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Link Floer homology detects the Thurston norm

YI NI

We prove that, for a link L in a rational homology 3–sphere, the link Floer homology
detects the Thurston norm of its complement. This result has been proved by Ozsváth
and Szabó for links in S3 . As an ingredient of the proof, we show that knot Floer
homology detects the genus of null-homologous links in rational homology spheres,
which is a generalization of an earlier result of the author. Our argument uses the
techniques due to Ozsváth and Szabó, Hedden and the author.

57R58, 57M27; 57R30

1 Introduction

Link Floer homology was introduced by Ozsváth and Szabó [13], as a multifiltered the-
ory for links in rational homology 3–spheres. This theory generalizes an earlier invariant
for knots, the knot Floer homology (see Ozsváth and Szabó [11] and Rasmussen [15]).

One interesting topic in Floer theory is the relationship with the Thurston norm. For
knot (and link) Floer homology, this topic was studied for links in integer homology
3–spheres by Ozsváth and Szabó [10; 14] and the author [8]. In particular, Ozsváth and
Szabó showed that, for a link L� S3 , the link Floer homology detects the Thurston
norm of the complement of L. Although not stated explicitly, their proof actually
works for links in integer homology spheres.

In the current paper, we will generalize Ozsváth and Szabó’s result to links in rational
homology 3–spheres.

In Section 4.4, we will define an affine function

HW Spinc.Y;L/!H 2.Y;LIQ/:

Then the link Floer homology provides a function

yW H2.Y;LIQ/!Q;

y.h/D max
fr2Spinc.Y;L/jcHFL.Y;L;r/¤0g

hH.r/; hi:defined by
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Theorem 1.1 Suppose L is an oriented link in a rational homology 3–sphere Y and
M D Y � int.Nd.L//. Suppose h 2H2.M; @M IQ/ is an integral class. Then h can
be represented by a properly embedded surface without sphere components. Let �.h/
be the maximal possible value of the Euler characteristic of such surfaces. Then

��.h/C

lX
iD1

jh � Œ�i �j D 2y.h/:

Here �1; : : : ; �l are the meridians of the components of L.

Remark 1.2 The term ��.h/ is almost the Thurston norm of h [19]. In fact, if the
boundary tori of M are all incompressible, then we can rewrite the equality in the
above theorem as

x.h/C

lX
iD1

jh � Œ�i �j D 2y.h/;

where here x. � / is the Thurston norm.

Remark 1.3 Suppose M is a compact 3–manifold with boundary consisting of tori,
and H2.M / D 0. Then M is the complement of a link in a rational homology
sphere. Theorem 1.1 gives a criterion to determine whether any component of @M
is compressible, in the terms of link Floer homology. If T is a torus in a rational
homology 3–sphere Y , then T splits Y into two rational homology solid tori. Thus
Theorem 1.1 also gives a criterion to determine whether T is compressible.

Incompressible tori play a very important role in “traditional 3–dimensional topology”.
We hope that the above observation will be useful for studying the relationship between
Floer homology and traditional 3–dimensional topology.

The paper is organized as follows. Section 2 contains a rather general result about the
existence of longitudinal foliations. This result will be the starting point of our proof.
Then, in Section 3, we generalize the main result in our paper [8] to null-homologous
oriented links in rational homology spheres. In Section 4, we give some preliminaries on
link Floer homology. In particular, we discuss the relative Spinc structures. Section 5
will be devoted to the proof of the main theorem. We use the “cabling trick” from
Ozsváth and Szabó [14], as well as the techniques from Hedden [4], to reduce the
general case of our main theorem to the case proved in Section 3.
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2 Longitudinal foliations

As in [10] and [8], when one tries to relate Floer homology with Thurston norm, the
first step is always to establish an existence result about taut foliations. In this section,
we are going to establish the corresponding result we need.

Definition 2.1 M is an n–dimensional manifold. A smooth (codimension–1) foli-
ation F of M is a smooth integrable hyperplane field on M . A leaf L of F is a
maximal path-connected integral submanifold for F.

By abuse of notation, we also denote the collection of the leaves by F.

From now on, we assume the foliation is co-oriented, namely, there exists a unit vector
field on the manifold, which is transverse to the foliation everywhere.

If  is a path in a leaf L, then F defines a parallel transport in a small neighborhood
of  . Let a; b be the two ends of  , there are two small transversals Ia; Ib passing
through a; b , so that the parallel transport along  defined by F gives a diffeomorphism
of Ia onto Ib . Moreover, if  is a loop with base point b , then the germ of the
diffeomorphism at b is called the holonomy along the loop  .

Every closed orientable 3–manifold admits a smooth foliation [16, Theorem 10.A.15].
So in order to extract useful information about 3–manifolds out of foliations, one needs
some further restriction on the foliations.

Definition 2.2 Let F be a foliation of a 3–manifold M . F is taut if there exists a
closed curve intersecting every leaf of F transversely.

In order to study knot Floer homology, one always needs some additional conditions on
the taut foliations. For example, the foliations should be “longitudinal”. The definition
is as follows.
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Definition 2.3 Suppose K � Y is a null-homologous knot and F is a taut foliation
of Y � int.Nd.K//. We say that F is a longitudinal foliation, if the restriction of F

on @Nd.K/ consists of longitudes.

Gabai shows that longitudinal foliations exist in many cases, including the classical
knots [3]. In fact, we are going to prove the following rather general result about the
existence of longitudinal foliations.

Proposition 2.4 Suppose K � Y is a null-homologous knot, Y �K is irreducible.
Then for any fibred knot J � S3 with sufficiently large genus, Y � int.Nd.K#J //

admits a smooth longitudinal foliation with a compact leaf, which is a minimal genus
Seifert surface of K#J .

Proposition 2.4 is a weak form of the following theorem due to Gabai.

Theorem (Gabai [1]) Suppose Ki � Yi are nontrivial null-homologous knots, Yi �

Ki are irreducible, i D 1; 2. Then Y1#Y2 � int.Nd.K1#K2// admits a smooth lon-
gitudinal foliation with a compact leaf, which is a minimal genus Seifert surface of
K1#K2 .

Proof of Proposition 2.4 Suppose F �M D Y � int.Nd.K// is a minimal genus
Seifert surface for K . By the main theorem in [2], there exists a taut smooth foliation
F of M , so that

(1) F t @M , and Fj@M has no Reeb component,

(2) F is a leaf of F,

(3) if � is a closed curve in F , f W .�"; "/! .�ı; ı/ is a representative of the germ
of the holonomy along � , then

dkf

dtk
.0/D

(
1; k D 1;

0; k > 1:

Here (3) holds by the Induction Hypothesis (iii) in the proof of [2, Theorem 5.1].

Cut M open along F , we get a sutured manifold .M0; 0/, and F becomes a foliation
F0 of M0 . The suture 0 is an annulus. By the above condition (1), F0j0 is
determined by a global holonomy f W I ! I . Namely, pick the square I � I , foliated
by I � t ’s. Glue 0� I with 1� I by a diffeomorphism f , then the induced foliation
on S1 � I is equivalent to the foliation F0j0 . We can view 0 as the union of two
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squares a� I and b � I , so that the restriction of the foliation in a� I consists of
a� t ’s, and the holonomy takes place in b � I .

Suppose D8 is an octagon with edges a1; b1; a2; b2; : : : ; a4; b4 in cyclic order. Con-
sider D8 � I , foliated by D8 � t ’s. Let g; hW I ! I be two diffeomorphisms with the
two ends fixed. We glue b1�I with b3�I by the map �id�g , glue b2�I with b4�I

by the map �id�h. The new manifold is R�I , with an induced foliation G. Here R

is a genus–1 compact surface with one boundary component. Obviously, Gj@R� I

has a global holonomy Œg; h�. We can view @R� I as the union of two squares a0 � I

and b0 � I , so that the restriction of the foliation in a0 � I consists of a0 � t ’s, and the
holonomy takes place in b0 � I .

Now we glue the two sutured manifolds .M0; 0/ and .R� I; @R� I/ together, so
that a� I is glued to a0 � I by the identity. Then the new sutured manifold .M1; 1/

has an induced foliation F1 , so that F1j1 has a global holonomy f ı Œg; h�.

Repeat the above construction m times, we get a foliated sutured manifold .Mm; m/,
which is the union of .M0; 0/ and .Rm � I; @Rm � I/ along a square in the suture,
and the holonomy of the foliation on m is

f ı Œg1; h1� ı Œg2; h2� ı � � � ı Œgm; hm�:

Here Rm is a compact genus–m surface with one boundary component. Denote this
foliation of Mm by Fm . Now we can make use of the following theorem.

Theorem (Mather–Sergeraert–Thurston [18]; see also Gabai [2]) If f W I ! I is a
C1 map satisfying

dkf

dtk
.˛/D

�
1; k D 1;

0; k > 1;

for ˛ 2 f0; 1g, then there exist C1 diffeomorphisms gi ; hi W I ! I ,i D 1; : : : ; n,
satisfying the above conditions so that

f ı Œg1; h1� ı Œg2; h2� ı � � � ı Œgn; hn�D id:

Hence when m� n, one can choose the holonomies gi ; hi ; i D 1; : : : ;m, so that the
holonomy of Fmjm is the identity, thus Fmjm consists of closed curves.

Suppose J � S3 is a fibred knot with genus m, G is a minimal genus Seifert surface
of J . Consider the knot K#J , with Seifert surface F 0 , which is the boundary connected
sum of F and G . If we cut Y � int.Nd.K#J // open along F 0 , the sutured manifold
we get is just .Mm; m/. Let F 0C;F

0
� be the two copies of F 0 in @Mm .
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Starting with the compact manifold Mm , we can glue F 0C and F 0� together to get the
knot exterior Y � int.Nd.K#J //. The above foliation Fm then becomes a smooth
longitudinal foliation of Y � int.Nd.K#J //, such that F 0 is a compact leaf.

3 Genera of links in rational homology spheres

In this section, we are going to follow the procedure in [8] to generalize the main result
there to null-homologous links in rational homology 3–spheres.

Theorem 3.1 Suppose L is a null-homologous oriented link in a closed 3–manifold
Z , H1.ZIQ/D 0. jLj denotes the number of components of L, and �.L/ denotes
the maximal Euler characteristic of the Seifert surfaces bounded by L. Then

jLj ��.L/

2
Dmaxfi j bHFK .Z;L; i/¤ 0g:

Let L be a null-homologous oriented l –component link in a rational homology 3–
sphere Z . Ozsváth and Szabó define a knot �.L/ � �.Z/, where here �.Z/ Š
Z#.l � 1/S1 � S2 is obtained by adding l � 1 3–dimensional tubes R1; : : : ;Rl�1

to Z . Suppose Pi is the belt sphere of the tube Ri . The knot �.L/ intersects Pi in
exactly 2 points, we can remove two disks from Pi at these two points, then glue in a
long and thin (2–dimensional) tube along an arc in �.L/, so as to get a torus Ti . Ti is
homologous to Pi , but disjoint from �.L/. These tori generate H2.�.Z/� �.L/IZ/.

Let .Y;K/D .�.Z/; �.L//. Let G be a minimal genus Seifert surface of K , and Y0

be the manifold obtained by 0–surgery on K . By [8, Remark 3.2], we can assume G

is obtained by adding l � 1 bands to a Seifert surface F of L with maximal Euler
characteristic. Hence �.G/ D �.F /� .l � 1/. Let yG be the extension of G in Y0

obtained by gluing a disk to G .

Proposition 3.2 Let L be a null-homologous oriented link in a rational homology
3–sphere Z , with irreducible complement. After doing connected sum with some
fibred knots in S3 , we get a new link L� . We consider .Y �;K�/D .�.Z/; �.L�//,
and the 0–surgered space Y �

0
. The conclusion is: for a suitably chosen L� , Y �

0
can

be embedded into a closed symplectic 4–manifold .X; �/, so that X D X1[Y �
0

X2 ,
bC

2
.Xj / > 0, and Z

T �
i

�D 0

for all i . Moreover,
hc1.k.�//; ŒbG� �i D 2� 2g.bG� /:
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Having Proposition 2.4, the proof of Proposition 3.2 is the same as the proof of [8,
Proposition 3.12]. So we just omit it here.

We also state the following lemma without giving the proof, since its proof is not
different from the proof of [8, Lemma 4.1].

Lemma 3.3 .Y �;K�/ is as before. Let d be an integer satisfying

bHFK .Y �;K�; i/D 0 for i � d;

and suppose that d > 1. Then

HFC.Y �0 ; Œd � 1�/D 0,

where HFC.Y �0 ; Œd � 1�/D
M

hc1.s/;ŒcG��iD2.d�1/

HFC.Y �0 ; s/:

Proof of Theorem 3.1 (Compare the proof of [8, Theorem 1.1].) Suppose L1;L2

are null-homologous oriented links in Z1;Z2 , respectively. We have

bHFK.Z1;L1/˝cHF.Z2/Š bHFK.Z1#Z2;L1/;

bHFK.Z1#Z2;L1#L2/˝cHF.S2
�S1/Š bHFK.Z1#Z2;L1 tL2/:

By the above formulas, we can assume Z �L is irreducible. Now apply Proposition
3.2 to get a symplectic 4–manifold .X; �/, X D X1 [Y �

0
X2 , with bC

2
.Xj / > 0,R

T �
i
�D 0, and

hc1.k.�//; ŒbG� �i D �.bG� / < 0:

Let ıW H 1.Y �
0
/!H 2.X / be the connecting homomorphism in the Mayer–Vietoris

sequence for the decomposition of X into X1 and X2 . The sum

(1)
X

�2H 1.Y �
0
/

ˆX ; k.�/Cı�

is calculated by a homomorphism which factors through HFC.Y �
0
; k.�/jY �

0
/.

The cohomology group H 1.Y �
0
/ Š Zl is generated by the Poincaré duals of ŒT �

1
�,

ŒT �
2
�; : : : ; ŒT �

l�1
� and ŒcG��. So the Spinc structures in (1) are precisely

k.�/C

l�1X
iD1

aiPD.ŒT �i �/C b PD.ŒbG� �/ .ai ; b 2 Z/:
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Here PD is the Poincaré duality map in X . The first Chern classes of these Spinc

structures are

c1.k.�//C 2

l�1X
iD1

aiPD.ŒT �i �/C 2b PD.ŒbG� �/:

By the degree shifting formula, the degrees of the terms in (1) are

.c1.k.�//C 2
P

aiPD.ŒT �i �/C 2b PD.ŒcG��//2� 2�.X /� 3�.X /

4

D
.c1.k.�//

2� 2�.X /� 3�.X /

4
C

X
aihc1.k.�//; ŒT

�
i �iC bhc1.k.�//; ŒcG��i

D
.c1.k.�//

2� 2�.X /� 3�.X /

4
C b�.cG�/:

Since �.bG� / ¤ 0, the terms which have the same degree as ˆX ; k.�/ are precisely
those correspond to k.�/C

P
aiPD.ŒT �i �/. By [12, Theorem 1.1] and the fact thatR

T �
i
�D 0, ˆX ; k.�/ is the only nontrivial term at this degree. So HFC.Y �

0
; k.�/jY �

0
/

is nontrivial. Now apply Lemma 3.3, we get our desired result for L� .

The result for L holds by the connected sum formula.

As a corollary, we have:

Corollary 3.4 Suppose Z is a rational homology 3–sphere, LC;L�;L0 �Z are 3
null-homologous oriented links, which differ at a crossing as in the skein relation. Then
two of the three numbers

�.LC/; �.L�/; �.L0/� 1;

are equal and not larger than the third.

Proof In the local picture of the skein relation, if the two strands in L� belong to
the same component, then jL0j D jLCj C 1, and there is a surgery exact triangle
relating bHFK .Z;L�/, bHFK .Z;LC/ and bHFK .Z;L0/ [11]. If �.LC/ < �.L�/,
then bHFK.Z;L�; .jLCj ��.LC//=2/D 0, hence

bHFK
�

Z;LC;
jLCj ��.LC/

2

�
Š bHFK

�
Z;L0;

jLCj ��.LC/

2

�
:

It follows from Theorem 3.1 that

jL0j ��.L0/D jLCj ��.LC/;
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so �.LC/ D �.L0/ � 1. Similarly, one can show that if �.L�/ < �.LC/, then
�.L�/D �.L0/� 1, and if �.L�/D �.LC/, then �.L�/� �.L0/� 1.

If the two strands in L� belong to different components, then jL0j D jL�j � 1, and
there is an exact triangle relating bHFK.Z;L�/, bHFK.Z;LC/ and bHFK.Z;L0/˝V .
Here V D V�1 ˚ V0 ˚ VC1 , V˙1 Š Z are supported in filtration level ˙1, and
V0 Š Z˚Z is supported in filtration level 0. An argument similar to the one in the
last paragraph gives the desired result.

The above result was first proved for links in S3 by Scharlemann and Thompson [17].
Then Kaiser proved a much more general theorem for links in irreducible rational
homology 3–spheres [5]. Kalfagianni also proved Scharlemann and Thompson’s
result for certain links in irreducible homology 3–spheres, and applied it to study the
convergence of the HOMFLY power series link invariants in [6].

4 Preliminaries on link Floer homology

In [13], Ozsváth and Szabó defined link Floer homology for oriented links in rational
homology 3–spheres. We will briefly review the definition and some basic properties.

4.1 Relative Spinc structures

Let M be a compact 3–manifold with boundary consisting of tori. There is a canonical
isotopy class of translation invariant vector fields on the torus. Let v1 and v2 be two
nowhere vanishing vector fields on M , whose restriction on each component of @M
is the canonical translation invariant vector field. We say v1 and v2 are homologous, if
they are homotopic in the complement of a ball in M , and the homotopy is through
nowhere vanishing vector fields which restrict to the canonical class on @M . The
homology classes of such vector fields are called relative Spinc structures on M , and
the set of all relative Spinc structures is denoted by Spinc.M; @M /. Spinc.M; @M /

is an affine space over H 2.M; @M /.

When L is an oriented link in a closed oriented 3–manifold Y , let M DY �int.Nd.L//.
Then we also denote Spinc.M; @M / by Spinc.Y;L/.

There is a natural involution

J W Spinc.M; @M /! Spinc.M; @M /:

If r 2 Spinc.M; @M / is represented by a vector field v , then J.r/ is represented by
the vector field �v . (Note that �vj@M is still the canonical isotopy class on @M .)
Given r, r�J.r/ is an element in H 2.M; @M /, denoted by c1.r/.
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4.2 Heegaard diagrams and Spinc structures

Suppose L is an oriented link in a rational homology sphere Y 3 , .†; ˛; ˇ ;w; z/ is a
(generic) balanced 2l –pointed Heegaard diagram associated to the pair .Y;L/. There
is a map

sw;zW T˛ \Tˇ! Spinc.Y;L/;

defined in [13]. We sketch the definition of sw;z as follows.

Let f W Y ! Œ0; 3� be a Morse function corresponding to the Heegaard diagram, rf
is the gradient vector field associated to f . Let w be the union of the flowlines of
rf , such that each of these flowlines passes through a point in w, and connects an
index–0 critical point to an index–3 critical point. Similarly, define z . Suppose
x 2 T˛ \Tˇ , then  x denotes the union of the flowlines connecting index–1 critical
points to index–2 critical points, and passing through the points in x.

We construct a nowhere vanishing vector field v . Make v identical with rf outside a
neighborhood Nd.w[ z[  x/. Then one can extend v over the balls Nd. x/. We
can also extend v over Nd.w[z/, so that the closed orbits of v , which pass through
points in w and z, give the oriented link LD z� w . There may be many different
choices to extend v over Nd.w[ z/, we choose the extension as in [13, Figure 2].

Now we let sw;z.x/ be the relative Spinc structure given by vjY�Nd.L/ . It is easy to
check that sw;z is a well-defined map.

4.3 Link Floer homology

Let F2 be the field consisting of 2 elements. For r 2 Spinc.Y;L/, bCFL.Y;L; r/ is a
chain complex over F2 , generated by the x’s with sw;z.x/ D r, and the differential
counts holomorphic disks with nw.�/D nz.�/D 0. The homology of bCFL.Y;L; r/ is
denoted by bHFL.Y;L; r/. And the link Floer homology is

bHFL.Y;L/D
M

r2Spinc.Y;L/

bHFL.Y;L; r/:

bHFL enjoys certain symmetries. In particular, as in [13, Proposition 8.2], we have:

Lemma 4.1 Let L be an oriented link in a rational homology sphere Y , �1; : : : ; �l

denote the meridians of the components of L. Then

bHFL.Y;L; r/Š bHFL
�

Y;L;J.r/C

lX
iD1

PDŒ�i �

�
:
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4.4 An Alexander Ql – grading

With the notation as above, we define a function

HW Spinc.Y;L/!H 2.Y;LIQ/

as follows. Given r 2 Spinc.Y;L/, let

H.r/D
c1.r/�

Pl
iD1 PD.Œ�i �/

2
:

Moreover, if x 2 T˛ \Tˇ , we define

hw;z.x/D H.sw;z.x//:

Given x; y 2 T˛ \Tˇ , there exist an arc a� T˛ and an arc b � Tˇ , both connecting
x to y. Let !.x; y/D a� b be a closed curve, ! can also be viewed as a curve in †.

Since Y is a rational homology sphere, there exists a positive integer k , so that
k!.x; y/ is homologous to the sum of some copies of ˛– and ˇ–curves. So there
exists a 2–chain D , such that @D consists of k!.x; y/ and a linear combination of ˛–
and ˇ–curves. The following elementary lemma is important.

Lemma 4.2 With the notation as above, given x; y 2 T˛ \Tˇ , we have

hw;z.x/� hw;z.y/D
1

k

lX
iD1

.nzi
.D/� nwi

.D//PDŒ�i �:

Proof We cap off the copies of ˛– and ˇ–curves in @D to get a 2–dimensional chain
G�Y , so that @GDk!.x; y/. G\.Y �int.Nd.L/// is a homology between k!.x; y/
and some copies of �i ’s. And the coefficients of �i ’s can be computed by counting the
algebraic intersection numbers of Ki with D . Since sw;z.x/� sw;z.y/D PD.Œ!.x; y/�/
[13, Lemma 3.11], we have that

k.hw;z.x/� hw;z.y//D
k

2
.c1.sw;z.x//� c1.sw;z.y///

D kPD.Œ!.x; y/�/

D PD
� lX

iD1

.nzi
.D/� nwi

.D//Œ�i �

�
:

Hence the result holds.
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The above lemma indicates that H defines a Ql –grading on bCFL.Y;L/. Following
Rasmussen [15], we call this grading an Alexander grading. Given h� 2H 2.Y;LIQ/,
let

bCFL.Y;L; h�/Š
M

r2Spinc.Y;L/;H.r/Dh�

bCFL.Y;L; r/:

Then Lemma 4.1 implies that

(2) bCFL.Y;L; h�/Š bCFL.Y;L;�h�/:

4.5 A formula for split links

The following formula for split links will be used in the proof of Theorem 1.1.

Proposition 4.3 Suppose L1 � Y1 , L2 � Y2 are two oriented links in rational homol-
ogy spheres, then LDL1 tL2 is a split link in Y D Y1#Y2 . Let r1 2 Spinc.Y1;L1/,
r2 2 Spinc.Y2;L2/, then they naturally give a relative Spinc structure r D r1#r2 2

Spinc.Y;L/. We have the following formula:

bCFL.Y;L; r/Š bCFL.Y1;L1; r1/˝ bCFL.Y2;L2; r2/˝bHF.S1
�S2/:

Proof Suppose Li has li components, i D 1; 2. Let .†i ; ˛i ; ˇ i ;wi ; zi/ be a weakly
admissible balanced 2li –pointed Heegaard diagram associated to the pair .Yi ;Li/. We
construct a Heegaard diagram for .Y;L/ as follows.

Let A D S1 � Œ�1; 1� be a tube, ˛0 D S1 � 0 is a belt circle, and ˇ0 is a small
Hamiltonian perturbation of ˛0 . Let †D†1#†2 , with A as the neck of the connected
sum. We put the feet of this tube into two regions which contain base points. We can
verify that

.†; ˛1[f˛0g[ ˛2; ˇ 1[fˇ0g[ ˇ 2;w1[w2; z1[ z2/

is a weakly admissible Heegaard diagram for .Y;L/.

Now the desired formula can be proved by a standard argument.

5 Proof of the main theorem

In this section, we are going to prove our main theorem. The idea of the proof is the
same as in [14], but we will take a slightly different approach.

First of all, let us check Theorem 1.1 for certain knots in lens spaces. As in [9], if one
does .p=q/–surgery on one component of the Hopf link, then the other component
gives a knot Op=q in the lens space L.p; q/. The complement of Op=q is a solid torus,
with a meridian disk Dp=q . Our result is:

Geometry & Topology, Volume 13 (2009)



Link Floer homology detects the Thurston norm 3003

Lemma 5.1 There are exactly p relative Spinc structures satisfying

bHFK .L.p; q/;Op=q; r/¤ 0:

One can denote these relative Spinc structures by r1; : : : ; rp , so that

hc1.ri/; ŒDp=q �i D 2i � 1:

Hence Theorem 1.1 holds for Op=q .

Proof .L.p; q/;Op=q/ admits a genus–1 Heegaard diagram, such that T˛ \Tˇ has
exactly p intersection points, which correspond to p different relative Spinc structures.
As in [9, Lemma 7.1], we can denote these relative Spinc structures by r1; : : : ; rp , such
that riC1�ri is the positive generator of H 2.L.p; q/;Op=q/ŠZ, for i D 1; : : : ;p�1.
Let ai D hc1.ri/; ŒDp=q �i, then aiC1� ai D 2.

Since hc1.r/C c1.J.r/CPDŒ��/; ŒDp=q �i D h2PDŒ��; ŒDp=q �i D 2p;

by Lemma 4.1, the set fa1; a2; : : : ; apg admits an involution a 7! 2p� a. Hence we
must have ai D 2i � 1.

Now we can check Theorem 1.1 directly for Op=q .

Suppose L is an oriented link in a rational homology 3–sphere Y , .†; ˛; ˇ ;w; z/ is a
(generic) balanced 2l –pointed Heegaard diagram associated to the pair .Y;L/. Given
an integral class h 2H2.Y;LIQ/, let

Fh
w;z.x/D hhw;z.x/; hi;

for any x 2 T˛ \Tˇ . Thus Fh
w;z defines a Q–grading on bCFL.Y;L/.

Proposition 5.2 Suppose L is a null-homologous oriented link, and F is a minimal
genus Seifert surface of L. Then Theorem 1.1 holds for hD ŒF �.

Proof As in [13], we can get a Heegaard diagram

.†0; ˛0 ; ˇ 0 ; w1; zl/

for .�.Y /; �.L//, by adding tubes with feet at zi and wiC1 , for i D 1; : : : ; l � 1.
Suppose D is a topological disk in SymgCl�1.†0/, @D � T˛ [Tˇ , then nzi

.D/D
nwiC1

.D/. Hence

nz1
.D/� nwl

.D/D
lX

iD1

.nzi
.D/� nwi

.D//:
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By Lemma 4.2, we conclude that the Q–grading defined by F ŒF �w;z coincides with the
usual Alexander Z–grading defined on bCFK .�.Y /; �.L//, as relative gradings.

The proof of [13, Theorem 1.1] shows that

bHFL.Y;L/Š bHFK .Y;L/

as relative Q–graded F2 –vector spaces. Moreover, by Lemma 4.1, bHFL.Y;L/,
equipped with the absolute Q–grading given by F ŒF �w;z , is symmetric with respect
to the origin 0. Hence this absolute Q–grading is identical to the usual absolute
Alexander Z–grading on bHFK .Y;L/.

Now we can apply Theorem 3.1 to get the conclusion.

In order to reduce the general case to the case of h D ŒF �, we are going to use the
“cabling trick” introduced in [14]. The idea is to consider a .p;q/–cable of L, hence
to reduce the general case to the case treated in Proposition 5.2. The method of dealing
with cables comes from Hedden’s work [4].

Suppose L is an l –component oriented link in Y , the components of L are denoted
by K1; : : : ;Kl . Using stabilizations and handle-slides if necessary, we can construct a
2l –pointed Heegaard diagram .†; ˛; ˇ ;w; z/ associated to the pair .Y;L/, satisfying
the following conditions:

(1) For each i 2 f1; 2; : : : ; lg, ˇi represents a meridian for Ki , namely, wi and zi

lie on a curve �i which meets ˇi in a single point, and is disjoint from all the
other ˇ–curves.

(2) The curve ˇi meets ˛i transversely in a single point, and is disjoint from all the
other ˛–curves.

The curve �i �† is isotopic to Ki in Y , hence † specifies a frame of Ki .

Suppose p D .p1; : : : ;pl/, q D .q1; : : : ; ql/ are two l –tuples of positive integers,
where

qi D pini C 1

for some l –tuple of positive integers nD .n1; : : : ; nl/. We replace ˇi with a new curve
i , gotten by performing a “finger move” of ˇi along �i with multiplicity .pi � 1/,
and then winding ni times parallel to ˇi . We put a new basepoint z0i inside the end of
the finger. The new diagram .†; ˛;  ;w; z0/ gives the link C.L/D Cp;q.L/, which
is the .p;q/–cable of L with respect to the frame specified by †. We can also find a
basepoint ti outside the finger, so that .†; ˛;  ;w; t/ describes L. See Figure 1 for
an illustration of the local diagram.
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�i

i

˛

ti

z0i

wi

�i
0

1

2
3

4
5

6

7

8

9

10

11
12

˛i

ˇi

Figure 1: The local Heegaard diagram for a .3; 10/–cable

We oriented the curves ˇi ; �i as indicated in Figure 1. The curve i is also equipped
with an orientation induced from the orientation on ˇi .

Let Nd.�i/ be a regular neighborhood of �i inside which we perform the finger move.
Let Nd.ˇi/ be a regular neighborhood of ˇi inside which we perform the winding.
An intersection point of i with an ˛–curve is exterior, if it lies in Nd.ˇi/. (In this
case, the only possibility for this ˛–curve is ˛i .) An intersection point of i with an
˛–curve is interior, if it lies in Nd.�i/. An intersection point x 2 T˛ \T is called
an exterior intersection point, if its i –component is exterior for all i D 1; : : : ; l .
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Let �W Y �L! Y �C.L/ be the inclusion map, ��W H1.Y �L/!H1.Y �C.L//,
��W H 2.Y;C.L//!H 2.Y;L/ be the induced maps on (co)homologies. Let �0i be the
meridian of Cpi ;qi

.Ki/. Then ��.Œ�i �/D pi Œ�
0
i �.

Inside Nd.ˇi/, the curve ˛i has 2.pi � 1/niC 1 (exterior) intersection points with i .
We define a function

Sj W ˛i \ i \Nd.ˇi/!Q;

which is uniquely characterized up to an overall translation as follows.

Given x;y 2 ˛i \ i \Nd.ˇi/, there are two arcs a� ˛i and b � i , both connecting
x to y , so that a � b is rationally homologous to a rational linear combination of
˛–curves and  –curves. Let D be a 2–chain, such that @D consists of a� b and a
rational linear combination of ˛–curves and  –curves, then Sj satisfies

(3) Sj .x/�Sj .y/D nz0
j
.D/� nwj .D/:

Draw an oriented arc �j �† connecting z0j to wj (see Figure 1), then we also have

(4) Sj .x/�Sj .y/D �j � @D:

Definition 5.3 Suppose K;L are two disjoint knots in a rational homology sphere Z .
Let @�W H2.Z;KIQ/ ! H1.KIQ/ be the boundary map. Since Z is a rational
homology sphere, @� is an isomorphism. The linking number of K;L is defined to be

@�1
� .ŒK�/ � ŒL� 2Q;

denoted by lk.K;L/. Suppose � is a frame on K , then � can be viewed as a knot on
@Nd.K/. We call lk.K; �/ the self-linking number of K with frame �, denoted by
lk.�; �/.

Lemma 5.4 (Compare [14, Lemma 3.7].) (1) We can label the 2.pi � 1/ni C 1

points in ˛i \ i \Nd.ˇi/ by

x0
i ;x

1
i ; : : : ;x

2.pi�1/ni

i ;

such that

Si.x
k
i /�Si.x

kC1
i /D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

1; if k D 0,

k

2ni
C 1Cpi � lk.�i ; �i/; if 2ni jk and k > 0,�

k

2ni

�
C 1; if 2ni − k and k is even,

pi �

�
k

2ni

�
� 1; if 2ni − k and k is odd.
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In particular,
Si.x

0
i /�Si.x

2ni

i /D pini :

(2) For i ¤ j we have that

Sj .x
k
i /�Sj .x

kC1
i /D

(
pj � lk.Ki ;Kj /; if 2ni jk;

0 ; otherwise.

Figure 2: A disk connecting x3 to x4 . The dark grey region has multiplic-
ity 2 while the light grey region has multiplicity 1 .

Proof (1) We suppress the subscript i when there is no ambiguity. The labelling of
the 2.p� 1/nC 1 points is illustrated in Figure 1.

The two points x0 and x1 are connected by a bigon with nz0 D 0; nw D�1, which
implies that S.x0/�S.x1/D 1.

When k > 0, suppose k D h � .2n/C r , where 0� h� p� 2; 0� r � 2n� 1. If r is
odd, then there is a bigon connecting xk to xkC1 , with nz0 D p�h� 1; nw D 0. See
Figure 2 for an illustration. Using (3), we conclude that S.xk/�S.xkC1/D p�h�1

when k is odd.

When r 2 f1; : : : ; 2n� 2g, there is an arc ak;kC2 � ˛i and an arc bk;kC2 � i , both
connecting xk to xkC2 , such that ak;kC2� bk;kC2 is homologous to �ˇi in †. See
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Figure 3 for an illustration. It follows that ak;kC2�bk;kC2Ci bounds a domain in †.
Since ak;kC2 and bk;kC2 does not intersect the arc �i shown in Figure 1, using (4),
S.xk/�S.xkC2/ is calculated by �i �i Dp . Thus S.xk/�S.xkC2/Dp . Combined
with the last paragraph, we see that S.xk/�S.xkC1/D hC 1 when k is even and
2n − k .

Figure 3: Two arcs connecting x7 to x9

When 2njk , as in Figure 4, there is an arc ak�1;kC1 � ˛i and an arc bk�1;kC1 � i ,
both connecting xk�1 to xkC1 , such that ak�1;kC1 � bk�1;kC1 is homologous to
�ˇi � �i . So ak�1;kC1 � bk�1;kC1C i C �i bounds a 2–chain D1 . Since Y is a
rational homology sphere, �i cobounds a 2–chain D2 with some copies of ˛–curves
and  –curves, where the multiplicity of i in @D2 is �lk.�i ; �i/. So D1 �D2 is
a 2–chain bounded by ak�1;kC1 � bk�1;kC1 and some copies of ˛–curves and  –
curves, where the multiplicity of i is 1C lk.�i ; �i/. Using (4), S.xk�1/�S.xkC1/

is calculated by

�i �
�
� bk�1;kC1C .1C lk.�i ; �i//i

�
D 1CpCp � lk.�i ; �i/:

Since S.xk�1/�S.xk/D p�b.k � 1/=.2n/c� 1D p� k=.2n/, we have

S.xk/�S.xkC1/D
k

2n
C 1Cp � lk.�i ; �i/:
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(2) The proof is similar to (1). We note that, when 2ni − k the domain involved is
always supported in a neighborhood of ˛i [ˇi [ �i . So both nz0

j
and nwj are zero,

hence Sj .x
k
i /�Sj .x

kC1
i /D 0.

When 2ni jk , as in (1), the multiplicity of j in the boundary of D1�D2 is lk.Ki ;Kj /.
So we have

Sj .x
k
i /�Sj .x

kC1
i /D Sj .x

k�1
i /�Sj .x

kC1
i /D pj � lk.Ki ;Kj /:

h.2n/� 1

h.2n/C 1

Figure 4: Two arcs connecting xh.2n/�1 to xh.2n/C1

Corollary 5.5 If lk.�i ; �i/� 0, then we always have

Si.x
k
i / > Si.x

kC1
i /:

Proof This is a simple consequence of Lemma 5.4 (1).

Convention 5.6 From now on, we always choose the frames �i , i D 1; : : : ; l , such
that lk.�i ; �i/� 0 for each i .

Definition 5.7 We observe that the point x0
i comes from the original intersection

point ˛i \ ˇi . The points x0
i ;x

1
i ; : : : ;x

2ni

i are called outermost points. If x is an
exterior intersection point, and the i –component of x is outermost for all i , then x is
called an outermost exterior point.
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Definition 5.8 Let A be a subset of f1; : : : ; lg. If the i –coordinate of an intersection
point u 2T˛ \T is supported in Nd.�i/ when i 2A, and is x0

i when i …A, then u
is called a type–A interior intersection point. The set of type–A interior intersection
points is denoted by IA . Given an intersection point x 2T˛\Tˇ , one can associate to
it a corresponding intersection point xA 2 T˛ \T , so that the i –coordinate of xA

is x
2ni

i when i 2A, is x0
i when i …A, and all other coordinates are the same as the

coordinates of x. When AD∅, x∅ is also denoted by x0 .

In order to emphasize the dependence of the diagram on n, we sometimes put a subscript
.n/ in the notation. For example, the base points z0 are denoted by z0

.n/ , and the set of
type–A interior intersection points is denoted by IA

.n/ .

For two different n1;n2 , there is a natural 1–1 correspondence between IA
.n1/

and IA
.n2/

.
Suppose u.n1/ 2 IA

.n1/
, then the corresponding point in IA

.n2/
is denoted by u.n2/ .

hw;zW T˛ \Tˇ!H 2.Y;LIQ/;Let

hw;tW T˛ \T !H 2.Y;LIQ/;

hw;z0 W T˛ \T !H 2.Y;C.L/IQ/;

be the affine maps defined in Section 4.4.

The following observation is important:

Lemma 5.9 Fix a point x 2 T˛ \Tˇ , a set A � f1; : : : ; lg and a point u.n/ 2 IA
.n/ .

Then
hw;z0

.n/
.xA
.n//� hw;z0

.n/
.u.n//

is a constant independent of n.

Proof Given two l –tuples n1;n2 , without loss of generality, we can assume n1 < n2 ,
that is, every coordinate of n1 is less than or equal to the corresponding coordinate
of n2 , and at least one equality does not hold. Suppose D.n1/ is a 2–chain whose
boundary consists of k!.xA

.n1/
;u.n1// and a sum of some copies of ˛–curves and

.n1/–curves. Then we can get a domain D.n2/ by performing finger moves to D.n1/ ,
so that D.n2/ is the corresponding domain for xA

.n2/
;u.n2/ .

When i 2A, we have nz0
i.n/
.D.n//� nwi

.D.n//D �i � @D.n/ . Since the i –coordinate
of u.n/ is supported in Nd.�i/, and the i –coordinate of xA

.n/ is x
2ni

.n/ , the finger moves
do not change �i � @D.n/ .

When i …A, the i –coordinates of xA
.n/ and u.n/ are both x0

i.n/ . The finger moves do
not change nz0

i.n/
.D.n//� nwi

.D.n//. Thus our desired result holds by Lemma 4.2.
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Lemma 5.10 Given x; y 2 T˛ \Tˇ , we have

hw;z.x/� hw;z.y/D hw;t.x0/� hw;t.y0/D ��.hw;z0.x0/� hw;z0.y0//:

Proof It is obvious that

hw;z.x/� hw;z.y/D hw;t.x0/� hw;t.y0/:

Suppose D is a domain, @D is the sum of k!.x; y/ and some copies of ˛ and ˇ
curves. Then after applying finger moves and windings to D , we get a domain D0 , so
that @D0 is the sum of k!.x0; y0/ and some copies of ˛ and  curves. We can observe
that

nz0
i
.D0/� nwi

.D0/D pi.nti
.D0/� nwi

.D0//:

��.hw;z0.x0/� hw;z0.y0//D hw;t.x0/� hw;t.y0/Hence

by Lemma 4.2 and the fact that ��.piPD.Œ�0i �//D PD.Œ�i �/:

Suppose xr ; xs 2 T˛ \T differ only at the i –coordinate, where the coordinate of
xr is xr

i , and the coordinate of xs is xs
i . From the definition of Si and Lemma 4.2,

we conclude that

(5) hw;z0.xr /� hw;z0.xs/D

lX
jD1

.Sj .x
r
i /�Sj .x

s
i //PD.Œ�0j �/:

Now we fix an integral class h 2H2.Y;LIQ/, which satisfies h � Œ�i � > 0 for each i .
Suppose F �M D Y � int.Nd.L// is a surface representing h, F has no sphere com-
ponents, and �.F / is maximal among all such surfaces. We can assume @F \ @Nd.Ki/

consists of parallel oriented circles. Then @F \ @Nd.Ki/ is a torus link T .Pi ;Qi/,
with respect to the frame specified by †.

Convention 5.11 From now on, we assume pi=Pi is an integer independent of i , say,
pi DmPi . Then Cp;q.L/ is a null-homologous link.

Construction 5.12 A minimal genus Seifert surface F 0 for C.L/ can be obtained
as follows. Inside the cable space Nd.Ki/� int.Nd.Cpi ;qi

.Ki///, one can choose a
properly embedded, Thurston norm minimizing surface Gi , so that @Gi \ @Nd.Ki/ is
the torus link T .mPi ;mQi/, and @Gi\@Nd.Cpi ;qi

.Ki// is a longitude of Cpi ;qi
.Ki/.

Then F 0 is the union of G1; : : : ;Gl and m parallel copies of F . A standard argument
(see, for example, [14, Lemma 3.2]) in 3–dimensional topology shows that F 0 is a
minimal genus Seifert surface for C.L/. Let h0 D ŒF 0� 2H2.Y;C.L//.
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Recall the function
Fh

w;zW T˛ \Tˇ!Q

is defined as
Fh

w;z.x/D hhw;z.x/; hi:

Then Fh
w;z specifies an Alexander Q–grading on bCFL.Y;L/. We also equip the

complex bCFL.Y;C.L// with the Q–grading defined by Fh0

w;z0 .

Convention 5.13 From now on, when we talk about the (1–dimensional) Alexander
grading of bCFL.Y;L/ and bCFL.Y;C.L//, we always refer to the gradings defined
by Fh

w;z and Fh0

w;z0 , respectively.

Let Dtop be the maximal grading such that the summand of bHFL.Y;L/ at this grading
is nontrivial. Similarly, let D0top be the maximal grading such that the summand of
bHFL.Y;C.L// at this grading is nontrivial. If the grading of x is no more than the

grading of y, then we denote as x� y, and x� y if their gradings are not equal.

Given i 2 f1; : : : ; lg, suppose xr ; xs 2 T˛ \T are two points differing only at the
i –component, where their components are xr

i ;x
s
i , respectively. By (5), we have

(6) Fh0

w;z0.x
r /�Fh0

w;z0.x
s/D

lX
jD1

.Sj .x
r
i /�Sj .x

s
i //:

In particular, if r D 0, s � 2ni , then by Lemma 5.4, Corollary 5.5 and (6) we have

(7) Fh0

w;z0.x
0/�Fh0

w;z0.x
s/� pini � jpi � 2j

X
j¤i

pj � jlk.Ki ;Kj /j:

If x; y 2 T˛ \Tˇ are two intersection points, then by Lemma 5.10 and Construction
5.12, we have

(8) Fh0

w;z0.x
0/�Fh0

w;z0.y
0/Dm.Fh

w;z.x/�Fh
w;z.y//:

Let fx1; : : : ; xr g � T˛ \Tˇ be the generating set of bCFL.Y;L;Dtop/. Let

(9) C0 D max
x2T˛\Tˇ

Fh
w;z.x/�Dtop � 0:

Lemma 5.14 (Compare [14, Lemma 3.9].) Fix pD .p1; : : : ;pl/. For all sufficiently
large nD .n1; : : : ; nl/, if u 2 T˛ \T is not an outermost exterior point, then

u� x01:
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Proof Let �C1 be a lower bound of Fh0

w;z0.x
A/�Fh0

w;z0.v/ for all x 2 T˛ \Tˇ , all
nonempty A� f1; : : : ; lg, and all type–A interior intersection points v. Lemma 5.9
enables us to choose C1 to be a constant independent of n.

Let n be sufficiently large so that

(10) pini >maxfC1; jpi � 2j
X
j¤i

pj � jlk.Ki ;Kj /jCmC0g; for i D 1; : : : ; l:

As a result, if x0; xs 2 T˛ \ T differ only at the i –component for some i , then
Lemma 5.4, Corollary 5.5, (6) and (7) imply that

(11) xs
� x0:

Assume u is not an outermost exterior point. Let

AD fi W the i–coordinate of u is not an exterior pointg;

B D fj W the j –coordinate of u is an exterior point but not outermostg:

Then A[B is nonempty.

If A¤∅, suppose i 2A. For each j …A, change the j –coordinate of u to x0
j , we

get a type–A interior point xu. By Lemma 5.4, Corollary 5.5, (11) and (10) we have

Fh0

w;z0.x
0
1/�F

h0

w;z0.u/� F
h0

w;z0.x
0
1/�F

h0

w;z0.xu/

� pini CFh0

w;z0.x
A
1 /�F

h0

w;z0.xu/
� pini �C1 > 0:

If AD∅;B ¤∅, suppose i 2 B . For any j , change the j –coordinate of u to x0
j ,

we get a point x0 for some x 2 T˛ \Tˇ . We have

Fh0

w;z0.u/� F
h0

w;z0.x
0/�pini Cjpi � 2j

X
j¤i

pj � jlk.Ki ;Kj /j by (7); .11/

< Fh0

w;z0.x
0/�mC0 by (10)

� Fh0

w;z0.x
0
1/ by (8), (9).

Proposition 5.15 With the notation as above, when the winding number n is suffi-
ciently large,

bHFL.Y;L;Dtop/Š bHFL.Y;C.L/;D0top/:

Moreover, suppose x is one of the generators of bCFL.Y;L;Dtop/, then x0 is one of the
generators of bCFL.Y;C.L/;D0top/.

Geometry & Topology, Volume 13 (2009)



3014 Yi Ni

Proof Let bCFL� be the summand of bCFL.Y;C.L//, which consists of all the ele-
ments with grading no lower than the grading of x0

1
. By Lemma 5.14, the generators of

bCFL� are all outermost exterior points. The differential on bCFL� counts holomorphic
disks away from w; z0 , denoted by @w;z0 .

The base points t give an extra filtration to bCFL� . If a holomorphic disk � connects
two exterior points xy1 to xy2 , and � avoids w; z0; t, then the positivity of � implies
that the i –components of xy1 and xy2 coincide for all i . Thus � corresponds to
a holomorphic disk connecting y1 to y2 , which avoids w; z. Here yj 2 T˛ \ Tˇ ,
(j D 1; 2,) is an intersection point whose components coincide with the components
of xyj , except the ˛i –components. (This correspondence can be seen through the
cylindrical reformulation of Heegaard Floer homology due to Lipshitz [7].)

Hence the chain complex .bCFL�; @w;z0;t/ is the direct sum of summands in the form
of bCFLr;d , where here bCFLr;d is generated by the outermost exterior intersection
points xy 2 T˛ \T , which satisfy that the i –component of xy is x

ri

i , and the grading
difference between xy and x0

1
is d � 0.

For each generator xy of bCFLr;d , let y 2 T˛ \Tˇ be the point whose coordinates are
equal to the coordinates of xy except the ˛i –coordinates, i D 1; : : : ; l . By (6) and (8),
we have

Fh
w;z.y/�Fh

w;z.x1/D
1

m
.Fh0

w;z0.y
0/�Fh0

w;z0.x
0
1//

D
1

m
.Fh0

w;z0.y
0/�Fh0

w;z0.xy/C d/

D
1

m

� lX
iD1

.Si.x
0
i /�Si.x

ri

i //C d

�
� 0:

So the homology of .bCFLr;d ; @w;z0;t/ is isomorphic to the homology of some summand
of bCFL.Y;L/, at a fixed grading no less than the grading of x1 .

Since x1 lies in the topmost nontrivial Alexander Q–grading of bHFL.Y;L/, we find
that bHFLr;d is nontrivial if and only if .r; d/D .0; 0/, and

bHFL0;0 Š bHFL.Y;L;Dtop/:

There is a spectral sequence which starts from .bCFL�; @w;z0;t/, and converges to
H.bCFL�; @w;z0/. Since the E2 term is only supported in one filtration level,

H.bCFL�; @w;z0/Š bHFL0;0:

bHFL.Y;C.L/;D0top/Š
bHFL.Y;L;Dtop/:Thus

The last statement of this proposition is obvious from the proof.
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Our next task is to determine the absolute position of the topmost grading in bHFL.Y;L/.
For this purpose, we will consider two relative Spinc structures r1; r22Spinc.Y;C.L//.

Given x 2 T˛ \Tˇ , let r1 D sw;z0.x0/ 2 Spinc.Y;C.L//.

Construction 5.16 A vector field v1 representing r1 can be constructed as in Section
4.2. Let f W Y ! Œ0; 3� be a Morse function corresponding to the Heegaard diagram
.†; ˛;  /. There is a nowhere vanishing vector field zv1 on Y as follows. Outside a
neighborhood of w[ z0 [ x0 , ev1 is identical with rf . We then extend the vector
field over the balls Nd.x0/, and over Nd.w [ z0/ as in Section 4.2. The closed
orbits of zv1 which pass through points in w; z0 are identical with the oriented link
C.L/D z0 � w . The vector field v1 is the restriction of zv1 to Y �Nd.C.L//.

The cable space Nd.Ki/� int.Nd.Cpi ;qi
.Ki/// fibers over the circle, with fiber Gi .

Let ui be a vector field on the cable space, which is transverse to the fibers everywhere,
and the orientation of ui is opposite to the orientation induced by the orientation of
the fibers. Under this assumption, the restriction of ui on the boundary tori is isotopic
to a translation invariant vector field, which is unique up to isotopy.

Note that sw;z.x/D sw;t.x0/ is a relative Spinc structure on Y � int.Nd.L//, we can
extend it to a relative Spinc structure on Y � int.Nd.C.L/// by the vector fields
u1; : : : ;ul . We denote this new Spinc structure by r2 .

Construction 5.17 A vector field v2 representing r2 can be constructed as follows.
First construct a nowhere vanishing vector field zv2 on Y . Outside a neighborhood of
w[ t[ x0 , zv2 is identical with rf . We then extend the vector field over the balls
Nd.x0/, and over Nd.w[ t/ as in Section 4.2. The closed orbits of ev2 which pass
through points in w; t are identical with the oriented link L D t � w . The vector
field v2 is the union of zv2jY�Nd.L/ and u1; : : : ;ul . (We should isotope ui ’s near the
boundary of the cable spaces so that they are identical to zv2jY�Nd.L/ on @Nd.L/.)

We define two functions
F1;F2W T˛ \Tˇ!Q:

The function F1 is defined as follows:

F1.x/D hHC.L/.r1/; h
0
i;

where here HC.L/ is the affine map defined in Section 4.4, for the pair .Y;C.L//.
More precisely,

F1.x/D
�
c1.r1/�

Pl
iD1 PD.Œ�0i �/
2

; h0
�
:
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The function F2 is defined as

F2.x/D
�
c1.r2/�

Pl
iD1 PD.��Œ�i �/

2
; h0
�
:

Let �W .Y;C.L//! .Y;Nd.L// be the inclusion map of pairs, then ��.h0/ D m � h.
By the choice of ui , the evaluation of c1.ui/ on Gi is always ��.Gi/, where c1.ui/

is the Chern class of the relative Spinc structure determined by ui . So

F2.x/D
�
c1.sw;z.x//�

Pl
iD1 PD.Œ�i �/

2
; ��.h

0/iC
1

2

lX
iD1

hc1.ui/; ŒGi �i

�

DmhH.sw;z.x//; hi �
1

2

lX
iD1

�.Gi/:

(12)

In summary, F1 and F2 can be factorized as follows:

F1WT˛ \Tˇ! T˛ \T ! Spinc.Y;C.L//!Q;

F2WT˛ \Tˇ! Spinc.Y;L/! Spinc.Y;C.L//!Q:

Let maxF1 be the value of F1.x/ for intersection point x such that the grading of x0

is D0top . Let maxF2 be the value of F2.x/ such that the grading of x is Dtop .

From Lemma 5.10, we can conclude that

(13) F1.x/�F1.y/D F2.x/�F2.y/:

In fact, we can prove something stronger:

Proposition 5.18 Given x 2 T˛ \Tˇ , then the following equality holds:

(14) F2.x/D F1.x/C
lX

iD1

pi � 1

2
:

Proof We could prove (14) by examining the relative Spinc structures carefully, but
we would rather argue via a model computation.

By Constructions 5.16 and 5.17, the two vector fields v1; v2 are equal outside a regular
neighborhood of the flowlines w; z0 ; t . So the difference of v1 and v2 only depends
on their difference inside Nd.w[ z0 [ t/, which only depends only on the 2l torus
link types .pi ; qi/; .mPi ;mQi/, i D 1; : : : ; l . In order to compute the difference of
their evaluations (of the Chern classes of the two Spinc structures) on F 0 , we only
need to compute the difference of their (relative) evaluations on F 0\Nd.w[z0[t/.

Geometry & Topology, Volume 13 (2009)



Link Floer homology detects the Thurston norm 3017

So we only need to verify (14) for some model, in which the local behavior of v1; v2

are the same as in the general case.

Let di D gcd.Pi ;Qi/, Pi D diP
0
i ;Qi D diQ

0
i . The model we are considering is the

knot OP 0
i
=Q0

i
in L.P 0i ;Q

0
i/. There is an essential disk D properly embedded in the

complement of K DOP 0
i
=Q0

i
. @D is the torus knot T .P 0i ;Q

0
i/ in @Nd.K/. Let F0 be

the union of di copies of D .

Fix a frame on K , let C.K/ be the .pi ; qi/–cable of K with respect to this frame. Let
G0 � Nd.K/� int.Nd.C.K/// be a surface such that @G0 consists of the torus link
T .mPi ;mQi/ and a longitude of C.K/, and Nd.K/� int.Nd.C.K/// fibers over the
circle with fiber G0 . F 0

0
is the union of G0 and m parallel copies of F0 .

Now F0;F
0
0
;G0 play the roles of F ,F 0 ,Gi .

From Lemma 5.1, we know that for the pair .L.P 0i ;Q
0
i/;OP 0

i
=Q0

i
/

maxF2 D
1

2
.mdi.2P 0i � 1/��.G0/�pi/

D
1

2
.pi �mdi ��.G0//:

The knot C.K/ is null-homologous, so we can apply Proposition 5.2 and Proposition
5.15 to show that

maxF1 D
1��.F 0

0
/

2

D
1

2
.1�mdi ��.G0//:

F2.x/�F1.x/D
pi � 1

2
:So we get

This finishes the model computation, hence (14) holds in general.

Proof of Theorem 1.1 We first prove the case where @M is incompressible, thus we
only need to prove the statement in Remark 1.2. The homogeneity of Thurston norm
enables us to consider the problem for the more general case where h 2H2.Y;LIQ/
is a rational class. By the continuity of Thurston norm, it suffices to prove the theorem
for the rational classes h with h � Œ�i � ¤ 0 for all i . Again by the homogeneity of
Thurston norm, we only need to consider the case where h is an integral classes. After
changing the orientations of some components, we may assume h � Œ�i � > 0 for all i .

With the notation as before, consider the .p;q/–cable C.L/ of L. Here we choose mD

1, so pi DPi . Let nD .n1; : : : ; nl/ be sufficiently large. Since @M is incompressible,
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there exists a surface F representing h, and j�.F /j D x.h/. Construct the surfaces
Gi ,F 0 as in Construction 5.12.

We have

maxfhH.r/; hi j bHFL.Y;L; r/¤ 0g

DmaxF2C
1

2

lX
iD1

�.Gi/ by (12)

DmaxF1C

lX
iD1

pi � 1

2
C

1

2

lX
iD1

�.Gi/ by Proposition 5.15, (14)

D
1

2
.l ��.F 0//C

1

2

lX
iD1

.pi � 1/C
1

2

lX
iD1

�.Gi/ by Proposition 5.2

D
1

2

� lX
iD1

jŒF � � Œ�i �j ��.F /

�
:

This finishes the proof in the case when @M is incompressible.

If @M is compressible, say, @Nd.K1/ is compressible. We can compress this boundary
torus to get a separating sphere, which splits off a lens space summand from Y , and K1

is a knot Op=q in this summand. Let L0DL�K1 , Y D Y 0#L.p; q/. If h2H2.Y;L/

is an integral class, and F � Y � int.Nd.L// realizes �.h/, then F is the disjoint
union of some disks in L.p; q/� int.Nd.Op=q// and a surface F 0 � Y 0� int.Nd.L0//.
We can make use of Proposition 4.3 and Lemma 5.1 to reduce our problem to L0 . Now
the proof of our theorem can be finished by induction on jLj.
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