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A sharp compactness theorem for
genus-one pseudo-holomorphic maps

ALEKSEY ZINGER

For every compact almost Kahler manifold .X; !;J / and an integral second ho-
mology class A , we describe a natural closed subspace SM0

1;k
.X;AIJ / of the

moduli space SM1;k.X;AIJ / of stable J –holomorphic genus-one maps such that
SM0

1;k
.X;AIJ / contains all stable maps with smooth domains. If .P n; !;J0/ is the

standard complex projective space, SM0
1;k
.P n;AIJ0/ is an irreducible component

of SM1;k.P
n;AIJ0/ . We also show that if an almost complex structure J on P n is

sufficiently close to J0 , the structure of the space SM0
1;k
.P n;AIJ / is similar to that

of SM0
1;k
.P n;AIJ0/ . This paper’s compactness and structure theorems lead to new

invariants for some symplectic manifolds, which are generalized to arbitrary symplec-
tic manifolds in a separate paper. Relatedly, the smaller moduli space SM0

1;k
.X;AIJ /

is useful for computing the genus-one Gromov–Witten invariants, which arise from
the larger moduli space SM1;k.X;AIJ / .

14D20; 53D99

1 Introduction

1.1 Background and motivation

Gromov–Witten invariants of symplectic manifolds have been a subject of much
research in the past decade, as they play a prominent role in both symplectic topology
and theoretical physics. In order to define GW–invariants of a compact symplectic
manifold .X; !/, one fixes an almost complex structure J on X , which is compatible
with ! or at least is tamed by ! . For each class A in H2.X IZ/ and a pair .g; k/ of
nonnegative integers, let SMg;k.X;AIJ / be the moduli space of (equivalence classes
of) stable J –holomorphic maps from genus–g Riemann surfaces with k marked points
in the homology class A. The expected, or virtual, dimension of this moduli space is
given by

dimg;k.X;A/� dimvir SMg;k.X;AIJ /D 2
�hc1.TX /;AiC .n� 3/.1�g/C k

�
;

if the real dimension of X is 2n. While in general SMg;k.X;AIJ / is not a smooth
manifold, or even a variety, Fukaya–Ono [4], Li–Tian [6], and in the algebraic case
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Behrend–Fantechi [1] show that SMg;k.X;AIJ / determines a rational homology class
of dimension dimg;k.X;A/. In turn, this virtual fundamental class of SMg;k.X;AIJ /
is used to define GW–invariants of .X; !/.

We denote by M0
g;k
.X;AIJ / the subspace of SMg;k.X;AIJ / consisting of the stable

maps ŒC;u� such that the domain C is a smooth Riemann surface. If .Pn; !IJ0/ is the
n–dimensional complex projective space with the standard Kahler structure and ` is
the homology class of a complex line in Pn ,

M0
g;k.P

n; d/�M0
g;k.P

n; d`IJ0/

is in fact a smooth orbifold of dimension dimg;k.P
n; d`/, at least for d � 2g� 1. In

addition, from the point of view of algebraic geometry, SM0;k.P
n; d/ is an irreducible

algebraic orbivariety of dimension dim0;k.P
n; d`/=2. From the point of view of sym-

plectic topology, SM0;k.P
n; d/ is a compact topological orbifold stratified by smooth

orbifolds of even dimensions and M0
0;k
.Pn; d/ is the main stratum of SM0;k.P

n; d/.
In particular, M0

0;k
.Pn; d/ is a dense open subset of SM0;k.P

n; d/.

If g � 1, none of these additional properties holds even for .Pn; !;J0/. For example,
the moduli space SM1;k.P

n; d/ has many irreducible components of various dimen-
sions. One of these components contains M0

1;k
.Pn; d/; we denote this component

by SM0
1;k
.Pn; d/. In other words, SM0

1;k
.Pn; d/ is the closure of M0

1;k
.Pn; d/ in

SM1;k.P
n; d/. The remaining components of SM1;k.P

n; d/ can be described as follows.
If m is a positive integer, let Mm

1;k
.Pn; d/ be the subset of SM1;k.P

n; d/ consisting of
the stable maps ŒC;u� such that C is an elliptic curve E with m rational components
attached directly to E , ujE is constant, and the restriction of u to each rational
component is nonconstant. Figure 1 shows the domain of an element of M3

1;k
.Pn; d/,

from the points of view of symplectic topology and of algebraic geometry. In the
first diagram, each shaded disc represents a sphere; the integer next to each rational
component Ci indicates the degree of ujCi

. In the second diagram, the components of
C are represented by curves, and the pair of integers next to each component Ci shows
the genus of Ci and the degree of ujCi

. We denote by SMm
1;k
.Pn; d/ the closure of

Mm
1;k
.Pn; d/ in SM1;k.P

n; d/. The space SMm
1;k
.Pn; d/ has a number of irreducible

components. These components are indexed by the splittings of the degree d into m

positive integers and by the distributions of the k marked points between the mC 1

components of the domain. However, all of these components are algebraic orbivarieties
of dimension, both expected and actual,

dimm
1;k.P

n; d`/� dim SMm
1;k.P

n; d/D 2
�
d.nC 1/C kC n�m

�
D dim1;k.P

n; d`/C 2.n�m/:
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In particular, M0
1;k
.Pn; d/ is not dense in SM1;k.P

n; d/. From the point of view of
symplectic topology, SM1;k.P

n; d/ is a union of compact topological orbifolds and is
stratified by smooth orbifolds of even dimensions. However, SM1;k.P

n; d/ contains
several main strata, and some of them are of dimension larger than dim1;k.P

n; d`/.

d1

d2

d3

.1; 0/

.0; d1/

.0; d2/

.0; d3/

d1Cd2Cd3 Dd; d1; d2; d3>0

Figure 1: The domain of an element of M3
1;k
.P n; d/

The above example shows that SM0
1;k
.Pn; d/ is a true compactification of the mod-

uli space M0
1;k
.Pn; d/, while SM1;k.P

n; d/ is simply a compact space containing
M0

1;k
.Pn; d/, albeit one with a nice obstruction theory. One can view SM1;k.P

n; d/ as a
geometric-genus compactification of M0

1;k
.Pn; d/ and its subspace SM0

1;k
.Pn; d/ as an

arithmetic-genus compactification. Since the beginning of the Gromov–Witten theory,
it has been believed, or at least considered feasible, that an analogue of SM0

1;k
.Pn; d/

can be defined for every compact almost Kahler manifold .X; !;J /, positive genus g ,
and nonzero homology class A 2H2.X IZ/. In this paper, we show that this is indeed
the case if g D 1.

We describe an analogue SM0
1;k
.X;AIJ / of the subspace SM0

1;k
.Pn; d/ of SM1;k.P

n; d/

for every compact almost Kahler manifold .X; !;J / and homology class A2H2.X IZ/
as the subset of elements of SM1;k.X;AIJ / that satisfy one of two conditions. By
Theorem 1.2, SM0

1;k
.X;AIJ / is a closed subspace of SM1;k.X;AIJ / and thus is

compact. This compactification of M0
1;k
.X;AIJ / satisfies the following desirable

properties:
(P1) Naturality with respect to embeddings: If .Y; !;J / is a compact submanifold of

.X; !;J /, then

SM0
1;k.Y;AIJ /D SM0

1;k.X;AIJ /\ SM1;k.Y;AIJ /� SM1;k.X;AIJ /:
(P2) Naturality with respect to forgetful maps: If k � 1, the preimage of the subspace

SM0
1;k�1

.X;AIJ / under the forgetful map

SM1;k.X;AIJ / �! SM1;k�1.X;AIJ /
is SM0

1;k
.X;AIJ /.
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(P3) Sharpness for regular .X; !;J /: If J satisfies the regularity conditions of Defini-
tion 1.4, then SM0

1;k
.X;AIJ / is the closure of M0

1;k
.X;AIJ / in SM1;k.X;AIJ /.

By (P1) and (P2), SM0
1;k
.X;AIJ /, like SM1;k.X;AIJ /, is a natural compactification

of M0
1;k
.X;AIJ /. By (P3), SM0

1;k
.X;AIJ /, in contrast to SM1;k.X;AIJ /, is a sharp

compactification of M0
1;k
.X;AIJ /, subject to the naturality conditions (P1) and (P2).

The first two properties of SM0
1;k
.X;AIJ / are immediate from Definition 1.1. The

last property is part of Corollary 1.5. It is well-known that the regularity conditions
of Definition 1.4 are satisfied by the standard complex structure J0 on Pn , and thus
the definition of SM0

1;k
.Pn; d`IJ0/ given in Section 1.2 agrees with the description of

SM0
1;k
.Pn; d/ given above.

Theorem 2.3 describes, under the regularity conditions of Definition 1.1, a neighborhood
of every “interesting” stratum of SM0

1;k
.X;AIJ /, ie a stratum consisting of genus-one

maps that are constant on the principal component. In addition to implying (P3),
Theorem 2.3 shows that SM0

1;k
.X;AIJ / carries a rational fundamental class. It is used

in Section 1.3 below to define new Gromov–Witten style intersection numbers via
pseudocycles whenever J is regular, mimicking the approach of McDuff–Salamon
[8, Chapter 5] and Ruan–Tian [9, Section 1] to the standard GW–invariants. As the
regularity requirements of Definition 1.1 are open conditions on the space of !–tame
almost complex structures J by Theorem 1.6, Theorem 2.3 also implies that the general
topological structure of SM0

1;k
.X;AIJ / remains unchanged under small changes in J

near a regular J0 .

The results of this paper have already found a variety of applications:

(A1) SM0
1;k
.X;AIJ / gives rise to new, reduced, genus-one GW–invariants of arbi-

trary symplectic manifolds (see Zinger [19]).

(A2) In contrast to the standard genus-one GW–invariants, the reduced invariants
of a complete intersection and the ambient space are related as geometrically
expected (see Li–Zinger [7] and Zinger [18]).

(A3) Theorem 2.3 is used in Vakil–Zinger [12] to construct a natural desingularization
of SM0

1;k
.Pn; d/ and thus a natural smooth compactification of the Hilbert

scheme of smooth genus-one curves in Pn for n� 3.

(A4) (A1)–(A3) are used by the author in [22] to finally confirm the 1993 Bershadsky–
Cecotti–Ooguri–Vafa mirror formula [2] for the genus-one GW–invariants of a
quintic threefold.

(A5) (A1)–(A3), along with Zinger [21], have made it possible to compute (standard)
genus-one GW–invariants of arbitrary complete intersections.
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If it is possible to define subspaces SM0
g;k
.X;AIJ / of SMg;k.X;AIJ / analogous to

SM0
1;k
.X;AIJ / for g � 2, their description is likely to be more complicated. The

space SM0
1;k
.X;AIJ / contains all stable maps ŒC;u� in SM1;k.X;AIJ / such that the

restriction of u to the principal component CP is nonconstant or such that ujCP
is

constant and the restrictions to the rational components satisfy a certain fairly simple
degeneracy condition; see Definition 1.1. Thus, in the genus-one case the elements in
SM1;k.X;AIJ / are split into two classes, according to their restriction to the principal
component. In the genus-two case, these classes would need to be split further. For
example, suppose the domain of an element ŒC;u� of SM2;k.P

n; d/ consists of three
rational curves, C1 , C2 , and C3 , such that C1 and C2 share two nodes and C3 has a
node in common with C1 and C2 ; see Figure 2. If ujC1

and ujC2
are constant, ŒC;u�

lies in the closure of M0
2;k
.Pn; d/ in SM2;k.P

n; d/ if and only if the branches of the
curve u.C/D u.C3/ corresponding to the two nodes of C3 form a generalized tacnode,
ie either one of them is a cusp or the two branches have the same tangent line; see
Zinger [15] for the nD 2 case.

C1 C2

0 0

C3 d

C1 C2

.0; 0/ .0; 0/

C3 .0; d/

“tacnode”

Figure 2: A condition on limits in genus two

The author would like to thank J Li for suggesting the problem of computing the
genus-one GW–invariants of a quintic threefold, which led to the present paper. The
author first learned of the arithmetic/geometric-genus compactification terminology in
the context of stable maps from G Tian a number of years ago.

1.2 Compactness theorem

In this subsection, we describe the subspace SM0
1;k
.X;AIJ / of SM1;k.X;AIJ /; it is

a closed subspace by Theorem 1.2. We specify what we mean by a regular almost
structure J in Definitions 1.3 and 1.4. If J is genus-one A–regular, the moduli space
SM0

1;k
.X;AIJ / has a regular structure, which is described by Theorem 2.3. Since the

rather detailed statement of this theorem is notationally involved, we postpone stating it
until after we introduce additional notation in Sections 2.1 and 2.2. In this subsection,

Geometry & Topology, Volume 13 (2009)
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we instead state Corollary 1.5, which describes the two most important consequences
of Theorem 2.3.

An element ŒC;u� of SM1;k.X;AIJ / is the equivalence class of a pair consisting of a
prestable genus-one complex curve C and a J –holomorphic map uW C �! X . The
prestable curve C is a union of the principal curve CP , which is either a smooth torus
or a circle of spheres, and trees of rational bubble components, which together will be
denoted by CB . Let

M
f0g
1;k
.X;AIJ /D ˚ŒC;u� 2 SM1;k.X;AIJ / W ujCP

is not constant
	�M0

1;k.X;AIJ /:

The space M
f0g
1;k
.X;AIJ / will be a subset of the moduli space SM0

1;k
.X;AIJ /.

Every bubble component Ci � CB is a sphere and has a distinguished singular point,
which will be called the attaching node of Ci . This is the node of Ci that lies either
on CP or on a bubble Ch that lies between Ci and CP . For example, if C is as shown
in Figure 3, the attaching node of Ch3

is the node Ch3
shares with the torus. Since Ci

is a sphere, we can represent every element of SM1;k.X;AIJ / by a pair .C;u/ such
that the attaching node of every bubble component Ci � CB is the south pole, or the
point 1D .0; 0;�1/, of S2 �R3 . Let e1 D .1; 0; 0/ be a nonzero tangent vector to
S2 at the south pole. Then the vector

Di.C;u/� d
˚
ujCi

	ˇ̌
1e1 2 TujCi

.1/X

describes the differential of the J –holomorphic map ujCi
at the attaching node. While

this element of TujCi
.1/X depends on the choice of a representative for an element

of SM1;k.X;AIJ /, the linear subspace C �Di.C;u/ of TujCi
.1/X is determined by

the equivalence class ŒC;u�. If ujCi
is not constant, the branch of the rational J –

holomorphic curve u.Ci/�X corresponding to the attaching node of Ci has a cusp
if and only if Di.C;u/ D 0. If Di.C;u/ ¤ 0, C �Di.C;u/ is the line tangent to the
branch of u.Ci/�X corresponding to the attaching node of Ci .

Suppose ŒC;u� 2 SM1;k.X;AIJ /�M
f0g
1;k
.X;AIJ /, ie ujCP

is constant. In such a case,
we will call the bubble sphere Ci � CB first-level .C;u/–effective if ujCi

is not constant,
but ujCh

is constant for every bubble component Ch � CB that lies between Ci and CP .
We denote by �.C;u/ the set of first-level .C;u/–effective bubbles; see Figure 3. In
this figure, as in Figures 1 and 2, we show the domain C of the stable map .C;u/ and
shade the components of the domain on which the map u is not constant. Note that u

maps the attaching nodes of all elements of �.C;u/ to the same point in X .

Finally, let
H2.X IZ/� DH2.X IZ/�f0g; xZC D ZC t f0g:

Geometry & Topology, Volume 13 (2009)
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h1h2 h3 h4

h5

“tacnode”

�.C;u/Dfh1;h4;h5g

Figure 3: An illustration of Definition 1.1

Definition 1.1 If .X; !;J / is a compact almost Kahler manifold, A2H2.X IZ/� , and
k 2 xZC , the main component of the space SM1;k.X;AIJ / is the subset SM0

1;k
.X;AIJ /

consisting of the elements ŒC;u� of SM1;k.X;AIJ / such that

(a) ujCP
is not constant, or

(b) ujCP
is constant and dimC Span.C;J /fDi.C;u/ W i 2 �.C;u/g< j�.C;u/j.

We call a triple .X; !;J / an almost Kahler manifold if ! is a symplectic form on X

and J is an almost complex structure on X , which is tamed by ! , ie

!.v;Jv/ > 0 8 v 2 TX �X:

Definition 1.1 actually involves only the almost complex structure J , but one typically
considers the moduli spaces SMg;k.X;AIJ / only for !–tamed almost complex struc-
tures J , for some symplectic form ! ; otherwise, SMg;k.X;AIJ / may not be compact.
An element

ŒC;u� 2 SM1;k.X;AIJ /�M
f0g
1;k
.X;AIJ /

belongs to SM0
1;k
.X;AIJ / if and only if the branches of u.C/ corresponding to the

attaching nodes of the first-level effective bubbles of ŒC;u� form a generalized tacnode.
In the case of Figure 3, this means that either

(a) for some i 2 fh1; h4; h5g, the branch of ujCi
at the attaching node of Ci has a

cusp, or

(b) for all i 2 fh1; h4; h5g, the branch of ujCi
at the attaching node of Ci is smooth,

but the dimension of the span of the three lines tangent to these branches is less
than three.

This condition is automatically satisfied if 2j�.C;u/j> dimR X .

Geometry & Topology, Volume 13 (2009)
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Theorem 1.2 If .X; !/ is a compact symplectic manifold, J � .Jt /t2Œ0;1� is a C 1 –
continuous family of !–tamed almost complex structures on X , A 2H2.X IZ/� , and
k 2 xZC , then the moduli space

SM0
1;k.X;AIJ /�

[
t2Œ0;1�

SM0
1;k.X;AIJt /

is compact.

If .X;J / is an algebraic variety, the claim of Theorem 1.2, with Jt D J constant, is
an immediate consequence of well-known results in algebraic geometry. In the case
.X;J / is a complex algebraic surface, Lemma 2.4.1 of Vakil [11] can be used to extend
the statement of Theorem 1.2 to all genera.

If Jt D J is constant and genus-one A–regular in the sense of Definition 1.4 below,
Theorem 1.2 follows immediately from the first statement of Theorem 2.3. If Jt is
genus-one A–regular for all t , but not necessarily constant, Theorem 1.2 follows from
the Gromov Compactness Theorem and Corollary 4.6. In Section 5, we combine the
main ingredients of the proof of Theorem 2.3 with the local setting of [6] to obtain
Theorem 1.2 with Jt D J constant for an arbitrary almost Kahler manifold. The proof
for a general family J is similar and is described in detail, in an even more general
case, in Zinger [19, Section 5].

If uW C �!X is a smooth map from a Riemann surface and A 2H2.X IZ/, we write

u�! A if u�ŒC�DA or h!;u�ŒC�i< h!;Ai:

Definition 1.3 Suppose .X; !;J / is a compact almost Kahler manifold and A 2
H2.X IZ/. The almost complex structure J is genus-zero A–regular if for every
J –holomorphic map uW P1 �!X such that u�! A,

(a) the linearization DJ ;u of the x@J –operator at u is surjective;

(b) for all z 2 P1 , the map Dz
J ;u
W ker DJ ;u �! Tu.z/X , Dz

J ;u
.�/D �.z/, is onto.

Definition 1.4 Suppose .X; !;J / is a compact almost Kahler manifold and A 2
H2.X IZ/. The almost complex structure J is genus-one A–regular if

(a) J is genus-zero A–regular;

(b) for every nonconstant J –holomorphic map uW P1 �!X such that u�! A,
(b-i) for all z 2 P1 and v 2 TzP1�f0g, the map

D
z;v
J ;u
W ker Dz

J ;u �! Tu.z/X ; D
z;v
J ;u
.�/Drv� ;

is onto;

Geometry & Topology, Volume 13 (2009)
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(b-ii) for all z 2 P1 and z0 2 P1�fzg, the map

D
z;z0

J ;u
W ker Dz

J ;u �! Tu.z0/X ; D
z;z0

J ;u
.�/D �.z0/ ;

is onto;

(c) for every smooth genus-one Riemann surface † and every nonconstant J –
holomorphic map uW † �!X such that u�! A, the linearization DJ ;u of the
x@J –operator at u is surjective.

In (b-i) of Definition 1.4, rv� denotes the covariant derivative of � along v , with respect
to a connection r in TX . Since �.z/D 0, the value of rv� is in fact independent of
the choice of r . If J is an integrable complex structure, the surjectivity statements
of (a) and (b) in Definition 1.3 and of (c) in Definition 1.4 can be written as

H 1.P1Iu�TX /Df0g; H 1
�
P1Iu�TX˝OP1.�1/

�Df0g; H 1.†Iu�TX /Df0g;
respectively. In the integrable case, the two surjectivity statements of (b) in Definition
1.4 are equivalent and can be written as

H 1
�
P1Iu�TX ˝OP1.�2/

�D f0g:
It is well-known that the standard complex structure J0 on Pn is genus-one d`–regular
for every d 2 Z; see [13, Corollaries 6.3,6.5], for example.

If J is a genus-zero A–regular almost complex structure on X , the structure of the mod-
uli space SM0;k.X;AIJ / is regular for every k 2 xZC . In other words, SM0;k.X;AIJ /
is stratified by smooth oriented orbifolds of even dimensions and the neighborhood
of each stratum has the expected form. One of the results of this paper is that if J is
genus-one A–regular, the structure of the moduli space SM0

1;k
.X;AIJ / is regular for

every k 2 xZC ; see Theorem 2.3 and Section 4.1. In particular, we have:

Corollary 1.5 (of Theorem 2.3) Suppose .X; !;J / is a compact almost Kahler
manifold, A 2H2.X IZ/� , and k 2ZC . If J is genus-one A–regular, then the closure
of M0

1;k
.X;AIJ / in SM1;k.X;AIJ / is SM0

1;k
.X;AIJ /. Furthermore, SM0

1;k
.X;AIJ /

has the general topological structure of a unidimensional algebraic orbivariety1and thus
carries a rational fundamental class.

The first statement of Corollary 1.5 follows from the first claim of Theorem 2.3, along
with standard gluing arguments such as in McDuff–Salamon [8, Chapter 5]; see also

1Each point of SM0
1;k
.X;AIJ / has a neighborhood which is a quotient of an affine algebraic variety

of complex dimension dim1;k.X;A/=2 by a finite group.
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Section 4.1. The middle statement of Corollary 1.5 summarizes Theorem 2.3, while
the last one is obtained at the end of Section 2.3.

We will also show that the genus-zero and genus-one regularity properties are well-
behaved under small perturbations:

Theorem 1.6 Suppose .X; !;J / is a compact almost Kahler manifold and A 2
H2.X IZ/� . If g D 0; 1 and the almost complex structure J is genus–g A–regular,
then there exists ıJ .A/2RC with the property that if zJ is an almost complex structure
on X such that k zJ �JkC 1 � ıJ .A/, then zJ is genus–g A–regular. Furthermore, if
J is genus-one A–regular, k 2 xZC , and J D .Jt /t2Œ0;1� is a continuous family of
almost complex structures on X such that J0 D J and kJt � JkC 1 � ıJ .A/ for all
t 2 Œ0; 1�, then the moduli space SM0

1;k
.X;AIJ / has the general topological structure

of a unidimensional algebraic orbivariety with boundary2and

@SM0
1;k.X;AIJ /D SM0

1;k.X;AIJ1/� SM0
1;k.X;AIJ0/:

The norms k zJ � JkC 1 and kJt � JkC 1 are computed using a fixed connection in
the vector bundle TX , eg the Levi-Civita connection of the metric on X determined
by .!;J /. The regularity claims of Theorem 1.6 follow from the compactness of the
moduli spaces SMg;k.X;AIJ / and Corollaries 3.2, 3.6, 3.7, 4.2 and 4.5. The final
claim of Theorem 1.6 follows from a family version of Theorem 2.3. It can in fact be
used to show that under the assumptions of Theorem 1.6

SM0
1;k.X;AIJ /� Œ0; 1�� SM0

1;k.X;AIJ0/:

The conclusion, as stated, can be obtained with weaker regularity assumptions on J .

The key ingredients in the proofs of Theorems 1.6 and 2.3 are the gluing constructions
of Zinger [16], adapted to the present situation, and the power series expansions of
Theorem 2.8 and Section 4.1 in Zinger [13], applied via a technical result of Floer,
Hofer and Salamon [3]. The power series of [13] give estimates on the behavior of
derivatives of holomorphic maps under gluing and on the obstructions to smoothing
holomorphic maps from singular domains. A technical result of [3] shows that locally
a J –holomorphic map is very close to a holomorphic one. Ionel [5] essentially shows
that the above obstructions do not vanish on the complement of SM0

1;k
.Pn; d/ in

SM1;k.P
n; d/; this is the main portion of Theorem 1.2 for .X;J / D .Pn;J0/ and

thus for all algebraic varieties. This theorem can be viewed as describing limits in
SM1;k.X;AIJ /; in comparison, Theorem 2.3 can be viewed as describing limiting
behavior.

2Each point of SM0
1;k
.X;AIJ / has a neighborhood which is a quotient of a fibration over .0; 1/ or

Œ0; 1/ of affine algebraic varieties of complex dimension dim1;k.X;A/=2 by a finite group.
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1.3 Some geometric implications

Theorem 1.2 implies that under certain assumptions on A and J the number of genus-
one degree–A J –holomorphic curves that pass through a collection of cycles in X of
the appropriate total codimension is finite. Furthermore, each such curve is isolated
to first order, as explained below. Throughout this subsection, we assume that the
dimension of X is 2n� 4.

A simple J –holomorphic map into X is a J –holomorphic map uW †�!X such that
u is one-to-one outside of finitely many points of † and the irreducible components of
† on which u is constant. A genus–g degree–A J –holomorphic curve C is the image
u.†/ of an element Œ†;u� of SMg;k.X;AIJ / such that u is simple and the total genus
of the components on which u is not constant is g . Let Mg.X;AIJ / be the space of
all genus–g degree–A J –holomorphic curves in X . The expected dimension of this
space is dimg;0.X;A/.

A J –holomorphic curve C�X will be called regular if the operator DJ ;u is surjective
for a (or equivalently, every) stable-map parametrization uW † �! C of C as above.
We will call a regular curve C � X essentially embedded if C is an irreducible curve
that has no singularities if n� 3 and its only singularities are simple nodes if nD 2. In
other words, if uW † �! C is a parametrization of C with k D 0, then † is a smooth
Riemann surface of genus g . Furthermore, if n� 3, u is an embedding. If nD 2, then

dimC SpanC

˚
Im dujz W z 2 u�1.q/

	D ˇ̌u�1.q/
ˇ̌ 8q 2X:

In particular, u is an immersion.

Let � D .�1; : : : ; �k/ be a k –tuple of cycles in X of total (real) codimension
dimg;0.X;A/C 2k , ie

codim ��
lDkX
lD1

codim �l D dimg;0.X;A/C 2k D dimg;k.X;A/:

We denote by Mg.X;AIJ; �/ the set of genus–g degree–A J –holomorphic curves
that pass through every cycle �1; : : : ; �k , ie,

Mg.X;AIJ; �/D
˚C 2Mg.X;AIJ / W C \�l ¤∅ 8l 2 Œk�	;

where Œk�D ˚1; : : : ; kg:
We will call an element C of Mg.X;AIJ; �/ isolated to first order if for every
parametrization

uW † �! C �X
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of C , where † is a curve with k marked points y1; : : : ;yk such that u.yl/ 2 �l for
all l 2 Œk�,˚
� 2 ker DJ ;u W �.yl/2Tu.yl /�lC Im dujyl

8l 2 Œk�	���†I Im du
����†Iu�TX /:

If Mg.X;AIJ / is a smooth manifold with the expected tangent bundle and the
constraints �1; : : : ; �k are in general position, then Mg.X;AIJ; �/ is a discreet set
consisting of elements isolated to first order. Below we describe some circumstances
under which this set is also finite.

We recall that A 2H2.X IZ/ is called spherical if

AD f�ŒS2� 2H2.X IZ/
for some smooth map f W S2�!X . A symplectic manifold .X; !/ is weakly monotone
if for every spherical homology class A such that !.A/ > 0, either

hc1.TX /;Ai � 0 or hc1.TX /;Ai � 2� n;

where 2nD dim X , as before. In particular, all symplectic manifolds of (real) dimen-
sions 2, 4, and 6 are weakly monotone. So are all complex projective spaces, which
are in fact monotone; see McDuff–Salamon [8, Chapter 5] for a definition.

Finally, if .X; !/ is a symplectic manifold, we denote by J .X; !/ the space of all
almost complex structures on X tamed by ! , endowed with the C 1 –topology.

Proposition 1.7 Suppose .X; !;J / is a compact almost Kahler manifold, A 2
H2.X IZ/� , g D 0; 1, and J is genus–g A–regular. If � is a k –tuple of cycles
in X of total codimension dimg;k.X;A/ in general position, then Mg.X;AIJ; �/ is
a finite set and every element in Mg.X;AIJ; �/ is irreducible, regular, and isolated to
first order.

Proposition 1.8 If .X; !/ is a compact weakly monotone symplectic manifold and
A 2H2.X IZ/� , there exists a dense open subset Jreg.X; !IA/ of J .X; !/ with the
following properties. If J 2 Jreg.X; !IA/, g D 0; 1, and � is a k –tuple of cycles
in X of total codimension dimg;k.X;A/ in general position, then every element in
Mg.X;AIJ; �/ is essentially embedded and isolated to first order. If in addition˝
c1.TX /;A

˛ ¤ 0, then Mg.X;AIJ; �/ is a finite set and its signed cardinality is
independent of the choice of J 2 Jreg.X; !IA/.

Most of the genus-zero statements of these two propositions are well-known; see
McDuff–Salamon [8, Chapters 5–7], for example. The signed cardinality of the
set M0.X;AIJ; �/ is the corresponding Gromov–Witten invariant, GW0;k.AI�/,
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of .X; !/. The remaining statements are obtained from minor extensions of some
results in [8], along with Theorem 1.2 in the genus-one case. For each l 2 Œk�, let

evl W SMg;k.X;AIJ / �!X;
�
†;y1; : : : ;yk Iu

� �! u.yl/;

be the evaluation map for the l –th marked point.

Suppose .X; !;J / and A are as in the statement of Proposition 1.7 and J is genus-one
A–regular. By (c) of Definition 1.4, the moduli space M0

1;k
.X;AIJ / is a smooth

orbifold with the expected tangent bundle. Thus, if � is a tuple of constraints as in the
g D 1 case of Proposition 1.7, then

M0
1;k.X;AIJ; �/� fb 2M0

1;k.X;AIJ / W evl.b/ 2 �l 8l 2 Œk�g
is a zero-dimensional oriented submanifold. If fbr g is a sequence of distinct elements
in M0

1;k
.X;AIJ; �/, by Theorem 1.2 a subsequence of fbr g must converge to an

element

b 2 SM0
1;k.X;AIJ; �/�fb 2 SM0

1;k.X;AIJ / W evl.b/ 2 �l 8l 2 Œk�g
� SM1;k.X;AIJ /:

Since all elements of M0
1;k
.X;AIJ; �/ are isolated,

b 2 SM0
1;k.X;AIJ; �/�M0

1;k.X;AIJ /:
On the other hand, by the regularity assumptions of Definition 1.4,

@SM0
1;k.X;AIJ /� SM0

1;k.X;AIJ /�M0
1;k.X;AIJ /

is a union of strata of dimensions smaller than dim1;k.X;A/. Thus, if � is a tuple of
cycles of total codimension dim1;k.X;A/ in general position, then

SM0
1;k.X;AIJ; �/�M0

1;k.X;AIJ /D∅:

It follows that M0
1;k
.X;AIJ; �/ is a finite set, and so is its subset M1.X;AIJ; �/.

We next move to Proposition 1.8. For any B 2H2.X IZ/� , almost complex structure J

on X , and g 2 ZC , let

M
simp
g;k

.X;BIJ / �M0
g;k.X;BIJ /;

M
fsimpg
g;k

.X;BIJ /�M
f0g
g;k
.X;BIJ /;

SMsimp
g;k

.X;BIJ / � SMg;k.X;BIJ /
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denote the subspaces of simple maps. By [8, Chapter 3], for a generic choice of J ,
DJ ;u is surjective for every element Œ†;u� of M

simp
g;k

.X;AIJ /. Thus, as before,

M1.X;AIJ; �/�M
simp
1;k

.X;AIJ; �/�M0
1;k.X;AIJ; �/\M

simp
1;k

.X;AIJ /
is a zero-dimensional oriented manifold, if � is as in Proposition 1.8. On the other
hand, by the same argument as in [8, Chapter 6], the evaluation map

evkC1 � evkC2W Msimp
1;kC2

.X;AIJ / �!X �X

is transverse to the diagonal, for a generic choice of J . Let

LkC1 �!M
simp
1;kC1

.X;AIJ /
be the universal tangent line bundle for the last marked point, ie

LkC1jŒ†;u� D TykC1
† 8 Œ†;u� 2M

simp
1;kC1

.X;AIJ /:
By a small modification of the proof of Lemma 6.1.2 in [8], the bundle section

dujykC1
W Msimp

1;kC1
.X;AIJ / �!L�kC1˝ ev�kC1 TX; Œ†;u� �! dujykC1

;

is transverse to the zero set, for a generic choice of J . The key part of this modification
is to view the relevant first-order equation as an elliptic operator acting on the space of
smooth sections of the vector bundle nOP1.1/ over S2 . The last two transversality
properties imply that for a generic element Œ†;u� of M

fsimpg
1;k

.X;AIJ / its image u.†/

is essentially embedded. This concludes the proof of the first statement of Proposition
1.8.

By [8, Chapters 3,6], for a generic choice of J , DJ ;u is surjective for every element
Œ†;u� of M

fsimpg
g;k

.X;BIJ /. In particular, M
fsimpg
g;k

.X;BIJ / is a finite union of smooth
orbifolds of the expected dimension. Thus, if � is a tuple of constraints as in the
statement of Proposition 1.8,˚

b 2M
fsimpg
1;k

.X;AIJ / W evl.b/ 2 �l 8l 2 Œk�	�M0
1;k.X;AIJ /D∅:

Furthermore, if hc1.TX /;Ai ¤ 0, every element of

SM1;k.X;AIJ; �/� fb 2 SM1;k.X;AIJ / W evl.b/ 2 �l 8l 2 Œk�g
is simple. This can be seen by considering the dimension of the image of the multiply
covered elements of SM1;k.X;AIJ / under the evaluation map ev1 � � � � � evk . This
is done by passing to moduli spaces of maps consisting of simple elements; see
[8, Chapter 5]. The argument requires two separate dimension counts for multiply
covered maps: one for the elements in M

f0g
1;k
.X;AIJ / and the other for those in its

complement in SM1;k.X;AIJ /. In addition to the assumption hc1.TX /;Ai ¤ 0, the
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weakly monotone condition on .X; !/ enters directly into both dimension computations.
Finally, by the same modification of the proof of Lemma 6.1.2 in [8] as described
above, but applied to tuples of genus-zero maps instead of genus-one maps,

SMsimp
1;k

.X;AIJ /\ �SM0
1;k.X;AIJ /�M

f0g
1;k
.X;AIJ /�

is a finite union of smooth orbifolds of dimensions less than dim1;k.X;A/. We
conclude that

M1.X;AIJ; �/�M
simp
1;k

.X;AIJ; �/D SM0
1;k.X;AIJ; �/

is a compact zero-dimensional manifold. By a cobordism argument as in [8, Chapter 7],
the signed cardinality of M1.X;AIJ; �/ is independent of a generic choice of J .

The signed cardinality GW0
1;k.AI�/ of the set M1;k.X;AIJ; �/ is an integer-valued

invariant of the symplectic manifold .X; !/. The difference between this invariant for
an arbitrary symplectic manifold (when the invariant may not be an integer) and the
standard genus-one GW–invariant is described by [19, Proposition 3.1] and explicitly
given by [21, Theorems 1A,1B].

2 Preliminaries

2.1 Notation: Genus-zero maps

We now describe our notation for bubble maps from genus-zero Riemann surfaces, for
the spaces of such bubble maps that form the standard stratifications of the moduli
spaces of stable maps, and for important vector bundles over them. In general, the
moduli spaces of stable maps can stratified by the dual graph. However, in the present
situation, it is more convenient to make use of linearly ordered sets:

Definition 2.1 (1) A finite nonempty partially ordered set I is a linearly ordered
set if for all i1; i2; h 2 I such that i1; i2 < h, either i1 � i2 or i2 � i1 .

(2) A linearly ordered set I is a rooted tree if I has a unique minimal element,
ie there exists y0 2 I such that y0� i for all i 2 I .

We use rooted trees to stratify the moduli space SM0;f0gtM .X;AIJ / of genus-zero
stable holomorphic maps with marked points indexed by the set f0gtM , where M is
a finite set.

If I is a linearly ordered set, let yI be the subset of the nonminimal elements of I . For
every h 2 yI , denote by �h 2 I the largest element of I which is smaller than h, ie
�h Dmax

˚
i 2 I W i < h

	
.
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We identify C with S2�f1g via the stereographic projection mapping the origin in
C to the north pole, or the point .0; 0; 1/, in S2 . A genus-zero X –valued bubble map
with M –marked points is a tuple

b D �M; I Ix; .j ;y/;u�;
where I is a rooted tree, and

(2-1) xW yI �!CDS2�f1g; j W M �! I; yW M �!C; uW I �!C1.S2IX /
are maps such that uh.1/ D u�h.xh/ for all h 2 yI . We associate such a tuple with
Riemann surface

(2-2) †b D
�G

i2I

†b;i

�.
�; where †b;i D fig �S2 ; .h;1/� .�h;xh/ 8h 2 yI ;

with marked points

yl.b/� .jl ;yl/ 2†b;jl
and y0.b/� .y0;1/ 2†b;y0

and with the continuous map ubW †b �!X , given by ubj†b;i
D ui for all i 2 I . The

general structure of bubble maps is described by tuples T D .M; I I j ;A/, where

Ai D
˚
ubj†b;i

	
�ŒS

2� 8i 2 I:

We call such tuples bubble types. Denote by UT .X IJ / the subset of SM0;f0gtM .X;AIJ /
consisting of stable maps ŒC;u� such that

ŒCIu�D �.†b; .y0;1/; .jl ;yl/l2M /Iub

�
;

for some bubble map b of type T as above, where y0 is the minimal element of I ; see
Zinger [16, Section 2] for details. For l 2 f0g tM , let

evl W UT .X IJ / �!X

be the evaluation map corresponding to the marked point yl .

We denote the bundle of gluing parameters, or of smoothings at the nodes, over
UT .X IJ / by FT . This orbi-bundle has the form

FT D
�M

h2yI
Lh;0˝Lh;1

�.
Aut.T /;

for certain line orbi-bundles Lh;0 and Lh;1 . These line bundles3 are the line bundles
associated to certain S1 –principal bundles. More precisely, there exists a subspace

3also known as the universal tangent line bundles at the node, but this is not essential here
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U .0/T .X IJ / of the space HT .X IJ / of J –holomorphic maps into X of type T , not
of equivalence classes of such maps, such that

UT .X IJ /D U .0/T .X IJ /ıAut.T //.S1/I :

The line bundles Lh;0 and Lh;1 arise from this quotient; see Section 2.5 in [16]. In
particular,

FT D �FT ıAut.T //.S1/I ; where �FT D U .0/T .X IJ /�C
yI �! U .0/T .X IJ /:

We denote by FT ∅ and �FT ∅ the subsets of FT and �FT , respectively, consisting
of the elements with all components nonzero.

The subset U .0/T .X IJ / of HT .X IJ / is described by the conditions (B1) and (B2) in
Section 2.5 of [16]. It is the preimage of the point .0; 1=2/I in .C �R/I under the
continuous map

‰T � .‰T ;i/i2I W HT .X IJ / �! .C �R/I

defined in the proof of Proposition 3.3 in [16]. The statements of the conditions (B1) and
(B2) and the definition of the map ‰T require a choice of a J –compatible metric gX .
It can be assumed that Z

P1

jduj2gX
� 1

for every nonconstant J –holomorphic maps uW P1 �! X . Such a metric gX will be
fixed once and for all. If the almost complex structure J is genus-zero A–regular, where
ADPi2I Ai , the space HT .X IJ / is a smooth manifold of the expected dimension;
see Chapter 3 in [8]. In such a case, the map ‰T is smooth and transversal to every
point .0; ri/i2I such that jri � 1

2
j � 1

4
for all i 2 I ; see the proof of Proposition 3.3

in [16]. Let

�.T /D ˚i 2 I WAi ¤ 0I Ah D 0 8h< i
	
;(2-3)

zU .0/T .X IJ /D‰�1
T
�˚
.0; ri/i2I 2 .C �R/I W

ri D 1
2
8i 2 I ��.T /; ri 2

�
1
4
; 3

4

� 8i 2 �.T /	;
eFT D zU .0/T .X IJ /�C

yI �! zU .0/T .X IJ /:

As before, we denote by eFT ∅ the subset of eFT consisting of the elements with all
components nonzero.
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2.2 Notation: Genus-one maps

We next set up analogous notation for maps from genus-one Riemann surfaces. In this
case, we also need to specify the structure of the principal component. Thus, we index
the strata of the moduli space SM1;M .X;AIJ / by enhanced linearly ordered sets:

Definition 2.2 An enhanced linearly ordered set is a pair .I;@/, where I is a linearly
ordered set, @ is a subset of I0 � I0 , and I0 is the subset of minimal elements of I ,
such that if jI0j> 1,

@ D ˚.i1; i2/; .i2; i3/; : : : ; .in�1; in/; .in; i1/
	

for some bijection i W f1; : : : ; ng �! I0 .

An enhanced linearly ordered set can be represented by an oriented connected graph.
In Figure 4, the dots denote the elements of I . The arrows outside the loop, if there are
any, specify the partial ordering of the linearly ordered set I . In fact, every directed
edge outside of the loop connects a nonminimal element h of I with �h . Inside of the
loop, there is a directed edge from i1 to i2 if and only if .i1; i2/ 2 @.

Figure 4: Some enhanced linearly ordered sets

The subset @ of I0 � I0 will be used to describe the structure of the principal curve of
the domain of stable maps in a stratum of the moduli space SM1;M .X;AIJ /. If @D∅,
and thus jI0j D 1, the corresponding principal curve †@ is a smooth torus, with some
complex structure. If @ ¤∅, the principal components form a circle of spheres:

†@ D
� G

i2I0

fig �S2

�.
�; where .i1;1/� .i2; 0/ if .i1; i2/ 2 @:

A genus-one X –valued bubble map with M –marked points is a tuple

b D �M; I;@IS;x; .j ;y/;u�;
where S is a smooth Riemann surface of genus one if @D∅ and the circle of spheres
†@ otherwise. The objects x , j , y , u, and .†b;ub/ are as in (2-1) and (2-2), except
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the sphere †
b;y0 is replaced by the genus-one curve †b;@� S . Furthermore, if @D∅,

and thus I0 D fy0g is a single-element set, uy0 2 C1.S IX / and yl 2 S if jl D y0. In
the genus-one case, the general structure of bubble maps is encoded by the tuples of the
form T D .M; I;@I j ;A/. Similarly to the genus-zero case, we denote by UT .X IJ /
the subset of SM1;M .X;AIJ / consisting of stable maps ŒC;u� such that

ŒCIu�D �.†b; .jl ;yl/l2M /Iub

�
;

for some bubble map b of type T as above.

If T D .M; I;@I j ;A/ is a bubble type as above, let

(2-4)
I1 D

˚
h 2 yI W �h 2 I0

	
; M0 D

˚
l 2M W jl 2 I0

	
;

T0 D
�
M0 t I1; I0;@I j jM0

t �jI1
;AjI0

�
;

where I0 is the subset of minimal elements of I . For each h 2 I1 , we put

(2-5) IhD
˚
i 2 I W h� i

	
; MhD

˚
l 2M W jl 2 Ih

	
; ThD

�
Mh; IhI j jMh

;AjIh

�
:

We have a natural isomorphism

(2-6) UT .X IJ /�
�˚�

b0; .bh/h2I1

� 2 UT0
.X IJ /�

Y
h2I1

UTh
.X IJ / W

ev0.bh/D ev�h.b0/ 8h 2 I1

	�ı
Aut�.T /;

where the group Aut�.T / is defined by

Aut�.T /D Aut.T /=fg 2 Aut.T / W g � hD h 8h 2 I1g:
This decomposition is illustrated in Figure 5. In this figure, we represent an entire
stratum of bubble maps by the domain of the stable maps in that stratum. The right-hand
side of Figure 5 represents the subset of the cartesian product of the three spaces of
bubble maps, corresponding to the three drawings, on which the appropriate evaluation
maps agree pairwise, as indicated by the dotted lines and defined in (2-6).

Let FT �! UT .X IJ / be the bundle of gluing parameters, or of smoothings at the
nodes. This orbi-bundle has the form

FT D
� M
.h;i/2@

Lh;0˝Li;1˚
M
h2yI

Lh;0˝Lh;1

�.
Aut.T /;

for certain line orbi-bundles Lh;0 and Lh;1 . Similarly to the genus-zero case,

(2-7) UT .X IJ /D U .0/T .X IJ /ıAut.T //.S1/
yI ;
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h1h2 h3 h4

h5

y1

y2

� y1 y2

h1 h2

h3 h4

h5

Figure 5: An example of the decomposition (2-6)

where

(2-8) U .0/T .X IJ /D ˚�b0; .bh/h2I1

� 2 UT0
.X IJ /�

Y
h2I1

U .0/Th
.X IJ / W

ev0.bh/D ev�h.b0/ 8h 2 I1

	
and U .0/Th

.X IJ / is the subspace of the moduli space of holomorphic maps from
genus-zero curves as in Section 2.1. The line bundles Lh;0 and Lh;1 arise from
the quotient (2-7). More precisely,

FT D �FT ıAut.T //.S1/
yI ; where �FT D �F@T ˚ �F0T ˚ �F1T �! U .0/T .X IJ /;�F0T D

M
h2I1

�FhT ; �F1T D U .0/T .X IJ /�C
yI�I1 ;

and �FhT and �F@T are the pullbacks by the projection map

�P W U .0/T .X IJ / �! UT0
.X IJ /

of the universal tangent line LhT0 at the h–th marked point and of the bundle FT 0 of
gluing parameters. In other words, if UT0

�! UT0
.X IJ / is the semiuniversal family,

ie the fiber at b0 2 UT0
.X IJ / is the Riemann surface †b0

D †b0;@ , LhT0 is the
vertical tangent space at the point xh.b0/ of †b0

.

Remark 1 The above description is slightly inaccurate. In order to insure the existence
of the space UT0

, with the fibers as described, we need to replace the space UT0
.X IJ /

by a finite cover, analogous to the one used in [10]. However, correcting this inaccuracy
would complicate the notation used even further, but would have no effect on the
analysis, and thus we ignore it.

Remark 2 The rank of the bundle FT 0 is j@j, the number of nodes in the domain
of every element of UT0

.X IJ /. If @ ¤ ∅, FT 0 can be written as the quotient of
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the trivial bundle of rank j@j, over a space U .0/T0
.X IJ /, by an Aut.T0//.S1/@–action

in a manner similar to the previous subsection and to Section 2 of [16]. With the
above identifications, the singular points of every rational component †i of †@ are the
points 0 and 1 in S2 . Thus, the equivalence class of the restriction of a stable map in
UT0

.X IJ / to †i , with its nodes, has a C�–family of representatives. This family is
cut down to an S1 –family by restricting to the subset defined by the condition (B2) of
Section 2.5 in [16]. This is the preimage of 1=2 under the last, real-valued, component
of the function ‰T ;i� defined in (2) of the proof of Proposition 3.3 in [16].

If T D .M; I;@I j ;A/ is a bubble type such that Ai D 0 for all minimal elements i

of I , ie

UT .X IJ /� SM1;M .X;AIJ /�M
f0g
1;M

.X;AIJ /; where AD
X
i2I

Ai ;

it is again useful to define a thickening of the set U .0/T .X IJ /. Thus, we put

(2-9) zU .0/T .X IJ /D ˚�b0; .bh/h2I1

� 2 UT0
.X IJ /�

Y
h2I1

zU .0/Th
.X IJ / W

ev0.bh/D ev�h.b0/ 8h 2 I1

	
;

where the space zU .0/Th
.X IJ / is as in Section 2.1. Let

eFT DAF@T ˚ eF0T ˚ eF1T �! zU .0/T .X IJ /;
where

AF@T D z��PFT 0; eF0T D
M
h2I1

eFhT ; eFhT D z��P LhT0; eF1T D zU .0/T .X IJ /�C
yI�I1 ;

and z�P W zU .0/T .X IJ / �! UT0
.X IJ / is the projection map. As before, we denote by

eFT ∅ the subset of eFT consisting of the elements with all components nonzero.

Suppose T D .M; I;@I j ;A/ is a bubble type as in the previous paragraph. Since
every holomorphic map in the zero homology class is constant, the decomposition (2-6)
is equivalent to

UT .X IJ /�
�
UT0

.pt/�UxT .X IJ /
�ı

Aut�.T /

�
� SM1;k0

�UxT .X IJ /
�ı

Aut�.T /;
(2-10)

Geometry & Topology, Volume 13 (2009)



2448 Aleksey Zinger

where k0 D jM0j C jI1j, SM1;k0
is the moduli space of genus-one curves with k0

marked points, and

UxT .X IJ /D
�
.bh/h2I1

2
Y

h2I1

UTh
.X IJ / W ev0.bh1

/D ev0.bh2
/ 8h1; h2 2 I1

�
:

Similarly, (2-9) is equivalent to

(2-11) zU .0/T .X IJ /� UT0
.pt/� zU .0/xT .X IJ /� SM1;k0

� zU .0/xT .X IJ /;
where

(2-12) zU .0/xT .X IJ /

D
�
.bh/h2I1

2
Y

h2I1

zU .0/Th
.X IJ / W ev0.bh1

/D ev0.bh2
/ 8h1; h2 2 I1

�
:

We denote by

�P W UT .X IJ / �! SM1;k0
=Aut�.T /; z�P W zU .0/T .X IJ / �! SM1;k0

;

evP W UT .X IJ /; zU .0/T .X IJ / �!X

the projections onto the first component in the decompositions (2-10) and (2-11) and
the map sending each element ŒC;u� of UT .X IJ /, or .C;u/ of zU .0/T .X IJ /, to the
image of the principal component CP of C , ie the point u.CP / in X .

Let E �! SM1;k0
denote the Hodge line bundle, ie the line bundle of holomorphic

differentials. For each i 2 �.T /, we define the bundle map

DJ ;i W BFh.i/T �! z��P E�˝ ev�P TX; where h.i/Dminfh 2 yI W h� ig 2 I1;

over zU .0/T .X IJ / by˚DJ ;i.z�/
	
. /D  xh.i/.b/.zv/ �J Dib 2 TevP .b/X

 2 z��P E; z� D .b; zv/ 2BFh.i/T ; b 2 zU .0/T .X IJ /;if

and xh.i/.b/ 2†b;@ is the node joining the bubble †b;h.i/ of b to the principal com-
ponent †b;@ of †b . For each � 2eFT , we put

�.�/D �b; .�i.v//i2�.T /
� 2 M

i2�.T /
BFh.i/T ; where �i.v/D

Y
h2yI ;h�i

vh 2BFh.i/T ;

� D �bI v@; .vi/i2yI
�
; b 2 zU .0/T .X IJ /; .b; v@/ 2AF@T ; .b; vh/ 2 eFhT if h 2 yI1:if
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These definitions are illustrated in Figure 6. While the restrictions of these bundle maps
to U .0/T .X IJ /� zU .0/T .X IJ / do not necessarily descend to the vector bundle FT over
UT .X IJ /, the map

DT W FT �! ��P E�˝ ev�P TX
ı

Aut�.T /; DT .�/D
X

i2�.T /
DJ ;i�i.�/;

is well-defined.

Finally, if T is any bubble type, for genus-zero or genus-one maps, and K is a subset
of UT .X IJ /, we denote by K.0/ and zK.0/ the preimages of K under the quotient
projection maps

U .0/T .X IJ / �! UT .X IJ / and zU .0/T .X IJ / �! UT .X IJ /;
respectively. All vector orbi-bundles we encounter will be assumed to be normed. Some
will come with natural norms; for others, we choose a norm, sometimes implicitly,
once and for all. If �FW F �! X is a normed vector bundle and ıW X �! R is any
function, possibly constant, let

Fı D
˚
� 2 F W j�j< ı.�F.�//

	
:

If � is any subset of F, we take �ı D�\Fı .

2.3 Boundary structure theorem

In this subsection, we formulate Theorem 2.3, which states that an element

b 2 SM1;k.X;AIJ /�M
f0g
1;k
.X;AIJ /

lies in the stable-map closure of the space M0
1;k
.X;AIJ / of genus-one J –holomorphic

maps from smooth domains if and only if b lies in SM0
1;k
.X;AIJ /, provided the

almost complex structure J is sufficiently regular. In addition, Theorem 2.3 describes
a neighborhood of every stratum of

SM0
1;k.X;AIJ /�M

f0g
1;k
.X;AIJ /

in SM0
1;k
.X;AIJ /. If k 2 xZC , we denote by Œk� the set f1; : : : ; kg.

Theorem 2.3 Suppose .X; !;J / is a compact almost Kahler manifold and A 2
H2.X IZ/� . If the regularity conditions (a) and (b-i) of Definition 1.4 are satisfied
and T D .Œk�; I;@I j ;A/ is a bubble type such that

P
i2I Ai DA and Ai D 0 for all
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minimal elements i of I , then the intersection of the closure of M0
1;k
.X;AIJ / in

SM1;k.X;AIJ / with UT .X IJ / is the set

UT I1.X IJ /�
˚
Œb� 2 UT .X IJ / W dimC Span.C;J /fDib W i 2 �.T /g< j�.T /j

	
:

Furthermore, the space

F1T ∅ � ˚Œ��D Œb; v� 2 FT ∅ WDT .�/D 0
	

is a smooth oriented suborbifold of FT . Finally, there exist ı 2 C.UT .X IJ /IRC/,
an open neighborhood UT of UT .X IJ / in X1;k.X;A/, and an orientation-preserving
diffeomorphism

�W F1T ∅
ı
�!M0

1;k.X;AIJ /\UT ;

which extends to a homeomorphism

�W F1Tı �! SM0
1;k.X;AIJ /\UT ;

where F1T is the closure of F1T ∅ in FT .

We now clarify the statement of Theorem 2.3 and illustrate it using Figure 6. As before,
the shaded discs represent the components of the domain on which every stable map Œb�
in UT .X IJ / is nonconstant. A stable map

ŒC;u� 2 UT .X IJ /� SM1;k.X;AIJ /�M
f0g
1;k
.X;AIJ /

is in the stable-map closure of M0
1;k
.X;AIJ / if and only if ŒC;u� satisfies condition (b)

of Definition 1.1.

h1h2 h3 h4

h5

“tacnode”

�.T /Dfh1;h4;h5g, �.�/D.�h1
; �h3

�h4
; �h3

�h5
/

F1T ; D ˚
ŒbI vh1

; vh2
; vh3

; vh4
; vh5

� W vh2
; vh4

; vh5
2C�;

vh1
2Txh1

†P �f0g; vh3
2Txh3

†P �f0g;
vh1

DJ ;h1
bCvh3

vh4
DJ ;h4

bCvh3
vh5

DJ ;h5
b D0

	

Figure 6: An illustration of Theorem 2.3

Standard arguments show that the regularity condition (a) of Definition 1.4 implies
that the space U .0/T .X IJ / is a smooth manifold, while UT .X IJ / is a smooth orbifold;
see Chapter 3 in [8], for example. Thus, the total space of the bundle FT ∅ is also a
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smooth orbifold. The second claim of Theorem 2.3 is immediate from the transversality
of the bundle map

DT W FT ∅ �! ��P E�˝ ev�P TX
ı

Aut�.T /; DT .�/D
X

i2�.T /
DJ ;i�i.�/;

to the zero set. In turn, this transversality property is an immediate consequence of the
regularity conditions (a) and (b-i) of Definition 1.4.

The middle claim of Theorem 2.3 is needed to make sense of the remaining statement.
This final claim, proved in Section 6, describes a normal neighborhood of UT I1.X IJ /
in SM0

1;k
.X;AIJ / and implies the first statement of Theorem 2.3.

Remark The regularity assumptions on J used in Theorem 2.3 do not guarantee that
the entire space M0

1;k
.X;AIJ / is smooth. However, the proof of Theorem 1.6 implies

that M0
1;k
.X;AIJ / is smooth near each stratum UT I1.X IJ / of SM0

1;k
.X;AIJ /. This

can be seen from the zJ D J case of Corollary 4.5 and standard Implicit Function
Theorem arguments such as those in Chapter 3 of [8].

Proof of Corollary 1.5 It remains to construct a fundamental class for SM0
1;k
.X;AIJ /.

Theorem 2.3 gives a description of a neighborhood in SM0
1;k
.X;AIJ / of every stratum

SM0
1;k
.X;AIJ /\UT .X IJ / for a bubble type T D .M; I;@I j ;A/ such that Ai D 0

for all minimal elements i 2 I . If T is a bubble type such that Ai ¤ 0 for some
minimal element i 2 I , a neighborhood of

SM0
1;k.X;AIJ /\UT .X IJ /D UT .X IJ /

in SM0
1;k
.X;AIJ / is homeomorphic to a neighborhood of UT .X IJ / in the correspond-

ing bundle of gluing parameters FT , as can be seen from Section 4.1 and the continuity
arguments of [16, Sections 3.9]. Since

@SM0
1;k.X;AIJ /� SM0

1;k.X;AIJ /�M0
1;k.X;AIJ /

is a union of smooth orbifolds of (real) dimension at most 2.hc1.TX /;AiC k/� 2, it
follows that there exist arbitrary small neighborhoods U of @SM0

1;k
.X;AIJ / such that

Hl

�
U IQ/D f0g 8 l � 2.hc1.TX /;AiC k/� 1I

see [20, Section 2.2]. Since the moduli space M0
1;k
.X;AIJ / is a smooth oriented

orbifold,

dimR M0
1;k.X;AIJ /D 2.hc1.TX /;AiC k/;
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and the complement of U in SM0
1;k
.X;AIJ / is compact, M0

1;k
.X;AIJ / determines

a class�SM0
1;k.X;AIJ /

� 2H2.hc1.TX /;AiCk/

�SM0
1;k.X;AIJ /;U IQ/
�H2.hc1.TX /;AiCk/

�SM0
1;k.X;AIJ /IQ/;

as claimed. The isomorphism between the two homology groups is induced by inclusion.

3 A genus-zero gluing procedure

3.1 The genus-zero regularity properties

In this subsection, we prove the g D 0 case of the first claim of Theorem 1.6. It
follows from Corollary 3.2 and the compactness of the moduli space SM0;1.X;AIJ /.
Corollary 3.2 is obtained by a rather straightforward argument via the analytic part
of [6]. Throughout this subsection, we assume that J is a genus-zero A–regular almost
complex structure on X .

In order to prove Theorem 1.6, we need to describe smooth maps uW P1 �! X , with
one or two marked points, that lie close to each stratum UT .X IJ / of SM0;1.X;AIJ /
and of

SM0;2.X;AIJ /� SM0;f0gtf1g.X;AIJ /:
We denote by X0;M .X;A/ the space of equivalence classes of all smooth maps into X

from genus-zero Riemann surfaces with marked points indexed by the set f0g tM in
the homology class A and by X0

0;M
.X;A/ the subset of X0;M .X;A/ consisting of

the maps with smooth domains, ie P1 in this case.

Let T D .M; I I j ;A/ be a bubble type such that
P

i2I Ai D A, ie UT .X IJ / is a
stratum of the moduli space SM0;f0gtM .X;AIJ /. We will proceed as in Sections 3.3
and 3.6 of [16]. Sections 2.1 and 2.3 in [13] describe a special case of the same
construction in circumstances very similar to the present situation.

For each sufficiently small element � D .b; v/ of eFT ∅ , where b D .†b;ub/ is an
element of zU .0/T .X IJ /, let

q� W †� �!†b

be the basic gluing map constructed in Section 2.2 of [16]. In this case, †� is the
projective line P1 with jM jC 1 marked points. Let

b.�/D �†� ;u��; where u� D ub ı q� ;
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be the approximately holomorphic map corresponding to � . The primary marked point
y0.�/ of †� is the point 1 of †� � S2 .

Let rJ be the J –linear connection induced by the Levi-Civita connection of the
metric gX . Since the linearization DJ ;b of the x@J –operator at b is surjective by
Definition 1.3, if � 2eFT ∅ is sufficiently small, the linearization

DJ ;� W �.�/�L
p
1
.†� Iu��TX / �! �0;1.�IJ /�Lp.†� Iƒ0;1

J ;j
T �†� ˝u��TX /

of the x@J –operator at b.�/, defined via the connection rJ , is also surjective. In
particular, we can obtain a decomposition

(3-1) �.�/D ��.�/˚�C.�/
such that the linear operator DJ ;� W �C.�/ �! �0;1.�IJ / is an isomorphism, while

��.�/D
˚
� ı q� W � 2 ��.b/� ker DJ ;b

	
:

For the purposes of this subsection, the space �C.�/ can be taken to be the L2 –
orthogonal complement of ��.�/, but for use in later subsections it is more convenient
to take

�C.�/D
˚
� 2 �.�/ W �.y0;1/D 0I(3-2)

hh�; �ii�;2 D 0 8� 2 ��.�/ such that �.y0;1/D 0
	
;

where .y0;1/ is the primary marked point, ie the south pole of the sphere †� � S2 .
This choice of �C.�/ is permissible by Definition 1.3. The L2 –inner product on �.�/
used in (3-2) is defined via the metric gX on X and the metric g� on †� induced by
the pregluing construction. The Banach spaces �.�/ and �0;1.�IJ / carry the norms
k�k�;p;1 and k�k�;p , respectively, which are also defined by the pregluing construction.
Throughout this paper, p denotes a real number greater than two. The norms k � k�;p;1
and k � k�;p are equivalent to the ones used in [6]. In particular, the norms of DJ ;�

and of the inverse of its restriction to �C.�/ have fiberwise uniform upper bounds,
ie dependent only on Œb� 2 UT .X IJ /, and not on v 2C�yI . We denote by

��I�W �.�/ �! ��.�/ and ��ICW �.�/ �! �C.�/

the projection maps corresponding to the decomposition (3-1). The relevant facts
concerning the objects described in this paragraph are summarized in Lemma 3.1:

Lemma 3.1 Let .X; !;J / be a compact almost Kahler manifold and A 2H2.X IZ/.
If J is a genus-zero A–regular almost complex structure and T D .M; I I j ;A/ is a
bubble type such that ADPi2I Ai , there exist ı;C 2 C.UT .X IJ /IRC/ and an open
neighborhood UT of UT .X IJ / in X0;M .X;A/ with the following properties:
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(1) For all � D .b; v/ 2eFT ∅
ı

,

k��I��k�;p;1 � C.b/k�k�;p;1 8� 2 �.�/;
kDJ ;��k�;p � C.b/j�j1=pk�k�;p;1 8� 2 ��.�/;

C.b/�1k�k�;p;1 � kDJ ;��k�;p � C.b/k�k�;p;1 8� 2 �C.�/I

(2) For every Œzb� 2 X0
0;M

.X;A/\UT , there exist � 2 �FT ∅
ı

and � 2 �C.�/ such
that k�k�;p;1 < ı.b/ and Œexpb.�/��D Œzb�.

The first two bounds in (1) follow immediately from the definition of the spaces ��.�/.
The third estimate can be deduced from the facts that

k�k�;p;1 � C.b/
�kDJ ;��k�;pCk�k�;p

�
; k�kC 0 � C.b/k�k�;p;1 8� 2 �.�/;(3-3)

lim
��!b

��.�/D ��.b/ if b D .†b;ub/ 2 zU .0/T .X IJ /I

see Section 3.5 in [16]. In (2) of Lemma 3.1, expb.�/� denotes the stable map that has
the same domain and marked points as the map b.�/, but the map into X is expu�

� ,
where exp is the exponential map of the connection rJ . The final claim of Lemma
3.1 also follows from the above properties of ��.�/, along with the uniformly smooth
dependence of the spaces ��.�/ on � ; see Section 4 of [16]. In fact, for each Œzb� in
UT \X0

0;M
.X;A/, the corresponding pair .�; �/ is unique, up to the action of the

group Aut.T //.S1/I .

Corollary 3.2 If .X; !;J /, A, and T are as in Lemma 3.1 and M D ∅, for every
precompact open subset K of UT .X IJ /, there exist ıK ;CK 2 RC and an open
neighborhood UK � UT of K in X0;∅.X;A/ with the following properties:

(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.

(2) If zJ is an almost complex structure on X such that k zJ � JkC 1 < ıK and
Œzb� 2 UK \ X0

0;1
.X;A/, there exists a smooth map zuW P1 �! X such that

Œzb�D ŒP1; zu� and, for a choice of linearization of x@ zJ at zu, the operators D zJ ;zu
and D1zJ ;zu are surjective.

Remark If the map zu is zJ –holomorphic, ie x@ zJ vanishes at zu, there is only one
linearization of x@ zJ at zu, though there are different ways of writing it explicitly. In the
proof of this corollary, whether or not zu is a zJ –holomorphic map, D zJ ;zu denotes the
linearization of x@ zJ at zu with respect to the connection r zJ ; see [8, Chapter 3].
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Proof (1) By (2) of Lemma 3.1, it is sufficient to check the surjectivity claims for
every smooth map zuD expu�

� , where � D .b; v/ 2 zFT ∅
ıK

ˇ̌
K .0/ and k�k�;p;1 < ıK . If

� 2 �.zu/�L
p
1
.†� I zu�TX /;

we define z� 2 �.�/ by

z�.z/D…�1
�.z/�.z/ 8 z 2 P1;

where …�.z/ is the parallel transport along the geodesic t �! expu�.z/
t�.z/ with

respect to rJ . By (3-3),

(3-4) kDJ ;�
z�k�;p � kD zJ ;zu�k�;pCCK

�k zJ �JkC 1 Ck�k�;p;1
�k�k�;p;1

D kD zJ ;zu�k�;pCCK

�k zJ �JkC 1 Ck�k�;p;1
�kz�k�;p;1

8 � 2 �.zu/:
Thus, by (1) of Lemma 3.1,

k��ICz�k�;p;1 � C 0K
�k zJ �JkC 1 Ck�k�;p;1

�kz�k�;p;1
H) kz�k�;p;1 � CKk��I�z�k�;p;1

8 � 2 ker D zJ ;zu;(3-5)

if ıK is sufficiently small. By (3-5) and (a) of Definition 1.3,

dim ker D zJ ;zu � dim��.�/D ind DJ ;b D ind D zJ ;zu:

In particular, the operator D zJ ;zu is surjective.

(2) The surjectivity of the map D1zJ ;zu is proved similarly. Let

z��I�W ��.�/ �! z��.�/� f� 2 ��.�/ W �.1/D 0g � ker D1J ;ub
;

z��ICW ��.�/ �! z�C.�/� f� 2 ��.�/ W hh�; � 0ii�;2 D 0 8� 0 2 z��.�/g

be the L2 –orthogonal projections onto z��.�/ and its orthogonal complement in ��.�/.
Then,

(3-6) k�k�;p;1 � CK j�.1/j 8 � 2 z�C.�/;

since the analogous bound holds for the map

D1J ;bW ker DJ ;u �! Tu.1/X;
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by Definition 1.3. Combining (3-3)–(3-6), we obtain

kz��IC��I�z�k�;p;1
� CK j��I�z�.1/j � C 0K

�jz�.1/jC j��ICz�.1/j�
� C 00K

�j�.1/jC .k zJ �JkC 1 Ck�k�;p;1/kz�k�;p;1
� 8 � 2 ker D zJ ;zu

H) kz�k�;p;1 � CKkz��I���I�z�k�;p;1 8 � 2 ker D1zJ ;zu;

if ıK is sufficiently small. Thus,

(3-7) dim ker D1zJ ;zu � dim z��.�/D ind D1J ;b D ind D1zJ ;zu;

and the operator D1zJ ;zu is surjective.

3.2 Some power-series expansions

In Section 2.5 of [13] we describe the behavior of all derivatives of rational J0 –
holomorphic maps into Pn near each stratum UT .PnIJ0/ by making use of special
properties of the standard complex structure J0 on Pn . In this subsection, we obtain
analogous estimates for modified derivatives of J –holomorphic maps into X for an
arbitrary genus-zero A–regular almost complex structure J ; see Lemma 3.5. We use
these estimates a number of times in the rest of the paper.

If b D .†b;ub/ is as element of zU .0/T .X IJ / as in the previous subsection, the tangent
bundle Tb

zU .0/T .X IJ / of zU .0/T .X IJ / at b consists of the pairs .w; �/, where � 2
ker DJ ;b and w 2 C

yI encode the change in ub and in the position of the nodes
on †b , respectively, that satisfy a certain balancing condition; see Section 2.5 in [16].
We denote by zTb

zU .0/T .X IJ / the subspace of the tuples .0; �/ of Tb
zU .0/T .X IJ /. In

particular,

zTb
zU .0/T .X IJ /���.b/�

�
.�h/h2I 2

M
h2I

ker DJ ;ub;h
W �h.1/D ��h.xh.b// 8h2 yI

�
;

where ub;h D ubj†b;h
. If i 2 �.T /, where �.T / is as in (2-3), the image of the

projection map˚
.�h/h2I 2 zTb

zU .0/T .X IJ /W �i.y0;1/D 0
	 �! ˚

� 2 ker DJ ;ub;i
W �.y0;1/D 0

	
;

� D .�h/h2I �! �j†b;i
D �i ;

has real codimension two. Its complement corresponds to the infinitesimal translations
in C�†b;i . Thus, if J satisfies the regularity conditions (a) and (b-i) of Definition 1.4
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and y0 is the minimal element of I , for all i 2 �.T / the map

DJ ;uIi W z��.b/�
˚
�2 zTb

zU .0/T .X IJ /W �.y0;1/D0
	�!Tev0.b/X; DJ ;uIi.�/DrJ

e1
�i ;

is surjective.

Lemma 3.3 If .X; !;J /, A, and T are as in Lemma 3.1, for every precompact
open subset K of UT .X IJ /, there exist ıK ; �K ;CK 2RC and an open neighborhood
UK � UT of K in X0;M .X;A/ with the following properties:

(1) Requirements (1) and (2) of Corollary 3.2 are satisfied.

(2) If zJ is an almost complex structure on X such that k zJ �JkC 1 � ıK ,

(2a) for all � D .b; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ , the equation

x@ zJ expu�
� D 0; � 2 �C.�/; k�k�;p;1 < �K ;

has a unique solution � zJ ;� ;
(2b) the map

z� zJ W eFT ∅
ıK
j zK .0/ �!M0

0;f0gtM .X;AI zJ /\UK ; � �! Œexpb.�/ � zJ ;� � ;

is smooth;
(2c) for all � D .b; v/ 2eFT ∅

ıK
j zK .0/ , ev0.z� zJ .�//D ev0.b/;

(2d) for all � D .b; v/2eFT ∅
ıK

ˇ̌
zK .0/ ,

(3-8)
� zJ ;��;p;1; rT � zJ ;��;p;1 � CK

�k zJ �JkC 1 Cj�j1=p�;
where rT � zJ ;� denotes the differential of the bundle map � �! � zJ ;�
along z��.b/ with respect to a connection in the bundle �.. � ; v// over
zU .0/T .X IJ /.

Remark Let 'W z��. � / �! zU .0/T .X IJ / be a smooth map such that

d'j.b;0/W z��.b/ �! Tb
zU .0/T .X IJ /

is the inclusion map for all b 2 zU .0/T .X IJ / and

†'.&/ D†b and ev0.'.&//D ev0.b/ 8 b 2 zU .0/T .X IJ /; & 2 z��.b/:

Let z'W ��z��. � /�.. � ; v//D �
�
z��. � /�.†. � ;v/Iu

�
. � ;v/TX / �! �.. � ; v//
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be a lift of ' to a vector-bundle homomorphism that restricts to the identity over
zU .0/T .X IJ /. For example, we can take z' to be given by˚z'.& I �/	.z/D…�.q.b;v/.z//�.z/ 8 z 2†.b;v/ D†.'.&/;v/

& 2 z��.b/ and '.&/D .†b; expub
�.z//;if

where …�.q.b;v/.z//�.z/ is the parallel transport of �.z/ along the geodesic

�.z/W Œ0; 1� �!X; � �! expu.b;v/.z/
��.q.b;v/.z//:

We can then define rT � zJ ;. � ;v/W z��. � / �! �.. � ; v// by

˚rT& � zJ ; �	ˇ̌.b;v/ D lim
t�!0

� zJ ;.'.t&/;v/� z'.� zJ ;.b;v//
t

2 �..b; v//

for X 2 z��.b/. Finally, a choice of metric on zU .0/T .X IJ / determines krT � zJ ;�k�;p;1 .

Claim (2a) of Lemma 3.3 and the first bound in (2d) follow immediately from (1)
of Lemma 3.1 and (3-3) via a quadratic expansion of the x@ zJ –operator at u� and the
Contraction Principle; see [16, Section 3.6]. Claim (2c) is a consequence of (3-2). The
smoothness of the map z� zJ follows from the smooth dependence of solutions of the
equation in (2a) on the parameters. The second bound in (2d) is obtained from the
uniform behavior of these parameters; see [16, Section 3.4].

If b 2 zU .0/T .X IJ / is as before, the domain †b of b has the form

(3-9) †b D
�G

i2I

fig �S2

�.
�; where .h;1/� .�h;xh.b// 8h 2 yI ;

and xh.b/ 2 S2�f1g. The basic gluing map q� W †� �!†b used in this paper is a
homeomorphism outside of at most j yI j circles in †� and is holomorphic outside of
the annuli

zA˙�;h � q�1
�

�
A˙b;h.j�hj/

�
;

with h 2 yI , where

A�b;h.ı/DA�h .ı/D
˚
.h; z/ 2 fhg �S2 W jzj � ı�1=2=2

	
;

AC
b;h
.ı/D ˚.�h; z/ 2 f�hg �S2 W jz�xh.b/j � 2ı1=2g;
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for any ı 2RC . For each h 2 yI , zAC
�;h
[ zA�

�;h
is the thin neck of †� corresponding

to smoothing the node of †b joining the spheres †b;�h and †b;h . If ı 2RC , let

@�A�b;h.ı/D
˚
.h; z/ 2 fhg �S2 W jzj D ı�1=2=2

	
;

†0
b.ı/D

�
†b �

[
i2�.T /

[
h�i

†b;h

�
[

[
i2�.T /

A�b;i.ı/;

zA˙�;h.ı/D q�1
� .A˙b;h.ı//�†� ; @� zA��;h.ı/D q�1

�

�
@�A�b;h.ı/

�
;

†0
�.ı/D q�1

�

�
†0

b.ı/
�
:

In the case of Figure 7, †0
�.ı/ consists of the two nonshaded components, with the

node joining them turned into a thin neck, the three thin necks corresponding to the
nodes attaching the bubbles h1 , h4 , and h5 , and small annuli extending from each of
these three necks into the interior of the corresponding bubble, provided j�j < ı . If
� D .b; v/, with v 2C�yI , the complement of †0

�.ı/ is the union of j�.T /j disks that
support nearly all of the map u� � ub ı q� .

Lemma 3.4 If .X; !;J /, A, and T are as in Lemma 3.1, for every precompact
open subset K of UT .X IJ /, there exist ıK ; �K ;CK 2RC and an open neighborhood
UK � UT of K in X0;M .X;A/ with the following properties:

(1) Requirements (1) and (2) of Corollary 3.2 are satisfied.

(2) If zJ is an almost complex structure on X such that k zJ �JkC 1 � ıK , there exist
a smooth map

z� zJ W eFT ∅
ıK
j zK .0/ �!M0

0;f0gtM .X;AI zJ /\UK

such that the requirements (2a)–(2d) of Lemma 3.3 are satisfied. Furthermore,
for every b 2 zK.0/ and � D .b; v/ 2eFT ∅

ıK
j zK .0/ , there exist

ˆb 2L
p
1

�
†0

b.ıK /IEnd.ev�0 TX /
�
; #b 2 HolJ

�
†0

b.ıK /I ev�0 TX
�
;

ˆ zJ ;� 2L
p
1

�
†0
�.ıK /IEnd.ev�0 TX /

�
; # zJ ;� 2 HolJ

�
†0
�.ıK /I ev�0 TX

�
;

such that
(2a) the maps b �! .ˆb; #b/ and � �! .ˆ zJ ;� ; # zJ ;�/ are smooth;

(2b) for all b 2 zK.0/ ,

expev0.b/

�
ˆb.z/#b.z/

�D ub.z/ 8z 2†0
b.ıK /;

ˆbj†0
b
.0/ D Id and

ˆb � Id


b;p;1
;
rT .ˆb � Id/


b;p;1

� 1

2
I
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(2c) for all � D .b; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ ,

expev0.b/

�
ˆ zJ ;�.z/# zJ ;�.z/

�D zu�.z/ 8z 2†0
�.ıK /;ˆ zJ ;� �ˆb ı q�


�;p;1

;
rT .ˆ zJ ;� �ˆb ı q�/


�;p;1

� CK

�k zJ �JkC 1 Cj�j1=p�;
if zu� D expu�

� zJ ;� .

In the statement of this lemma, HolJ .†0
b
.ıK /I ev�

0
TX / and HolJ .†0

�.ıK /I ev�
0

TX /

denote the spaces of holomorphic maps from †0
b
.ıK / and †0

�.ıK / into the complex vec-
tor space .Tev0.b/X;J /. In brief, the substance of Lemma 3.4 is that a J –holomorphic
map can be well approximated by a holomorphic map on a neighborhood of the primary
marked point, or any other point, of the domain. Due to Lemma 3.3, Lemma 3.4 is
essentially a parametrized version of Theorem 2.2 in [3], and only a couple of additional
ingredients are needed. The crucial fact used in [3] is that the operator

„W Lp
1

�
S2IEndC.C

n/
� �!Lp

�
S2Iƒ0;1T �S2˝EndC.C

n/
�˚EndC.C

n/;

„.‚/D .x@‚;‚.0//;

is an isomorphism. The map „ is still an isomorphism if S2 is replaced by a tree of
spheres † and 0 by any point on †. Furthermore, if y is a smooth point of † for all
sufficiently small smoothings � of the nodes, the operators

„� W Lp
1

�
†� IEndC.C

n/
� �!Lp

�
†� Iƒ0;1T �†� ˝EndC.C

n/
�˚EndC.C

n/;

„�.‚/D .x@‚;‚.y//;

are also isomorphisms. In addition, for some C 2 RC and for all sufficiently small
smoothings � ,

(3-10) C�1k„�‚k�;p � k‚k�;p;1 � Ck„�‚k�;p 8 ‚ 2L
p
1

�
†� IEndC.C

n/
�
:

If all components of � are nonzero, †� is topologically a sphere, but should instead
be viewed as a tree of spheres joined by thin necks. As before, we denote by k � k�;p;1
and k � k�;p the norms induced by the pregluing construction above. In particular,
(3-10) can be viewed as a special case of (1) of Lemma 3.1. We need to use the norms
k � k�;p;1 and k � k�;p , since these are the norms used in Lemmas 3.1 and 3.3. Keeping
track of all norms in the proof of Theorem 2.2 in [3], we see that the maps ˆb , #b ,
ˆ zJ ;� , and # zJ ;� satisfying (2b) and the first condition in (2c) exist, provided that ıK
is sufficiently small. The last two estimates in (2c) are obtained by an argument similar
to Section 4.1 in [16].
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.O0;1/

h1h2
h3

h4

h5

xh1
.b/ xh3

.b/

xh5
.b/

�.T /Dfh1;h4;h5g
�.�/ D .�h1

; �h3
�h4

; �h3
�h5

/

xh5
.�/ D xh3

.b/C vh3
xh5

.b/

D.1/

O0
Qb QJ .�/ Š D.1/

J ;h1
�h1

CD.1/

J ;h4
�h3

�h4
CD.1/

J ;h5
�h3

�h5

Figure 7: An example of the estimates of Lemma 3.5

Before we can state Lemma 3.5, we need to introduce additional notation. For each
� D .b; v/, where b 2 zU .0/T .X IJ / and v 2C

yI , and i 2 �.T /, let

�i.v/D
Y
y0<h�i

vh 2C; �i.�/D .b; �i.v//I xi.�/D
X
y0<i0�i

�
xi0.b/

Y
y0<h<i0

vh

�
2 C;

where xi.b/ is as in (3-9); see Figure 7. If K and #b are as in Lemma 3.4, b D
.†b;ub/ 2 zK.0/ , v 2C , i 2 �.T /, and r 2 ZC , we put

D.r/i b D 1

r !

dr

dwr
i

#b;i.wi/
ˇ̌̌
wiD0

2 Tev0.b/X and D.r/
J ;i
.b; v/D v �J D.r/i b;

where #b;i D #bj†b;i
, �J is the scalar multiplication in .TX;J /, and wi is the standard

holomorphic coordinate centered at the point 1 in †b;i D S2 . If � 2eFT ∅
ıK
j zK .0/ , we

similarly set

zb zJ .�/D .†� ; zu�/; D.r/y0 zb zJ .�/D
1

r !

dr

dwr
# zJ ;�.w/

ˇ̌̌
wD0
2 Tev0.b/X;

where w is the standard holomorphic coordinate centered at the point 1 in †� � S2 .
The value of D.r/i b depends on the choice of #b in Lemma 3.4, which can be uniquely
prescribed by the choice of ıK 2 RC . Alternatively, one can replace small positive
numbers ıK dependent on compact subsets K of UT .X IJ / by a small function
ıW UT .X IJ / �!RC , which can be used to choose a holomorphic map

#bW †0
b.ı.b// �! .Tev0.b/X;J /

for each J –holomorphic stable map b 2 zU .0/T .X IJ /. Of course, the definition of
D.r/y0 zb zJ .�/ depends on even more choices, including those involved in the gluing
construction of Lemma 3.3.
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Lemma 3.5 If .X; !;J /, A, and T are as in Lemma 3.1, for every precompact
open subset K of UT .X IJ /, there exist ıK ; �K ;CK 2RC and an open neighborhood
UK � UT of K in X0;M .X;A/ with the following properties:

(1) Requirements (1) and (2) of Corollary 3.2 are satisfied.

(2) If zJ is an almost complex structure on X such that k zJ �JkC 1 � ıK , there exist
z� zJ , ˆb and #b for each b 2 zK.0/ , and ˆ zJ ;� and # zJ ;� for each � 2eFT ∅

ıK
j zK .0/ ,

such that the requirements (2a)–(2d) of Lemma 3.3 and (2a)–(2c) of Lemma
3.4 are satisfied. Furthermore, for each k 2 ZC and i 2 �.T / there exists a
smooth map

"
.k/

zJ ;i W eFT
∅
ıK

ˇ̌
zK .0/ �! ev�0 TX;

such that

(2a) for all r 2 ZC and � D .b; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ ,

D.r/y0 zbJ .�/D
kDrX
kD1

�
r � 1

k � 1

� X
i2�.T /

xr�k
i .�/

˚D.k/
J ;i
C ".k/zJ ;i.�/

	
�k

i .�/ 2 Tev0.b/X I

(2b) for all k 2 ZC , i 2 �.T /, and � D .b; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ ,

j".k/zJ ;i j� ; jr
T "
.k/

zJ ;i j� � CK ı
�k=2
K

�k zJ �JkC 1 Cj�j1=p�:
Proof (1) We apply, with some modifications, the argument for the analytic estimates
of Theorem 2.8 in [13] to holomorphic functions #b and # zJ ;� , instead of the functions
ub and zu� which are J –holomorphic and zJ –holomorphic in this case. We will use
coordinates z on S2�f1g�C and wD z�1 on S2�f0g. Since # zJ ;� is holomorphic
on †0

�.ıK /,

D.r/y0 zbJ .�/D 1

r !

@r

@wr
# zJ ;�.w/

ˇ̌
wD0
D 1

2� i

I
@†0

�.ıK /

# zJ ;�.w/
dw

wrC1

D 1

2� i

X
i2�.T /

I
@� zA�

�;i
.ıK /

# zJ ;�.w/
dw

wrC1
(3-11)

D� 1

2� i

X
i2�.T /

I
@� zA�

�;i
.ıK /

ˆ�1
zJ ;�.z/

�
ˆb#b ı q�.z/Cz� zJ ;�.z/

�
zr�1 dz;

where z� zJ ;� 2 C1.†0
�.ıK /ITev0.b/X / is defined by

expev0.b/

�
exp�1

ev0.b/
u�.z/Cz� zJ ;�

�D zu�.z/� expu�.z/
� zJ ;�.z/:
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(2) In order to estimate each integral on the last line of (3-11), we expand zr�1 around
xi.�/, the center of the circle @� zA��;i.ıK /, as a polynomial in zzi D z�xi.�/:

(3-12)
I
@� zA�

�;i
.ıK /

ˆ�1
zJ ;�.z/

�
ˆb#b ı q�.z/Cz� zJ ;�.z/

�
zr�1 dz

D
kDrX
kD1

�
r � 1

k � 1

�
xr�k

i .�/

I
@� zA�

�;i
.ıK /

ˆ�1
zJ ;�.zzi/

�
ˆb#b ı q�.zzi/Cz� zJ ;�.zzi/

�zzk�1
i dzzi :

By construction, zi D q�.zzi/ D ��1
i .v/zzi near @� zA��;i.ıK /, if zi is the standard

holomorphic coordinate on †�;i � f1g D fig � .S2 � f1g/ and j�j < ıK . Since
#b;i � #bj†b;i

is Jev0.b/–holomorphic,I
@� zA�

�;i
.ıK /

#b.q�.zzi//zzk�1
i dzzi D �k

i .v/

I
@�A�

i
.ıK /

#b;i.zi/ zk�1
i dzi

D��k
i .v/

I
@�A�

i
.ıK /

#b;i.wi/
dwi

wkC1
i

D��k
i .v/

2� i

k!

@k

@wk
i

#b;i.wi/
ˇ̌
wiD0

D�2� iD.k/
J ;i
�k

i .�/;

(3-13)

where wi D z�1
i is the standard holomorphic coordinate on fig�.S2�f0g/. Similarly,

(3-14)
I
@� zA�

�;i
.ıK /

�˚
ˆ�1
zJ ;�.zzi/ˆb.q�.zzi//� Id

	
#b.q�.zzi//Cˆ�1

zJ ;�.zzi/z� zJ ;�.zzi/
�zzk�1

i dzzi

D�2� i "
.k/

zJ ;i.�/�
k
i .�/;

where

(3-15) "
.k/

zJ ;i.�/D
1

2� i

I
@�A�

i
.ıK /

�˚
ˆ�1
zJ ;�.wi/ˆb.q�.wi//� Id

	
#b.q�.wi//

Cˆ�1
zJ ;�.wi/z� zJ ;�.wi/

� dwi

wkC1
i

:

The expansion in (2a) of the lemma follows immediately from (3-11)–(3-14). By defi-
nition, @�A�i .ıK / is a circle of radius 2ı

1=2
K

around the south pole in the sphere †b;i .
Thus, part (2b) of the lemma follows from (3-15), along with (3-8) and the bounds
in (2b) and (2c) of Lemma 3.4.
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3.3 The genus-one regularity properties (b-i) and (b-ii)

In this subsection, we show that if J is an almost complex structure on X that satisfies
the regularity conditions (a) and (b-i) of Definition 1.4, then so does every almost
complex structure zJ on X which is sufficiently close to J . This claim follows from
Corollary 3.6 and the compactness of the moduli space SM0;1.X;AIJ /. We also show
that if J is an almost complex structure on X that satisfies the regularity conditions (a),
(b-i), and (b-ii) of Definition 1.4, then so does every nearby almost complex structure zJ
on X . This conclusion is immediate from Corollary 3.7 and the compactness of the
moduli space SM0;2.X;AIJ /.
If T is a bubble type as in Corollary 3.2 with Ay0D 0, where y0 is the minimal element
of I , the analogue of (3-6) does not hold for the map D

1;v
J ;b

for any fixed nonzero
vector v tangent to P1 at 1. The reason is that D

1;v
J ;b

is the zero homomorphism on
ker D1

J ;b
, since the map ub is constant on the component †

b;y0 of the domain †b of b

which contains the marked point 1. In particular, D
1;v
zJ ;zu need not be surjective for a

smooth map zuW P1 �!X which is arbitrary close to the moduli space SM0;1.X;AIJ /.
Thus, a different approach is required to understand the behavior of the regularity
condition (b-i) of Definition 1.4 near UT .X IJ /.
Claim (c) of Theorem 1.6 can alternatively be viewed as a statement concerning the
behavior of the first derivatives duj1 of J –holomorphic maps. Lemma 3.5 describes
the behavior of modified first and higher-order derivatives of zJ –holomorphic maps
near a stratum UT .X IJ / with T as in the previous paragraph. We use the estimate for
the higher-order derivatives to describe the behavior of the regularity condition (b-ii)
of Definition 1.4 near UT .X IJ /.

Corollary 3.6 Suppose .X; !;J /, A¤ 0, and T are as in Lemma 3.1 and M D∅.
If the almost complex structure J satisfies the regularity conditions (a) and (b-i)
of Definition 1.4, for every precompact open subset K of UT .X IJ /, there exist
ıK ;CK 2 RC and an open neighborhood UK � UT of K in X0;∅.X;A/ with the
following properties:

(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.

(2) If zJ is an almost complex structure on X such that k zJ � JkC 1 < ıK and
ŒP1; zu� 2M0

0;f0g.X;AI zJ /\UK , the operators D zJ ;zu , D1zJ ;zu , and D
1;e1
zJ ;zu are

surjective.

Proof (1) By Corollary 3.2, it remains to show that the operator D
1;e1
zJ ;zu is surjective.

If T D .∅; I I ;A/ with Ay0 ¤ 0, the argument used twice in the proof of Corollary 3.2
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can be repeated once more to show that the operator D
1;e1
zJ ;zu is also surjective for any

smooth map zu sufficiently close to K . Thus, we will assume that Ay0 D 0.

(2) Let q be any point in X . By (a) of Definition 1.4,

zU .0/T .qIJ /� fb 2 zU .0/T .X IJ / W ev0.b/D qg

is a smooth submanifold of zU .0/T .X IJ /. By Corollary 3.2, M0
0;f0g.X;AI zJ / is a

smooth orbifold, while

M0
0;f0g.qI zJ /� fb 2M0

0;f0g.X;AI zJ / W ev0.b/D qg
is a smooth suborbifold of M0

0;f0g.X;AI zJ /. By Lemma 3.3, every element of
M0

0;f0g.qI zJ /\UK has a representative of the form .P1; zu/, where

zuD expu�
� zJ ;� ; � D .b; v/ 2eFT ∅

ıK

ˇ̌
zK .0/ ;

and � zJ ;� is as in (2a) of Lemma 3.3. By (2c) of Lemma 3.3,

(3-16)
d

dt
expu.'.t�/;v/

� zJ ;.'.t�/;v/
ˇ̌
tD0
2 ker D1zJ ;zu � ker D zJ ;zu
8 � 2 zTb

zU .0/T .X IJ /\Tb
zU .0/T .qIJ /D z��.b/;

where ' is the map defined in the remark following Lemma 3.3. We will show that the
map

(3-17) z��.b/ �! TqX; � �! d

dt

˚
dfexpu.'.t�/;v/

� zJ ;.'.t�/;v/gj1e1
	ˇ̌

tD0
;

is surjective. Along with (3-16), this claim implies Corollary 3.6.

(3) Let ˆb , #b , ˆ zJ ;� , and # zJ ;� be as in Lemma 3.4. Since for all � 0 D .b0; v/ 2
eFT ∅

ıK

ˇ̌
zK .0/ , ˆ zJ ;� 0 is an L

p
1

–map on †0
� 0.ıK /� P1 , while the Jev0.b0/–holomorphic

map # zJ ;� 0 vanishes at 12†0
� 0.ıK /,

d
˚
expu�0

� zJ ;� 0
	ˇ̌
1e1 D dfˆ zJ ;� 0# zJ ;� 0g

ˇ̌
1e1

D fˆ zJ ;� 0.1/g
�
d# zJ ;� 0 j1e1

�
:

Thus, by the r D 1 case of (2a) of Lemma 3.5,

d
˚
expu�0

� zJ ;� 0
	ˇ̌
1e1 D fˆ zJ ;� 0.1/gD.1/y0 zb zJ .�

0/

D fˆ zJ ;� 0.1/g
X

i2�.T /

˚
.D.1/i b0/C ".1/zJ ;i.�

0/
	
�i.v

0/:(3-18)
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Replacing b0 with '.t�/ in (3-18) and differentiating at t D 0, we obtain

(3-19)
d

dt

˚
dfexpu.'.t�/;v/

� zJ ;.'.t�/;v/gj1e1
	ˇ̌

tD0

D ˚rT� ˆ zJ ;�.1/	 X
i2�.T /

˚
.D.1/i b/C ".1/zJ ;i.�/

	
�i.v/

Cfˆ zJ ;�.1/g
X

i2�.T /

˚rT� .D.1/i b/CrT� ".1/zJ ;i.�/
	
�i.v/:

By (2b) and (2c) of Lemma 3.4 and (2b) of Lemma 3.5,ˇ̌
ˆ�1
zJ ;�.1/� Id

ˇ̌
;
ˇ̌
"
.1/

zJ ;h.�/
ˇ̌� CK

�k zJ �JkC 1 Cj�j1=p�;ˇ̌rT� ˆ zJ ;�.1/ˇ̌; ˇ̌rT� ".1/zJ ;h.�/ˇ̌� CK

�k zJ �JkC 1 Cj�j1=p�k�kb;p;1:(3-20)

On the other hand, since #b.1/D 0,

rT� .D.1/i b/Dˆb.1/ d

dt
rT�

�
du'.t�/;i j1e1

�ˇ̌
tD0
D d

dt

�
du'.t�/;i j1e1

�ˇ̌
tD0

DrJ
e1
.�j†b;i

/�DJ ;bIi� 8 � 2 z��.b/:
(3-21)

By (a) and (b-i) of Definition 1.4, the map

DJ ;bIi W z��.b/ �! Tev0.b/X

is surjective for all i 2�.T /; see the paragraph preceding Lemma 3.3. Since �i.�/2C�
for all � D .b; v/ 2eFT ∅

ıK

ˇ̌
zK .0/ and i 2 �.T /, it follows from (3-19)–(3-21) that the

map in (3-17) is also surjective, provided ıK is sufficiently small.

Remark At the end of the argument above, we use the fact that �.T /¤∅. This is
the case if and only if A¤ 0.

Corollary 3.7 Suppose .X; !;J /, A¤ 0, and T are as in Lemma 3.1 and M D f1g.
If the almost complex structure J satisfies the regularity conditions (a), (b-i), and (b-ii)
of Definition 1.4, for every precompact open subset K of UT .X IJ /, there exist
ıK ;CK 2 RC and an open neighborhood UK � UT of K in X0;f1g.X;A/ with the
following properties:

(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.

(2) If zJ is an almost complex structure on X such that k zJ �JkC 1 < ıK and

ŒP1;y1; zu� 2M0
0;f0;1g.X;AI zJ /\UK ;

the operators D zJ ;zu , D1zJ ;zu , and D
1;y1

zJ ;zu are surjective.
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Proof (1) By Corollary 3.2, it remains to show that the operator D
1;y1

zJ ;zu is surjective.
If

T D .f1g; I I j ;A/
is a bubble type such that Ai ¤ 0 for some i � j1 , the argument used in the proof
of Corollary 3.2 can be repeated once more to show that the operator D

1;y1

zJ ;zu is also
surjective for any smooth map .y1; zu/, with two marked points, sufficiently close to K .
Thus, we will assume that Ai D 0 for all i � j1 . In this case, ev0.b/ D ev1.b/ for
all b 2 UT .X IJ /, as there are no nonghost components between the marked points
.y0;1/ and y1 . In the case of Figure 7, this means that j1 2 fy0; h3g, ie y1 lies on one
of the nonshaded bubbles.

(2) For any point q 2 X , let zU .0/T .qIJ / and M0
0;f0;1g.qI zJ / be defined as in (2) of

the proof of Corollary 3.6. By Lemma 3.3, every element of M0
0;f0;1g.qI zJ /\UK has

a representative of the form .P1; zy1; zu/, where

zuD expu�
� zJ ;� ; zy1 D y1.�/D

X
y0<i<j1

xi.b/
Y
y0<h<i

vhCy1

Y
y0<h�j1

vh 2C;

� D .b; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ ;

and � zJ ;� is as in (2a) of Lemma 3.3. We will show that the map

(3-22) z��.b/ �! TqX; � �! d

dt

˚
expq � zJ ;.'.t�/;v/.zy1/

	ˇ̌
tD0

;

is surjective. Note that q D u.'.t�/;v/.y0;1/. Along with (3-16), this claim implies
Corollary 3.7.

(3) Let ˆb , #b , ˆ zJ ;� , and # zJ ;� be as in Lemma 3.4. Since # zJ ;� is a Jev0.b/–
holomorphic map on †0

�.ıK /, vanishing at 1, and zy1 2 †0
�.ıK /, for all � 0 D

.b0; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ ,

# zJ ;� 0.zy1/D
1X

rD1

1

r !

dr

dwr
# zJ ;� 0.w/

ˇ̌
wD0
� zy�r

1 D
1X

rD1

D.r/y0 zb zJ .�
0/ � zy�r

1

D
1X

kD1

X
i2�.T /

.zy1�xi.�
0//�k

˚D.k/
J ;i
C ".k/zJ ;i.�

0/
	
�k

i .�
0/ 2 Tev0.b0/X;

(3-23)

by (2a) of Lemma 3.5; see the proof of Lemma 4.2 in [17] for more details. For each
i 2 �.T /, we denote by h.i/ the largest element of yI such that h.i/� i and �h.i/ � j1 .
We set

xhI1.b0/D xh.i/.b
0/ and y1Ih.b0/D

(
y1.b

0/; if �h.i/ D j1I
xzh.b

0/; if zh� j1 and �zh D �h.i/:
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If � 0 D .b0; v/, we put

�iI1.v0/D
Y

h.i/�h�i

vh; xiI1.� 0/D
X

h.i/�i0�i

�
xi0.b

0/
Y

h.i/�h<i0

vh

�
2 C;

y1Ii.� 0/D
X

�h.i/<i0<j1

xi0.b
0/
Y

�h.i/<h<i0

vhCy1

Y
�h.i/<h�j1

vh 2 C:

It is straightforward to see from the definitions that

(3-24)
�
y1.�

0/�xi.�
0/
��1

�i.�
0/D �y1Ii.� 0/�xiI1.� 0/

��1
�iI1.� 0/:

By (3-23) and (3-24),

(3-25)

# zJ ;� 0.zy1/D
X

i2�.T /
.y1Ii.b0/�xiI1.b0//�1

˚
.D.1/

J ;i
b0/C".0/zJ ;i.�

0/
	
�iI1.v/2Tev0.b0/X;

j".0/zJ ;i.�
0/j; jrT ".0/zJ ;i.�

0/j � CK

�k zJ �JkC 1 Cj� 0j1=p�:
Finally, for all � 2 zTb

zU .0/T .X IJ /,
zy1.'.t�/; v/D zy1.b; v/;

zy1Ii.'.t�//D zy1Ii.b/; xiI1.'.t�//D xiI1.b/ 8i 2 �.T /:(3-26)

The surjectivity of the map in (3-22) follows from (3-25) and (3-26), along with (2) of
Lemma 3.4, by the same argument as in (3) of the proof of Corollary 3.6.

Corollaries 3.6 and 3.7 complete the proof of the parts of Theorem 1.6 that concern
genus-zero stable maps. However, this is a convenient point to deduce a few more
conclusions from Lemma 3.5. We use Corollary 3.8 in the next three sections. Suppose
T D .M; I I j ;A/ is any bubble type and � D .b; v/ 2eFT is sufficiently small. With
notation as in the proof of Corollary 3.6 and

zu� D expb;u�
� zJ ;� ; z�.�I zJ /DL

p
1
.†� I zu��TX /;

we define the homomorphism

zR zJ ;� W z��.b/ �! ker D1zJ ;zu� � z�.�I zJ / by zR zJ ;�� D
d

dt
expu.'.t�/;v/

� zJ ;.'.t�/;v/
ˇ̌
tD0

:

Denote the image of zR zJ ;� by z��.�I zJ /. Let

A�
�;y0.ı/D

˚
.y0; z/ 2 fy0g �S2 W jzj � ı�1=2=2

	�†� ;
@�A�

�;y0.ı/D
˚
.y0; z/ 2 fy0g �S2 W jzj D ı�1=2=2

	�†� :
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Corollary 3.8 If .X; !;J /, A, and T are as in Lemma 3.1, for every precompact
open subset K of UT .X IJ /, there exist ıK ; �K ;CK 2RC and an open neighborhood
UK � UT of K in X0;M .X;A/ with the following properties:

(1) Requirements (1) and (2) of Lemma 3.1 are satisfied.
(2) If zJ is an almost complex structure on X such that k zJ � JkC 1 � ıK , there

exists � zJ ;� 2 �C.�/ for each � D .b; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ such that

(2a) requirements (2a)–(2d) of Lemma 3.3 are satisfied;
(2b) for all � D .b; v/ 2eFT ∅

ıK

ˇ̌
zK .0/ and ı � 4ıK , if zu� D expu�

� zJ ;� ,

kd zu� jA�
�;y0
.ı/


�;p
� CK ı

1=p
X

i2�.T /

ˇ̌
�i.�/

ˇ̌I
(2c) for all � D .b; v/ 2eFT ∅

ıK

ˇ̌
zK .0/ and ı � 4ıK , if expev0.b/

zf�.z/D zu�.z/
for z 2A�

�;y0.ıK /, then

j zf�.w/j � CK jwj
X

i2�.T /

ˇ̌
�i.�/

ˇ̌ 8w 2A�
�;y0.ıK /;ˇ̌̌ I

@�A�
�;y0
.ı/

zf�.w/dw
w2
� 2� i

X
i2�.T /

DJ ;i�i.�/
ˇ̌̌

� CK

�k zJ �JkC 1 Cj�j1=pC ı.p�2/=p
� X
i2�.T /

ˇ̌
�i.�/

ˇ̌
;

where w is the standard holomorphic coordinate on the complement of
.0; 0; 1/ in S2 ;

(2d) for all � D .b; v/ 2eFT ∅
ıK

ˇ̌
zK .0/ , � 2 z��.b/, and ı 2 .0; 4ıK /,

k zR zJ ;��k�;p;1 � CKk�kb;p;1;ˇ̌̌ I
@�A�

�;y0
.ı/

fR zJ ;��g.w/
dw

w2
� 2� i

X
i2�.T /

�i.v/DJ ;bIi�
ˇ̌̌

� CK

�k zJ �JkC 1 Cj�j1=pC ı.p�2/=p
� X
i2�.T /

ˇ̌
�i.�/

ˇ̌ � k�k�;p;1I
(2e) for all � D .b; v/ 2eFT ∅

ıK

ˇ̌
zK .0/ , � 2 z��.�I zJ /, and ı � 4ıK ,

j�jw � CK jwj
X

i2�.T /

ˇ̌
�i.�/

ˇ̌ � k�k�;p;1 8w 2A�
�;y0.ı/;r�jA�

�;y0
.ı/


�;p
� CK ı

1=p
X

i2�.T /

ˇ̌
�i.�/

ˇ̌ � k�k�;p;1;
where w is as in (2c).
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The first part of the proof of Corollary 3.2 shows that

C�1
K k�kb;p;1 � k zR zJ ;��k�;p;1 � CKk�kb;p;1 8 � 2 z��.b/:

In fact, CK can be required to be arbitrary close to one in this case. By the proof
of (3-25),

zf�.w/Dˆ zJ ;�.w/ # zJ ;�.w/
Dˆ zJ ;�.w/ �

X
i2�.T /

w
˚
.D.1/

J ;i
b/C ".0/zJ ;i.�/

	
�i.v/C ".�;w/(3-27)

for all w 2A�
�;y0.ıK /, where

j".�;w/j � CK jwj2
X

i2�.T /

ˇ̌
�i.�/

ˇ̌
and j@w".�;w/j � CK jwj

X
i2�.T /

ˇ̌
�i.�/

ˇ̌
:

Both estimates in (2c) are immediate from (3-27), (2b) and (2c) of Lemma 3.4, and
Holder’s inequality, since

.D.1/i b/ � �i.v/DDJ ;i�i.�/:

Differentiating (3-27) with respect to w and integrating, we obtain (2b). The first bound
in (2e) is obtained by differentiating (3-27) with respect to � , as in (3) of the proof
of Corollary 3.6. The second estimate in (2e) follows by differentiating the resulting
expression with respect to w and integrating. Finally, in the remaining statement of (2d),
each element �.w/ of Tzu�.w/X is identified with its preimage in Tev0.b/X under the
parallel transport along the geodesics. This estimate follows by differentiating (3-27)
with respect to � . Due to the first bound in (2e), the parallel transport and the geodesics
can be defined either with respect to the J –compatible connection rJ or with the
respect to the zJ –compatible connection

r zJ D 1

2

�rJ � zJrJ zJ /
in the bundle TX �!X .

4 Genus-one gluing procedures

4.1 A one-step gluing construction

Our next goal is to show that the regularity condition (c) of Definition 1.4 is well-
behaved under small perturbations of the almost complex structure J . Corollaries 4.2
and 4.5, along with the compactness of the moduli space SM1.X;J IA/, show that this
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is indeed the case. They conclude the proof of the g D 1 case of the first claim in
Theorem 1.6.

We denote by X1;M .X;A/ the space of equivalence classes of all smooth maps into X

from genus-one Riemann surfaces with marked points indexed by the set M in the
homology class A and by X0

1;M
.X;A/ the subset of X1;M .X;A/ consisting of maps

with smooth domains, ie smooth tori in this case. Similarly to the previous section,
we need to describe smooth maps zuW † �! X in X1;∅.X;A/ that lie close to each
stratum UT .X IJ / of the moduli space SM1;∅.X;J IA/. If UT .X IJ / is contained in
M
f0g
1;∅.X;AIJ /, the surjectivity of the operator D zJ ;zu can be shown by an argument

similar to the proof of Corollary 3.2. This case is handled in this subsection. We will
assume that J is an almost complex structure that satisfies the regularity conditions (a),
(b-ii), and (c) of Definition 1.4.

Let T D .M; I;@I j ;A/ be a bubble type such
P

i2I Ai D A and Ai ¤ 0 for some
minimal element of I . We proceed similarly to Section 3.1. For each sufficiently small
element � D .b; v/ of eFT ∅ , let

b.�/D �†� ; j� ;u��; where u� D ub ı q� ;

be the corresponding approximately holomorphic stable map. Since the stable map ub

is not constant on the principal component, the linearization DJ ;b of the x@J –operator
at b is surjective by (a), (b-ii), and (c) of Definition 1.4. Thus, if � is sufficiently small,
the linearization

DJ ;� W �.�/�L
p
1
.†� Iu��TX / �! �0;1.�IJ /�Lp.†� Iƒ0;1

J ;j�
T �†� ˝u��TX /;

of the x@J –operator at b.�/ , defined via the connection rJ , is also surjective. In
particular, we can obtain an orthogonal decomposition

�.�/D ��.�/˚�C.�/
such that the linear operator DJ ;� W �C.�/ �! �0;1.�IJ / is an isomorphism, while
��.�/ is close to ��.b/ � ker DJ ;b . The relevant facts concerning the objects de-
scribed in this paragraph are summarized in Lemma 4.1 below.

Remark 1 The focus of the pregluing construction described in [16] is attaching
bubble trees of spheres to a fixed Riemann surface †. The present situation is of course
different. However, the main ingredient in the pregluing construction is a smooth
family of nearly holomorphic maps q� W †� �!†b , constructed using a metric on †.
All other objects that appear in the above paragraph are essentially determined by the
map q� , and the homeomorphism type of †b plays little role. In the case @ D ∅,
ie the principal component †b;@ of the domain †b of every element b of zU .0/T .X IJ /
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is a smooth torus, we choose a family of Kahler metrics fgb0
g on the fibers of the

semiuniversal bundle UT0
�! UT0

.X IJ /; see Section 2.2 for notation. If � D .b; v/
is a small element of eFT ∅ and b0 D z�P .b/, we construct the map q� W †� �! †b

as in Section 2.2 of [16], using the metric gb0
on †b;@ .

Remark 2 In the case @¤∅, ie the principal component †b;@ of any bubble map
b 2 zU .0/T .X IJ / is the circle of spheres †@ , we split the pregluing construction into
two steps. The first step will correspond to gluing at the nodes @ of the principal curve
and the second to attaching the trees of spheres to the resulting elliptic curve. The
bundle of gluing parameters FT 0 over UT0

.X IJ / has the form

FT 0 D
M
.h;i/2@

L.h;i/ D
M
.h;i/2@

L.h;i/I0˝L.h;i/I1

for some line bundles L.h;i/I0;L.h;i/I1 �! UT0
.X IJ /. In addition, there exist bun-

dle maps

�.h;i/I0W L.h;i/I0 �! UT0
and �.h;i/I1W L.h;i/I1 �! UT0

over UT0
.X IJ / such that for all b0 2 UT0

.X IJ /
�.h;i/I0jb0

W L.h;i/I0jb0
�!†b0;h �.h;i/I1jb0

W L.h;i/I1jb0
�!†b0;i

are biholomorphisms that take .b0; 0/ to the node .h; i/ of †b0
. Let

�T0
W zUT0

�! FT 0Iı; where ı 2 C1.UT0
.X IJ /IRC/;

be a semiuniversal family of deformations of the elliptic curve †@ , along with the
marked points indexed by M0t I1 , where M0 and I1 are the sets of marked points
lying on †@ and of first-level bubbles of the elements of zU .0/T .X IJ /, respectively; see
Section 2.2. In particular,

zUT0

ˇ̌
U.0/T0

.X IJ / D UT0
:

A small neighborhood in zUT0
of the section Zh;i of �T0

over UT0
.X IJ / corresponding

to the node .h; i/ of †@ can be identified with the set

U.h;i/ D
˚
.b0; vIx;y/ W b0 2 UT0

.X IJ /I .b0; v/ 2 FT 0; .b0;x/ 2L.h;i/I0;
.b0;y/ 2L.h;i/I1I jvj; jxj; jyj< ı.b/I xy D v.h;i/

	
;

in such a way that �T0
.b0; vIx;y/D.b0; v/ and the fibers of �T0

are identified holo-
morphically. For each .b0; v/ 2 FT 0Iı , we set †.b0;v/ D ��1

T0
.b0; v/. Let

(4-1) z�T0
W zUT0

�! UT0
D ��1

T0

�UT0
.X IJ /�
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be a smooth map such that z�T0
.†.b0;v//�†b0

, z�T0
j†.b0;v/

is holomorphic outside of
the j@j open sets U.h;i/ ,

z�T0
.b0; vIx;y/D

(
.b0; 0I�.h;i/I0.x//; if jxj � 2jv.h;i/j1=2I
.b0; 0I�.h;i/I1.y//; if jyj � 2jv.h;i/j1=2I

if .b0; vIx;y/2U.h;i/;

and z�T0
.b0; vIxh.b0; v//D .b0; 0Ixh.b0; 0// for all h 2M0tI1 and for all .b0; v/ 2

FT 0Iı , where xh.b0; v/ is the marked point indexed by h on †.b0;v/ and v.h;i/ is the
L.h;i/–component of v . The last condition can be used to define the points xh.b0; v/ for
v¤ 0. Let q.b0;v/I0 denote the restriction of z�T0

to †.b0;v/ . We choose a Riemannian
metric on zU such that its restriction g.b0;v/ to each fiber †.b0;v/ of �T0

is Kahler.
Along the way, we have made a number of choices. These choices will be fixed once
and for all. If � 2eFT , let

�@ D .b; v@/; if � D �b; v@; vyI �; �b; v@� 2AF@T ; �b; vyI � 2 eF0T ˚ eF1T I
see Section 2.2. If � is sufficiently small, we denote by †�@ the Riemann surface
obtained from †b by replacing the circle of spheres †b;@ with jM0j t jI1j marked
points, which together we denote by b0 , by †.b0;v@/ . Let

q�@ W †�@ �!†b

be the smooth map obtained by extending the map q.b0;v/I0 by identity to the rational
components of †b . We put

�@ D �b.�@/; .q��@vh/h2yI
�
;

b.�@/D
�
†�@ ;u�@

�
; u�@ D ub ı q�@ ;where

q��@vh D
(

dq�@ j�1
xh.�@/

vh 2 Txh.�@/†.b0;v@/; if h 2 I1I
vh 2C; if h 2 yI � I1:

and

Let .†� ; j� ;g�/ be the Riemann surface obtained by attaching the bubble trees of
spheres to the elliptic curve †�@ , using the gluing parameter �@ and the metric g�@
on the principal component †.b0;v@/ of †�@ , via the procedure described in Section 2
and Section 3.3 of [16]. We take the key basic gluing map q� W †� �!†b to be simply
the composition q�@ ı q�@ .

Lemma 4.1 Suppose .X; !;J / is a compact almost Kahler manifold, A 2H2.X IZ/,
and J satisfies the regularity conditions (a), (b-ii), and (c) of Definition 1.4. If T D
.M; I;@I j ;A/ is a bubble type such that ADPi2I Ai and Ai ¤ 0 for some minimal
element i of I , there exist ı;C 2 C.UT .X IJ /IRC/ and an open neighborhood UT
of UT .X IJ / in X1;M .X;A/ with the following properties:
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(1) For all � D .b; v/ 2eFT ∅
ı

,

k��I��k�;p;1 � C.b/k�k�;p;1 8� 2 �.�/;
kDJ ;��k�;p � C.b/j�j1=pk�k�;p;1 8� 2 ��.�/;

C.b/�1k�k�;p;1 � kDJ ;��k�;p � C.b/k�k�;p;1 8� 2 �C.�/I
(2) For every Œzb� 2X0

1;M
.X;A/\UT , there exist � D .b; v/ 2 �FTı and � 2 �C.�/

such that k�k�;p;1 < ı.b/ and Œexpb.�/��D Œzb�.

This lemma is obtained by an argument analogous to that for Lemma 3.1. In particular,
the bijectivity arguments in Section 4 of [16], with minor modifications, apply in the
present situation.

Corollary 4.2 If .X; !;J /, A, and T are as in Lemma 4.1 and M D ∅, for every
precompact open subset K of UT .X IJ /, there exist ıK ;CK 2 RC and an open
neighborhood UK � UT of K in X1;∅.X;A/ with the following properties:

(1) Requirements (1) and (2) of Lemma 4.1 are satisfied.

(2) If zJ is an almost complex structure on X such that k zJ � JkC 1 < ıK and
Œzb� 2 UK \X0

1;∅.X;A/, there exist a smooth Riemann surface † and a smooth
map zuW † �!X such that Œzb�D Œ†; zu� and a linearization D zJ ;zu of x@ zJ at zu is
surjective.

The proof is identical to that for Corollary 3.2.

4.2 A two-step gluing construction

We prove the analogue of Corollary 4.2 for bubble types T D .∅; I;@I ;A/ such that
Ai D 0 for all minimal elements i of I , ie

UT .X IJ /� SM1;∅.X;AIJ /�M
f0g
1;∅.X;AIJ /;

in the next subsection. In this subsection, we modify the gluing construction of [16] in
two ways. First, we subdivide this construction into two steps. At the first stage, we use
Lemma 3.3 to smooth out all nodes of the domain of a stable map that lie away from the
principle component. At the second stage, we smooth out the remaining nodes, but at
this step it may not be possible to perturb each approximately holomorphic map into a
J –holomorphic map. The second modification is that the second-stage approximately
holomorphic maps are closer to being holomorphic than they would be if constructed
as in Sections 3.1 and 4.1 and in Section 3.3 of [16]. This modification is motivated
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by the pregluing construction of Section 3 in [6]. The two adjustments allow us to
obtain estimates on the behavior of the operator D zJ ;zu that are similar to the estimates
of Corollary 3.6 for the operator D

1;e1
zJ ;zu .

If T D .M; I;@I j ;A/ is a bubble type such that Ai D 0 for all i 2 I0 , let Ih � I ,
for h 2 I1 , be as in Section 2.2. We put

Ah.T /D
X
i2Ih

Ai :

Let z�hW zU .0/T .X IJ / �! zU .0/Th
.X IJ / be the projection corresponding to the decompo-

sition (2-11).

If � D .b; v/ 2eFT , let

�0 D .b; v@; v0/; �1 D .b; v1/; �fhg D
�z�h.b/; vfhg

�
for h 2 I1;

� D .b; v@; v0; v1/; b 2 zU .0/T .X IJ /; .b; v@/ 2AF@T ;if

.b; v0/ 2 eF0T ; v1 D
�
vfhg

�
h2I1
2
M
h2I1

C
yIh :

The component �1 of � consists of the smoothings of the nodes of †b that lie away
from the principal component. In the case of Figure 5, these are the attaching nodes of
the bubbles h2 , h4 , and h5 . The bubble map b.�1/ for �1 2 eF1T ∅ is of bubble type

zT D .M; I0[ I1;@I j ; zA/; where zAi D
(

0; if i 2 I0I
Ai.T /; if i 2 I1:

Similarly to (2-11) and (2-12), we put

H zT .X IJ /D UT0
.pt/�

�
.bh/h2I1

2
Y

h2I1

H zTh
.X IJ / W

ev0.bh1
/D ev0.bh2

/ 8h1; h2 2 I1

�
;

(4-2)

where H zTh
.X IJ / is the space of all J –holomorphic maps from P1 of type zTh . For

each h 2 I1 , ı 2RC , and � 2eFT as above, let

A��1;h
.ı/D ˚.h; z/ 2 fhg �S2 W jzj � ı�1=2=2

	�†�1;h;

@�A��1;h
.ı/D ˚.h; z/ 2 fhg �S2 W jzj D ı�1=2=2

	�†�1;h:

Finally, if h 2 I1 and i 2 �.T /\ Ih , we put

z�i.�/� .b; zvi/; where zvi D
Y

h<i0�i

vi0 2C:
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In the case of Figure 5,

z�h1
.�/D .b; 1/; z�h4

.�/D .b; vh4
/ and z�h5

.�/D .b; vh5
/:

Lemma 4.3 Suppose .X; !;J / is a compact almost Kahler manifold, A 2H2.X IZ/,
and J is a genus-zero A–regular almost complex structure. If T D .M; I;@I j ;A/ is
a bubble type such that

P
i2I Ai DA and Ai D 0 for all minimal elements i of I , for

every precompact open subset K of UT .X IJ /, there exist ıK ;CK 2RC and an open
neighborhood UK of K in X1;M .X;A/ with the following property. If zJ is an almost
complex structure on X such that k zJ �JkC 1 � ıK , there exists a smooth map

z� zJ I1W eF1T
∅
ıK
j zK .0/ �!H zT .X I zJ /

such that

(1) the image of Im z� zJ I1 under the quotient map H zT .X I zJ / �! U zT .X I zJ / is
U zT .X I zJ /\UK ;

(2) evP .z� zJ I1.�1//D evP .b/ for all �1 D .b; v1/ 2 eF1T ∅
ıK
j zK .0/ ;

(3) if �1 2 eF1T ∅
ıK
j zK .0/ , h 2 I1 , z�h.z� zJ I1.�1//D .P1; zu�1;h/, and ı � 4ıK ,d zu�1;hjA��1;h

.ı/


�1;p
� CK ı

1=p
X

i2�.T /\Ih

jz�i.�/j:

The smooth map z� zJ I1 is defined by

z�h.z� zJ I1.�1//D
�
P1; expu�fhg

� zJ ;�fhg
� 8h 2 I1;

where �fhg is as above and � zJ ;�fhg is as in (2a) of Lemma 3.3. By (2c) of Lemma 3.3,
the value of the map z�h.z� zJ I1.�1// at the attaching node of the bubble h is the same
for all h 2 I1 , as needed, and (2) of Lemma 4.1 is satisfied. The bound in (3) is simply
a restatement of (2b) of Corollary 3.8, sinceˇ̌z�i.�/

ˇ̌D ˇ̌�i.�fhg/
ˇ̌ 8 h 2 �.T /\ I1:

With notation as above, for each � D .b; v/, let

� zJ ;�1
2 �.†�1

Iu��1
TX /

be given by

(4-3) � zJ ;�1
.z/D

(
� zJ ;�fhg.z/; if z 2†�1;h; h 2 I1I
0; otherwise:
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We write
z� zJ I1.�1/D zb zJ .�1/D .†�1

; zu�1
/ 2H zT .X I zJ /:

The domain †�1
of the stable map zb zJ .�1/ consists of the principal component †�1;@ ,

which is either a smooth torus or a circle of spheres, and jI1j rational bubbles †�;h ,
with h 2 I1 , attached directly to †�1;@ . The zJ –holomorphic map zu�1

is constant on
†�1;@ . Let

z�.�1I zJ /DL
p
1
.†�1
I zu��1

TX /:

We denote by ��.�1I zJ /� z�.�1I zJ / the kernel of the linearization D zJ ;zb zJ .�1/
of the

x@ zJ –operator at zb zJ .�1/.

For each h 2 I1 , � 2 z��.z�h.b//, and z� 2 z�.�fhgI zJ / with z�.h;1/ D 0, we define
zRb� 2 ��.b/ and zR�1

z� 2 z�.�1I zJ / by

(4-4) zRb�.z/D
(
�.z/; if z 2†bh

I
0; otherwiseI

zR�1
z�.z/D

(z�.z/; if z 2†�1;hI
0; otherwiseI

see the paragraphs preceding Lemma 3.3 and Corollary 3.8 for notation. We put

z��.b/D
˚ zRb� W � 2 z��.z�h.b//; h 2 I1

	� ��.b/;(4-5)

z��.�1I zJ /D
˚ zR�1

� W � 2 z��.�fhgI zJ /; h 2 I1

	� ��.�1I zJ /:
Let zR

�1; zJ W z��.b/ �! z��.�1I zJ / be the homomorphism such that

zR
�1; zJ
zRb� D zR�1

zR
�fhg; zJ � 8 � 2 z��.z�h.b//; h 2 I1;

where zR
�fhg; zJ W z��.z�h.b//�! ��.�fhgI zJ / is the homomorphism defined just before

Corollary 3.8.

If � D .b; v/ 2eFT ∅
ıK
j zK .0/ , let

� zJ D
�zb zJ .�1/; v@; v0

�
:

We denote by .†� ; j�/ the smooth Riemann surface constructed as in Remark 2 of
Section 4.1 and by

q�0I2 D q� zJI@ ı q�@
zJ

W†� D†.zb zJ .�1/;v@;v0/
�!†�1

D†zb zJ .�1/
;

the corresponding basic gluing map. We next construct another map

zq�0I2 D q� zJI@ ı zq�@zJ W †� �!†�1

by defining the map
zq�@
zJ

W †� �!†
.zb zJ .�1/;v@/

:
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By construction, †.zb zJ .�1/;v@/ is a smooth torus †�@;@ with jI1j bubbles attached at
the points fxh.�@/gh2I1

of †�@;@ . For each h 2 I1 , we identify a small neighborhood
Uh.�@/ of xh.�@/ in †�@;@ with a neighborhood of xh.�@/ in Txh.�@/†�@;@ , biholo-
morphically and isometrically, with respect to the metric g�@ on †�@;@ of Remark 2
in Section 4.1. We assume that all of these neighborhoods are disjoint from each other
and from the j@j thin necks of †�@;@ . If z 2 Uh.�@/, we denote by z � xh.�@/ the
corresponding element of Txh.�@/†�@;@ and by jz �xh.�@/j its norm with respect to
the metric g�@ . Let ˇW RC �! Œ0; 1� be a smooth cutoff function such that

ˇ.r/D
(

0; if r � 1I
1; if r � 2I and ˇ0.r/¤ 0 if r 2 .1; 2/:

For each � 2RC , we define ˇ� 2 C1.RIR/ by ˇ�.r/D ˇ.r=p�/. If jz�xh.�@/j �
2
p
ı.b/, we put

q�
�@
zJ
Ih.z/D

�
1�ˇıK .2jz�xh.�@/j/

�� vh

z�xh.�@/

�
2C;

qC
�@
zJ
Ih.z/D xh.�@/CˇıK .jz�xh.�@/j/

�
z�xh.�@/

� 2†
.zb zJ .�1/;v@/;@;

where v0 D .vh/h2I1
. By construction, the smooth Riemann surface †� is the main

component †
.zb zJ .�1/;v@/;@ of †

.zb zJ .�1/;v@/
. We define the map

zq�@
zJ

W †� �!†
.zb zJ .�1/;v@/

;

zq�@
zJ

.z/D

8̂̂̂<̂
ˆ̂:
�
h; qS .q

�
�@
zJ
Ih.z//

�2†
.zb zJ .�1/;v@/;h

; if jz�xh.�@/j=
p
ıK � 1; h2I1I

qC
�@
zJ
Ih.z/ 2†.zb zJ .�1/;v@/;@; if 1� jz�xh.�@/j=

p
ıK � 2; h2I1I

z 2†
.zb zJ .�1/;v@/;@; otherwise;

where qS W C �! S2 is the standard (antiholomorphic) stereographic projection taking
the origin in C to the south pole in S2 . Like the map q�0I2 , zq�0I2 smooths out the
nodes of the principal component and stretches small neighborhoods of the points
xh.�@/ around the jI1j bubbles. Furthermore,

(4-6)
dzq�0I2


C 0 � C.b/;

for some C 2C1.UT .X IJ /IRC/, if the norm is taken with respect to the metrics g�
on †� and g�1

on †�1
, constructed via the basic gluing maps q� and q�1

, respectively;
see Section 3.3 in [16]. The map zq�0I2 is a homeomorphism outside of j@j C jI1j
circles of †� and is biholomorphic outside of the j@j thin necks corresponding to the
nodes of the principal component of †@ and the jI1j annuli zA�

b;h
[ zAC

b;h
with h 2 I1 ,
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where
zA�b;h D

˚
z 2†� W 1=2� jz�xh.�@/j=

p
ıK � 1

	
;

zAC
b;h
D ˚z 2†� W 1� jz�xh.�@/j=

p
ıK � 2

	
:

The key advantage of the map zq�0I2 over q�0I2 is that

(4-7)
dzq�0I2


C 0. zA�

b;h
/
� C.b/jvhj 8 h 2 I1I

this bound is immediate from the definition of the norms.

If z� zJ I1.�1/D .†�1
; zu�1

/ as above, we take

b zJ .�/D .†� ; j� ;u�/; where u� D zu�1
ı zq�0I2;

to be the approximately zJ –holomorphic map corresponding to the gluing parameter �
at the present, second, stage of the gluing construction. By (4-6) and (4-7),

(4-8)

kdu�k�;p � C.b/kd zu�1
k�1;p ;

kx@ zJ u�k�;p � C.b/
X
h2I1

d zu�1
jA�
�;h


�1;p
jvhj

p�2
p ;

where A�
�;h
Dzq�0I2. zA�b;h/�†�1

and k�k�;p and k�k�1;p are the norms corresponding
to the basic gluing maps q� and q�1

; see [16, Section 3.3]. The second bound follows
from the fact that the map zu�1

is zJ –holomorphic on †�1
and is constant on the

principal component of †�1
; thus, x@ zJ u� is supported on the annuli zA�

b;h
, with h 2 I1 .

If � D .b; v/, we denote by

�.�/DL
p
1
.†� Iu��TX / and �0;1.�I zJ /DLp.†� Iƒ0;1

zJ ;j�T �†� ˝u��TX /

the Banach completions of the corresponding spaces of smooth sections with respect to
the norms k � k�;p;1 and k � k�;p , induced from the basic gluing map q� W †� �!†b ,
as before, and the zJ –compatible metric

g zJ . � ; � /�
1

2

�
gX .J �; zJ �/CgX . zJ �;J �/

�
on X . We put

��.�I zJ /D
˚
R�0

� W � 2 ��.�1I zJ /
	� �.�/;

z��.�I zJ /D
˚
R�0

� W � 2 z��.�1I zJ /
	� ��.�I zJ /;

where R�0
� D � ı zq�0I2 . Let

R
�; zJ DR�0

ı zR
�1; zJ W z��.b/ �! z��.�I zJ /:
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With � zJ ;�1
as in (4-3), we set

��.�/D
˚
R�0

…� zJ;�1

.� ı q�1
/ W � 2 ��.b/

	� �.�/:
We denote by �C.�/ the L2 –orthogonal complement of ��.�/ in �.�/, as in Sec-
tions 3.1 and 4.1.

It remains to describe the obstruction bundle, ie a complement to the image of �C.�/
under DJ ;� , or D zJ ;� if zJ is sufficiently close to J . First, we describe the Fredholm sit-
uation along zU .0/T .X IJ /. The linearization DJ ;b of the x@J –operator along zU .0/T .X IJ /
is not surjective. From the decomposition (2-11) and the regularity conditions of
Definition 1.3, we see that the cokernel of DJ ;b , for b 2 zU .0/T .X IJ /, can be identified
with the vector space

�0;1� .bIJ /� E�z�P .b/
˝J TevP .b/X

of .TevP .b/X;J /–harmonic antilinear differentials on the main component †b;@ . In
other words, if  2Hb;@ is a nonzero harmonic .0; 1/–form on †b;@ ,

�0;1� .bIJ /D ˚Y �J  W Y 2 TevP .b/X
	
:

If @¤∅, ie †b;@ is a circle of spheres, the elements of �0;1� .bIJ / have simple poles
at the nodes of †b;@ with the residues adding up to zero at each node. Let

�0;1� .bI zJ /� E�z�P .b/
˝ zJ TevP .b/X

be the vector space of .TevP .b/X;
zJ /–harmonic differentials on the main component

†b;@ of †b . If � D .b; v/ 2eFT ∅
ıK
j zK .0/ , with notation as above, let

�0;1� .�@I zJ /� E�†�@;@ ˝ zJ TevP .b/X

be the space of .TevP .b/X;
zJ /–harmonic differentials on the main component †�@;@

of †�@ . If @ D∅, �0;1� .�@I zJ /� �0;1� .bI zJ /.
We now construct a homomorphism

R@� W �0;1� .�@I zJ / �! �0;1.�I zJ /:
For each h 2 I1 and z 2A�

�1;h
.4ıK /, we define

z�bI�.z/ 2 TevP .b/X by exp zJevP .b/
z�bI�.z/D zu�1

.z/;
ˇ̌z�bI�.z/ˇ̌< r zJ ;
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where exp zJ is the exponential map for the connection r zJ and r zJ is its injectivity
radius. If � 2 �0;1� .�@I zJ /, we define R@�� 2 �0;1.�I zJ / by

fR@��gzw

D

8̂̂̂<̂
ˆ̂:

0; if
p
ıK
jz�xh.�@/jjvhj � 1

4
; h 2 I1I

ˇ jvhj
2

ıK

�
4jz�xh.�@/j

�
…
zJ
z�bI� zq�0I2

.z/
�z.w/; if 1

4
�pıK jz�xh.�@/jjvhj � 1

2
; h 2 I1I

�z.w/; otherwise;

for all z2†� and w2Tz†� , where … zJ denotes the parallel transport of the connection
r zJ . Let �0;1� .�I zJ / denote the image of �0;1� .�@I zJ / under R@� .

If � 2 �0;1� .bI zJ / and z� 2 �0;1� .�@I zJ /, we put

k�k D
X
h2I1

j�jxh.b/ and kz�k D
X
h2I1

jz�j
xh.zb zJ .�1/;v@/

;

where j�jxh.b/ is the norm of �jxh.b/ with respect to the metric g zJ on X and the
metric gz�P .b/ on †b;@ . Similarly, jz�j

xh.zb zJ .�1/;v@/
denotes the norm of z�j

xh.zb zJ .�1/;v@/

with respect to g zJ and the metric g.z�P .b/;v@/ on †
.zb zJ .�1/;v@/;@ D †.z�P .b/;v@/ . If

@ ¤∅, we can obtain an isomorphism

R�@ W �0;1� .bI zJ / �! �0;1� .�@I zJ /
by requiring that

(4-9) fR�@�gxh.�@/ D dq�@ j�xh.�@/
�jxh.b/ 8� 2 �0;1� .bI zJ /; h 2 I1:

4

If @ D∅, we take R�@ to be the identity map. In either case, we denote by

R� W �0;1� .bI zJ / �! �0;1� .�I zJ /
the composition R@� ı R�@ . It is immediate from this construction that for every
q 2 Œ1; 2/,
(4-10)

R��

�;q
� Cqk�k 8 � 2 �0;1� .bI zJ /:5

4A harmonic .0; 1/–form on the circle of spheres †b;@ is determined by its value at any smooth point;
the same is the case for a harmonic .0; 1/–form on the smooth torus †�@;@ . Thus, (4-9) with a fixed
h 2 I1 determines R�@ . On the other hand, one can easily choose z�T0

in (4-1) so that (4-9) can be
satisfied for all h 2 I1 at the same time.

5The Lq –norm, with q < 2 , of a harmonic .0; 1/–form on †b;@ is finite and is determined by the
value of the form at any smooth point.
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Finally, we denote by DJ ;� the linearization of x@J at b zJ .�/ defined via rJ and by
D zJ ;� the linearization of x@ zJ at b zJ .�/ defined via r zJ . Let D�zJ ;� denote the formal
adjoint of D zJ ;� , defined with respect to the metrics g� on †� and g zJ on X ; see
Chapter 3 in [8]. For any h 2 I1 and ı 2RC , we take

AC
�@;h

.ı/D ˚z 2†�@;@ W jz�xh.�@/j � 2ı1=2
	�†� zJI@;@;

zAC
�;h
.ı/D q�1

�@
zJ

.AC
�@;h

.ı//;

zA��;h.ı/D q�1
�0I2

�
A��1;h

.ı/
�D q�1

�

�
A�b;h.ı/

��†� ;
@� zA��;h.ı/D q�1

�0I2
�
@�A��1;h

.ı/
�
;and

where A�
�1;h

.ı/ and @�A�
�1;h

.ı/ are as in the paragraph preceding Lemma 4.3. If
Y1;Y2 2 TqX for some q 2X , we put

hY1;Y2i zJ D g zJ .Y1;Y2/C i g zJ .Y1; zJY2/ 2C:

Similarly, if �1; �2 2 �0;1.�I zJ /, we put

hh�1; �2ii D hh�1; �2ii�;2C i hh�1; zJ�2ii�;2 2C;

where hh � ; � ii�;2 is the (real-valued) L2 –inner product on �0;1.�I zJ / with respect to
the metric g zJ on X . Note that by Holder’s inequality and (4-10)

(4-11)
ˇ̌˝̋
�0;R��

˛̨
�

ˇ̌� Ck�kk�0k�;p 8 � 2 �0;1� .bI zJ /; �0 2 �0;1.�I zJ /:

Lemma 4.4 If .X; !;J /, A, and T are as in Lemma 4.3, for every precompact open
subset K of UT .X IJ /, there exist ıK ;CK 2 RC and an open neighborhood UK of
K in X1;M .X;A/ with the following property. If zJ is an almost complex structure on
X such that k zJ �JkC 1 � ıK ,

(1) the second-stage pregluing map, � �! b zJ .�/, is defined on eFT ∅
ıK

ˇ̌
zK .0/ ;

(2) for every Œzb� 2 X0
1;M

.X;A/\UK , there exist � 2 �FT ∅
ıK
jK .0/ and � 2 �C.�/

such that k�k�;p;1 < ıK and Œexp zJ
b zJ .�/

��D Œzb�;
(3) for all � D .b; v/ 2eFT ∅

ıK
j zK .0/ ,

kx@ zJ u�k�;p � CK j�.�/j; kD zJ ;��k�;p � CK j�j.p�2/=pk�k�;p;1 8� 2 ��.�I zJ /;
C�1

K k�k�;p;1 � kD zJ ;��k�;p � CKk�k�;p;1 8� 2 �C.�/Iand

(4) for all � D .b; v/ 2eFT ∅
ıK
j zK .0/ , h 2 I1 , and � 2 z��.�I zJ /,

kD zJ ;��k�;p�CK j�.�/j�k�k�;p;1 ;
�j zAC

�;h
.ıK /


�;p;1

�CK j�j1=pj�.�/j�k�k�;p;1I
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(5) for all � D .b; v/ 2eFT ∅
ıK
j zK .0/ , � 2 z��.b/, and � 2 �0;1� .bI zJ /,

kR
�; zJ �k�;p;1 � k�kb;p;1;

R��j zA�
�;h
.4ıK /


�;2
� CK j�j1=2k�k 8 h 2 I1;ˇ̌̌˝̋

D zJ ;�R
�; zJ �;R��

˛̨ C 2� i
X

i2�.T /

˝
DJ ;bIi�; �xh.i/.b/.�i.�//

˛
b

ˇ̌̌
� CK

�k zJ �JkC 1 Cj�j1=pCj�j.p�2/=p
�j�.�/j � k�kk�kb;p;1I

(6) for all � D .b; v/ 2eFT ∅
ıK
j zK .0/ and � 2 �0;1� .bI zJ /,ˇ̌̌̌˝̋x@ zJ u� ;R��

˛̨ C 2� i
X

i2�.T /

˝DJ ;i�i.�/; �xh.i/.b/

˛
b

ˇ̌̌̌
� CK

�k zJ �JkC 1 Cj�j1=pCj�j.p�2/=p
�j�.�/j � k�kI

(7) for all � D .b; v/ 2eFT ∅
ıK
j zK .0/ , � 2 �.�/, and � 2 �0;1� .bI zJ /,ˇ̌hhD zJ ;��;R��ii�;2

ˇ̌� CK j�j1=2k�kk�k�;p;1:

Remark In (6) above, h � ; � ib denotes the combination of the inner-product defined
before Lemma 4.4 with a contraction. More precisely,

hD zJ ;i.b; v/; �xib D  x.v/hDib;Y i if �D  ˝Y 2 E�˝ ev�P TX I
see the paragraph preceding Lemma 3.5.

The first statement of this lemma is essentially a restatement of Lemma 4.3, in the light
of the constructions following Lemma 4.3. In (2),

exp zJb zJ .�/� D
�
†� ; j� ; exp zJu� �

�
; if b zJ .�/D .†� ; j� ;u�/:

The arguments of Section 4 in [16] can be modified, in a straightforward way, to
show that for every Œzb� 2 X0

1;M
.X;A/ sufficiently close to UT .X IJ /, there exists

a pair .�; �/ as in (2) of Lemma 4.4 and this pair is unique up to the action of the
group Aut.T //.S1/

yI , ie the present two-stage gluing construction retains the essential
bijectivity property of the one-stage gluing construction in [16]. The key point is that
the metrics g� on †� and the weights used to modify the standard Sobolev norms,
as in Section 3.3 of [16], are the same in the one-stage gluing construction and in the
present case, while the difference between the data appearing in the two constructions
is very small.
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The first bound in (3) of Lemma 4.4 is immediate from the second bound in (4-8)
and (2b) of Corollary 3.8, since

zq�0I2. zA�b;h/DA��;h �A��1;h

�jvhj2=ıK
�
:

The two bounds in (4) follow from (2e) of Corollary 3.8 in a similar way. The second
estimate in (3) is obtained by the same argument as the second bound in (4-8). The final
claim of (3) is a consequence of the analogous inequalities for DJ ;� ; see Section 3.5
in [16]. The first inequality in (5) is clear from the first inequality in (2d) of Corollary
3.8. For the second one, it is enough to observe that the L2 –norm of a one-form is
invariant under conformal changes of the metric on a two-dimensional domain, while
the larger radius of the annulus zA�

�;h
.ı/ is jvhj1=2 , with respect to the metric g�@

on †�@;@ .

For the remaining three estimates, we observe that for any h 2 I1 ,

jD�zJ ;�R��jg� ;z � CK jdu� jg� ;zk�k 8z 2 zAC
�;h
.ıK /;(4-12)

jD�zJ ;�R��jg� ;wh
� CK jdu� jg� ;wh

jvhj
jwhjk�k 8wh 2 zA��;h.ıK /;(4-13)

jD�zJ ;�R��jg� ;wh
� CK

�
1Cjdu� jg� ;wh

�jvhjk�k 8wh 2 zA��;h.4ıK /(4-14)

� zA��;h.ıK /;

where z is a holomorphic coordinate on a neighborhood of xh.�@/ in †@ , which
is unitary with respect to the metric g�@ on †�@;@ , wh D vh=z , and jzj denotes
the norm in the standard metric on C . These estimates are obtained by a direct
computation from an explicit expression for D�zJ ;� , such as the one in Chapter 3 of [8],
and simple facts of Riemannian geometry, such as those in Section 2.1 of [14]. The
difference between (4-13) and (4-14) is due to the fact that the cutoff function used
in the construction of R�� is constant outside of the annuli zA�

�;h
.4ıK /� zA��;h.ıK /,

with h 2 I1 . An explicit computation of the contribution of this cutoff function on
zA�
�;h
.4ıK /� zA��;h.ıK / is given in Section 2.2 of [13]. From the definition of the map

zq�0I2 and the metric g� , it is easy to see that

ˇ̌
dzq�0I2

ˇ̌
g� ;z
� 4
jvhj
jzj2 8z 2 zAC

�;h
.ıK / ;ˇ̌

dzq�0I2
ˇ̌
g� ;wh

� 4 8wh D vh

z
2 zA��;h.4ıK /:

(4-15)
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By (4-12), the first bound in (4-15), Holder’s inequality, and a change of variables, we
obtain D�zJ ;�R��j zAC

�;h
.ıK /


�;1
� CK

d zu�1
jzq0I2. zAC�;h.ıK /


�1;p
jvhj.p�2/=pk�k

� C 0K jvhj.p�1/=p
X

i2�.T /\Ih

jz�i.�/j � k�k;(4-16)

by (2b) of Corollary 3.8, since zq0I2. zAC�;h.ıK // � A�
�1;h

.jvhj/. Similarly, by (4-13),
(4-14), the second bound in (4-15), and Holder’s inequality,D�zJ ;�R��j zA�

�;h
.4ıK /


�;1
� CK

�
1C d zu�1

jA�
�1;h

.4ıK /


�1;p

�jvhj � k�k
� C 0K jvhj � k�k;

(4-17)

by (2b) of Corollary 3.8. Since D�zJ ;�R�� is supported on the annuli zA�
�;h
.ıK / [zAC

�;h
.ıK /, with h 2 I1 , by (4-16) and (4-17),

(4-18) kD�zJ ;�R��k�;1 � CK j�j.p�1/=pk�k:

The last inequality in Lemma 4.4 is immediate from (4-18), since p > 2.

We next prove the last estimate in (5) of Lemma 4.4. By the first inequalities in (2d)
and (2e) of Corollary 3.8, for all � 2 z��.b/,

(4-19)
ˇ̌
R
�; zJ �

ˇ̌
z
� CK

jvhj
jzj

X
i2�.T /\Ih

jz�i.�/j � k�kb;p;1 8 z 2 zAC
�;h
.ıK /:

By (4-12), the first bound in (4-15), (4-19), a change of variables, and Holder’s
inequality, we obtainˇ̌˝̋

R
�; zJ �;D

�
zJ ;�R��j zAC

�;h
.ıK /

˛̨
�;2

ˇ̌
� CK

d zu�1
jA�
�;h
.j�hj/


�1;p
jvhj3=2�1=pk�kk�kb;p;1

� C 0K jvhj1=2
X

i2�.T /\Ih

j�i.�/j � k�kk�kb;p;1;
(4-20)

by (2b) of Corollary 3.8. Since the map zq0I2 is holomorphic outside of the annuli zA˙
b;h

with h 2 I1 and R�� vanishes on zAC
b;h

,

˝̋
D zJ ;�R

�; zJ �;R��
˛̨
�;2
D
X
i2I1

Z
zA�

b;h

˝
D zJ ;�R��;R��

˛
dz dxz:
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Since zA�
b;h
� zAC

�;h
.ıK /, by (4-20) and integration by parts,ˇ̌̌̌˝̋

D zJ ;�R
�; zJ �;R��

˛̨ CX
h2I1

I
@� zA�

b;h

˝
R
�; zJ �;…

zJ
z�bI� zq0I2.z/

�xh.b/@xz
˛
dz

ˇ̌̌̌
� CK j�j1=2

X
i2�.T /
j�i.�/j � k�kk�kb;p;1;

Thus, by a change of variables and the definition of R
�; zJ ,

(4-21)
ˇ̌̌̌˝̋

D zJ ;�R
�; zJ �;R��

˛̨ �X
h2I1

I
@�A�

�1;h
.jvhj=ıK /̋

R
�1; zJ �;…

zJ
z�bI�.wh/

�xh.b/vh

˛dwh

w2
h

ˇ̌̌̌
� CK j�j1=2j�.�/j � k�kk�kb;p;1;

where wh D vh=z . The last estimate in (5) of Lemma 4.4 is immediate from (4-21)
and the second estimate in (2d) of Corollary 3.8.

It remains to prove part (6) of Lemma 4.4. Let z�bI� W A��1;h
.4ıK / �! TevP .b/X be as

above. If h 2 I1 and z 2 zA�
b;h

,

(4-22)
ˇ̌
…
zJ �1
z�bI� zq�0I2

.z/
ı x@ zJ u� �x@ zJevP .b/

.z�bI� ı zq�0I2/
ˇ̌
z

� CX jz�bI� ı zq�0I2jzjd.z�bI� ı zq�0I2/jzI
see Section 2.3 of [14]. Thus, by integration by parts, if �D Y ˝ dxz ,

(4-23)
ˇ̌̌̌ Z
zA�

b;h

˝x@ zJ u� ;R��
˛
b
�
I
@� zA�

b;h

˝z�bI�zq�0I2.z/;Y
˛
dz

ˇ̌̌̌
� CX

Z
zA�

b;h

jz�bI� ı zq�0I2jz
ˇ̌
d.z�bI� ı zq�0I2/

ˇ̌
z

dz dxz � k�k;

since z�bI� vanishes on †�1;@ . SinceI
@� zA�

b;h

˝z�bI�zq�0I2.z/;Y
˛
dz D�

I
@�A�

�1;h
.jvhj2=ıK /

˝z�bI�.wh/; �xh.b/.vi/
˛dwh

w2
h

;

where wh is as in the two previous paragraphs,

(4-24)
ˇ̌̌̌ I
@� zA�

b;h

˝z�bI�zq�0I2.z/;Y
˛
dzC 2� i

X
i2Ih\�.T /

˝DJ ;i�i.�/; �xh.b/

˛
b

ˇ̌̌̌
� CK

�k zJ �JkC 1 Cj�j1=pCj�j.p�2/=p
� X
i2Ih\�.T /

j�i.�/j � k�k;
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by the two estimates in (2c) of Corollary 3.8. On the other hand, by Holder’s inequality,
change of variables, (2b) and the first estimate in (2c) of Corollary 3.8,Z

zA�
b;h

jz�bI� ı zq�0I2jz
ˇ̌
d.z�bI� ı zq�0I2/jzdz dxz

� CK

z�bI�C 0.zq�0I2
. zA�

b;h
//
� jvhj.p�2/=p

d zu�1
jzq�0I2

. zA�
b;h
/


�1;p

� C 0K
X

i2Ih\�.T /
j�i.�/j2;

(4-25)

since zq�0I2. zA�b;h/� A�
�1;h

.jvhj2=ıK /. Since x@ zJ u� is supported on the annuli zA�
b;h

,
with h 2 I1 , the estimate (6) of Lemma 4.4 follows from (4-23)–(4-25).

4.3 Some geometric conclusions

We now use the two-step gluing construction of the previous subsection to conclude
the proof of Theorem 1.6.

Corollary 4.5 Suppose .X; !;J /, A¤ 0, and T are as in Lemma 4.3 and M D∅. If
J satisfies the regularity conditions (a) and (b-i), for every precompact open subset K

of UT .X IJ /, there exist ıK ;CK 2 RC and an open neighborhood UK of K in
X1;∅.X;A/ with the following properties:

(1) All requirements of Lemma 4.4 are satisfied.
(2) If zJ is an almost complex structure on X such that k zJ � JkC 1 < ıK and

Œzb� 2M0
1;∅.X;AI zJ /, the linearization D zJ ;zb of x@ zJ at zb is surjective.

Proof (1) We continue with the notation preceding Lemma 4.4. By Lemma 4.4, it
can be assumed that zb D .†� ; j� ; zu�/, where

zu� D exp zJu� � zJ ;� ; � 2 zFT ∅
ıK

ˇ̌
K .0/ ; � zJ ;� 2 �C.�/; k� zJ ;�k�;p;1 � zıK ;

for some zıK 2 .0; ıK / to be chosen later. Since x@ zJ zu� D 0,

(4-26) x@ zJ u� CD zJ ;�� zJ ;� CN zJ ;�� zJ ;� D 0;

where N zJ ;� is a quadratic term. In particular, N zJ ;�0D 0 and

(4-27)
N zJ ;�� �N zJ ;��

0
�;p
� CK

�k�k�;p;1Ck� 0k�;p;1�k� � � 0k�;p;1;
if �; � 0 2 �.�/ and k�k�;p;1; k�k0�;p;1 � ıK . By (4-26), (4-27) and (3) of Lemma 4.4,

(4-28)
� zJ ;��;p;1 � CK j�.�/j;

provided zıK is sufficiently small.
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(2) Since zu� is zJ –holomorphic, all linearizations D zJ ;zu of x@ zJ are the same. We give
an explicit expression for D zJ ;zu and show that the dimension of its kernel does not
exceed the index of D zJ ;zu . For any � 2 �.†� I zu��TX /, let

z� D… zJ �1
� zJ;�

�:

x@ zJ � �…
zJ
� zJ;�
ı… zJ �1
z�C� zJ;�

ı x@ zJ exp zJu�
�z�C � zJ ;��We put

D… zJ� zJ;� ı
�x@ zJ u� CD zJ ;�.z�C � zJ ;�/CN zJ ;�.z�C � zJ ;�/

�
D… zJ� zJ;� ı

�
D zJ ;�z�CN zJ ;�.z�C � zJ ;�/�N zJ ;�� zJ ;�

�
;

by (4-26). By (4-27), we can write

N zJ ;�.z�C � zJ ;�/�N zJ ;�� zJ ;� DL zJ ;�z�C zN zJ ;�z�;
where zN zJ ;� is a quadratic term, while the linear map L zJ ;� W �.�/ �! �0;1.�I zJ /
satisfies

(4-29)
L zJ ;��


�;p
� CKk� zJ ;�k�;p;1kz�k�;p;1 � C 0K j�.�/j � kz�k�;p;1 8 z� 2 �.�/;

by (4-28). We conclude that

D zJ ;zu D…� zJ;� ı
�
D zJ ;� CL zJ ;�

� ı…�1
� zJ;�

:

Thus, it is sufficient to show that the dimension of the kernel of D zJ ;� CL zJ ;� does
not exceed the index of D zJ ;� .

(3) Suppose � 2 ker.D zJ ;� CL zJ ;�/. Since the dimension of ��.�I zJ / is the same as
the dimension of ��.�/, by (3) of Lemma 4.4, we can write

� D ��C �C; where �� 2 ��.�I zJ /; �C 2 �C.�/:
If zıK is sufficiently small, by (3) of Lemma 4.4 and (4-29),�C�;p;1 � CK

�kD zJ ;���k�;pCkL zJ ;���k�;p�
� C 0K j�j.p�2/=pk��k�;p;1 8 ��C �C 2 ker.D zJ ;� CL zJ ;�/:

(4-30)

Thus, the projection map, � �! �� is an injection on ker.D zJ ;� CL zJ ;�/. We denote
its image by ���.�I zJ /. Furthermore, by (4) of Lemma 4.4 and (4-29),

(4-31)
�C�;p;1 � CK

�kD zJ ;���k�;pCkL zJ ;���k�;p�� C 0K j�.�/j � k��k�;p;1
8 �� 2 ��.�I zJ /; ��C �C 2 ker.D zJ ;� CL zJ ;�/:
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(4) We now use Lemma 4.4 to estimate the L2 –inner product of

fD zJ ;� CL zJ ;�g.��C �C/

with an element R�� of �0;1� .�I zJ /, whenever

�� 2 z��.�I zJ /; �C 2 �C.�/; ��C �C 2 kerfD zJ ;� CL zJ ;�g:

By (4-11), (4-29) and (4-31),

(4-32)
ˇ̌˝̋

L zJ ;��C;R��
˛̨ ˇ̌� CK j�.�/j2 � k�kk��k�;p;1; 8 �� 2 z��.�I zJ /:

By (4-31) and (7) of Lemma 4.4,

(4-33)
ˇ̌˝̋

D zJ ;��C;R��
˛̨ ˇ̌� CK j�j1=2j�.�/j � k�kk��k�;p;1 8 �� 2 z��.�I zJ /:

For each h 2 I1 , by (4-29) and (5) of Lemma 4.4,ˇ̌˝̋
L zJ ;��j zA�

�Ih
.4ıK /

;R��
˛̨ ˇ̌� CK

�j zA�
�Ih
.4ıK /


�;2
kL zJ ;��k�;p

� CK j�j1=2j�.�/j � k�kk�k�;p;1 8 � 2 �.�/:
(4-34)

Since the metric g� on the annulus zAC
�Ih.ıK / differs from the standard metric on the

annulus with radii 2
p
ıK and

pj�hj by a factor bounded above by four and below by
one-quarter,

k�kC 0 � CKk�k�;p;1 8 � 2 �. zAC
�Ih.ıK /Iu��TX /I

see Section 3.1 in [14] and Section 3.3 in [16]. Thus,.L zJ ;��/j zAC
�Ih
.ıK /


�;p
� CKk� zJ ;�k�;p;1

�j zAC
�Ih
.ıK /


�;p;1

� C 0K
X

i2�.T /\Ih

j�i.�/j �
�j zAC

�Ih
.ıK /


�;p;1

8 � 2 �.�/;(4-35)

since (4-27) is obtained from a pointwise bound; see Section 2.4 in [14]. By (4-29),
(4-35) and (4) of Lemma 4.4,ˇ̌˝̋

L zJ ;���j zAC
�Ih
.ıK /

;R��
˛̨ ˇ̌� CKk�k

��j zAC
�Ih
.ıK /


�;p;1

� CK j�j1=p
X

i2�.T /\Ih

j�i.�/j � k�kk��k�;p;1
8 �� 2 z��.�I zJ /:

(4-36)
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Since the intersection of the support of �� 2 z��.�I zJ / with the support of R�� 2
�0;1� .�I zJ / is contained in the jI1j annuli zA�

�Ih.4ıK /[ zAC�Ih.ıK /, by (4-34) and (4-36),

(4-37)
ˇ̌˝̋

L zJ ;���;R��
˛̨ ˇ̌� CK j�j1=pj�.�/j � k�kk��k�;p;1

8 � 2 �0;1� .bI zJ /; �� 2 z��.�I zJ /:

Finally, by (4-32), (4-33), (4-37) and (5) of Lemma 4.4,

(4-38)
ˇ̌̌̌˝̋fD zJ ;�CL zJ ;�g.R�; zJ �C �C/;R��

˛̨C2� i
X

i2�.T /

˝
DJ ;bIi�; �xh.i/.b/.�i.�//

˛
b

ˇ̌̌̌
� CK

�k zJ �JkC 1 Cj�j1=pCj�j.p�2/=p
�j�.�/j � k�kk�kb;p;1;

for all � 2 z��.b/ and �C 2 �C.�/ such that R
�; zJ �C �C 2 ker.D zJ ;� CL zJ ;�/.

(5) Let f�r g be a basis for �0;1� .bI zJ /D E�z�P .b/
˝ zJ TevP .b/X , orthonormal with re-

spect to the inner-product corresponding to the norm k�k. We define the homomorphism

D� W ���.�I zJ / �! �0;1� .bI zJ / by D�� D
X

r

˝̋fD zJ ;� CL zJ ;�g.�C �C/;R��r

˛̨
�r

�C 2 �C.�/; �C �C 2 ker.D zJ ;� CL zJ ;�/:if

Since the projection map ker.D zJ ;� CL zJ ;�/ �! ���.�I zJ / is an isomorphism by (3)
above, the map D� is well-defined. By definition, D� � 0. On the other hand, by
(4-38),

(4-39) D�R
�; zJ � D�2� i

X
i2�.T /

˚
DJ ;bIi C "i.�/

	
�˝ �i.v/ 8� 2R �1

�; zJ �
��.�I zJ /;

where "i.�/W R �1

�; zJ �
��.�I zJ / �! TevP .b/X is a homomorphism such that

(4-40) j"i.�/j � CK

�k zJ �JkC 1 Cj�j1=pCj�j.p�2/=p
� 8� 2 �FT ∅

ıK

ˇ̌
K .0/ :

By (a) and (b-i) of Definition 1.4, the map

DJ ;bIi W z��.b/ �! TevP .b/X

is surjective for all i 2�.T /; see the paragraph preceding Lemma 3.3. Since �i.�/¤ 0

for all i 2 I1 and � 2 �FT ∅ , it follows from (4-39) and (4-40) that if zıK is sufficiently
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small,

dim ker D zJ ;zu D dim ker.D zJ ;� CL zJ ;�/D dim���.�I zJ /D dim ker D�

� dim��.�I zJ /� dim�0;1� .bI zJ /D dim��.b/� dim�0;1� .bIJ /
D ind DJ ;b D ind D zJ ;zu;

as needed.

Corollary 4.5 concludes the proof of the genus-one regularity property of Theorem
1.6. Corollary 4.6 below and the Gromov compactness theorem imply that if J is a
genus-zero A–regular almost complex structure on X , Jr is a sequence of almost
complex structures on X such that Jr �! J as r �!1 , and br 2M0

1;M
.X;AIJr /,

then a subsequence of fbr g converges to an element of SM0
1;M

.X;AIJ /.

Corollary 4.6 If .X; !;J /, A ¤ 0, and T are as in Lemma 4.3, for every precom-
pact open subset K of UT .X IJ /� UT I1.X IJ /, there exist ıK 2 RC and an open
neighborhood UK of K in X1;M .X;A/ such that

M0
1;M .X;AI zJ /\UK D∅

if zJ is an almost complex structure on X such that k zJ �JkC 1 < ıK .

Proof (1) Suppose Œzb� 2M0
1;M

.X;AI zJ /\UK . By Lemma 4.4, it can be assumed
that

zb D �†� ; j� ; zu�/;
zu� D exp zJu� � zJ ;� ; � 2 �FT ∅

ıK

ˇ̌
K .0/ ; � zJ ;� 2 �C.�/; k� zJ ;�k�;p;1 � zıK ;where

for some zıK 2 .0; ıK / to be chosen later. Since x@ zJ zu� D 0,

(4-41) x@ zJ u� CD zJ ;�� zJ ;� CN zJ ;�� zJ ;� D 0:

By (4-27) and (3) of Lemma 4.4,

(4-42)
N zJ ;�� zJ ;�


�;p
� CKk� zJ ;�k2�;p;1 H) � zJ ;��;p;1 � CK j�.�/j;

provided zıK is sufficiently small.

(2) If � 2 �0;1� .bI zJ /, by (4-11), (4-42), and (7) of Lemma 4.4,ˇ̌˝̋
D zJ ;�� zJ ;� ;R��

˛̨ ˇ̌� CK j�j1=2j�.�/j � k�k ;ˇ̌˝̋
N zJ ;�� zJ ;� ;R��

˛̨ ˇ̌� CK j�.�/j2 � k�k:
(4-43)
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By (4-41), (4-43), and (6) of Lemma 4.4, for all � 2 �0;1� .bI zJ /,

(4-44)
ˇ̌̌̌ X

i2�.T /

˝DJ ;i�i.�/; �xh.i/.b/

˛
b

ˇ̌̌̌
� CK

�k zJ �JkC 1 Cj�j1=pCj�j.p�2/=p
�j�.�/j � k�k:

On the other hand, since the closure of K in UT .X IJ /�UT I1.X IJ / is compact,

(4-45)
ˇ̌̌̌ X

i2�.T /
DJ ;i.b; vi/

ˇ̌̌̌
� C�1

K jvj 8 b 2K.0/; v D .vi/i2�.T /;

for some CK 2 RC , by definition of the set UT I1.X IJ / � UT .X IJ /; see Theorem
2.3. Since �0;1� .bI zJ /D E�˝ ev�

P
TX , (4-44) and (4-45) imply that

k zJ �JkC 1 Cj�j1=pCj�j.p�2/=p � zC�1
K ;

as needed.

5 Completion of proof of Theorem 1.2

5.1 Summary and setup

In this section we sketch proofs of Propositions 5.1–5.3, based on the arguments of
Sections 3 and 4. Detailed proofs of generalizations of these propositions can be found
in [19, Section 5]. These three propositions are special cases of Theorem 1.2, but
together they imply Theorem 1.2 for an arbitrary compact almost Kahler manifold
.X; !;J /, Jt DJ constant, and A2H2.X IZ/� . They also show that a limiting curve
of a sequence of J –holomorphic curves in X of arithmetic genus of at least one must
have arithmetic genus of at least one as well, as is the case in algebraic geometry.

Suppose fbr g is a sequence of elements of SM0
1;M

.X;AIJ / such that

lim
r�!1 br D b 2 SM1;M .X;AIJ /:

We need to show that b 2 SM0
1;M

.X;AIJ /. By Definition 1.1, it is sufficient to assume
that b is an element of UT .X IJ / for a bubble type

T D �M; I;@I j ;A/
such that Ai D 0 for all minimal elements i 2 I .
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We can also assume that for some bubble type

T 0 D �M; I 0;@0I j 0;A0/
br 2 UT 0.X IJ / for all r . If A0i D 0 for all minimal elements i 2 I 0 , the desired
conclusion follows from Proposition 5.1 below, as it implies that the second condition
in Definition 1.1 is closed with respect to the stable map topology. If A0i ¤ 0 for some
minimal element i 2 I 0 and @0 ¤∅, ie the principal component of †br

is a circle of
spheres, Proposition 5.2 implies that b satisfies the second condition in Definition 1.1.
Finally, if @0 D ∅ and A0i ¤ 0 for the unique minimal element i of I 0 , the desired
conclusion follows from Proposition 5.3.

We note that the three propositions are applied with b and br that are components of
the ones above.

Proposition 5.1 Let .X; !;J / be a compact almost Kahler manifold, A2H2.X IZ/�
and M be a finite set. If Œbr � is a sequence of elements in M0

0;f0gtM
.X;AIJ / such

that
lim

r�!1Œbr �D Œb� 2 UT .X IJ /� SM0;f0gtM .X;AIJ /;
then either

(a) dimC Span.C;J /fDib W i 2 �.b/g< j�.b/j, or

(b)
T1

rD1

S
r 0>r C �Dy0br 0 � Span.C;J /fDib W i 2 �.b/g.

Proposition 5.2 Let .X; !;J / be a compact almost Kahler manifold, M1; : : : ;Mn

be finite sets and
n 2 ZC; A1; : : : ;An 2H2.X IZ/�:

If Œbk;r � is a sequence of elements in M0
0;f0;1gtMk

.X;Ak IJ / for each k 2 Œn� such that

ev1.bk;r /D ev0.bkC1;r / 8k 2 Œn� 1�; ev1.bn;r /D ev0.b1;r /;

lim
r�!1Œbk;r �D Œbk � 2 UT .k/.X IJ /� SM0;f0;1gtMk

.X;Ak IJ / 8k 2 Œn�;and

where each T .k/ � .f1g tMk ; I
.k/I j .k/;A.k// is a bubble type such that A

.k/
i D 0

for all i � j1 , then

dimC Span.C;J /
˚Dibk W i 2 �.bk/; k 2 Œn�	< kDnX

kD1

j�.bk/j:
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Proposition 5.3 Suppose .X; !;J / is a compact almost Kahler manifold, A 2
H2.X IZ/� , and M is a finite set. If Œbr � is a sequence of elements in M0

1;M
.X;AIJ /

such that
lim

r�!1Œbr �D Œb� 2 UT .X IJ /� SM1;M .X;AIJ /;
where T � .M; I;@I j ;A/ is a bubble type such that Ai D 0 for all minimal elements
i 2 I , then dimC Span.C;J /fDib W i 2 �.b/g< j�.b/j.

We prove these three propositions in the next two subsections by combining the approach
of Sections 3 and 4 with some aspects of the local setting used in [6]. The latter makes
it possible to proceed with the genus-zero gluing construction of Section 3.1 and the
first step of the genus-one gluing construction of Section 4.2 near a given bubble map b

even if J is not genus-zero regular. The maps we encounter are not holomorphic on the
entire domain, but are holomorphic on the parts of the domain that appear in Lemma
3.4. This is sufficient for the purposes of the key power series expansion in Lemma 3.5.

5.2 Proofs of Propositions 5.1 and 5.2

Let .X; !;J /, A, M , br ,

b D .M; I Ix; .j ;y/;u/; ui � ubj†b;i
;

and T be as in the statement of Proposition 5.1. We put

IC D ˚i 2 I WAi ¤ 0
	
:

For each i 2 IC , choose a finite-dimensional linear subspace

z�0;1� .bI i/� ��†b;i �X Iƒ0;1
J ;j
��1 T �†b;i ˝��2 TX

�
such that

�.†b;i Iƒ0;1
J ;j

T �†b;i ˝u�i TX
�D ˚DJ ;ub;i

� W � 2 �.†b;i Iu�i TX
�
; �.1/D 0

	
˚ ˚fid�ub;ig�� W � 2 z�0;1� .bI i/	

and every element of z�0;1� .bI i/ vanishes on a neighborhood of 1 2 †b;i and the
nodes xb;h 2†b;i with �hD i . If i 2 I �IC , we denote by z�0;1� .bI i/ the zero vector
space. Let

zUT .X IJ /D
˚
b0 � .M; I Ix0; .j ;y0/;u0/ W b0 D bubble map of type T I

x@J ;j u0i 2 fid�u0ig�z�0;1� .bI i/ 8i 2 I
	
:
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By the Implicit Function Theorem, zUT .X IJ / is a smooth manifold near b . Let

eFT � zUT .X IJ /�C
yI

be the bundle of smoothing parameters.

Since the sequence Œbr � converges to Œb�, for all r sufficiently large there exist

b0r 2 zUT .X IJ /; �r D .b0r ; vr / 2eFT ∅ and �r 2 �.�r /� �.†�r
Iu��r

TX /

such that

�r .1/D 0 8r; lim
r�!1 b0r D b; lim

r�!1 jvr j D 0; lim
r�!1 k�rk�r ;p;1 D 0;(5-1)

br D expb.�r /
�r :and

The last equality holds for a representative br for Œbr �.

Remark The existence of b0r , �r , and �r as above can be shown by an argument
similar to the surjectivity argument in Section 4 of [16], with significant simplifications.
In fact, the only facts about the bubble maps b0r we use below are that they are
constant on the degree-zero components and holomorphic on fixed neighborhoods of
the attaching nodes of the first-level effective bubbles, ie on †0

b0r
.ı/ in the notation of

Section 3.3. Such bubble maps b0r , along with �r and �r , can be constructed directly
from the maps br ; see the beginning of Section 4.4 in [16].

By the same argument as in the proofs of Lemma 3.5 and Corollary 3.6, but now applied
to the sequence .�r ; �r / with sufficiently small ıK ,

(5-2)
ˇ̌̌̌
Dy0br �

X
i2�.T /

�Dib
0
r

�
�i.vr /

ˇ̌̌̌
� C

�j�r j1=pCk�rk�r ;p;1

� X
i2�.T /

ˇ̌
�i.vr /

ˇ̌
:

This estimate follows from (3-18) with b0 , � 0 and � zJ ;� 0 replaced by b0r , �r , and �r ,
respectively. Recall that ˆ zJ ;� 0.1/ D id for zJ D J . Since b0r �! b , (5-2) implies
that

(5-3)
ˇ̌̌̌
Dy0br �

X
i2�.T /

�Dib
�
�i.vr /

ˇ̌̌̌
� C

�j�r j1=pCk�rk�r ;p;1

� X
i2�.T /

ˇ̌
�i.vr /

ˇ̌
;

where the difference is computed via a parallel transport of Tev0.b
0
r /

X to Tev0.b/X

with respect to the J –linear connection rJ . By (5-1) and (5-3), b must satisfy one of
the two conditions in the statement of Proposition 5.1.
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The proof of Proposition 5.2 involves a similar extension of Lemma 3.5 and Corollary
3.7. By the assumption on the bubble types T .k/ made in Proposition 5.2, ev0.bk/D
ev1.bk/ for all k . Thus,

ev1.bk/D ev0.bk/D ev1.bl/ 8k; l 2 Œn�:
Let q denote the point ev0.b1/. We identify a small neighborhood of q in X with a
small neighborhood of q in TqX via the exponential map of the metric gX and the
tangent space to X at a point close to q with TqX via the rJ –parallel transport.

For each pair .k; r/, with r sufficiently large, let .b0
k;r
; �k;r ; �k;r / be an analogue

of .b0r ; �r ; �r / for bk;r . As before, the key point is that the bubble maps b0
k;r

are
constant on the degree-zero components and holomorphic on fixed neighborhoods of
the attaching nodes of the first-level effective bubbles. Let

�k;r D ev0.b
0
k;r / 2 TqX

z�k;r D ev1.bk;r /� ev0.bk;r /D ev1.bk;r /� ev0.b
0
k;r / 2 TqX:and

By the assumption on the maps bk;r made in the statement of Proposition 5.2,ˇ̌
�k;r Cz�k;r � �kC1;r

ˇ̌� C
ˇ̌
�k;r

ˇ̌ � ˇ̌z�k;r ˇ̌ 8k 2 Œn� 1�;ˇ̌
�n;r Cz�n;r � �1;r

ˇ̌� C
ˇ̌
�n;r

ˇ̌ � ˇ̌z�n;r ˇ̌I
H) ˇ̌z�1;r C � � �C z�n;r ˇ̌� �r

kDnX
kD1

ˇ̌z�k;r ˇ̌;(5-4)

for a sequence f�r g converging to 0. On the other hand, by the proof of (3-25),

(5-5)
ˇ̌̌̌
z�k;r �

X
i2�.T .k//

.y1Ii.b0k;r /�xiI1.b0k;r //
�1.Dib

0
k;r /�iI1.vk;r /

ˇ̌̌̌
� C

�j�k;r j1=pCk�k;rk�k;r ;p;1

� X
i2�.T .k//

ˇ̌
�iI1.vk;r /

ˇ̌I
see (3) of the proof of Corollary 3.7 for notation. By (5-4) and (5-5),

(5-6)
ˇ̌̌̌ kDnX

kD1

X
i2�.T .k//

.y1Ii.b0k;r /�xiI1.b0k;r //
�1.Dib

0
k;r /�iI1.vk;r /

ˇ̌̌̌
� z�k

kDnX
kD1

X
i2�.T .k//

ˇ̌
�iI1.vk;r /

ˇ̌
;

for a sequence fz�r g converging to 0. Since Dib
0
k;r
�!Dibk as r �! 1, (5-6)

implies the conclusion of Proposition 5.2.
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5.3 Proof of Proposition 5.3

Let .X; !;J /, A, M , br ,

b D .M; I;@IS;x; .j ;y/;u/; ui � ubj†b;i
;

and T be as in the statement of Proposition 5.3. Let Th and bh for h 2 I1 be as in
Section 2.2. For each h 2 I1 and i 2 IC

h
, choose a subspace

z�0;1� .bI i/� z�0;1� .bhI i/� �
�
†b;i �X Iƒ0;1

J ;j
��1 T �†b;i ˝��2 TX

�
as in the previous subsection. If Ai D 0, denote by z�0;1� .bI i/ the zero vector space.
We define zUT .X IJ / as at the beginning of Section 5.2. Let

eFT �! zUT .X IJ /
be the bundle of gluing parameters. For each b0 2 zUT .X IJ /, let

z�0;1� .b0/� ��†b0 �X Iƒ0;1
J ;j
��1 T �†b0 ˝��2 TX

�
be the subspace obtained by extending all elements of z�0;1.b0I i/D z�0;1.bI i/ by zero
outside of the component †b0;i of †b0 .

The sequence Œbr � converges to Œb�. Thus, with notation as in Section 4.2, for all r

sufficiently large there exist

b0r 2 zUT .X IJ /; �r D .b0r ; vr / 2eFT ∅; �r I1 2 �.�r I1/;
�r I2 2 �C.�r /� �

�zu�r I1
ı zq�r I0I2

�
; where zu�r I1

D expu�r I1
�r I1;and

such that

�r I1j†�r I1I@
D 0; x@J zu�r I1

2 fq�r I1
� zu�r I1

	�z�0;1� .b0r /;
br D expzu�r I1

ı zq�r I0I2
�r I2 8r;

(5-7)

lim
r�!1 b0r D b; lim

r�!1 jvr j D 0;

lim
r�!1 k�r I1k�r I1;p;1 D 0; lim

r�!1 k�r I2k�r ;p;1 D 0:
(5-8)

We note that just as in the first step of the gluing construction in Section 4.2, there is
no obstruction to smoothing the internal bubble nodes of the bubble map b0r subject to
the second condition in (5-7), as long as b0r is sufficiently close to br . For defining the
spaces �C.�r / at the second step of the gluing construction, we take

��.b0/D
˚
� 2 �.b0/ WDJ ;b0� 2 fid�ub0g�z�0;1� .b0/

	
:
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The proof of the existence of the elements �r , �r I1 , and �r I2 as above is similar to the
proof of the surjectivity property for the gluing map in Lemma 4.4, but simpler.

Since for each h 2 I1 the map zu�r I1
is holomorphic on †0

�r Ih
.ı/�†�r I1

for ı 2RC
sufficiently small, the estimates of Corollary 3.8 apply to each map zu�r I1

j†�r I1;h
.

Thus, we can define an obstruction bundle �0;1� .�r / for the second stage of the gluing
construction in Section 4.2, with the estimates of Lemma 4.4 remaining valid. The
claim of Proposition 5.3 is then obtained by the same argument as Corollary 4.6, with
zJ , u� , and � zJ ;� replaced by J , zu�r I1

ı zq�r I0I2 , and �r I2 , respectively.

6 Proof of Theorem 2.3

6.1 A multistep gluing construction

The first part of the last claim of Theorem 2.3 can be proved by showing that a fine
version of the converse to the zJ D J case of Corollary 4.6 holds. More precisely,
using the two-step gluing construction of Section 4.2 and the Inverse Function Theorem
twice, we can construct an orientation-preserving diffeomorphism

�W F1T ∅
ı
�!M0

1;k.X;AIJ /\UT :

Unfortunately, one of the families of the domain spaces involved in this construction
does not extend continuously over F1Tı \��1.0/ for a general bubble type T as in
Theorem 2.3. As these domain spaces are needed to apply IFT over F1Tı �F1T ∅ ,
the above map � cannot extend continuously over F1Tı , except for bubble types T
such that either j�.T /j D 1 or �.T / D yI . In the first case, both families do extend
continuously over F1T . In the second case, �.�/ D � for all � 2 FT and both
families extend continuously over F1T � f0g. On the other hand, as � �! 0 both
perturbations approach zero. This means that the corrections to be chosen in the domain
spaces approach zero as well and thus extend continuously over F1Tı .

In this subsection, we describe a multistep variation of the two-step gluing construction
of Section 4.2. In the next subsection, we will use IFT multiple times to construct an
orientation-preserving diffeomorphism

�W F1T ∅
ı
�!M0

1;k.X;AIJ /\UT :

Some of the domain spaces involved will not extend continuously over F1Tı . However,
whenever a domain space cannot be extended to a point �� 2F1Tı , the corresponding
perturbations will approach zero as a sequence of elements �r 2F1T ∅

ı
approaches �� .

For this reason, the above diffeomorphism � extends to a continuous map

�W F1Tı �! SM0
1;k.X;AIJ /\UT :
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This map can shown to be a bijection by the same argument as in Section 4.1 of [16].

The multistep gluing construction described in this subsection is suitable for the purposes
of Section 4.3 and thus could have been described in Section 4.2 instead of the two-stage
gluing construction. However, describing the former in Section 4.3 would have further
obscured the proofs of Corollaries 4.5 and 4.6. As these two corollaries appear far
more central, than Theorem 2.3, to applications in the Gromov–Witten theory and
enumerative geometry, we have postponed describing the multistep gluing construction
until the present section.

If b D .†b;ub/ is any genus-one bubble map such that ubj†bIP
is constant, let

†0
b
�†b be the maximum connected union of the irreducible components of †b such

that †bIP �†0
b

and ubj†0
b

is constant. We put

�B.b/D
˚
� 2 �.†bIu�bTX / W �j†0

b
D 0

	
�

0;1
B
.bIJ /D ˚� 2 �.†bIƒ0;1

J ;j
T �†b˝u�bTX / W �j†0

b
D 0

	
:and

We denote by

DB
J ;bW �B.b/ �! �

0;1
B
.bIJ /

the restriction of the linearization DJ ;b of the x@J –operator at b defined with respect
to the connection rX . Let

��.b/D ker DJ ;b and �BI�.b/D ker DB
J ;b:

If b is J –holomorphic, let z��.b/� �BI�.b/ be the subspace defined in Section 4.2;
see (4-4) and (4-5).

Suppose T D .M; I;@I j ;A/ is a bubble type as in Theorem 2.3, ie Ai D 0 for all
i 2 I0 , where I0 � I is the subset of minimal elements. We put

�0.T /D ˚h 2 I WAi D 0 8 i � h
	
;

��.T /D ˚h 2 yI W h< i for some i 2 �.T /	� �0.T /;
hT i Dmax

˚ˇ̌fh 2 yI W h� igˇ̌ W i 2 �.T /	� 1; I�hT i D �.T /;
IhT i D yI ��.T /���.T /� I1;

where I1 � I is as in Section 2.2. For each s 2 f0g[ ŒhT i � 1�, let

Is D
˚
i 2 �.T /[��.T / W ˇ̌fh 2 yI W h< igˇ̌D s

	
; I�s D Is [

s�1[
tD0

�It \�.T /
�
:
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In the case of Figure 5,

hT i D 2; I0 D fh1; h3g; I1 D fh4; h5g; I2 D fh2g:
In general, the set IhT i could be empty, but the sets Is with s < hT i never are.

If b is a bubble map of type T as in Section 2.2 and s 2 ŒhT i�, we put

†
.s/

b
D

[
i2�0.T /���.T /

†b;i [
[

h2I�
s�1

[
i<h

†b;i �†b:

With notation as in Section 2.2, let

eFT D
M

i2�.T /
BFh.i/T �! zU .0/T .X IJ /:

If s 2 ŒhT i� and h 2 I�
s�1

, let

�h.T /D
˚
i 2 �.T / W h� i

	
; eFhT D zU .0/T .X IJ /�C�h.T /:

If in addition � D .b; v/ 2eFT , let

�sIh.�/D
�
b; .�hIi.�//i2�h.T /

� 2 eFhT ; where �hIi.�/D
Y

h<h0�i

vh0 2C;

�s.�/D
�
b; .�sIh.�//h2I�

s�1

� 2 eFsT �
M

h2I�
s�1

eFhT :

Note that �.�/ 2eFT ; see Section 2.2.

As in Section 4.2, for each � D .b; v/ 2eFT we put

�0 D .b; v@; v0/:

Let �h0i D � . If s 2 ŒhT i�, let

�s D
�
b; .vh/h2Is

�
and �hsi D

�
b; .vh/h2It ;t�s

�
:

The component �hT i of � consists of smoothings at the nodes of †b that do not lie
between the principal component †bI@ of †b and the first-level effective bubbles and
do not lie on †bI@ . These nodes will be smoothed out at the first step of the gluing
construction, as specified by �hT i . At the next step, we will smooth out the nodes
indexed by the set IhT i�1 , according the tuple of gluing parameters �hT i�1 . As in
Section 4.2, at the last step we will smooth out, if possible, the nodes that lie on the
principal component †bI@ of †b according to �0 . This step will be obstructed.
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Suppose � D .b; v/ 2 eFT ∅ is a sufficiently small element. We will inductively
construct approximately J –holomorphic bubble maps

bs.�/D .†�hsi ;u�;s
�
; 8 s D 0; : : : ; hT i;

J –holomorphic bubble maps

zbs.�/D .†�hsi ; zu�;s
�
; 8 s D 1; : : : ; hT i;

and injective homomorphisms

R�;sW ��.b/�!�
�
†�hsi Iu��;sTX

�
and zR�;sW ��.b/�!�

�
†�hsi I zu��;sTX

�
;

such that the following properties are satisfied. First, for all s 2 ŒhT i�,
†0

bs.�/
D†0

zbs.�/
Dq�1

�hsi

�
†
.s/

b

�
and u�;s

�
†0

bs.�/

�Dzu�;s�†0
zbs.�/

�Dub.†
0
b/�evP .b/;

where as before
q�hsi W †�hsi �!†b

is the basic gluing map of Section 2.2 in [16]. Second, for all � 2 ��.b/
R�;s�

ˇ̌
†0

bs.�/

; zR�;s�
ˇ̌
†0
zbs.�/

D const;

R�;s�
�
†0

bs.�/

�D zR�;s�
�
†0
zbs.�/

�D �.†0
b/;

(6-1)

C.b/�1k�kb;p;1 �
R�;s�


�hsi;p;1

;
 zR�;s�


�hsi;p;1

� C.b/k�kb;p;1;(6-2) DJ ;b.�hsi/R�;s�

�;p
;
D

J ;zb.�hsi/
zR�;s�


�;p

� C.b/
�j�j1=pCj�jp�2=p

�k�kb;p;1;(6-3)

for some C 2 C.UT .X IJ /IRC/.

Remark Similarly to Sections 3 and 4, above and below k � k�hsi;p;1 denotes the
weighted L

p
1

–norms on the spaces

�B

�
†�hsi Iu��;sTX

�
and �B

�
†�hsi I zu��;sTX

�
induced from the basic gluing map q�hsi as in Section 3.3 of [16]. Similarly, k � k�hsi;p
denotes the weighted Lp –norms on the spaces

�B

�
†�hsi Iƒ0;1

J ;j
T �†�hsi ˝u��;sTX

�
and �B

�
†�hsi Iƒ0;1

J ;j
T �†�hsi ˝ zu��;sTX

�
:

We denote the corresponding completions by �B.�hsi/, z�B.�hsi/, �0;1
B
.�hsiIJ / and

z�0;1
B
.�hsiIJ /.
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For s 2 f0g [ ŒhT i�, let ��.�hsi/ be the image of R�;s . Similarly, if s 2 ŒhT i�, we
denote by

�BI�.�hsi/� �B

�
bs.�/

�
and z��.�hsi/; z�BI�.�hsi/� �B

�zbs.�/
�

the image of �BI�.b/ under R�;s , the image of zR�;s , the image of �BI�.b/ under
zR�;s , respectively; see (6-1). Let �BIC.�hsi/ and z�BIC.�hsi/ be the L2 –orthogonal

complements of �BI�.�hsi/ and z�BI�.�hsi/ in �B.�hsi/ and z�B.�hsi/. These spaces
will satisfy

C.b/�1k�k�hsi;p;1�
DJ ;b.�hsi/�


�hsi;p

�C.b/k�k�hsi;p;1 8 �2�BIC.�hsi/;(6-4)

C.b/�1k�k�hsi;p;1�
D

J ;zb.�hsi/�

�hsi;p

�C.b/k�k�hsi;p;1 8 �2 z�BIC.�hsi/:(6-5)

Furthermore,

zu�;s D expu�;s
��;s(6-6)

��;s 2 �BIC.�hsi/ such that
��;s�hsi;p;1 � C.b/j�j1=p:for some

Finally, for ı 2 C.UT .X IJ /IRC/ sufficiently small, all maps

� �! bs.�/; zbs.�/; ��;s; R�;� ; zR�;�

are smooth on eFT ∅
ı

and extend continuously over eFT ı .

We now describe the inductive construction referred to above. If � 2eFT ∅ is as above
and b D .†b;ub/, we put

u�;hT i D ub ı q�hT i ; R�;hT i� D � ı q�hT i 8 � 2 ��.b/:
The first bounds in (6-3) and (6-4) with s D hT i hold for the same reasons as the
corresponding estimates in Lemma 3.1. Since the operator DB

J ;b
is surjective, by the

first bound in (6-3) the operator

DB
J ;bhT i.�/

W �BIC
�
�hT i

� �! �
0;1
B

�
�hT iIJ

�
is an isomorphism. On the other hand, by the construction of the map q�;hT i in
Section 2.2 in [16],

(6-7)
x@J u�;hT i


�hT i;p

� C.b/j�j1=p:
Thus, by the Contraction Principle, if � is sufficiently small, there exists a unique small
element

(6-8) ��;hT i 2 �BIC
�
�hT i

�
such that x@J expu�;hT i

��;hT i D 0:
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Furthermore, by (6-7), ��;hT i�hT i;p;1 � C.b/j�j1=p:

We thus define zbhT i.�/ by the first equation in (6-6).

If s 2 ŒhT i � 1�, let
q�sIhT iC1�sW †�hsi �!†�hsC1i

be the basic gluing map of Section 2.2 in [16] corresponding to the gluing parameter �s .
If zbsC1.�/ and zR�;sC1 have been defined, we put

u�;s D zu�;sC1 ı q�sIhT iC1�s; R�;s� D zR�;sC1� ı q�sIhT iC1�s 8 � 2 ��.b/:
The first bounds in (6-3) and (6-4) follow from the second estimates in (6-2) and (6-3)
and from (6-5), with s replaced by s C 1. On the other hand, by the inductive
construction and (6-6),

zu�;sC1 D expu�hsC1i

z��;sC1(6-9)

z��;sC1 2 �B

�
†�hsC1i

Iu��hsC1i
TX

�
for some z��;sC1


�hsC1i;p;1

� C.b/j�j1=p;such that

u�hsC1i
D ub ı q�hsC1i

:where

Thus, if ı is sufficiently small, the estimate in (2b) of Corollary 3.8 impliesd zu�;sC1jA�
�hsC1i;h

.ı/


�;p
� C.b/ı1=p

ˇ̌
�sIh.�/

ˇ̌ 8 h 2 I�s ;(6-10)

A��hsC1i;h
.ı/D q�1

�hsC1i

�˚
.h; z/ 2†b;h D fhg �S2 W jzj � ı�1=2=2

	�
:where

It follows that

(6-11)
x@J u�;s


�;p
� C.b/j�j1=p ˇ̌�sC1.�/

ˇ̌� C.b/j�j1=p:
Thus, similarly to the s D hT i case above, if � is sufficiently small, there exists a
unique small element

(6-12) ��;s 2 �BIC
�
�hsi

�
such that x@J expu�;s

��;s D 0:

Furthermore, by (6-11), ��;s�s ;p;1
� C.b/j�j1=p:

We again define zbs.�/ by the first equation in (6-6).
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If s 2 ŒhT i� and zbs.�/ has been defined via (6-6), we put

zR�;s� D…��;s R�;s� 8 � 2 ��.b/;
where …��;s is the parallel transport along the geodesics

� �! expu�;s
���;s; � 2 Œ0; 1�:

The bounds on R�;s� in (6-1)–(6-3) and the estimate (6-4), along with (6-6), imply
the bounds on zR�;s� in (6-1)–(6-3) and the estimate (6-5).

At the final step of this inductive construction, we put

u�;0 D zu�;1 ı zq�0IhT iC1; R�;0� � zR�;1� ı zq�0IhT iC1 8 � 2 ��.b/
	
;

zq�0IhT iC1W †� �!†�h1iwhere

is the modified basic gluing map constructed in Section 4.2 as zq�0I2 . In order to
construct this map in this case, we need to replace ıK 2RC with ı 2 C1.UT .X IJ /,
which we view as a function on zU .0/T .X IJ / via the quotient projection map

zU .0/T .X IJ / �! U .0/T .X IJ /:
The homomorphism R�;0 satisfies the required properties. Let �C.�/� �.�/ be the
L2 –orthogonal complement of ��.�/.

For each h 2 yI and ı 2 xRC , let

AC
b;h
.ı/D ˚.�h; z/ 2†b;�h W jz�xh.b/j � 2ı1=2

	
;

A�b;h.ı/D
˚
.h; z/ 2†b;h D fhg �S2 W jzj � ı�1=2=2

	
;

†�b;h.ı/D†b;h�A�b;h.ı/�
[
�h0Dh

AC
b;h0
.ı/;

zA˙�;h.ı/D q�1
�

�
A˙b;h.ı/

��†� ; z†��;h.ı/D q�1
�

�
†�b;h.ı/

�
:

We define the homomorphism

R� W �0;1� .bIJ / �! �0;1.�IJ /
similarly to Section 4.2, but with two changes. First, we replace the number ıK with
the function ı 2 C1.UT .X IJ /IRC/. Second, we cut-off R@�� over the annuli

zAC�;i.4ı.b//� zAC�;i.ı.b//
with i 2�.T /, instead of h2I1 ; see Section 2.2 in [13] for a version of this construction.
Let �0;1� .�IJ / be the image of R� . We note that due to (6-9), the estimates in (3) and
(6) of Lemma 4.4 remain valid. Of course, in this case zJ D J and CK 2RC should
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be replaced by an RC–valued continuous function on UT .X IJ /. We summarize the
key results of this construction below.

Lemma 6.1 Suppose .X; !;J / is a compact almost Kahler manifold, A 2H2.X IZ/,
and J is a genus-zero A–regular almost complex structure. If T D .M; I;@I j ;A/
is a bubble type such that

P
i2I Ai DA and Ai D 0 for all minimal elements i of I ,

there exist ı;C 2 C.UT .X IJ /IRC/ and an open neighborhood UT of UT .X IJ / in
X1;M .X;A/ such that

(1) bs.�/, zbs.�/, R�;s , and zR�;s as above are defined for all � 2eFT ∅
ı

;

(2) for every Œzb�2X0
1;M

.X;A/\UK , there exist �D .b; v/2 zFTı and ��;02�C.�/
such that

k��;0k�;p;1 < ı.b/ and
�

expb0.�/
��;0

�D Œzb�:
Furthermore, such a pair .�; ��;0/ is unique up to the Aut.T //.S1/

yI –action;

(3) for all � D .b; v/ 2eFT ∅
ı

,

kx@J u�;0k�;p � C.b/
ˇ̌
�.�/

ˇ̌
;

kDJ ;b0.�/�k�;p � C.b/
�j�j1=pCj�j.p�2/=p

�k�k�;p;1 � 2 ��.�/;
C.b/�1k�k�;p;1 � kDJ ;b0.�/�k�;p � C.b/k�k�;p;1 8� 2 �C.�/I

(4) for all � D .b; v/ 2eFT ∅
ı

, � 2 �.�/, and � 2 �0;1� .bIJ /,ˇ̌hhDJ ;b0.�/�;R��ii�;2
ˇ̌� C.b/

ˇ̌
�.�/

ˇ̌1=2k�kk�k�;p;1I
(5) for all � D .b; v/ 2eFT ∅

ı
, s 2 ŒhT i�, and h 2 I�

s�1
,ˇ̌̌̌

Dh
zbs.�/�

X
i2�h.T /

DJ ;i�hIi.�/
ˇ̌̌̌
� C.b/j�j1=pj�sIh.�/

ˇ̌I
(6) for all � D .b; v/ 2eFT ∅

ı
and � 2 �0;1� .bIJ /,ˇ̌̌˝̋x@J u�;0;R��

˛̨ C 2� i
X

i2�.T /

˝Di�i.�/; �xh.i/.b/

˛
b

ˇ̌̌
� C.b/

�j�j1=pCj�j.p�2/=p
�j�.�/ˇ̌ � k�k:

(7) all maps
� �! bs.�/; zbs.�/; ��;s; R�;s; zR�;s

are smooth on eFT ∅
ı

and extend continuously over eFT ı .
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Due to (6-9), (5) is proved by the same argument as the r D 1 case of the expansion (2a)
in Lemma 3.5. Part (2) of Lemma 6.1 holds for the same reason as part (2) of Lemma
4.4. Regarding part (7) of Lemma 6.1, it is immediate from the inductive construction
that each of the maps

� �! bs.�/; zbs.�/; R�;s; zR�;s

is smooth on eFT ∅
ı

and extends continuously over eFT ı , provided this is the case
for all the objects defined at the preceding steps of the construction. Under these
circumstances the map � �! ��;s is also smooth, by the smooth dependence of the
solutions of (6-8) and (6-12) on the parameters. It extends continuously over eFT ı by
the same argument as in Section 4.1 in [16].

The estimate in (4) of Lemma 6.1 is an improvement on (7) of Lemma 4.4 and is
proved by a similar argument. In this case, the support of D�

J ;�
R�� is contained in

the union of the annuli

zAC
�;h

�
ı.b/

�
; h 2 ��.T /[�.T /I zA��;h

�
ı.b/

�
; h 2 ��.T /[�.T /I

z†��;h
�
ı.b/

�
; h 2 ��.T /I zA��;h

�
4ı.b/

�� zA��;h�ı.b/�; h 2 �.T /:
Similarly to the proof of (7) of Lemma 4.4,

(6-13)
ˇ̌
D�J ;�R��

ˇ̌
g� ;z
� CX

ˇ̌
du�;0

ˇ̌
g� ;z
j�jg�;z

for every point z of any of the annuli of the first three types above. Thus, the esti-
mate (4-16) still applies to the annuli of the first type with h 2 I1 . By definition of the
metric g� ,

j�jg�;z � C.b/k�k �
Y

h02yI ;h0<h

vh0
8 z 2 zAC

�;h

�
ı.b/

�
;

h 2 ��.T /[�.T /I(6-14)

j�jg�;z � C.b/k�k �
Y

h02yI ;h0�h

vh0
8 z 2 z†��;h

�
ı.b/

�
;

h 2 ��.T /I(6-15)

j�jg�;z � C.b/k�k � jwhj�1
Y

h02yI ;h0�h

vh0
8 z 2 zA��;h

�
4ı.b/

�
;

h 2 ��.T /[�.T /;(6-16)

where wh is the coordinate on zA�
�;h
.4ı.b// defined similarly to wi in (2) of the proof

of Lemma 3.5. On the other hand, by (6-10) and the assumption (a) of Definition 1.4,

(6-17)
��;sjz†�

�;i
.0/


�hsi;p;1

� C.b/
ˇ̌
�sIh.�/

ˇ̌ 8 h 2 I�s�1; i � hI

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2507

the above assumption implies that the operators Dh
J ;bs.�/

defined in Section 6.3 below
are surjective. Note that by the inductive construction,

��;sjz†�
�;i
.0/
D 0 8 h 2 I�s�1; i < h:

Combining this observation with (6-17), we find thatz��;1jz†�
�;h
.0/


�h1i;p;1

� C.b/
ˇ̌
�sIh.�/

ˇ̌ 8 h 2 yI ;

where z��;1 is as in (6-9). Thus,du�;0j zAC
�;h
.ı.b//


�;p;1

� C.b/
Y

h02��.T /[�.T /;
h0�h

vh0 8 h 2 ��.T /[�.T /� I1;(6-18)

du�;0jz†�
�;h
.ı.b//


�;p;1

� C.b/
Y

h02��.T /[�.T /;
h0>h

vh0 8 h 2 ��.T /;(6-19)

du�;0j zA�
�;h
.4ı.b//


�;p;1

� C.b/
Y

h02��.T /[�.T /;
h0>h

vh0 8 h 2 ��.T /[�.T /:(6-20)

Combining (6-13)–(6-16), (6-18)–(6-20), and Holder’s inequality, we find that the
L1 –norm of D�

J ;�
R��, with respect to the metric g� , on each of the annuli above is

bounded by C.b/j�.�/jk�k. Finally, analogously to (4-14),ˇ̌
D�J ;�R��

ˇ̌
g� ;z
� C.b/

�
1C ˇ̌du�;0

ˇ̌
g� ;z

�j�jg�;z
8 z 2 zA��;h

�
4ı.b/

�� zA��;h�ı.b/�; h 2 �.T /:

Thus, by (6-16) and (6-20) the L1 –norm of D�
J ;�

R�� on such annuli is also bounded
by C.b/j�.�/jk�k.

Remark The exponent 1=2 in (4) of Lemma 6.1 is due to the exponent .p� 1/=p

in (4-16).

6.2 Construction of diffeomorphism

We continue with the notation of the previous subsection. For each � D .b; v/ 2eFT ∅
ı

,
we define the homomorphism

�0;1
�I�W �0;1.�IJ / �! �0;1� .bIJ / by �0;1

�I��D
X

r

h�;R��r i�r 2 �0;1� .bIJ /;
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where f�r g is an orthonormal basis for �0;1� .bIJ / as in (5) of the proof of Corollary
4.5. We denote the kernel of �0;1

�I� by �0;1
C .�IJ /. By Lemma 6.1,

U 0T D
˚
Œexpb0.�/

�� W � D .b; v/ 2 zFTı; � 2 �C.�/; k�k�;p;1 < ı.b/
	

� ˚Œexpb0.�/
�� W � D .b; v/ 2eFT ı; � 2 �C.�/; k�k�;p;1 < ı.b/

	
is an open neighborhood of UT .X IJ / in X1;M .X;A/. Thus, we need to solve the
equation

(6-21) x@J expu�;0
� D 0

”
(
�

0;1
�I�
�x@J u�;0CDJ ;b0.�/�CN�;0�

�D 0 2 �0;1� .bIJ /;
x@J u�;0CDJ ;b0.�/�CN�;0� D 0 2 �0;1

C .�IJ /;

where N�;0 is the quadratic term satisfying (4-27), for � D .b; v/ 2eFT ∅
ı

and � 2
�C.�/ such that k�k�;p;1 < ı.b/. By the proof of (1) of Corollary 4.6, there exist
zı; zC 2 C1.UT .X IJ /IRC/ such that zı < ı and every solution .�; �/ of (6-21)

(6-22) j�j< zı.b/; k�k�;p;1 < zı.b/ H) k�k�;p;1 < zC .b/ �
ˇ̌
�.�/

ˇ̌
:

On the other hand, by (4) and (6) of Lemma 6.1 and (4-27),

(6-23) �0;1� b0.�; �/��0;1
�I�
�x@J u�;0CDJ ;b0.�/�CN�;0�

�D�2� iDT .�/C".�; �/;

where DT is as defined in Section 2.2 and".�; �/� C.b/
�j�j1=pCj�j.p�2/=pCk�k�;p;1

� � �j�.�/jC k�k�;p;1�(6-24)

� 2 �.�/; k�k�;p;1 � ı.b/:if

We will first solve the top equation in (6-21) for b0 D �0.�; �/ and then use the
Contraction Principle to show that the resulting bottom equation has a unique solution
in � for each � 2 zF1T ∅

zı .

For each s 2 ŒhT iC 1� and h 2 I1 , let

U .s/Th
.X IJ /D‰�1

T

��
.0; ri/i2Ih

2 .C �R/Ih W ri D 1

2
8i 2 I ��.T /;

ri 2
�

1

2
� s

4.hT iC 1/
;
1

2
C s

4.hT iC 1/

�
8i 2 �h.T /

��
I
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see the end of Section 2.1. We put

U .s/T .X IJ /D
��

b0; .bh/h2I1

� 2 UT0
.X IJ /�

Y
h2I1

U .s/Th
.X IJ / W

ev0.bh/D ev�h.b0/ 8h 2 I1

�
� zU .0/T .X IJ /I

see Section 2.2 for notation.

For each s 2 ŒhT i� and h 2 I�
s�1

, let

�sIhW P eFhT
ˇ̌
U.sC1/
T .X IJ / �! U .sC1/

T .X IJ / and sIh �! P eFhT
ˇ̌
U.sC1/
T .X IJ /

be the natural projection map and the tautological line bundle. With

VsIh D ��sIh ev�P TX �! P eFhT
ˇ̌
U.sC1/
T .X IJ /;

we define

˛sIh 2 �
�
P eFhT

ˇ̌
U.sC1/
T .X IJ /I  �sIh˝VsIh

�
˛sIh

�
b; .vi/i2�h.T /

�D X
i2�h.T /

DJ ;i

�
b; vi/ 2 TevP .b/X if

�
b; .vi/i2�h.T /

� 2 sIh:by

We denote by

�sW PsT �
Y

h2I�
s�1

�
P eFhT ; �sIh

� �! U .sC1/
T .X IJ /

the fiber product of the bundles P eFhT over U .sC1/
T .X IJ /. Let

Vs D ��s ev�P TX �! PsT and s D
M

h2I�
s�1

z��sIhsIh;

where z�sIhW PsT �! P eFhT is the natural projection map. We denote by

˛s 2 �
�
PsT I  �s ˝Vs

�
the section induced by the sections z��

sIh˛sIh with s 2 I�
s�1

. Similarly, let

�0W P0T DPeFT ˇ̌U.1/T .X IJ / �!U .1/T .X IJ /; V0D��0
�z��P E�˝ev�P TX

��!P0T :
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Let 0 �! P0T be the tautological line bundle. We define ˛0 2 �
�
P0T I  �0 ˝V0

�
by˚

˛0

�
b; .vi/i2�.b/

�	
.b;  /D�2� i

X
i2�.T /

DJ ;i

�
b;  xh.i/.b/vi

� 2 TevP .b/X�
b; .vi/i2�.b/

� 2 0; .b;  / 2 Ez�P .b/:if

'W z��. � /�
[

b2U.hT i/T .X IJ /
z��.b/ �! zU .0/T .X IJ /Let

be the smooth map induced from the maps ' of the remark following Lemma 3.3 via
the decomposition (2-11). In particular,

†'.bI�/ D†b and evP

�
'.bI �/�D evP .b/ 8 b 2 U .hT i/T .X IJ /; � 2 z��.b/:

Thus, the fibers of the vector bundles

eFT ; z��P E�; ev�P TX; eFT and eFhT for h 2 I�s�1; s 2 ŒhT i�;
at b and at '.b; �/ are canonically isomorphic. If � 2 z��.b/ is sufficiently small,

� � .b; v/ 2eFT ∅
ı

and � 0 D .'.b; �/; v/ 2eFT ∅
ı

are corresponding elements of the fibers of eFT at b and at '.b; �/, let ��;0.�/2�.�/
be given by

expu�;0
��;0.�/D u� 0;0 and ku�;0kC 0 < rJ :

We identify �C.�/ and �0;1
C .�IJ / with �C.� 0/ and �0;1

C .� 0IJ / by composing the
rJ –parallel transports

�C.�/ �! �.� 0/ and �
0;1
C .�IJ / �! �0;1.� 0IJ /

along the geodesics corresponding to ��;0.�/ with L2 –projection maps

�.� 0/ �! �C.� 0/ and �0;1.� 0IJ / �! �
0;1
C .� 0IJ /

corresponding to the metric g� D g� 0 on †� .

For each s 2 f0g[ ŒhT i�, the map ' induces a smooth map

'sW Gs � ��s z��. � /
ˇ̌
U.s/T .X IJ / �! PsT :

Similarly to the previous paragraph, the fibers of vector bundles

��s eFT ; s and Vs
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A sharp compactness theorem for pseudo-holomorphic maps 2511

at zb and 's.zb; �/ are canonically isomorphic, if .b; �/ 2Gs is sufficiently small. By
the regularity assumptions (a) and (b-i) of Definition 1.4, the differential

rT˛sW Gs �!  �s ˝Vs

of ˛s , defined via the above isomorphisms, is surjective. Let G?s be the L2 –orthogonal
complement of kerrT˛s in Gs . By the surjectivity of rT˛s , the Contraction Principle,
the precompactness of the fibers of

� ı�sW PsT �! U .sC1/
T .X IJ / �! UT .X IJ /;

there exists �;C 2 C.UT .X IJ /IRC/ with the following property. If b 2 UT .X IJ /
and

� 2 ��PsT j��1.b/I  �s ˝Vs

�
is a smooth section such that

k�.zb/k; rT �.zb/� �.b/ 8 zb 2 PsT
ˇ̌
��1.b/

;

then for every zb� 2 PsT j��1.b/\U.s/T .X IJ / the equation

˛s

�
's.zb�; �/

�C ��'s.zb�; �/
�D ˛s.b

�/ 2  �s ˝Vs; � 2Gs

ˇ̌
zb� ; j�j< 2C.b/�.b/;

has a unique solution ��.zb�/. Furthermore,ˇ̌
��.zb�/

ˇ̌� 2C.b/max
˚k�.zb/k; rT �.zb/ W zb 2 PsT

ˇ̌
��1.b/

	I
see Section 3.6 in [16], for example.

We are now ready to return to the gluing construction of the previous subsection. For
every element �D .b; v/ of eFT ∅

ı
, let

�hT iC1.�/D b 2 zU .0/T .X IJ / and z�hT iC1.�/D .�hT iC1.�/; v/ 2eFT ∅
ı
:

Suppose s 2 ŒhT i� and for all t 2 ŒhT i� such that t > s and � 2eFT ∅
ı
jU.t/T .X IJ / as

above we have constructed

�t .�/ 2 zU .0/T .X IJ / and z�t .�/D
�
�t .�/; v

� 2eFT ∅
ı

such that

Dh
zbt

�z�t .�/
�D ˚˛t Ih.b/

	�
�t Ih.�/

� 8 h 2 I�t�1;(6-25)

�t .�/D �tC1

�
'
�
b; ��;t

�
; v
�

for some ��;t 2 z��.b/
such that

ˇ̌
��;t

ˇ̌
;
ˇ̌rT ��;t ˇ̌� C.b/j�j1=p; �Œ�t .�/�; ��;t

� 2G?t
ˇ̌
Œ�t .�/�

;
(6-26)
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2512 Aleksey Zinger

where Œ�t .�/� 2 PtT denotes the image of �t .�/ 2 eFtT ∅ under the projection map
eFtT ∅ �! PtT and rT ��;t is the covariant derivative of ��;t along the directions in
z��.b/ as before.

By (5) of Lemma 6.1, its proof and (6-26),

(6-27) Dh
zbs

�z�sC1.�/
�D ˚˛sIh.b/C "sIh.�/

	�
�sIh.�/

� 8 h 2 I�s�1;

where "sIh 2 TevP .b/X satisfies

(6-28)
ˇ̌
"sIh.�/

ˇ̌
;
ˇ̌rT "sIh.�/

ˇ̌� C.b/j�j1=p:
The estimate (6-27) can be restated as�Dh

zbs.z�sC1.�//
�
h2I�

s�1

D ˚˛s

�
Œ�s.�/�

�C "s.�/
	�
�s.�/

�
;

where "s.�/ 2  �s ˝VsjŒ�s.�/� satisfies the analogue of (6-28). Thus, by the previous
paragraph, (6-27), and (6-28), there exists a unique small element ��;s 2 z��.b/ such
that �

Œ�s.�/�; ��;s
� 2G?s

ˇ̌
Œ�s.�/�

Dh
zbs

�z�sC1

�
'.b; ��;s/; v

��D ˚˛sIh.b/
	�
�sIh.�/

� 8 h 2 I�s�1:and

Furthermore, ��;s satisfies the first estimate in (6-26), with t D s , for some C 2
C.UT .X IJ /IRC/. The second estimate is obtained by differentiating (6-27). Thus,
we take

�s.�/D �sC1

�
'
�
b; ��;s

�
; v
�
:

Suppose we have defined �s.�/ for all s 2 ŒhT i�. By (6-23), (6-24), their proof,
and (6-26),

(6-29) �0;1� b0

�z�1.�/; �
�D ˚˛0.b/C "0.�; �/

	�
�.�/

�
;

where "0.�; �/ 2  �0 ˝V0jŒ�.�/� satisfies

(6-30)
"0.�; �/

; rT "0.�; �/


� C.b/
�j�j1=pCj�j.p�2/=pCk�k�;p;1

� � �1Cj�.�/j�1k�kz�1.�/;p;1

�
if � 2 �.z�1.�// and k�kz�1.�/;p;1 � ı.b/. Thus, for every

�D.b; v/2 zF1T ∅
ı

and �2�C
�z�1.�/

�
such that k�kz�1.�/;p;1�2 zC .b/j�.�/j;

the equation
�0;1� b0

�z�1

�
'.b; �/; v

�
; �
�D ˚˛0.b/

	�
�.�/

�� 0
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A sharp compactness theorem for pseudo-holomorphic maps 2513

has a unique small solution ��;0.�/ 2 z��.b/ such that�
Œ�.�/�; ��;0.�/

� 2G?0
ˇ̌
Œ�.�/�

;

provided that

(6-31) C.b/
�j�j1=pCj�j.p�2/=pC zC .b/j�.�/j� � �1C 2 zC .b/�� C.b/".b/:

Furthermore, this solution satisfies

(6-32)
ˇ̌
��;0.�/

ˇ̌� C.b/
�j�j1=pCj�j.p�2/=p

� � �1Cj�.�/j�1k�kz�1.�/;p;1

�
:

We put

�0.�; �/D �1

�
'
�
b; ��;0.�/

�
; v
�

and z�0.�; �/D
�
�0.�; �/; v

�
:

Let �0.�/D �0.�; 0/ and z�0.�; 0/D z�0.�; 0/.

For every � D .b; v/ in �F1T ∅ sufficiently small, we define the map

‰� W
˚
� 2 �C.z�0.�// W k�kz�0.�/;p;1 � 2 zC .b/j�.�/j	 �! �

0;1
C
�z�0.�/IJ

�
‰�.�/D x@J uz�0.�;�/CDJ ;b0.�0.�;�//�CNJ ;�0.�;�/�:by

DC
J ;�
W �C

�z�0.�/
� �! �

0;1
C
�z�0.�/IJ

�
Let

be the derivative of ‰� at � D 0 and let NC
J ;�
� 2 �0;1

C .z�0.�/IJ / be given by

‰�.�/D‰�.0/CDC
J ;�
�CNC

J ;�
�:

By the construction of ‰� , (3) of Lemma 6.1, (4-27), and (6-32)

k‰�.0/kz�0.�/;p;1 � 2C.b/
ˇ̌
�.�/

ˇ̌
;(6-33) �

2C.b/
��1k�kz�0.�/;p;1 � kDCJ ;��kz�0.�/;p

� 2C.b/k�kz�0.�/;p;1 8 � 2 �C
�z�0.�/

�
;

(6-34) NC
J ;�
� �NC

J ;�
�0
z�0..�/;p

� 2C.b/
�k�kz�0.�/;p;1Ck�0kz�0.�/;p;1

�k� � �0kz�0.�/;p;1 8�; �0 2 Dom‰� ;
(6-35)

provided that � is sufficiently small. Since the index of DC
J ;�

is zero, if zC 2
C.UT .X IJ /IRC/ is sufficiently large and � 2 F1T 1

ı
is sufficiently small, by (6-33)–

(6-35) and the Contraction Principle, the equation

‰�.�/D 0

has a unique solution ��;0 2 �C.z�0.�//.
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2514 Aleksey Zinger

If zı 2 C.UT .X IJ /IRC/ is sufficiently small, we define the map

(6-36) �W zF1T ∅
zı �!M0

1;M .X;AIJ / by �.�/D � expb0.z�0.�;��;0//
��;0

�
:

By construction, the map � is Aut.T //.S1/
yI –invariant and smooth, and thus descends

to a smooth map

�W F1T ∅
zı �!M0

1;M .X;AIJ /:
By an argument analogous to that in Section 4.2 of [16], the map � is an immersion
into X0

1;M
.X;A/, if zı is sufficiently small. By the proof of Corollary 4.6 and the

construction of the map � , the image of � contains M0
1;M

.X;AIJ / \ UT for a
neighborhood UT of UT .X IJ / in X1;M .X;A/. Thus, the map

�W F1T ∅
zı �!M0

1;M .X;AIJ /\UT

is a diffeomorphism. It can be seen to be orientation-preserving by an argument similar
to that of Section 3.9 in [16].

6.3 Extension to homeomorphism

In the rest of this section, we show that the map � extends continuously over zF1Tzı .
This will be achieved by combining the approach of Sections 3.9 and 4.1 in [16] with
the conditions (6-25) and (6-29) on the corrections �s.�/ to the maps zbs.�/.

For every b 2 zU .0/T .X IJ /, s 2 ŒhT i�, and h 2 I�
s�1

, let

†h
b D

[
h�i

†b;i �†b; �
0;1
h
.bIJ /D ˚� 2 �0;1

B
.bIJ / W �j†b�†h

b
D 0

	
;

�h.b/D
˚
� 2 �B.b/ W �j†b�†h

b
D 0

	
; z�hI�.b/D �h.b/\ z��.b/:

We note that by (a) of Definition 1.3, the operator

Dh
J ;bW �h.b/ �! �

0;1
h
.bIJ /

induced by DJ ;b is surjective. By the regularity assumptions (a) and (b-i) of Definition
1.4, the differential

rT˛sIh WGsIh � ��sIh
[

b2eU .0/T .X IJ /

z�hI�.b/ �!  �sIh˝VsIh
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of ˛sIh is surjective. We denote by G?
sIh be the L2 –orthogonal complement of

kerrT˛sIh in GsIh . If wh 2 P eFhT jb and w 2 PsT jb , let

z�hI�.bIwh/D
˚
� 2 z�hI�.b/ W .wh; �/ 2G?s;h

	
;

z��.bIw/D
˚
� 2 z��.b/ W .w; �/ 2G?s

	
:

We note that

(6-37) z��.bIw/D
M

h2I�
s�1

z�hI�.bIwh/ if w D .wh/h2I�
s�1
:

If � D .b; v/ 2eFT and s and h are as above, let

I0
s�1.�/D

˚
h 2 Is�1 W �sIh.�/D 0

	
and †h

�hsi
D q�1

�hsi

�
†h

b

�
:

We note that †h
�hsi

is a union of components of †�hsi .

The multistep gluing construction of Section 6.1 extends continuously over eFT ı . This
extension is formally described in exactly the same way as the construction itself; see
[16, Section 3.9] for a description of the continuous extension for a similar gluing
construction and [16, Section 4.1] for a proof of its continuity. Using the notation of
Section 6.1, we now make an observation regarding this extension. For each s 2 ŒhT i�
and h 2 I�

s�1
, let

�h.�hsi/D
˚
� 2 �B.�hsi/ W �j†�hsi�†h

�hsi

D 0
	
;

�
0;1
h
.�hsiIJ /D

˚
� 2 �0;1

B
.�hsiIJ / W �j†�hsi�†h

�hsi

D 0
	
:

By the surjectivity of the operators Dh
J ;b

, with h2 I�
s�1

, for all h2 I�
s�1

the operators

Dh
J ;bs.�/

W �h.�hsi/ �! �
0;1
h
.�hsiIJ /

induced by DJ ;bs.�/ are surjective, provided � is sufficiently small. Since x@J u�;s
vanishes on †h

�hsi
for all h 2 I0

s�1
.�/ and ��;s is the unique small solution of (6-12),

it follows that

(6-38) ��;s
ˇ̌
†h
�hsi

D 0 8 h 2 I0
s�1.�/:

We next extend the construction of perturbations ��;s for � 2eFT ∅
ı
jU.s/T .X IJ / in Section

6.2 to eFT ıjU.s/T .X IJ / . Suppose s 2 ŒhT i� and for all t 2 ŒhT i� such that t > s and for
all elements � D .b; v/ in eFT ıjU.t/T .X IJ / we have constructed

�t .�/ 2 zU .0/T .X IJ / and z�t .�/D
�
�t .�/; v

� 2eFT ı
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such that

Dh
zbt

�z�t .�/
�D ˚˛t Ih.b/

	�
�h.�/

� 8 h 2 I�t�1;(6-39)

�t .�/D �tC1

�
'
�
b; ��;t

�
; v
�

(6-40)

��;t 2
M

h2I�
t�1
�I0

t�1
.�/

z�hI�
�
bI Œ�h.�/

�
such that

ˇ̌
��;t

ˇ̌
;
ˇ̌rT ��;t ˇ̌� C.b/j�j1=p:for some

We note that Dh
zbt .z�t .�//D 0 for any h 2 I0

t�1
.�/ and �t .�/ 2 zU .0/T .X IJ /. Thus,

(6-39) is a nontrivial condition only for h2I�
t�1
�I0

t�1
.�/. In particular, if I0

s�1
.�/D

I�
s�1

, for the inductive step in the construction of the previous subsection we simply
take ��;s D 0. On the other hand, if I0

s�1
.�/¤ I�

s�1
, the inductive step is nearly the

same as the before. The only difference is that instead of working with the section

˛s � f˛sIhgh2I�
s�1

over PsT , we work with the section f˛sIhgh2I�
s�1
�I0

s�1
.�/ over the fiber product of

the bundles
fP eFhT gh2I�

s�1
�I0

s�1
.�/ �! zU .sC1/

T .X IJ /:
We note that in this case the orthogonal complement of the kernel of

rT f˛sIhgh2I�
s�1
�I0

s�1
.�/

is given by (6-37) with I�
s�1

replaced by I�
s�1
� I0

s�1
.�/. In summary,

��;s 2
M

h2I�
s�1
�I0

s�1
.�/

z�hI�
�
bI Œ�sIh.�/

�
is the unique small solution to the system of equations

˛sIh
�
'.b; ��;s/; wh

�C "sIh
�
'.b; ��;s/; v

�D ˛sIh
�
b; wh

�
; h 2 I�s�1� I0

s�1.�/:

The final, s D 0, step splits into two cases as well. If �.�/D 0, then we take

��;0 D 0 and ��;0 � ��;0.��;0/D 0:

Otherwise, the argument of the previous subsection still applies.

We will show that the above extension of the construction described in Section 6.2
is continuous at every step. First, note that by definition, for every s 2 ŒhT i � 1� and
h 2 I�

s�1
\��.T /,

(6-41) �sIh.�/D
�
vh0�sC1Ih0.�/

�
�h0Dh

8 � � �b; .vi/i2@[yI
� 2eFT :
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In this case, by the proof of Lemma 3.5,

(6-42) Dh
zbs.�/D

X
�h0Dh

vh0Dh0
zbsC1.�/C

X
i2�h.T /

"hIi.�/�hIi.�/

8 � � .b; v/ 2eFT ∅
ı
;

where "hIi.�/ 2 TevP .b/X is given by the right-hand side of (3-15), with

k D 1; z� zJ ;� D ��;s; #b D #zbsC1.�/
; ˆb DˆJ ;�hsC1i

; ˆ zJ ;� DˆJ ;�hsi ;

and with ıK replaced by a function ı D ı.b/. Since @�A�i .ı.b//�†h
�hsi

for all
i 2 �h.T /, it follows thatˇ̌
"hIi.�/

ˇ̌
;
ˇ̌rT "hIi.�/

ˇ̌� C.b/
���;sj†h

�hsi


�;p;1

C rT ��;sj†h
�hsi


�;p;1

�
8 � � .b; v/ 2eFT ∅

ı
; h 2 I�s�1\��.T /; i 2 �h.T /:

Let "sIh D "sIh.�/ be the bundle map as in (6-27). Combining the last estimate with
(6-42), (6-41), and (6-25) with t D sC 1, we find that

(6-43)
ˇ̌
"sIh.�/

ˇ̌
;
ˇ̌rT "sIh.�/

ˇ̌� C.b/
���;sj†h

�hsi


�;p;1

C rT ��;sj†h
�hsi


�;p;1

�
8 � � .b; v/ 2eFT ∅

ı

ˇ̌
U.sC1/
T .X IJ /; h 2 I�s�1:

We note that if h 2 I�
s�1
� ��.T /, (6-43) follows immediately from (6-25) with

t D sC 1.

We next observe that by the proof of the estimate in (6) of Lemma 4.4,

(6-44) �0;1
�I�x@J u�;0 D

X
h2.�.T /[��.T //\I1

�� 2� i vhDh
zb1.�/C "h.�/Cz"h.�/

�
for all � � .b; v/ 2eFT ∅

ı
. The error term "h.�/ is described by the left-hand side

of (4-22). This term and its rT –derivative are bounded by the last expression in (4-25).
The other term is given by

z"h.�/D vh

�
2� iDh

zb1.�/�
I
@A�
�h1i;h

.jvhj2=ı.b//
z�bI� dwh

w2
h

�
;

z�bI� W A��h1i;h.ı.b// �! TevP .b/X; expevP .b/
z�bI� D zu�;1;

z�bI�C 0 < rJ Iwhere

see the proof of (6) of Lemma 4.4. Applying the approach of Lemma 3.3 and Cauchy’s
formula, we find that

(6-45) z"h.�/D vh

I
@A�
�h1i;h

.jvhj2=ı.b//
� ẑ

�;1� id
�z#�;1 dwh

w2
h

;
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where ẑ�;1
ˇ̌
wD0
D id, ẑ

�;1� id k�1;p;1 � C.b/
du�;1jA�

�h1i;h
.ı.b//


�1;p;1

� C.b/
ˇ̌z�h.�/

ˇ̌
;(6-46) ˇ̌z#�;1ˇ̌wh

� C.b/jwhj
ˇ̌z�h.�/

ˇ̌
;(6-47)

by (2b) and the first estimate in (2c) of Corollary 3.8. By (6-45)–(6-47) and Holder’s
inequality

ˇ̌z"h.�/
ˇ̌� C.b/jvhj

ˇ̌z�h.�/
ˇ̌ Z 2�

0

ˇ̌ ẑ
�;1.jvhj2=ı.b/; �/� id

ˇ̌
d�

� C.b/j�h.�/j
Z 2�

0

Z jvhj2=ı.b/

0

ˇ̌
d ẑ�;1

ˇ̌
r;�

drd�

� C.b/j�.�/j ẑ�;1� id

�1;p;1

�Z
A�
�h1i;h

.jvhj2=ı.b//
jwhj�p=.p�1/

�.p�1/=p

� C.b/j�.�/jˇ̌z�h.�/
ˇ̌ � jvhj.p�2/=p � C.b/j�.�/jp�2=pj�.�/j:

(6-48)

Let "0 D "0.�; �/ be the bundle map as in (6-29). Combining the last estimate with
(6-42), (6-44), (6-25) with t D 1, and (4) of Lemma 6.1 we find that

(6-49)
ˇ̌
"0.�; �/

ˇ̌
;
ˇ̌rT "0.�; �/

ˇ̌� C.b/j�.�/j.p�2/=p

8 � � .b; v/ 2eFT ∅
ı

ˇ̌
U.1/T .X IJ /; � 2 �.�/ such that k�k�;p;1 � zC .b/j�.�/j:

The same holds for the derivatives of "0.�; �/ and rT "0.�; �/ with respect to � .

Suppose s 2 ŒhT i� and for every t 2 ŒhT i� such that t > s the bundle map

eFT ı �! z��. � /; � �! ��;t ;

and its rT –derivative are continuous over U .t/T .X IJ /. We will show that this must
also be the case for t D s . Since the maps

eFT ı �!
[

�2eFT ı
�BIC.�hsi/; � �! ��;s;

eFT ı
ˇ̌
U.sC1/
T .X IJ / �!eFT ı; � �! z�sC1.�/;and

are continuous, so are the maps

eFT ı
ˇ̌
U.sC1/
T .X IJ / �!  �sIh˝VsIh; � �! "sIh.�/;

Geometry & Topology, Volume 13 (2009)



A sharp compactness theorem for pseudo-holomorphic maps 2519

for all h 2 I�
s�1

. Suppose �r � .br ; vr / is a sequence of elements in eFT ∅
ı

ˇ̌
U.s/T .X IJ /

such that

lim
r�!1 br D b0 2 U .s/T .X IJ / and lim

r�!1 �r D � 0 � .b0; v0/ 2eFT ı:
Let

wh D lim
r�!1

�
�sIh.�r /

� 2 P eFhT
ˇ̌
b0

if h 2 I�s�1I w D .wh/h2I�
s�1
2 PsT

ˇ̌
b0
I

� 0� 0;s � .� 0� 0;sIh/h2I�s�1
D lim

r�!1 ��r ;s 2 z��.b0Iw/D
M

h2I�
s�1

z�hI�.bIwh/:

We recall that

��r ;s � .��r ;sIh/h2I�s�1
2 z��

�
br I Œ�s.�r /�

�D M
h2I�

s�1

z�hI�
�
bI Œ�sIh.�r /�

�
is the unique small solution to the system of equations

˛sIh
�
'.b; ��r ;s/; Œ�sIh.�r /�

�C "sIh
�
'.b; ��r ;s/; vr

�D ˛sIh
�
b; Œ�sIh.�r /�

�
; h 2 I�s�1:

Thus, � 0� 0;s 2 z��.b0Iw/ is the unique small solution to the system of equations

˛sIh
�
'.b; � 0� 0;s/; wh

�C "sIh
�
'.b; � 0� 0;s/; v0

�D ˛sIh
�
b; wh

�
; h 2 I�s�1:

Since "sIh
�
'.b; � 0� 0;s/; v0

�D 0 8 h 2 I0
s�1.�

0/

by (6-43) and (6-38), � 0
� 0;sIh D 0 for all h 2 I0

s�1
.� 0/ and � 0� 0;s D �� 0;s , as needed.

We finally show that the map

(6-50) � �! zb0.�/�
�
†� I expb0.z�0.�;��;0//

��;0
�

is continuous over eF 1T ∅
ı

. First, the map[
�2eFT ı;�.�/¤0

˚
� 2�C.�/W k�k�;p;1<ı.b/

	�! [
b2 zU.0/T .X IJ /

�0;1� .bIJ /; .�; �/�! ".�; �/;

of (6-23) is continuous. Since so is the map � �! ��;1 , the map[
�2eFT ı;�.�/¤0

˚
� 2 �C.�/ W k�k�;p;1 < zC .b/j�.�/j

	 �!  �0 ˝V0; .�; �/ �! "0.�; �/;

is also continuous. It then follows immediately from the construction that the maps

.�; �/ �! ��;0.�/ and � �! ��;0
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are continuous over eF1Tı � ��1.0/. On the other hand, suppose �r � .br ; vr / is a
sequence of elements in eF1T ∅

ı
such that

lim
r�!1 br D b0 2U .0/T .X IJ /; lim

r�!1 �r D� 0� .b0; v0/2 eF 1Tı and �.� 0/D 0:

Let

w D lim
r�!1

�
�.�r /

� 2 PeFT ˇ̌
b0

and � 0� 0;0 D lim
r�!1 ��r ;0.��r ;0/ 2 z��.b0Iw/:

Since �.�r /�! 0, (6-49) implies that � 0
� 0;0
2 z��.b0Iw/ is the unique small solution of

˛0

�
'.b0; � 0� 0;0/; w

�D 0D ˛0.b
0; w/:

Thus, � 0
� 0;0
D 0D �� 0;0 . Furthermore, by (6-22)

lim
r�!1 ��r ;0 D 0D �� 0;0:

It follows that the map (6-50) is continuous.

We have thus constructed a continuous map

�W F1Tı �! SM0
1;M .X;AIJ /\UT ;

where UT is a neighborhood of UT I1.X IJ / in X1;M .X;A/. By the same argument
as in Sections 4.2 and 4.5 of [17], this map is injective if ı 2 C.UT .X IJ /IRC/ and
surjective if UT is sufficiently small. Since the space SM0

1;M
.X;AIJ / is Hausdorff and

�jUT .X IJ / is the identity map, it follows that � is a homeomorphism for ı sufficiently
small.
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