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Wall-crossings in toric Gromov–Witten theory I:
crepant examples
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Let X be a Gorenstein orbifold with projective coarse moduli space X and let Y be
a crepant resolution of X . We state a conjecture relating the genus-zero Gromov–
Witten invariants of X to those of Y , which differs in general from the Crepant
Resolution Conjectures of Ruan and Bryan–Graber, and prove our conjecture when
X D P .1; 1; 2/ and X D P .1; 1; 1; 3/ . As a consequence, we see that the original
form of the Bryan–Graber Conjecture holds for P .1; 1; 2/ but is probably false for
P .1; 1; 1; 3/ . Our methods are based on mirror symmetry for toric orbifolds.

53D45; 14N35, 83E30

1 Introduction

In this paper we use mirror symmetry to determine the relationship between the
quantum orbifold cohomology of an orbifold X and the quantum cohomology of a
crepant resolution Y of X in the cases X D P .1; 1; 2/ and X D P .1; 1; 1; 3/.

A picture from physics

Quantum cohomology and quantum orbifold cohomology occur in string theory as a
small part of a much larger picture. There is supposed to be a moduli space of physical
theories—the stringy Kähler moduli space M—and a bundle of algebras over this
moduli space formed by the chiral rings of the theories. Near certain limit points of M,
called large radius limit points or cusps, the bundle of algebras is given by the quantum
cohomology or quantum orbifold cohomology of a target space X ; at a general point
of M, however, there will be no such description.

More precisely, near each cusp there are distinguished coordinates on M, called flat
coordinates, and a distinguished trivialization of the bundle, called a flat trivialization,
such that when expressed in flat coordinates and with respect to the flat trivialization
the bundle of algebras is isomorphic to the quantum orbifold cohomology algebra
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of X . From this point of view, the quantum parameters qi occurring in the definition
of the quantum product1 are exponentiated flat coordinates on a neighbourhood of the
corresponding cusp in M.

Different cusps can correspond to different target spaces, and in particular the quantum
orbifold cohomology QC.X / of X and the quantum cohomology QC.Y / of a crepant
resolution Y of X are expected to come from different cusps of the same moduli
space M. Since QC.X / and QC.Y / are supposed to be parts of the same global
family of algebras this motivates the conjecture, made in various forms by various
authors and discussed in detail below, that QC.X / and QC.Y / coincide after analytic
continuation in quantum parameters. We have already seen, however, the first hint
that this conjecture is probably too naı̈ve in general: one should also take into account
whether or not the flat coordinates near the cusps associated to X and to Y coincide
after analytic continuation.

Overview of our results

In what follows we build on work of Givental and Barannikov to construct a rigorous
version of this physical picture in the cases X D P .1; 1; 2/ and X D P .1; 1; 1; 3/. Our
key tool is (mathematical) mirror symmetry for toric orbifolds. Rather than give a global
construction of the stringy Kähler moduli space M—we do not know how to do this—
we instead construct the so-called B–model moduli space MB and then identify subsets
near certain cusps in MB with the subsets of M on which the quantum cohomology
of Y and the quantum orbifold cohomology of X are defined. The B–model moduli
space MB is expected to coincide under (string theoretic) mirror symmetry with the
stringy Kähler moduli space M, but it has the advantage that we can give it rigorous
mathematical meaning.

We construct MB from the toric data—it is the toric orbifold associated to the secondary
fan for the crepant resolution Y of X . Rather than constructing just a family of algebras
over MB we construct a significantly finer structure called a variation of semi-infinite
Hodge structure or VSHS. This VSHS determines, as we will see in Section 2.2 below,
a family of algebras over MB . It also, together with some extra data canonically
associated to each cusp, determines flat coordinates and a flat trivialization near each
cusp and allows us to compare the flat structures associated to different cusps. The
VSHS here consists of a vector bundle V !MB with flat connection and a family
of subspaces Ey , y 2MB , in the fibers of V . The vector bundle V is infinite-
dimensional and the subspaces Ey are in an appropriate sense2 semi-infinite. The

1See Section 2.4 below for the definition.
2We consider Ey to be an element of the Segal–Wilson Grassmannian of Vy .
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family of subspaces fEyg is an analog of a variation of Hodge structure and it satisfies a
version of Griffiths transversality—see Section 2.2. The extra data at each cusp consists
of an opposite subspace and a dilaton shift. Fix a cusp in MB and choose y near
that cusp. By parallel transport one can, for each x 2MB , regard Ex as a subspace
of the fiber Vy and thus define a limiting Hodge structure Elim � Vy associated3 to
the cusp. The opposite subspace associated to the cusp is a subspace V� of Vy such
that Elim˚V� D Vy , and the dilaton shift is a nonzero element of Elim . The opposite
subspace V� is uniquely determined by monodromy properties—it is required to be
invariant under the local monodromy around the cusp—and a homogeneity condition
(Theorem 3.5); V� is the analog of the weight filtration on a limiting mixed Hodge
structure.

We will see below that when X D P .1; 1; 2/, so its crepant resolution Y is the
Hirzebruch surface F2 , the opposite subspaces at the cusps of MB associated to X
and to Y agree under parallel transport in V . This implies that the flat structures
determined by X and Y agree: that not only the families of algebras QC.X / and
QC.Y /, but also the flat trivializations and flat coordinates associated to X and Y , are
related by analytic continuation. We deduce:

Theorem 1.1 Let X D P .1; 1; 2/ and Y D F2 . There is a linear isomorphism
‚W H �orb.X IC/ ! H �.Y IC/ between the Chen–Ruan orbifold cohomology of X
and the cohomology of Y such that the small quantum orbifold cohomology algebra
of X with quantum parameter q and the small quantum cohomology algebra of Y

with quantum parameters q1 , q2 are isomorphic via ‚, after analytic continuation in
.q1; q2/ and the substitution

(1) q1 D�1 q2 D i
p

q:

An explicit formula for ‚ is given as Equation (69) below. Furthermore, the map ‚ and
the specialization (1) identify the quantum cohomology Frobenius manifolds associated
to X and Y .

We will see further that when X D P .1; 1; 1; 3/, so its crepant resolution Y is the
scroll F3 , the opposite subspaces at the cusps of MB associated to X and to Y do
not agree under parallel transport in V . This implies that the flat structures determined
by X and Y are different: they do not agree under analytic continuation. We have:

Theorem 1.2 Let X DP .1; 1; 1; 3/ and Y DF3 . There is a linear isomorphism ‚.q/,
which depends nontrivially on q , between H �orb.X IC/ and H �.Y IC/ such that the

3Here Elim is roughly speaking the limit of Ex � Vy as x approaches the cusp.
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small quantum orbifold cohomology algebra of X with quantum parameter q and
the small quantum cohomology algebra of Y with quantum parameters q1 , q2 are
isomorphic via ‚.q/, after analytic continuation in .q1; q2/ followed by the substitution

(2) q1 D 1 q2 D
3
p

q:

The isomorphism ‚.q/ matches the Poincaré pairing on H �.Y IC/ with the orbifold
Poincaré pairing on H �orb.X IC/.

An explicit formula for ‚.q/ can be found in Section 3.10. Note that the isomorphism
‚.q/ does not arise from any isomorphism of the quantum cohomology Frobenius
manifolds associated to X and Y , as it depends nontrivially on q .

Mirror symmetry

Let us call the VSHS which we construct the B–model VSHS. Mirror symmetry identifies
the B–model VSHS with an object familiar in Gromov–Witten theory. Givental [28] has
observed that if one encodes genus-zero Gromov–Witten invariants of X in a certain4

Lagrangian submanifold LX of a symplectic vector space HX then many seemingly
complicated statements in Gromov–Witten theory are in fact simple geometric assertions
about LX . Mirror symmetry identifies the B–model VSHS with the so-called A–
model VSHS, which consists of the family of tangent spaces to Givental’s Lagrangian
submanifold LX . The A–model VSHS is canonically trivialized—it is a family of
subspaces of a fixed vector space HX —and mirror symmetry here asserts that the B–
model VSHS, expressed with respect to the flat trivialization near the cusp corresponding
to X , coincides with the family of tangent spaces to LX . In the cases at hand this
follows from mirror theorems due to Givental [26] and Coates–Corti–Lee–Tseng [15];
it implies in particular that the family of algebra structures over MB determined
by the B–model VSHS coincides near the cusps of MB with the quantum orbifold
cohomology of X and Y .

The Crepant Resolution Conjecture

The results we prove have the following consequence when X D P .1; 1; 2/ and
P .1; 1; 1; 3/. We conjecture that this holds in general.

4This encoding is described in Section 2.3 below; here the key point is that knowing LX is equivalent
to knowing all genus-zero Gromov–Witten invariants of X .
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Conjecture 1.3 Suppose that X is an orbifold with projective coarse moduli space X ,
and that Y is a crepant resolution of X . Let LX �HX be Givental’s Lagrangian sub-
manifold for X , and let LY �HY be Givental’s Lagrangian submanifold for Y . Then
there exists a linear symplectic isomorphism U W HX !HY , satisfying the conditions
enumerated in Conjecture 5.1(a)–(c) below, such that after analytic continuation of LX
and LY we have U.LX /D LY .

We have not defined LX and LY at this point, so Conjecture 1.3 is necessarily slightly
vague; we give a precise statement as Conjecture 5.1 below. As we will see in Sections 3
and 4, the symplectic transformation U here records the effect of parallel transport in
the B–model VSHS (ie of parallel transport in the fibers of the vector bundle V !MB ).

Conjecture 1.3 is our version of the Crepant Resolution Conjecture. We now discuss
its relationship to earlier versions of the Crepant Resolution Conjecture formulated
by Ruan and by Bryan–Graber. For the rest of this section, let X be an orbifold with
projective coarse moduli space X and let Y be a crepant resolution of X .

The first attempt to describe the relationship between the small quantum cohomology
algebra of Y and the small quantum orbifold cohomology algebra of X is due to Ruan.
He conjectured that the small quantum orbifold cohomology of X is isomorphic to the
algebra obtained from the small quantum cohomology of Y by analytic continuation
in quantum parameters followed by specializing some of those parameters to roots
of unity. Theorems 1.1 and 1.2 prove the Ruan Conjecture for X D P .1; 1; 2/ and
X D P .1; 1; 1; 3/; the relationship between our Conjecture and the Ruan Conjecture is
discussed further in Section 5.4.

A significant strengthening of the Ruan Conjecture has been proposed by Bryan–
Graber [8]. They have modified their conjecture in the light of the examples in this
paper, but initially they asserted that the quantum cohomology Frobenius manifolds
associated to X and Y become isomorphic after analytic continuation in quantum
parameters. Thus Theorem 1.1 proves the original form of the Bryan–Graber Conjecture
for P .1; 1; 2/, but Theorem 1.2 does not prove the original form of the Bryan–Graber
Conjecture for P .1; 1; 1; 3/. In Theorem 5.10 below we show that if the orbifold
cohomology of X satisfies a Hard Lefschetz property—this property holds for X D
P .1; 1; 2/ but not for X DP .1; 1; 1; 3/—then our Conjecture implies the original form
of the Bryan–Graber Conjecture. In general, however, our Conjecture does not imply
the original Bryan–Graber Conjecture and we expect that the latter is false. The most
recent version of the Bryan–Graber Conjecture includes the Hard Lefschetz condition
as a hypothesis.

We should emphasize that our results here do not show that X D P .1; 1; 1; 3/ is a
counterexample to the original form of the Bryan–Graber Conjecture. It is possible that
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there is a different path of analytic continuation and a different choice of specializa-
tion (2) which produces an isomorphism of Frobenius manifolds. But we think that this
is unlikely. Conjecture 1.3 expresses the relationship between the quantum cohomology
algebras of X DP .1; 1; 1; 3/ and Y DF3 which is forced upon us by mirror symmetry;
in this sense it is the natural conjecture to make. Furthermore the original form of the
Bryan–Graber Conjecture ignores some flexibility in parts of the structure—the flat
trivialization and flat coordinates—which topological string theory suggests should
be background dependent rather than fixed. So we see no compelling reason for the
original form of the Bryan–Graber Conjecture to hold. Conjecture 1.3 has been proved
in a number of local toric Calabi–Yau examples by Coates [13], and in forthcoming
work Iritani [38] will prove it for general toric crepant birational transformations.

Singularity theory

Our results also have consequences in singularity theory.

We construct the B–model VSHS from a so-called Landau–Ginzburg model. Singularity
theorists have long known how to construct the germ of a Frobenius manifold from
a Landau–Ginzburg model: for local singularities (germs of isolated hypersurface
singularities) this is due to Kyoji Saito [47] and Morihiko Saito [48]; for global
singularities (our case) this is due to Douai–Sabbah [19]. It has long been known
also that there are in general many possible germs of Frobenius structures for a given
singularity: in our language, this is the statement that one can choose from many
possible opposite subspaces. From this point of view, the content of this paper is that
more global considerations—monodromy and homogeneity properties—single out a
canonical opposite subspace associated to each cusp, and that the opposite subspaces
associated to different cusps can be compared via analytic continuation.

Plan of the paper

In Section 2 we fix notation and develop our general theory: we define variations of
semi-infinite Hodge structure, introduce Givental’s symplectic formalism and explain
what we mean by mirror symmetry. In Section 3 we analyze the case X DP .1; 1; 1; 3/,
proving Theorem 1.2 and Conjecture 1.3. The argument which proves Theorem 1.1 and
Conjecture 1.3 for X D P .1; 1; 2/ is very similar and we summarize it in Section 4. In
Section 5 we describe a more detailed version of Conjecture 1.3 and prove that it implies
the most recent form of the Bryan–Graber Conjecture. We conclude with an Appendix
describing the Mellin–Barnes method for analytic continuation of hypergeometric
functions.
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2 Variations of semi-infinite Hodge structure

In this section we fix notation for Gromov–Witten invariants, give an introduction to
Barannikov’s theory of variations of semi-infinite Hodge structure, indicate how this
meshes with Givental’s geometric approach to Gromov–Witten theory, and explain what
we mean by mirror symmetry. We assume that the reader is familiar with quantum co-
homology and quantum orbifold cohomology. The quantum cohomology and Gromov–
Witten theory of algebraic varieties have been quite widely studied: good introductions
to the field include Fulton–Pandharipande [23], Cox–Katz [18] and Hori et al [33].
The quantum cohomology and Gromov–Witten theory of orbifolds were introduced
into mathematics by Chen and Ruan [11; 12] in the setting of symplectic geometry; an
algebro-geometric version of the theory has been developed by Abramovich, Graber
and Vistoli [1; 2]. An overview of this material, in compatible notation, can be found
in Section 2 of Coates–Corti–Lee–Tseng [15]. Givental introduced his formalism in
[27] and gave an expository account of it in [28].

2.1 Notation and conventions

We work in the algebraic category and over C : by “manifold” we mean “smooth
projective algebraic variety” and we use the terms “orbifold” and “smooth Deligne–
Mumford stack” interchangeably. Introduce notation as follows.
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X a compact orbifold
IX the inertia stack of X . A point of IX is a pair .x;g/ with x a

point of X and g 2 AutX .x/
I the involution of IX which sends .x;g/ to .x;g�1/

H �orb.X IC/ the Chen–Ruan orbifold cohomology groups of X . These are the
cohomology groups of the inertia stack

age a rational number associated to each component Xi of the inertia
stack. The grading on orbifold cohomology is shifted by the age:
˛ 2H p.Xi IC/ has degree deg˛ D pC 2 age.Xi/�

˛; ˇ
�

orb the orbifold Poincaré pairing
R
IX ˛[ I?ˇ

Eff.X / the set of degrees of representable maps from possibly-stacky
curves to X (ie of degrees of effective curves in X )

hri the fractional part r �brc of a rational number r

f��g
N
�D1

a homogeneous basis for H �orb.X IC/
f��gN

�D1
the basis for H �orb.X IC/ such that .��; ��/orb D ı

�
�

Example 2.1 Weighted projective space P .w0; w1; : : : ; wn/ is the stack quotient
Œ.CnC1�f0g/=C�� where C� acts with weights �w0; : : : ;�wn . Components of the
inertia stack of P .w0; : : : ; wn/ are indexed by

F D
n

k
wi

ˇ̌̌
0� k <wi ; 0� i � n

o
via: IP .w0; : : : ; wn/D

a
f 2F

P .V f /

Here V f
D
˚
.x0; : : : ;xn/ 2CnC1

j xi D 0 unless wif 2 Z
	

and P .V f /D
�
.V f
�f0g/=C�

�
so that P .V f / consists of those points of P .w0; : : : ; wn/ with isotropy group contain-
ing exp.2�if / 2 C� . The locus P .V f / is itself a weighted projective space. The
involution I maps the component P .V f / to the component P .V h�f i/. The age of
P .V f /� I is h�w0f iC � � �C h�wnf i.

Example 2.2 The orbifold cohomology of P .1; 1; 2/ is

H �orb
�
P .1; 1; 2/IC

�
DH �

�
P .V 0/IC

�
˚H ��2

�
P .V 1=2/IC

�
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P .V 0/D P .1; 1; 2/ ageD 0where:

P .V 1=2/D P .2/ ageD 1

The involution I is trivial.

Example 2.3 The orbifold cohomology of P .1; 1; 1; 3/ is

H �orb
�
P .1; 1; 1; 3/IC

�
DH �

�
P .V 0/IC

�
˚H ��4

�
P .V 1=3/IC

�
˚H ��2

�
P .V 2=3/IC

�
P .V 0/D P .1; 1; 1; 3/ ageD 0where:

P .V 1=3/D P .3/ ageD 2

P .V 2=3/D P .3/ ageD 1

The involution I exchanges P .V 1=3/ and P .V 2=3/.

2.1.1 Generators and bases for homology and orbifold cohomology We now fix
notation for the homology and orbifold cohomology of the spaces which we will
consider. When discussing X D P .1; 1; 2/:

10 is the fundamental class of P .V 0/

11=2 is the fundamental class of P .V 1=2/

p is the first Chern class c1.O.1// 2H 2.X IC/

�0 D 10 �1 D p �2 D p2 �3 D 11=2and:

�0
D 2p2 �1

D 2p �2
D 210 �3

D 211=2

Note that, here and below,
�
�i ; �

j
�

orb D ıi
j .

When discussing the Hirzebruch surface F2 which is the projective bundle P .O.�2/˚

O/ over P1 :

p1 is the class in H 2.F2IC/ Poincaré-dual to a fiber
p2 is the class in H 2.F2IC/ Poincaré-dual to the infinity section

�0 D 1 �1 D p1 �2 D p2 �3 D p1p2and:

�0
D p1p2 �1

D p2 �2
D p1 �3

D 1

The surface F2 is the toric variety corresponding to the fan in Figure 1.
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� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

-
6

A
A

A
AK

?

Figure 1: The fan for the toric variety F2 is the complete fan with these rays.

It can therefore (see for example Audin [4, Chapter VII]) be constructed as the quotient
of .C2�f0g/� .C2�f0g/ by the action of .C�/2

.s; t/W

0BB@
x

y

z

w

1CCA 7�!
0BB@

sx

sy

s�2tz

tw

1CCA
and its cohomology ring is

H �.F2IC/DCŒp1;p2�=hp
2
1 ;p

2
2 � 2p1p2i:

When discussing X D P .1; 1; 1; 3/:

10 is the fundamental class of P .V 0/

11=3 is the fundamental class of P .V 1=3/

12=3 is the fundamental class of P .V 2=3/

p is the first Chern class c1.O.1// 2H 2.X IC/

�0 D 10 �1 D p �2 D p2 �3 D p3 �4 D 11=3 �5 D 12=3and:

�0
D 3p3 �1

D 3p2 �2
D 3p �3

D 310 �4
D 312=3 �5

D 311=3

When discussing the projective bundle F3 D P .O.�3/˚O/ over P2 :

p1 is the class in H 2.F3IC/ Poincaré-dual to the preimage in F3 of
a hyperplane in P2

p2 is the class in H 2.F3IC/ Poincaré-dual to the infinity section
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�0 D 1 �0
D p2

1p2and:

�1 D
p2

3
�1
D p1p2

�2 D
p1p2

3
�2
D p2

�3 D
p2� 3p1

3
�3
D�p1.p2� 3p1/

�4 D�
p1.p2� 3p1/

3
�4
D p2� 3p1

�5 D
p2

1
p2

3
�5
D 3

The scroll F3 is the toric variety corresponding to the fan with rays

e1 D

0@1

0

0

1A ; e2 D

0@0

1

0

1A ; e3 D

0@�1

�1

3

1A ; e4 D

0@0

0

1

1A ; e5 D

0@ 0

0

�1

1A
and three-dimensional cones spanned by

fe1; e2; e4g; fe1; e3; e4g; fe2; e3; e4g; fe1; e2; e5g; fe1; e3; e5g; fe2; e3; e5g:

It can be constructed as the quotient of .C3�f0g/�.C2�f0g/ by the action of .C�/2

.s; t/W

0BBBB@
x

y

z

u

v

1CCCCA 7�!
0BBBB@

sx

sy

sz

s�3tu

tv

1CCCCA
and its cohomology ring is

H �.F3IC/DCŒp1;p2�=hp
3
1 ;p

2
2 � 3p1p2i:

2.1.2 Gromov–Witten invariants and quantum cohomology We denote Gromov–
Witten invariants using correlators, writing, with notation as in [15]:

(3) h˛1 
k1 ; : : : ; ˛n 

kni
X
g;n;d D

Z
X vir

g;n;d

nY
iD1

ev?i ˛i � 
ki

i

The integral here means cap product with the virtual fundamental class. If any of the
ki are nonzero then (3) is called a gravitational descendant.
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Double correlators denote generating functions for Gromov–Witten invariants:

(4)
˝̋
˛1 

i1 ; : : : ; ˛k 
ik
˛̨ X
�
D

X
d2Eff.X /

X
n�0

Qd

n!

˝
˛1 

i1 ; : : : ; ˛k 
ik ; �; �; : : : ; �

˛X
0;nCk;d

where � 2H �orb.X IC/ and:

Qd
D

(
Q
R

d p X D P .1; 1; 2/ or P .1; 1; 1; 3/

Q

R
d p1

1
Q

R
d p2

2
X D F2 or F3

These generating functions are formal series in the coordinates �1; �2; : : : ; �N of
� D �1�1C� � �C �

N�N and the variables Q1=2 or Q1=3 or Q1 , Q2 . We make these
latter variables, which are included to make the series (4) converge, into elements of
our ground ring ƒ, setting:

ƒD

8̂<̂
:

CŒŒQ1=2�� when X D P .1; 1; 2/

CŒŒQ1=3�� when X D P .1; 1; 1; 3/

CŒŒQ1;Q2�� when X D F2 or X D F3

ƒ is called the Novikov ring. For later use, we define the rings:

ƒfzg D

8̂<̂
:

CŒz�ŒŒQ1=2�� when X D P .1; 1; 2/

CŒz�ŒŒQ1=3�� when X D P .1; 1; 1; 3/

CŒz�ŒŒQ1;Q2�� when X D F2 or X D F3

ƒfz; z�1
g D

8̂<̂
:

CŒz; z�1�ŒŒQ1=2�� when X D P .1; 1; 2/

CŒz; z�1�ŒŒQ1=3�� when X D P .1; 1; 1; 3/

CŒz; z�1�ŒŒQ1;Q2�� when X D F2 or X D F3

The genus-zero descendant potential of X is

F0
X .t0; t1; : : :/D

X
d2Eff.X /

X
n�0

Qd

n!

˝
t. /; : : : ; t. /

˛X
0;n;d

where t0; t1; : : : are orbifold cohomology classes on X and t. /D t0Ct1 Ct2 
2C� � � .

This is a formal power series in the coordinates t˛i of ti D t1
i �1C � � � C tN

i �N with
Taylor coefficients given by genus-zero Gromov–Witten invariants:

F0
X .t0; t1; : : :/D

X
d2Eff.X /

n�0

X
k1;:::;kn
˛1;:::;˛n

Qd t
˛1

k1
� � � t

˛n

kn

n!

D
�˛1

 k1 ; �˛2
 k2 ; : : : ; �˛n

 kn

EX
0;n;d
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The big quantum orbifold cohomology of X is the family of ƒ–algebra structures on
H �orb.X Iƒ/ defined by

(5)
�
�˛ �� �ˇ; �

�
orb D

˝̋
�˛; �ˇ; �

˛̨ X
�
:

This family of products �� is parametrized by � in a formal neighbourhood of zero5

in H �orb.X IC/. The small quantum orbifold cohomology of X is a related family
of algebra structures on H �orb.X IC/ which will be described in detail in Section
2.4. It is defined, roughly speaking, by restricting the parameter � in �� to lie in
H 2.X IC/�H �orb.X IC/.

Remark 2.4 If X is a manifold then orbifold cohomology, quantum orbifold coho-
mology, the orbifold Poincaré pairing, and orbifold Gromov–Witten invariants coincide
respectively with usual cohomology, usual quantum cohomology, the usual Poincaré
pairing, and usual Gromov–Witten invariants.

2.2 Variations of semi-infinite Hodge structure

The key notion in this paper is that of a variation of semi-infinite Hodge structure or
VSHS. This was introduced by Barannikov [6] as part of his study of higher-dimensional
mirror symmetry. VSHSs occur both in the mathematical version of the A–model
(quantum cohomology and Gromov–Witten theory) and in the mathematical version of
the B–model (singularity theory and Landau–Ginzburg models). As we will see, mirror
symmetry in this context amounts to the assertion that the VSHS associated with an
A–model is isomorphic to the VSHS associated with its B–model mirror.

A more traditional formulation of mirror symmetry is as the equality of certain families
of Frobenius algebras: small quantum cohomology on the A-side and certain Jacobi
rings on the B-side. As mentioned in the Introduction, one can obtain a family of
Frobenius algebras from a VSHS by choosing an opposite subspace and a dilaton shift.
In good cases—in the miniversal situation—a VSHS, an opposite subspace, and a
dilaton shift together determine a Frobenius manifold in the sense of Dubrovin [21];
this is also known as a flat structure in the sense of Kyoji Saito [47]. The method
of constructing flat structures which we describe here was originally developed by
Morihiko Saito [48] in the context of singularity theory, and was reformulated in terms
of VSHSs and applied to mirror symmetry by Barannikov [5].

Notation 2.5 Let Cfz; z�1g denote the ring of Laurent power series which converge
on fz W 0< jzj< �g for some � > 0 which depends on the series under consideration.

5This just means that the right-hand side of (5) is a formal power series in the coordinates
�1; �2; : : : ; �N of � .
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Let Cfzg be the subring of Cfz; z�1g consisting of functions regular at z D 0, and let
O.P1 n f0g/ be the ring of holomorphic functions on P1 n f0g. We have

Cfz; z�1
g DCfzg˚ z�1O.P1

n f0g/

Let .M;OM/ be a smooth complex analytic space or its formal germ. When M is
a complex analytic space, we define OMfz; z�1g to be the sheaf of relative Laurent
series in z : for an open set U �M, OMfz; z�1g.U / is the set of functions which are
holomorphic on f.q; z/ 2 U �C W 0< jzj< �.q/g for some positive continuous map
� W U ! R which depends on the function under consideration. Let OMfzg be the
subsheaf of OMfz; z�1g consisting of functions regular at z D 0. When .M;OM/ is
a formal germ, we consider Laurent series in z convergent in an adic topology: for a
regular parameter system t1; : : : ; t l on M we set OMfz; z�1g WDCŒz; z�1�ŒŒt1; : : : ; t l ��

and OMfzg WDCŒz�ŒŒt1; : : : ; t l ��.

Definition 2.6 A variation of semi-infinite Hodge structure (VSHS) with base M is
a locally free OMfzg–module E of finite rank equipped with a flat z–connection6

r
z
W E �!�1

M˝OM E

so that

r
z
X

�
f .q; z/s

�
D
�
zXf .q; z/

�
sCf .q; z/rz

X s�
r

z
X ;r

z
Y

�
D zrz

ŒX ;Y �

for all f 2OMfzg and all vector fields X;Y on M, together with a pairing

. � ; � /W E � E!OMfzg

which satisfies

.s1; s2/E D .s2; s1/E
ˇ̌
z 7!�z

.f .q;�z/s1; s2/E D .s1; f .q; z/s2/E D f .q; z/.s1; s2/E

zX.s1; s2/E D�.r
z
X s1; s2/E C .s1;r

z
X s2/E

for all f 2 OMfzg and all vector fields X;Y on M. The pairing is assumed to be
nondegenerate in the sense that the induced pairing�

E=zE
�
˝OM

�
E=zE

�
!OM

6A z –connection is a connection multiplied by z .
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is nondegenerate. A grading on this VSHS is a C–endomorphism GrW E ! E such
that there exists a vector field E on M and a constant D 2C satisfying

(6)

Gr
�
f .q; z/s

�
D
�
.2z@zC 2E/f .q; z/

�
sCf .q; z/Gr.s/�

Gr;rz
X

�
D 2rz

X Cr
z
Œ2E;X �

.2z@zC 2E/.s1; s2/E D .Gr.s1/; s2/E C .s1;Gr.s2//E � 2D.s1; s2/E

for all f 2 OMfzg and all vector fields X on M. The vector field E , which is
uniquely determined by Gr, is called the Euler vector field.

The analogy with a usual variation of Hodge structure comes from the family of
filtrations � � � � z�1E � E � zE � � � � of E˝OMfzgOMfz; z�1g. The existence of the
z–connection is Griffiths transversality for this family.

Remark 2.7 When defining VSHSs one can choose from many function rings in z :
polynomial functions, entire functions, formal power series, L2.S1;C/, etc. All the
VSHSs in our paper can in fact be defined over CŒz�. Also, the A–model VSHS is
always defined over CŒz�. We chose the ring Cfzg for technical convenience: it lets
us use the Segal–Wilson Grassmannian below.

Suppose that the VSHS E is generated by one section s0 together with its derivatives

r
z
X1
r

z
X2
� � � r

z
Xk

s0 2 E :

In this situation E gives rise to a family of Frobenius algebras over M. Let T �M be
the cotangent bundle of M and set

OT �M WD

1M
kD0

Symk.TM/

where TM is the tangent sheaf of M. Then E=zE becomes an OT �M–module via
the map

Symk.TM/ 3X1X2 � � �Xk 7�!
�
r

z
X1
r

z
X2
� � � r

z
Xk

s0

�
2 E=zE

or in other words
TM 3X 7�!

�
r

z
X �

�
2 End.E=zE/:

Our assumption implies that there is an exact sequence

0 ����! I ����! OT �M ����! E=zE ����! 0

where I is an ideal sheaf. This identification of E=zE with OT �M=I gives E=zE an
algebra structure. The pairing . � ; � / induces a pairing E=zE ˝OM E=zE !OM and
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makes E=zE into a Frobenius algebra. Note that the ideal sheaf I is independent of
the choice of generator s0 , so even though different choices of s0 produce different
Frobenius algebra structures on E=zE they are all isomorphic as algebras.

Definition 2.8 A VSHS is said to be miniversal if there is a section s0 of E such that
the OM–module map

(7) TM 3X 7�!
�
r

z
X s0

�
2 E=zE

is an isomorphism. This is equivalent to the natural composition

TM ,!OT �M!OT �M=I

being an isomorphism.

In the miniversal case each tangent space TqM is naturally equipped with a ring
structure, independent of the choice of s0 above. As we will see below, if we can
choose a “good” opposite subspace then this product structure arises from a Frobenius
manifold; this implies that M has the structure of an F –manifold7 without any choice.

2.2.1 A moving subspace realization As was indicated in the Introduction, the A–
model VSHS arises as a family of subspaces moving in a fixed symplectic vector space
HX . We now explain how to give such a “moving subspace” realization of any VSHS.

Consider the universal cover � W �M!M and let H denote the space of flat sections
of �?

�
E ˝OMfzgOMfz; z�1g

�
:

HD
n
s 2 �

� �M; �?
�
E ˝OMfzgOMfz; z

�1
g
��
W r

zs D 0
o

H is a free Cfz; z�1g–module of the same rank as E . For each q 2 �M, we can embed
the fiber .�?E/q into H via the map �q , where

�qW .�
?E/q 3 v 7�! s 2H such that s.q/D v:

Let Eq �H denote the image of this embedding. Because the pairing . � ; � / on E is
rz –flat, .s1; s2/E is a constant as an element of Cfz; z�1g for any s1; s2 2H . Define
a symplectic form � on H by

�.s1; s2/ WD ReszD0.s1; s2/E dz:

7See Hertling–Manin [31] or Manin [43] for F –manifolds and Coates–Ruan [17, Section 6.2] or Iritani
[37, Section 3.2] for an expanded version of this remark.
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In the graded case, the grading operator Gr induces a C–endomorphism Gr of H
satisfying

Gr
�
f .z/s

�
D
�
2z@zf .z/

�
sCf .z/Gr.s/

for all f 2Cfz; z�1g and all s 2H .

We construct our moving subspace realization first in the case where M is a complex
analytic space and the VSHS is analytic. Take a point q0 2M and fix a basis for
Eq0

=zEq0
over C . Pick a Cfzg–basis e1; : : : eN for Eq0

such that Œe1�,. . . , ŒeN � is our
chosen basis for Eq0

=zEq0
and choose local sections si of E such that si.q0/D ei.q0/.

Then for q near q0 the subspace Eq is spanned over Cfzg by vectors �q.si/ and we
can write �q.si/D

PN
jD1 sij .q; z/ej . Let S.q; z/ be the matrix with .i; j / entry equal

to sij .q; z/. There exists � > 0 such that each matrix entry sij .q; z/ converges on
0 < jzj < 2� , and S therefore defines a C1 loop S1 3 z 7! S.q; �z/ 2 GL.N;C/.
This loop depends on the choice of local sections s1 , . . . ,sN . Removing this choice
we obtain, after fixing an isomorphism Eq0

=zEq0
ŠCN , a holomorphic map from a

neighbourhood of q0 to the Segal–Wilson Grassmannian LGL.N;C/=LCGL.N;C/
[44]; the choice of isomorphism here is the choice Œe1�,. . . , ŒeN � of basis for Eq0

=zEq0
.

At least locally, therefore, the assignment q 7!Eq gives an analytic family of elements
of the Segal–Wilson Grassmannian. When M is a formal germ and the VSHS is
formal we proceed in the same way, obtaining instead an 1–jet in the Segal–Wilson
Grassmannian. With these interpretations in place, we have:

Proposition 2.9 A VSHS with base M gives a family of subspaces Eq in H parame-
terized by M such that

� Eq is a free Cfzg–module of dimension equal to the rank of E

� XEq � z�1Eq for any tangent vector X 2 TqM

� Eq is maximal isotropic with respect to the symplectic form �.

In the graded case we have .2ECGr/Eq � Eq , so that in particular Gr Eq � z�1Eq .

Proof The first three properties are obvious from the definition. Consider the graded
case and take a local section si.q/D

PN
jD1 sij .q; z/ej .q/ of E as above, where ej .q/
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is rz –flat: ej .q/D �
�1
q .ej / for ej 2H . Then:

�q.Gr.si//D

NX
jD1

�q
��
.2EC 2z@z/sij .q; z/

�
ej .q/C sij .q; z/Gr.ej .q//

�
D

NX
jD1

�
2E.sij .q; z/ej /CGr.sij .q; z/ej /

�
D .2ECGr/�q.si/

The left hand side here is an element of Eq .

2.2.2 Opposite subspaces and Frobenius manifolds

Definition 2.10 Given a VSHS with base M, an opposite subspace at q 2 �M is a
free O.P1 n f0g/–submodule H� of H such that the natural map

H�˚Eq!H

is an isomorphism. This implies that the projections

zH�=H� � zH�\Eq �! Eq=zEq

are isomorphisms.

Being opposite to H� is an open condition on M. We can see this using the geometry
of the Segal–Wilson Grassmannian. By choosing an opposite subspace H� at q0 and
an isomorphism zH�=H� ŠCN we can identify each subspace Eq with a point in
LGL.N;C/=LCGL.N;C/. Then H� is opposite at q if and only if the point in the
Grassmannian corresponding to Eq is in the big cell, and the big cell is an open orbit
of L�GL.N;C/.

An opposite subspace H� at q0 2
�M also defines a trivialization of �?E near q0 :

(8) .�?E/q Š Eq Š .Eq \ zH�/˝Cfzg Š .zH�=H�/˝Cfzg

for q in some open neighbourhood of q0 2
�M. We call this the flat trivialization

associated to H� .

Proposition 2.11 Let H� be an opposite subspace at q0 2
�M. Under the flat trivial-

ization (8) associated to H� , the flat z–connection rz becomes

(9) r
z
X D z dX CAX
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where d is the connection defined by the flat trivialization and A is a z–independent
End.zH�=H�/–valued 1–form on �M. If moreover H� is isotropic with respect to �
then the pairing . � ; � / induces and can be recovered from the symmetric C–bilinear
pairing:

. � ; � /zH�=H�
W
�
zH�=H�

�
˝
�
zH�=H�

�
�!C

Œf1�˝ Œf2� 7�! .f1; f2/E
ˇ̌
zD1

(10)

This pairing (10) is nondegenerate and satisfies:

(11) .AX v;w/zH�=H�
D .v;AXw/zH�=H�

If in addition the VSHS is graded and H� is preserved by the operator Gr then, on E ,
the operator Gr takes the form

(12) GrD 2z@zC 2dE CGr0

where Gr0 2 End
�
zH�=H�

�
is a constant operator induced by the action of Gr on

zH� �H . This Gr0 satisfies

(13) 2D.v; w/zH�=H�
D .Gr0.v/; w/zH�=H�

C .v;Gr0.w//zH�=H�

where D is the constant from Definition 2.6.

Proof Take a section s of E which corresponds to a constant vector in zH�=H�
under the trivialization (8). Then �q.s.q// D v0 C w.q/ for some constant vector
v0 2 zH� and some w.q/ 2 H� . Thus �q.rz

X
s.q// D zX �q.s.q// D zXw.q/ is in

Eq \ zH� . This proves (9).

If H� is isotropic with respect to � then it is clear that the restriction of . � ; � / to
zH� \Eq takes values in C . Under the identification zH� \Eq Š zH�=H� , this
coincides with the pairing (10). Nondegeneracy follows from the nondegeneracy of the
pairing . � ; � /, and Equation (11) follows from the rz –flatness of . � ; � /.

If H� is preserved by Gr then so is zH� , and thus Gr induces a constant operator
Gr0 2 End.zH�=H�/; equations (12) and (13) follow immediately from (6).

In the miniversal and graded case, the structures in Proposition 2.11 assemble to give a
Frobenius manifold with base an open subset of �M. Take an �–isotropic, Gr–invariant
opposite subspace H� . Assume that there exists an eigenvector Œv0�2 zH�=H� of Gr0

such that the corresponding section s0 2 E under the trivialization (8) makes (7) into
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an isomorphism. The eigenvector Œv0� is called the dilaton shift. The affine subspace
v0CH� meets each Eq in a unique point �q.s0/. Barannikov’s period map is

‰W �M �!H
q 7�! �q

�
s0.q/

�
:

(14)

The miniversality condition implies that the map�M �! zH�=H�
q 7�!

�
z.‰.q/� v0/

�(15)

is a local isomorphism. The linear coordinates on �M given by this map are called flat
coordinates. By differentiating (15) we obtain the Kodaira–Spencer map:

KSW T �M 3X 7�!AX Œv0� 2 zH�=H�

Pulling back the metric . � ; � /zH�=H�
on zH�=H� along KS gives a nondegenerate

symmetric bilinear pairing:

gW T �M˝ T �M!O �M
This is constant with respect to the flat coordinates, so the “flat coordinates” really are
flat coordinates for the metric8 g . The product � on tangent spaces is defined by

AX �Y Œv0�DAX AY Œv0�:

The identity vector field e is given by

Ae Œv0�D Œv0�:

It is easy to check that these data satisfy all the axioms for a Frobenius manifold:

Proposition 2.12 Take an �–isotropic, Gr–invariant opposite subspace H� and a
dilaton shift Œv0� 2 zH�=H� such that the corresponding section s0 2 E under the
trivialization (8) makes (7) into an isomorphism. Then the data .�; e;g;E/ defined
above determine a Frobenius manifold with base an open subset of �M. In other words:

(1) The Levi–Civita connection rLC of g is flat.

(2)
�
TqM; �;g

�
is an associative, commutative Frobenius algebra.

(3) The pencil of connections r�
X
Dr

LC
X
C�X� is flat.

(4) The identity vector field e is flat.

8Note that the metric g is a C –bilinear form not a Hermitian form.
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(5) The Euler vector field satisfies
�
rLC

�2
E D 0 and

Eg.X;Y /D g.ŒE;X �;Y /Cg.X; ŒE;Y �/C .˛C 2�D/g.X;Y /;

ŒE;X �Y �D ŒE;X � �Y CX � ŒE;Y �C ŒX;Y �

where ˛ is the eigenvalue of Œv0� with respect to Gr0 .

In these terms, Gr0 is given by

Gr0

�
KS.X /

�
D KS

�
.2C˛/X � 2rLC

X E
�
:

Remark 2.13 Even in the nonminiversal case, if the map (15) is injective with image
an affine subspace of zH�=H� then we still refer to the linear coordinates on �M
given by (15) as flat coordinates. In this case the pullback of the pairing on zH�=H�
via the Kodaira–Spencer map will not in general give a metric on the base �M. But
these “flat coordinates” and the constant pairing on zH�=H� are what would remain
from the flat structure on the Frobenius manifold if our nonminiversal VSHS arose as
a “slice” of a miniversal VSHS. This is exactly the relationship between small and big
quantum cohomology.

2.3 The big A–model VSHS and Givental’s symplectic formalism

We now define a VSHS which gives rise, through an appropriate choice of opposite
subspace and dilaton shift, to the Frobenius manifold structure on big quantum orbifold
cohomology. This is the big A–model VSHS described in the Introduction. As we will
see below, the moving subspace realization of this VSHS gives the family of tangent
spaces to Givental’s Lagrangian cone.

2.3.1 The big A–model VSHS Let H be a formal neighbourhood of zero in
H �orb.X ; ƒ/, where ƒ and associated rings are defined in Section 2.1.2. Recall that,
for a linear coordinate system �1; : : : ; �N on H �orb.X ;C/, we have:

OH DƒŒŒ�
1; : : : ; �N ��

OH fzg DƒfzgŒŒ�
1; : : : ; �N ��

OH fz; z
�1
g Dƒfz; z�1

gŒŒ�1; : : : ; �N ��

The big A–model VSHS has base H and is given by:

Ebig
A WDH �orb.X ;C/˝OH fzg
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The flat z–connection is the Dubrovin connection

r
z
D z d C

NX
˛D1

.�˛�� / d�˛;

the pairing is

Ebig
A � E

big
A �!OH fzg

f .z/�g.z/ 7�!
�
f .�z/;g.z/

�
orb

and the grading operator GrW Ebig
A ! Ebig

A and Euler vector field E are

GrD 2z@zC 2dE CGr0

E D
X
˛

�
1�

deg�˛
2

�
�˛

@

@�˛
C

X
˛Wdeg�˛D2

�˛
@

@�˛

where Gr0 is the usual grading operator on orbifold cohomology

Gr0.�˛/D deg.�˛/ �˛

and c1.X / D
P
˛Wdeg�˛D2 �˛�˛ . These data satisfy the axioms for a graded VSHS

(Definition 2.6) with D D dimC X , except that the ground ring C there is replaced
here by ƒ.

2.3.2 Givental’s symplectic formalism Following Givental [28], we now describe
the genus-zero Gromov–Witten theory of X in terms of a Lagrangian submanifold LX
of the symplectic vector space

HX WDH �orb.X IC/˝ƒfz; z�1
g (the vector space)

�.f;g/ WD ReszD0

�
f .�z/;g.z/

�
orb dz (the symplectic form):

Relations between genus-zero Gromov–Witten invariants—the String Equation, Dilaton
Equation, and Topological Recursion Relations—translate into very strong constraints
on the geometry of LX ; see Coates–Givental [16, Proposition 1], Givental [28] and
Coates–Corti–Iritani–Tseng [14, Appendix B]. These constraints can be rephrased as
the statement that the tangent spaces to LX form the moving subspace realization of a
VSHS; we will see in the next section that this is the big A–model VSHS.

The space HX is the direct sum of Lagrangian subspaces

HCX DH �orb.X IC/˝ƒfzg; H�X D z�1H �orb.X IC/˝ƒfz�1
g
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and this polarization identifies the symplectic space .HX ; �/ with the cotangent bundle
T ?HCX . We will regard the genus-zero descendant potential F0

X as the formal germ of
a function on HCX . A general point of HCX takes the form

q.z/D q0C q1zC q2z2
C � � �

where q0; q1; : : : are orbifold cohomology classes on X . Setting

(16) qk D

(
tk k ¤ 1

t1� 1 k D 1

makes F0
X into a function on a formal neighbourhood9 of the point �z in HCX . This

change of variables q.z/D t.z/� z is called the dilaton shift.

The Lagrangian submanifold LX is the graph of the differential of F0
X . Since F0

X
is defined only in a formal neighbourhood of �z 2 HCX , LX is a formal germ of a
Lagrangian submanifold of T ?HCX . The polarization HX D HCX ˚H

�
X identifies

T ?HCX with HX , and we regard LX as a formal germ of a Lagrangian submanifold of
HX via this identification. LX has a more concrete description as follows. A general
point of HX has the form

1X
kD0

NX
�D1

q
�

k
��zk

C

1X
lD0

NX
�D1

pl;� �
�.�z/�1�l

where �1; : : : ; �N is the basis for H �orb.X IC/ such that
�
�i ; �

j
�

orb D ı
j

i , and this
defines Darboux coordinates fq�

k
;pl;�g on HX . In these coordinates LX is given by

pl;� D
@F0

X
@q�

l

so a general point on LX takes the form:

(17) �zC t.z/C
X

d2Eff.X /
n�0

NX
˛D1

Qd

n!

�
t. /; : : : ; t. /;

�˛

�z� 

�X
0;nC1;d

�˛

The expression 1=.�z � / here should be expanded as a power series in z�1 . Note
that LX encodes all genus-zero Gromov–Witten invariants of X .

9This just means that F0
X is a formal power series in the variables t˛

k
.
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Turning off gravitational descendants, by setting

tk D

(
� k D 0

0 k ¤ 0

gives a family � 7! JX .�;�z/ of elements of LX parametrized by H . We call this
the big J –function of X . From (17) we have:

(18) JX .�;�z/D�zC � C

NX
˛D1

**
�˛

�z� 

++X
�

�˛

As discussed, LX has a very special geometric structure. The precise geometric
properties we need are given in Proposition 2.14 below. These imply that LX is the
germ of a Lagrangian cone with vertex at the origin such that each tangent space T is
tangent to the cone exactly along zT . Define a submersion y� W LX !H by

y�.q;p/D
X

d2Eff.X /

X
n�0

NX
˛D1

Qd

n!

˝
1; t. /; t. /; : : : ; t. /; �˛

˛X
0;nC2;d

�˛:

Here we used the dilaton shift q.z/D t.z/� z as before. The String Equation shows
that y�

�
JX .�;�z/

�
D � , ie that the J –function is a section of the map y� W LX ! H .

Denote by T� the tangent space to LX at JX .�;�z/.

Proposition 2.14

(a) The tangent space to LX at .q;p/ coincides with T� for � D y�.q;p/.

(b) The tangent space T� is closed under multiplication by z and has the structure
of a ƒfzg–module. Moreover, it is freely generated over ƒfzg by the partial
derivatives

@

@�1
JX .�;�z/; : : : ;

@

@�N
JX .�;�z/:

(c) The fiber at � 2H of the map y� W LX !H is given by

zT� \ .HX ;�z/

where .HX ;�z/ is the formal neighborhood10 of �z in HX .

10See [14, Appendix B] for the definition of .HX ;�z/ as a formal scheme over ƒ . The intersection
here should be interpreted as the set of R–valued points for an arbitrary ƒ–algebra R when � is an
R–valued point of H .
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Proof Part (a) is [14, Lemma B6] and part (b) is [14, Proposition B3]. We sketch
the proof of (c) following Givental [28]. Take f 2 y��1.�/. The String Equation says
that z�1f 2 TfLX . Thus f 2 zTfLX D zT� by (a), and so y��1.�/� zT� . In particular
Ker dfy� � zT� . Both Ker dfy� and zT� are subspaces of T� and, as y� is submersive,
they each have codimension equal to dim H . Thus Ker dfy� D zT� . Part (c) follows.

Part (c) of this proposition shows that LX can be reconstructed from its tangent spaces
as

(19) LX D
[
�2H

�
zT� \ .HX ;�z/

�
:

2.3.3 The big A–model VSHS and Givental’s cone Consider the OH fzg–linear
map:

J W Ebig
A �!H �orb.X ; ƒ/˝OH fz; z

�1
g

�˛ 7�!
@

@�˛
JX .�; z/

Using the well-known relationship between the J –function and the big quantum product

z
@

@�˛
@

@�ˇ
JX .�; z/D

NX
D1

˝̋
�˛; �ˇ; �


˛̨ X
�

@

@�
JX .�; z/

we see that J satisfies

(20) J ırz
X D z dX ı J

for any vector field X on H . Thus J sends any rz –parallel section to a constant
section: it identifies the space of rz –flat sections of the big A–model VSHS—which
we denoted by H in Section 2.2.1—with Givental’s symplectic space HX . Proposition
2.14(b) implies that the image of each fiber Ebig

A;� under J coincides, if we flip the sign
of z , with the tangent space T� to LX :

E� .ƒ/ WD J.Ebig
A;� /D T� jz 7!�z(21)

So the moving subspace realization E� .ƒ/ of the big A–model VSHS determines the La-
grangian submanifold LX via (19). Since JıGrD

�
2z@zC2dECGr0�2c1.X /=z

�
ı J ,

we see that the grading operator acts on HX by:

(22) Gr jHX D 2z@zCGr0�2c1.X /=z

The standard opposite subspace for the big A–model VSHS is H�X . This is clearly
isotropic with respect to �; it is also preserved by Gr. The period map (14) associated
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to this opposite subspace and the choice Œv0� D 1 2 zH�X =H
�
X (the dilaton shift) is

� 7! z�1JX .�; z/:

(23) E� .ƒ/\ .1CH�X /D
˚
z�1JX .�; z/

	
Since J.�; z/D zC � CO.z�1/, the flat coordinates here are the usual linear coordi-
nates � i on H . The big A–model VSHS is miniversal, and these choices of opposite
subspace H�X and dilaton shift Œv0� produce the usual big quantum orbifold cohomology
Frobenius manifold defined by Chen–Ruan [11].

2.3.4 The analytic big A–model VSHS and Givental’s cone over C Suppose that
the big quantum product �� in (5) is convergent as a power series in � and Q. Then
we can consider the big A–model VSHS and the Lagrangian submanifold over C by
specializing all the Novikov variables Qi to 1 as follows. By the Divisor Equation (see
eg Abramovich–Graber–Vistoli [2, Theorem 8.3.1]) and Equation (5), the big quantum
product becomes

(24)
�
�˛ �� �ˇ; �

�
D

X
d2Eff.X /

X
n�0

Qde
R

d �

n!

˝
�˛; �ˇ; � ; �

0; : : : ; � 0
˛X
0;d;nC3

where � D � C � 0 is the decomposition of � into the nontwisted second cohomology
class � and the sum � 0 of other components. Our convergence assumption therefore
implies that the specialization �� jQiD1 is analytic on a domain U �H �orb.X IC/ of
the form:

U D
˚
� D .�; � 0/ W <.

R
d �/ < �M for all d 2 Eff.X / n f0g, k� 0k< �

	
for a sufficiently big M > 0 and a sufficiently small � > 0. Note that �� for sufficiently
small values of Q equals �y� jQiD1 with y� D �C

P
i pi log Qi . In particular, the origin

� DQ D 0 of H corresponds to the limit direction <.
R

d �/!�1, � 0! 0 in U .
This is called the large radius limit. The specialization Ebig

A jQiD1 is defined as an
analytic VSHS on the base U in the same way as in Section 2.3.1. Because the map J
is a solution to the differential equation (20), the specialization

J jQiD1W E
big
A

ˇ̌
QiD1

�!H �orb.X IC/˝OU fz; z
�1
g

is well-defined on U and gives an analytic family of moving subspaces:

(25) E� WD J jQiD1

�
Ebig

A;�

ˇ̌
QiD1

�
�HX

ˇ̌
QiD1

WDH �orb.X IC/˝Cfz; z�1
g
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In view of the relations (19) and (21), we define the analytic version of Givental’s cone
to be the set

(26) Lan
X WD

[
�2U

zE� jz 7!�z :

Note that the analytic version is no longer a germ at some point. In fact if we work with
an L2 version of the symplectic formalism, replacing HX jQiD1 with H �orb.X IC/˝
L2.S1;C/ then, in a neighbourhood of the section � 7! JX .�;�z/jQiD1 , Lan

X has the
structure of a Hilbert submanifold of H �orb.X IC/˝L2.S1;C/ and this submanifold
is the graph of the differential of the analytic function F0

X jQiD1 . When the quantum
product �� jQiD1 is analytically continued to a bigger domain, the analytic Givental’s
cone Lan

X can be enlarged to a bigger submanifold using the construction above. This
is the analytic continuation of Givental’s cone appearing in Conjecture 1.3.

2.4 Small quantum cohomology

Small quantum orbifold cohomology is a family of algebra structures on H �orb.X IC/
defined, roughly speaking, by restricting the parameter � of the big quantum product ��
to lie in H 2.X IC/�H �orb.X IC/. In this section we make this precise, and also explain
how small quantum orbifold cohomology arises from a nonminiversal VSHS—the
small A–model VSHS.

2.4.1 Small quantum orbifold cohomology From the Equation (24), the big quan-
tum product �� at a nontwisted second cohomology class � 2H 2.X IC/ becomes:�

˛ �� ˇ; 
�

orb D
X

d2Eff.X /

Qde
R

d � h˛; ˇ;  iX0;3;d

This shows that the Novikov parameters keep track of the modes of Fourier expansion
in � 2H 2.X ;C/ and that the product �� depends on � only through the exponentiated
Kähler parameters e�

i

. The small quantum orbifold cohomology of X is the possibly
multivalued family of algebras .H �orb.X IC/; ıq/ defined by

(27)
�
˛ ıq ˇ; 

�
orb D

X
d2Eff.X /

qd
h˛; ˇ;  iX0;3;d

where the parameter q lies on the torus

‡ DH 2.X IC/=2�iH 2.X IZ/

and qd denotes the following possibly multivalued function on ‡ :

qd
W ‡ 3 Œ� � 7�! exp

� R
d �
�
2C� � 2H 2.X IC/
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The cohomology groups here denote sheaf cohomology of the stack X and not of the
coarse moduli space.

In order to make geometric sense of (27), we introduce coordinates on the torus ‡ and
consider the associated partial compactification. Let p1; : : : ;pr be an integral basis of
the free part of H 2.X ;Z/ such that pi evaluates nonnegatively on Eff.X /. We define
C�–valued coordinates qi on ‡ by

qi W ‡ 3
�
�1p1C � � �C �

r pr

�
7�! e�

i

2C�

and for d 2 Eff.X / we write:

qd
D q

R
d p1

1
� � � q

R
d pr

r

where each
R

d pi is a nonnegative rational number. The coordinates .q1; : : : ; qr / give
a partial compactification of ‡ , ‡ ,!Cr , and the small quantum product ıq defines
a possibly multivalued family of associative algebras in a formal neighbourhood of the
origin in Cr . The origin of Cr is called the large radius limit point of ‡ .

Remark 2.15 When pulled back to a suitable finite cover eCr of Cr , the product
ıq becomes single-valued. The multivaluedness of the product ıq happens only for
orbifolds and introduces an orbifold singularity at the large radius limit point.

In our examples we already chose suitable integral bases fpig for H 2.X ;Z/ in Section
2.1.1. This gives coordinates on ‡ , which we denote by q1; q2 if X D F2 or F3 and
by q if X D P .1; 1; 2/ or P .1; 1; 1; 3/. In many cases, including the examples in our
paper, the small quantum product ıq is known to be convergent in a neighbourhood
of the large radius limit point. In what follows we will assume this, writing UA �Cr

for the domain of convergence of ıq and MA D UA\‡ . MA is called the Kähler
moduli space or A–model moduli space.

Remark 2.16 The Novikov variables Q and Q1 , Q2 are not the same as the pa-
rameters q and q1 , q2 for small quantum cohomology. But the restriction of the big
quantum product �� to the locus � 2 H 2.X IC/ can be recovered from the small
quantum product ıq by setting

q DQet where � D t p

and X D P .1; 1; 2/ or P .1; 1; 1; 3/

q1 DQ1e�
1

; q2 DQ2e�
2

where � D �1p1C �
2p2or

and X D F2 or F3:
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2.4.2 The small A–model VSHS The small A–model VSHS has base MA . It is the
free OMAfzg–module

EA DH �orb.X IC/˝OMAfzg

with flat z–connection given by

r
z
D z d C

rX
iD1

.piıq/
dqi

qi

pairing given by

EA � EA �!OMAfzg

f .z/�g.z/ 7�!
�
f .�z/;g.z/

�
orb

and grading operator GrW EA! EA and Euler vector field E given by

GrD 2z@zC 2dE CGr0

E D

rX
iD1

�iqi
@

@qi

where Gr0 is the usual grading operator on orbifold cohomology and c1.X /D
P

i �ipi .
The Dubrovin connection rz here is independent of our choice of coordinates on MA ;
it extends to a connection on UA with a logarithmic singularity along the normal
crossing divisor q1q2 � � � qr D 0 (Deligne’s extension).

The flat z–connection rz makes EA into a D–module in the sense of Givental [25].
When we want to emphasize this structure, we will refer to EA as the quantum D–
module. See Guest [29] and Iritani [39] for more on this.

One obtains the small A–model VSHS from the big A–model VSHS by restricting � to
lie in H 2.X ;C/ and specializing Novikov variables Qi to 1. In the moving subspace
realization, the small VSHS therefore corresponds a subfamily of tangent spaces to
Givental’s Lagrangian cone Lan

X , and to the following subcone of Lan
X :

(28)
[

�2H 2.X IC/

zEX� jz 7!�z :

This “small subcone” has a standard slice, the small J –function, which is obtained
from the big J –function by restricting � to lie in H 2.X IC/ and then setting the
Novikov variables to 1. In our examples we find, by applying the Divisor Equation to
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(18), that the small J –functions of P .1; 1; 1; 3/, F3 , P .1; 1; 2/ and F2 are:

JP.1;1;2/.q; z/D z qp=z

 
10C

X
d W2d2Z

d>0

NX
˛D1

qd

�
�˛

z.z� /

�P.1;1;2/

0;1;d

�˛

!
(29)

JF2
.q1; q2; z/D z q

p1=z
1

q
p2=z
2

 
1C

X
k;l�0

.k;l/¤.0;0/

NX
˛D1

q k
1 q l

2

�
�˛

z.z� /

�F2

0;1;.k;l/

�˛

!
(30)

JP.1;1;1;3/.q; z/D z qp=z

 
10C

X
d W3d2Z

d>0

NX
˛D1

qd

�
�˛

z.z� /

�P.1;1;1;3/

0;1;d

�˛

!(31)

JF3
.q1; q2; z/D z q

p1=z
1

q
p2=z
2

 
1C

X
k;l�0

.k;l/¤.0;0/

NX
˛D1

q k
1 q l

2

�
�˛

z.z� /

�F3

0;1;.k;l/

�˛

!
(32)

These are multivalued analytic functions MA ! H �orb.X IC/˝Cfz; z�1g, for the
appropriate choice of target space X .

The small J –function corresponds to the unit section of EA , ie z�1JX .q; z/D �q.1/.
Since in the cases at hand the small quantum orbifold cohomology algebra of X
is generated by H 2.X IC/, the small A–model VSHS is generated by this section
together with its derivatives. As discussed above Definition 2.8, this makes EA=zEA

into a Frobenius algebra: the algebra structure here is the small quantum orbifold
cohomology of X and the pairing is the orbifold Poincaré pairing.

2.5 Mirror symmetry

We now define the B–model VSHS discussed in the Introduction, and explain what we
mean by mirror symmetry.

2.5.1 The B–model VSHS A Landau–Ginzburg model in this context is a holomor-
phic family � W Z!MB of affine Calabi–Yau manifolds—for us they will be algebraic
tori—together with a function W W Z!C called the superpotential and a section !
of the relative canonical sheaf KZ=MB which gives a holomorphic volume form !y

on each fiber Zy D �
�1.y/. The base space MB of the family is called the B–model

moduli space. Landau–Ginzburg models which correspond under mirror symmetry to
the quantum cohomology of toric varieties have been constructed by Givental [24; 26]
and Hori–Vafa [34]. In this section we explain how to obtain a VSHS—the B–model
VSHS—from a Landau–Ginzburg model.
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Assumptions 2.17 We can assume (by deleting any points at which this condition
fails to hold) that for each y0 2MB there exists a neighbourhood U of y0 and a
constant M > 0 such that for all y 2 U , all the critical points of Wy are contained in
the set fx 2Zy W jWy.x/j<M g. We further assume that:

(a) The family of pairs�
Zy ;Ny;�

�
where Ny;� D

˚
x W <

�
Wy.x/e

i��
� �M

	�
y; ei��

2 U �S1

is topologically locally trivial on U �S1 .

(b) All the data � W Z!MB , W , ! are algebraic.

(c) There is a complete Kähler metric on Zy such that the set˚
x 2Zy W k grad Wy.x/k � C

	
is compact for some C > 0.

(d) The critical points of Wy are isolated and generically nondegenerate.

These assumptions are satisfied by the Landau–Ginzburg mirrors to P .1; 1; 2/, F2 ,
P .1; 1; 1; 3/, and F3 ; furthermore Iritani [36, Section 3.2] showed that they hold for
the mirror to a general compact weak Fano toric orbifold. We will use condition (a)
when constructing a local system of relative homology groups. Condition (b) is much
stronger than we need: we use it only to ensure the convergence of certain integrals,
and this certainly follows from a polynomial-growth condition on the integrand (35).
The remaining conditions allow us to use Morse theory. Assumption (c) implies that
we can choose a metric without introducing critical points “at infinity”: it holds for the
mirrors to toric varieties. In the examples at hand, the critical points of Wy are always
distinct and nondegenerate: we denote them by �1; : : : ; �N .

Under our assumptions, a Landau–Ginzburg model determines a local system R_ on
MB �C� with fiber over .y; z/ equal to the relative homology group

R_.y;z/ DHn

�
Zy ; fx 2Zy W <.Wy.x/=z/� 0g

�
:

Let OMB�C� denote the analytic structure sheaf. The associated locally free sheaf
R_ D R_˝OMB�C� has a Gauss–Manin connection, which is flat. We construct
flat sections of R_ using Morse theory, defining the cycle �k.y; z/, k 2 f1; : : : ;N g,
to be the closure of the union of downward gradient flowlines for the function x 7!

<
�
Wy.x/=z

�
from the critical point �k of Wy . If the imaginary parts of the critical

values of Wy=z are all distinct then the image of �k.y; z/ under Wy=z becomes
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a negative half-line from Wy.�k/=z parallel to the real axis. The cycles �k.y; z/

form a basis for the relative homology group R_
.y;z/

. Note that these sections become
multivalued under analytic continuation: �k.y; z/ has monodromy in both y and z .

The dual bundle R on MB�C� has fiber over .y; z/ equal to the relative cohomology
group H n

�
Zy ; fx 2Zy W <.Wy.x/=z/� 0g

�
. This bundle also has a flat Gauss–Manin

connection, as well as a distinguished section

(33) .y; z/ 7�! exp
�
Wy=z

�
!y :

The coordinates of this section with respect to the flat frame dual to �1.y; z/, . . . ,
�N .y; z/ are oscillating integrals:

(34) Ik.y; z/D

Z
�k.y;z/

exp
�
Wy=z

�
!y

We will consider only sections of R represented by differential forms

(35) f .x; z/ exp
�
W .x/=z

�
!y ; f .x; z/ 2 .� � id/?OZ�C�

such that x 7! f .x; z/ is algebraic on each fiber Zy ; note that integrals of such forms
over cycles �k.y; z/ are convergent.

Definition 2.18 Given a Landau–Ginzburg model
�
� W Z!MB;W; !

�
, we define

the associated B–model VSHS as follows. The base of the B–model VSHS is MB .
Let EB be the OMBfzg–module consisting of sections of R of the form (35) with f
regular in a small neighbourhood of z D 0. Let rz be the flat z–connection on EB

given by
r

z
X D zrGM

X

where X on the left-hand side is a vector field on MB , rGM is the Gauss–Manin
connection on R, and X on the right-hand side denotes the standard lift to a vector
field on MB�C� . The pairing on EB is defined as the dual to the intersection pairing
on relative homology groups:

R_.y;�z/˝R_.y;z/!C

As in Section 2.4.2, the flat z–connection rz makes EB into a D–module in the sense
of Givental [25]. When we want to emphasize this structure, we will refer to EB as the
mirror D–module.

The pairing on EB is given, at generic y , by

.Œs1�; Œs2�/EB D
1�

2�iz
�n NX

kD1

Z
�k.y;�z/

s1.�z/ �

Z
�k.y;z/

s2.z/
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because f�k.y;�z/gk and f�k.y; z/gk are mutually-dual bases for the relative homol-
ogy groups. We now check that the data in Definition 2.18 satisfy the axioms for a
VSHS.

Lemma 2.19 The pairing . � ; � / takes values in OMBfzg. Also, EB is a free OMBfzg–
module of the same rank as R.

Proof The method of stationary phase gives the asymptotic expansion of the oscillating
integrals:Z

�i .y;z/

f .x; z/ exp
�
W .x/=z

�
!y �

�
�2�z

�n=2p
Hess Wy.�i/

eWy.�i /=z
�
f .�i ; 0/CO.z/

�
for f regular at z D 0. Here z goes to zero in an angular sector where the order of
=.Wy.�1/=z/; : : : ;=.Wy.�N /=z/ is unchanged. The Hessian of Wy at �i is calculated
in terms of local coordinates x1; : : : ;xn on Zy such that !y D dx1 ^ � � � ^ dxn near
�i . At generic y , therefore, we have:��

f .x; z/eW =z !y

�
;
�
g.x; z/eW =z !y

��
EB
�

NX
kD1

f .�k ; 0/g.�k ; 0/

Hess Wy.�k/
CO.z/

The first term on the right hand side here is the residue pairing of the elements f .x; 0/
and g.x; 0/ of the Jacobi ring of Wy . The left hand side is holomorphic on 0< jzj< �

for some � ; the above asymptotics imply that it is actually regular at z D 0.

In a neighbourhood of each point y 2MB , we can find fiberwise-algebraic functions
�k.x/ 2 �?OZ , k D 1; : : : ;N , such that Œ�k.x/� forms a basis of the Jacobi ring
J.Wy/. If y is generic then we can choose �k such that �i.�j / D ıij . Let si D�
�i.x/e

W =z !y

�
be the corresponding section of EB . Then the Gram matrix .si ; sj /EB

is of the form
�
�i ; �j

�
W
CO.z/ with the first term given by the residue pairing. The

nondegeneracy of the matrix
�
�i ; �j

�
W

implies that s1; : : : ; sN form an OMBfzg–
basis of EB .

In our examples it turns out that EB is generated by the single section (33) together
with its derivatives. In other words

(36) EB ŠOMBfzghzTMBi=fP .y; z@; z/ W PIk.y; z/D 0 for all k g

and so EB is generated as a D–module by oscillating integrals. The family of Frobenius
algebras EB=zEB determined by EB and the section (33) consists of the family of Jacobi
rings

S
y2MB

J.Wy/ equipped with the residue pairing.
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Remark 2.20 In the Introduction we described the B–model VSHS as a family of
subspaces Eq , q 2MB , in the fibers of a vector bundle V !MB with flat connection.
The vector bundle V is EB˝OMBfzg

OMBfz; z
�1g, the family of subspaces is the

subbundle EB of V , and the connection on V is rGM .

2.5.2 The mirror conjecture and mirror theorems We now formulate a mathemat-
ical version of mirror symmetry, in the spirit of Givental’s ICM lecture [24].

Conjecture 2.21 Let EA be the small A–model VSHS of X ; recall that this has
base the A–model moduli space MA . Let EB be the B–model VSHS associated to
the Landau–Ginzburg mirror to X ; this has base the B–model moduli space MB .
Let ��� � C be a punctured disc of radius � . There is an open set UB �MB with
coordinates .y1; : : : ;yr /W UB Š

�
���
�r and a map mirW UB!MA of the form

.y1; : : : ;yr / 7�! .q1; : : : ; qr / where qi D yi exp
�
fi.y1; : : : ;yr /

�
fi.0; : : : ; 0/D 0

such that there is an isomorphism of VSHSs:

(37)
�
EB;r

z; . � ; � /
�
Šmir?

�
EA;r

z; . � ; � /
�

In the graded case this isomorphism also preserves the operator Gr.

The map mir here is called the mirror map. We have seen that the VSHSs EA and
EB give rise to families of Frobenius algebras: EA=zEA gives the small quantum
orbifold cohomology algebra of X equipped with the orbifold Poincaré pairing, and
EB=zEB gives the family of Jacobi rings

S
y2MB

J.Wy/ equipped with the residue
pairing. Suppose in addition that the unit section 1 of EA corresponds under (37) to the
distinguished section (33) of EB ; this condition holds in the examples at hand. Then
Conjecture 2.21 implies that there is a grading-preserving linear isomorphism

Miry W J.Wy/!H �orb.X IC/

which matches the product on the Jacobi ring J.Wy/ with the small quantum product
ımir.y/ and matches the orbifold Poincaré pairing with the residue pairing.

How to prove Conjecture 2.21 In the examples that we consider below, Conjec-
ture 2.21 is simply a reformulation of mirror theorems proved by Givental [26] (or
equivalently by Lian–Liu–Yau [41]) and by Coates–Corti–Lee–Tseng [15]. But this
reformulation is essential to our argument in Sections 3 and 4: it allows us to give a
systematic construction of flat structures near the cusps of the B–model moduli space
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MB , and to compare the flat structures associated to different cusps. We proceed as
follows.

The oscillating integrals (34) form a basis of solutions11 to the mirror D–module EB .
These solutions are multivalued in both y and z . The system of differential equations in
y satisfied by the oscillating integrals is called the Picard–Fuchs system—see equations
(38), (40), (61), (63). Another basis of solutions to the Picard–Fuchs system is given
by the components of a cohomology-valued hypergeometric function called the I –
function IX .y; z/—see equations (39), (41), (62), (64). Thus the mirror D–module
EB is isomorphic to the D–module generated by the I –function. The I –functions are
multivalued in y but single-valued in z .

On the other hand, in our examples the small quantum orbifold cohomology algebra
is generated by H 2.X IC/ and so the A–model VSHS EA is generated by the small
J –function JX .q; z/ together with its derivatives. This implies that EA is generated as
a D–module by the small J –function. The small J –functions are multivalued in q

but single-valued in z—see equations (29), (30), (31), (32).

A Givental-style mirror theorem states that the I –function and the small J –function
coincide after a suitable change of variables y 7! q.y/:

JX .q.y/; z/D IX .y; z/

The change of variables y 7! q.y/ here gives the mirror map in Conjecture 2.21. Such
a mirror theorem implies Conjecture 2.21, as we can then define the isomorphism (37)
to be the D–module isomorphism which maps:

.EB/y 3
�
exp.Wy=z/ !y

�
to z�1IX .y; z/D z�1JX .q; z/ 2 �q..EA/q/

The matching of gradings and pairings under this isomorphism will be explained in
Propositions 3.3 and 3.6 below.

A detailed proof of Conjecture 2.21 for a general compact weak Fano toric orbifold
has been given by Iritani [36, Section 4.2].

3 Example: F3 and P .1; 1; 1; 3/

We now apply our general theory to the cases X DP .1; 1; 1; 3/ and Y DF3 . Following
the prescriptions of Givental [26] and Hori–Vafa [34], we write down Landau–Ginzburg
models which correspond under mirror symmetry to F3 and to P .1; 1; 1; 3/. Let MF3

11Recall that a solution to a D –module is a solution to the system of differential equations defining
that D –module.
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denote the base of the Landau–Ginzburg mirror to F3 and let MP.1;1;1;3/ denote
the base of the Landau–Ginzburg mirror to P .1; 1; 1; 3/. We construct the B–model
moduli space MB , described in the Introduction, as a partial compactification of MF3

.
The space MB consists of a copy of MF3

together with a copy of MP.1;1;1;3/ as a
“divisor at infinity”. We form a Landau–Ginzburg model with base MB by patching
together the mirrors to F3 and P .1; 1; 1; 3/, and define the B–model VSHS to be the
VSHS associated to this Landau–Ginzburg model.

The space MB has two cusps, one of which corresponds to F3 and the other to
P .1; 1; 1; 3/. We show that there is an opposite subspace canonically associated to each
cusp (Theorem 3.5) and that these opposite subspaces give rise, in the sense described
in the Introduction, to the small quantum cohomology of F3 and the small quantum
orbifold cohomology of P .1; 1; 1; 3/. We show that these two opposite subspaces do
not agree with each other under parallel transport in EB —this amounts to computing
the analytic continuation of the I –function IY .y; z/ mentioned in Section 2.5.2—and
from this we prove Theorem 1.2 and Conjecture 1.3.

3.1 The Landau–Ginzburg mirror to F3

The Landau–Ginzburg mirror of F3 is a family of algebraic tori � W Z!MF3
together

with a superpotential W W Z!C and a holomorphic volume form on each fiber of � .
Recall that F3 is defined as a GIT quotient of C5 by .C�/2 where .C�/2 acts via the
inclusion:

.C�/2 ,! .C�/5 .s; t/ 7! .s; s; s; s�3t; t/

The mirror family � W Z!MF3
is given by restricting the dual of this inclusion

� W .C�/5 �! .C�/2

.w1; : : : ; w5/ 7�! .w1w2w3w
�3
4 ; w4w5/

to the open subset MF3
� .C�/2 defined by:

MF3
D

n
.y1;y2/ 2 .C

�/2 W y1 ¤�
1

27

o
The superpotential W is

W D w1Cw2Cw3Cw4Cw5

and the holomorphic volume form !y on the fiber Zy D �
�1.y1;y2/ is:

!y D
d logw1 ^ � � � ^ d logw5

d log y1 ^ d log y2
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We deleted the locus y1 D�
1

27
from MF3

to ensure that Assumptions 2.17 hold. It
is straightforward to show that the oscillating integrals (34) satisfy the Picard–Fuchs
equations:

D2.D2�3D1/ f D y2 f

D3
1D2.D2�z/.D2�2z/ f D y1y3

2 f

D3
1D2.D2�z/ f D y1y2

2.D2�3D1/ f

D3
1D2 f D y1y2.D2�3D1/.D2�3D1�z/ f

D3
1 f D y1.D2�3D1/.D2�3D1�z/.D2�3D1�2z/ f

(38)

where D1 D zy1
@
@y1

and D2 D zy2
@
@y2

.

3.2 Mirror symmetry for F3

We apply Givental’s mirror theorem for toric varieties [26, Theorem 0.1]. The I –
function

(39) IF3
.y1;y2; z/

D z
X

k;l�0

y
kCp1=z
1

y
lCp2=z
2

Q0
mD�1.p2� 3p1Cmz/Qk

mD1.p1Cmz/3
Ql

mD1.p2Cmz/
Ql�3k

mD�1.p2� 3p1Cmz/

where p1 , p2 is the basis of H 2.F3/ defined in Section 2.1.1, also satisfies the Picard–
Fuchs system (38). It coincides with the small J –function (32) after a change of
variables .y1;y2/ 7! .q1; q2/:

JF3
.q1; q2; z/D IF3

.y1;y2; z/

As we explained in Section 2.5.2, this proves Conjecture 2.21 for F3 .

Since JF3
.q1; q2; z/D zCp1 log q1Cp2 log q2CO.z�1/, we can read off the mirror

map .y1;y2/ 7! .q1; q2/ by expanding the I –function as a Laurent series in z�1 . This
gives:

q1 D y1 exp

 
3
X
k�1

.�1/k
.3k � 1/!

.k!/3
yk

1

!

q2 D y2 exp

 X
k�1

.�1/kC1 .3k � 1/!

.k!/3
yk

1

!
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and hence:

y1 D q1C 6q2
1 C 9q3

1 C 56q4
1 � 300q5

1 C � � �

y2 D q2

�
1� 2q1C 5q2

1 � 32q3
1 C 286q4

1 � 3038q5
1 � � � �

�
The mirror map identifies a suitable neighbourhood12 of y1 D y2 D 0 in MF3

with
the Kähler moduli space MA of F3 ; here .q1; q2/ are coordinates on MA . This
identification matches up the Jacobi ring J.Wy/ of Wy with the small quantum
cohomology algebra of F3 at .q1; q2/ and the residue pairing with the Poincaré pairing.

3.3 The Landau–Ginzburg mirror to P .1; 1; 1; 3/

The mirror family � is

� W Z D .C�/4 �!MP.1;1;1;3/ D .C
�/

.w1; w2; w3; w5/ 7�! w1w2w3w
3
5

the superpotential W is
W D w1Cw2Cw3Cw5

and the holomorphic volume form !y on the fiber Zy D �
�1.y/ is:

!y D
d logw1 ^ d logw2 ^ d logw3 ^ d logw5

d log y

The nonstandard numbering of the coordinates here will be convenient later. The
oscillating integrals (34) satisfy the Picard–Fuchs equation

(40) D3.3D/.3D� z/.3D� 2z/ f D y f

where D D zy @
@y

.

3.4 Mirror symmetry for P .1; 1; 1; 3/

The mirror theorem we need here was proved by Coates–Corti–Lee–Tseng [15]. The
I –function

(41) IP.1;1;1;3/.y; z/D z yp=z
X

d W3d2Z
d�0

ydQ
bWhbiDhdi

0<b�d

.pC bz/3
Q

bWhbiD0
0<b�3d

.3pC bz/
1hdi

12This neighbourhood is UB from Conjecture 2.21.
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also satisfies the Picard–Fuchs Equation (40). It coincides with the small J –function
(31) after the (trivial) change of variables q D y :

JP.1;1;1;3/.q; z/D IP.1;1;1;3/.y; z/

As discussed in Section 2.5.2, this proves Conjecture 2.21 for P .1; 1; 1; 3/. The
moduli space MP.1;1;1;3/ with coordinate y is identified via the map q D y with the
Kähler moduli space MA of P .1; 1; 1; 3/; here q is once again a coordinate on MA .
This identification matches the Jacobi ring J.Wq/ with the small quantum orbifold
cohomology algebra of P .1; 1; 1; 3/ at q , and the residue pairing with the Poincaré
pairing.

3.5 Constructing the B–model VSHS

-PPPPPPPPPPPPi
6

� � � � �

� � � � �

p1

p1

p2 D p2

Figure 2: The secondary fan for F3

We now extend the Landau–Ginzburg mirror of F3 to a Landau–Ginzburg model with
a larger base, defined in terms of the secondary fan for F3 (Figure 2). Take w1; w2; w5

as coordinates on the fiber Zy , so that:

(42) Wy D w1Cw2C
y1y3

2

w1w2w
3
5

C
y2

w5

Cw5

The toric orbifold SM associated to the secondary fan for F3 gives a compactification
of MF3

. One coordinate patch on SM comes from the Kähler cone of F3 , which is
the cone in the secondary fan spanned by p1 D .1; 0/ and p2 D .0; 1/. The vectors
p1;p2 are dual to the coordinates y1;y2 on MF3

. The adjacent cone, spanned by
p1 D .�3; 1/ and p2 D .0; 1/, defines another coordinate patch on SM: let y1; y2 be
the coordinates dual to p1; p2 . The two coordinate systems are related by:

y1 D y
�1=3
1

y2 D y
1=3
1

y2

Note that y1; y2 are multivalued and so are not honest coordinates on SM. One should
think of SM as an orbifold and of y1; y2 as a uniformizing system13 near a Z=3Z

13This is the mirror partner of Remark 2.15.
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quotient singularity at .y1; y2/D 0. In the coordinates .y1; y2/, we have:

(43) Wy D w1Cw2C
y3

2

w1w2w
3
5

C
y1y2

w5

Cw5

We can therefore extend the family of tori � and the superpotential Wy across the
locus fy1 D 0g, where we see the Landau–Ginzburg mirror of P .1; 1; 1; 3/:

W D w1Cw2Cw3Cw5; w1w2w3w
3
5 D y3

2:

The locus y1D 0, y2¤ 0 in SM is identified with the base MP.1;1;1;3/ of the Landau–
Ginzburg mirror of P .1; 1; 1; 3/ via the map y D y3

2
.

y1 D 0 y1 D�
1

27
y1 D1

y1 D 0

y2 D 0 y2 D 0

Figure 3: The B–model moduli space MB

The base of our extended Landau–Ginzburg model, which we call the B–model moduli
space MB , is obtained from SM by deleting the closures of the loci fy1y2 D 0g and
fy1 D�1=27g. Equations (42) and (43) define a Landau–Ginzburg model over MB

which contains the Landau–Ginzburg mirrors for F3 and for P .1; 1; 1; 3/ as subsets.
The limit points y1D y2D 0 and y1D y2D 0 of MB are called the large radius limit
points or cusps corresponding respectively to F3 and to P .1; 1; 1; 3/.

Let E denote the B–model VSHS with base MB defined by the Landau–Ginzburg
model just described. (See Definition 2.18 for the B–model VSHS.) We equip E with
the grading operator GrW E! E defined by

Gr
�
f .x; z/eWy=z !y

�
D

��
2z@zC 2

5X
iD1

wi@wi

�
f .x; z/eWy=z !y

�
(44)

This satisfies the axioms for a graded VSHS with Euler field and dimension

E D 2y2

@

@y2

D 2y2

@

@y2

; D D dim F3 D 3:
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Remark 3.1 The superpotentials (42) and (43) have isolated nondegenerate critical
points, and so the small quantum cohomology algebra of F3 and the small quantum
orbifold cohomology algebra of P .1; 1; 1; 3/ are semisimple.

Remark 3.2 The mirror D–module develops a singularity along the lines fy1 D 0g

and fy2 D 0g D fy2 D 0g. These are the solid lines in Figure 3. It is nonsingular along
the (dashed) line fy1 D 0g.

3.6 An opposite subspace at each cusp

We now characterize those opposite subspaces for the B–model VSHS which give rise,
via mirror symmetry, to the big quantum cohomology Frobenius manifolds for F3 and
for P .1; 1; 1; 3/. As we will see in the next section, these opposite subspaces are not
mapped into each other under parallel transport from cusp to cusp.

The I –functions (39), (41) define D–module homomorphisms

IF3
W E �!H �.F3/˝O �MB

fz; z�1
g;

IP.1;1;1;3/W E jMP.1;1;1;3/ �!H �orb
�
P .1; 1; 1; 3/

�
˝O �MP.1;1;1;3/

fz; z�1
g

(45)

where we give the right-hand sides the trivial D–module structure. These homo-
morphisms are defined using the isomorphism (36), by sending a representative
P .y; z@; z/ 2 OMBfzghzTMBi to z�1PIF3

or to z�1PIP.1;1;1;3/ . This does not
depend on our choice of representative P since the I –functions satisfy the Picard–
Fuchs equations (38), (40). IF3

is a priori defined only in a small neighbourhood of
the cusp for F3 , but it can be extended to the whole of �MB by analytic continuation
(or, which amounts to the same thing, by solving the Picard–Fuchs equations on this
larger region). The maps (45) send rz –parallel sections of E to constant sections, and
thus identify the space H of flat sections of E with Givental’s symplectic vector space
(with QD 1):

(46)
IF3
W HŠH �.F3/˝Cfz; z�1

g DHF3
jQiD1

IP.1;1;1;3/W HŠH �orb.P .1; 1; 1; 3//˝Cfz; z�1
g DHP.1;1;1;3/jQD1

As discussed in Section 2.5.2, the mirror isomorphism (37) sends the generator
Œexp.Wy=z/ !y � of E to the family of vectors y 7!I.y; z/DJ.q; z/ lying on Givental’s
Lagrangian submanifold L. The identifications (46) are exactly those induced by (37).

An easy calculation using the explicit forms of the I –functions yields:

Proposition 3.3 Under the identifications (46), the B–model grading operator (44)
corresponds to the A–model grading operator (22).
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The Hodge structure Ey near cusps behaves as follows. As .y1;y2/! 0, we have:

(47) IF3
.Ey/� e.p1 log y1Cp2 log y2/=z

�
H �.F3/˝CfzgCO.y1;y2/

�
and as y2! 0 with y1 D 0, we have:

(48) IP.1;1;1;3/.Ey/� e3p log y2=z
�
H �orb

�
P .1; 1; 1; 3/

�
˝CfzgCO.y2/

�
These are semi-infinite analogs of Schmid’s Nilpotent Orbit Theorem [49]—the singu-
larity of the Hodge structure near a cusp is asymptotically given by the exponential of
nilpotent operators. This corresponds to the fact that E has quasi-unipotent monodromy
at each cusp, and so has a regular singular extension (Deligne’s extension) on a finite
cover of a neighbourhood of each cusp.

Definition 3.4 The limiting Hodge structure at a cusp c is defined to be a subspace
Elim

c of H satisfying

E.x1;x2/ � exp

 
2X

iD1

Ni log xi

!�
Elim

c CO.x1;x2/
�

where Ni are nilpotent operators and x1;x2 are local coordinates centered at c such
that E has a logarithmic singularity along the xi –axes. The limiting Hodge structure
actually depends on the choice of such coordinates14, but in our examples we take
.x1;x2/D .y1;y2/ near the cusp c1 for F3 and .x1;x2/D .y1; y2/ near the cusp c2

of P .1; 1; 1; 3/.

The above calculation shows that:

IF3
.Elim

c1
/DH �.F3/˝Cfzg DHCF3

jQiD1

IP.1;1;1;3/.E
lim
c2
/DH �orb.P .1; 1; 1; 3//˝Cfzg DHCP.1;1;1;3/jQD1

We now construct an opposite subspace H� for each cusp c . We postulate that H�
should satisfy:

(a) H� is opposite to the limiting Hodge structure. Elim
c

(b) H� is preserved by the grading operator Gr.

(c) H� is invariant under local monodromy, and moreover the monodromy action
M satisfies M N D id on zH�=H� where N is the order of the local isotropy
group at the cusp c .

14A coordinate change of the form log x0i D log xi C fi.x1;x2/ with fi.0; 0/D 0 does not change
the limiting Hodge structure, so Elim

c depends only on the choice of “origin” of log xi .
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For F3 , the local monodromy means the monodromy around the axes y1 D 0 and
y2 D 0. The corresponding monodromy actions on HF3

are given by

M1 D exp
�
2�ip1=z

�
; M2 D exp

�
2�ip2=z

�
:

For P .1; 1; 1; 3/, the local monodromy means the monodromy coming from an orbifold
loop Œ0; 1� 3 t 7! .y1; y2/D

�
0; e2�it=3

�
. The corresponding action on HP.1;1;1;3/ is

given by
M DM0 exp

�
2�ip=z

�
where M0

ˇ̌
H �.P.1;1;1;3// D id; M0

�
11=3

�
D ˛11=3; M0

�
12=3

�
D ˛212=3

and ˛ D exp
�
2�i=3

�
. We have N D 1 for F3 and N D 3 for P .1; 1; 1; 3/. Condi-

tion (c) above implies that the connection 1–form A in Proposition 2.11 is well-defined
on an N –fold cover (uniformizing system) of a neighbourhood of each cusp.

Theorem 3.5 Let c1 and c2 be the cusps of MB corresponding to F3 and P .1; 1; 1; 3/
respectively. For each ci there exists a unique opposite subspace H�ci

satisfying condi-
tions (a)–(c) above. Moreover, H�ci

corresponds under (46) to the standard A–model
opposite subspace:

IF3

�
H�c1

�
D z�1H �.F3/˝O.P1

n f0g/DH�F3
jQiD1

IP.1;1;1;3/

�
H�c2

�
D z�1H �orb

�
P .1; 1; 1; 3/

�
˝O.P1

n f0g/DH�P.1;1;1;3/jQD1

Proof We give a proof only for P .1; 1; 1; 3/. The F3 case is similar and easier.
Throughout the proof we identify H with HP.1;1;1;3/jQD1 via the map IP.1;1;1;3/ and
write H� for IP.1;1;1;3/H�c2

.

Proposition 3.3 implies that the A–model grading operator (22) preserves H� :

GrD 2z@zCGr0�2c1

�
P .1; 1; 1; 3/

�
=z; c1

�
P .1; 1; 1; 3/

�
D 6p:

On the other hand, the logarithm 6�ip=z D log.M 3/ of the cube of the monodromy
preserves H� , and so the “usual” grading operator 2z@z CGr0 also preserves H� .
This means that H� is a homogeneous subspace of H . Because H� is opposite to
Elim

c2
, there is a unique C–basis f 0; : : : ;  3; �1; �2g of zH�\Elim

c2
such that:

 i D pi
CO.z/; �1 D 11=3CO.z/; �2 D 12=3CO.z/

These elements must be homogeneous. Since both M and exp.2�ip=z/ preserve
H� , M0 must also preserve H� . It is clear that M0 preserves Elim

c2
, so it acts on

zH�\Elim
c2

. Thus zH�\Elim
c2

decomposes into eigenspaces for M0 ; it follows that
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 i 2H �
�
P .1; 1; 1; 3/

�
fzg and �i 2H �

�
P .V i=3/

�
fzg. Homogeneity now implies that

�i D 1i=3 .

Since M 3 acts trivially on zH�=H� it follows that 1
3

log M 3 sends zH� to H� .
Thus 1

3
z log M 3 D 2�ip preserves Elim

c2
and zH� simultaneously, and therefore acts

on zH�\Elim
c2

. By homogeneity again, we can write

 i D pi
C

i�1X
jD0

cij zi�j pj

for some cij 2 C . As p4�i i 2 zH� \ Elim
c2

and p4�i i is divisible by z , we
know that p4�i i should be zero. This shows that cij D 0 and that  i D pi . Since
zH� is spanned over O.P1 n f0g/ by  0; : : : ;  3 , �1 , �2 , it follows that H� D
H�P.1;1;1;3/jQD1 .

Monodromy properties also force, as we now show, the A–model and B–model pairings
to coincide up to an overall scalar factor. In the next section we will see that the
composition IF3

ı I�1
P.1;1;1;3/ exactly preserves Givental’s symplectic form.

Proposition 3.6 Under the identifications (46), the B–model symplectic form corre-
sponds to a scalar multiple of Givental’s symplectic form. In particular, H�ci

is isotropic
with respect to the B–model symplectic form.

Proof We give a proof only for P .1; 1; 1; 3/; the F3 case is similar. Let . � ; � / be the
Cfz; z�1g–valued pairing on HP.1;1;1;3/jQD1 induced by the B–model pairing. The
definition of the B–model pairing shows that this is monodromy-invariant:

.M˛;Mˇ/B D .˛; ˇ/B

Using 6�ip=z D log M 3 , we have

(49) .p˛; ˇ/B D .˛;pˇ/B

and so M0 DM exp
�
�2�ip=z

�
also preserves the pairing . � ; � /. This implies that

(50)
�
H �

�
P .1; 1; 1; 3/

�
; 1i=3

�
B D 0 and

�
1i=3; 1i=3

�
B D 0

for i D 1; 2.

From the asymptotics (48) we know that for each ˛ 2HCP.1;1;1;3/jQD1 , there exists a
family of elements f˛y2

g in HP.1;1;1;3/jQD1 such that

˛y2
D exp

�
3p log y2=z

��
˛CO.y2/

�
2 Ey1D0;y2

:
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For any ˛; ˇ 2HCP.1;1;1;3/ , the B–model pairing of ˛y2
and ˇy2

takes values in Cfzg:

.˛y2
; ˇy2

/B D .˛CO.y2/; ˇCO.y2//B 2Cfzg:

Taking the limit y2! 0, we see that .˛; ˇ/B is in Cfzg.

The compatibility of grading and the pairing gives that for homogeneous elements
˛; ˇ 2H �orb.P .1; 1; 1; 3// we have:

2z@z.˛; ˇ/B D .deg˛C degˇ� 6/.˛; ˇ/B

� ..c1.X /=z/[˛; ˇ/B� .˛; .c1.X /=z/[ˇ/B

The second line vanishes by (49). This means that .˛; ˇ/B is homogeneous of degree
deg˛C degˇ� 6. From this homogeneity, Equation (49), the orthogonality (50), and
the fact that .˛; ˇ/B 2Cfzg, it follows that the only nonvanishing pairings among basis
elements are

.pi ;pj /B D .1;piCj /B 2C; .11=3; 12=3/B D .12=3; 11=3/B 2C

with i C j D 3. This shows directly that H�P.1;1;1;3/ is isotropic with respect to the
B–model symplectic form. But the general theory of VSHS in Section 2.2 implies that
the B–model pairing also satisfies (see Equation (11))

.˛ ıq ˇ;  /B D .˛; ˇ ıq  /B for all ˛; ˇ;  2H �orb
�
P .1; 1; 1; 3/

�
because the small quantum orbifold cohomology algebra is generated by p . Thus . � ; � /
is completely determined by the value .1;p3/B and is proportional to the orbifold
Poincaré pairing.

Remark 3.7 In proving the uniqueness in general of opposite subspaces and pairings
which behave well under monodromy, the hard Lefschetz property of the usual coho-
mology of a projective orbifold will play an important role. This will be explained
in Iritani [38]. See also Iritani [37, Theorem 3.13] for the uniqueness of opposite
subspaces in the A–model and Iritani [36, Appendix] for the matching of the A–model
and B–model pairings for a general compact weak Fano toric orbifold. In the proofs
above, we implicitly used the hard Lefschetz property of H �.P .1; 1; 1; 3//. A hard
Lefschetz property for orbifold cohomology is discussed in Theorem 5.10 below.

Definition 3.8 A polarization of H at a cusp c is a decomposition

HD Elim
c ˚H�c

where Elim
c is the limiting Hodge structure and H�c is an opposite subspace.
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The polarization at a cusp will be mapped by IF3
or IP.1;1;1;3/ to the standard polar-

ization:
HCF3
˚H�F3

ˇ̌
QiD1

or HCP.1;1;1;3/˚H
�
P.1;1;1;3/

ˇ̌
QD1

3.7 The polarizations are different

We now compare the polarizations at the cusps of MB corresponding to F3 and
to P .1; 1; 1; 3/. Let SU W HP.1;1;1;3/jQD1 ! HF3

jQiD1 be the linear transformation
defined by the composition

HP.1;1;1;3/jQD1

.IP.1;1;1;3//
�1

����������! H
IF3
����! HF3

jQiD1

and let U W HP.1;1;1;3/jQD1!HF3
jQiD1 be SU followed by changing the sign of z .

The transformation SU (or equivalently U ) measures the difference between the polar-
izations at the two cusps. As we will see, the sign flip in the definition of U comes
from the sign flip which relates the A–model VSHS to the tangent spaces to Givental’s
Lagrangian submanifold (see Section 2.3.3).

Proposition 3.9 The matrix of U with respect to the bases for H �orb

�
P .1; 1; 1; 3/

�
and

H �.F3/ defined in Section 2.1.1 is:

(51)

0BBBBBBBBB@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 2
p

3�
3�.1=3/3

z 2
p

3�
3�.2=3/3

�
�2

3z2 0 0 0 2�2

3�.1=3/3
�

2�2

3�.2=3/3z
8�.3/

z3 0 0 1 2
p

3�3

9�.1=3/3z
2
p

3�3

9�.2=3/3z2

1CCCCCCCCCA
Here � is the Riemann zeta function. The linear transformation U preserves the grading
and the symplectic forms but does not preserve the standard opposite subspaces.

Proof The I –functions IF3
and IP.1;1;1;3/ are the images under the maps IF3

and
IP.1;1;1;3/ of the generator Œexp.Wy=z/ !y � 2 E . It follows that

SU
�
IP.1;1;1;3/

�
D IF3

jy1D0

where we regard IP.1;1;1;3/ as a function of y2 via the map y D y3
2

discussed above
Figure 3. We calculate SU (and hence U ) by analytically continuing IF3

to a neigh-
bourhood of the large radius limit point for P .1; 1; 1; 3/ and then comparing it with
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IP.1;1;1;3/ . Using the Barnes method (see the Appendix), one finds:

(52) IF3
.y1; y2; z/D z �

�
1C p1

z

�3
�
�
1C p2

z

�
�
�
1C p2�3p1

z

�
�X

k;l�0

.�1/kCl sin
�p2�3p1

z
�
�

3 sin
�p2�3p1

3z
� C l�k

3
�
� yk

1
y

lCp2=z
2

k! z2l �
�
1C p2

3z
C

l�k
3

�3
�
�
1C p2

z
C l

�
We compare this with:

IP.1;1;1;3/.y2; z/D z
X
m�0

�
�
1� h�m

3
iC

p
z

�3
�
�
1C 3p

z

�
�
�
1C p

z
C

m
3

�3
�
�
1C 3p

z
Cm

� y
mC3p=z
2

z2m

1hm=3i
z3h�m=3i

:

Since SU is equivariant with respect to the monodromy action around the axis fy2D 0gD

fy2 D 0g, we have SUe2�i3p=z D e2�ip2=zSU and so SU3p D p2
SU . Thus:

SU
�
10

�
D
�
�
1C p1

z

�3
�
�
1C p1

z

�
�
�
1C p2

3z

�3 sin
�p1

z
�
�

3 sin
� p1

3z
�
�

z�1SU
�
12=3

�
D
�
�
1C p1

z

�3
�
�
1C p1

z

�
�
�

2
3
C

p2

3z

�3 sin
�p1

z
�
�

3 sin
� p1

3z
� C 2

3
�
�

z�2SU
�
11=3

�
D�

�
�
1C p1

z

�3
�
�
1C p1

z

�
�
�

1
3
C

p2

3z

�3 sin
�p1

z
�
�

3 sin
� p1

3z
� C 1

3
�
�

where p1 D p2�3p1 , and the conclusion follows. The value �.3/ in the matrix for U
comes from the expansion of the � –function:

�.1Cx/D exp
�
�xC �2

12
x2�

�.3/
3

x3CO.x4/
�

where  is Euler’s constant. The transformation U does not map H�P.1;1;1;3/ to H�F3

because the matrix (51) contains strictly positive powers of z .

Remark 3.10 The symplectic transformation U always has an ambiguity due to the
monodromy action on H . This corresponds to the choice of branch cuts in the process
of analytic continuation.

Remark 3.11 A closely-related symplectic transformation (with zD1) occurs in work
of Aganagic–Bouchard–Klemm [3, Equation 6.21]. They studied a phase-transition
from local P2 (the total space of the canonical bundle KP2 ) to C3=Z3 . Our example
here is a global version of this but is not Calabi–Yau.
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3.8 The proof of Conjecture 1.3

In Theorem 3.12 below, we prove Conjecture 5.1 when X D P .1; 1; 1; 3/ and Y D F3 .
Conjecture 1.3 in the Introduction follows from this and the definition (26) of the
analytic Givental’s cone.

Theorem 3.12 Let EF3
� � HF3

jQiD1 and EP.1;1;1;3/
� � HP.1;1;1;3/jQD1 be the

moving subspace realizations (25) of the analytic big A–model VSHSs of F3 and
P .1; 1; 1; 3/. Then there exists a map ‡ from an open subset of H �orb.P .1; 1; 1; 3// to
an open subset of H �.F3/ such that, after analytic continuation if necessary,

SU
�
EP.1;1;1;3/
�

�
D EF3

‡.�/

where U is the symplectic transformation from Proposition 3.9.

Proof We use Dubrovin’s Reconstruction Theorem [21]. This implies that the
Frobenius manifold given by big quantum (orbifold) cohomology can be uniquely
reconstructed from one semisimple fiber as an isomonodromic deformation of the
differential equation

(53)
�

1

2
Gr�

1

z
r

z
E

�
 D

�
z
@

@z
�

1

z
E �� C

1

2
Gr0

�
 D 0

where Gr;Gr0 are grading operators. We know from the mirror analysis that the
small quantum cohomology algebras of F3 and P .1; 1; 1; 3/ are semisimple. The big
quantum cohomologies of F3 and P .1; 1; 1; 3/ are therefore determined as analytic
Frobenius manifolds by the small quantum cohomologies.

Write X D P .1; 1; 1; 3/ and Y D F3 . Let mirY W
�MB ! H 2.Y / and mirX W �MB ��MX ! H 2.X / be (analytic continuations of) the mirror maps. They are given by

the coefficients of z0 of the I –functions IF3
; IP.1;1;1;3/ in equations (39), (41). The

mirror theorems discussed in Sections 3.2, 3.4 imply that

IY .Ey/D EY
mirY .y/

and IX .Ey/D EXmirX .y/

for y2 �MB and y2 �MX respectively. These equations hold a priori in neighbourhoods
of the cusps, but hold everywhere by analytic continuation. By the definition of SU , we
have

(54) SU
�
EXmirX .y/

�
D EY

mirY .y/

for y 2 �MX . Take a semisimple point y0 2
�MX (in fact every point on �MX is

semisimple) and a small open neighbourhood U0 of y0 in �MX . Since the B–model
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and A–model grading operators match (Proposition 3.3) and the Euler vector field is
tangent to �MX , SU induces an isomorphism of graded VSHSs:

(55) EX ;big
A

ˇ̌
mirX .U0/

Š EY;big
A

ˇ̌
mirY .U0/

Take an isotropic, Gr–invariant opposite subspace H� of E at y0 . This gives rise to the
opposite subspaces IX .H�/ and IY .H�/ of EX ;big

A and EY;big
A —these subspaces are

opposite in neighbourhoods of �0 WDmirX .y0/ and �0 WDmirY .y0/ respectively—and
produces Frobenius manifold structures15 on the analytic germs .H �orb.X IC/; �0/ and
.H �.Y IC/; �0/. Since these two Frobenius manifolds are the unfolding of the same
differential equation (53) at y0 , by Dubrovin’s Reconstruction Theorem we have a
natural isomorphism of Frobenius manifolds ‡ W .H �orb.X IC/; �0/Š .H

�.Y IC/; �0/.
Forgetting the opposite subspace, we conclude that there is an isomorphism of the
underlying VSHSs, ie that the isomorphism (55) extends to open neighbourhoods of
�0 2H �orb.X IC/ and �0 2H �.Y IC/. The moving subspace realizations of the two big
A–model VSHSs are therefore related by a constant Cfz; z�1g–linear transformation.
Equation (54) shows that this transformation is SU .

Remark 3.13 When reconstructing big quantum cohomology from small quantum co-
homology, we could use quantum H 2 –generation in place of Dubrovin’s Reconstruction
Theorem. In fact, Dubrovin Reconstruction is a special case of quantum H 2 –generation
where the product E�� of the Euler vector field generates the total cohomology. In our
case, orbifold cohomology H �orb.P .1; 1; 1; 3// is not generated by H 2.P .1; 1; 1; 3//,
but quantum orbifold cohomology is generated by H 2.P .1; 1; 1; 3//. Reconstruction
theorems of Hertling–Manin [32], Iritani [39, Remark 4.10] and Rose [45] are also
applicable here. These are generalizations of the First Reconstruction Theorem of
Kontsevich–Manin [40], where classical H 2 –generation is assumed.

3.9 The flat coordinates are different

We can see the difference between the big quantum cohomology Frobenius manifolds
for F3 and P .1; 1; 1; 3/ more explicitly as follows. The vectors IF3

.y;�z/ and
U�1IF3

.y;�z/ are on the cones LF3
and LP.1;1;1;3/ respectively. They expand as:

IF3
.y;�z/D�zC�1p1C�2p2�

�
�

1

3

@F0

@�1

p2
1C

@F0

@�2

p2
1

�
1

z
CO.z�2/(56)

U�1
�
IF3

.y;�z/
�
D�zCt112=3Ct2.3p/�

 
3
@F orb

0

@t1
11=3C

@F orb
0

@t2
p2

!
1

z
CO.z�2/

15These Frobenius manifold structures are not in general the quantum cohomology Frobenius manifold
structures, because in general IX .H�/¤H�X and IY .H�/¤H�Y .
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where .�1; �2/ and .t1; t2/ are flat coordinates on �MB associated with the quantum
cohomologies and F0;F

orb
0

are the genus-zero Gromov–Witten potentials for F3 and
P .1; 1; 1; 3/. Combining (51) and (56), we see that

(57) �1 D�
2
p

3�

3�.2
3
/3

t1C
2
p

3�

�.1
3
/3

@F orb
0

@t1
; �2C

1

3
�1 D t2:

From (52) we find

t1 D

1X
nD0

.�1/n
Qn�1

kD0.kC
1
3
/3

.3nC 1/!
y3nC1

1
; 3

@F orb
0

@t1
D

1X
nD0

.�1/n
Qn�1

kD0.kC
2
3
/3

.3nC 2/!
y3nC2

1

and thus:

(58) 3
@F orb

0

@t1
D

1

2
t21�

1

32 � 5!
t51C

1

3 � 8!
t81�

1093

35 � 11!
t11
1 C � � �

Combining (57) and (58) shows that the flat coordinate systems .�1; �2/ and .t1; t2/
on MB are different.

3.10 The proof of Theorem 1.2

We recommend that at this point the reader reviews the strategy described in Section
2.5.2.

The small quantum cohomology locus MP.1;1;1;3/ of P .1; 1; 1; 3/ is given by:

fy1 D 0g D ft1 D 0g D f�1 D 0g

Along this locus, the two flat coordinates coincide: �2 D t2 . As q1 D e�1 , q2 D e�2 ,
and q D e3t2 we have

q1 D 1; q2 D
3
p

q:

We calculate the identification (along this locus) between the quantum cohomology
algebras of P .1; 1; 1; 3/ and F3 by first finding differential operators which represent
our chosen basis for H �orb

�
P .1; 1; 1; 3/IC

�
through derivatives of IP.1;1;1;3/ , then

commuting these operators past the symplectic transformation U in the equality
U
�
IP.1;1;1;3/.y;�z/

�
D IF3

.0;y1=3;�z/, and finally comparing the resulting deriva-
tives of IF3

with our chosen basis for H �.F3IC/. In detail, this goes as follows.

The opposite subspace H�c2
at the cusp c2 for P .1; 1; 1; 3/ determines a trivialization

of E . Define differential operators Pi.z@/ by

P0 D 1; P1 D z@; P2 D .z@/
2;

P3 D .z@/
3; P4 D y�1=33.z@/4; P5 D y�1=33z@.y�1=33.z@/4/
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where @D y @
@y

. The sections ei D Pi.r
z
@
/Œexp.Wy/ !y � form a frame of E which is

constant with respect to this trivialization. In fact, from

(59) IP.1;1;1;3/ D yp=z

�
10C

27y1=3

z4
11=3C

27y2=3

16z5
12=3C

y

6z6
10CO

�
z�7

��
one finds that:

PiIP.1;1;1;3/ D pi
CO

�
z�1

�
0� i � 3

P4IP.1;1;1;3/ D 11=3CO
�
z�1

�
P5IP.1;1;1;3/ D 12=3CO

�
z�1

�
and therefore that the differential operators P0 , . . . , P5 correspond to the basis 1, p ,
p2 , p3 , 11=3 , 12=3 for the quantum cohomology algebra of P .1; 1; 1; 3/. The matrix
of quantum multiplication pıq can be obtained as the connection matrix of rz

@
with

respect to the frame feig:

(60) r
z
@ D z @C

0BBBBBBB@

0 0 0 0 0 1
3
y1=3

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
3
y1=3 0 0

0 0 0 0 1
3
y1=3 0

1CCCCCCCA
(Recall that the mirror map for P .1; 1; 1; 3/ is trivial, so q D y .)

On the other hand, the sections ei are not constant with respect to the trivialization
associated with H�c1

. By using PiIF3
jy1D0 D

SUPiIP.1;1;1;3/ and the expansion (59),
one finds that:

PiIF3
jy1D0 D

�p2

3

�i

CO
�
z�1

�
0� i � 2

P3IF3
jy1D0 D

p3
2

27
�
p

3ˇ1y1=3p1CO
�
z�1

�
P4IF3

jy1D0 D�
p

3ˇ1p1zC
�

3
ˇ1p2

1CO
�
z�1

�
P5IF3

jy1D0 D
p

3ˇ2p1C
1

z

��
3
ˇ2p2

1Cy1=3
�
CO

�
z�2

�
where ˇi D 2�=.9�.i=3/3/. From this, we see that the frame of E given by

e0; e1; e2; e3; e4C z
ˇ1

ˇ2

e5; e5
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corresponds to the nonconstant basis

1;
p2

3
;

p2
2

9
;

p3
2

27
�
p

3ˇ1y1=3p1;
ˇ1

ˇ2

y1=3
C

2�

3
ˇ1p2

1;
p

3ˇ2p1

for the quantum cohomology algebra of F3 . The Dubrovin connection for the quantum
cohomology of F3 can be obtained from the connection (60) by the gauge transformation
‚.y; z/W H �orb

�
P .1; 1; 1; 3/

�
!H �.F3/ given by:

‚.y; z/.pi/D
�p2

3

�i

0� i � 2

‚.y; z/.p3/D
p3

2

27
�
p

3ˇ1y1=3p1

‚.y; z/.11=3/D
ˇ1

ˇ2

y1=3
C

2�

3
ˇ1p2

1� z
p

3ˇ1p1

‚.y; z/.12=3/D
p

3ˇ2p1

Therefore the quantum product by p2=3 and by p , at q 2MP.1;1;1;3/ , are related by
conjugation by ‚.q/ WD‚.q; 0/:�p2

3
ı.q1;q2/

� ˇ̌̌
.q1;q2/D.1; 3

p
q/
D‚.q/

�
pıq

�
‚.q/�1

It is easy to check that ‚.q/ preserves the (orbifold) Poincaré pairing and grading.
Because ‚.q/ preserves the unit and pıq generates the small quantum cohomology
algebra, ‚.q/ is an algebra isomorphism. This proves Theorem 1.2.

Remark 3.14 The symplectic transformation U does not induce an isomorphism
between the Frobenius manifolds associated to the big quantum cohomologies of
F3 and P .1; 1; 1; 3/ but it does induce an isomorphism between the corresponding
F –manifolds.

Remark 3.15 The basis change operator ‚.q/ becomes a ring isomorphism because
it preserves the unit. If we have a miniversal extended B–model moduli space �MB

corresponding to big quantum cohomology and a mirror D–module E on it—in fact
we can reconstruct these from the small data—then the basis change operator ‚.q; z/
between two flat frames can be extended to q 2 �MB . The operator ‚.q/ will not
necessarily preserve the unit outside the original B–model moduli space MB � �MB ,
and so will not in general be a ring isomorphism there. A ring isomorphism over the
whole of �MB is given by v 7�!‚.q/.vıq/‚.q/

�11, but outside of MB this will not
in general preserve the (orbifold) Poincaré pairing.
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4 Example: F2 and P .1; 1; 2/

We now consider the examples X D P .1; 1; 2/ and Y D F2 , proving Theorem 1.1
and Conjecture 1.3. The argument is entirely parallel to that in Section 3 and so we
omit many details. The only significant difference is in the conclusion which we
draw. Since the opposite subspaces associated to the cusps for P .1; 1; 2/ and F2 agree
under parallel transport —or, more concretely, because the symplectic transformation
U W HP.1;1;2/!HF2

in Proposition 4.2 maps H�P.1;1;2/ to H�F2
—it follows that the

flat structures associated to P .1; 1; 2/ and F2 agree under analytic continuation. This
implies that the big quantum cohomology Frobenius manifolds for P .1; 1; 2/ and F2

become isomorphic after analytic continuation, and hence that the original form of the
Bryan–Graber Conjecture holds.

4.1 The Landau–Ginzburg mirror to F2

The surface F2 is a GIT quotient of C4 by .C�/2 where .C�/2 acts via the inclusion:

.C�/2 ,! .C�/4 .s; t/ 7! .s; s; s�2t; t/

The mirror family � W Z!MF2
is given by restricting the dual of this inclusion

� W .C�/4 �! .C�/2

.w1; : : : ; w4/ 7�! .w1w2w
�2
3 ; w3w4/

to the open subset MF2
� .C�/2 defined by:

MF2
D

n
.y1;y2/ 2 .C

�/2 W y1 ¤
1
4

o
The superpotential W is

W D w1Cw2Cw3Cw4

and the holomorphic volume form !y on the fiber Zy D �
�1.y1;y2/ is:

!y D
d logw1 ^ � � � ^ d logw4

d log y1 ^ d log y2
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We deleted the locus y1 D
1
4

from MF2
to ensure that Assumptions 2.17 hold. The

oscillating integrals (34) here form a basis of solutions to the Picard–Fuchs equations:

D2.D2� 2D1/ f D y2 f

D2
1D2.D2� z/ f D y1y2

2 f

D2
1D2 f D y1y2.D2� 2D1/ f

D2
1 f D y1.D2� 2D1/.D2� 2D1� z/ f

(61)

where D1 D zy1
@
@y1

and D2 D zy2
@
@y2

.

4.2 Mirror symmetry for F2

Givental’s mirror theorem [26, Theorem 0.1] implies that the I –function

(62) IF2
.y1;y2; z/

D z
X

k;l�0

y
kCp1=z
1

y
lCp2=z
2

Q0
mD�1.p2� 2p1Cmz/Qk

mD1.p1Cmz/2
Ql

mD1.p2Cmz/
Ql�2k

mD�1.p2� 2p1Cmz/

where p1 , p2 is the basis of H 2.F2/ defined in Section 2.1.1, coincides with the small
J –function (30) after a change of variables .y1;y2/ 7! .q1; q2/:

JF2
.q1; q2; z/D IF2

.y1;y2; z/

The components of IF2
.y1;y2; z/ form another basis of solutions to the Picard–Fuchs

system (61). As we explained in Section 2.5.2, this proves Conjecture 2.21 for F2 .

As before, we can read off the mirror map .y1;y2/ 7! .q1; q2/ by expanding the
I –function as a Laurent series in z�1 . This gives:

q1 D y1 exp

 
2
X
k�1

.2k � 1/!

.k!/2
yk

1

!
D

4y1�
1C

p
1� 4y1

�2
q2 D y2 exp

 
�

X
k�1

.2k � 1/!

.k!/2
yk

1

!
D

y2

�
1C

p
1� 4y1

�
2

The mirror map identifies a neighbourhood of y1 D y2 D 0 in MF2
with the Kähler

moduli space MA of F2 ; here once again .q1; q2/ are coordinates on MA . This
identification matches up the Jacobi ring J.Wy/ of Wy with the small quantum
cohomology algebra of F2 at .q1; q2/ and the residue pairing with the Poincaré pairing.
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4.3 The Landau–Ginzburg mirror to P .1; 1; 2/

The mirror family � is

� W Z D .C�/3 �!MP.1;1;2/ D .C
�/

.w1; w2; w4/ 7�! w1w2w
2
4

the superpotential W is
W D w1Cw2Cw4

and the holomorphic volume form !y on the fiber Zy D �
�1.y/ is:

!y D
d logw1 ^ d logw2 ^ d logw4

d log y

The oscillating integrals (34) satisfy the Picard–Fuchs equation

(63) D2.2D/.2D� z/ f D y f:

where D D zy @
@y

.

4.4 Mirror symmetry for P .1; 1; 2/

A theorem of Coates–Corti–Lee–Tseng [15, Theorem 1.7] shows that the I –function

(64) IP.1;1;2/.y; z/D z yp=z
X

d W2d2Z
d�0

ydQ
bWhbiDhdi

0<b�d

.pC bz/2
Q

bWhbiD0
0<b�2d

.2pC bz/
1hdi

coincides with the small J –function (29) after the (trivial) change of variables q D y :

JP.1;1;2/.q; z/D IP.1;1;2/.y; z/

The components of IP.1;1;2/.y; z/ give another basis of solutions to the Picard–Fuchs
equation (63). As before this proves Conjecture 2.21 for P .1; 1; 2/. The moduli space
MP.1;1;2/ with coordinate y is identified via the map q D y with the Kähler moduli
space MA of P .1; 1; 2/; here q is again a coordinate on MA . This identification
matches the Jacobi ring J.Wq/ with the small quantum orbifold cohomology algebra
of P .1; 1; 2/ at q , and the residue pairing with the Poincaré pairing.

4.5 Constructing the B–model VSHS

As in Section 3.5, we extend the Landau–Ginzburg mirror of F2 to a Landau–Ginzburg
model with a larger base defined in terms of the secondary fan for F2 (Figure 4).
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-HHH
HHH

HHY 6

� � � �

� � � �

p1

p1

p2 D p2

Figure 4: The secondary fan for F2

Take w1; w4 as coordinates on the fiber Zy , so that:

(65) Wy D w1C
y1y2

2

w1w
2
4

C
y2

w4

Cw4

Let SM be the toric orbifold associated to the secondary fan for F2 . There are two
distinguished coordinate patches on SM, one for each maximal cone in the secondary
fan. Let .y1;y2/ be the coordinates dual to .p1;p2/ and .y1; y2/ be the coordinates
dual to .p1; p2/ (see Figure 4). As

y1 D y
�1=2
1

y2 D y
1=2
1

y2

we see that .y1; y2/ is a uniformizing system near a Z=2Z orbifold point at .y1; y2/D0.
In the coordinates .y1; y2/ we have

(66) Wy D w1C
y2

2

w1w
2
4

C
y1y2

w4

Cw4

and so we can extend the family of tori � and the superpotential Wy across the locus
fy1 D 0g. Here we see

W D w1Cw2Cw4; w1w2w
2
4 D y2

2

which is the Landau–Ginzburg mirror to P .1; 1; 2/: the locus y1D 0, y2¤ 0 in SM is
identified with MP.1;1;2/ via the map y D y2

2
.

The B–model moduli space MB here, which is the base of our extended Landau–
Ginzburg model, is obtained from SM by deleting the closures of the loci fy1y2 D 0g

and fy1 D 1=4g. Equations (65) and (66) together define a Landau–Ginzburg model
over MB which contains the Landau–Ginzburg mirrors for F2 and for P .1; 1; 2/ as
subsets. The limit points y1 D y2 D 0 and y1 D y2 D 0 of MB are called the large
radius limit points or cusps corresponding respectively to F2 and to P .1; 1; 2/. Let
E denote the B–model VSHS with base MB defined by the Landau–Ginzburg model
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just described and equipped with the grading operator:

Gr
�
f .x; z/eWy=z !y

�
D

" 
2z@zC 2

4X
iD1

wi@wi

!
f .x; z/eWy=z !y

#

The Euler field and dimension here are

E D 2y2

@

@y2

D 2y2

@

@y2

; D D dim F2 D 2:

Remark 4.1 The superpotentials (65) and (66) have isolated nondegenerate critical
points; this implies that the small quantum cohomology algebra of F2 and the small
quantum orbifold cohomology algebra of P .1; 1; 2/ are semisimple.

4.6 An opposite subspace at each cusp

As before, the I –functions (62), (64) and the isomorphism (36) define D–module
homomorphisms:

IF2
W E �!H �.F2/˝O �MB

fz; z�1
g;

IP.1;1;2/W E jMP.1;1;2/ �!H �orb
�
P .1; 1; 2/

�
˝O �MP.1;1;2/

fz; z�1
g

(67)

by sending P .y; z@; z/ 2 E ŠOMBfzghzTMBi to z�1PIF2
or to z�1PIP.1;1;2/ . The

maps (67) send rz –parallel sections of E to constant sections, and thus identify the
space H of flat sections of E with Givental’s symplectic vector space:

IF2
W HŠH �.F2/˝Cfz; z�1

g DHF2
jQiD1

IP.1;1;2/W HŠH �orb
�
P .1; 1; 2/

�
˝Cfz; z�1

g DHP.1;1;2/jQD1

Here IF2
, which is a priori defined only in a small neighbourhood of the cusp for F2 ,

is extended to the whole of �MB by analytic continuation.

Let c1 and c2 denote the cusps of MB corresponding respectively to F2 and P .1; 1; 2/.
We define opposite subspaces H�c1

and H�c2
of H by:

IF2
.H�c1

/DH�F2
jQiD1 IP.1;1;2/.H�c2

/DH�P.1;1;2/jQD1

These opposite subspaces are uniquely characterized by monodromy and homogeneity
properties, as in Theorem 3.5, but we will not pursue this here.
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4.7 The polarizations match

Define SU W HP.1;1;2/jQD1!HF2
jQiD1 to be the composition

HP.1;1;2/jQD1

.IP.1;1;2//
�1

��������! H
IF2
����! HF2

jQiD1

and let U W HP.1;1;2/jQD1 ! HF2
jQiD1 be SU followed by changing the sign of z .

Arguing as in the proof of Proposition 3.9 shows:

Proposition 4.2 The matrix of U with respect to the bases for H �orb.P .1; 1; 2// and
H �.F2/ defined in Section 2.1.1 is:

(68)

0BBBBB@
1 0 0 0

�i
z

0 0 i

�
�i
2z

1
2

0 � i
2

�2

4z2 0 1
2

�
2z

1CCCCCA
The linear transformation U preserves the grading, the symplectic forms, and the
standard opposite subspaces.

Note that here U takes the form exp.��i.p2� 2p1/=.2z// ıU jzD1 .

4.8 The proof of Conjecture 1.3

By applying Dubrovin’s Reconstruction Theorem, as in the proof of Theorem 3.12, we
deduce Conjectures 1.3 and 5.1 for X D P .1; 1; 2/ and Y D F2 :

Theorem 4.3 Let EF2
� �HF2

jQiD1 and EP.1;1;2/
� �HP.1;1;2/jQD1 be the moving

subspace realizations (25) of the analytic big A–model VSHSs of F2 and P .1; 1; 2/.
Then there exists a map ‡ from an open subset of H �orb.P .1; 1; 2// to an open subset
of H �.F2/ such that, after analytic continuation if necessary,

SU
�
EP.1;1;2/
�

�
D EF2

‡.�/

where U is the symplectic transformation from Proposition 4.2.

4.9 The proof of Theorem 1.1

It remains only to prove Theorem 1.1. But since the transformation U maps:

� the big A–model VSHS for P .1; 1; 2/ to the big A–model VSHS for F2
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� the standard opposite subspace H�P.1;1;2/ to the standard opposite subspace H�F2

� the dilaton shift 1 2 zH�P.1;1;2/=H
�
P.1;1;2/ to the dilaton shift 1 2 zH�F2

=H�F2

it follows immediately that U induces an isomorphism between the big quantum coho-
mology Frobenius manifolds associated to X D P .1; 1; 2/ and Y D F2 . To compute
this isomorphism explicitly, consider the discussion before Proposition 2.12. The
underlying linear isomorphism ‚W H �orb.X IC/!H �.Y IC/ here is the isomorphism
zH�X =H

�
X Š zH�

Y
=H�

Y
induced by U , so ‚DU jzD1 :

(69)
‚.10/D 1 ‚.p/D p2

2

‚.p2/D
�p2

2

�2
‚.11=2/D�

i
2

�
p2� 2p1

�
The map ‚ evidently preserves the Poincaré pairings. It gives an isomorphism of
algebras between

.H �orb.X IC/; �� / and .H �.Y IC/; �f .�//

where we can read off the affine-linear identification of flat coordinates � 7! f .�/ from
the big J –functions: U

�
JX .�;�z/

�
D JY

�
f .�/;�z

�
, and so

(70) f .�/D‚.�/C
�i
2
.p2� 2p1/:

Here we are considering the analytic version of Givental’s formalism, with the Novikov
variables Q, Q1 , and Q2 set to 1. Putting back the Novikov variables using the
Divisor Equation (see Remark 2.16 above) one finds that one can absorb the shift of
the origin in (70) into the specialization of quantum parameters:

Q1 D�1; Q2 D iQ1=2:

Theorem 1.1 is proved.

5 A Crepant Resolution Conjecture

In this final section we formulate our version of the Crepant Resolution Conjecture.
This is a more precise version of Conjecture 1.3 from the Introduction. We discuss
its relationship with theorems of Lupercio–Poddar and Yasuda, and show that under a
Hard Lefschetz condition it implies the original form of the Bryan–Graber Conjecture.
We also indicate several aspects of the story which remain to be explored.

Conjecture 5.1 Let X be an orbifold with projective coarse moduli space X and let
� W Y ! X be a crepant resolution. Suppose that the big quantum products �� in (5)
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for X and Y are convergent as functions of � and Q, so that the analytic big A–model
VSHS of X (respectively of Y ) with Novikov variables specialized to 1 is well-defined
over an open subset of H �orb.X IC/ (respectively of H �.Y IC/); see Section 2.3.4.

Let EX� �HX jQiD1 , EY
� �HY jQiD1 be the moving subspace realizations (25) of the

analytic big A–model VSHSs of X and Y respectively. Define the limiting Hodge
structure EXlim;� associated to � 2H �orb.X IC/ by:

EXlim;� D lim
�!l.r.l.

e��=z EX�C�

Here � moves in H 2.X IC/ and lim�!l.r.l. denotes the large radius limit: <.
R

d �/!

�1 for all nonzero d 2 Eff.X /.

There is a symplectic transformation SU W HX jQiD1!HY jQiD1 and a map ‡ from
an open subset of H �orb.X IC/ to an open subset of H �.Y IC/ such that, after analytic
continuation if necessary,

SU
�
EX�

�
D EY

‡.�/

and that:

(a) SU is degree-preserving and Cfz; z�1g–linear.

(b) SU.�[/D .�?.�/[/SU for all nontwisted degree-two cohomology classes � 2
H 2.X IC/; here the product on the left-hand side is the Chen–Ruan orbifold cup
product and the product on the right-hand side is the usual cup product.

(c) There is a point �0 2 H 2
orb.X IC/ such that the standard opposite subspaces

H�X jQiD1 and H�
Y
jQiD1 are opposite to EXlim;�0

and to SU
�
EXlim;�0

�
respectively.

Let U W HX jQiD1!HY jQiD1 be SU followed by changing the sign of z . Conjecture
5.1 and the definition (26) of the analytic version of Givental’s cone immediately imply
Conjecture 1.3 from the Introduction:

(71) U
�
Lan
X
�
D Lan

Y :

Note that U determines the map ‡ uniquely (see (23)):

SU
�
EX�

�
\
�
1CH�Y jQiD1

�
D f1C‡.�/=zCO.1=z2/g:

In terms of the Lagrangian cones, the base space of the big A–model VSHS arises as a
space parametrizing tangent spaces to the cone Lan

X or Lan
Y

. From this viewpoint, the
map ‡ can be interpreted as the map between the moduli spaces of tangent spaces to
the cones induced from the isomorphism U W Lan

X Š L
an
Y

.
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Remark 5.2 Even though the Gromov–Witten theories of X and Y are defined over
Q, the transformation U may only be defined over C . This happened here for both
X D P .1; 1; 2/ and X D P .1; 1; 1; 3/: see Propositions 4.2 and 3.9.

Remark 5.3 The operator U will be far from unique because of various degree-
preserving symmetries of the Lagrangian cones. The ambiguity of U by scalar
multiplication (dilation symmetry) can be fixed by the condition U.1/D 1CO.z�1/,
but there will also be discrete symmetries coming from monodromy of the mirror
VSHS. The Divisor Equation implies that

(72) JX .� C �;�z/jQD1 D e��=zJX .�;�z/j
Qd 7!e

R
d �

� 2H 2.X IC/

and in particular setting �D2�i� , where �2H 2.X;Z/ is an integral degree-two class
coming from the coarse moduli space X , shows that multiplication by exp

�
2�i�=z

�
preserves LX . This symmetry comes from a monodromy around the large radius limit
point. Part (b) can therefore be understood as a compatibility between the monodromy
actions on HX and HY . There will also be discrete symmetries of other types; see the
discussion in Section 5.5 below.

Remark 5.4 When � 2H �orb.X IC/ is sufficiently close to the large radius limit, the
limiting Hodge structure EXlim;� exists and is calculated as:

(73) EXlim;� D lim
�!l.r.l.

e��=zEX�C� D SpanCfzg

�
@JX

@�˛
.�; z/

ˇ̌̌
QiD0

�
1�˛�N

Part (c) implies that in a neighbourhood of the large radius limit “lim�!l.r.l..�0C �/”,
the Frobenius structures associated to both X and Y are well-defined.

Remark 5.5 We can restore the Novikov variables in equation (71) as follows. Given
the analytic Givental cone Lan , we can define a multivalued family of analytic cones
Lan

Q
parametrized by r complex numbers Q1; : : : ;Qr 2C� :

Lan
Q WD exp

 
rX

iD1

pi log Qi=z

!
Lan

Due to the discrete symmetries from Remark 5.3, Lan
Q

depends only on suitable roots
Q

1=m1

1
; : : : ;Q

1=mr
r of the Novikov variables. From Equation (72), the original Givental

cone over the Novikov ring ƒ can be interpreted as the completion of the family of
cones fLan

Q
gQ2.C�/r at the origin Q D 0. By using (b), we have a family version

of (71):
U
�
Lan
X ;Q

�
D Lan

Y;��Q
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where �� denotes the map between Novikov variables induced by the pullback
��W H 2.X /!H 2.Y /.

Remark 5.6 The method by which Conjecture 5.1 was proved here (see Sections 3
and 4) is applicable to a broad class of examples. Every time we know a mirror for
small quantum cohomology we should have a similar explanation for wall-crossing
phenomena in genus-zero Gromov–Witten theory. This has been emphasized in work
of Coates [13] and Iritani [38], which provides evidence that something very like
Conjecture 5.1 may also hold for more general crepant birational transformations.

Remark 5.7 Conjecture 5.1 is in keeping with ideas of Ruan [46]: that the Lagrangian
cones which encode genus-zero Gromov–Witten invariants of an orbifold X and its
crepant resolution Y should coincide after a symplectic transformation, and that the
total descendant potentials of X and of Y (which are generating functions encoding
Gromov–Witten invariants of all genera) should be related by the quantization of this
symplectic transformation. These ideas were inspired by results of Givental [28], who
has found in a number of examples that operations in Gromov–Witten theory which in
genus zero give a symplectic transformation of the Lagrangian cone act on higher-genus
invariants by applying the quantization of that symplectic transformation (which is a
differential operator) to the total descendant potential.

5.1 Consequences of Conjecture 5.1

When Conjecture 5.1 holds we can distinguish two cases:

(i) U.H�X /DH
�
Y

(ii) U.H�X /¤H
�
Y

In case (i), which occurs when matrix elements of U do not contain positive powers
of z , the big quantum cohomology Frobenius structures of X and Y are related by
analytic continuation—exactly as in Section 4.9. In this case U can be thought of
as the well-known ambiguity of fundamental solutions in the theory of Frobenius
manifolds. In case (ii), which occurs when some matrix elements of U contain strictly
positive powers of z , U does not preserve the opposite subspaces and the Frobenius
manifolds associated to X and Y will in general be different. In this case H �orb.X IC/
and H �.Y IC/ carry the same F –manifold structure but have different flat coordinate
systems. Note that case (i) happened for X D P .1; 1; 2/ and that case (ii) happened
for X D P .1; 1; 1; 3/.

In the next two sections we will show that if X satisfies a Hard Lefschetz condition
then case (ii) cannot occur, and thus that our Conjecture implies the Bryan–Graber
Conjecture.
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5.2 Conjecture 5.1 and theorems of Lupercio–Poddar and Yasuda

Theorem 5.8 If Conjecture 5.1 holds then H �orb.X IC/ and H �.Y IC/ are isomorphic
as graded vector spaces.

Remark 5.9 Lupercio–Poddar and Yasuda have shown that if X and Y are K–
equivalent orbifolds then H �orb.X IC/ and H �.Y IC/ have the same Hodge numbers
[51; 42]. Thus this consequence itself is not surprising. We include a proof only because
the isomorphism which we construct depends16 on the choice of �0 in Conjecture
5.1(c), and so from the point of view of Gromov–Witten theory there may be no
distinguished graded isomorphism between H �orb.X IC/ and H �.Y IC/.

Proof of Theorem 5.8 Let �0 2H 2
orb.X / be as in Conjecture 5.1(c). Equation (73)

shows that the limiting Hodge structure EXlim;�0
is spanned over Cfzg by homoge-

neous elements of HX jQiD1 , and hence that EXlim;�0
is a homogeneous subspace of

HX jQiD1 . Because H�X jQiD1 is homogeneous and opposite to EXlim;�0
, there is a

graded isomorphism:

H �orb.X /Š zHX�=HX�
ˇ̌
QiD1

Š EXlim;�0
=zEXlim;�0

On the other hand, U.EXlim;�0
/ is also homogeneous since U is degree-preserving.

Using Conjecture 5.1(c) again, there is a graded isomorphism:

H �.Y /Š zHY
�=HY

�

ˇ̌
QiD1

ŠU.EXlim;�0
/=zU.EXlim;�0

/

The map U induces a graded isomorphism EXlim;�0
=zEXlim;�0

ŠU.EXlim;�0
/=zU.EXlim;�0

/,
and so the conclusion follows.

5.3 A Hard Lefschetz condition and the Bryan–Graber Conjecture

Theorem 5.10 Suppose that Conjecture 5.1 holds, that X has complex dimension n,
and that X in addition satisfies the Hard Lefschetz condition

!i
[W H n�i

orb .X /!H nCi
orb .X / is an isomorphism for all i � 0

where ! 2H 2.X IC/ is a Kähler class and [ is the Chen–Ruan orbifold cup product.
Then U.H�X /DH

�
Y

.

In view of the discussion in Section 5.1, this implies:

16In fact the isomorphism we construct depends only on the equivalence class of �0 in
H 2

orb.X IC/=H
2.X IC/ .
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Corollary 5.11 Conjecture 5.1 implies the revised form of the Bryan–Graber Conjec-
ture [8].

Proof of Theorem 5.10 We need to show that matrix elements of U do not contain
strictly positive powers of z . Because U is a symplectic operator, the inverse of U is
given by the adjoint U| with the sign of z flipped. Thus it suffices to show that matrix
elements of U�1 do not contain strictly positive powers of z . By taking a Jordan
normal form of the nilpotent operator �?.!/[ on H �.Y IC/, we obtain a basis for
H �.Y IC/ of the form˚

�?.!/i�j W 1� j � l; 0� i � aj

	
a1 � a2 � � � � � al

such that �?.!/ajC1�j D 0. We can assume that �j is homogeneous of degree
n� aj C �j for some �j 2 Z. Since �?.!/ is conjugate to ! over Cfz; z�1g, the
Jordan normal forms of ! and �?.!/ are the same. The hard Lefschetz condition
gives the Lefschetz decomposition of H �orb.X /:

H �orb.X /D
nM

iD0

iM
kD0

!kPH n�i
orb .X /

where PH n�i
orb .X / is the primitive cohomology group:

PH n�i
orb .X /D

˚
� 2H n�i

orb .X / W !iC1� D 0
	

The numbers aj above are determined by the Lefschetz decomposition. The variance
vX of the spectrum of H �orb.X / is:

vX D

2nX
iD0

.i � n/2 dim H i
orb.X /D

lX
jD1

ajX
iD0

.�aj C 2i/2

On the other hand, the variance vY of H �.Y / is:

vY D

lX
jD1

ajX
iD0

�
�aj C�j C 2i

�2
D vX C

lX
jD1

.1C aj /�
2
j

Since there is a graded isomorphism H �orb.X / Š H �.Y /, we have vX D vY and so
�j D 0 for all j . Thus deg�j D n� aj . Then U�1.�j / is in Ker.!ajC1/ and is also
of degree n�aj . Using the Lefschetz decomposition of H �orb.X IC/ again, we see that
U�1.�j / does not contain positive powers of z . Thus U�1.�?.!/i�j /D!

i U�1.�j /

does not contain positive powers of z either.
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Remark 5.12 Fernandez [22] has shown that the Hard Lefschetz condition in Theorem
5.10 is equivalent to the equality ageXi D age I.Xi/ for all components Xi of the
inertia stack IX . This condition holds for P .1; 1; 2/ and for any other two-dimensional
Gorenstein orbifold but not for P .1; 1; 1; 3/.

Remark 5.13 Since the paper was written, Iritani [37, Section 3.7] has studied a more
general form of the Hard Lefschetz condition, which is applicable to partial resolutions
and K–equivalences.

5.4 Conjecture 5.1 and the Ruan Conjecture

As we have seen in Theorems 1.1 and 1.2, by proving Conjecture 5.1 we also proved the
Ruan Conjecture for X DP .1; 1; 2/ and X DP .1; 1; 1; 3/. This is slightly misleading,
however, as in general our Conjecture only implies a modified version of the Ruan
Conjecture. This is explained in detail in Coates–Ruan [17, Section 8]. Coates [13]
has proved our Conjecture, and hence the modified Ruan Conjecture, in an example
for which the modified Ruan Conjecture and the original Ruan Conjecture differ: this
example is the canonical bundle to P .1; 1; 3/. We expect that the original version of
the Ruan Conjecture is false in general.

5.5 Open questions

We close by indicating several questions which deserve further study. One such direction
involves real and integral structures17 on the VSHS. The B–model VSHS has a natural
integral structure, coming from the lattice of Morse cycles, but this is hard to see in
the A–model. The study of real structures should lead to t t�–geometry of the Kähler
moduli space (see Cecotti–Vafa [10], Dubrovin [20], and Hertling [30]). There should
also be a hidden real structure on Givental’s symplectic space H , and the symplectic
transformation U from Conjecture 5.1 should preserve such real structures. The
specialization of Kähler parameters to purely imaginary numbers (such as �1 D 2�i,
�2 D ��iC 1

2
� in the case X D P .1; 1; 2/, Y D F2 ) might be explained from this

viewpoint, as they can be read off from U.1/.

One should also consider higher-genus Gromov–Witten invariants. In Givental’s quan-
tization formalism [28], the total descendant potential corresponds to a quantization of
the (genus-zero) Lagrangian cones and lives in a Fock space produced from H . This
suggests that the total descendant potentials of X and Y are related by

(74) DY /
�UDX :

17Since this paper was written, this question has been studied by Iritani [36].
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We do not give rigorous meaning to this formula here; the idea is that the two elements
DY , DX of different Fock spaces will be projectively identified by the change of
polarization U . More than a decade ago, Witten [50] introduced a quantum mechanical
system on H 3.X / for a Calabi–Yau threefold X and showed that the total potential
of the B–model behaves like a wave function of this quantum system. Formula (74)
fits with this picture. It again matches well with the ideas of Ruan discussed above,
and also with recent work of Aganagic, Bouchard and Klemm [3]. They argue that the
fundamental group of the B–model moduli space should act as “quantum symmetries”
of the total descendant potential. The monodromy around the large radius limit point
is, as discussed in Remark 5.3, related to the Divisor Equation in Gromov–Witten
theory. When we have a crepant resolution Y ! X of X , there should also be an
“extra” monodromy action on the Gromov–Witten theory of Y coming from orbifold
loops around the large radius limit point for X ; such monodromy will not in general
preserve the opposite subspace H�

Y
for Y . We hope that these symmetries together

with a hidden integral structure will reveal a kind of quantum automorphic property of
the potential DY .

Appendix

In this appendix we give a brief account of the analytic continuation of the I –function
performed in (52). We use an integral representation of Barnes type, following Candelas
et al [9], Horja [35] and Borisov–Horja [7].

Set p1 D p2� 3p1 , as in Figure 2. During the analytic continuation we regard p1 and
p2 as complex variables and consider the I –function as an analytic function in y1 ,
y2 , p1 , p2 , and z . We obtain cohomology classes by, at the end of the process, Taylor
expanding in p1 and p2 and then regarding p1 and p2 as cohomology classes. We
have:

(75) IF3
.y1;y2; z/D z �

�
1C p1

z

�3
�
�
1C p2

z

�
�
�
1C p1

z

�
�

X
n;m�0

y
nCp1=z
1

y
mCp2=z
2

z�2m

�
�
1C p1

z
C n

�3
�
�
1C p2

z
Cm

�
�
�
1C p1

z
Cm� 3n

�
Since �.z/�.1� z/D �= sin.�z/ the coefficient of y

mCp2=z
2

in (75) can be written,
neglecting several Gamma factors and powers of z , as:X

n�0

�
�
�

p1

z
C 3n�m

�
�
�
1C p1

z
C n

�3 sin
�
�

p1

z
� C 3n� �m�

�
�

y
nCp1=z
1
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This is the sum of residues:

.�1/m
sin
�
�

p1

z
�
�

�

X
n�0

RessDn

"
�.s/�.1� s/

�
�
�

p1

z
C 3s�m

�
�
�
1C p1

z
C s

�3 y
sCp1=z
1

ds

#

For jy1j <
1

27
, it can be replaced by the integral along a contour Cm from s D i1

to s D �i1 which runs along the imaginary axis for jsj large and is such that
s D 0; 1; 2; : : : are on the right hand side of Cm and that s D �1;�2;�3; : : : and
s D m

3
C

p1

3z
; m

3
C

p1

3z
�

1
3
; m

3
C

p1

3z
�

2
3
; : : : are on the left hand side of Cm :

.�1/m
sin
�
�

p1

z
�
�

�

1

2�i

Z
Cm

�
�
�

p1

z
C 3s�m

�
�.s/�.1� s/

�
�
1C p1

z
C s

�3 y
sCp1=z
1

ds

This integral converges on the region j arg.y1/j<� ; see for example Borisov–Horja [7,
Lemma A.6]. For jy1j>

1
27

we can close the contour to the left, finding:
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The residues at s D�1� n vanish in cohomology, as p3
1
D 0, so this is:

X
n�0

.�1/mCn

n!

sin
�p1

z
�
�

3 sin
� p1

3z
� C m�n

3
�
� y
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1

�
�
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C
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3

�3
Changing variables from .y1;y2/ to .y1; y2/ yields (52).
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