch.!X /

� .�1/D ch.!X /
�1P . xU /

D

Z
X

nX
dD0

mdP .S�d!
d /P .ch.E//D .�1/nZ.E/.m/:

This shows that Z�� is a polynomial stability function, as Z��.D.E/.m// is in the
interior of .�1/nC1e�i� �H whenever Z�.E.m// is in the interior of ei� �H; it also
shows the equivalence (10).

Since D turns inclusions E1 ,!E2 in Ap into quotients D.E2/� D.E1/ in Ap� ,
and vice versa, this also implies the claim about stable objects.

The lemma yields part (a) and (b) of Proposition 3.3.1.

7.3 Induction proof

Lemma 7.3.1 Consider the quotient category Ap;DkDAp;�k=Ap;�k�1ŠFk=Fk�1

and let Z0W K.Ap;Dk/!CŒm� be the restricted stability function defined by

Z0.E/.m/D

Z
X

X
d2f0;:::;ng
p.d/D�k

�d!
dmd

� ch.E/ �U:

Then Ap;Dk is Noetherian and strongly Z0–Artinian.
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Here “strongly Z0–Artinian” says that there is no sequence of inclusions

: : : ,!EjC1 ,!Ej ,! : : : ,!E2 ,!E1

as in Proposition 2.3.4 with the weaker assumption �.EjC1/� �.Ej / for all j .

Proof For both statements, the proof is almost identical to the proof of the same
statement for AD Coh X and Simpson stability. We will prove that the category is
strongly Z0–Artinian.

Consider an infinite sequence of inclusions as above. Since the dimension of the
support of Ej is decreasing, we may assume it is constant, equal to d . Similarly,
we may assume that the lengths of Ej at the generic points of the (finitely many)
d –dimensional components of its support are constant. In particular the leading term of
Z0.Ej /.m/ given by !d �chn�d .Ej /�d �m

d is constant. The quotient Bj DEj=EjC1

is supported in strictly smaller dimension d 0<d . Hence the leading term of Z0.Bj /.m/

is a positive linear multiple of �d 0m
d 0 . This implies �.E/.C1/D �.�d / < �.�d 0/D

�.B/.C1/, since p.d 0/D p.d/ and p is a perversity function associated to � . Thus
�.Ej /� �.Bj /, in contradiction to �EjC1

� �Ej
and the see-saw property.

We now come to the main proof. As mentioned before, we can’t apply Proposition 2.3.4.
Nevertheless, our proof follows Bridgeland’s proof of the corresponding statement [9,
Proposition 5.3] quite closely:

Step 1 Every nonsemistable E 2Ap has a semistable subobject A ,!E such that
�.A/� �.E/, and a semistable quotient E � B with �.E/� �.B/.

Step 2 Every object E has a maximal destabilizing quotient (mdq) E � B .

Step 3 Let EjC1 ,!Ej ,! : : : ,!E1 be the sequence of inclusions in Ap determined
by Bj being the mdq of Ej , and EjC1 being the kernel of the surjection Ej � Bj .
Then this sequence terminates.

A mdq is a quotient E � B such that for every other quotient E � B0 , we have
�.B0/ � �.B/, and such that equality holds if and only if the quotient factors via
E � B � B0 . The proof of [9, Proposition 5.3] shows that the existence of Harder–
Narasimhan filtrations is equivalent to the existence of a mdq for every object, and the
termination of the sequence defined in Step 3.

Step 1 Define a sequence of inclusions as follows: If Ej is not semistable, then among
all subobjects A ,!Ej with �.A/� �.Ej /, let EjC1 be one such that the dimension
of support d.Bj / of Bj is maximal, where Bj is the cokernel of EjC1 ,! Ej . It
suffices to prove that this sequence terminates.
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By the definition of EjC1 , the sequence d.Bj / of dimension of support is monotone
decreasing. By induction, we just need to show that any such sequence with d.Bj /D d

for all j must terminate.

Let kD�p.d/, and consider the functors �k
T ; �

k
F of Proposition 7.1.3. Since Bj 2 Fk ,

we have �k
T .Bj /D 0. By the exact sequence (9), this shows that �k

T .EjC1/D �
k
T

T .Ej /

and that
0! �k

F .EjC1/! �k
F .Ej /! Bj ! 0

is exact. Taking cohomology, we get an induced short exact sequence

0!H�k.�k
F .EjC1//!H�k.�k

F .Ej //!H�k.Bj /! 0

in Ap;Dk . From the lemma it follows that there must be a j0 with

�.�k
F .Ej0C1//� �.�

k
F .Ej0

//� �.Bj0
/:

By the see-saw property, �k
T Ej0

is another subobject of Ej0
with �.�k

T Ej0
/� �.Ej0

/.
By the definition of Ej0C1 , this implies d.�k

F .Ej // D d.Bj / for j D j0 , and thus
also for all j > j0 , which is impossible.

This shows that every object has a semistable subobject as desired. By applying the
same arguments to the dual perversity and dual stability function, this also shows that
every object has a semistable quotient as claimed.

Step 2 We will prove Steps 2 and 3 in a two-step induction: To prove Step 2 for an
object supported in dimension d , we assume that Steps 2 and 3 have been proven for
objects supported in dimension at most d � 1. To prove Step 3, we will assume that
Step 2 has been proven in dimension d , and that Step 3 has been proven in dimension
d � 1. The reason this induction works well is that the subcategory of Ap of objects
supported in dimension at most d is closed under subquotients.

To prove Step 2, we will instead show the dual statement: Every object has a minimal
destabilizing subobject (mds), ie a subobject A ,!E such that for every A0 ,!E we
have �.A/� �.A0/, with equality if and only if there is a factorization A0 ,!A ,!E .

Let E1 2Ap be supported in dimension d , and let k D�p.d/. Define the sequence
of objects Ej as follows:

(1) If Ej is semistable, stop.

(2) If there is a semistable quotient Ej �Bj with �.Ej /��.Bj / and H�k.Bj /¤

0, then let EjC1 be its kernel.

(3) Otherwise, let Bj be the maximal destabilizing quotient of �k�1
F Ej , which exists

by induction; and EjC1 be the kernel of the composition Ej � �k�1
F Ej � Bj .
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If neither case (1) nor (2) applies, there must be a semistable quotient E � B with
�.E/��.B/ and H�k.B/D0. Then the quotient must factor as E � �k�1

F Ej � B .
Then the mdq Bj of �k�1

F Ej satisfies �.B/� �.Bj / by definition.

Hence both in case (2) and (3), we have a short exact sequence EjC1 ,!Ej � Bj

with Bj semistable and �.Ej / � �.Bj /. By the arguments dual to those given by
Bridgeland, a mds of EjC1 is also be a mds of Ej , and if Ej is semistable it is its
own mds. So we just need to prove that the above algorithm terminates.

By the lemma, case (2) will only happen a finite number of times. However, in case (3)
we get a short exact sequence

�k�1
F EjC1 ,! �k�1

F Ej � Bj ;

where Bj is the mdq of �k�1
F Ej . By the induction assumption about Step 3, this

sequence must terminate as well.

Finally, note that if E is supported in dimension d , then so is D.E/. Again we can use
the same arguments in the dual setting and prove the existence of an mdq for objects
supported in dimension d as well.

Step 3 Let k D �p.dim E1/. Again, by Lemma 7.3.1, the sequence of inclusions
H�k.EjC1/ ,! H�k.Ej / will become an isomorphism in the quotient category
Ap;Dk after a finite number of steps. Then H�k.Bj / is in A0;�k�1 ; by Lemma 3.2.3
it must be zero. So Bj 2Fk�1 , and the quotient must factor via Ej � �k�1

F Ej � Bj .
Then Bj must be the mdq of �k�1

F Ej , and by induction we know that the sequence of
inclusions will terminate.

This finishes the proof of Theorem 3.2.2.

8 The space of polynomial stability conditions

In this section, we will describe to what extent Bridgeland’s deformation result for
stability conditions carries over to polynomial stability conditions. We will first intro-
duce a natural topology on the space of polynomial stability conditions (with respect
to which the stability conditions of Theorem 3.2.2 form a “family”).

We will also briefly discuss what assumptions are necessary to proof a deformation
result comparable to [9, Theorem 1.2].

We will omit most proofs; after having adjusted all necessary definitions, they carry
over almost literally from Bridgeland’s proofs.
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8.1 The topology

We continue with the following translations of definitions of [9] to our situation:

Definition 8.1.1 If the triangulated category D is linear over a field, a polynomial
stability condition .Z;P/ on D is called numerical if ZW K.D/!CŒm� factors via
N .D/, the numerical Grothendieck group.

Let StabPol.D/ be the set of stability conditions on D , and StabPol
N .D/ the subset of

numerical ones.

By a semimetric on a set † we denote a function d W †�†! Œ0;1� that satisfies the
triangle inequality and d.x;x/ D 0, but is not necessarily finite or nonzero for two
distinct elements. Similarly, we call a function k � kW V ! Œ0;1� on a vector space a
seminorm if it satisfies subadditivity and linearity with respect to multiplication with
scalars.

Bridgeland introduced the following semimetric on the space of R–valued slicings:

For any X 2 D and an R–valued slicing, let ��P .X / and �CP .X / be the smallest
and highest phase appearing in the Harder–Narasimhan filtration of X according to
Definition 2.2.1(c), respectively. Then d.P;Q/ 2 Œ0;1� is defined as

d.P;Q/D sup
0¤X2D

˚ˇ̌
��P .X /��

�
Q.X /

ˇ̌
;
ˇ̌
�CP .X /��

C
Q .X /

ˇ̌	
:

Via the projection � W S !R; � 7! �.C1/, we can pull back d to get a semimetric
dS on the space of S –valued slicings.

Following [9, Section 6], we introduce a seminorm on the infinite-dimensional linear
space Hom.K.D/;CŒm�/ for all � D .Z;P/ 2 StabPol.D/:

k � k� W Hom.K.D/;CŒm�/! Œ0;1�

kU k� D sup
�

lim sup
m!1

jU.E/.m/j

jZ.E/.m/j

ˇ̌̌̌
E semistable in �

�
The next step is to show that [9, Lemma 6.2] carries over: For 0 < � < 1

4
, and

� D .Z;P/ 2 StabPol.D/ define B�.�/� StabPol.D/ as

B�.�/Df� D .Q;W /
ˇ̌
kW �Zk� < sin.��/ and dS .P;Q/ < �

	
:

Lemma 8.1.2 If � D .Q;W / 2 B�.�/, then the seminorms k � k� ; k � k� of � and �
are equivalent, ie there are constants k1; k2 such that k1kU k� < kU k� < k2kU k� for
all U 2 Hom.K.D/;CŒm�/.
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The proof is identical to that of [9, Lemma 6.2].

On Hom.K.D/;CŒm�/ we have the natural topology of point-wise convergence; via
the forgetful map .Z;P/ 7! Z we can pull this back to get a system of open sets
in StabPol.D/. Now equip StabPol.D/ with the topology generated, in the sense of a
subbasis5, by this system of open sets and the sets B�.�/ defined above.

By the definition of the topology and Lemma 8.1.2, the subspace

fU 2 Hom.K.D/;CŒm�/
ˇ̌
kU k� <1

	
is locally constant in StabPol.D/ and hence constant on a connected component †,
denoted by V .†/. It is equipped with the topology generated by the topology of
point-wise convergence and the seminorms k � k� for � 2† (which are equivalent by
Lemma 8.1.2); we have obtained:

Proposition 8.1.3 For each connected component of †� StabPol.D/ there is a topo-
logical vector space V .†/, which is a subspace of Hom.K.D/;CŒm�/, such that the
forgetful map †! V .†/ given by .Z;P/ 7!Z is continuous.

Let E be stable in some polynomial stability condition � D .Z;P/ 2†. Then for any
Z0 2 V .†/, the degree of Z0.E/ is bounded by the degree of Z.E/. In particular, if
K.D/ is finite dimensional, then V .†/ is finite-dimensional. Further, Bridgeland’s
space Stab.D/ is a union of connected components of StabPol.D/.

Proposition 8.1.4 Suppose that � D .Z;P/ and � D .Z;Q/ are polynomial stability
conditions with identical central charge Z and dS .P;Q/ < 1. Then they are identical.

Again, the proof of [9, Lemma 6.4] carries over literally.

Combining the two previous propositions, we obtain a natural continuous and locally
injective map

StabPol.D/�†! V .†/� Hom.K.D/;CŒm�/:
The discussion applies equally to numerical polynomial stability conditions: for every
connected component †�StabPol

N.D/ there is a subspace V .†/�Hom.N .D/;CŒm�/
with the structure of a topological vector space, such that the forgetful map .Z;P/ 7!Z

induces a locally injective continuous map

†! V .†/:

5A topology T on a set S is generated by a subbasis … of subsets of S if open sets in T are exactly
the (infinite) unions of finite intersections of sets in … .
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8.2 Deformations of a polynomial stability condition

Definition 8.2.1 A polynomial stability condition .Z;P/ is called locally finite if
there exists a real number � > 0 such that for all � 2 S , the quasi-abelian category
P..� � �; �C �// is of finite length.

Under this strong finiteness assumption, an analogue of Bridgeland’s deformation result
can be proven:

Theorem 8.2.2 Let � D .Z;P/ be a locally finite polynomial stability condition.
Then there is an � > 0 such that if a group homomorphism W W K.D/!CŒm� satisfies
kW �Zk� < sin.��/, there is a locally finite stability condition � D .W;Q/ with
dS .P;Q/ < � .

In other words, a locally finite polynomial stability condition in the connected com-
ponent † can be deformed uniquely by deforming its central charge in the subspace
V .†/� Hom.K.D/;CŒm�/, and the space of locally finite polynomial stability condi-
tions is a smooth manifold.

The theorem can be shown exactly along the lines of Bridgeland’s proof. Since we are
not using the result in this paper, we omit the proof.
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