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Boundaries of systolic groups

DAMIAN OSAJDA

PIOTR PRZYTYCKI

For all systolic groups we construct boundaries which are EZ –structures. This
implies the Novikov conjecture for torsion-free systolic groups. The boundary is
constructed via a system of distinguished geodesics in a systolic complex, which we
prove to have coarsely similar properties to geodesics in CAT.0/ spaces.

20F65, 20F67; 20F69

1 Introduction

There are many notions of boundaries of groups used for various purposes. In this paper
we focus on the notions of Z–structure and EZ–structure introduced by Bestvina [3]
and studied eg by Dranishnikov [12] and Farrell–Lafont [16]. Our main result is the
following.

Theorem A (Theorem 6.3) Let a group G act geometrically by simplicial automor-
phisms on a systolic complex X . Then there exists a compactification xX DX [ @X of
X satisfying the following:

(1) xX is a Euclidean retract (ER).

(2) @X is a Z–set in xX .

(3) For every compact set K �X , .gK/g2G is a null sequence.

(4) The action of G on X extends to an action by homeomorphisms of G on xX .

A group G as in Theorem A is called a systolic group. It is a group acting geometrically
(ie cocompactly and properly discontinuously) by simplicial automorphisms on a
systolic complex—contractible simplicial complex satisfying some local combinatorial
conditions. Systolic complexes were introduced by Chepoi [8] (under the name of
bridged complexes) and, independently, by Januszkiewicz–Świ

,
atkowski [19] and by

Haglund [17] (in Section 2 we give some background on them). Systolic complexes
(groups) have many properties of nonpositively curved spaces (groups). There are
systolic complexes that are not CAT.0/ when equipped with the path metric in which
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every simplex is isometric to the standard Euclidean simplex. On the other hand, there
are systolic groups that are not hyperbolic, eg Z2 . Summarizing, the systolic setting
does not reduce to the CAT.0/ or to the hyperbolic one. Systolic groups admit various
combinatorial constructions (see Haglund [17], Januszkiewicz–Świ

,
atkowski [19] and

Arzhantseva et al [1]) with unexpected properties (see Januszkiewicz–Świ
,

atkowski [20]
and Arzhantseva et al [1]). We also believe that eventually both systolic complexes
and CAT.0/ cubical ones will be placed among a wider family of combinatorially
nonpositively curved contractible cell complexes.

Here we give the other definitions that appear in the statement of Theorem A. A compact
space is a Euclidean retract (or ER) if it can be embedded in some Euclidean space as
its retract. A closed subset Z of a Euclidean retract Y is called a Z–set if for every
open set U � Y , the inclusion U nZ ,! U is a homotopy equivalence. A sequence
.Ki/

1
iD1

of subsets of a topological space Y is called a null sequence if for every open
cover U D fUigi2I of Y all but finitely many Ki are U –small, ie for all but finitely
many j there exist i.j / such that Kj � Ui.j/ .

Conditions (1), (2) and (3) of Theorem A mean (following Bestvina [3], where only
free actions are considered, and Dranishnikov [12]) that any systolic group G admits
a Z–structure . xX ; @X /. The notion of an EZ–structure, ie a Z–structure with the
additional property (4) was explored by Farrell–Lafont [16] (in the case of a free action).

Bestvina [3] showed that some local homological invariants of the boundary @X are
related to cohomological invariants of the group. In particular, the dimension of the
boundary is an invariant of the group ie it does not depend on the Z–structure we
choose. This was generalized by Dranishnikov [12] to the case of geometric actions.
We emphasize that the homeomorphism type of the boundary is not a group invariant
(but the shape is an invariant; see Bestvina [3]). This was proved by Croke–Kleiner [10]
in the context of visual boundaries of CAT.0/ spaces.

Carlsson–Pedersen [7] and Farrell–Lafont [16] proved that existence of an EZ–struc-
ture on a torsion-free group G implies that the Novikov conjecture is true for G . Thus,
by Theorem A, we get the following.

Corollary Torsion-free systolic groups satisfy the Novikov conjecture.

Bartels–Lück [2] prove the Borel conjecture (which in particular implies the Novikov
conjecture) for a class B of groups which includes CAT.0/ groups and hyperbolic
groups and is closed under some elementary operations. All systolic groups known to
us belong to the class B . However it is not likely that all systolic groups belong to B .

There are only a few classes of groups for which a Z–structure . xX ; @X / has been found
(and even fewer for which an EZ–structure is known). The most important examples
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are: hyperbolic groups (see Bestvina–Mess [4]) —where X is the Rips complex and
@X is the Gromov boundary; CAT.0/ groups —where X is a CAT.0/ space and @X
is the visual boundary of X ; relatively hyperbolic groups whose parabolic subgroups
admit a Z–structure (see Dahmani [11]). Bestvina [3] asked whether every group G

with finite K.G; 1/ has a Z–structure.

The question whether every systolic group has an EZ–structure was posed by Janusz-
kiewicz and Świ

,
atkowski in 2004. Theorem A answers affirmatively this question.

We hope that, similarly to the hyperbolic and CAT.0/ cases, our boundaries will be also
useful for purposes other than the ones mentioned above. In particular we think that
splittings of systolic groups can be recognized through the topology of the boundary,
as in eg Bowditch [5] and Papasoglu–Swenson [22]. Studying more refined structures
on the boundary could help in obtaining rigidity results for some systolic groups.

The essential point of our construction is the choice of the system of good geodesics
(derived from the system of Euclidean geodesics, the distinction is not important at
this moment), which is coarsely closed under taking subsegments (Theorem B below),
and which satisfies coarsely a weak form of CAT.0/ condition (Theorem C below).

Recall that Januszkiewicz–Świ
,

atkowski [19] considered a system of directed geodesics
in a systolic complex (cf Definition 2.11). One may try to define the boundary of a
systolic complex by taking the inverse limit of the following system. Consider the
sequence of combinatorial spheres around a fixed vertex O and projections from larger
to smaller spheres along the directed geodesics terminating at O . Unfortunately, the
inverse limit of this system does not satisfy, in general, property (3) of Theorem A.
Property (3) fails, for example, already for the flat systolic plane (cf Definition 7.1).

Hence, instead of using directed geodesics, we introduce Euclidean geodesics, which
behave like CAT.0/ geodesics with respect to the flat subcomplexes of a systolic
complex. To define the Euclidean geodesic between two vertices, say s; t , in a systolic
complex, we consider the loop obtained by concatenating the two directed geodesics
joining s to t and t to s . Then we span a minimal surface S on this loop. (We make
use of minimal surface theory developed by Elsner [15]. To obtain some uniqueness
properties on S we complement Elsner’s theory with our results on layers, which span
the union of all 1–skeleton geodesics between t and s .) The surface S is isometric to
a contractible subcomplex of the flat systolic plane and hence has a natural structure of
a CAT.0/ space. The Euclidean geodesic is defined as a sequence of simplices in S ,
which runs near the CAT.0/ geodesic between s and t .

Now we pass to the more technical part of the exposition. Formally, the Euclidean
geodesic is defined for a pair of simplices �; � in a systolic complex, which satisfies
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� � Sn.�/; � � Sn.�/ for some n � 0 (where Sn.�/ denotes the combinatorial
sphere of radius n around � , cf Definition 2.4). The Euclidean geodesic is a certain
sequence of simplices ık , where 0 � k � n, such that ı0 D �; ın D � , and ık �
S1.ıkC1/; ıkC1 � S1.ık/ for 0� k < n (cf Lemma 9.15(i)). The two most significant
features of Euclidean geodesics are given by the following.

Theorem B (Theorem 12.2) Let �; � be simplices of a systolic complex X , such
that for some natural n we have � � Sn.�/; � � Sn.�/. Let .ık/nkD0

be the Euclidean
geodesic between � and � . Take some 0 � l < m � n and let .rk/

m
kDl

be a 1–
skeleton geodesic such that rk 2 ık for l � k � m. Consider the simplices zıl D
rl ; zılC1; : : : ; zım D rm of the Euclidean geodesic between vertices rl and rm . Then for
each l � k �m we have jık ; zık j � C , where C is a universal constant.

Theorem C (Theorem 13.1) Let s; s0; t be vertices in a systolic complex X such
that jst j D n; js0t j D n0 . Let .rk/

n
kD0

; .r 0
k
/n
0

kD0
be 1–skeleton geodesics such that rk 2

ık ; r
0
k
2 ı0

k
, where .ık/; .ı0k/ are Euclidean geodesics for t; s and for t; s0 respectively.

Then for all 0 � c � 1 we have jrbcncr
0
bcn0cj � cjss0j C C , where C is a universal

constant.

The article is organized as follows. It consists of an introductory part (Sections 1–2),
two main parts (Sections 3–6 and Sections 7–13) which can be read independently and
a concluding Section 14.

In Section 2 we give a brief introduction to systolic complexes.

In the first part, assuming we have defined Euclidean geodesics satisfying Theorem B
and Theorem C, we define the boundary: In Section 3 we define the boundary as a
set of equivalence classes of good geodesic rays. Then we define topology on the
compactification obtained by adjoining the boundary (Section 4) and we show its
compactness and finite dimensionality (Section 5). Finally, in Section 6, we prove
Theorem A —the main result of the paper.

In the second part of the article we define Euclidean geodesics and establish Theorem B
and Theorem C: In Section 7 we recall Elsner’s results on minimal surfaces. In
Section 8 we study layers, whose union contains all geodesics between given vertices.
We define Euclidean geodesics in Section 9.

In the next two sections we prove Theorem 10.1 which is a weak version of Theorem B
(though with a better constant). Apart from the definitions these sections can be
skipped by a hurried reader. We decided to include them since this way of obtaining
(the weak version of) Theorem B is straightforward in opposition to the strategy in
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Section 12, which is designed to obtain Theorem C. In Section 10 we study the position
of directed geodesics between two simplices of a given Euclidean geodesic with respect
to the minimal surface appearing in its construction. Then we verify Theorem 10.1 in
Section 11 by studying CAT.0/ geometry of minimal surfaces.

The last two sections are devoted to the proofs of Theorem B and Theorem C: In
Section 12 we prove (in a technically cumbersome manner) the powerful Proposition
12.1 linked with CAT.0/ properties of the triangles, whose two sides are Euclidean
geodesics. Proposition 12.1 easily implies Theorem B, but its main application comes
in Section 13, where we use it to derive Theorem C.

We conclude with announcing some further results for which we do not provide proofs
in Section 14.
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2 Systolic complexes

In this section we recall (from Januszkiewicz–Świ
,

atkowski [19; 20] and Haglund–
Świ

,
atkowski [18]) the definition and basic properties of systolic complexes and groups.

Definition 2.1 A subcomplex K of a simplicial complex X is called full in X if
any simplex of X spanned by vertices of K is a simplex of K . The span of a
subcomplex K �X is the smallest full subcomplex of X containing K . We denote it
by span.K/. A simplicial complex X is called flag if any set of vertices, which are
pairwise connected by edges of X , spans a simplex in X . A simplicial complex X is
called k –large, for 1� k � 4, if X is flag and there are no embedded cycles of length
less than k , which are full subcomplexes of X (ie X is flag and every simplicial cycle
of length at least 4 and less than k “has a diagonal”).

Definition 2.2 A simplicial complex X is called systolic if it is connected, simply
connected and links of all simplices in X are 6–large. A group � is called systolic
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if it acts cocompactly and properly (ie geometrically) by simplicial automorphisms
on a systolic complex X . (Properly means X is locally finite and for each compact
subcomplex K �X the set of  2 � such that  .K/\K ¤∅ is finite.)

Recall a result of Januszkiewicz–Świ
,

atkowski [19, Proposition 1.4 ], that systolic
complexes are themselves 6–large. In particular they are flag. Moreover, we have the
following.

Theorem 2.3 [19, Theorem 4.1(1)] Finite dimensional systolic complexes are con-
tractible.

Now we briefly treat the definitions and facts concerning convexity.

Definition 2.4 For every pair of subcomplexes (usually vertices) A;B in a simplicial
complex X denote by jA;Bj (jabj for vertices a; b ) the combinatorial distance between
A.0/;B.0/ in X .1/ , the 1–skeleton of X (ie the minimal number of edges in a simplicial
path connecting both sets). A subcomplex K of a simplicial complex X is called
3–convex if it is a full subcomplex of X and for every pair of edges ab; bc such that
a; c 2K; jacj D 2, we have b 2K . A subcomplex K of a systolic complex X is called
convex if it is connected and links of all simplices in K are 3–convex subcomplexes
of links of those simplices in X .

Januszkiewicz–Świ
,

atkowski [19, Lemma 7.2] conclude that convex subcomplexes of
a systolic complex X are full and 3–convex in X , and systolic themselves, hence
contractible by Theorem 2.3. The intersection of a family of convex subcomplexes is
convex. For a subcomplex Y �X , n� 0, the combinatorial ball Bn.Y / of radius n

around Y is the span of fp 2X .0/ W jp;Y j � ng. (Similarly Sn.Y /D spanfp 2X .0/ W

jp;Y j D ng.) If Y is convex (in particular, if Y is a simplex) then Bn.Y / is also
convex, as proved by Januszkiewicz–Świ

,
atkowski [19, Corollary 7.5]. Combining this

with previous remarks we record:

Corollary 2.5 In systolic complexes, balls around simplices are contractible.

Haglund–Świ
,

atkowski prove the following.

Proposition 2.6 [18, Proposition 4.9] A full subcomplex Y of a systolic complex X

is convex if and only if Y .1/ is geodesically convex in X .1/ (ie if all geodesics in X .1/

joining vertices of Y lie in Y .1/ ).

We record:

Corollary 2.7 In systolic complexes balls around simplices are geodesically convex.
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We will need a crucial “projection lemma”. The residue of a simplex � in X is the
union of all simplices in X , which contain � .

Lemma 2.8 [19, Lemma 7.7] Let Y be a convex subcomplex of a systolic complex X

and let � be a simplex in S1.Y /. Then the intersection of the residue of � and of the
complex Y is a simplex (in particular it is nonempty).

Definition 2.9 The simplex as in Lemma 2.8 is called the projection of � onto Y .

The following lemma immediately follows from Definition 2.9.

Lemma 2.10 Let � � z� be simplices in S1.Y / for some convex Y and let �; z� be
their projections onto Y . Then z� � � .

Definition 2.11 For a pair of vertices v;w with jvwj D n in a systolic complex X

we define inductively the sequence of simplices �0 D v; �1; : : : ; �n D w as follows.
Take �i equal to the projection of �i�1 onto Bn�i.w/ for i D 1; : : : ; n� 1; n. The
sequence .�i/

n
iD0

is called the directed geodesic from v to w (this notion is introduced
and studied by Januszkiewicz–Świ

,
atkowski [19]).

We can extend this construction to any pair .�0;W /, where W is a convex subcomplex
of X and �0 is a simplex. Namely, if for some n we have �0 � Sn.W / then take
�i to be the projection of �i�1 onto Bn�i.W /. If �0 intersects both Sn.W / and
Sn�1.W / then take �1 D �0\Sn�1.W / and then proceed as previously. We call the
final �n �W the projection of �0 onto W . Note that this coincides with Definition
2.9. Observe that if �0 �W then the projection of �0 onto W is equal to �0 .

Finally, recall a powerful observation.

Lemma 2.12 [20, Lemma 4.4] Every full subcomplex of a systolic complex is
aspherical.

3 Definition of the boundary

Let X be a systolic complex. In this section we give two equivalent definitions of
the boundary of X as a set. We use the notion of Euclidean geodesics which will be
introduced in Section 9, but actually we need only its features given by Theorem B and
Theorem C. Thus, it is enough to read Sections 1–2 to follow the first part of the article
(Sections 3–6). Let C be a natural number, which is a universal constant satisfying
assertions of both Theorem B and Theorem C.
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Remark 3.1 Let .ıi/niD0
be a Euclidean geodesic and let vk be a vertex in ık for

some 0� k � n. Then there exists a 1–skeleton geodesic .vi/
n
iD0

such that vi 2 ıi for
0� i � n. This follows from the fact that ıiC1 � S1.ıi/, which we use for 1� i < k ,
and from ıi � S1.ıiC1/, which we use for k � i < n� 1 (see Section 1 or Lemma
9.15(i)).

Definition 3.2 Let v;w be vertices of a systolic complex X . Let  D .v0 D

v; v1; v2; : : : ; vn D w/ be a geodesic in the 1–skeleton of X between v and w or
let  D .v D v0; v1; v2; : : :/ be a 1–skeleton geodesic ray starting at v (then we set
nD1). For 0� i < j � n, we denote the Euclidean geodesic between vi and vj by
.ı

i;j
i D vi ; ı

i;j
iC1

; : : : ; ı
i;j
j D vj /. We say that  is a good geodesic between v and w

or that  is a good geodesic ray starting at v if for every 0 � i < j � n and every
i � k � j we have jvk ; ı

i;j

k
j � C C 1 (the constant C is defined at the beginning of

this section).

We denote the set of all good geodesic rays in X by R. For a given vertex O of X ,
we denote the set of all good geodesic rays starting at O by RO .

The following two results are immediate corollaries of Theorem B and Theorem C.

Corollary 3.3 For every two vertices v;w 2X there exists a good geodesic between
them.

Proof Let .ı0 D v; ı1; : : : ; ın Dw/ be the Euclidean geodesic between v and w . By
Remark 3.1, there exists a 1–skeleton geodesic  D .v0D v; v1; v2; : : : ; vnDw/ with
vi 2 ıi . We claim that  is a good geodesic. To justify the claim let 0 � i < j � n.
Let .zıi ; zıiC1; : : : ; zıj / be the Euclidean geodesic between vi and vj . By Theorem B,
for every i � k � j , we have

jvk ; zık j � jık ; zık jC 1� C C 1;

which justifies the claim.

Corollary 3.4 Let .v0 D O; v1; v2; : : : ; vn/; .w0 D O; w1; w2; : : : ; wm/ be good
geodesics in X . Then for all 0� c � 1 we have jvbcncwbcmcj � cjvnwmjCD , where
D D 3C C 2.

Proof Let .ıvi /; .ı
w
i / be the Euclidean geodesics between O and vn , wm , respectively.

Fix 0� c� 1. Pick vertices v0
bcnc
2 ıv
bcnc

and w0
bcmc
2 ıw
bcmc

which realize the distance
to vbcnc; wbcmc , respectively. Find 1–skeleton geodesics .v0i/

n
iD0

and .w0i/
m
iD0

such
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that v0i 2 ı
v
i and w0i 2 ı

w
i . Their existence is guaranteed by Remark 3.1. By Theorem C,

we have

jvbcncwbcmcj � jvbcncv
0
bcncjC jv

0
bcncw

0
bcmcjC jw

0
bcmcwbcmcj

D jvbcnc; ı
v
bcncjC jv

0
bcncw

0
bcmcjC jı

w
bcmc; wbcmcj

� .C C 1/C .cjvnwmjCC /C .C C 1/;

as desired.

The following simple corollary of Corollary 3.4 will be useful.

Corollary 3.5 Let .v0 DO; v1; v2; : : : ; vk/; .w0 DO; w1; w2; : : : ; wl/ be good geo-
desics in X . Then for all 0�N �min fk; lg we have jvNwN j � 2jvkwl jCD .

Proof Without loss of generality we can assume that k� l . Observe that l�k�jvkwl j.
Hence, by Corollary 3.4, we have

jvNwN j � jvkwk jCD � jvkwl jC jwlwk jCD

D jvkwl jC .l � k/CD � 2jvkwl jCD:

Below we define the central object of the article.

Definition 3.6 The ideal boundary (or shortly the boundary) of a systolic complex X

is the set @X D R= � of equivalence classes of good geodesic rays, where rays
�D .v0; v1; v2; : : :/; � D .w0; w1; w2; : : :/ are identified if jviwi j is bounded above
by a constant independent of i (one can check that this happens exactly when the
Hausdorff distance between � and � is finite). For a good geodesic ray �, we denote
its equivalence class in @X by Œ��.

In order to introduce topology on xX D X [ @X we give another definition of the
boundary. The two definitions will turn out to be equivalent in the case of a systolic
complex with a geometric group action.

Definition 3.7 Let O be a vertex of a systolic complex X . Then the (ideal) boundary
of X with respect to the basepoint vertex O is the set @OX DRO=� of equivalence
classes of good geodesic rays starting at O , where rays �D .v0DO; v1; v2; : : :/; � D

.w0 DO; w1; w2; : : :/ are identified if jviwi j is bounded above by a constant indepen-
dent of i (again this happens exactly when the Hausdorff distance between � and �
is finite). For � 2RO , we denote its equivalence class in @OX by Œ�� (we hope this
ambiguity of the notation will not cause confusion).

Geometry & Topology, Volume 13 (2009)



2816 Damian Osajda and Piotr Przytycki

Lemma 3.8 Let �D .v0 D O; v1; v2; : : :/; � D .w0 D O; w1; w2; : : :/ 2RO . Then
Œ��D Œ�� if and only if jviwi j �D for all i .

Proof We show that if for some i we have jviwi j �D � 1, then Œ��¤ Œ��. Let i be
as above and R be a natural number. Then, by Corollary 3.4, we have

jvRiwRi j �R.jviwi j �D/�R:

Since R can be chosen arbitrarily large, we get Œ��¤ Œ��.

In the remaining part of this section we prove equivalence of the above two notions
of boundaries in the case of locally finite complexes. Assume that X is a locally
finite systolic complex. Let O 2 X be a fixed vertex and let � D .v0; v1; v2; : : :/

be a good geodesic ray in X . For every i � 0 we choose a good geodesic �i D

.vi
0
DO; vi

1
; vi

2
; : : : ; vi

n.i/
D vi/, guaranteed by Corollary 3.3. Since B1.O/ is finite,

for some vertex v1 2S1.O/ there are infinitely many i such that n.i/D jOvi j � 1 and
vi

1
D v1 . Similarly, since all balls are finite, we obtain inductively vertices vk 2 Sk.O/

satisfying the following. For each k there are infinitely many i such that n.i/ � k

and for all j � k we have vi
j D vj . For each k denote some such i by i.k/. The

following easy facts hold.

Lemma 3.9 The sequence .v0 DO; v1; v2; : : :/ obtained as above is a good geodesic
ray. Moreover, for every j we have jvjvj j � 3jOv0jCD .

Proof The first assertion follows from the fact that for every k the sequence .v0 DO;

v1; v2; : : : ; vk/ is a subsequence of the good geodesic �i.k/ and hence, by Definition
3.2, it is a good geodesic.

Now we prove the second assertion. Let j � 0. Consider the case of n.i.j //� i.j /

(the case of n.i.j //> i.j / can be examined analogously). Then for kD i.j /�n.i.j //

we have jvkvi.j/jDjv
i.j/
0

vi.j/j. Thus we can apply Corollary 3.4 with mD n to good
geodesics �i.j/ and .vk ; vkC1; : : : ; vi.j//, which yields the following.

jvkCjvj j D jv
kCjv

i.j/
j j � jvkv

i.j/
0
jCD � .jOv0

jC k/CD:

jvjvj j � kCjvkCjvj j � jOv
0
jC 2kCD � 3jOv0

jCD;Hence

where the last inequality follows from k � jOv0j, which is the triangle inequality for
v0; vi.j/ and O .

Corollary 3.10 Let X be a locally finite systolic complex and O;O 0 its vertices. Then
the map ˆO W @X ! @OX given by ˆO.Œ.v

0; v1; v2; : : :/�/D Œ.v0 DO; v1; v2; : : :/� is
well defined. It is a bijection between @X and @OX . Its restriction ˆO 0O DˆO j@O0X

is a bijection between @O 0X and @OX .
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4 Topology on xX D X [ @OX

Let X be a systolic complex and O 2 X be its vertex. In this section we define the
topology on the set xX DX [@OX , which extends the usual topology on the simplicial
complex X . The idea is to define the topology through neighborhoods (not necessarily
open) of points in xX . The only problem is to define the neighborhoods of points in the
boundary.

For a 1–skeleton geodesic or geodesic ray �D .v0; v1; v2; : : :/, we denote by B1.�/

the combinatorial ball of radius 1 around the subcomplex fv0; v1; v2; : : :g. Let C and
D D 3C C 2 be the constants from the previous section.

Definition 4.1 Let � D .v0 D O; v1; v2; : : :/ be a good geodesic ray in X and let
R >D (ie R �DC 1) and N � 1 be natural numbers (in fact we could also allow
N D 0, but this would complicate some computations later on). By GO.�;N;R/ we
denote the set of all good geodesics .w0 D O; w1; : : : ; wk/ with k � N and good
geodesic rays .O Dw0; w1; : : :/, such that jwN vN j �R. By G0O.�;N;R/ we denote
the set

f.wN ; wNC1; : : :/ j .w0 DO; w1; : : :/ 2 GO.�;N;R/g :

A standard neighborhood of Œ�� 2 @OX � xX is the set

UO.�;N;R/D fŒ�� j � 2 GO.�;N;R/\ROg[

[˚
intB1.�/ j � 2 G0O.�;N;R/

	
:

If it is clear what is the basepoint O , we write G.�;N;R/, G0.�;N;R/ and U.�;N;R/

instead of GO.�;N;R/, G0O.�;N;R/ and UO.�;N;R/.

Before we define the topology, we need the following useful lemmas. The first one is
an immediate consequence of the above definition.

Lemma 4.2 Let �; � 2RO and let N;N 0;R>D;R0 >D be natural numbers such
that N 0 �N . If G.�;N 0;R0/� G.�;N;R/ then U.�;N 0;R0/� U.�;N;R/.

Lemma 4.3 Let U.�;N;R/ be a standard neighborhood, let � 2 RO be such that
Œ��D Œ�� and let R0 >D be a natural number. Then, for N 0 � .R0CD/N , we have
U.�;N 0;R0/� U.�;N;R/.

Proof Denote �D .v0 DO; v1; v2; : : :/ and � D .w0 DO; w1; w2; : : :/.

By Lemma 4.2, it is enough to show that for every � 2 G.�;N 0;R0/ we have � 2
G.�;N;R/.
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Let � D .z0 D O; z1; z2; : : :/ 2 G.�;N 0;R0/. By Corollary 3.4 and Lemma 3.8, we
have

jzN vN j �
1

R0CD
jzN 0vN 0 jCD �

1

R0CD
.jzN 0wN 0 jC jwN 0vN 0 j/CD

�
1

R0CD
.R0CD/CD �R:

Thus � 2 G.�;N;R/ and the lemma follows.

The following defines topology on xX .

Proposition 4.4 Let A be the family of subsets A of xX D X [ @OX satisfying the
following. A\X is open in X and for every x 2 A\ @OX there is some � 2 RO

such that Œ��D x and there is a standard neighborhood U.�;N;R/�A. Then A is a
topology on xX .

Proof The only thing we have to check is the following. If A1;A2 2 A and Œ�� 2
A1\A2\ @OX , then there is a standard neighborhood U.�;N;R/ of Œ�� contained
in A1\A2 .

Since Ai 2A, for i D 1; 2, there are standard neighborhoods U.�i ;Ni ;Ri/�Ai such
that Œ�i � D Œ��. Thus, by Lemma 4.3, for any natural R > D there exists N � Ni ,
i D 1; 2, such that U.�;N;R/� U.�1;N1;R1/\U.�2;N2;R2/�A1\A2 .

Remark 4.5 The boundary @OX is a closed subset of xX DX [ @OX .

Remark 4.6 It is easy to verify that when X is ı–hyperbolic (in the sense of Gromov)
then our boundary @OX (with topology induced from xX ) is homeomorphic in a natural
way with the Gromov boundary of X .

We still did not prove that the topology defined in Proposition 4.4 is nontrivial. This
will follow from the next two lemmas, in which we characterize the intersections with
the boundary of the interiors of standard neighborhoods. In particular, we show (in
Lemma 4.8) that Œ�� is contained in the interior of U.�;N;R/.

Lemma 4.7 For a set A� xX , the intersection int A\ @OX consists of those points
x 2 @OX for which there exists a representative � with a standard neighborhood
U.�;N;R/�A.
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Proof Let B be the set of those points x 2 @OX for which there exists a representative
� of x with a standard neighborhood U.�;N;R/�A.

It is clear that int A \ @OX � B , since int A is open in the topology defined in
Proposition 4.4. We want now to prove the converse inclusion B � int A\ @OX . It is
clear that B � A\ @OX . Thus to prove the lemma we only have to show that B is
open in @OX (in the topology induced from xX ).

Let x2B and let its representative � be such that the standard neighborhood U.�;N;R0/

is contained in A. By Lemma 4.3, we can assume that R0 � 2.DC1/. Choose natural
numbers R > D and N 0 � RN . We claim that U.�;N 0;R/\ @OX � B (ie that
equivalence classes of elements in G.�;N 0;R/\RO lie in B ). This implies that B

is open in @OX .

To justify the claim let � 2 G.�;N 0;R/\RO . To prove that Œ�� 2 B it is enough to
establish U.�;N 0;R/ � U.�;N;R0/, since the latter is contained in A. By Lemma
4.2, it is enough to show that for every � 2 G.�;N 0;R/, we have � 2 G.�;N;R0/.
Let � D .z0 D O; z1; : : :/ 2 G.�;N 0;R/. Denote � D .v0 D O; v1; : : :/; � D .w0 D

O; w1; : : :/.

By Corollary 3.4, we have

jzN vN j � jzNwN jC jwN vN j

�

� 1

R
jzN 0wN 0 jCD

�
C

� 1

R
jwN 0vN 0 jCD

�
�

� 1

R
RCD

�
C

� 1

R
RCD

�
D 2.DC 1/�R0:

Thus � 2 G.�;N;R0/ and it follows that U.�;N 0;R/� U.�;N;R0/, which justifies
the claim.

Lemma 4.8 Suppose that U.�;N;R/ is a standard neighborhood and suppose � D
.w0 DO; w1; w2; : : :/ 2RO is such that vN D wN , where �D .v0 DO; v1; v2; : : :/.
Then Œ�� is contained in the interior of U.�;N;R/.

Proof By Lemma 4.7, it is enough to show that there exists a standard neighborhood
U.�;N 0;R/ of Œ�� contained in U.�;N;R/. Let N 0 � RN . By Lemma 4.2, it is
enough to show that for .z0DO; z1; z2; : : :/ 2 G.�;N 0;R/, we have jzN vN j �R. By
Corollary 3.4, we have

jzN vN j D jzNwN j �
1

R
jzN 0wN 0 jCD �

1

R
RCD �R;

as desired.
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Below we give a sufficient condition for two standard neighborhoods to be disjoint.

Lemma 4.9 Let U.�;N;R/ and U.�;N;S/ be two standard neighborhoods, with
�D .v0DO; v1; v2; : : :/ and �D .w0DO; w1; w2; : : :/. If jvNwN j>RCSCDC2,
then U.�;N;R/\U.�;N;S/D∅.

Proof By contradiction. Assume U.�;N;R/\U.�;N;S/¤∅.

Case 1 Let x 2 U.�;N;R/\U.�;N;S/\X . Then, by Definition 4.1, there exist
�0 D .v0

0
DO; v0

1
; v0

2
; : : :/ 2 G.�;N;R/ and � 0 D .w0

0
DO; w0

1
; w0

2
; : : :/ 2 G.�;N;S/

such that x belongs to the interior of both some simplex with vertex v0
k

and some
simplex with vertex w0

l
, for some k; l � N . Then these simplices coincide and

jv0
k
w0

l
j � 1. By Corollary 3.5, we have

jvNwN j� jvN v
0
N jCjv

0
Nw
0
N jCjw

0
NwN j�RC.2jv0kw

0
l jCD/CS �RC.2CD/CS;

which is a contradiction.

Case 2 Let �0D .v0
0
DO; v0

1
; v0

2
; : : :/2G.�;N;R/ and � 0D .w0

0
DO; w0

1
; w0

2
; : : :/2

G.�;N;S/ be such that Œ�0�D Œ� 0�. Then, by Lemma 3.8, we get

jvNwN j � jvN v
0
N jC jv

0
Nw
0
N jC jw

0
NwN j �RCDCS;

which is a contradiction.

5 Compactness and finite dimensionality

Let X be a locally finite systolic complex and let O 2 X be its vertex. In this section
we show that xX DX [@OX is compact metrizable and (if X satisfies some additional
local finiteness conditions) finitely dimensional. We also prove that, for a different
vertex O 0 of X , the compactifications X [ @OX and X [ @O 0X are homeomorphic.

Proposition 5.1 If X is locally finite then the space xX DX[@OX is second countable
and regular.

Proof It is clear that xX is second countable. We show that xX is regular.

First we show that xX is Hausdorff. We consider only the case of two points of the
boundary—the other cases are obvious. Let Œ�� ¤ Œ�� be two boundary points with
�D .v0DO; v1; v2; : : :/ and �D .w0DO; w1; w2; : : :/. Fix a natural number R>D

(for example RDDC1). We can find N such that jvNwN j> 2RCDC2. Then, by
Lemma 4.8, we have Œ�� 2 int U.�;N;R/ and Œ�� 2 int U.�;N;R/ and, by Lemma 4.9,
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we get int U.�;N;R/\ int U.�;N;R/�U.�;N;R/\U.�;N;R/D∅. Thus we get
disjoint nonempty open neighborhoods of Œ�� and Œ��.

To show that xX is regular it now suffices to find, for every point x 2 xX and every
closed subset A � xX which does not contain x , disjoint open sets U;V such that
x 2 U and A� V . The case of x 2 X is obvious, hence we consider only the case
of x D Œ�� 2 @OX , for � D .v0 D O; v1; v2; : : :/. Fix some natural R > D . Since
xX n A is open, by the definition of the topology (Proposition 4.4) and by Lemma

4.3, we can find a natural number N > 0 such that U.�;N;R0/ � xX n A, where
R0 � 2DC 2. Let N 0 D .RC 1/N C 1 and let U D int U.�;N 0;R/. Observe that,
by Lemma 4.8, we have x 2 U . Now we define V . For each y 2 A\X , choose
an open set Vy D int B1.z

0/ for some vertex z0 in X such that y 2 int B1.z
0/. Then

we set V D
S˚

Vy j y 2A\X
	
[
S
fint U.�;N 0;R/ j Œ�� 2A\ @OX g. By Lemma

4.8, we have A\@OX �V , hence A�V . Thus to prove that U and V are as desired
we only need to show that U \V D∅.

First we prove that U \ int U.�;N 0;R/ D ∅, for Œ�� 2 A \ @OX . Let � D
.w0 D O; w1; w2; : : :/. Then, by Corollary 3.4 and by A \ U.�;N;R0/ D ∅, we
have

jvN 0wN 0 j �
N 0

N
.jvNwN j �D/ > .RC 1/.R0�D/

� .RC 1/.DC 2/ > 2RCDC 2:

Thus, by Lemma 4.9, U \ int U.�;N 0;R/� U.�;N 0;R/\U.�;N 0;R/D∅.

Now we show that U \Vy D∅, for y 2A\X . By contradiction, assume p 2U \Vy .
Since p 2 U , there exist a vertex z of the simplex containing p in its interior and
a good geodesic .z0 D O; z1; : : : ; zk D z/ 2 G.�;N 0;R/, where k � N 0 . Then, by
Corollary 3.4, we have

jvN zN j �
N

N 0
jvN 0zN 0 jCD <

1

R
RCD �DC 1:

On the other hand, since p 2 Vy , there is a vertex z0 such that fy;pg 2 int B1.z
0/.

Then jzz0j � 1. Let .O D z0
0
; z0

1
; : : : ; z0

l
D z0/ be a good geodesic. We have l �N 0�1,

hence by Corollary 3.4 and Corollary 3.5, we get

jzN z0N j �
N

N 0� 1
jzN 0�1z0N 0�1jCD �

1

RC 1
.2jzz0jCD/CD

�
1

DC 2
.2CD/CD DDC 1:

Summarizing, we have jvN z0
N
j � jvN zN j C jzN z0

N
j � 2DC 2 �R0 . It follows that

.OD z0
0
; z0

1
; : : : ; z0

L
D z0/2G.�;N;R0/ and hence y 2U.�;N;R0/—contradiction.
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Corollary 5.2 If X is locally finite then the space xX DX [ @OX is metrizable.

Proof This follows from the Urysohn Metrization Theorem—cf Dugundji [13, Corol-
lary 9.2].

Proposition 5.3 If X is locally finite then the space xX DX [ @OX is compact.

Proof By Corollary 5.2, it is enough to show that every infinite sequence of points
in xX contains a convergent subsequence. Let .x1;x2;x3; : : :/ be a given sequence of
points in xX . If for some n> 0 there are only finitely many xi outside the ball Bn.O/

(which is finite), then we can find a convergent subsequence. From now on we assume
there is no n as above.

For every i we choose a good geodesic or a good geodesic ray �iD .vi
0
DO; vi

1
; vi

2
; : : :/

in the following way. If xi 2 X then �i D .vi
0
DO; vi

1
; vi

2
; : : : ; vi

n.i/
/ is a good

geodesic between O and a vertex vi
n.i/

lying in a common simplex with the point
xi . If xi 2 @OX then we take �i so that xi D Œ�i � and we set n.i/ D 1. By our
assumptions on .x1;x2;x3; : : :/, for every n> 0 there exists an arbitrarily large i such
that n.i/ > n. Since S1.O/ is finite, for some vertex v1 2 S1.O/ there are infinitely
many i such that n.i/ � 1 and vi

1
D v1 . Let i.1/ be some such i . Similarly, since

all spheres are finite, we obtain inductively vertices vk 2 Sk.O/ and numbers i.k/

satisfying the following. For each k there are infinitely many i such that n.i/� k and
for all j � k we have vi

j D vj ; we denote some such i > i.k � 1/ by i.k/.

Observe that for every k the sequence .v0DO; v1; v2; : : : ; vk/ is a subsequence of the
good geodesic or the good geodesic ray �i.k/ and hence, by Definition 3.2, it is a good
geodesic. Thus every subsequence of the infinite sequence .v0 DO; v1; v2; : : :/ is a
good geodesic and again, by Definition 3.2, .v0 DO; v1; v2; : : :/ is a good geodesic
ray.

We claim that the sequence .xi.k//1
kD1

of points of xX converges to Œ�� 2 @OX ,
where � D .v0 D O; v1; v2; : : :/. To prove the claim it is enough to show (since
every open set containing Œ�� contains some U.�;N;R/, by Lemma 4.3) that we have
�i.k/ 2 G.�;N;R/, for every k � N . This follows from the equality vi.k/

N
D vN ,

which holds for every k �N .

Observe that by the above proof we get the following.

Corollary 5.4 If a locally finite systolic complex is unbounded then its boundary is
nonempty.
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Below we prove that the bijection ˆO 0O defined in Corollary 3.10 extends to a homeo-
morphism of compactifications coming from different basepoints.

Lemma 5.5 Let X be a locally finite systolic complex and let O;O 0 be its vertices.
Then the map ˆO 0O W X [ @O 0X !X [ @OX defined as an extension by identity on
X of the map ˆO 0O W @O 0X ! @OX is a homeomorphism.

Proof By compactness (Proposition 5.3) and by Corollary 3.10, we only have to
show that ˆO 0O is continuous. It is enough to check the continuity at the boundary
points. Let � D .v0 D O; v1; v2; : : :/ be obtained from a good geodesic ray � D

.v0 D O 0; v1; v2; : : :/ as in the definition of the map ˆO 0O . We show that ˆO 0O is
continuous at Œ��. Let dDjOO 0j, let R>D be a natural number, let R0DRC3DC6d

and let U be an open neighborhood of Œ�� in X [ @OX . We have to show that there
exists an open neighborhood V of Œ�� in X [ @O 0X such that ˆO 0O.V / � U . By
Lemma 4.3, there exists N such that UO.�;N;R

0/�U . Let V D int UO 0.�;NCd;R/.
By Lemma 4.8, Œ�� 2 V . We claim that ˆO 0O.V /� U —this will finish the proof.

First we show that for x 2 V \X we have ˆO 0O.x/D x 2 U . For such an x choose,
by the definition of UO 0.�;N Cd;R/, a good geodesic .w0DO 0; w1; w2; : : : ; wk/2

GO 0.�;N C d;R/ such that x belongs to the interior of a simplex with vertex wk ,
where k � N C d . Let � D .w0 D O; w1; w2; : : : ; wl D w

k/ be a good geodesic
guaranteed by Corollary 3.3. Then jl �kj � d , hence l �N and wN is defined. By
Lemma 3.9 and Corollary 3.4, we have

jwN vN j � jwNw
N
jC jwN vN

jC jvN vN j

� .3d CD/C .jwNCdvNCd
jCD/C .3d CD/

�RC 3DC 6d DR0:

This inequality implies that � 2 GO.�;N;R
0/ and hence x 2 UO.�;N;R

0/� U .

Now we show that for Œ�� 2 V \ @O 0X we have that ˆO 0O.Œ��/ 2 U . Let � D
.w0 D O 0; w1; w2; : : :/ 2 GO 0.�;N C d;R/\RO 0 . Let � D .w0 D O; w1; w2; : : :/

be obtained from � as in the definition of ˆO 0O . Then, by Lemma 3.9 and Corollary
3.4, we can perform the same computation as in the previous case to get jwN vN j �

RC3DC6dDR0 . Thus ˆO 0O.Œ��/D Œ��2UO.�;N;R
0/�U and we have completed

the proof of ˆO 0O.V /� U and of the whole lemma.

Now we address the question of finite dimensionality of xX . Let us remind that a
simplicial complex X is uniformly locally finite if there exists a natural number L such
that every vertex belongs to at most L different simplices. This happens for example
when some group acts geometrically on X .
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Proposition 5.6 Let X be a uniformly locally finite systolic complex. Then xX D
X [ @OX is finitely dimensional.

Proof Recall that a space Y has dimension at most n if, for every open cover U of Y ,
there exists an open cover V � U (V is a refinement of U , ie every element of V is
contained in some element of U ) such that every point in Y belongs to at most nC 1

elements of V (ie the multiplicity of V is at most nC 1).

It is clear that X is finitely dimensional. It is thus enough to show that there exists
a constant K such that for every open (in xX ) cover U of @OX there exists an open
cover V � U of @OX of multiplicity at most K .

Let R>D be a natural number. Then, by uniform local finiteness, there is a constant K

such that every ball of radius at most 2RCDC 2 contains at most K vertices.

Let U be an open cover of @OX in xX . We construct an open cover V � U of @OX

in xX consisting of interiors of standard neighborhoods such that the multiplicity of V
is at most K .

Let R0D 2RC2D . By the definition of topology (Proposition 4.4) and by Lemma 4.3,
for every Œ�� 2 @OX there exists a standard neighborhood U.�;N�;R

0/ contained in
some element of U . By Lemma 4.8 we have Œ�� 2 int U.�;N�;R

0/. By compactness
of @OX (Proposition 5.3 and Remark 4.5), among such neighborhoods we can find
a finite family fU.�j ;N�j ;R

0/gm
jD1

such that the family of smaller standard neigh-
borhoods fU.�j ;N�j ;R/g

m
jD1

covers @OX . Let N DmaxfN�1 ;N�2 ; : : : ;N�mg. Let
A denote the set of vertices v in SN .O/ for which there exists a good geodesic
ray starting at O and passing through v . For each v 2 A, pick some such good
geodesic ray �v D .wv

0
DO; wv

1
; wv

2
; : : : ; wv

N
D v; : : :/. We claim that the family

V D fint U.�v;N;R/ j v 2Ag is as desired.

First we show that V covers @OX . Let � D .z0 DO; z1; z2; : : :/ be an arbitrary good
geodesic ray. Then zN D w

zN

N
and thus, by Lemma 4.8, Œ�� 2 int U.�zN ;N;R/.

Now we show that V � U . To prove this it is enough to show that for every v 2 A

there exists j 2 f1; 2; : : : ;mg such that U.�v;N;R/ � U.�j ;N�j ;R
0/. Let v 2 A.

Choose j such that Œ�v � 2 U.�j ;N�j ;R/. By Lemma 4.2, to show that U.�v;N;R/�

U.�j ;N�j ;R
0/ it is enough to show that, for every � 2 G.�v;N;R/, we have � 2

G.�j ;N�j ;R
0/. Let � D .z0 D O; z1; z2; : : : ; zN ; : : :/ 2 G.�v;N;R/ and denote

�j D .v
j
0
DO; v

j
1
; v

j
2
; : : :/. By Lemma 3.8, we have jwv

N
�j
v

j
N
�j
j �RCD . Then, by

Corollary 3.4, we have

jzN
�j
v

j
N
�j
j � jzN

�j
wvN

�j
jC jwvN

�j
v

j
N
�j
j � .jzNw

v
N jCD/C .RCD/

� 2RC 2D DR0:
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Thus � 2 G.�j ;N�j ;R
0/ and it follows that V � U .

Finally, we claim that the multiplicity of V is at most K . By Lemma 4.9, if jvv0j>
2RCDC2 then int U.�v;N;R/\int U.�v

0

;N;R/�U.�v;N;R/\U.�v
0

;N;R/D∅.
Thus multiplicity of V is at most the number of vertices in a ball of radius 2RCDC2

in X , ie it is at most K .

6 The main result

The aim of this section is to prove the main result of the paper—Theorem A (Theorem
6.3).

The following result will be crucial.

Proposition 6.1 [4, Proposition 2.1; 3, Lemma 1.3] Let .Y;Z/ be a pair of finite-
dimensional compact metrizable spaces with Z nowhere dense in Y , and such that
Y nZ is contractible and locally contractible and the following condition holds:

For every z 2Z and every open neighborhood U of z in Y , there exists
an open neighborhood V of z contained in U such that V nZ ,! U nZ

is null-homotopic.

Then Y is an ER and Z is a Z–set in Y .

Before proving Theorem A we need an important preparatory lemma.

Lemma 6.2 Let Œ�� 2 @OX and let U.�;N;R/ be a standard neighborhood of Œ�� in
xX . Then there exists N 0 such that U.�;N 0;R/� U.�;N;R/ and the inclusion map

U.�;N 0;R/\X ,! U.�;N;R/\X is null-homotopic.

Proof Let R0 D 4DC 7. By Lemma 4.3, there exists zN such that U.�; zN ;R0/ �

U.�;N;R/, so that it is enough to prove the following. For natural R�D there exists
N 0 such that U.�;N 0;R/� U.�;N;R0/ and the inclusion map U.�;N 0;R/\X ,!

U.�;N;R0/\X is null-homotopic.

Before we start, let us give a rough idea of the proof. Let us restrict to the problem
of contracting loops from U.�;N 0;R/\X in U.�;N;R0/\X (this turns out to be
the most complicated case). Let ˛ be such a loop. We connect each vertex of ˛ by a
good geodesic with O , and we are interested in the vertex of this geodesic at certain
distance M from O , where N <M <N 0 . All vertices constructed in this way lie in
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a certain ball (see Condition 1 below), which is in turn contained in U.�;N;R0/\X

(see Condition 3 below). If we connect these vertices by 1–skeleton geodesics in the
right order, we obtain a loop ˛M , which lies in the ball considered (Corollary 2.7) and
is contractible inside this ball (Corollary 2.5). So we need to find a free homotopy
between ˛ and ˛M , which we construct via intermediate loops ˛l . To find that two
such consecutive loops are homotopic in U.�;N;R0/\X , we need Condition 2. This
condition guarantees that all relatively small loops by which consecutive ˛l differ can
be contracted inside U.�;N;R0/\X .

Let M D N CRC 1 and N 0 � 1 � .RCD C 4/M . We will show that N 0 is as
desired. Denote �D .v0 DO; v1; v2; : : :/. The choice of M and N 0 guarantees that
the following three conditions hold.

Condition 1 Let � D .w0DO; w1; : : : ; wk/ be a good geodesic with k �N 0�1 and
wk 2 U.�;N 0;R/\X . Then wM 2 BDC1.vM /.

Indeed, let .z0DO; z1; : : : ; zl/ 2 G.�;N 0;R/ be such that jwkzl j � 1 (guaranteed by
the definition of U.�;N 0;R/). Since k �N 0� 1, we have, by Corollary 3.5, that

jwN 0�1vN 0�1j � jwN 0�1zN 0�1jC jzN 0�1vN 0�1j

� .2jwkzl jCD/C .1CjzN 0vN 0 jC 1/�RCDC 4:

Thus, by Corollary 3.4, we have

jwM vM j �
M

N 0� 1
jwN 0�1vN 0�1jCD �

1

RCDC 4
jwN 0�1vN 0�1jCD �DC 1:

Condition 2 Let � D .w0 D O; w1; : : : ; wk/ be as in Condition 1. Then, for every
k � l �M C 1 we have BDC3.wl/� U.�;N;R0/\X .

To show this observe that, as in the proof of Condition 1, we have that jwN 0�1vN 0�1j �

R C D C 4. Now, let z be a vertex of BDC3.wl/. Choose a good geodesic
.z0 DO; z1; z2; : : : ; zm D z/ (guaranteed by Corollary 3.3). Since l � M C 1 D

N CRC2�N C.DC3/, we have that m�N and zN is defined. Thus, by Corollary
3.4 and Corollary 3.5, we have

jzN vN j � jzNwN jC jwN vN j � .2jzmwl jCD/C
� N

N 0� 1
jwN 0�1vN 0�1jCD

�
< .2.DC 3/CD/C

� 1

RCDC 4
.RCDC 4/CD

�
D 4DC 7DR0:

Thus z 2 U.�;N;R0/\X and it follows that BDC3.wl/� U.�;N;R0/\X .
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Condition 3 We have BDC1.vM /� U.�;N;R0/\X .

This follows immediately from Condition 2, but we want to record it separately.

The goal First observe that U.�;N 0;R/�U.�;N;R0/ by Lemma 4.3 and the defini-
tion of N 0 . Now we show that the map �i.U.�;N

0;R/\X /! �i.U.�;N;R
0/\X /

induced by inclusion is trivial, for every i D 0; 1; 2; : : :. Let A be the smallest full
subcomplex of X containing U.�;N 0;R/\X . Observe that the vertices of A lie
in U.�;N 0;R/\X . By Condition 2, A is contained in U.�;N;R0/\X . Thus it is
enough to show that the map �i.A/! �i.U.�;N;R

0/\X / induced by the inclusion
is trivial and we may restrict ourselves only to simplicial spherical cycles.

Case (i D 0) Let z1; z2 be two vertices of A. We will construct a simplicial path in
U.�;N;R0/\X connecting z1 and z2 .

Choose (using Corollary 3.3) good geodesics .zj
0
DO; z

j
1
; : : : ; z

j

k.j/
D zj /, j D 1; 2.

By Condition 2, .zj
M
; z

j
MC1

; : : : ; z
j

k.j/
D zj / is contained in U.�;N;R0/ and we have

z
j
M
2BDC1.vM / by Condition 1. Choose a 1–skeleton geodesic .u1 D z1

M
;u2; : : : ;

ul D z2
M
/. Since balls are geodesically convex (Corollary 2.7), this geodesic is con-

tained in BDC1.vM / and hence, by Condition 3, it is contained in U.�;N;R0/\X .

Then the 1–skeleton path

.z1
D z1

k.1/; z
1
k.1/�1; : : : ; z

1
M D u1;u2; : : : ;ul D z2

M ; z2
MC1; : : : ; z

2
k.2/ D z2/

connects z1 and z2 and is contained in U.�;N;R0/\X . Therefore the map �0.A/!

�0.U.�;N;R
0/\X / is trivial.

Case (i D 1) Let ˛ D .z0; z1; : : : ; zn D z0/ be a 1–skeleton loop in A. We show
that this loop can be contracted within U.�;N;R0/\X .

Choose good geodesics .zj
0
DO; z

j
1
; : : : ; z

j

k.j/
D zj / (guaranteed by Corollary 3.3),

for j D 0; 1; 2; : : : ; n�1. By z
j

k
, for k >k.j /, we denote zj . Let K be the maximum

of fk.0/; k.1/; : : : ; k.n� 1/g. Observe that, by Corollary 3.5, we have jzj

l
z

jC1

l
j �

DC 2 (we consider j modulo n), for every l DM;M C 1;M C 2; : : : ;K (we are
not interested in smaller l ). For these l let .zj

l
D t

j ;0

l
; t

j ;1

l
; : : : ; t

j ;pl .j/

l
D z

jC1

l
/ be

arbitrary 1–skeleton geodesics. Record that pl.j /�DC 2.

Thus, for every l DM C1;M C2; : : : ;K and for every j D 0; 1; : : : ; n�1, we have
a 1–skeleton loop


j

l
D .z

j

l
; z

j

l�1
D t

j ;0

l�1
; t

j ;1

l�1
; : : : ; t

j ;pl�1.j/

l�1
D z

jC1

l�1
;

z
jC1

l
D tj ;pl .j/; t

j ;pl .j/�1

l
; : : : ; t

j ;0

l
D z

j

l
/
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of length at most

1Cpl�1.j /C 1Cpl.j /� 1C .DC 2/C 1C .DC 2/D 2DC 6:

Hence  j

l
� BDC3.z

j

l
/. Since balls are contractible (Corollary 2.5),  j

l
is contractible

inside BDC3.z
j

l
/, which is, by Condition 2, contained in U.�;N;R0/. Thus, for

M � l �K , the loops

˛l D .z
0
l D t

0;0
l
; t

0;1
l
; : : : ; t

0;pl .0/

l
D z1

l D t
1;0
l
; t

1;1
l
; : : : ; t

1;pl .1/

l
D z2

l ; : : :

: : : ; zn�1
l D t

n�1;0
l

; t
n�1;1
l

; : : : ; t
n�1;pl .n�1/

l
D zn

l D z0
l /

for consecutive l are freely homotopic in U.�;N;R0/.

Observe that ˛ D ˛K . On the other hand ˛M �BDC1.vM /, by Condition 1 and by
geodesic convexity of balls (Corollary 2.7). Moreover, since balls are contractible
(Corollary 2.5), ˛M can be contracted inside BDC1.vM /, which lies in U.�;N;R0/,
by Condition 3. Thus ˛ is contractible in U.�;N;R0/. It follows that the map
�1.A/! �1.U.�;N;R/\X / is trivial.

Case (i > 1) Since A is a full subcomplex of a systolic complex it is, by Lemma
2.12, aspherical and thus �i.A/D 0 and the map in question is obviously trivial.

Theorem 6.3 (Theorem A) Let a group G act geometrically by simplicial automor-
phisms on a systolic complex X . Then xX DX [ @OX , where O is a vertex of X , is
a compactification of X satisfying the following:

(1) xX is a Euclidean retract (ER).

(2) @OX is a Z–set in xX .

(3) For every compact set K �X , .gK/g2G is a null sequence.

(4) The action of G on X extends to an action, by homeomorphisms, of G on xX .

Proof (1) and (2) By Corollary 5.2, Proposition 5.3, Remark 4.5, and Proposition
5.6 we have that . xX ; @OX / is a pair of finite-dimensional compact metrizable spaces.

Since X is a simplicial complex, it is locally contractible and, by Theorem 2.3, it is
contractible since it is a finitely dimensional systolic complex. By the definition of
the topology on xX (cf Proposition 4.4), it is clear that @OX is nowhere dense in xX .
Thus we are in a position to apply Proposition 6.1. Let x 2 @OX and let U be its open
neighborhood in xX .

By the definition of the topology (Proposition 4.4) we can find a standard neighborhood
U.�;N;R/�U , where Œ��D x . By Lemma 6.2, there exists a standard neighborhood
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U.�;N 0;R/�U.�;N;R/�U (with Œ��2 int .U.�;N 0;R/, by Lemma 4.8) such that
the map int .U.�;N 0;R/\X / ,!U.�;N 0;R/\X ,!U.�;N;R/\X ,!U \X is
null-homotopic. Thus xX is an ER and @OX is a Z–set in xX .

(3) Let U be an open cover of xX and let K � X be a compact set. We will show
that all but finitely many translates gK , for g 2G , are U –small.

Let R>D be such that K �BR.z/, for some vertex z . As in the proof of Proposition
5.6, we can find a natural number N , a finite set of vertices A � SN .O/ and a
collection of good geodesic rays f�v j v 2Ag with �v passing through v such that
the following holds. The family V D fint U.�v;N;R/ j v 2Ag covers @OX and the
family V 0 D fU.�v;N; 4R/ j v 2Ag is a refinement of U . Thus we can find an open
coverWDV[W 0 of xX such that every W 2W 0 is contained in X . By compactness—
Proposition 5.3—there is a finite subfamily of W covering xX . It follows that there
exists a natural number N 0 >N such that xX nBN 0.O/�

S
V . By properness of the

action there exists a cofinite subset H �G such that gK �BR.gz/�X nBN 0.O/,
for g 2H .

We claim that, for every g 2 H , we have gK � BR.gz/ � U.�v;N; 4R/ \ X ,
for some v 2 A. Assertion (3) follows then from the claim. Let g 2 H . Since
xX nBN 0.O/ �

S
V , there exists v 2 A such that gz 2 int U.�v;N;R/. We show

that BR.gz/� U.�v;N; 4R/. Let x 2BR.gz/ and let � D .z0
0
DO; z0

1
; : : : ; z0

l
/ be a

good geodesic (which exists by Corollary 3.3) such that z0
l
2 BR.gz/ is a vertex of

the simplex containing x in its interior. Since gz 2 U.�v;N;R/ there exists a good
geodesic .z0DO; z1; z2; : : : ; zk D gz/, such that jzN vj �R. We have l; k �N 0 and
jz0

l
zk j �R. Hence, by Corollary 3.5, we have

jz0N vj � jz
0
N zN jC jzN vj � .2jz

0
lzk jCD/CjzN vj

� .2RCD/CR< 4R:

Thus � 2 G.�v;N; 4R/ and hence x 2 U.�v;N; 4R/. It follows that BR.gz/ �

U.�v;N; 4R/. Since g 2 H was arbitrary we have that elements of .gK/g2H are
V 0–small and thus they are U –small.

(4) For g 2G we define a map g ı W X [ @OX !X [ @gOX in the following way.
For x 2 X let g ı x D gx and for x D Œ.v0 D O; v1; v2; : : :/� 2 @OX let g ı x D

Œ.gv0DgO;gv1;gv2; : : :/�2@gOX . This is obviously a well defined homeomorphism.

We extend the action of G on X to X [@OX by the formula g �xDˆgOO.gıx/, for
x2@OX . By Lemma 5.5, the map g � W X[@OX!X[@OX is a homeomorphism. To
see that .gh/�xDg�.h�x/, for x2@OX , pick some representative �D .v0DO; v1; : : :/

of x . We need to show that

ˆghOO.gh ı Œ��/DˆgOO.g ıˆhOO.h ı Œ��//:
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Recall that, by Lemma 3.9, mappings ˆgOO ; ˆhOO and ˆghOO displace representa-
tive rays by a finite Hausdorff distance. Hence ˆghOO.gh ı Œ��/ is the class of rays
starting at O at a finite Hausdorff distance from .ghv0DghO;ghv1; : : :/. On the other
hand, ˆhOO.hı Œ��/ is the class of rays starting at O at a finite Hausdorff distance from
.hv0 D hO; hv1; : : :/, hence g ıˆhOO.h ı Œ��/ as well as ˆgOO.g ıˆhOO.h ı Œ��//

is the class of rays (starting at gO and O , respectively) at a finite Hausdorff distance
from .ghv0 D ghO;ghv1; : : :/. This proves the desired equality.

Hence we get an extension of the action of G on X to an action on xX by homeomor-
phisms.

7 Flat surfaces

With this section we start the second part of the article, in which we define Euclidean
geodesics, establish Theorem B and Theorem C. Before we define Euclidean geodesics,
we first need to study, as mentioned in Section 1, the minimal surface spanned on a
pair of directed geodesics connecting given vertices. The tools for this are minimal
surfaces (Section 7) and layers (Section 8).

In this section we recall some definitions and facts concerning flat minimal surfaces in
systolic complexes proved by Elsner [14; 15].

Definition 7.1 The flat systolic plane is a systolic 2–complex obtained by equilaterally
triangulating the Euclidean plane. We denote it by E2

�
. A systolic disc is a systolic

triangulation of a 2–disc and a flat disc is any systolic disc �, which can be embedded
into E2

�
, such that �.1/ is embedded isometrically into the 1–skeleton of E2

�
. A

systolic disc � is called wide if @� is a full subcomplex of �. For any vertex v 2�.0/

the defect at v (denoted by def.v/) is 6�t.v/ for v … @�.0/ , and 3�t.v/ for v 2 @�.0/ ,
where t.v/ is the number of triangles in � containing v . It is clear that internal vertices
of a systolic disc have nonpositive defects.

We will need the following easy and well known fact.

Lemma 7.2 (Gauss–Bonnet Lemma) If � is any triangulation of a 2–disc, thenX
v2�.0/

def.v/D 6:

Flat systolic discs can be characterized as follows.
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Lemma 7.3 [15, Lemma 2.5] A systolic disc D is flat if and only if it satisfies the
following three conditions:

(i) D has no internal vertices of defect < 0.

(ii) D has no boundary vertices of defect < �1.

(iii) Any segment in @D connecting vertices with defect < 0 contains a vertex of
defect > 0.

Now we recall another handful of definitions.

Definition 7.4 Let X be a systolic complex. Any simplicial map S W �!X , where
� is a triangulation of a 2–disc, is called a surface. We say that S is spanned on a
loop  , if S j@� D  . A loop  is triangulable, if there exists a surface S spanned on
 , such that all the vertices of � are in @�. A surface S is systolic, flat or wide if
the disc � satisfies the corresponding property. If S is injective on @� and minimal
(the smallest number of triangles in �) among surfaces with the given image of @�,
then S is called minimal. A geodesic in �.1/ is called neat if it stays out of @�
except possibly at its endpoints. A surface S is called almost geodesic if it maps neat
geodesics in �.1/ isometrically into X .1/ .

The following is part of the main theorem of Elsner [15].

Theorem 7.5 [15, Theorem 3.1] Let X be a systolic complex. If S is a wide flat
minimal surface in X then S is almost geodesic.

We will also use the following handy fact, whose proof can be extracted from Elsner [14].
In case where  has length 2, it follows immediately from 6–largeness.

Proposition 7.6 [14, Proposition 3.10] Let X be a systolic complex and S W �!X

a wide flat minimal surface. Let  be a neat 1–skeleton geodesic in �� E2
�

, which is
contained in a straight line. Then, for any 1–skeleton geodesic x in X with the same
endpoints as S. /, there is another minimal surface S 0W �!X such that S 0. /D x

and S D S 0 on the vertices of � outside  .

8 Layers

In this section we introduce and study the notion of layers for a pair of convex sub-
complexes of a systolic complex. If those subcomplexes are vertices v;w , then the
layer k is the span of all vertices, in 1–skeleton geodesics vw , at distance k from v
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(cf Definition 8.1). In particular, simplices of the directed geodesics between v and
w (cf Definition 2.11), as well as the simplices of Euclidean geodesics (which we
construct in Section 9) lie in appropriate layers.

On the other hand, layers in systolic complexes seem to be interesting on their own.

Definition 8.1 Let V;W be convex subcomplexes of a systolic complex X and
n D jV;W j. For i D 0; 1; : : : ; n we define the layer i between V and W as the
subcomplex of X equal to Bi.V /\Bn�i.W /. We denote it by Li.V;W / (or shortly
Li when V;W are understood).

Remark 8.2 Li are convex, since they are intersections of convex Bi.V /;Bn�i.W /

(see remarks after Definition 2.4).

Lemma 8.3 (i) Li D Si.V /\Sn�i.W /, for 0� i � n.

(ii) Lj � Sj�i.Li/, for 0� i < j � n. In particular LiC1 � S1.Li/, for 0� i < n.

Proof (i) Without loss of generality, we only need to prove that Li � Si.V /. Take a
vertex x 2Li . Then we have jx;V j � i and jx;W j � n� i , while jV;W j D n. Thus
by the triangle inequality we have jx;V j D i , as desired.

(ii) By (i) we have that Lj \ Bj�i�1.Li/ D ∅, thus we only need to prove that
Lj � Bj�i.Li/. Let x be a vertex in Lj . Since, by (i), we have x 2 Sj .V /, there
is a vertex y 2 Bi.V / at distance j � i from x . Since x 2 Bn�j .W /, we have
y 2 Bn�i.W /. Thus y 2Li and x 2 Bj�i.Li/.

Now we study the properties of layers.

Lemma 8.4 For 0< i < n we have that Li is 1–large.

Proof Suppose the layer Li is not 1–large. Then there exists an embedded cycle �
in Li of length at least 4, which is a full subcomplex of X .

Denote D1D spanfBi�1.V /; �g;D2D spanfBn�i�1.W /; �g. We have D1\D2D� .
Notice that D1 [D2 is a full subcomplex of X , because there are no edges in X

between vertices in Bi�1.V / and vertices in Bn�i�1.W /.

Observe that � is contractible in D1 (and similarly in D2 ). Indeed, by Lemma 8.3(i)
we have that � � Si.V /. Thus we can project the edges of � onto Bi�1.V / (cf
Definition 2.9). If we choose a vertex in each of these projections, we get, by Lemma
2.8, that these vertices form a loop. This loop is homotopic to � in D1 . Moreover,
since Bi�1.V / is contractible (by remarks after Definition 2.4) it follows that � is

Geometry & Topology, Volume 13 (2009)



Boundaries of systolic groups 2833

contractible in D1 (and similarly in D2 ), as desired. The simplicial sphere S formed
of these two contractions is contractible in D1 [D2 , since full subcomplexes of X

are aspherical (Lemma 2.12).

Now use Mayer–Vietoris sequence of the pair D1;D2 . Since Œ�� is the image of ŒS �D0

under H2.D1 [D2/!H1.D1 \D2/ it follows that the cycle � is homological to
zero in itself. This is a contradiction.

Lemma 8.5 Let �1; �2; �3 be maximal simplices in the layer Li for some 0� i � n

and �1 D �1\ �2; �2 D �2\ �3 . Then �1\ �2 D∅ or �1 � �2 or �2 � �1 .

Proof Without loss of generality, assume that i ¤ 0 (but we might have i D n).
Suppose the lemma is false. Then there exist vertices p1 2 �1n�2; p2 2 �2n�1; r 2

�1\ �2 . By Lemma 8.3(ii) we have that �1; �3 � S1.Li�1/. Denote by q1; q2 some
vertices in the projections (cf Definition 2.9) of �1; �3 onto Li�1 . We have jq1q2j � 1,
because both q1 and q2 are neighbors of r and the projection of r 2Li � S1.Li�1/

(cf Lemma 8.3(ii)) onto Li�1 is a simplex (Lemma 2.8). Now we will argue that we
can assume that q1p2 is an edge. In case q1 ¤ q2 consider the 4–cycle q1q2p2p1q1 .
It must have a diagonal. We can then assume without loss of generality that q1p2 is an
edge. In case q1 D q2 we also have that q1p2 is an edge. In both cases it follows that
p2 belongs to the simplex which is the projection of q1 2Li�1 � S1.Li/ (cf Lemma
8.3(ii)) onto Li . This simplex also contains �1 . But p2 … �1 , which contradicts the
maximality of �1 .

Corollary 8.6 Let T be the following simplicial complex: the trapezoid built out of
the three triangles p1rs1;p1rp2;p2rs2 . Then there is no isometric embedding of T .1/

into L
.1/
i , for 0� i � n.

Proof Extend the images of those three triangles to maximal simplices �1; �2; �3 and
apply Lemma 8.5.

Corollary 8.7 Let 0< i < n. Let jp0r0j � 1; jpd rd j � 1 for vertices p0; r0;pd ; rd 2

Li such that jp0pd j D jr0rd j D d � 2 and jp0rd j � d; jr0pd j � d . Then, for any
1–skeleton geodesics .pi/; .ri/; 0 � i � d , connecting p0 with pd and r0 with rd ,
respectively, and for any 0� i; j � d such that ji � j j � 1, we have that jpirj j � 1 (ie
pirj is an edge or pi D rj ).

Proof We will prove the corollary by induction on d . First observe that since Li

is 1–large (Lemma 8.4), the loop p0p1 � � �pd rd � � � r1r0p0 is triangulable and there
exists a diagonal cutting off a triangle. There are only four possibilities for this diagonal
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and we can without loss of generality assume that this diagonal is p0r1 . Now since
p0 2 Sd .rdpd / and both p1 and r1 lie in the projection of p0 onto Bd�1.rdpd /,
then by Lemma 2.8 either p1r1 is an edge or p1 D r1 .

Now we start the induction. If d D 2 and the loop p1r1r2p2p1 is embedded, then it
has a diagonal. The rest of the required inequalities follows from applying Corollary
8.6 twice.

Suppose that for d � 1 the corollary is already proved. Then applying it to the pair
p1r1;pd rd yields all the required inequalities except for the estimate on jr0p1j. But
this follows from Corollary 8.6 applied to the trapezoid r0p0r1p1p2 .

Corollary 8.8 If pr;p0r 0 are edges in Li , for some 0 < i < n, such that jpp0j D

jrr 0j D d � 2 and jpr 0j � d; jp0r j � d , then jpr 0j D jp0r j D d .

Proof By contradiction.

Case jpr 0jDjp0r jDd�1 If d>2 (if dD2 there is a diagonal in the square pr 0p0rp )
then Corollary 8.7 applied to d�1 in place of d , p0Dp ;pd�1D r 0; r0D r; rd�1Dp0

gives jpp0j D jrr 0j D d � 1, which is a contradiction.

Case jpr 0jDd�1; jp0r jDd Again apply Corollary 8.7, with p0Dp; r0D r; pd D

rd D p0; pd�1 D r 0 , getting jrr 0j D d � 1, which is a contradiction.

Below we present another important property of layers. Since it will not be needed
in the article, we do not include the proof. Denote L D span.Li [LiC1/ for some
1� i < n� 1.

Lemma 8.9 L is 1–large.

We end with a simple, but useful observation.

Lemma 8.10 For any edges vw;xy such that v;x2Li ; w;y2LiC1 , where 0� i<n,
we have that jjvxj � jwyjj � 1.

Proof By contradiction. Suppose, without loss of generality, that jwyj D 2C jvxj.
Hence v lies on a 1–skeleton geodesic wy . Thus, by convexity of layers (Remark 8.2)
and by Proposition 2.6, we have that v lies in LiC1 , which is, by Lemma 8.3, disjoint
with Li , contradiction.
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9 Euclidean geodesics

In this section we define, for a pair of simplices �; � as below, a sequence of simplices in
the layers between � and � , which can be considered as a “Euclidean” geodesic joining
� and � . Unlike the directed geodesics defined by Januszkiewicz and Świ

,
atkowski

(see Definition 2.11), Euclidean geodesics are symmetric with respect to � and � .

The definition requires a lengthy preparation. Roughly speaking, we start by spanning a
minimal surface between directed geodesics from � to � and from � to � . We observe
that this surface is flat whenever the two directed geodesics are far apart (we call the
corresponding layers thick). Next we show that this “piecewise” flat surface is in some
sense unique. This occupies the first part of the section, up to Definition 9.9. Then we
look at the geodesics in the Euclidean metric in the flat pieces and use them to define
Euclidean geodesics in systolic complexes, cf Definition 9.12. Finally, we establish
some of their basic properties.

The setting, which we fix for Sections 9–13 is the following. Let �; � be simplices of a
systolic complex X , such that for some natural n� 0 we have � � Sn.�/; � � Sn.�/.
Let �0 � �; �1; : : : ; �n � � and �n � �; �n�1; : : : ; �0 � � be sequences of simplices in
X , such that for 0� k < n we have that �k ; �kC1 span a simplex and �k ; �kC1 span
a simplex. In particular, �k ; �k lie in the layer k between � and � (cf Definition 8.1).

Note that if �0 D �; �1; : : : ; �n � � is the directed geodesic from � to � and �n D

�; �n�1; : : : ; �0 � � is the directed geodesic from � to � (cf Definition 2.11), then the
above condition is satisfied. This special choice of .�k/; .�k/ will be very important
later and we will frequently distinguish it.

Definition 9.1 For 0� i � n the thickness of the layer i for .�k/; .�k/ is the maximal
distance between vertices in �i and in �i . If the layer i for .�k/; .�k/ has thickness
� 1 we say that the layer i for .�k/; .�k/ is thin, otherwise we say that the layer i for
.�k/; .�k/ is thick. If .�k/; .�k/ are directed geodesics from � to � and from � to � ,
respectively, then we skip “for .�k/; .�k/” for simplicity.

Caution Perhaps, to avoid confusion, we should not have used the word “layer” in
the above definition, since we are in fact only checking the position of �i with respect
to �i . Even if the layer i between � and � is large, it can happen that the thickness of
the layer i for .�k/; .�k/ is small. However, we decided that this terminology suits
well our approach, in which we will be mostly interested in the part of the layer i

between � and � , which lies “between” �i and �i .
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Definition 9.2 A pair .i; j /, where 0 � i < j � n, is called a thick interval (for
.�k/; .�k/) if the layers i and j (for .�k/; .�k/) are thin, i C 1< j , and for every l ,
such that i < l < j , the layer l (for .�k/; .�k/) is thick. We say that the thick interval
.i; j / contains l if i < l < j .

Lemma 9.3 (i) The thickness of consecutive layers varies at most by 1.

(ii) If .i; j / is a thick interval (for .�k/; .�k/), then �i ; �i are disjoint.

Proof Both parts follow immediately from Lemma 8.10.

Definition 9.4 Let .i; j / be a thick interval (for .�k/; .�k/). Let vertices sk 2�k ; tk 2

�k be such that for each i � k � j the distance jsk tk j is maximal (ie sk ; tk realize
the thickness of the layer k ). The sequence si ; siC1; : : : ; sj ; tj ; tj�1; : : : ti ; si is an
embedded loop by Lemma 9.3(ii), thus we can consider a minimal surface S W �! X

spanned on this loop (cf Definition 7.4). We say that S is a characteristic surface (for
the thick interval .i; j /) and � is a characteristic disc.

Lemma 9.5 Suppose that the layer k is thick. For sk ; s
0
k
2 �k ; tk ; t

0
k
2 �k , if distances

jsk t 0
k
j; js0

k
tk j equal the thickness of the layer k then also jsk tk j equals the thickness of

the layer k , ie if vertices sk 2 �k ; tk 2 �k realize the thickness in some pairs, then they
also realize the thickness as a pair.

Proof Immediate from the definition of thickness and Corollary 8.8.

The lemma below summarizes the geometry of characteristic discs, which we need to
introduce the concept of a Euclidean geodesic. The special features of characteristic
discs in the case where .�k/; .�k/ are directed geodesics will be given in Lemma 9.16
at the end of this section.

Let S W �!X be a characteristic surface. Denote by vk ; wk in � the preimages of
sk ; tk in X , respectively. This notation will be fixed for the entire article. Let us point
out that we use numbers i; : : : ; j to number the layers in � (cf Definition 8.1) between
viwi and vjwj , instead of 0; : : : j � i , for the sake of clarity.

Lemma 9.6 (i) � (and thus the characteristic surface S ) is wide and flat,

(ii) If we embed �� E2
�

, then the edges viwi and vjwj are parallel and consecu-
tive layers between them are contained in consecutive straight lines (treated as
subcomplexes of E2

�
) parallel to the lines containing viwi and vjwj .
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Proof (i) To prove wideness it is enough to show that any nonconsecutive vertices of
the boundary loop are at distance � 2. Since the layers k , where i < k < j , are thick
(for .�k/; .�k/), the only possibility for this to fail is that (without loss of generality)
jsk tkC1j D 1 for some i < k < j . If this happens, then both sk and tk lie in the
projection of tkC1 onto the layer k between � and � (the projection is defined by
Lemma 8.3(ii)), hence they are neighbors (Lemma 2.8), which contradicts jsk tk j � 2.
Thus a characteristic disc is wide.

Before proving flatness, we need the following general observation. If � is a 1–skeleton
geodesic, which is in the boundary of a triangulation of a disc, then the sum of the
defects at the vertices in the interior of � is at most 1. Moreover, all the defects at
these vertices are at most 1 and each two vertices of positive defect are separated by a
vertex of negative defect.

To prove flatness we compute possible defects at the boundary vertices of �. By
wideness, they are at most 1 at vi ; vj ; wi ; wj . Moreover, their sum over the interior
vertices of both 1–skeleton geodesics .vk/

j

kDi
; .wk/

j

kDi
is at most 1 (they are 1–

skeleton geodesics, since their images are). Thus Gauss–Bonnet Lemma 7.2 implies
that the defects of the interior vertices are equal to zero, the sums of the defects over
the vertices .vk/

j�1

kDiC1
; .wk/

j�1

kDiC1
equal 1 each and the defects at vi ; vj ; wi ; wj are

equal to 1.

We now want to say more about the defects at .vk/
j�1

kDiC1
. Up to now we know that

their sum is 1, they equal 1; 0;�1 or �2 and each two vertices of positive defect
are separated by a vertex of negative defect (since .vk/

j

kDi
is a 1–skeleton geodesic).

This implies that the defects equal alternatingly 1;�1; 1� 1; : : : ; 1 with possible 0’s
between them. The same holds for the defects at .wk/

j�1

kDiC1
. Thus, by Lemma 7.3

(characterization of flatness), the characteristic disc � is flat, ie we have an embedding
�� E2

�
isometric on the 1–skeleton.

(ii) By the computation of defects in the proof of (i) we get that the edges viwi and
vjwj are parallel in E2

�
. We also get that vk ; wk , for i � k � j , are at combinatorial

distances k � i; j � k from the lines containing the edges viwi ; vjwj . Hence vk ; wk

lie on the appropriate line parallel to viwi and the vertices of � split into families lying
on geodesics vkwk . By convexity of layers, Remark 8.2, (or by direct observation)
these geodesics are equal to the layers.

When speaking about the layers in � between viwi and vjwj , we will often skip
“between viwi and vjwj ”.
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Remark 9.7 Denote the layer k in � (between viwi and vjwj ) by Lk . Then S.Lk/

is contained in the layer k in X between � and � . This follows from

S.Lk/� S.Bk�i.viwi//\S.Bj�k.vjwj //

� Bk�i.S.viwi//\Bj�k.S.vjwj //

� Bk�i.si ti/\Bj�k.sj tj /

� Bk�i.Bi.�//\Bj�k.Bn�j .�//D Bk.�/\Bn�k.�/:

The next lemma summarizes some uniqueness properties of characteristic surfaces for
a fixed thick interval .i; j /.

Lemma 9.8 (i) A characteristic surface is almost geodesic. In particular, it is an
isometric embedding on the 1–skeleton of a subcomplex spanned by any pair of
consecutive layers between viwi and vjwj in �.

(ii) A characteristic disc �� E2
�

does not depend (up to isometry) on the choice of
sk ; tk and the choice of a characteristic surface.

If we have two characteristic surfaces S1W �1!X;S2W �2!X , then after identifying
the characteristic discs �1 D�2 (which is possible by (ii)) we have that

(iii) for any vertices x;y 2 �1 D �2 at distance 1, S1.x/ and S2.y/ are also at
distance 1, ie for any two characteristic surfaces S1;S2 we can substitute an
image of a vertex of the first surface with the corresponding image in the second
and get another characteristic surface,

(iv) for any vertex x 2�1 D�2 , S1.x/ and S2.x/ are at distance at most 1.

Proof (i) This follows from Elsner’s Theorem 7.5, since, by Lemma 9.6(i), a charac-
teristic disc is flat and wide. The second part follows from the fact that any two vertices
in a same or consecutive layers in ��E2

�
can be connected by a neat geodesic, which

can be verified by direct observation.

(ii) Observe that, by Lemma 9.6(ii), the isometry class of � is determined by the dis-
tances jvkwk j, jvkwkC1j, for i �k� j�1, which are equal, by (i), to jsk tk j; jsk tkC1j,
respectively. The value jsk tk j equals the thickness of the layer k , so it does not depend
on the choices. To prove the same for jsk tkC1j, consider two characteristic surfaces
constructed for choices sl ; s

0
l
2 �l ; tl ; t

0
l
2 �l , where l D k; k C 1. We will prove

that jsk tkC1j D jsk t 0
kC1
j D js0

k
t 0
kC1
j. We restrict ourselves to proving the first equality

(the second is proved analogously). By Lemma 9.5 we have that jskC1t 0
kC1
j is the

thickness of the layer kC 1. Thus there is a characteristic surface spanned on a loop
passing through sk ; tk ; skC1; t

0
kC1

. Hence, by (i), the distance jsk t 0
kC1
j is determined

by jsk tk j and jskC1tk j, thus it is the same as jsk tkC1j, as desired.
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(iii) If x and y are both boundary vertices, then this is obvious. Otherwise, without
loss of generality assume that x is an interior vertex of �. Suppose that x lies in the
layer k (we denote it by Lk ) in � between viwi and vjwj . Denote the thickness of
the layer k for .�t /; .�t / by d .

First consider the case where y 2 Lk . By Remark 9.7 we have that S1.Lk/ and
S2.Lk/ lie in the layer k in X between � and � . By Lemma 9.5 we have that
jS2.vk/S1.wk/j D jS1.vk/S2.wk/j D d . Hence Corollary 8.7 applied to S1.Lk/ and
S2.Lk/ gives jS1.x/S2.y/j D 1, as desired.

Now, without loss of generality, consider the remaining case that y is in the layer
k � 1 (denoted by Lk�1 ) in � between viwi and vjwj . Denote by y0;x00 the
common neighbors of x;y in Lk�1;Lk , respectively, and by x0 the neighbor of x

in Lk different from x00 . Then we have that S1.x/S2.x
0/S2.y

0/S2.y/S2.x
00/S1.x/

is a loop of length 5 from the previous case, hence it is triangulable. By (i), all
jS2.x

0/S2.x
00/j; jS2.x

0/S2.y/j; jS2.x
00/S2.y

0/j equal 2, hence jS1.x/S2.y/j D 1,
as desired.

Observe that this proof actually implies Proposition 7.6 in the case where  � vkwk

for some k .

(iv) For boundary vertices this is obvious. For an interior vertex x , let x0;x00 be its
neighbors in a common layer in � between viwi ; vjwj . Then, by (iii), we have that
S1.x/S2.x

0/S2.y/S2.x
00/S1.x/ is a loop of length 4. Moreover, by (i), we have that

jS2.x
0/S2.x

00/j D 2. Thus jS1.x/S2.y/j � 1, as desired.

As a corollary, the following definition is allowed.

Definition 9.9 Let � be a simplex of the characteristic disc � for some thick interval
.i; j / (for .�k/; .�k/). Its characteristic image is a simplex in X , denoted by S.�/,
which is the span of the images of � under all possible characteristic surfaces. Note
that S.�/ is a simplex by Lemma 9.8(iii)–(iv), and if �� �0 , then S.�/� S.�0/, ie S
respects inclusions. The characteristic image of a subcomplex of � is the union of the
characteristic images of all its simplices. We call this assignment the characteristic
mapping.

If xv is a vertex in S.�/, we denote by S�1.xv/ the vertex v 2� such that S.v/ 3 xv .
We claim that this vertex is unique. Indeed, characteristic images of different layers in
� between viwi ; vjwj are disjoint since, by Remark 9.7, they lie in different layers in
X between �; � , which are disjoint by Lemma 8.3. Moreover, by Lemma 9.8(i),(iii),
we have that S1.v/¤ S2.v

0/ for any characteristic surfaces S1;S2 and any vertices
v ¤ v0 in a common layer in �. This justifies the claim. If x� is a simplex in S.�/,
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we denote by S�1.x�/ the span of the union of S�1.xv/ over all xv 2 x� . We have that
S�1.x�/ is a simplex, by Remark 9.7, Lemma 8.3, and Lemma 9.8(i),(iii). If Y is a
subcomplex of S.�/, we denote by S�1.Y / the union of S�1.x�/ over all x� � Y .

Having established the uniqueness properties of characteristic surfaces, we start to
exploit the CAT.0/ structure of the corresponding characteristic discs. From now on,
up to the end of Section 13, unless stated otherwise, we assume that .�k/; .�k/ are the
directed geodesics between �; � .

Definition 9.10 Let .i; j / be a thick interval and let � � E2
�

be its characteristic
disc. We will define a sequence of simplices �k 2�, where i < k < j , which will be
called the Euclidean diagonal of the characteristic disc �.

Let v0
k
; w0

k
be points (barycenters of edges) on the straight line segments vkwk at

distance 1=2 from vk ; wk , respectively. In particular v0i D w
0
i ; v
0
j D w

0
j . Consider

the closed polygonal domain �0 � � enclosed by the piecewise linear loop with
consecutive vertices v0i ; v

0
iC1

; : : : ; v0j D w
0
j ; w

0
j�1

; : : : ; w0i D v
0
i . Note that, since �0

is simply connected, it is CAT.0/ with the Euclidean path metric induced from E2
�

identified with E2 . We call �0 a modified characteristic disc. Let  0 be the CAT.0/
geodesic joining v0i D w

0
i to v0j D w

0
j in �0 . We call  0 a CAT.0/ diagonal of �.

For each i < k < j , among the vertices of � lying in the interior of the 1–skeleton
geodesic vkwk we find the ones nearest to  0\vkwk . For each k this is either a single
vertex or two vertices spanning an edge (if  0 goes through its barycenter and vk ; wk

are not some of its vertices). We put �k equal to this vertex or this edge, accordingly.

At first sight it might seem strange that in the above definition we pass to �0 and
take the geodesic  0 there instead of doing it in � itself. However, this construction
allows us to exclude vk ; wk from being in �k , which a careful reader will find to be
a necessary condition for the arguments of the combinatorial Proposition 10.2 to be
valid.

Here are some basic properties of the Euclidean diagonals.

Lemma 9.11 (i) Each pair of consecutive �k ; �kC1 , for i < k < j � 1, spans a
simplex.

(ii) �iC1; vi ; wi span a simplex and �j�1; vj ; wj span a simplex.

Proof Part (ii) is obvious, since we excluded vk ; wk from being in �k . To prove
(i), consider �0 � � � E2

�
oriented in such a way that vkwk are horizontal, this is

possible by Lemma 9.6(ii). Moreover, Lemma 9.6(ii) yields that the boundary of �0
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consists of line segments at angle 30ı from the vertical direction. Let  0 be as in
Definition 9.10. It is a broken line with vertices at the boundary of �0 .

We claim that any line segment of  0 is at angle less than 30ı from the vertical direction.
First we prove that this angle is at most 30ı . Otherwise, let p be an endpoint of such a
line segment. Obviously p is different from the endpoints of  0 . The interior angle at
p between the segment of  0 and any of the boundary line segments of �0 is less than
180ı , which contradicts the fact that p is an interior vertex of a geodesic  0 . Thus we
proved that any line segment of  0 is at angle at most 30ı from the vertical direction.

If for some line segment of  0 this angle equals 30ı , then by the previous considerations
the whole  0 is in fact a straight line at angle 30ı from the vertical. This implies
that the defects at all vertices in .vk/

j�1

kDiC1
or all vertices in .wk/

j�1

kDiC1
are zero.

Contradiction. We have thus proved the claim.

Now part (i) follows from the following observation, whose proof is easy and is left
to the reader. Consider two consecutive horizontal lines ˛1; ˛2 in E2

�
. Let ˇ be

some straight line segment joining points p 2 ˛1; r 2 ˛2 at angle less than 30ı from
the vertical direction. Then there exist two 2–simplices abc; bcd in E2

�
such that

ab � ˛1; cd � ˛2 and p 2 ab; r 2 cd . Moreover, it cannot happen simultaneously that
jpaj � jpbj and jrd j � jrcj.

Thus we can finally introduce the main definition of this section.

Definition 9.12 We define a sequence of simplices ık , where 0 � k � n, which is
called the Euclidean geodesic between �; � , as follows. For each k , if the layer k is
thin, then we take ık to be the span of �k and �k .

If the layer k is thick, consider the thick interval .i; j / which contains k . Let �k be
an appropriate simplex of the Euclidean diagonal of the characteristic disc � for .i; j /
(cf Definition 9.10). We take ık D S.�k/ (cf Definition 9.9).

Remark 9.13 In the above setting, we have �i D S.vi/; �i D S.wi/, by Lemma
9.3(ii). Hence ıi D spanf�i ; �ig D S.viwi/.

Remark 9.14 By the symmetry of the construction, the Euclidean geodesic between
� and � becomes the Euclidean geodesic between � and � if we take the simplices of
the sequence in the opposite order.

Here is the justification for using the name “geodesic” in Definition 9.12.

Lemma 9.15 (i) For any 0�k< l �n we have that ık �Sl�k.ıl/; ıl �Sl�k.ık/.
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(ii) For any 0 � k � n� 1 if the layer k or the layer k C 1 is thick, then ık and
ıkC1 span a simplex.

(iii) For any 0� l <m� n such that there exists l � k �m such that the layer k is
thick, and for any vertices x 2 ım;y 2 ıl , we have jxyj Dm� l .

Proof Assertion (ii) follows from Lemma 9.11(i)–(ii), Remark 9.13 and Lemma
9.8(iii)–(iv).

To prove assertion (i), say the first inclusion, observe that for any 0� k < n we have
span.�k [ �k/�B1.span.�kC1[ �kC1//. Hence, assertion (ii) gives already, for any
0� k < l � n, that ık �Bl�k.ıl/. Then ık � Sl�k.ıl/ follows from Remark 9.7 and
Lemma 8.3(ii).

To prove part (iii), assume that l < k < m (other cases are easier). Take any vertex
z 2 ık . Then, by (i), there are vertices x0 2 ık�1; y0 2 ıkC1 such that jxx0j D

.k � 1/� l; jyy0j Dm� .kC 1/. By (ii) (and (i)), we have jzx0j D jzy0j D 1. Hence
jxyj �m� l and by (i) we have jxyj Dm� l , as desired.

Now we state an extra property of characteristic discs in the case where .�k/ (but .�k/

not necessarily) is the directed geodesic. This property was not necessary for Definition
9.12, but will become indispensable in the next section.

Lemma 9.16 (i) If the defect at some vk , where i C 1 < k < j � 1, equals �1,
then the defect at vkC1 equals 1.

(ii) The defect at viC1 equals 1.

Proof (i) Proof by contradiction. Suppose the defect at some vk , where iC1< k <

j � 1, equals �1, and the defect at vkC1 equals 0. Denote by x the vertex next to
vkC1 on the 1–skeleton geodesic vkC1wkC1 and by y the vertex next to vk on the
1–skeleton geodesic vkwk . We aim to prove that, for any characteristic surface S ,
S.x/ belongs to �kC1 . Suppose for a moment we have already proved this. Then, since
by Lemma 9.8(i) we have jS.x/S.vkC2/j D 2 and at the same time S.vkC2/ 2 �kC2 ,
we get a contradiction.

Now we prove that S.x/2�kC1 . By Remark 9.7 we have that S.x/ lies in Bn�k�1.�/.
Hence by the definition of projection (cf Definition 2.9) it remains to prove that S.x/

is a neighbor of each xz 2 �k . Case xz D S.y/ is obvious, so suppose xz ¤ S.y/.
Since, by the definition of thickness, jxzS.wk/j � jS.vk/S.wk/j, we have by Corollary
8.7 (applied to r0 D S.vk/; r1 D S.y/; rd D pd D S.wk/ and to p0 D xz in case
of jxzS.wk/j D jS.vk/S.wk/j or to p0 D S.vk/;p1 D xz in case of jxzS.wk/j <
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jS.vk/S.wk/j) that jxzS.y/j D 1. Considering the loop xzS.y/S.x/S.vkC1/xz , since
jS.y/S.vkC1/j D jyvkC1j D 2 (Lemma 9.8(i)), we get jxzS.x/j D 1, as desired.

(ii) By contradiction. Denote by x the vertex between viC1 and wiC1 on the 1–
skeleton geodesic viC1wiC1 . Since �i D S.vi/ (see Remark 9.13), we have by
Remark 9.7 and Lemma 9.8(iii) that S.x/ belongs to �iC1 . By Lemma 9.8(i) we have
jS.x/S.viC2/j D 2. At the same time S.viC2/ 2 �iC2 , contradiction.

We will repeat some steps of this proof later on in the proof of Lemma 10.3. We
decided, for clarity, not to intertwine these two proofs.

As a consequence of Lemma 9.16, we get the following lemma, whose proof, similar to
the proof of Lemma 9.11, we omit. Here we assume that both .�k/; .�k/ are directed
geodesics.

Lemma 9.17 If j � i > 2 then the CAT.0/ diagonal  0 in � crosses each line
orthogonal to the layers transversally.

10 Directed geodesics between simplices of Euclidean geode-
sics

In this section we start to prove a weak version of Theorem B, which concerns one of
the main properties of Euclidean geodesics. Roughly speaking, the theorem says that
pieces of Euclidean geodesics are coarsely also Euclidean geodesics.

We keep the notation from the previous section. The simplices .�k/; .�k/ are in this
section the directed geodesics between �; � .

Theorem 10.1 (Weak version of Theorem B) Let �; � be simplices of a systolic
complex X , such that for some natural n we have � � Sn.�/; � � Sn.�/ (as required
in the definition of the Euclidean geodesic). Let .ık/nkD0

be the Euclidean geodesic
between � and � . Take some 0 � l < m � n and consider the simplices zıl D
ıl ; zılC1; : : : ; zım D ım of the Euclidean geodesic between ıl and ım (we can define it
by Lemma 9.15(i)). Then for each l � k �m we have jık ; zık j � 3.

The proof of Theorem 10.1 splits into two steps. The first step is to prove that directed
geodesics between ıl and ım stay close to the union of characteristic images of all
characteristic discs (for .�k/; .�k/). This is the content of Proposition 10.2, whose
proof occupies the rest of this section.
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The second step is to check that characteristic images for the directed geodesics
between ıl and ım also stay close to the union of characteristic images for .�k/; .�k/.
Properties of layers actually imply that characteristic discs of the former are embedded
into characteristic discs of the latter, modulo small neighborhood of the boundary. So
everything boils down to the fact that Theorem 10.1 is valid for CAT.0/ subspaces of
the Euclidean plane. We carry out this program in the next section. We also indicate
there an argument, how to promote Theorem 10.1 to Theorem B, with a reasonable
constant C .

A complete alternative proof of Theorem B, with a worse constant C , is obtained as a
consequence of Proposition 12.1. We present it at the end of Section 12. We advise the
reader to have a look at the proof of Theorem 10.1 via Proposition 10.2. This proof
is straightforward and allows us to introduce gradually some concepts needed later.
However, to save time, one can skip the remaining part of Section 10, go over the
definitions in Section 11 and then go directly to Section 12.

For each thick layer l � k �m contained in a thick interval .i; j / (for .�t /; .�t /; from
now on we often skip “for .�t /; .�t /”), denote by ˛k the appropriate simplex (in the
corresponding characteristic disc �) of the directed geodesic from �l , if i < l , or vi

otherwise, to �m , if m< j , or vj otherwise. The simplices .z�k/
m
kDl

of the directed
geodesic from ıl to ım satisfy the following.

Proposition 10.2 Let l � k �m.

(i) If the layer k is thin, then z�k contains or is contained in �k .

(ii) If the layer k is thick, then z�k contains or is contained in S.˛k/.

Before we give the proof of Proposition 10.2, we need to establish some necessary
lemmas. The first one describes the position of �k with respect to the characteristic
image. Like in Lemma 9.16, here .�k/ does not need to be the directed geodesic.

Lemma 10.3 For a thick layer k let xk be the vertex, which is the neighbor of
vk on the 1–skeleton geodesic vkwk in the characteristic disc for the thick interval
containing k . If the defect at vk equals 1, then �k DS.vkxk/. Otherwise �k DS.vk/.

Proof First of all �k � S.vkxk/ follows from the definition of thickness and Propo-
sition 7.6 (one could also verify this by hand, similarly like in the proofs of Lemma
9.8(iii) and Lemma 9.16(i)). Suppose that the defect at vk is ¤ 1. Hence jvk�1xk jD 2,
by Lemma 9.16(i)–(ii). The inclusion S.vk/��k is obvious and the converse inclusion
follows from �k � S.vkxk/ and from Lemma 9.8(i).
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Now suppose the defect at vk equals 1. If the layer k � 1 is thick, then the defect
at vk�1 is ¤ 1 and we apply what we have just proved to get S.vk�1/ D �k�1 . If
the layer k � 1 is thin we get immediately that S.vk�1/D �k�1 (Remark 9.13). In
both cases using Remark 9.7, Lemma 9.8(iii), and the definition of projection we get
S.vkxk/� �k , as desired.

As a corollary we get the following technical lemma.

Lemma 10.4 Suppose k < m do not satisfy i � k < m < j for any thick interval
.i; j / or if they violate this then jvkC1; �mj Dm� .kC 1/. Then the projection of �k

onto Bm�.kC1/.ım/ equals �kC1 .

Proof To justify speaking about the projection of �k onto Bm�.kC1/.ım/ we must
show that �k � Sm�k.ım/. The simplex �k is outside Bm�k�1.ım/ by Remark 9.7
and Lemma 8.3(ii). Thus we only need to check that �k � Bm�k.ım/.

To verify this, we prove that �kC1 � Bm�.kC1/.ım/. If the layer kC 1 is thin then
this follows from Lemma 9.15(i). If the layer k C 1 is thick, then denote by .i; j /
the thick interval containing kC 1. By Lemma 10.3 we have �kC1 � S.vkC1xkC1/

(xkC1 as in Lemma 10.3). Thus it is enough to establish the inclusion S.vkC1xkC1/�

Bm�.kC1/.ı/. If m< j , then this follows from our hypothesis. If j �m, then from
Remark 9.13 and Lemma 9.15(i) we have

S.vkC1xkC1/� S.Bj�.kC1/.vj //� Bj�.kC1/.S.vj //
� Bj�.kC1/.ıj /� Bm�.kC1/.ım/;

as desired.

Hence the projection of �k onto Bm�.kC1/.ım/ is defined. Denote it by � . Since
Bm�.kC1/.ım/ � Bn�.kC1/.�/, we have � � �kC1 . For the converse inclusion we
need �kC1 � Bm�.kC1/.ım/, which we have just proved.

The next lemma is valid for any .�k/; .�k/, not necessarily directed geodesics.

Lemma 10.5 Let e be an edge in the layer k of � (between viwi ; vjwj ), such that
e has three neighboring vertices in the layer k C 1. Let xx be a vertex in the residue
(defined before Lemma 2.8) of S.e/ (for some characteristic surface S ) in the layer
kC 1 between �; � in X . Then xx 2 S.x/, where x is the vertex in the layer kC 1 of
� in the residue of e .
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Proof Denote by y1;y2 the neighbors of e in the layer kC 1 of � different from x ,
and let xy1 D S.y1/; xy2 D S.y2/. We claim that xy1; xy2 are neighbors of xx . Indeed,
let z1 be the vertex in e , which is a neighbor of y1 . Let xz1 D S.z1/� S.e/. Observe
that both xy1; xx lie in the projection of xz1 onto Bn�.kC1/.�/ (by Remark 9.7), hence,
by Lemma 2.8, they are neighbors, as desired. Analogously, xy2; xx are neighbors. Thus,
by the easy case of Proposition 7.6, we have that xx 2 S.x/, as required.

The following lemma describes the behavior of the simplices ˛k appearing in the
statement of Proposition 10.2. The proof of Lemma 10.6 requires Lemma 9.16(i)–(ii),
apart from this it is straightforward and we skip it. For the same reason we will usually
not invoke it in the proof of Proposition 10.2.

Lemma 10.6 Let � be a characteristic disc for some thick interval .i; j /. Suppose
that for some i � l <m � j we have simplices ˛; ˛0 in the layers l;m respectively
between viwi ; vjwj in �. Suppose that ˛ � Sm�l.˛

0/ and ˛0 � Sm�l.˛/. Moreover,
assume that ˛ is an interior vertex of � or an edge disjoint with the boundary or ˛D vi .
Assume that ˛0 is an interior vertex or an edge disjoint with boundary or ˛0 D vj . Let
.˛k/

m
kDl

be the directed geodesic in � joining ˛ to ˛0 (in particular ˛l D ˛; ˛m � ˛
0 ).

Then:

(i) If ˛k is an edge, then ˛kC1 is the unique vertex, which is in the residue of ˛k

in the layer kC 1.

(ii) If ˛k D vk and the defect at vk equals 0, then ˛kC1 D vkC1 .

(iii) If ˛k is a vertex with two neighbors in the layer kC1, both at distance m�.kC1/

from ˛0 , then ˛kC1 is an edge spanned by these two vertices.

(iv) If ˛k is a vertex with two neighbors in the layer kC 1, but only one of them at
distance m� .kC 1/ from ˛0 , then ˛kC1 is this special vertex.

(v) Moreover, ˛k never equals wk . If ˛k is an edge containing wk then the defect
at wk is �1. If ˛k D vk , then the defect at vk is not equal to 1, except possibly
for the cases k D i; j .

Now we are ready for the following.

Proof of Proposition 10.2 We prove by induction on k , for l � k �m, the following
statement, which, by Lemma 10.6 and Lemma 10.3, implies the proposition.

Induction hypothesis (1) If the layer k is thick and ˛k is an edge disjoint with the
boundary or meeting the boundary at a vertex of defect ¤ 1, then z�k contains S.˛k/.
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(2) If the layer k is thick and ˛k is a nonboundary vertex, then z�k is contained
S.˛k/.

(3) If the layer k is thick and ˛k is a boundary vertex or an edge intersecting the
boundary at a vertex of defect 1, or the layer k is thin, then z�k contains or is contained
in �k .

For kD l the hypothesis is obvious. Suppose it is already proved for some l�k�m�1.
We would like to prove it for k C 1. First suppose that the layer k is thick and ˛k

is an edge disjoint with the boundary or meeting the boundary at a vertex of defect
¤ 1 (case (1)). Then ˛kC1 is a vertex. If it is a boundary vertex, then vk 2 ˛k . By
the induction hypothesis, since the defect at vk is not 1, S.˛k/ � z�k , moreover, by
Lemma 10.3 we have �k � S.˛k/, hence �k � z�k . Hence, by Lemma 2.10, z�kC1 is
contained in the projection of �k onto Bm�.kC1/.ım/, which in this case equals �kC1

by Lemma 10.4. Thus z�kC1 � �kC1 , as desired.

Now, still assuming that the layer k is thick and that ˛k is an edge disjoint with the
boundary or meeting the boundary at a vertex of defect ¤ 1, suppose that ˛kC1 is not a
boundary vertex. Let xx be any vertex in z�kC1 . Our goal is to prove that xx 2 S.˛kC1/.
By induction hypothesis we know that S.˛k/ � z�k . Since xx lies in the layer kC 1

between �; � , by Remark 9.7, we can apply Lemma 10.5 with e D ˛k . Hence we get
xx 2 S.˛kC1/, as desired.

Thus we have completed the induction step in case (1), ie for the layer k thick and ˛k

an edge disjoint with the boundary or meeting the boundary at a vertex of defect ¤ 1.

Now suppose that the layer k is thick and ˛k is a nonboundary vertex (case (2)). Then it
has two neighbors in the layer kC1 of �, suppose first that both of them are at distance
m� .kC1/ from �m (we put �m D vj if m� j ). Then ˛kC1 is the edge spanned by
those two vertices. If it intersects the boundary, the defect at the boundary vertex is not
1. Thus we must show that z�kC1 contains S.˛kC1/. But by induction hypothesis we
know that z�k is contained in S.˛k/. Thus, by Lemma 2.10, it is enough to observe
that S.˛kC1/� Bm�.kC1/.ım/. This follows from ˛kC1 � Bm�.kC1/.�m/.

If one of the two neighbors of ˛k in the layer kC1 is not at distance m�.kC1/ from
�m , then ˛kC1 is the second neighbor, it is a nonboundary vertex (unless kC 1D j ,
which will be considered in a moment) and m< j . Thus we must show that z�kC1 is
contained in S.˛kC1/. Let xz be a vertex in z�kC1 . Then xz lies on a 1–skeleton geodesic
x of length m� k from some vertex of z�k � S.˛k/ to some vertex xx 2 ım D S.�m/.
We claim that if �m is an edge, then the vertex x D S�1.xx/ 2� is the vertex closer to
vm then the other vertex of �m . Indeed, let y 2 �m be the vertex closer to wm . Since
j˛kyj>m�k and this distance is realized by a neat geodesic, hence by Lemma 9.8(i)
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we have jS.˛k/;S.y/j>m�k . This proves the claim. Thus we can apply Proposition
7.6 to  D ˛kx and xz 2 x , and get xz 2 S.˛kC1/, as desired.

Now we come back to the case kC1D j and ˛k a nonboundary vertex. By induction
hypothesis we have z�k � S.˛k/. By Lemma 9.15(i) we have that �kC1 D S.vkC1/

(Remark 9.13) lies in Bm�.kC1/.ım/. Hence, by Lemma 2.10, we have that z�kC1

contains �kC1 , as desired.

Thus we have completed the induction step in case (2), ie for the layer k thick and ˛k

a nonboundary vertex.

Now consider the case that the layer k is thick and ˛k is a boundary vertex of defect
�1 or the layer k is thin, but the layer kC 1 is thick (in this case put i D k ). In both
cases ˛k D vk . If the hypothesis of Lemma 10.4 are not satisfied, then we can finish
as in the previous case (no matter what is the direction of the inclusion given by the
induction hypothesis) getting z�kC1 � S.˛kC1/. Otherwise, ˛kC1 is the edge spanned
by two neighbors of vk in the layer kC 1. By Lemma 9.16(i)–(ii) the defect at vkC1

equals 1. Hence we want to prove that z�kC1 either contains or is contained in �kC1 .
We know, by the induction hypothesis, that z�k contains or is contained in �k , hence it
is enough to use Lemma 2.10 and Lemma 10.4.

Now assume that either the layer k is thick and ˛k is a boundary vertex of defect 0 or
an edge intersecting the boundary at a vertex of defect 1, or the layer k is thin and the
layer kC 1 is also thin. Similarly as before, we have that z�k contains or is contained
in �k and we want to prove that z�kC1 contains or is contained in �kC1 . This follows
from Lemma 2.10 and Lemma 10.4.

Thus we have exhausted all the possibilities for case (3) and completed the induction
step.

11 Euclidean geodesics between simplices of Euclidean geo-
desics

In this section we complete the proof of Theorem 10.1. Its first ingredient is Proposition
10.2, proved in Section 10. The second ingredient is easy 2–dimensional Euclidean
geometry, which we present as a series of lemmas in this section. Throughout the
section, we will be treating characteristic discs simultaneously as simplicial complexes
and CAT.0/ metric spaces.

We start with extending in various ways the notion of a characteristic disc and surface.
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Definition 11.1 A generalized characteristic disc � for an interval .i; j /, where i<j ,
is a closed CAT.0/ (ie simply connected) subspace of E2 with the following properties.
Its boundary is a piecewise linear loop with vertices vi ; : : : ; vj ; wj ; : : : ; wi ; vi (possibly
vk D wk ) , such that for i � k � j the straight line segments (or points) vkwk are
contained in consecutive parallel lines at distance

p
3=2. We also require, if E2 is

oriented so that vkwk are horizontal, that vk lies to the left of wk , or vk D wk .

A restriction of a generalized characteristic disc to the interval .l;m/, where i � l <

m� j , is the generalized characteristic disc enclosed by the loop vl � � � vmwm � � �wlvl .
We denote it by �jm

l
. If a generalized characteristic disc comes from equipping a

systolic 2–complex with the standard piecewise Euclidean metric, then we call it a
simplicial generalized characteristic disc.

Remark 11.2 Characteristic discs (resp. modified characteristic discs, cf Definition
9.10) with the standard piecewise Euclidean metric are simplicial generalized charac-
teristic discs (resp. generalized characteristic discs).

Definition 11.3 Suppose that we have simplices .�k/; .�k/ in the layer k between
�; � (not necessarily the simplices of the directed geodesics) defined (only) for 0 �

i � k � j � n, where i < j , such that for i � k < j we have that �k ; �kC1 span a
simplex and �k ; �kC1 span a simplex. Suppose that for i � k � j the maximal distance
between vertices in �k and in �k is at least 2. Then we define a partial characteristic
disc and a partial characteristic surface in the following way.

We extend .�k/; .�k/ to all 0� k � n so that �k ; �kC1 and �k ; �kC1 span simplices
for 0 � k < n, and �0; �0 � �; �n; �n � � . (This is possible, since, for example, we
may issue directed geodesics from �i ; �i to � and from �j ; �j to � .) Obviously, �k ; �k

lie in the layer k between �; � for all 0� k � n. Let .iext; jext/ be the thick interval for
extended .�k/; .�k/ containing .i; j /. Let S W �!X be a characteristic surface for
.iext; jext/. Then we call �resD�j

j
i a partial characteristic disc (which is a simplicial

generalized characteristic disc) and Sres D S j�res a partial characteristic surface.

Caution A characteristic surface S W �! X , where � is a characteristic disc for
a thick interval .i; j / for .�k/

n
kD0

; .�k/
n
kD0

(as in Definition 9.4) is not a partial
characteristic surface for .�k/

j

kDi
; .�k/

j

kDi
. This is because the layers i; j are thin.

But if i C 1 < j � 1, then already S restricted to �jj�1
iC1

is a partial characteristic
surface.

Next we show that partial characteristic surfaces satisfy most of the properties of
characteristic surfaces. Fix an interval .i; j / and simplices .�k/

j

kDi
; .�k/

j

kDi
as in

Definition 11.3. Let SresW �jres!X be a partial characteristic surface, as above.
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Lemma 11.4 (i) �res (and thus Sres ) is flat.

(ii) If we embed �res � E2
�

, then viwi and vjwj are parallel and the consecutive
layers between them are contained in consecutive straight lines parallel to viwi

and vjwj .

(iii) Sres is an isometric embedding on 1–skeleton of a subcomplex spanned by any
pair of consecutive layers between viwi and vjwj in �res .

(iv) �res � E2
�

does not depend on the choice of �k ; �k for k < i and k > j , the
choice of sk ; tk for 0� k � n, and the choice of S .

If we have two partial characteristic surfaces S1W �1! X;S2W �2! X , then after
identifying partial characteristic discs �1D�2 (which is possible by (ii)) we have that

(v) for any vertices x;y 2 �1 D �2 at distance 1, S1.x/ and S2.y/ are also at
distance 1,

(vi) for any vertex x 2�1 D�2 , S1.x/ and S2.x/ are at distance at most 1,

(vii) S.vkwk/ lies in the layer k between � and � .

Proof Assertions (i) and (ii) follow immediately from Lemma 9.6(i)–(ii). Assertion
(iii) follows from Lemma 9.8(i). To prove (iv) notice that �res D�j

j
i is determined

by the distances jsk tk j for i � k � j and jsk tkC1j for i � k < j , by (iii). Hence,
if we fix sk and tk for i � k � j , then �res does not depend on the extension of
.�k/

j

kDi
; .�k/

j

kDi
. On the other hand, if we fix such an extension, then jsk tk j; jsk tkC1j

do not depend on the choice of sk ; tk , by Lemma 9.8(ii).

It is a bit awkward to try to obtain assertion (v) as a consequence of Lemma 9.8(iii).
Let us say, instead, that assertion (v) follows immediately from the proof of Lemma
9.8(iii). Similarly, assertion (vi) follows from the proof of Lemma 9.8(iv).

Assertion (vii) follows directly from Remark 9.7.

Definition 11.5 We define the partial characteristic image S.⊂/ of a simplex � in the
partial characteristic disc as the span of S.�/ over all partial characteristic surfaces S .
By Lemma 11.4(v)–(vi), S.⊂/ is a simplex. We call this assignment the partial
characteristic mapping. Like in Definition 9.9 we can consider also the assignment
S�1 .

Definition 11.6 Let � be a generalized characteristic disc and  ,  0 be two paths
connecting some points on viwi to points on vjwj such that intersections of  ,  0

with vkwk are unique for each i � k � j . We say that ;  0 are d –close if they
intersect vkwk in points at distance at most d for each i � k � j .
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The following lemma describes the possible displacements of CAT.0/ geodesics in
characteristic discs when perturbing the boundary and the endpoints.

Lemma 11.7 Let �0 � � be two generalized characteristic discs for .i; j / such
that for each i � k � j we have v0

k
w0

k
� vkwk (and the order is vkv

0
k
w0

k
wk ) and

jvkv
0
k
j�d; jwkw

0
k
j�d . Then for any points x2viwi ; y2vjwj ; x02v0iw

0
i ; y02v0jw

0
j

such that jxx0j � d; jyy0j � d , the CAT.0/ geodesics from x to y in � and from x0

to y0 in �0 are d –close in �.

Proof Denote by ;  0 the geodesics from x to y in � and from x0 to y0 in �0

respectively. Denote by Nd . / the set of points in � at distance � d from  in the
direction parallel to vkwk (ie the intersection with � of the union of translates of  by
a distance at most d in the direction parallel to vkwk ), and by N 0

d
. / the intersection

Nd . /\�
0 .

Observe that N 0
d
. / is connected, since for each k the set v0

k
w0

k
\N 0

d
. / is nonempty

and the intersection of N 0
d
. / with each of the parallelograms v0

k
w0

k
w0

kC1
v0

kC1
is

an intersection of two parallelograms, hence convex and connected. We claim that
Nd . / is convex in �. To establish this, we need to study the interior angle at vertices
of @Nd . / outside @�. The only possibility for angle greater than 180ı is at the
horizontal translates of break points of  . But since  is a CAT.0/ geodesic, then
each of its break points lies on the boundary of �, and the translate, for which possibly
the angle is greater than 180ı , lies outside �. Thus the claim follows. Hence (by
connectedness) N 0

d
. / is convex in �0 . Thus  0 �N 0

d
. / and we are done.

Let us prepare the setting for the next lemma. It will help us deal with the data given
by Proposition 10.2, which is, roughly speaking, a pair of surfaces spanned on nearby
pairs of geodesics. To be more precise, let y�k ; y�k ; z�k ; z�k be simplices in the layers
i � k � j between �; � satisfying conditions of Definition 11.3. Moreover, assume
that for each i � k � j we have that y�k � z�k or z�k � y�k , and y�k � z�k or z�k � y�k . Let
y�; z� be associated partial characteristic discs, unique by Lemma 11.4(iv). Denote the
boundary vertices of y� (resp. z�) by yvk ; ywk (resp. zvk ; zwk ), its characteristic mapping
by yS (resp. zS ).

Lemma 11.8 There exists a simplicial generalized characteristic disc x� for .i; j / and
embeddings (thought of as inclusions, for simplicity) x� � y�; x� � z� such that the
distances jxvkyvk j; j xwk ywk j in y� and the distances jxvkzvk j; j xwk zwk j in z� are all � 1 for
i � k � j . Moreover, jxvk xwk j � 1 for i � k � j .
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Proof For each i � k � j , let �max
k

be the greater among y�k ; z�k and let �min
k

be the
smaller, let �max

k
be the greater among y�k ; z�k and let �min

k
be the smaller. Pick vertices

xk 2 �
max
k
;yk 2 �

max
k

so that the distance jxkyk j is maximal. If possible, choose them
from �min

k
; �min

k
(if it is possible for xk ;yk independently, then it is possible for both

of them at the same time, by Lemma 9.5). Pick a 1–skeleton geodesic �k connecting
xk to yk intersecting �min

k
; �min

k
(this is possible by Corollary 8.7). If xk 2 �

min
k

,
then put xsk D xk , otherwise let xsk be the neighbor of xk on �k . Analogously, if
yk 2 �

min
k

, then put xtk D yk , otherwise let xtk be the neighbor vertex of yk on �k .
Thus xsk 2 �

min
k
;xtk 2 �

min
k

. Let x� be the partial characteristic disc for .xsk/; .xtk/ for
i � k � j . Denote its boundary vertices by xvk ; xwk .

The embedding, say x�� y�, is defined as follows. By Proposition 7.6 there exists a
characteristic surface xS W x�!X such that xS.xvk xwk/Dxskxtk � �k . Moreover, again
by Proposition 7.6, the subgeodesic xskxtk of �k lies in yS.y�/. Hence we can define the
desired mapping as the composition yS�1 ı xS . To check that this is an embedding it is
enough to check that it preserves the layers (Lemma 11.4(vii)) and is isometric on the
layers (Lemma 11.4(iii)).

To prove the last assertion fix k and assume without loss of generality that �min
k
D y�k .

Then jxvk xwk j � jyvk ywk j � 1� 1, as desired.

Now we prepare the statement of our final lemma. One can view it as a simple case of
Theorem 10.1, case of X being flat.

Let � be a characteristic disc for a thick interval .i; j / for the directed geodesics
.�k/; .�k/ between �; � and let  0 be its CAT.0/ diagonal, cf Definition 9.10. Let
.�k/

j�1

kDiC1
be the simplices of the Euclidean diagonal in � (Definition 9.10). Fix

i � l <m� j . If i < l <m< j then let .˛k/
m
kDl

; .ˇk/
l
kDm

be directed geodesics in
� from �l to �m and from �m to �l respectively. If l D i then put �i D vi in the
definition of .˛k/

m
kDl

and �i D wi in the definition of .ˇk/
l
kDm

. If mD j then put
�j D wj in the definition of .ˇk/

l
kDm

and �j D vj in the definition of .˛k/
m
kDl

. For
all other purposes we will put �i D viwi ; �j D vjwj .

Let
S
y� be the subcomplex of � which is the span of the union of convf˛k ; ˇkg over

all l � k �m. Note that
S
y� is a simplicial generalized characteristic disc. Denote

the vertices of its boundary loop by .yvk/ and . ywk/. Denote by y the CAT.0/ geodesic
joining in

S
y� the barycenters of �l and �m (which lie in

S
y�).

Lemma 11.9  0 restricted to �jm
l

and y are 1
2

–close in �jm
l

.

Proof We denote by
S
y�0 the generalized characteristic disc obtained from

S
y�

by removing the following triangles: For any boundary vertex of defect 1 in the
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layers ¤ l;m, say yvk , we cut off a triangle along the segment yvk�1yvkC1 . For any
boundary vertex of defect 2 (which is possible in the layers l;m), say yvl , we cut off a
triangle along the segment joining yvlC1 to the barycenter of yvl ywl .

We claim that
S
y�0 is convex in � (treated as CAT.0/ spaces). This means that at

all vertices of @
S
y�0 outside @�, the interior angle of

S
y�0 is at most 180ı . We

skip the proof, which is an easy consequence of Lemma 10.6.

Let y0 be the CAT.0/ geodesic in
S
y�0 joining the barycenter yx of �l with the

barycenter yy of �m (observe that yx; yy 2
S
y�0 ). Since

S
y�0 � � is convex, y0

agrees with the CAT.0/ geodesic in � joining yx; yy .

Now we apply Lemma 11.7 to �0jm
l
��jm

l
(cf Definition 9.10 for the definition of

�0 ), and geodesics y0 in �jm
l

and  0 restricted to �0jm
l

. Observe that endpoints yx; yy
of y0 are at distance at most 1

2
from  0\vlwl ; 

0\vmwm by the definition of �l ; �m .
Hence, by Lemma 11.7, we have that y0 is 1

2
–close to  0 restricted to �jm

l
.

Now observe that since
S
y�0 is also convex in

S
y�, we have y0 D y and we are

done.

Finally, we can proceed with the following.

Proof of Theorem 10.1 First suppose that the layer k for .�t /; .�t / is thin. Then, by
Proposition 10.2(i), z�k contains or is contained in �k and z�k contains or is contained in
�k . Hence the thickness of the layer k for .z�t /; .z�t / is at most 3 and thus z�k �B1.zık/

or z�k � B1.zık/, hence jzık ; ık j � 1.

Now suppose that the layer k for .�t /; .�t / is thick and suppose it is contained in a
thick interval .i; j / with a characteristic disc �. Put �l D viwi if l � i and �mD vjwj

if m� j . We will use the notation introduced before Lemma 11.9. First suppose that
the layer k for .z�t /; .z�t / is thin. Then, by Proposition 10.2(ii), the maximal distance
between vertices in S.˛k/ and S.ˇk/, hence (Lemma 9.8(iii)) in ˛k and ˇk is at most
3. Since y \ vkwk lies in convf˛k ; ˇkg, Lemma 11.9 implies that  0 \ vkwk is at
distance at most 1

2
from convf˛k ; ˇkg. Hence ˛k � B1.�k/ or ˇk � B1.�k/. Thus

zık ; ık are at distance at most 1.

Now suppose that the layer k for .z�t /; .z�t / is thick. Let z� be the characteristic disc
for the thick interval .zi ; zj / containing k for .z�t /; .z�t /. If the layer k for .˛t /; .ˇt /

(between �l ; �m in �) is thin, then the thickness of the layer k for .z�t /; .z�t / is at
most 3, by Proposition 10.2(ii). Hence z�k �B1.zık/ or z�k �B1.zık/. By Lemma 11.9
we have j�k ; ˛k j � 1 and j�k ; ˇk j � 1, hence altogether jzık ; ık j � 2.
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So suppose that the layer k for .˛t /; .ˇt / in � is thick, let yi ; yj be the thick interval for
.˛t /; .ˇt / containing k and let y� be the corresponding characteristic disc. Observe
that y�D

S
y�j
yj
yi

. Let imax be the maximum of yi ;zi and jmin be the minimum of yj ; zj .
Obviously imax < k < jmin . Assume imaxC 1 < jmin � 1, in the case of equality the
argument is similar and we omit it.

By Proposition 10.2(ii) we can apply Lemma 11.8 to z� and y� restricted to the
interval .imaxC1; jmin�1/. Denote by x� the simplicial generalized characteristic disc
for .imaxC1; jmin�1/ guaranteed by Lemma 11.8. Denote by x�0 the generalized
characteristic disc obtained from x� by removing horizontal (the direction of xvt xwt )
1
2

–neighborhood of the boundary, which is allowed because jxv xwj � 1 by Lemma 11.8.
Let z�0 be the modified characteristic in z� and z 0 the CAT.0/ diagonal of z� (cf
Definition 9.10). Define a generalized characteristic disc y�0 �

S
y� and a CAT.0/

geodesic y 0 in y�0 as follows. For each l � t �m denote by yv0t ; yw
0
t points on yvt ywt

at distance 1
2

from yvt ; ywt , respectively, if yvt ¤ ywt . Otherwise, put yv0t D yvt ; yw
0
t D ywt .

Let y�0 be the generalized characteristic disc enclosed by the loop yv0
l
� � � yv0m yw

0
m � � � yw

0
l
yv0

l
.

Let y 0 be the CAT.0/ geodesic in y�0 joining yv0
l
D yw0

l
and yv0m D yw

0
m . By Lemma 11.8

(applied to restricted z� and y�) we have inclusions of x�0 into y�0jjmin�1
imaxC1

, z�0jjmin�1
imaxC1

with distances jxv0t yv
0
t j; j xw

0
t yw
0
t j in y�0 jxv0t zv

0
t j; j xw

0
t zw
0
t j in z�0 all at most 1 for imaxC 1�

t � jmin� 1.

Now we will choose a special point xx 2 xv0imaxC1 xw
0
imaxC1 . Without loss of generality as-

sume imaxDzi , hence jzvimaxC1 zwimaxC1jD2. Choose any xx in xv0imaxC1 xw
0
imaxC1 at distance

� 1 from y 0 , which is possible, since jxv0imaxC1yv
0
imaxC1j � 1 and j xw0imaxC1 yw

0
imaxC1j � 1.

Since jzv0imaxC1 zw
0
imaxC1j

D 1, xx is also at distance at most 1 from z 0 . Choose xy in
xv0
jmin�1

xw0
jmin�1

in an analogous way.

By this construction the endpoints of z 0 and y 0 restricted to .imaxC1; jmin�1/ are at
distance at most 1 from xx; xy in z�0jjmin�1

imaxC1
, y�0jjmin�1

imaxC1
, respectively. Thus, using twice

Lemma 11.7, we get that z 0 and y 0 restricted to .imaxC 1; jmin � 1/ are 1–close to
the CAT.0/ geodesic xx xy in x�0 (in z�0jjmin�1

imaxC1
, y�0jjmin�1

imaxC1
respectively).

By Lemma 11.9,  0 and y are 1
2

–close in �jm
l

. By Lemma 11.7, y 0 and y are
1
2

–close in y�jyj
yi

. Putting those four estimates together we get that ık ; zık are at distance
at most 3, as desired.

We end this section by indicating, how Theorem 10.1 can be promoted to Theorem B,
with a reasonable constant C . The difference in statements comes from substituting
ıl ; ım with x 2 ıl ; y 2 ım such that jxyj D m� l . As a first step, we check that
Proposition 10.2 implies that the directed geodesics between x and y lie near the union
of characteristic images of characteristic discs for .�k/; .�k/. This follows from the
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fact that directed geodesics in systolic complexes satisfy the so called fellow traveler
property with a good constant; see Januszkiewicz–Świ

,
atkowski [19, Sections 11–12].

The second step is to reprove Lemma 11.8 allowing y�k and z�k (and similarly y�k and
z�k ) to be farther apart, at distance bounded by the above fellow traveler constant. Then
some minor changes in the proof of Theorem 10.1 yield Theorem B.

We will give a different complete proof of Theorem B (though with a worse constant)
in the next section.

12 Characteristic discs spanned on Euclidean geodesics

In this section we prove the following crucial proposition, which, roughly speaking,
says that in a characteristic disc spanned on a Euclidean geodesic and an arbitrary other
geodesic, the boundary segment corresponding to the Euclidean geodesic is coarsely
a CAT.0/ geodesic. We introduce the following notation, which will be fixed for the
whole section.

Let �; � be simplices in a systolic complex X satisfying as before ��Sn.�/; ��Sn.�/

and suppose that .pk/
n
kD0

; .rk/
n
kD0

are 1–skeleton geodesics with endpoints in � and
� such that rk 2 ık , where .ık/nkD0

is the Euclidean geodesic between � and � .
Let 0 � ipr < jpr � n be a thick interval for .pk/; .rk/ and let �pr ;Spr be the
corresponding characteristic disc and mapping. Let pr be the CAT.0/ geodesic in
�pr joining the barycenters of the unique edges in the layers ipr ; jpr .

Proposition 12.1 pr is 97–close to the boundary path S�1
pr

�
.rk/

�
.

This proposition has fundamental consequences. One of them is Theorem C, which says
roughly this: in a “Euclidean geodesic triangle”, the distance between the midpoints of
two sides is, up to an additive constant, smaller than half of the length of the third side.
We study this in the next section.

The second consequence of Proposition 12.1 is an alternative proof of the following.

Theorem 12.2 (Theorem B) Let �; � be simplices of a systolic complex X , such
that for some natural n we have � � Sn.�/; � � Sn.�/. Let .ık/nkD0

be the Euclidean
geodesic between � and � . Take some 0 � l < m � n and let .rk/

m
kDl

be a 1–
skeleton geodesic such that rk 2 ık for l � k � m. Consider the simplices zıl D
rl ; zılC1; : : : ; zım D rm of the Euclidean geodesic between vertices rl and rm . Then for
each l � k �m we have jık ; zık j � C , where C is a universal constant.
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Proof Extend .rk/
m
kDl

to a 1–skeleton geodesic .rk/
n
kD0

between �; � so that rk 2 ık
(this is possible by Lemma 9.15(i)). Let .zrk/

m
kDl

be any 1–skeleton geodesic between
rl and rm such that zrk 2

zık . Put additionally zrk D rk for 0� k < l and for m< k � n.
Let �rzr be the characteristic disc for some thick interval for .zrk/

n
kD0

; .rk/
n
kD0

and let
rzr be the CAT.0/ geodesic joining the barycenters of its outermost edges. Let Srzr

be the corresponding characteristic mapping.

Notice that �rzr is also a characteristic disc for .rk/
m
kDl

; .zrk/
m
kDl

between rl and rm .
Applying twice Proposition 12.1 we obtain that rzr is 97–close to both S�1

rzr

�
.rk/

�
and S�1

rzr

�
.zrk/

�
. This proves that for all l � k � m we have jrkzrk j � 194, hence

jık ; zık j � 194. Thus any C � 194 satisfies the assertion of the theorem.

The proof of Proposition 12.1 is rather technical. This is the reason we decided to
present the straightforward proof of Theorem 10.1 (the weak version of Theorem B)
via Proposition 10.2. Before we get into technical details of the proof, split into various
lemmas, we present an outline, which hopefully helps to keep track of the main ideas.

Outline of the proof of Proposition 12.1 We are dealing with configurations of four
geodesics between � and � : the directed geodesics, denoted by .�k/

n
kD0

; .�k/
n
kD0

as
in the previous sections, .rk/

n
kD0

, which goes along the Euclidean geodesic ık , and the
fourth arbitrary 1–skeleton geodesic .pk/

n
kD0

. For the layer k thick (for .�k/; .�k/)
we have that ık D S.�k/, where �k is the simplex of the Euclidean diagonal in
appropriate characteristic disc � for .�k/; .�k/. Hence we need to find out, what is
the possible position of .pk/ with respect to S.�/. It turns out that in each layer
there are 1–skeleton geodesics between simplices �k ; �k and pk , which form a very
thin triangle (Lemma 12.3). The intersection with S.�/ of the center simplex of this
triangle will be later denoted by x�k .

In Lemma 12.4 we study, how do x�k vary with k . Assume for simplicity that pk stay
away from S.�/. Then it turns out that first (ie for small k ) x�k follow S.wk/, next
the barycenters of x�k lie in the characteristic image of a vertical line in � and last
x�k follow S.vk/. The CAT.0/ diagonal  0 of � crosses this line at most once. Thus
we can divide each “thick” interval (an interval with all layers thick, in opposition to
the thick interval with thin endpoint layers) for .�k/; .�k/ into three subintervals: the
“initial” one, for which �k D S�1.x�k/ is far to the right from �k or near wk 2 @�,
the “middle” one, for which �k is near �k , and the “final” one, for which �k is far to
the left from �k or near vk 2 @�; see Lemma 12.8. Moreover, in the “initial” (resp.
“final”) interval we can distinguish a “preinitial” (resp. “postfinal”) interval in which  0

stays away from w0
k
2 @�0 (resp. v0

k
2 @�0 ), where �0 is the modified characteristic

disc. This distinction is done in the main body of the proof of Proposition 12.1. The
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vertices S�1
pr .rk/ in �pr , for k in one of these intervals, are positioned as follows. The

vertices of the “middle” interval together with the vertices of the other ones outside the
“preinitial” and “postfinal” intervals form a coarse vertical line (this is a consequence
of Lemma 12.9), while the vertices of the “preinitial” and “postfinal” intervals form
also coarse CAT.0/ geodesics, fortunately forming with the coarse vertical line angles
� 180ı at the endpoints. This proves Proposition 12.1 in the simple case of a single
“thick” interval for .�k/; .�k/.

In the complex case, the question is, how may the various “thick” intervals and thin
layers for .�k/; .�k/ alternate. We define roughly the following notions. A “thin”
interval is an interval of not very thick layers. A “proper thin” interval is a “thin”
interval with thin layers at the beginning and at the end. A “very thick” interval is
an interval containing a layer that is very thick. In Lemma 12.11 we prove that the
vertices S�1

pr .rk/, for k in a “thin” interval, form a coarse vertical line. In Corollary
12.10 we prove that if at the beginning of a thin layer there is an adjoined “thick”
interval, then this “thick” interval has the “final” subinterval constructed above “thin”.
Similarly, if at the end of a thin layer there is an adjoined “thick” interval, then this
thick interval has the “initial” subinterval “thin”. The last piece of the puzzle is an
assertion in Lemma 12.8, that for a “very thick” interval, either its “initial” or “final”
subinterval is non-“thin”.

The way to put these pieces together is the following. We take a maximal “proper
thin” interval. The “very thick” interval adjoined at the beginning of this “proper thin”
interval must have either the “initial” or the “final” subinterval non-“thin” (Lemma
12.8), but the possibility of the “final” subinterval non-“thin” is excluded (Corollary
12.10). Thus its “initial” subinterval is non-“thin” and this excludes the possibility
that some thin layer (hence any layer) is adjoined at the beginning of this “very thick”
interval (Corollary 12.10). We can apply analogous considerations to the “very thick”
interval adjoined at the end of the “proper thin” interval. Altogether, we have the
following configuration: the “proper thin” interval, with a “very thick” interval with
“thin” “final” subinterval adjoined at the beginning, and with a “very thick” interval with
“thin” “initial” subinterval adjoined at the end. Moreover, in the first of the “very thick”
intervals we distinguish the “preinitial” interval and in the second one we distinguish the
“postfinal” interval. The vertices S�1

pr .rk/, for k outside the “preinitial” and “postfinal”
intervals, form a coarse vertical line (Lemma 12.9 and Lemma 12.11), and the ones
for k in the “preinitial” and “postfinal” intervals form also coarse CAT.0/ geodesics
forming with the coarse vertical line angles � 180ı at the endpoints. This ends the
outline of the proof of Proposition 12.1.

The following lemma treats configurations of three vertices in a layer. Denote the layers
between �; � by Lk .
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Lemma 12.3 Suppose p; s; t are three vertices in Lk . Then either there exists a vertex
such that there are 1–skeleton geodesics ps;pt; st passing through this vertex or there
exists a triangle (ie a 2–simplex) such that there are 1–skeleton geodesics ps;pt; st

passing through the edges of this triangle.

Proof Let p0 be a vertex farthest from p lying both on some 1–skeleton geodesic
ps and some 1–skeleton geodesic pt . Let s0 be a vertex farthest from s lying both
on some 1–skeleton geodesic sp0 and some 1–skeleton geodesic st . Finally let t 0

be a vertex farthest from t lying both on some 1–skeleton geodesic tp0 and some
1–skeleton geodesic ts0 . If two of the vertices p0; s0; t 0 coincide, then all three coincide
and the lemma follows immediately. Suppose now that those three vertices are distinct.

From the choice of p0; s0; t 0 it follows that any loop � obtained by concatenating some
1–skeleton geodesics p0s0; s0t 0; t 0p0 is embedded in Lk . Since Lk is convex (Remark
8.2), it is contractible (see remarks after Definition 2.4), hence � is contractible in
Lk (we could also invoke Lemma 8.4). Consider a surface T W D!Lk of minimal
area spanned on such a geodesic triangle � (we allow the geodesics to vary). By
minimality of area the defects at interior vertices of D and at interior vertices of the
boundary geodesics are nonpositive. Since by Gauss–Bonnet Lemma 7.2 the total sum
of defects equals 6, we get that all mentioned vertices have defects 0 and the vertices
of the geodesic triangle D have defect 2. Hence D is a subcomplex of E2

�
which

is a Euclidean equilateral triangle. Denote the length of the side of this triangle by
d > 0. If d � 2 then let u be the vertex in D such that T .u/ D p0 , let u1;u2 be
its neighbors in D , let u3 be the common neighbor of u1;u2 in D different from u

and let u4 be the neighbor of u1 different from previously mentioned vertices. By
Corollary 8.6 applied to the trapezoid T .u/T .u1/T .u2/T .u3/T .u4/ either we have
an edge T .u/T .u3/ or T .u2/T .u4/. In the first case the vertex T .u3/ turns out to
lie on some 1–skeleton geodesics sp; tp contradicting the choice of p0 . In the second
case the vertex T .u2/ turns out to lie some 1–skeleton geodesics sp; tp , also giving
a contradiction. Hence d D 1 and the lemma follows.

In the next lemma we analyze the possible position of .pk/ with respect to the partial
characteristic image S.�/ of a partial characteristic disc � for .i; j / for .�k/; .�k/.
This means that we assume that the layers i � k � j are thick, cf Definition 11.3. In
the language of the outline of the proof of Proposition 12.1 this is the “thick” interval.
The boundary vertices of � are, as always, denoted by .vk/; .wk/.

For each i �k�j let sk 2�k ; tk 2 �k be chosen as in the previous sections to maximize
the distance jsk tk j. Moreover, among those, choose sk ; tk to maximize the distances
jpksk j; jpk tk j (it is possible to do this independently by Lemma 9.5). For each k
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perform in Lk the construction of s0
k
; t 0

k
;p0

k
as in the proof of Lemma 12.3 and denote

x�k D s0
k
t 0
k

, which is an edge or a vertex in some 1–skeleton geodesic sk tk . Denote
�k D S�1.x�k/. Observe that �k does not depend on the choice of sk ; tk ; s

0
k
; t 0

k
;p0

k
,

since it is determined by the distances jsk tk j; jskpk j; jtkpk j. Lemmas 12.4–12.8 are
devoted to studying the position of �k with respect to �k (the simplices of the Euclidean
diagonal).

The paths .vk/; .wk/ are the boundary components of �.

Finally, note that in the lemma below we actually do not have to assume that .�k/; .�k/

are directed geodesics.

Lemma 12.4 In the above setting, assume that for all i � k � j we have pk ¤ p0
k

(this does not depend on the choice of p0
k

). Then for i � k < j ,

(i) if �k ; �kC1 are both edges, then they both intersect the same boundary compo-
nent,

(ii) if one of �k ; �kC1 , say �k , is an edge, and the second is a vertex, then either
�k ; �kC1 span a simplex, or they intersect the same boundary component,

(iii) if �k ; �kC1 are both vertices, then they both lie on the same boundary compo-
nent.

If we remove the assumption that pk ¤ p0
k

, then in case (i) we only have that �k �

S1.�kC1/ and �kC1 � S1.�k/, case (ii) remains unchanged, and in case (iii) we only
have that �k ; �kC1 span an edge.

Proof We first prove the last assertion. We need to prove (up to interchanging k

with k C 1) that for a vertex u0 2 �k either there exists a neighbor of u0 in �kC1 ,
or �k ; �kC1 intersect the same boundary component. Suppose the first part of this
alternative does not hold. Then, up to interchanging vk with wk , we have the following
configuration (which it will take some time to describe, since we need to name all the
vertices that come into play):

We have u0¤wk , and we denote by u1 the vertex following u0 on 1–skeleton geodesic
in � from u0 to wk , and by u2 the vertex following u1 if u1 ¤ wk . In the layer
kC1 we denote by z1¤wkC1 the vertex in the residue of u0u1 and by z2 the vertex
following z1 on 1–skeleton geodesic z1wkC1 . The configuration is the following:
�kC1 lies on the 1–skeleton geodesic z2wkC1 .

Fix some 1–skeleton geodesics sl � � � s
0
l
; tl � � � t

0
l
;pl � � �p

0
l

for l D k; kC 1. Consider a
partial characteristic surface S W �!X such that for lDk; kC1 we have that S.vlwl/

Geometry & Topology, Volume 13 (2009)



2860 Damian Osajda and Piotr Przytycki

(where vlwl is the 1–skeleton geodesic in �) contains sl � � � s
0
l

and t 0
l
� � � tl (this is pos-

sible by Proposition 7.6). Then S.z2/ 2 skC1 � � � s
0
kC1
� skC1 � � � s

0
kC1

p0
kC1
� � �pkC1

(where possibly s0
kC1
D p0

kC1
). By Proposition 7.6 applied to the partial characteristic

surface for pk ;pkC1; sk ; skC1 containing sk � � � s
0
k

, there is a neighbor of S.z2/ on
sk � � � s

0
k
p0

k
� � �pk (where possibly s0

k
D p0

k
). Denote this neighbor by xx . Since

S.u0/ 2 x�k , we have that xx ¤ S.u1/; xx ¤ S.u2/. Moreover, since the vertices in the
1–skeleton geodesic vku0 are not neighbors of z2 , we have by Lemma 11.4(iii)
that xx … sk � � � s

0
k

. So xx 2 p0
k
� � �pk . But by Lemma 2.8 the vertices xx;S.u1/,

together with S.u2/, if defined, span a simplex. On the other hand, S.u1/, and
S.u2/ if defined, lie on the 1–skeleton geodesic pk � � �p

0
k
t 0
k
� � � tk passing through xx .

Since xx;S.u1/, and S.u2/, if defined, are different vertices, this is only possible if
xx D p0

k
;S.u0/D s0

k
;S.u1/D t 0

k
and u1 D wk , ie u2 is not defined. Then �k is an

edge, �kC1 is a vertex, and they intersect the same boundary component, which is
the second possibility of the alternative. Thus we have proved the last assertion of the
lemma. In particular, we have proved assertion (ii).

Now we will be proving assertions (i) and (iii) and we may already assume that pk¤p0
k

for i � k � j .

First we prove (i), by contradiction. Suppose that �k ; �kC1 are both edges, and without
loss of generality suppose that �k does not intersect the boundary. This implies that
s0
k
¤ sk ; t

0
k
¤ tk . Let xz be a vertex in the projection (cf Definition 2.9) of the triangle

s0
k
t 0
k
p0

k
onto the layer LkC1 . By Lemma 10.5 applied thrice we get that xz lies on 1–

skeleton geodesics between all pairs of vertices from fskC1; tkC1;pkC1g, thus x�kC1

is a vertex. Contradiction.

Now we prove (iii), by contradiction. Suppose that �k ; �kC1 are both vertices and
one of them is nonboundary. Then in the layers k; k C 1 of � there are vertices,
which are common neighbors of �k ; �kC1 , denote them by u (in the layer k ) and
by z (in the layer k C 1). Moreover, either �k ¤ vk and �kC1 ¤ vkC1 , or �k ¤

wk and �kC1 ¤ wkC1 . Assume without loss of generality that the latter holds.
Consider the partial characteristic disc �pt for pk ;pkC1; tk ; tkC1 (we are allowed
to do this, since jpk tk j D jpk x�k j C jx�k tk j � 2 and similarly jpkC1tkC1j � 2) and
the corresponding partial characteristic mapping Spt . Let x be the common neighbor
of S�1

pt .x�k/;S�1
pt .x�kC1/ in �pt lying on S�1

pt .pk x�k/ or S�1
pt .pkC1x�kC1/. Assume,

without loss of generality, that Spt .x/ � Lk . Since vertices in Spt .x/;S.u/ � Lk

are neighbors of x�kC1 2LkC1 , we have by Lemma 2.8 that Spt .x/ and S.u/ span
a simplex. On the other hand, x�k lies by definition on some 1–skeleton geodesic
pksk . By Proposition 7.6, its segments pk x�k and x�ksk intersect Spt .x/ and S.u/,
respectively (outside x�k ). Hence x�k separates vertices from Spt .x/ and S.u/ on a
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1–skeleton geodesic pksk . Contradiction. Thus we have proved assertion (iii) and
hence the whole lemma.

Let us introduce the following language.

Definition 12.5 We will refer to the horizontal coordinates of points in various char-
acteristic discs. Namely, we view a characteristic disc as a CAT.0/ subspace of E2 .
There we consider cartesian coordinates such that the layers are contained in horizontal
lines. We also specify that the horizontal coordinate increases (from the left to the
right) in the direction from vk to wk . We denote the horizontal coordinate of a point
z by zx . If � is a vertical line in �, then its horizontal coordinate is denoted by �x .

We will need the following technical lemma, which helps to compare the horizontal
coordinates of the preimages of vertices of X in various characteristic discs.

Lemma 12.6 Suppose that �1; �2 are partial characteristic discs (and S1;S2 resp.
characteristic mappings) for the interval .i; j / for some sequences of simplices .�1

k
/,

.�1
k
/, .�2

k
/, .�2

k
/ in the layers Lk between �; � . Suppose .pk/

j

kDi
; . zpk/

j

kDi
are 1–

skeleton geodesics such that for i � k � j we have that pk ; zpk 2Lk and, for l D 1; 2,
we have pk ; zpk 2 Sl.�l/ but .Sl/�1.pk/¤ .Sl/�1. zpk/. Then, if we vary i � k � j ,
the differences within ..S1/�1.pk//

x and within ..S2/�1.pk//
x agree.

Proof Apply Lemma 11.4(iii).

The following notions will help us formulate neatly the upcoming lemma.

Definition 12.7 Let � be a simplicial generalized characteristic disc for .i; j / such
that jvkwk j � 2 for i � k � j . Let �; � be some simplices in the layer k of �, and
c 2 ZC . We say that � is

� @–left if either vk 2 � or � is a neighbor vertex of vk , which has defect 1 in
case k ¤ i; j or defect 2 in case k D i or k D j ,

� @–right if either wk 2 � or � is a neighbor vertex of wk , which has defect 1 in
case k ¤ i; j or defect 2 in case k D i or k D j ,

� c–left from � if j�; �j � c and � lies on vk� ,

� c–right from � if j�; �j � c and � lies on �wk .

In all that follows, c is a positive integer. When all the pieces of the proof of Proposition
12.1 are put together, we assign c D 5. But before this happens, we use the variable c ,
in order to help keeping track of the role of the constant in the various lemmas.
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Lemma 12.8 Assume that for some i < j and each i � k � j the layer k is thick for
.�k/; .�k/, and jpk ; ık j � cC 4. Then there exist i � l �m� j such that

(i) for i � k < l we have that �k is @–right or c–right from �k ,

(ii) among l � k �m the differences within .S�1
pr .rk//

x are � cC 1,

(iii) for m< k � j we have that �k is @–left or c–left from �k .

Moreover, if the maximal thickness of the layers (for .�k/; .�k/) from i to j is at
least 2cC 4 and the layers i � 1; j C 1 are thin, then there are l;m as above such that
either m < j and vx

jC1
� vx

mC1
� c (in the characteristic disc for the thick interval

.i � 1; j C 1/) or l > i and wx
l�1
�wx

i�1
� c .

The ranges for k in (i), (ii) and (iii), define the “initial” subinterval, the “middle”
subinterval and the “final” subinterval of a “thick” interval discussed in the outline of
the proof of Proposition 12.1. The last assertion, in the language of the outline, states
that a “very thick” interval has either its “initial” or “final” subinterval non-“thin”.

Proof First we give the proof of (i)–(iii) under an additional assumption that for all
i � k � j we have pk ¤ p0

k
(recall that this does not depend on the choice of p0

k
).

The outline of the proof with this assumption was already given at the beginning of the
section.

To start, observe that from Lemma 12.4 and Lemma 9.16(i)–(ii) we get immediately
the following.

Corollary There exist i � l 0 �m0 � j such that

(1) for i � k < l 0 the simplex �k is @–right,

(2) for l 0 � k �m0 the simplices �k are alternatingly edges and vertices and their
barycenters lie on a straight vertical line � in �; moreover for l 0 < k <m0 the
simplices �k do not meet vk ; wk ,

(3) for m0 < k � j the simplex �k is @–left.

Recall that the restriction to � (the partial characteristic disc for .i; j / for .�k/; .�k/)
of the CAT.0/ diagonal  0 (cf Definition 9.10) in the characteristic disc (Definition
9.4) containing � crosses transversally each vertical line in �, by Lemma 9.17 (since
.jC1/�.i�1/>2). Let l 0� l�m0 be maximal satisfying . 0\vkwk/

x��x�c�1
2

for
l 0� k < l . Similarly, let l 0�m�m0 be minimal satisfying . 0\vkwk/

x ��xCcC 1
2

for m< k �m0 .
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We prove that assertion (i) is satisfied with l as above. First consider i � k < l 0 . Then
assertion (i) follows from assertion (1) of the corollary. Now suppose that l 0 � k < l .
Then, by the definitions of l and �k , if �k is a vertex, then �x

k
� �x � c � 1

2
, and

if �k is an edge then the horizontal coordinates of its vertices are at most �x � c .
Moreover, in case the latter inequality is an equality, we have that �k is a vertex. In all
cases �k lies to the right of �k and the distance between them is at least c , as desired.
Analogously, assertion (iii) holds with m as above.

Now we prove assertion (ii). Consider l � k �m. If l DmD l 0 or l DmDm0 , then
(ii) follows immediately. Otherwise, by the definition of m; l we have . 0\ vlwl/

x >

�x�c�1
2

and . 0\vmwm/
x<�xCcC1

2
, hence �x�c�1

2
<. 0\vkwk/

x<�xCcC1
2

.
By the definition of �k , via similar considerations as in the previous paragraph, we
have that diam.�k [�k/� cC 1 and j�k ; �k j � c . By the former inequality we have
that p0

k
are at distance at most cC 1 from rk . (Record the latter one, ie j�k ; �k j � c ,

which we will need later in the proof.)

We would like to compute the differences within .S�1
pr .p

0
k
//x , when we vary l �k�m.

These differences are equal to the differences within .S�1
ps .p

0
k
//x in �ps , where Sps

(resp. �ps ) is the partial characteristic mapping (resp. partial characteristic disc) for
.pk/

m
kDl

; .sk/
m
kDl

. To see this, it is enough to apply Lemma 12.6 with .p0
k
/; .pk/ in

place of .pk/; . zpk/, where we use our additional assumption pk ¤ p0
k

.

We claim that .S�1
ps .p

0
k
//x vary at most by 1

2
for l � k �m. Indeed, by our additional

assumption and assertion (2) of the corollary we have, for l < k < m, that pk ¤

p0
k
; sk ¤ s0

k
; tk ¤ t 0

k
. Thus we can apply Lemma 12.4 with .sk/; .pk/; .tk/ in place

of .�k/; .�k/; .pk/ to obtain, for l � k �m, that the barycenters of S�1
ps .p

0
k
s0
k
/ lie on

a common vertical line in �ps . This justifies the claim.

Thus .S�1
pr .p

0
k
//x vary at most by 1

2
, for l � k �m. Let � be the greater among (at

most two) values attained by .S�1
pr .p

0
k
//x . By the previous estimates we have that

.S�1
pr .rk//

x � �C cC 1. On the other hand, we have � � .S�1
pr .rk//

x . Hence we
obtain that the differences within .S�1

pr .rk//
x are � cC 1, as desired.

Now we must remove the additional assumption that for all i �k� j we have pk¤p0
k

.
We have now only the last assertion of Lemma 12.4 at our disposal.

Let i � i1 � j1 < i2 � j2 < � � �< iq � jq � j , where jh < ihC1�1 for 1� h< q , be
such that exactly for ih � k � jh our additional assumption is satisfied. For all other
i�k�j , in particular, for kD ih�1; jhC1 (where 1�h�q ), except possibly for i1�1

if it equals i�1, and jqC1 if it equals j C1, we have j�k ; �k j � jpk ; ık j�1� cC3.
Thus for k D ih; jh , except possibly for i1 if it equals i and for jq if it equals j , we
have, by Lemma 9.11 and by the last assertion of Lemma 12.4, that j�k ; �k j � cC 1.
So for all k not contained in the (open) intervals .ih; jh/ we have j�k ; �k j � cC 1.
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Put for a moment j0 D i; iqC1 D j . By the previous paragraph, by Lemma 9.11 and
by the last assertion of Lemma 12.4, for any 0� h� q and all jh � k � ihC1 , either
�k lies always between �k and vk , or �k lies always between �k and wk .

Now let us analyze what happens for a fixed 1 � h � q for ih � k � jh . Apply our
argument under the additional assumption pk D p0

k
to i D ih; j D jh . Observe that

if j�ih
; �ih
j � c C 1 (which holds unless possibly h D 1 and i1 D i ) and �ih

lies
between �ih

and vih
, then we have that l D m D ih (otherwise we have recorded

that j�k ; �k j � c for l � k �m). Similarly, if j�jh
; �jh
j � cC 1 (which holds unless

possibly h D q and jq D j ) and �jh
lies between �jh

and wjh
, then l D m D jh .

In particular, those two situations cannot happen simultaneously, and if any of them
happens, then either assertion (i) or assertion (iii) is valid for all ih � k � jh .

Summarizing, there can be at most one h such that l ¤ jh and m¤ ih . If there is no
such h, then either assertion (i) or assertion (iii) holds for all i � k � j and we are
done. If not, define l;m as in the previous argument for i D ih; j D jh . They satisfy
assertions (i)–(iii), as required.

Finally, we prove the last assertion. Pick �; l;m as above. Let  0 be the CAT.0/
diagonal of the characteristic disc � for .i � 1; j C 1/. Since the maximal thickness
for .�k/; .�k/ of the layers from i to j is � 2c C 4, then by Lemma 9.16(i)–(ii),
we have that vx

jC1
�wx

i�1
� 2cC 1. Thus we can assume without loss of generality

that �x �wx
i�1
� cC 1

2
. Thus �x � . 0\ viwi/

x � cC 1
2

and l > i . Observe that
� goes through the barycenter of �l , hence wx

l�1
� �x �

1
2

so wx
l�1
�wx

i�1
� c , as

desired.

The next lemma in particular guarantees that in a “thick” interval, the vertices S�1
pr .rk/

for k in the “final” subinterval outside the “postfinal” subinterval form a coarse vertical
line. We consider it, together with the previous lemma, the heart of the proof of
Proposition 12.1. Below we put � to be the characteristic disc for the thick interval
containing i; j for .�k/; .�k/. Let vk ; wk be its boundary vertices, etc.

Lemma 12.9 Suppose that for some i � j and for all i � k � j the layer k is thick
for .�k/; .�k/, jpk ; ık j � c C 2 � 7 and �k is either @–left or c–left from �k . If
. 0\ vjC1wjC1/

x D vx
jC1
C

1
2

, then vx
jC1
� vx

i < c .

Proof By contradiction. Roughly, the idea is the following. If vx
jC1

is relatively large
with respect to vx

i , this means that the directed geodesic .�k/ performs in the layers
i; : : : ; j an unexpected turn towards .�k/. On the other hand, there is plenty of room in
the partial characteristic disc �pt for .pk/; .�k/, since pk are far away from ık , hence
(as we will see) away from �k . By assumption on �k the corresponding characteristic
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image Spt .�pt / almost passes through �k . We can then see through �pt that .�k/

actually goes vertically for all consecutive i � k � j . This yields a contradiction.

Formally, suppose vx
jC1
� vx

i � c . By increasing i , if necessary, we may assume that
i is maximal � j satisfying vx

jC1
� vx

i � c . Hence vx
jC1
� vx

i D c .

We claim that for all i � k � j we have that �k is @–left. Indeed, by maximality of i

we have . 0\vjC1wjC1/
x�vx

k
� cC 1

2
. By Lemma 9.17 we have that . 0\vkwk/

x�

. 0 \ vjC1wjC1/
x < 0. Putting these inequalities together implies that jvk ; �k j � c .

Hence if �k is c–left from �k , then it equals vk , thus it is also @–left, as required.
Thus we have proved the claim. Moreover, jvk ; �k j � c together with jpk ; ık j � cC2

gives also that jpk ; �k j � 2 and pk ¤ t 0
k

for i � k � j .

Denote hk D S�1.t 0
k
/ 2 �k . By the claim we have jvkhk j � 1. Let �pt be the charac-

teristic disc for the thick interval .ipt ; jpt / for .pk/; .tk/ containing i � k � j and let
Spt be the corresponding characteristic mapping (we have jpk tk jD jpk t 0

k
jCjt 0

k
tk j � 2,

since �k is @–left). Denote zvk D S�1
pt .pk/, zwk D S�1

pt .tk/. Let zhk D S�1
pt .t

0
k
/. Since

for i �k�j we have jtk t 0
k
j�1, by Lemma 12.6 the differences within hx

k
(coordinates

in �) and within zhx
k

(coordinates in �pt ) agree.

Now observe that t 0
k

spans a simplex with �k by the claim, Lemma 10.3 and Lemma
9.8(iii)–(iv), for all i � k � j . Denote � D spanft 0i ; �ig. Denote by �i D �; �iC1; : : :

the simplices of the directed geodesic from � to � . Denote by ˇk the simplices of
the directed geodesic from t 0i to � . By Lemma 2.10 we have ˇk � �k � �k for k � i

even, and ˇk � �k � �k for k � i odd. Denote by ˛k the simplices of the directed
geodesic in �pt from zhi to zvjpt

zwjpt
.

First we prove that for all i � k � j we have zvk … ˛k . For k D i this follows from
pi ¤ t 0i . For k > i we argue by contradiction. Let i < k0 � j be minimal such that
zvk0
2 ˛k0

. Observe that �pt is actually a partial characteristic disc for .pk/; .�k/ and
.�k/ is the directed geodesic from � to � . Hence, similarly as in Lemma 10.6, for
i � k � k0 the simplices ˛k are alternatingly vertices and edges, with barycenters on
a common vertical line. Moreover, by minimality of k0 , we have that ˛k0

is an edge.
By Lemma 10.5 and Lemma 2.10 (applied alternatingly for consecutive layers exactly
as in the proof of Proposition 10.2), we have that ˇk � Spt .˛k/ for k � i even and
Spt .˛k/� ˇk for k � i odd, for all i � k � k0 . In particular, since ˛i is a vertex and
˛k0

is an edge, we have that pk0
2 Spt .˛k0

/� ˇk0
� �k0

� �k0
. But this contradicts

jpk0
; �k0
j � 2. Hence we proved that for all i � k � j we have zvk … ˛k .

From the above proof we also get that for all i � k � j we have ˇk � Spt .˛k/ for
k � i even and Spt .˛k/ � ˇk for k � i odd, and the simplices ˛k are alternatingly
vertices and edges, with barycenters on a common vertical line. Since t 0

k
and �k span
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a simplex, this implies that t 0
k
2 B2.Spt .˛k//, hence zhk 2 B2.˛k/, for i � k � j .

Since the barycenters of ˛k lie on a common vertical line through zhi , we conclude that
jzhx

i �
zhx

k
j � 21

2
for i � k � j , in particular for kD j . But zhx

j �
zhx

i Dhx
j �hx

i � c�11
2

.
This contradicts c � 5.

We immediately get the following corollary, which excludes the possibility of adjoining
a non-“thin” “final” subinterval of a “thick” interval to the beginning of a thin layer for
.�k/; .�k/.

Corollary 12.10 Suppose that for some i � j the layer j C 1 is thin for .�k/; .�k/,
and for all i � k � j the layer k is thick for .�k/; .�k/, jpk ; ık j � cC 2� 7 and �k

is either @–left or c–left from �k . Then vx
jC1
� vx

i < c .

The next preparatory lemma takes care of the “thin” intervals for .�k/; .�k/. Let d be
a positive integer.

Lemma 12.11 Suppose that for some i � j the layers i; j for .�k/; .�k/ have thick-
ness at most d and for all i � k � j the layer k for .�k/; .�k/ has thickness at most
2c C 3 and jpk ; ık j � 2c C 4. Then the differences within .S�1

pr .rk//
x are at most

cC 2d C 21
2

.

We can also obtain an estimate independent of c on the differences within .S�1
pr .rk//

x .
However, we will not need it.

Proof We can define p0
k

as usual (even for thin layers). Observe that we have
pk ¤ p0

k
; jpk ; �k j � 2, and jpk ; �k j � 2, for i � k � j . Let zsk 2 �k ; ztk 2 �k realize

maximal distances from pk to �k ; �k , respectively. Let �ps; �pt ;Sps;Spt denote the
characteristic discs and mappings for .pk/; .�k/ and .pk/; .�k/, respectively, for the
thick intervals containing all i � k � j . Since pk ¤ p0

k
, we have by Lemma 12.6

that the differences within .S�1
ps .pk//

x , within .S�1
pt .pk//

x , and within .S�1
pr .pk//

x

agree, if we vary k among i � k � j .

For i � k � j denote Psk D S�1
ps .zsk/, Ptk D S�1

pt .ztk/. Let i � k1 < k2 � j . By
Lemma 9.16(i)–(ii) we have that Psx

k1
� Psx

k2
� �

1
2

and Ptx
k1
� Ptx

k2
�

1
2

. In particular,
Psx
k2
� Psx

j � �
1
2

and Psx
i � Ps

x
k1
� �

1
2

, for i � k1 < k2 � j . Hence

Psx
k2
� Psx

k1
� Psx

j � Ps
x
i � 1� Ptx

j �
Ptx
i � 1� 2d � �2d � 1

1

2
:

Ptx
k2
� Ptx

k1
� 2d C 1

1

2
:Analogously
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It will be convenient for us to assume that the coordinates in �ps; �pt agree on
S�1

ps .pk/ and S�1
pt .pk/, so that we can compare coordinates of points in �ps and �pt .

With this convention, for any i � k1; k2 � j we have that Psx
k1
� Ptx

k2
� Psx

j �
Ptx
j � 1 �

�d � 1. Analogously Psx
k1
� Ptx

k2
� d C 1. So altogether the differences within all

the Psx
k
; Ptx

k
, where i � k � j , are at most 2d C 11

2
. In particular, if we denote by

a the minimum over k of Psx
k
; Ptx

k
and by b the maximum over k of Psx

k
; Ptx

k
, we get

b� a� 2d C 11
2

.

For a fixed k , since the thickness of the layer k is at most 2c C 3, we have that
jzskrk j � cC 1 or jztkrk j � cC 1, hence

minfjpkzsk j; jpkztk jg � jpkrk jC cC 1;

thus rx
k
� a� .cC 1/. On the other hand, by convexity of balls we have

jpkrk j �maxfjpkzsk j; jpkztk jg;

hence rx
k
� b . Altogether, this implies that the differences within .S�1

pr .rk//
x are at

most

.cC 1/C
�
2d C 1

1

2

�
C 1D cC 2d C 2

1

2
:

Finally, we prove the following easy lemma, which is needed both here and later in
Section 13.

Lemma 12.12 Let � be a generalized characteristic disc for .i; j /. Let  be a
CAT.0/ geodesic in � connecting some points in viwi ; vjwj . For i � k � j let
hk 2 vkwk be some points at distance � 1

2
from  \ vkwk . Let �split � � be

the generalized characteristic disc for .i; j / with wk substituted with hk . Then the
CAT.0/ geodesic hihj in �split is 1–close to the piecewise linear boundary path
hihiC1 � � � hj .

Proof For i�k�j let h0
k

be the points on vkwk with .h0
k
/xDmaxf.\vkwk/

x; hx
k
g.

Let �cut � � be the generalized characteristic disc for .i; j / with wk substituted
with h0

k
. Then  is also a CAT.0/ geodesic in �cut . By Lemma 11.7 applied to

�split � �cut we have that the CAT.0/ geodesic hihj in �split is 1
2

–close to  ,
hence 1–close to the path hihiC1 � � � hj .

Now we are ready to put together all pieces of the puzzle.

Proof of Proposition 12.1 Put c D 5. For the layers k such that jpkrk j � 7cC 12

there is nothing to prove. Now suppose that for some i 0 < j 0 , where j 0� i 0 � 2, we
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have jpi0ri0 j D jpj 0rj 0 j D 7c C 12 and for i 0 < k < j 0 we have jpkrk j � 7c C 13,
hence jpk ; ık j � 7cC 12. In particular, pk are as far from ık as required in Lemma
12.9 and Corollary 12.10.

Let �pr be the partial characteristic disc for .i 0; j 0/ for .pk/; .rk/, and let Spr be the
corresponding partial characteristic mapping. Denote uk D S�1

pr .rk/.

Step 1 There exist i 0 � l �m� j 0 such that

(1) for i 0�k < l the layer k is thick for .�t /; .�t /, every 1–skeleton geodesic pksk

intersects ık , and . 0\vkwk/
x <wx

k
�

1
2

(in the appropriate characteristic disc
for .�t /; .�t /, with the usual notation vk ; wk , etc.),

(2) among l � k �m the differences within ux
k

are at most 7cC 101
2

,

(3) for j 0 � k >m the layer k is thick for .�t /; .�t /, every 1–skeleton geodesic
pk tk intersects ık , and . 0\ vkwk/

x > vx
k
C

1
2

.

This is the division into the “preinitial” interval, the union of the central intervals, and
the “postfinal” interval in the language of the outline of the proof.

Let us justify Step 1. First consider the simple case that there are no thin layers for
.�k/; .�k/ among the layers i 0 � k � j 0 . Then Lemma 12.8 applied to i D i 0; j D j 0

gives us a pair of numbers l 0;m0 , which satisfies assertions (1) and (3) of Step 1 (with
l 0;m0 in place of l;m), except for the statements on the position of  0 (we will refer
to these as incomplete assertions (1) and (3)).

Let l < l 0 be minimal � i 0 such that . 0\ vlwl/
x D wx

l
�

1
2

(if there is no such l , in
particular, if l 0 D i 0 , then we put l D l 0 ). Similarly, let m>m0 be maximal � j 0 such
that . 0\vmwm/

x D vx
mC

1
2

(if there is no such m, in particular, if m0D j 0 , then we
put mD m0 ). Obviously, l;m satisfy complete assertions (1) and (3) of Step 1. To
prove that they satisfy assertion (2), we need the following.

Claim Among l �k � l 0�1 the differences within ux
k

are at most cC1. Analogously,
among m0C 1� k �m the differences within ux

k
are at most cC 1.

To justify the claim, we need to introduce some notation. Up to the end of the proof
of the claim we consider l � k � l 0 � 1. Observe that the layers k for .pk/; .sk/

are thick, since by incomplete assertion (1) we have that jpksk j > jpk ; ık j. Denote
by �;S (resp. �ps;Sps ) the characteristic disc and mapping for the thick interval
containing k for .�t /; .�t / (resp. for .pt /; .st /). For each k let xhk be the vertex
in ık \ pksk closest to pk (for some 1–skeleton geodesic pksk ). By Proposition
7.6 we have that xhk 2 Sps.�ps/. Denote hk D S�1.xhk/; zhk D S�1

ps .
xhk/. Since by
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incomplete assertion (1) we have sk ¤ s0
k

, Lemma 12.6 gives that the differences
within �hx

k
and within zhx

k
agree (the sign changes since .sk/ plays the role of the left

boundary component in S.�/ and the right one in Sps.�ps/). By Lemma 12.6 applied
to �ps and �pr , and since jpkrk j D jpk

xhk j or jpkrk j D jpk
xhk j C 1, we have that

the differences within ux
k

differ at most by 1 from the differences within zhx
k

. Hence
the differences within ux

k
differ at most by 1 from the differences within �hx

k
.

Now we can proceed with justifying the claim. By Lemma 12.9 we have wx
l 0�1
�wx

l
<

c , hence . 0\ vlwl/
x �wx

l 0�1
� c . Thus, by Lemma 9.17, we have . 0\ vkwk/

x �

wx
l 0�1
� c for all k . This implies, by the definition of �k , that hx

k
� wx

l 0�1
� c � 1

2
.

On the other hand, by Lemma 9.16 we have that wx
k
� wx

l 0�1
C

1
2

, hence we have
hx

k
� wx

l 0�1
�

1
2

. Thus the differences within hx
k

are at most c , hence the differences
within ux

k
are at most cC 1. This justifies the first assertion of the claim. The second

one is proved analogously.

Now we can finish the proof of Step 1 in the simple case that there are no thin layers for
.�k/; .�k/, among the layers i 0 � k � j 0 . To prove assertion (2), we need to compare
ux

k1
and ux

k2
, for l � k1 < k2 � m. Assume, which is the worst possible case, that

l � k1 � l 0� 1 and m0C 1� k2 �m. By Lemma 12.8(ii) and by the claim we have

jux
k1
�ux

k2
j � jux

k1
�ux

l 0�1jC
1

2
Cjux

l 0 �ux
m0 jC

1

2
Cjux

m0C1�ux
k2
j

� .cC 1/C
1

2
C .cC 1/C

1

2
C .cC 1/;

which is even better then the required estimate. This ends the proof of Step 1 in the
simple case.

Now consider the complex case that there is a thin layer among the layers i 0 � k � j 0 .
Let .l0;m0/ be a maximal (with respect to inclusion) interval, with i 0 � l0 �m0 � j 0 ,
such that the layers l0;m0 are thin for .�k/; .�k/ and for l0 < k <m0 the layer k has
thickness at most 2cC 3 (possibly l0 Dm0 ). This is the “proper thin” interval of the
outline of the proof.

First we argue that for i 0 � k < l0 and m0 < k � j 0 the layer k is thick. Otherwise,
suppose without loss of generality that k0 is maximal < l0 such that the layer k0

is thin. Then, by maximality of .l0;m0/, the thick interval .k0; l0/ contains some
k such that the layer k has thickness at least 2cC 4. Thus by the last assertion of
Lemma 12.8 applied to i D k0C 1; j D l0� 1 we get k0 < l �m< l0 so that either
m < l0 � 1 and vx

l0
� vx

mC1
� c , or l > k0C 1 and wx

l�1
�wx

k0
� c . In both cases

this contradicts Corollary 12.10 applied respectively to i DmC 1; j D l0 � 1, or to
i D l � 1; j D k0C 1 with the roles of v;w interchanged and the order on naturals

Geometry & Topology, Volume 13 (2009)



2870 Damian Osajda and Piotr Przytycki

inversed. Thus we have proved that for i 0 � k < l0 and m0 < k � j 0 the layer k is
thick for .�k/; .�k/.

Now we can apply Lemma 12.8 to i D i 0; j D l0 � 1. Denote by l 0;m0 the pair of
numbers given by its assertion. By Corollary 12.10 we have that vx

l0
� vx

k
< c for

m0C 1� k � l0 . Similarly, we apply Lemma 12.8 to i Dm0C 1; j D j 0 and denote
by l 00;m00 the pair of numbers given by its assertion. By Corollary 12.10 we have
wx

k
�wx

m0
< c for m0 � k � l 00� 1. Hence, by Lemma 9.16(i)–(ii), the thickness of

the layer k , for m0C 1� k � l0 and for m0 � k � l 0� 1, is at most cC 1.

Define, similarly as before, l < l 0 to be minimal � i 0 such that . 0\vlwl/
x Dwx

l
�

1
2

(if there is no such l , in particular, if l 0 D i 0 , then we put l D l 0 ), in appropriate
characteristic disc. Similarly, let m>m00 be maximal � j 0 such that . 0\vmwm/

x D

vx
mC

1
2

(if there is no such m, in particular, if m00 D j 0 , then we put mDm00 ).

For l;m as above we have that assertion (1) follows from Lemma 12.8(i) and asser-
tion (3) follows from Lemma 12.8(iii). As for assertion (2), assume, which is the worst
possible case, that l � k1 � l 0� 1 and m00C 1� k2 �m. Combining Lemma 12.11
applied to i Dm0C1; j D l 00�1; d D cC1 with Lemma 12.8(ii) and with the claim
above (which is also valid in this complex case) we get

jux
k1
�ux

k2
j � jux

k1
�ux

l 0�1jC
1

2
Cjux

l 0 �ux
m0 jC

1

2
Cjux

m0C1�ux
l 00�1j

C
1

2
Cjux

l 00 �ux
m00 jC

1

2
Cjux

m00C1�ux
k2
j

� .cC 1/C
1

2
C .cC 1/C

1

2
C

�
cC 2d C 2

1

2

�
C

1

2
C .cC 1/C

1

2
C .cC 1/D 7cC 10

1

2
;

as required. Thus we have completed the proof of Step 1.

Step 2 pr is 97–close to .uk/.

For the layers i 0 � k < l define �;S; �ps;Sps and hk 2 �k ��; zhk 2�ps; xhk D

S.hk/D Sps.zhk/ like in Step 1 (which is possible by assertion (1) of Step 1). Recall
that the differences within ux

k
differ at most by 1 from the differences within �hx

k
.

In particular, since for i 0 � k1 < k2 < l we have hx
k1
� hx

k2
�

1
2

(by Lemma 9.17 and
the definition of �k ), it follows that ux

k2
�ux

k1
� 11

2
. Analogously we choose vertices

hk 2 �k (in appropriate characteristic disc) for m< k � j 0 , so that jpkrk j D jpk
xhk j

or jpkrk j D jpk
xhk jC 1. Hence for m< k2 < k1 � j 0 we have ux

k2
�ux

k1
� 11

2
.
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Let l � k0 �m be such that ux
k0

is minimal. Let ˛ be a vertical line segment in �pr

from the layer maxfl � 1; i 0C 1g to the layer minfmC 1; j 0� 1g at distance 2 to the
left from uk0

. By assertion (2) of Step 1 and by the fact that jpkrk j � 7cC 13 this
line segment is really contained in �pr . Let ˇ1; ˇ2 be CAT.0/ geodesics in �pr

connecting ui0 ;uj 0 to the endpoints of ˛ . Since ux
k2
�ux

k1
� 11

2
for i 0 � k1 < k2 < l

and m< k2 < k1 � j 0 , we have for all i 0 � k � j 0 that ux
k
> ˛x . Hence the region in

�pr to the right of the concatenation ˇ1˛ˇ
�1
2

is convex, and thus contains the CAT.0/
geodesic in �pr joining ui0 with uj 0 .

We claim that ˇ1 is .7c C 15/–close to .uk/. Indeed, if l D i 0 or l � 1 D i 0 , then
this is easy. Otherwise, let i 0 � k � l � 1. Let �00 � �jl�1

i0 be the generalized
characteristic disc for .i 0; l � 1/ obtained from �0jl�1

i0 (the modified characteristic
disc, in which  0 is a CAT.0/ geodesic) by substituting w0

k
with w00

k
, such that

.w00
k
/x D hx

k
C 1. Denote  0 restricted to the layers from i 0 to l � 1 by  0jl�1

i0 . We
have  0jl�1

i0 ��
00 and by assertion (1) of Step 1 we have that  0jl�1

i0 does not touch
the .w0

k
/ boundary component of �0 , hence it is also in �00 a CAT.0/ geodesic

(which does not touch w00
k

). Let �0ps � �psj
l�1
i0 be the generalized characteristic

disc for .i 0; l � 1/ obtained from �psj
l�1
i0 by deleting 1

2
–horizontal neighborhood of

the boundary component corresponding to .sk/. Observe that there is an (orientation
reversing) embedding e00W �00!�0ps , and that e00. 0/ is still a CAT.0/ geodesic in
�0ps . Moreover, e00.hk/D zhk , so that je00. 0\ vkwk/zhk j �

1
2

.

Let �ph � �psj
l�1
i0 be the generalized characteristic disc for .i 0; l � 1/ obtained

from �0ps by splitting along zhk (in fact xhk is a 1–skeleton geodesic and �ph is the
partial characteristic disc for .pk/; .xhk/, but we do not need this). By Lemma 12.12
the CAT.0/ geodesic zhi0

zhl�1 in �ph is 1–close to the boundary path .zhk/. Now
recall that there is an embedding eW �ph ! �pr , such that je.zhk/uk j � 1. Let us
compute the distances between the endpoints of the image under e of the CAT.0/
geodesic zhi0

zhl�1 and the endpoints of ˇ1 in �pr . The distance between e.zhi0/ and
ui0 is at most 1, and the distance between the second pair of endpoints is at most
2C .7cC 101

2
/C 1

2
by assertion (2) of Step 1. Hence, by Lemma 11.7, we have that

e.zhi0
zhl�1/ is .7cC 13/–close to ˇ1 . Recall that e.zhi0

zhl�1/ is 1–close to e
�
.zhk/

�
,

which is 1–close to .uk/. Altogether, ˇ1 is
�
.7cC 13/C 1C 1

�
–close to .uk/, as

desired. Thus we have justified the claim. Analogously, ˇ2 is .7cC15/–close to .uk/.

From the claim and since, by assertion (2) of Step 1, ˛ is .7cC 13/–close to .uk/,
it follows that the two boundary components of the convex region in �pr to the
right of ˇ1˛ˇ

�1
2

are .7cC 15/–close. Hence the CAT.0/ geodesic ui0uj 0 in �pr is
.7c C 15/–close to .uk/. Now consider the CAT.0/ geodesic pr in �pr (which
appears in the statement of the proposition) restricted to the layers from i 0 to j 0 . Since
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its endpoints are at distance � 7cC 12 from the endpoints of ui0uj 0 (this is because
jpi0ri0 j D 7cC 12D jpj 0rj 0 j), we get (by Lemma 11.7, we do not vary the boundary
this time) that pr is .14cC 27/–close to uk , as desired (recall that c D 5).

13 Contracting

In this section we prove the following consequence of Proposition 12.1, which summa-
rizes the contracting properties of Euclidean geodesics.

Theorem 13.1 (Theorem C) Let s; s0; t be vertices in a systolic complex X such
that jst j D n; js0t j D n0 . Let .rk/

n
kD0

; .r 0
k
/n
0

kD0
be 1–skeleton geodesics such that rk 2

ık ; r
0
k
2 ı0

k
, where .ık/; .ı0k/ are Euclidean geodesics for t; s and for t; s0 respectively.

Then for all 0 � c � 1 we have jrbcncr
0
bcn0cj � cjss0j C C , where C is a universal

constant.

In the proof we need three easy preparatory lemmas.

Lemma 13.2 Let D be a 2–dimensional systolic complex (in particular CAT.0/ with
the standard piecewise Euclidean metric). Let x;y be vertices in D . Then there exists
a 1–skeleton geodesic ! in D joining x;y such that if D0 is the union with ! of
a connected component of D n! , then the CAT.0/ geodesic xy in is 1–close to ! in
L\D0 , where L is the convex hull in D of x[y .

Proof Let Li be the layers in D between x;y . Then L is the span in D of the union
of Li . Observe that L is convex in CAT.0/ sense in D . Hence the CAT.0/ geodesic
xy in D is contained in L. Now similarly as in Definition 9.10 define vertices !i 2Li

to be the vertices nearest to xy \Li (possibly nonunique). Analogously as in Lemma
9.11 one proves that !i ; !iC1 are neighbors, hence .!i/ form a path ! , which is
a 1–skeleton geodesic. By the construction we have j!i ;xy \Li j �

1
2

(here j � ; � j
denotes the distance along the straight line). For a fixed D0 the CAT.0/ geodesic xy

in D0 is contained in the convex L\D0 , hence it is 1–close to ! by Lemma 12.12
applied to L.

Lemma 13.3 Let � be a generalized characteristic disc for .i; j /. Let �split � �
be a generalized characteristic disc for .i; j / with wk substituted with Pwk for some
Pwk 2 vkwk . Let ; P be CAT.0/ geodesics with common endpoints in the layers i; j

in �;�split, respectively. Then P \ vkwk is not farther from vk than  \ vkwk .

Proof Let �0 � � be the characteristic disc for .i; j / with wk substituted with
 \ vkwk . Then �0\�split is convex in �split and we are done.
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Lemma 13.4 Let T be a CAT.0/ (ie simply connected) subspace of E2 , whose
boundary is an embedded loop which consists of three geodesic (in T ) segments
˛; ˇ;  , where ˛ is contained in a straight line in E2 . Denote x D ˇ \  . Let � be
a geodesic in T contained in a straight line parallel to ˛ with endpoints on ˇ;  . Let
c denote the ratio of the distances in E2 between x and the line containing � and
between x and the line containing ˛ . Then j�j=j˛j � c .

Proof Let y1;y2 2 E2 be points on the line containing � colinear with x and the
endpoints of ˛ . By the Tales Theorem we have jy1y2j=j˛j D c . On the other hand,
since ˇ;  are geodesics in T , we get that �� y1y2 .

We are now ready for the endgame.

Proof of Theorem 13.1 (Theorem C) Let m be maximal satisfying rm D r 0m . First
assume that bcnc � m or bcn0c � m, say bcn0c � m. Then jrbcn0cr

0
bcn0cj � 194.

Indeed, let � be the characteristic disc for .ri/; .r
0
i / between t and rm D r 0m , for the

thick interval containing bcn0c (if layer bcn0c is thin then there is nothing to prove).
Then by Proposition 12.1 applied to .ri/

n
iD0

and r 0
0
; : : : r 0m; rmC1; : : : rn we get that

the CAT.0/ geodesic in � joining the barycenters of the two outermost edges is 97–
close to the boundary component corresponding to .ri/. Similarly we get that this
CAT.0/ geodesic is 97–close to the second boundary component. Altogether we get
that jrbcn0cr

0
bcn0cj � 194, as desired. This yields

jrbcncr
0
bcn0cj � jrbcncrbcn0cjC jrbcn0cr

0
bcn0cj � jbcnc� bcn0cjC 194

< cjn� n0jC 195� cjss0jC 195;

as required. So from now on we assume that bcnc>m and bcn0c>m.

Let k be minimal such that rk lies on some 1–skeleton geodesic ss0 . Now let k 0 be
minimal such that r 0

k0
lies on some 1–skeleton geodesic rks0 . Consider various 1–

skeleton geodesics  connecting rk with rk0 . The loops rmrmC1 � � � rk r 0
k0

r 0
k0�1
� � � r 0m

are embedded by the choice of m; k; k 0 . Consider a surface S W D!X of minimal area
spanned on such a loop (we allow  to vary). By minimality of the area D is systolic,
hence CAT.0/ with respect to the standard piecewise Euclidean metric. Denote the
preimages of ri ; r

0
i ;  in D by xi ;x

0
i ; ˛ respectively. We attach to D at xk ;x

0
k0
;xmD

x0m three simplicial paths ˇ; ˇ0; � of lengths n� k; n0� k 0;m respectively and denote
obtained in this way simplicial (and CAT.0/) complex by D0 . Denote the vertices in
D0 nD by xn; : : : ;xkC1 , by x0n0 ; : : : ;x

0
k0C1

, and by x0 D x0
0
; : : : ;xm�1 D x0

m�1
in

ˇ; ˇ0; � respectively.

By minimality of the area of D , the path ˇ˛ˇ0�1 is a CAT.0/ geodesic in D0 . Let
D1;D2 be simplicial spans in D0 of the unions of all 1–skeleton geodesics from x0
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to xn and from x0
0

to x0n0 , respectively. Observe that D1;D2 are convex (in CAT.0/
sense) in D0 , hence the CAT.0/ geodesics in D0 from x0 to xn and from x0

0
to x0n0

agree with CAT.0/ geodesics joining those pairs of points in D1;D2 , respectively. By
Proposition 12.1, .xi/ is 97–close (in D1 ) to the CAT.0/ geodesic x0xn and .x0i/ is
97–close (in D2 ) to the CAT.0/ geodesic x0

0
x0n0 .

Our goal, which immediately implies Theorem 13.1 (Theorem C), is to get an estimate
jxbcncx

0
bcn0c
j � cjxnx0n0 jCC with some universal constant C .

We claim that for any three consecutive vertices v;w;u on ˛ we have that jx0wj D

jx0vj C 1 implies jx0uj D jx0wj C 1. We prove this claim by contradiction. If
jx0uj D jx0wj � 1 then, by Lemma 2.8, u; v are neighbors contradicting the fact that
vwu is a 1–skeleton geodesic. If jx0uj D jx0wj, then by Lemma 2.8 there exists
a vertex z 2D in the projection of the edge wu onto Bjx0vj.x0/. Again by Lemma 2.8,
we have that jzvj � 1. Thus the defect at w is at least 1, contradicting the minimality
of the area of D . This justifies the claim.

The claim implies that ˛ is a concatenation ˛1˛0˛2 , where vertices in ˛0 are at
constant distance from x0 and ˛1; ˛2 are contained in 1–skeleton geodesic rays in D0

issuing from x0 . We apply Lemma 13.2 to obtain a special 1–skeleton geodesic ! in
D0 connecting x0 to ˛1\˛0 . Let zD1 be the union of ! and all of the components
of D0 n! containing some xi (ie on one “side” of ! ). Denote by zDc

1
the union of !

with the other components of D0 n! . Denote by !0 a 1–skeleton geodesic connecting
x0 to ˛0\˛2 given by Lemma 13.2 applied do zDc

1
. Let zD2 be the union of !0 with

the components of zDc
1
n!0 containing some x0i . Denote the union of !0 with the other

components of zDc
1
n!0 by zD0 .

Note that, since zD1 �D1; zD2 �D2 , by Lemma 13.3 we have that .xi/ is 97–close
to the CAT.0/ geodesic x0xn in zD1 and .x0i/ is 97–close to the CAT.0/ geodesic
x0

0
x0n0 in zD2 . Moreover, by Lemma 13.2 and Lemma 13.3, the CAT.0/ geodesics

in zD0; zD1; zD2 joining the endpoints of !;!0 are 1–close (in particular 97–close) to
!;!0 , respectively. Moreover, vertices in ˛0 are at constant distance from x0 in zD0 ,
and !˛�1

1
; !0˛2 are 1–skeleton geodesics in zD1;eD2 , respectively. Thus substituting

D0 D zD0; zD1; zD2 we have reduced the proof of our goal (up to replacing C with 3C )
to the following two special cases:

(i) Vertices in ˛ are at a constant distance from x0 (hence from xm ), or

(ii) n0 D k 0 and ˛x0
k0
� � �x0

0
is a 1–skeleton geodesic.

Observe that it is now possible that xi D x0i for i >m. Let m0 be maximal such that
xm0Dx0m0 . If bcnc�m0 or bcn0c�m0 , say the latter, then, since the CAT.0/ geodesics
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x0xn;x
0
0
x0n0 in D0 coincide on x0xm0 , we get that jxbcn0cx

0
bcn0c
j � 97C 97 D 194,

hence

jxbcncx
0
bcn0cj � jxbcncxbcn0cjC jxbcn0cx

0
bcn0cj

� jbcnc� bcn0cjC 194< cjn� n0jC 195� cjxnx0n0 jC 195;

as desired. So from now on we can assume that bcnc >m0; bcn0c >m0 , and we can
replace the component of D0 nxm0 containing x0 with a simplicial path of length m0 .
Let D be as before the maximal subcomplex of D0 which is a topological disc.

First suppose that we are in case (i). Observe that (up to increasing C by 2) we can
assume that n D k and n0 D k 0 . This is because once we proved our estimate for
n D k; n0 D k 0 we can concatenate an estimate realizing path xbckcx

0
bck0c

with the
paths xbckc � � �xbcnc and x0

bck0c
� � �x0

bcn0c
, obtaining a path from xbcnc to x0

bcn0c
of

length

.bcnc� bckc/Cjxbckcx
0
bck0cjC .bcn0c� bck 0c/

< .c.n� k/C 1/C .cjxkxk0 jCC /C .c.n0� k 0/C 1/

D .c.jxnxk j/C 1/C .cjxkxk0 jCC /C .c.jxn0xk0 j/C 1/D cjxnxn0 jC .C C 2/;

as required.

We claim that D is flat and the interior vertices of ˛ have defect 0. Indeed, observe that
the defects at the interior vertices of ˛ and at the interior vertices of D are nonpositive,
whereas the defect at xm0 D x0m0 is at most 2. Hence, by Gauss–Bonnet Lemma 7.2,
it is enough to prove that the sums of the defects at the vertices of each of the paths
xm0C1 � � �xk and x0

m0C1
� � �xk0 are at most 2. Suppose otherwise, without loss of

generality, that the sum of the defects at the vertices of xm0C1 � � �xk is � 3. Denote
the vertex following xk on ˛ by y . Then jxm0yj � jxm0C1xk j, hence jx0yj< jx0xk j,
which contradicts the hypothesis of case (ii). Thus we have proved the claim. In
particular, ˛ is contained in a straight line in D � E2

�
and k D k 0 .

Define � to be the path in D starting at xbckc reaching x0
bckc

contained (in D � E2
�

)
in a straight line parallel to ˛ . Let �1; �2 be CAT.0/ geodesics in D joining xk with
xm0 and x0

k
with x0m0 D xm0 , respectively. Let zi D �\ �i , for i D 1; 2. We have

jxbckcz1j � 97 and jz2x0
bckc
j � 97 (again exceptionally j � ; � j denotes the distance

along the straight line). Let m00 be maximal such that �1\xm00x
0
m00 D �2\xm00x

0
m00 .

Then for all i �m00 we have �1\xix
0
i D �2\xix

0
i . In particular, if bckc �m00 , then

z1 D z2 and j�j � 194, as desired. If bckc > m00 , then we apply Lemma 13.4 with
T �D the geodesic triangle with vertices xk ;x

0
k
; �1\xm00x

0
m00 D �2\xm00x

0
m00 . We

get that j�j � cjxkx0
k
jC 194, as desired.
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Now suppose that we are in case (ii). Like in case (i) (up to increasing C by 1) we
can assume that n D k . Since the boundary of D is a union of two geodesics, by
Gauss–Bonnet Lemma 7.2, D is flat. Consider an embedding D � E2

�
such that the

layers (denoted by Lk ) between xm0 D x0m0 and xk in E2
�

are horizontal and xi are
to the left from x0i , for i � k 0 . By minimality of area, ˛ is contained in a straight line
in D � E2

�
. Like in case (i), let �1; �2 be CAT.0/ geodesics in D joining xk with

xm0 and x0
k0

with x0m0 D xm0 , respectively. Similarly like in the previous case, let m00

be maximal such that �1\Lm00 D �2\Lm00 . Denote uD �1\Lm00 D �2\Lm00 . By
the same argument as after the choice of m0 , we can assume that bck 0c > m00 . Let
z1 D �1\Lbckc; z2 D �2\Lbck0c . Let y1 2 Lbckc\D be the vertex with minimal
possible yx

1
but � zx

1
. Similarly, let y2 2 Lbck0c \D be the vertex with maximal

possible yx
2

but � zx
2

. We claim that jy1y2j D bckc� bck 0c.

Before we justify the claim, observe that it already implies the theorem. Indeed, the
claim gives

jxbckcx
0
bck0cj � jxbckcy1jC jy1y2jC jy2x0

bck0cj

� 97C .bckc� bck 0c/C 97

< 97C .c.k 0� k/C 1/C 97D cjxkx0k0 jC 195;

as desired.

Finally, let us justify the claim. We need to show that yx
2
�yx

1
� .bckc�bck 0c/=2. By

the choice of m00 we have that z1; z2 lie in the Euclidean triangle in E2
�

with vertices
xk ;x

0
k0
;u. Denote by u1 (resp. u2 ) the vertex on the edge uxk (resp. ux0

k0
) of this

triangle in Lbckc (resp. Lbck0c ). Assume without loss of generality that bck 0c=k 0 �

bckc=k . Denote then by u� the vertex on the edge uxk dividing this edge in same
proportion as the proportion in which u2 divides ux0

k0
. By the Tales Theorem, and

since u1u� � uxk forms with the vertical direction angle at most 30ı , we have that

ux
2 �ux

1 � .u
x
2 �ux

�/C .u
x
� �ux

1 / < c
�
xx

k � .x
0
k0/

x
�
C

1

2

D
ck � ck 0

2
C

1

2
<
bckc� bck 0c

2
C 1;

yx
2 �yx

1 � zx
2 � zx

1 � ux
2 �ux

1 <
bckc� bck 0c

2
C 1:hence

Thus, since yx
2
� yx

1
and .bckc � bck 0c/=2 differ by an integer (because y1;y2 are

vertices in E2
�

), we have yx
2
�yx

1
� .bckc�bck 0c/=2, as desired. This ends the proof

of the claim and of the whole theorem.
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If we followed the constants carefully, we would get that Theorem 13.1 (Theorem C)
is satisfied with any C � 204.

14 Final remarks

In this section we state some additional results on the compactification xX , for which
we do not provide proofs.

EZ–structures explored by Farrell–Lafont [16] in relation to the Novikov conjecture
concern only the torsion-free group case. To get similar results (Novikov conjecture)
for a group G with torsion one needs to construct an appropriate compactification
(which we will also call an EZ–structure) of a classifying space for proper G –actions,
denoted EG . EG is a contractible space with a proper G action such that, for every
finite subgroup F of G , the set EGF �EG of points fixed by F (the fixed point set
of F ) is contractible (in particular nonempty). For more details on EG see Lück [21].

Relying on the work of Przytycki [23], Chepoi–Osajda [9] proved the following.

Theorem 14.1 Let a group G act geometrically by simplicial automorphisms on a
systolic complex X . Then X is a finite model for EG .

We claim the following.

Claim 14.2 Let a group G act geometrically by simplicial automorphisms on a systolic
complex X . Let xX DX [ @X . Then

(1) for every finite subgroup F of G , the fixed point set xX F is contractible,

(2) for every finite subgroup F of G , the fixed point set X F is dense in xX F .

Assertion 2 is easy to prove, ie the only difficulties in proving Claim 14.2 concern
assertion 1. To obtain it one has to reprove Lemma 6.2 with xX F in place of xX .

Combining Theorem 14.1, Theorem 6.3 (Theorem A), Claim 14.2, and Theorem 4.1 of
Rosenthal [24], we immediately get the following.

Claim 14.3 The Novikov conjecture holds for systolic groups.

Now we turn to the question of determining our boundary in some specific cases. We
have already mentioned the case of hyperbolic systolic groups in Remark 4.6. Now we
consider the CAT.0/ case. After making it through the second part of the article, the
reader should not be surprised by the following.
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Claim 14.4 If X is a two-dimensional simplicial complex, which is CAT.0/ (which
is equivalent with systolic in dimension two), then its compactification by the CAT.0/
visual boundary is homeomorphic in a natural way with our xX .

For example, this implies that our boundary of a systolic Euclidean plane is a circle.
The argument for Claim 14.4 is that our compactification is constructed using Euclidean
geodesics in systolic complexes, which in this case are coarsely CAT.0/ geodesics.

The next claim concerns the following construction, which has not yet appeared in the
literature. Namely Elsner and Przytycki had developed a way to turn equivariantly any
VH–complex (see Bridson–Wise [6]) which is CAT.0/ into a systolic complex (that is
how they observed that the abelian product of two free groups is systolic). Although the
resulting complex is usually not 2–dimensional, the only higher dimensional simplices
that appear are used to deal with branching at the vertical edges. This is why we believe
that the CAT.0/ visual boundary of the original VH–complex is homeomorphic in a
natural way with our boundary of the resulting systolic complex.

In particular, this would imply that there is a systolic group acting geometrically on
two systolic complexes whose (our) boundaries are not homeomorphic. Namely, in the
family of torus complexes defined by Croke–Kleiner [10] the complexes with ˛ D �

2

and ˛ D �
3

have universal covers with nonhomeomorphic CAT.0/ visual boundaries.
At the same time, there is a torus complex with ˛ D �

3
, whose universal cover is 2–

dimensional systolic while there also is a torus complex with ˛ D �
2

, whose universal
cover is a VH–complex, which is CAT.0/.
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