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A Schottky decomposition theorem
for complex projective structures

SHINPEI BABA

Let S be a closed orientable surface of genus at least two, and let C be an arbitrary
(complex) projective structure on S . We show that there is a decomposition of S

into pairs of pants and cylinders such that the restriction of C to each component
has an injective developing map and a discrete and faithful holonomy representation.
This decomposition implies that every projective structure can be obtained by the
construction of Gallo, Kapovich, and Marden. Along the way, we show that there is
an admissible loop on .S;C / , along which a grafting can be done.

57M50; 30F40, 53A30

1 Introduction

Let F be a connected orientable C 1 –smooth surface possibly with boundary, and
let zF denote the universal cover of F . A (complex) projective structure C on F is
a .yC;PSL.2;C//–structure, where yC D C [ f1g is the Riemann sphere. In other
words, it is a maximal atlas of F modeled on yC with transition maps in PSL.2;C/.
The pair .F;C / is called a projective surface. As usual, we will often conflate C and
.F;C /.

There is an equivalent definition, which we will mostly use in this paper: A projective
structure is a pair .f; �/, where f W zF ! yC is a C 1 –smooth locally injective map
and �W �1.F /! PSL.2;C/ is a homomorphism, such that f is �–equivariant, ie
f ı 
 D �.
 / ı f for all 
 2 �1.F /. Then f is called the developing map and � the
holonomy (representation) of the projective structure. On the interior of zF , f is a
local homeomorphism, and the restriction of f to each boundary component of zF is a
C 1 –smooth curve.

A projective structure C D .f; �/ is defined up to an isotopy of F and the action of an
element of PSL.2;C/, ie the postcomposition of f with 
 2 PSL.2;C/ and the conju-
gation of � by 
 . (See Thurston [22, 3.4] and Kapovich [16, 7.1].) The C 1 –smoothness
is required to define a natural topology on the space of all projective structures on F in
the case that F is not closed (see Canary, Epstein and Green [2, I.1.5]). In this paper,
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we always assume that surfaces are connected and C 1 –smooth possibly with boundary
(although we do not consider the deformation space of projective structures).

Definition 1.1 A projective structure C D .f; �/ on F is called admissible if it
satisfies the following conditions:

(i) f is an embedding.

(ii) � is an isomorphism onto a quasifuchsian group (if F is closed) or onto a
Schottky group (if F is not closed).

Analogously, a simple loop l on the projective surface .F;C / is admissible if zl embeds
in yC by f and �.
l/ is loxodromic, where zl is a lift of l to zF and 
l is the homotopy
class of l .

Remark Condition (ii) is equivalent to saying that � is an isomorphism onto a convex-
cocompact subgroup of PSL.2;C/.

A hyperbolic structure is a basic example of a projective structure, since H2 � yC and
IsomC.H2/ŠPSL.2;R/�PSL.2;C/ in a compatible way. Every hyperbolic structure
on a closed orientable surface is an admissible projective structure. However, in general,
developing maps are not necessarily injective and holonomy representations are not
necessarily discrete or faithful (cf (iii) and (iv) following Corollary 7.2 in this section).
Throughout this paper, let S denote a closed orientable surface of genus at least 2

and let zS denote the universal cover of S . (The orientability of S is not essential for
the mains theorems of this paper, if we consider two-dimensional Mobius structures
instead of projective structures.) The following theorem yields a decomposition of an
arbitrary projective surface into admissible projective subsurfaces:

Theorem 7.1 Let C be a projective structure on S . Then there exists a decomposition
of S into cylinders and compact connected surfaces of negative Euler characteristic,
such that the restriction of C to each cylinder is an integral flat structure and the
restriction to each surface of negative Euler characteristic is an admissible projective
structure.

By a decomposition, we mean that the subsurfaces in this theorem are the connected
components of S minus some multiloop, a disjoint union of essential simple loops.

An integral flat structure is a basic projective (actually affine) structure on a cylinder,
closely related to an operation called grafting (Section 3.2). If there is an admissible
loop on a projective surface, we can define a grafting along this loop (see Kapovich [16],
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Goldman [10] and Bromberg [1] for example). This operation gives another projective
structure on the same surface, preserving the orientation and the holonomy represen-
tation. If the admissible loop is circular (ie it corresponds to a simple circular arc on
yC via the developing map), then the integral flat structure is exactly the projective
structure that the grafting operation inserts to the projective structure along the loop.
An integral flat structure on an annulus can be easily decomposed into integral flat
structures that are admissible.

Theorem 7.1 immediately implies:

Corollary 7.2 Let C be an arbitrary projective structure on S . Then there exists a
decomposition of S into pairs of pants and cylinders such that the restriction of C to
each cylinder is an integral flat structure and the restriction to each pair of pants is an
admissible structure.

This corollary gives the affirmative answer to a question raised by Gallo, Kapovich,
and Marden [7, 12.1]. The authors of [7] gave necessary and sufficient conditions for
a representation �W �1.S/! PSL.2;C/ to be the holonomy representation of some
projective structure on S . The conditions are: (iii) Im.�/ is a nonelementary subgroup
of PSL.2;C/ and (iv) � lifts to a representation from �1.S/ to SL.2;C/. In order to
prove the sufficiency of these conditions, given an arbitrary representation � satisfying
(iii) and (iv), they constructed a projective structure on S with holonomy � in the
following way: First, decompose S into pairs of pants, fPig, such that �j�1.Pi / is
an isomorphism onto a rank-two Schottky group for each i . Second, construct an
admissible projective structure on each Pi with the holonomy representation �j�1.Pi / .
Last, glue these structures on the pairs of pants together by inserting projective structures
on cylinders between the corresponding boundaries of Pi ’s, and obtain a desired
projective structure. They asked whether every projective structure on S arises from
such a Schottky pants decomposition. More specifically, they asked if every projective
structure contains an admissible loop, which is answered by:

Theorem 6.2 For every projective structure C on S , there exists an admissible loop
on .S;C /.

A remark on Theorem 6.2 From our argument, it immediately follows that, on every
projective surface .S;C /, there are infinitely many homotopy classes of admissible
loops, unless .S;C / satisfies the following condition (which almost always fails):

� Setting C D .�;L/ to be the expression of C in Thurston’s coordinates (Section
3.8), L decomposes S into a disjoint union of pairs of pants.
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The author believes that on every .S;C / (even with this condition) each simple loop
sufficiently close to L in PML.S/Š S6g�7 , is homotopic to an admissible loop.

Note that Theorem 6.2 is weaker than Theorem 7.1, since the boundary components of
each subsurface in Theorem 7.1 are, in particular, admissible loops. However, the proof
of Theorem 6.2 contains the basic ideas for the proof of Theorem 7.1. Furthermore,
Theorem 6.2 addresses the following question about grafting:

Question 1 [7, Section 12] Assume that two projective structures on S have the same
orientation and holonomy representation. Can one projective structure be transformed
to the other by a sequence of graftings and inverse-graftings?

The grafting and inverse-grafting operations generate an equivalence relation among
the projective structures with a given holonomy representation. Question 1 asks if there
are exactly two equivalence classes represented by the orientations of the projective
structures. Theorem 6.2 implies that every equivalence class consists of infinitely many
projective structures. Ultimately, Question 1 aims to characterize the collection of pro-
jective structures with the given holonomy representation; this characterization problem
goes back at least to Hubbard’s paper [13] published in 1981 (see also Kapovich [15] and
Gallo, Kapovich and Marden [7]). In the special case that the holonomy representation
is an isomorphism onto a quasifuchsian group, the characterization is given by Goldman
[10, Theorem C] using grafting, and the answer to Question 1 is affirmative.

The holonomy map HolW P .S/!V .S/ is a projection given by C D .f; �/ 7!� , where
P .S/ is the space of all projective structures on S and V .S/ is the representation
variety of homomorphisms from �1.S/ to PSL.2;C/. This map is not a covering map
onto its image (see Hejhal [12]), which makes problems in this area difficult.

One may ask the above questions in the case of other .G;X /–structures as well (cf
Goldman [9, 1.10]). In particular, S Choi gave a canonical decomposition of real
projective structures, ie .PGL.3;R/;RP2/–structures, analogous to the one given by
Theorem 7.1 [4].

An outline of the proofs For a given projective surface .S;C /, there is a correspond-
ing pair .�;L/ of a marked hyperbolic structure � on S and a measured geodesic
lamination LD .�; �/ on .S; �/ (see Thurston’s coordinates in Section 3.8). A periodic
leaf of � corresponds to a continuous family of admissible loops on .S;C /. For each
irrational minimal sublamination of �, consider a standard sequence .li/ of simple
geodesic loops on .S; �/ that approximates � (Section 3.5). Then we will show that
li is admissible for all sufficiently large i . These admissible loops yield Theorem 6.2.
Taking a disjoint union of such admissible loops, we construct a multiloop on .S;C /
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A Schottky decomposition theorem for complex projective structures 121

that is a good approximation of the entire lamination �. We will show that the multiloop
on .S;C / achieves the desired admissible decomposition described in Theorem 7.1.

Every measured lamination on H2 induces a continuous map from H2 to H3 , called a
bending map (Section 3.6). Via the bending map, the measured lamination corresponds
to a projective structure on VD2 (Section 3.8). Our proofs are based on the fact that
injective quasiisometric bending maps correspond to admissible projective structures
on VD2 (Section 5). In order to show that li is admissible, we take the total lift zL of L

to H2 (Section 3.3) and a lift zli of li to H2 . Consider the sublamination I. zL; zli/ of zL
that consists of the leaves of zL intersecting zli , so that the structure on zli embeds into the
projective structure on VD2 corresponding to I. zL; zli/. In other words, zL and I. zL; zli/

coincide in a sufficiently small neighborhood of zli , and therefore, I. zL; zli/ is sufficient
to capture the structure on zli . The transversal measure of I. zL; zli/ is uniformly small
(Proposition 4.2). Then, accordingly, the bending map induced by I. zL; zli/ bends H2

inside H3 to a uniformly small degree, and therefore it is an injective quasiisometric
embedding (Section 5). Therefore I. zL; zli/ corresponds to an admissible structure on
VD2 . Since the structure on zli is embedded in the admissible structure on VD2 , li is
also admissible. Theorem 7.1 will be proven based on the same idea.

Acknowledgments The author would like to thank his advisor, Misha Kapovich, for
introducing him to complex projective structures and supporting him with his comments
and encouragements. He also thanks the referee for valuable comments. The author
was partially supported by NSF grants.

2 Notation

xy the geodesic segment connecting points x and y in a metric space
cl.X / the closure of X , where X is a subset of a topological space
VX the interior of X

Conv.Y / the convex hull of Y , where Y is a subset of H3

Dr .x/ the closed disk of radius r centered at x in a hyperbolic space

3 Preliminaries

3.1 Measured laminations

(For details, see Penner and Harer [20], Canary, Epstein and Green [2], Casson and
Bleiler [3], Kapovich [16] and Thurston [22].) Let F be a Riemannian surface with
a constant curvature, possibly with geodesic boundary. A geodesic lamination on F
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is a collection of disjoint simple complete geodesics on F whose union is a closed
subset of F . Each geodesic of a geodesic lamination is called a leaf. For a measured
lamination � on F , let j�j � F denote the union leaves of �. If j�j D F , then � is
called a foliation. A measured lamination is a pair LD .�; �/, where � is a geodesic
lamination, and � is a transversal measure of �. Let a leaf of L refer to a leaf of �
and jLj refer to j�j. We always assume that � is the support of �, ie if l is a leaf of
L, then �.s/ > 0 for every geodesic segment s that transversally intersects l . The
weight of a leaf l of L is inff�.s/g, where s varies over all geodesic segments that
transversally intersect l , ie the atomic transversal measure of l . We denote the weight
of l by w.l/. If l is an isolated leaf of L, then w.l/ D �.s/ for every geodesic
segment s on F that transversally intersects jLj exactly once at a point on l .

By convention, if a geodesic segment s is contained in a leaf of �, then �.s/ D 0.
In addition, letting x;y be the end points of s , if x or y is contained in a leaf with
positive weight, then the weight does not contribute to the value of �.s/, so that
�.s/D sup�.s0/ where s0 varies over all geodesic segments strictly contained in s , ie
s0 � s n fx;yg.

Recall that S is a closed orientable hyperbolic surface. A measured lamination on S is
minimal if it does not contain any proper sublamination. Every measured lamination L

on S uniquely decomposes into a finite number of disjoint minimal laminations of the
following two types: a periodic leaf with positive weight (periodic minimal lamina-
tion), and a measured lamination consisting of uncountably many bi-infinite geodesics
(irrational minimal lamination).

Let M D .�; !/ be an irrational minimal sublamination of L. Then, since each minimal
sublamination of L forms a closed subset of S , j�j is also an open subset of j�j. Here
are other properties of M : Each leaf of � is a dense subset of j�j. If s is a geodesic
segment on S transversally intersecting � , then s \ j�j is a Cantor set ie, a closed,
perfect subset with empty interior [20, Corollary 1.7.6, 1.7.7]. Therefore, no leaf of M

has a positive weight.

3.2 Flat cylinders

For every � 2 .0; 2�/ and distinct z1; z2 2
yC , let R� be the open region in yC bounded

by two simple circular arcs connecting z1 and z2 such that the inner angles at the
vertices z1 and z2 are equal to � . Since R� is embedded in yC , it is equipped with
a canonical projective structure (whose developing map is the identity map). We call
the structure a crescent of angle � ; its projective structure only depends on the choice
of � .
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Let ˛ be a hyperbolic element of PSL.2;C/ that fixes z1 and z2 . Then h˛i, the
subgroup of PSL.2;C/ generated by ˛ , is an infinite cyclic group acting on R� freely
and property discontinuously. By quotienting R� by h˛i, we obtain a projective
structure on a cylinder. We call the structure a flat structure of height � ; it only depends
on � and the translation length of ˛ . A flat structure of height � on a cylinder forms a
projective surface, which we call a flat cylinder of height � .

We shall define a crescent and a flat cylinder for arbitrary � > 0, generalizing those
for 0 < � < 2� . For arbitrary � > 0, let R� D .0; �/ � .0;1/ � R2 . Define
f� W .0; �/�.0;1/!C by f� .x;y/Dy cos xC

p
�1 y sin x (ie the polar coordinates).

Then f� defines a projective structure on R� Š
VD2 , which is a crescent of angle � .

For a> 0, let Ta be an automorphism of R2 defined by Ta.x;y/D .x; ay/. Define
a homomorphism �W hTai Š Z! PSL.2;C/ by �.Ta/.z/ D az for all z . Then f�
is �–equivariant. Quotienting R� by the action of hTai, we obtain a flat cylinder
of height � . A flat cylinder of height � is integral if � is a multiple of 2� . The
multiplier is called the degree of the integral flat cylinder, so that, for all z 2C nR�0 ,
the cardinality of f �1

�
.z/ is equal to the degree. Clearly, an integral flat cylinder of

height n can be decomposed into n flat cylinders of height one, which are admissible.

Let C D .f� ; �id/ be the crescent of angle � > 0 given in the form above, where
�idW �1.R� /! PSL.2;C/ is the trivial representation. For each x 2 .0; �/, f� takes
x � .0;1/ to a straight line on C connecting 0 and 1. The collection of these
lines, f fxg � .0;1/ j x 2 .0; �/g, forms a foliation �C on R� , which we call the
canonical foliation on C . We also can define the canonical transversal measure �C

of �C by �C .P1P2/ D jx1 � x2j for all P1 D .x1;y1/;P2 D .x2;y2/ 2 R� . Note
that fx1g�.0;1/ and fx2g�.0;1/ bound a crescent of height �C .P1P2/ contained
in C . Call .�C ; �C / the canonical measured foliation on C .

For each y 2 .0;1/, .0; �/� fyg is orthogonal to (each leaf of) �C in terms of the
angles obtained by pulling back the conformal structure on yC via f� . Besides, f�
takes .0; �/� fyg to a (not necessarily simple) circular arc on yC . The collection of
these orthogonal lines f.0; �/� fyg j y 2 .0;1/g forms a foliation on R� , which is
dual to �C . By identifying the points on each leaf of the dual foliation, R� projects
to a line. Since .�C ; �C / and its dual foliation are invariant under the action of hTai,
we obtain the canonical foliation and its dual foliation on the flat cylinder C=hT˛i.
Accordingly, the flat cylinder projects to a circle by identifying the points on each leaf
of the dual foliation.

Since f� W .0; �/� .0;1/!C continuously extends to f0; �g � .0;1/, we can com-
pactify a flat cylinder of height � to a projective structure on a compact cylinder with
boundary. By abusing the notation, we call this compactified flat cylinder, also, a flat
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cylinder of angle � . Accordingly, the universal cover of the compactified flat cylinder
of angle � also is called a crescent of angle � .

R2

O �

f�

O

�

C

=hTai

Figure 1

3.3 Dual tree

(For more details, see Morgan and Shalen [18] and Kapovich [16].) Let S be a closed
hyperbolic surface and LD .�; �/ be a measured lamination on S without periodic
leaves. Then no leaf of L has a positive weight. Let pW H2! S be the covering map.
The total lift of L is a measured lamination zLD .z�; z�/ on H2 , where z� consists of
all the lifts of the leaves of �, and z� is the pull back of �, so that .H2; zL/ is locally
isomorphic to .S;L/ via p . Then zL is a �1.S/–invariant measured lamination on H2 .

There is a unique R–tree dual to zL constructed in the following way (if L contains
periodic leaves, the construction is more complicated). The transversal measure z�
defines a pseudo-metric dz� on H2 , by dz�.x;y/D z�.xy/ for all x;y 2H2 . Since
no leaf of zL has a positive weight, dz�W H

2 �H2! R�0 is continuous. Define an
equivalence relation on H2 by x � y if and only if z�.xy/D 0. There are only two
types of equivalence classes: the closure of a complementary region of jz�j, and a leaf
of z� that is not a boundary geodesic of such a complementary region. Let T be the
quotient of H2 by the equivalence relation, and let P W H2! T be the quotient map.
In particular, if a geodesic in H2 is a leaf of zL or it is contained in the closure of a
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complementary region of jz�j, then P takes this geodesic to a point in T . It turns out
that T is an R–tree equipped with a canonical metric dT induced by z� (see Otal [19,
Section 2.3]): For every x;y 2 T , dT .x;y/D z�.x0y0/, where x0;y0 2H2 are such
that P.x0/D x and P.y0/D y . If a geodesic in H2 transversally intersects zL, then P
takes this geodesic to a geodesic in T . Since the action of �1.S/ on H2 preserves zL,
it isometrically acts on T . Let l be a closed geodesic on S transversally intersecting
L, zl be a lift of l to H2 , and 
l be the homotopy class of l in �1.S/. Then P.zl/ is
a geodesic in T , and the action of 
l on T isometrically translates along P.zl/ by the
distance �.l/.

3.4 Flow boxes

Let .a; b/ and .c; d/ be open intervals in R, and let Y be a closed subset of .c; d/.
Consider a geodesic lamination � on .a; b/� .c; d/�R2 that consists of the leaves
.a; b/ � fyg for all y 2 Y (ie we have Y –worth of horizontal leaves). Let � be a
transversal measure for �, and let L be the measured lamination .�; �/. The pair
..a; b/� .c; d/;L/ is called a (Euclidean) flow box. Let s be a vertical geodesic in
.a; b/� .c; d/, ie s D fxg � .c; d/ for some x 2 .a; b/. The height of the flow box is
�.s/, which does not depend on the choice of x . If L is a measured lamination on a
hyperbolic quadrilateral Q, and .Q;L/ is isomorphic to a flow box, then we also call
.Q;L/ a (hyperbolic) flow box.

For every point x on a leaf of L, there is a neighborhood of x that is isomorphic to
the a flow box [16, Section 11.6; 20, Section 1.6)]; then we immediately obtain:

Lemma 3.1 Let LD .�; �/ be a measured geodesic lamination on H2 without leaves
of positive weight. Let s be a geodesic segment contained in a leaf of L. For every
� > 0, there exists a neighborhood of s isomorphic to a flow box of height less than � .

Remark Under the projection map from .H2;L/ to its dual tree, the flow box neigh-
borhood of height less than � projects to a geodesic segment of length less than � .

3.5 Approximating an irrational lamination

(For details, see Canary, Epstein and Green [2, I.4.2.15].) Let S be a closed (orientable)
hyperbolic surface, and L D .�; �/ be an irrational minimal measured lamination
on S . Then there is a sequence .li/ of simple closed geodesics, limiting to jLj in the
Chabauty topology, where each li is homotopic to a piecewise geodesic loop ci of one
of the following two types:
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� ci is a union of a (long) geodesic segment ai contained in a leaf of L and a
(short) geodesic segment bi transversal to jLj (see Figure 2 (i)).

� ci is a union of two (long) geodesic segments contained in a leaf of L and
two (short) geodesic segments transversal to jLj; we let ai denote the union of
these long geodesic segments, and bi denote the union of these short geodesic
segments. (See Figure 2 (ii).)

In both cases, we have limi!1 length.ai/!1 and limi!1 length.bi/! 0. Then,
since S is closed, limi!1 �.bi/D 0.

(i) (ii)

ai

bi

ai

bi

Figure 2

Let m and n be geodesics on a complete hyperbolic surface. Assume that m\n¤∅,
and pick p2m\n. We can “rotate” m to n about p by a unique angle in .��=2; �=2�.
More precisely, we do the following: Let zp be a lift of p to H2 , and let zm and zn
be the lifts of m and n, respectively, to H2 that intersect at zp . Then, we can indeed
rotate zm to zn about zp by a unique angle in .��=2; �=2�. Let †p.m; n/ denote this
angle, and call it the angle between m and n at p .

Let � be a geodesic lamination on the surface that intersects n.

Definition 3.2 The angle between � and n is

†.�; n/D supf j†p.m; n/j j m 2 � and p 2m\ n g 2 Œ0; �=2�:

Lemma 3.3 limi!1†.�; li/D 0 and limi!1 �.li/D 0.

Proof Choose xi 2 j�j \ li , and let mi be the leaf of � that intersects li at xi . Let
�i D †xi

.mi ; li/. Note that j�j is a compact subset of S . Therefore, by taking a
subsequence if necessary, .xi ; �i/ converges to .x; �/ 2 j�j � Œ��=2; �=2�. Assume
that limi!1†.�; li/¤ 0. Then there exists a sequence .xi ; �i/ converging to .x; �/
with � ¤ 0. The sequence .li/ converges to a geodesic that intersects j�j at x with
angle � . This contradicts the convergence of .li/ to j�j.

Next, we prove that limi!1 �.li/D 0. Let ci D ai [bi , which is a simple loop on S .
Observe that limi!1 �.ci/D 0, since �.ai/� 0 and limi!1 �.bi/D 0. Therefore,
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it suffices to show that �.li/� �.ci/. The basic idea is that a geodesic loop realizes
the minimal transversal measure among all the loops in the same homotopy class. Let

i 2�1.S/ be the homotopy class of li . Regarding li as a bi-infinite geodesic, let zli be
the lift of li , such that 
i translates H2 along the geodesic zli by length.li/. Regarding
li as a simple closed path, let xli be a lift of li , such that xli is contained in zli . Then

i identifies the ends of xli . Recall that P is the projection from H2 to the R–tree T

dual to zL (Section 3.3). Then P.li/ is a geodesic in T , and the action of 
i on T

isometrically translates along P.li/ by �.li/ D length.P.Sli//. Similarly, regarding
ci as a simple closed path, let xci be a lift of ci to H2 , such that the ends of xci are
identified by 
i . Then P.Sci/ is a piecewise geodesic path in T , and 
i identifies the
ends of P.Sci/. We also have �.ci/D length.P.Sci//. The translation length of 
i is
equal to or less than the distance between the ends of P.Sci/ since the translation length
of 
i is inffdistT .x; 
i.x// j x 2 T g. Since 
i translates along P .zli/, the translation
length is length.P.xli//. Hence, �.li/� �.ci/.

3.6 Bending maps

(For details, see Epstein and Marden [5, II.1], Kamishima and Tan [14] and Kulkarni
and Pinkall [17].) Let LD .�; �/ be a measured lamination on H2 . Then L induces
a bending map ˇL D ˇW H

2!H3 by “bending H2 inside H3 along � by angle �”.
The bending map ˇL is continuous and unique up to the postcomposition with an
element of PSL.2;C/. In addition, ˇL is isometric on each leaf of � and on the closure
of each complementary region of j�j.

Roughly speaking, if x;y .2H2/ are sufficiently close to each other, then the hyperbolic
tangent planes of ˇL at x and y intersect at the external angle approximately equal
to �.xy/ (with respect to the normal vector field of ˇ ; cf the hyperbolic tangent
planes defined in Section 3.8). Assume that l is an isolated leaf of � and that Q and
R are two adjacent complementary regions of j�j separated by l . Then ˇL.cl.Q//
and ˇL.cl.R// are isometric copies of cl.Q/ and cl.R/ that intersect at the external
angle w.l/. This property determines the bending map ˇL if L consists of isolated
leaves. For general L, there is a sequence .Li/ of measured laminations on H2

consisting of finitely many leaves, that approximates L in Thurston’s topology. Then
ˇL D limi!1 ˇLi

uniformly on compacts.

Let M be the sublamination of L that consists of the leaves of L with positive weight
(note that jM j � H2 has zero Lebesgue measure). Then, there is a unique tangent
plane of ˇL at each point of H2 n jM j, and the tangent plan changes continuously
(see Section 3.8 and Kulkarni and Pinkall [17]). Therefore, the bending map ˇL is
C 1 –smooth on H2 n jM j.
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3.7 Convex hull boundaries

(For details, see Epstein and Marden [5, II.1.12–1.14].) Let X be a simply connected
(open) region in yC . Then X can be regarded as a projective structure on VD2 . Consider
Conv.yC nX /, the convex hull of yC nX . It turns out that @Conv.yC nX / is isometric
to H2 with respect to the induced path metric on @Conv.yC nX /. There is a unique
measured lamination L on H2 such that L does not contain leaves of weight more
than � and its bending map ˇL realizes the isometry from H2 to @Conv.yC nX /.
Then, by the orthogonal projection along geodesics in H3 , X maps onto Im.ˇL/.

3.8 Thurston’s parameterization of projective structures

Let P .S/ be the space of all projective structures on S . Thurston gave a parametrization
of P .S/ that reflects the geometry of projective structures in a combinatorial manner.
This parametrization is useful for the proof of the main theorems of this paper, since
it involves a decomposition of zS into f –injective regions, where f W zS ! yC is the
developing map of a projective structure.

Theorem 3.4 (Thurston) P .S/ is naturally homeomorphic to the product of the
Teichimüller Space of S and the space of measured laminations on S :

P .S/' T .S/�ML.S/ .'R6g�6
�R6g�6/(1)

(The proof is in Kamishima and Tan [14]. For the following discussion, see also
Tanigawa [21].) Below we discuss some properties of this homeomorphism. An element
in the left hand side of (1) is a pair .f; �/, where f W zS! yC and �W �1.S/!PSL.2;C/.
Take a pair .�;L/ 2 T .S/�ML.S/. Then the total lift .H2; zL/ of .�;L/ induces
a bending map ˇW H2!H3 . Furthermore, since the action of �1.S/ preserves zL,
ˇ induces a representation �LW �1.S/! PSL.2;C/ such that ˇ is �L –equivariant.
If .f; �/ and .�;L/ represent the same projective structure, then � D �L . Letting
�idW �1. VD

2/!PSL.2;C/ be the trivial representation, .f; �id/ is a projective structure
on VD2 , which is the universal cover of C . Moreover, .f; �id/ corresponds to the
measured lamination .H2; zL/ through the orthogonal projection and the bending map,
which generalizes the correspondence between a simply connected region in yC and an
injective bending map discussed in Section 3.7. Namely, in our current case, f and
ˇ are not necessarily embeddings, and we need to divide the domain of f and the
domain of ˇ so that their corresponding subdomains are homeomorphic through the
orthogonal projection.

We shall first discuss the same correspondence for projective structures on VD2 , which is
more general than the above case. Namely, there is a bijective correspondence between
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the projective structures on VD2 (that are not conformally equivalent to the Euclidian
plane) and the measured laminations on H2 (up to the action of PSL.2;R/); see Kulka-
rni and Pinkall [17, Corollary 11.7]. For a measured lamination LD .�; �/ on H2 , let
C D C.L/D .f; �id/ denote the corresponding projective structure on VD2 . We shall
discuss the correspondence between C.L/ and L. There are a (topological) measured
lamination L0D.�0; �0/ on . VD2;C / and the collapsing map �W . VD2;C;L0/!.H2;L/,
which describe the subdivision and the orthogonal projections. For each leaf l of L

with positive weight, ��1.l/ is a crescent of angle w.l/ with the canonical foliation
(compare Kapovich [16, 11.12]). Conversely, each crescent of angle h in .S;C /

projects to a leaf of weight h via � in the way discussed in Section 3.2. In the
complement of such crescents, � is an isomorphism, ie a C 1 –diffeomorphism that
preserves the measured lamination. In summary, L0 is topologically obtained from L by
blowing up each leaf l with positive weight of L as above. (Note that there is no periodic
leaves with positive weight of L0 .) The collapsing map � is a continuous surjective
map that homeomorphically takes each leaf of L0 to a leaf of L and each component of
. VD2;C / n jL0j to a component of .H2;L/ n jLj. Furthermore, this correspondence is
bijective except the correspondence between the leaves of the crescents and the leaves
of positive weight.

A maximal ball of a projective structure C on VD2 is a maximal open subset of VD2 that
f homeomorphically takes to a round open disc in yC , where the maximality is defined
with respect to the set inclusion. If U is a maximal ball, then @f .U / is a round circle
in yC , and Conv.@f .U //�H3 is a copy of H2 whose ideal boundary is @f .U /. Let
HU D Conv.@f .U //, and let ‰U W f .U /!HU be the orthogonal projection along
geodesics in H3 .

Let R be the closure of a component of VD2 n jL0j, or a leaf of L0 that does not
bound a component of VD2 n jL0j. Then, R is contained in a unique maximal ball U

and RD RU is called the core of U . Conversely, each maximal ball U contains a
unique core. These cores of maximal balls form a partition of VD2 . Let ˇW H2!H3

be the bending map induced by L. Then we have ‰U ı f D ˇ ı � on each core
RU , which describes the correspondence of f and ˇ . Define ‰W . VD2;C /!H3 by
‰.x/D‰U .x/ when x 2RU . Then we have ‰ D ˇ ı � .

Let W be the union of leaves of L with positive weight. Recall that ˇ is C 1 –smooth
except on W .

Definition 3.5 The hyperbolic tangent plane of ‰ at x is HU D @Conv.f .U //ŠH2

when x 2RU (see Figure 3).

This tangent plane is a support plane of ˇ.U�.x// at ‰.x/ where U�.x/ is a sufficiently
small neighborhood of �.x/. Then this hyperbolic tangent plane coincides with the
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standard hyperbolic tangent plane at each point of zSnz��1.W /, which is the complement
of the disjoint foliated crescents. When x 2 zS moves infinitesimally, the hyperbolic
tangent plane of ‰ at x rotates about ˇ.lx/ in H2 by the amount of the transversal
measure �0 , where lx is a leaf of L0 through x if it exists. In particular, when x

moves along a leaf or a moves in the closure of a component of zS n jL0j, then the
hyperbolic tangent plane does not change. Moreover, the hyperbolic tangent planes
depend continuously on x 2 zS [17, Theorem 6.2].

U x

RU

f

f .x/
ˇ ı �.x/

HU

Figure 3

Let us return to the correspondence between a measured lamination L on .S; �/

and a projective structure C D .f; �/ on S . Since zS Š VD2 , we have the canonical
lamination zL0 on . zS ; zC / and the collapsing map z�W . zS ; zC ; zL0/! .H2; zL/. By its
construction, zL0 is invariant under the action of �1.S/, and it induces a measured
lamination L0 D zL0=�1.S/ on S . In addition, z� is �–equivariant, and it induces the
collapsing map �W .S;C;L0/! .S; �;L/. Accordingly, for each periodic leaf l of
L, ��1.l/ is a flat cylinder of height w.l/ with the canonical foliation. Conversely,
each foliated flat cylinder of height h in .S;C / projects to a periodic leaf of weight h

via � . In the complement of such flat cylinders, � is an isomorphism.

Figure 4 illustrates the basic case when we have a measured lamination consisting of a
periodic leaf on a complete hyperbolic cylinder. Near a periodic leaf of L on .S; �/,
we locally have a similar diagram.

3.8.1 The intersection of a lamination and a convex set in H2 Let LD .�; �/ be
a measured lamination on H2 .

Definition 3.6 Let X be a geodesic or a convex subset of H2 bounded by geodesics.
The intersection of L and X is a measured lamination .�X ; �X / on H2 , where
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� z�

f

ˇ

PU

Figure 4

�X D clfl 2 � j l \ X 6D ∅g and �X is the restriction of � to �X . Denote the
intersection by I.L;X /.

Definition 3.7 Let X be a convex subset of H2 bounded by geodesics. The restriction
of L to X is a measured lamination .�jX ; �jX / on X , where �X D fl \X j l 2 �g

and �jX is defined by �jX .s/D �.s/ for all geodesic segments s in X . Denote the
restriction by LjX .

Definition 3.8 Let C1 be a projective structure on a surface F1 , and let F2 be a
subsurface of F1 . Then the restriction of C1 to F2 is the restriction of the atlas of C1

to F2 . Let R.C1;F2/ denote the restriction of C1 to F2 . Conversely, if a projective
structure C3 on a surface F3 is isomorphic to the one obtained by restricting C1 to a
subsurface of F1 , then we say that C3 embeds into C1 .

Let C1D .f1; �1/ and assume, in addition, that the inclusion F2 �F1 is �1 –injective.
Then the above definition is equivalent to the following: The restriction R.C1;F2/

is the projective structure .f1j zF2
; �1j�1.F2//, where f1j zF2

is the restriction of f1 to
a lift zF2 of F2 to the universal cover of F1 and �1j�1.F2/ is the restriction of �1 to
�1.F2/ acting on zF2 .

Let L be a measured lamination on H2 , and let C.L/ D .fL; �id/, the projective
structure on VD2 corresponding to L (Section 3.8). Let X .�H2/ be either a geodesic or
a convex subset bounded by geodesics. Let I D I.L;X /, and let C.I/D .fI ; �id/. We
also let �L and �I W

VD2!H2 be the collapsing maps for C.L/ and C.I/, respectively.

Lemma 3.9 There exists a homeomorphism �W ��1
I
.X /! ��1

L
.X / such that fI D

fL ı� on ��1
I
.X /. Moreover, C.I/ embeds into C.L/.

Geometry & Topology, Volume 14 (2010)



132 Shinpei Baba

Proof Consider the leaves of L and components of H2 n jLj that intersect X , and let
X 0 be the union of these leaves and components. Then X 0 is a convex subset of H2

containing X , and it is bounded by some leaves of L. We also have I D I.L;X /D

I.L;X 0/. Therefore, it suffices to prove the lemma for X 0 . Let L0 and I 0 be the
canonical measured laminations on . VD2;C.L// and . VD2;C.I//, respectively.

Since LjX 0 D I jX 0 , we can assume that ˇL D ˇI on X 0 , where ˇL and ˇI are the
bending maps induced by L and I , respectively. Therefore, ˇL D ˇI on cl.X 0/ by
the continuity of bending maps. Recall that ��1

I
.X 0/ and ��1

L
.X 0/ are obtained from

X 0 in the exactly same way, namely by blowing up the periodic leaves of LjX 0 D I jX 0 .
Therefore, we have a canonical homeomorphism �W cl.��1

I
.X 0//! cl.��1

L
.X 0// such

that � isomorphically takes I 0j��1
I
.X 0/ to L0j��1

L
.X 0/ and �I D �Lı� on cl.��1

I
.X 0//.

Furthermore, the hyperbolic tangent plane of ˇI ı �I at x 2 cl.��1
I
.X 0// coincides

with the hyperbolic tangent plane of ˇL ı �L at �.x/. (See Section 3.8.) The maximal
ball of CI whose core contains x maps to a round open disk by fL , and the maximal
ball of CL whose core contains �.x/ maps to a round open disk by fI . The convex
hull boundaries of these open desks are the hyperbolic tangent planes of ˇL ı �L at
�.x/ and of ˇI ı �I at x , and therefore, they must agree. Then the round disks on yC
also coincide. Recall that fI .x/ and ˇI ı �I .x/ are connected by a geodesic in H3

orthogonal to the hyperbolic tangent plane, and so are fL.�.x// and ˇL ı �L.�.x//.
Hence, fI .x/D fL.�.x//.

Each component H of H2nX 0 is an open or closed half plane bounded by a leaf l of L,
and it does not contain leaves of I . Then ��1

L
.H / is a component of VD2 n ��1

L
.X 0/.

This component is simply connected and bounded by a leaf lL of L0 that maps to l

via �L . Similarly, ��1
I
.H / is a component of VD2n��1

I
.X 0/. This component is simply

connected and bounded by a boundary curve lI of ��1
I
.X 0/. In addition, lI is a leaf of

I 0 or contained in a component of VD2 n jI 0j, and it is homeomorphic to lL and l via
� and �I , respectively. The leaf lL is contained in a unique maximal ball U of C.L/,
whose convex hull boundary is the hyperbolic tangent plane of ˇL ı �L at each point
in lL . Similarly, lI is contained in a unique maximal ball V of C.I/, whose convex
hull boundary is the hyperbolic tangent plane of ˇI ı�I at each point in lI . Thus these
hyperbolic tangent planes are the same planes in H3 . Therefore, we can identify V and
U by a C 1 –diffeomorphism  W V ! U such that fI D fL ı on V . Then  D �
on ��1

I
.X 0/\V . Therefore, the embedding �W ��1

I
.X /! ��1

L
.X /� VD2 extends to

��1
I
.H /, preserving fI D fL ı� . The different components of VD2 n ��1

I
.X 0/ map to

different components of VD2 n��1
L
.X 0/ by the extension. Hence, since ��1

I
.H2/D VD2 ,

we have an embedding of C.I/ into C.L/.
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Assume that X has nonempty interior and no boundary geodesic of X transversally
intersects a leaf of L with positive weight. Then cl.��1

I
.X // and cl.��1

L
.X // are

C 1 –smooth subsurfaces of VD2 . Thus we immediately obtain:

Corollary 3.10 R.C.I/; cl.��1
I
.X /// and R.C.L/; cl.��1

L
.X /// are isomorphic as

projective structures.

X 0

X

I
L

Im.fI / Im.fL/

Figure 5: A basic example for Lemma 3.9

3.9 A lemma on hyperbolic triangles

Let 4ABC be an arbitrary hyperbolic triangle. Set aD length.BC /, bD length.CA/,
c D length.AB/, and ˛ D†CAB . Then we have:

Lemma 3.11 For every � > 0, there exists S > 0, such that a> 1
2
.sin �/ .bC c/ for

every hyperbolic triangle 4ABC with ˛ > � .

Proof In addition, we let ˇ D†ABC , and 
 D†BCA.

First, suppose that ˛ � �=2. Then, since ˛ C ˇ C 
 < � , we have ˛ > ˇ and
˛ > 
 . By the Hyperbolic Sine Rule, we see that a > b and a > c . Therefore
a> 1

2
.bC c/� 1

2
.sin �/ .bC c/.

Next, suppose that 0 < ˛ < �=2. If a � b , since f .x/ D .sinh x/=x is a strictly
increasing function,

sinh a

a
<

sinh b

b
:

Then, using the Hyperbolic Sine Rule,

a>
sinh a

sinh b
� b D

sin˛
sinˇ

� b � .sin˛/ � b :
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This inequality a> .sin˛/ �b also holds when a> b . Similarly, we have a> .sin˛/ �c .
Since 0< ˛ < �=2, we have

a>
1

2
.sin˛/ .bC c/ >

1

2
.sin �/ .bC c/ :

4 The intersection of a lamination and its approximating loop

Let LD .�; �/ be an irrational minimal lamination on a closed orientable hyperbolic
surface S , and .li/ be the sequence of simple loops on S that converges to j�j
constructed in Section 3.5. Let zLD .z�; z�/ be the total lift of L to H2 , and let zli be a
lift of li to H2 . Let Li D .�i ; �i/ be I. zL; li/ (see Section 3.8.1). Note that the dual
tree of Li is isometric to R (since zl intersects each leaf of Li in exactly one point).

Definition 4.1 Let M D .�; !/ be a measured lamination on a hyperbolic surface F .
Define the norm of M by

kM k D supf!.s/g;

where s varies over all geodesic segments of length less than 1 on F .

Remark This norm is also called “Thurston norm” or “roundness measure”.

We next prove that the transversal measure �i of short geodesic segments is bounded
by an arbitrary small number, provided that i is large:

Proposition 4.2 limi!1 kLik D 0.

The basic idea of the proof is that, when a geodesic segment s with length.s/ < 1

intersects a fixed measured lamination at an angle close to zero, its transversal measure
is also close to zero.

Let x be a point on a leaf l of z�. For � 2 .��=2; �=2�, let lx;� be the geodesic
on zS intersecting l at x with †x.l; lx;� / D � (see Section 3.5). Set I. zL; lx;� / D

.�x;� ; �x;� /.

Lemma 4.3 For every � >0, there exists a constant �0>0 (which depends on S;L; � )
such that, if � 2 .��0; �0/ and x 2 jz�j, then �x;� .s/ < � for all geodesic segments s

in H2 with x 2 s and length.s/ < 1.
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Proof For an arbitrary y in jz�j, let l be the leaf of z� through y . Then consider
D2.y/, the closed hyperbolic disk of radius 2 centered at y . In each component of
H2 n l , choose a geodesic gi .i D 1; 2/ close to l that does not transversally intersect
a leaf of z�, ie gi is a leaf of z� or is in the complement of jz�j. Let R �H2 be the
convex region bounded by g1 and g2 , which contains l . For every � > 0, by applying
Lemma 3.1 to l \D2.y/, we can assume that g1 and g2 are close enough to l , so
that the R\D2.y/ is contained in a flow box of height less than � .

Take a neighborhood U of y whose closure is contained in the interior of R \ D1.y/.
Then there exists (small) �0 > 0 such that, if x 2 U and � 2 .��0; �0/, then lx;� �R

(see Figure 6). Since R\D2.y/ is contained in the flow box of height less than � and
R supports I. zL;R/, for every geodesic segment s in D2.y/, the transversal measure
of s with respect to I. zL;R/ is bounded by � . Therefore, since I. zL; lx;� /jD2.y/ is a
sublamination of I. zL;R/jD2.y/ , �x;� .s/ < � . If s is a geodesic segment in H2 such
that s\U ¤∅ and length.s/ < 1, then s �D2.y/. Thus, �x;� .s/ < � . This proves
the lemma if x is in U , which is a neighborhood of y . Since S is compact and zL is
invariant under the deck transformations, the lemma follows.

R
l

D2.y/

y

g1

g2

H2

zli

x �

U

Figure 6: In the left picture, R\D2.y/ is shaded.

Proof of Proposition 4.2 Fix arbitrary � > 0. It suffices to show that, for sufficiently
large i , if a geodesic segment s in H2 satisfies �i.s/ � � , then length.s/ � 1.
By Lemma 4.3, there exists �0 > 0, such that, if x 2 jz�j and � 2 .��0; �0/, then
�x;� .s/ <

2
5
� for every geodesic segment s with x 2 s and length.s/ < 1. By Lemma

3.3, for sufficiently large i , †.z�; zli/D†.�; li/ < �0 and �.li/ < �=2.

Consider the cyclic subgroup of PSL.2;R/ generated by the translation along zli by
length.li/, which we can regard as �1.li/.� �1.S// acting on H2 . Choose a leaf
m 2 �i , and consider the orbit of m under the action of the cyclic group. This orbit
forms a sublamination � of �i . The leaves of � intersect zli at a constant angle less
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than �0 , and the distance between their consecutive intersection points is equal to
length.li/. Since �.li/ < �=2 and the dual tree of Li is isometric to R, if a geodesic
segment s lies between two adjacent leaves of � , then �i.s/ < �=2. Therefore, if
�i.s/ � � , then s transversally intersects j�j at least three times. Let a1; a2; : : : ; ap

be the intersection points lying on s in this order, and let A1;A2; : : : ;Ap be the
leaves of � through these points. Take q 2 N such that 2qC 1 is the maximal odd
integer not exceeding p . Let r be the subsegment of s with end points a1 and
a2qC1 . (See Figure 7.) Then length.r/ � length.s/ and 2

5
�i.s/ � �i.r/ � �i.s/.

Let r 0 be the geodesic segment that realizes the distance between A1 and A2qC1 .
Then r 0 is orthogonal to A1 and A2qC1 . In addition, r 0 intersects zli transversally,
since otherwise zli ; r 0;A1;A2qC1 bound a hyperbolic triangle whose interior angle
sum is � or a hyperbolic rectangle whose interior angle sum is 4� . Therefore, the
triangle bounded by zli , r 0 , A1 is isometric to the triangle bounded by zli ; r 0;A2qC1 .
Thus AqC1 \

zli is the middle point of r 0 . Note that AqC1\
zli 2 r 0 , zli intersects

j�j � jz�j at AqC1\
zli at an angle less than �0 , and �i.


0/D �i.
 /�
2
5
� . Therefore,

length.r 0/� 1. Hence, 1� length.r 0/� length.r/� length.s/.

zli r 0

s r
a1 a2 a3 a4

A1 A2 A3 A4

Figure 7: A case where p D 4 and q D 1

5 Injectivity of bending maps

In this section, let LD .�; �/ be a measured lamination on H2 and ˇLDˇW H
2!H3

be the bending map induced by L. Recall that kLk D supf�.s/g, where s varies over
all geodesic segments on H2 of length less than 1.

Theorem 5.1 (Epstein, Marden and Markovic [6, Theorem 4.2.2]) There exists
ı 2 .0; �/ such that, if kLk < ı , then the induced bending map ˇL is a bilipschitz
embedding; hence, it continuously extends to @H2 as an embedding whose image is a
simple loop in @H3 .
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To prove the decomposition theorem (Theorem 7.1), we need a generalization of
Theorem 5.1. However, if we do not require flat cylinders in Theorem 7.1 to be
integral, then Theorem 5.1 is sufficient. To state the generalization, let us set up
some notions. A leaf l of L is outermost, if the other leaves of L lie only in one
component of H2 n l . Consider all outermost leaves of L with positive weight. Then
this set forms a sublamination @� of �, and @� consists of isolated leaves. Let @L
be the measured lamination on H2 obtained by assigning each leaf of @� its positive
weight with respect to �. Let L0 D .�0; �0/ be a sublamination of @L. We also let
d.L0/D inffdistH2.l1; l2/ j l1; l2 2 �

0; l1 ¤ l2g � 0. Let LnL0 D .cl.�n�0/; ���0/.
Note that jL0j bounds a convex region of H2 and that the convex region contains
jL nL0j.

Theorem 5.2 For every D > 0, there exists ı 2 .0; �/ with the following property: If
a measured lamination L on H2 contains a sublamination L0 such that

(i) L0 � @L,

(ii) kL nL0k< ı ,

(iii) d.L0/ >D and

(iv) every leaf of L0 has weight less than �=2,

then the induced bending map ˇLW H
2!H2 is a bilipschitz map.

Proof Since dist.x;y/�dist.ˇL.x/; ˇL.y// for all x;y 2H2 , it suffices to show that
there exists S > 0 such that dist.ˇL.x/; ˇL.y// > S � dist.x;y/ for all distinct x;y 2

H2 . Let pW Œ0;P �!H2 be the geodesic segment connecting x to y , parametrized
by arc length, where P D dist.x;y/. Let P0;P1; : : : ;Pn denote the distinct points
lying on p in this listed order, such that P0 D x , Pn D y , and P1;P2; : : :Pn�1 are
the transversal intersection points of p and jLj. Let R be the closed convex region
bounded by L0 . Note that ˇLD ˇLnL0 on R. Then, the following lemma immediately
follows from Assumption (ii) (see Lemma 4.4 and the proof of Corollary 4.5 in [6]):

Lemma 5.3 For every � > 0, there exists ı > 0 (depending only on � ) such that

dist.ˇL.x/; ˇL.y// > .1� �/ dist.x;y/ and †ˇL.x/ˇL.y/ˇL.Pn�1/ < �

for all distinct x;y 2R (see Figure 8).

Discrete case First, we assume that L contains only isolated leaves. Fix ı > 0,
obtained by applying Lemma 5.3 to an arbitrarily fixed � < 1.
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ˇL.x/

ˇL.Pn�1/

ˇL.y/

Figure 8

Case 1 Suppose that x , y 2R. Then, by Lemma 5.3, we have dist.ˇL.x/; ˇL.y// >

� dist.x;y/.

Case 2 (See Figure 9.) Suppose that x2R and y2H2nR. Then, since x;Pn�1 2R,
by Lemma 5.3, we have that dist.ˇL.x/; ˇL.Pn�1// > .1 � �/ dist.x;Pn�1/ and
†ˇL.x/ˇL.Pn�1/ˇL.Pn�2/ < � . Since Pn�1 is contained in a leaf l of L0 , by
Assumption (iv) and the Triangle Inequality, we have

†ˇL.Pn�2/ˇL.Pn�1/ˇL.y/� � �w.l/ > �=2:

†ˇL.x/ˇL.Pn�1/ˇL.y/ > � � .�C�=2/D �=2� � :Therefore

Thus, by Lemma 3.11, there exists S 0 > 0, which does not depend on the choices of
L;x;y (under the given conditions), such that

dist.ˇL.x/; ˇL.y// > S 0.dist.ˇL.x/; ˇL.Pn�1// C dist.ˇL.Pn�1/; ˇL.y///:

Therefore dist.ˇL.x/; ˇL.y// > S 0.1� �/dist.x;y/:

Case 3 (See Figure 9.) Suppose that x;y 2H2 nR. Since P1 2R and y 2H2 nR,
by Case 2, there exists S 0 > 0, which does not depend on the choices of L;x;y , such
that

(2) dist.ˇL.P1/; ˇL.y// > S 0 dist.P1;y/:

By an argument similar to that in Case 2, we have

dist.ˇL.P1/; ˇL.Pn�1// > .1� �/ dist.P1;Pn�1/ > .1� �/D

and ˇL.P1/ˇL.Pn�1/ˇL.y/ > �=2 � � . Therefore, by taking a smaller � > 0 if
necessary, we can assume that †ˇL.y/ˇL.P1/ˇL.Pn�1/ < �=2 � 2� . Thus, by
Assumption (iv), we have †ˇL.x/ˇL.P1/ˇL.y/ > � � ..�=2� 2�/C�=2C �/ > � .
Then, by applying Lemma 3.11 to 4ˇL.x/ˇL.P1/ˇL.y/, we have S 00 > 0 such that

dist.ˇL.x/; ˇL.y// > S 00
�
dist.ˇL.x/; ˇL.P1//C dist.ˇL.P1/; ˇL.y//

�
:

Combining this inequality with (2), we obtain S > 0 such that dist.ˇL.x/; ˇL.y// >

S dist.x;y/ for all distinct x;y 2H2 nR:
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Case 2 Case 3

ˇL.x/

ˇL.y/

ˇL.Pn�2/

ˇL.Pn�1/

ˇL.x/ ˇL.y/

ˇL.P1/

ˇL.Pn�2/

ˇL.Pn�1/

Figure 9

General case Assume that L does not consist of isolated leaves. Then there is a
sequence of measured laminations on H2 , .Li D .�i ; �i//, limiting to L in Thurston’s
topology, such that each Li consists of finitely many leaves, contains a sublamination
L0i � @Li , and satisfies Assumptions (i) and (iv). Let ˇLi

W H2 ! H3 denote the
bending map induced by Li . Then .ˇLi

/ converges to ˇL uniformly on compacts.
(See Epstein and Marden [5, II.1.13] for the construction of .Li/ and the convergence
of .ˇLi

/.) By the discrete case, there exists S > 0, such that if x;y 2H2 , then

dist.ˇLi
.x/; ˇLi

.y// > S dist.x;y/

for sufficiently large i D i.x;y/. In addition, the convergence of .ˇLi
/ to ˇL implies

that .dist.ˇLi
.x/; ˇLi

.y/// limits to dist.ˇL.x/; ˇL.y// as i !1. Then

dist.ˇL.x/; ˇL.y//� S dist.x;y/

for all x;y 2H2 .

Assume that L satisfies the assumptions of Theorem 5.1 or Theorem 5.2. By these
theorems, ˇ D ˇLW H

2!H3 is an injective quasiisometric embedding, and, hence,
it extends continuously to a homeomorphism @ˇ from @H2 onto a simple loop on
@H3 Š yC (see Ghys and de la Harpe [8] and Gromov [11]). Therefore, yC n Im.@ˇ/
consists of two simply connected regions.

Corollary 5.4 Under the assumption of Theorem 5.1 or Theorem 5.2, the projective
structure C.L/ on D2 corresponding to L is admissible.

Proof Since ˇ is an injective continuous quasiisometric embedding, Im.ˇ/ is a proper
surface embedded in H3 . Therefore, Im.ˇ/ separates H3 into two components (the
Jordan–Brouwer Separation Theorem). Since Im.ˇ/ is locally convex, one of the
components of H3 n Im.ˇ/ is convex [2, I.1.3].

The concave component of H3nIm.ˇ/ is cobounded by Im.ˇ/ and a topological closed
disk D contained in yC . Then Im.ˇ/ D @Conv.yC nD/. Since L does not contain
leaves with weight � � , L is the canonical bending lamination on @Conv.yC nD/.
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Therefore, .H2;L/ is Thurston’s coordinates for the projective structure on VD ; Hence
C.L/ is admissible.

6 The Existence of Admissible Loops

Let S be a closed orientable surface of genus at least 2. Let C D .f; �/ be a projective
structure on S . Express C in Thurston’s coordinates as .�;L/, where � is a marked
hyperbolic structure on S and LD .�; �/ is a measured lamination on .S; �/. Let us
recall other related notions from Section 3: Let zLD .z�; z�/ be the total lift of L to H2 ,
and let ˇ zLW H

2!H3 be the bending map induced by zL. Let �W .S;C /! .S; �/ be
the collapsing map, and let z�W . zS ; zC /! .H2; zL/ be the lift of � to a map between the
universal covers of .S;C / and .S; �/. Let L0D .�0; �0/ be the canonical (topological)
measured lamination on .S;C / corresponding to L via � (Section 3.8). Let zL0 be the
total lift of L0 to . zS ; zC /.

Since L decomposes into minimal measured laminations, we can set

LD .P1 tP2 t � � � tPm/t .M1 tM2 t � � � tMn/;

where Ph; hD 1; : : : ;m; are the periodic minimal sublaminations of L and Mj D

.�j ; !j /; j D 1; : : : ; n; are the irrational minimal sublaminations of L. Let phD jPhj

denote the periodic leaf supporting Ph , and let p denote the periodic part of j�j,

p1 tp2 t � � � tpm:

Let M D .�; !/ denote the irrational part of L,

M1 tM2 t � � � tMn:

For each j 2 f1; 2; : : : ; ng, let .li;j /1iD1
be the sequence of simple geodesic loops on

.S; �/ that approximates j�j j, constructed in Section 3.5. By Lemma 3.3, we have
limi!1 !j .li;j /D 0. Since j�j j is an isolated subset of j�j, we can assume that li;j
does not intersect j� n �j j. Therefore, limi!1 �.li;j /D 0. Let li D li;1 t � � � t li;n ,
so that limi!1 li D j�j.

Recall that, for each h, ��1.ph/ is a flat foliated cylinder of height w.ph/ in
.S;C;L0/, where w.ph/ is the weight of ph . The foliation on ��1.ph/ consists
of admissible loops that are homeomorphic to ph via � (Section 3.8).

Recall also that � is a C 1 –diffeomorphism on S n ��1.p/. Therefore, if l is an
essential simple loop on .S; �/ disjoint from j�j, then ��1.l/ is an essential simple
loop on .S;C / disjoint from j�0j. We shall see that ��1.l/ is also admissible. Let
P be the component of .S; �/ n jLj containing l , and let zl and zP be the lifts of l
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and P , respectively. We can assume that zl � zP and that �1.l/ acts on zl freely and
properly discontinuously as an infinite cyclic subgroup of PSL.2;C/ generated by a
hyperbolic element. Let 
l be the homotopy class of l that generates �1.l/. Since zl is
a quasigeodesic in H2 and ˇ zL is an isometry on zP , ˇ zL.

zl/ is a quasigeodesic in H3 .
Then �1.l/ acts on ˇ zL.

zl/ freely and properly discontinuously via � , and this action
fixes the distinct end points of ˇ zL.

zl/ on yC . So �.
l/ is a loxodromic element of
PSL.2;C/. The curve z��1.zl/ is a lift of ��1.l/ to . zS ; zC /. Then z��1.zl/ is contained
in z��1. zP /, which is a component of . zS ; zC / n j zL0j. Since cl.z��1. zP // is the core of
a maximal ball, z��1.zl/ is contained in a maximal ball. Thus, f is an embedding on
z��1.zl/. Hence, ��1.l/ is admissible.

We have �.ph/D 0 and �.l/D 0. For each i; j , let l 0i;j D �
�1.li;j /, which is a simple

loop on .S;C /. The fact that limi!1 �.li;j /D 0 suggests the following proposition:

Proposition 6.1 For each j 2 f1; 2; : : : ; ng, l 0i;j is admissible, provided that i is
sufficiently large.

Proof Let zl 0i;j be a lift of li;j to H2 . Consider the measured lamination I. zL; zl 0i;j /.
Since li;j is disjoint from j� n �j j, I. zL; zli;j /D I. �Mj ; zl

0
i;j /, where �Mj is the total lift

of Mj . Choose ı > 0 as in Theorem 5.1. Applying Proposition 4.2 with I. zL; zl 0i;j /D

I. �Mj ; zl
0
i;j /, we have kI. zL; zl 0i;j /k< ı for all large i . By Theorem 5.1, for sufficiently

large i , the bending map ˇI. zL;zl 0i;j / induced by I. zL; zl 0i;j / is an injective quasiisometric
embedding, and it continuously extends to an embedding of @H2 .

Let 
i;j be the homotopy class of li;j that acts on H2 as a hyperbolic element of
PSL.2;R/ preserving zl 0i;j . The extension of ˇI. zL;zl 0i;j / homeomorphically takes the
limit set of h
i;j i to the limit set of h�.
i;j /i. Thus �.
i;j / is loxodromic.

The projective structure C.I. zL; zl 0i;j // on VD2 corresponding to I. zL; zl 0i;j / is admissible
for sufficiently large i , by Corollary 5.4. Then the developing map fI of C.I. zL; zl 0i;j //

is an embedding. Lemma 3.9 implies that there exists a homeomorphism �W ��1
I
.zli;j /!

��1.zli;j / such that fI D f ı � on ��1
I
.zli;j /, where �I W

VD2!H2 is the collapsing
map for C.I. zL; zl 0i;j //. Since fI is an embedding, f D fI ı�

�1 restricted to zl 0i;j is
an embedding.

We thus obtain an admissible loop from every minimal sublamination of L and every
complementary region of j�j that is not topologically an open disk. Therefore:

Theorem 6.2 For every projective structure C on S , there exists an admissible loop
on .S;C /.

Remark Equivalently, we can state that every projective structure on S admits a
grafting operation (see Goldman [10] for the definition of a grafting operation).
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7 Admissible decomposition

We carry over our notation from the previous section. We have shown that l
j
i and ph

correspond to admissible loops on S through � , provided that i is sufficiently large.
Their union

li tp D .li;1 t � � � t li;n/t .p1 t � � � tpm/

is a multiloop on .S; �/. In this section, we show that li tp decomposes .S;C / into
admissible subsurfaces.

Theorem 7.1 (Admissible decomposition) Let C be a projective structure on a
closed orientable surface S of genus at least 2. Then there exists a decomposition of S

into cylinders and compact subsurfaces of negative Euler characteristic, such that the
restriction of C to each cylinder is an integral flat structure and the restriction to each
subsurface of negative Euler characteristic is an admissible projective structure.

Note that every flat cylinder of height less than 2� is admissible. Therefore, every
integral flat cylinder can be further decomposed into admissible flat cylinders, if we
wish. Moreover, by further decomposing each surface of negative Euler characteristic
into pairs of pants, if necessary, we immediately obtain:

Corollary 7.2 There exists a decomposition of S into pairs of pants and cylinders
such that the restriction of C to each cylinder is an integral flat structure and the
restriction to each pair of pants is an admissible structure.

Let l be a geodesic lamination on a complete hyperbolic surface F . Let NT .l/
denote the collection of all geodesic segments of length less than one on F that do not
transversally intersect any leaves of l . Then, a geodesic segment s connecting x and
y on F is an element of NT .l/ if and only if either s � jl j or .s n fx;yg/\ jl j D∅.

Lemma 7.3 For every � > 0, there exists i0 2N such that, if i > i0 , then !.s/ < �
for all s 2NT .li/.

Proof We claim that, for every x 2 .S; �/, there exist a neighborhood Ux of x and
ix 2 N such that, if i > ix , then !.s/ < � for every s 2 NT .li/ with s \Ux ¤ ∅.
This would imply the Lemma, since S is compact. Let �M D .z�; z!/ and zli denote
the total lifts of M and li to H2 , respectively. Choose a lift zx of x to H2 . Through
the covering map from H2 to .S; �/, the above claim is equivalent to the following:
There exist a neighborhood Uzx of zx and izx 2N such that, if i > izx , then z!.s/ < �
for every s 2NT .zli/ such that s\Uzx ¤∅.
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Case 0 Suppose first that x 62 j�j; Then, zx 62 jz�j. Let P be the component of H2 njz�j

that contains zx . Then P is an open convex region bounded by some leaves of z� . Clearly,
only finitely many such boundary leaves intersect D2.zx/. Let m1;m2; : : : ;mk denote
these intersecting leaves. Let m0

h
D D2.zx/ \ mh for all h 2 f1; 2; : : : ; kg. (See

Figure 10.) Recall that there is a projection P W H2 ! T , where T is the tree dual
to �M (Section 3.3). By Lemma 3.1, for every � > 0 and every h 2 f1; 2; : : : ; kg,
there exists a flow box neighborhood Vh of m0

h
that projects to a geodesic segment of

length less than �=2 in T . Let sh denote the geodesic segment P.Vh/. Since mh is a
boundary geodesic of P , the leaves of �M contained in P do not accumulate to mh .
Therefore, by the construction of Vh , we can assume that P.m0

h
/D P.mh/D P.P /

is an end point of sh . Therefore,
S

h Vh projects to
W

h sh � T , the one point union
of sh that identifies the end points P.mh/ of sh . Then .

S
h Vh/[ .P \D2.zx// also

projects onto
W

h sh , and the diameter of
W

h sh is less than � .

Since the sequence .zli/ approximates z� , each mh is approximated by a sequence
.nh;i/i such that nh;i is a leaf of zli . For the rest of Case 0, we always assume that
i is sufficiently large. For each i , let Pi be the open convex region bounded byF

h nh;i . Then .Pi/ limits to P as i goes to infinity. Hence, zx 2 Pi \D2.zx/ �

.
S

h Vh/[ .P \D2.zx//. Take an open neighborhood Uzx of zx such that the closure
of Uzx is contained in the interior of P \D1.zx/. Then Uzx is contained in Pi . Since
@Pi � j

zli j, every s 2NT .zli/ with s \Uzx ¤ ∅ is contained in cl.Pi/\ VD2.zx/, and
therefore s is contained in .

S
h Vh/[.P\D2.zx//. Hence P.s/�

W
h sh and z!.s/<� .

m1 m2

m3

P \D2.zx/

V1

m0
1

P

s1 s2

s3

P.P /

Figure 10: Case 0

Next, suppose x 2 j�j; then, zx 2 jz�j. Let l 2 z� be the leaf containing zx , and let
l 0 D l \D2.zx/. There are two ways that z� can accumulate to l :

Case 1 The leaves of z� accumulate from only one side of l .

Case 2 The leaves of z� accumulate from both sides of l .
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In both cases, by Lemma 3.1, there exists a flow box neighborhood V of l 0 with height
less than �=2.

In Case 1, l is a boundary geodesic of a component P 0 of H2njz�j. Let m1;m2; : : : ;mk

be the boundary geodesics of P 0 that intersect D2.zx/. We can assume that m1 D l .
Then l bounds a half plane disjoint from P 0 , and the leaves of z� contained in this
half plane accumulate to l . Consider a leaf m of z� in this half plane, such that
m \ D2.x/ � V . Let P be the open convex region in H2 bounded by m and
m2;m3; : : : ;mh , which contains zx . Then P.P / is a geodesic segment of length less
than �=2. Take an open neighborhood Uzx of zx such that the closure of Uzx is contained
in the interior of P \D1.zx/. The same argument as Case 0 shows that Uzx satisfies
the desired property. (See the left picture in Figure 11.)

In Case 2, in each component of H2 n l , consider a leaf mi , i D 1; 2, of z� close to l .
Let P be the open convex region in H2 bounded by m1 and m2 , which contains l . By
taking m1 and m2 sufficiently close to l , we can assume that P \D2.zx/ is contained
in V . Take an open neighborhood Uzx of zx such that the closure of Uzx is contained
in the interior of P \D1.zx/. Again, as in Case 0, we see that Uzx satisfies the desired
property. (See the right picture in Figure 11.)

m

m1 m2

m3

Uzx

D2.zx/

Case 1

D2.zx/

m1 l m2

Uzx

Case 2

Figure 11: In each picture, P \D2.zx/ is shaded.

Let Q be a component of S n li , and let zQ be a lift of Q to H2 . Note that, if we take
a different lift zQ, then I. �M ; zQ/ changes only by an element of �1.S/. In particular,
kI. �M ; zQ/k does not depend on the choice of zQ.

Proposition 7.4 For every � > 0, there exists i0 2 N such that, if i > i0 , then
kI. �M ; zQ/k< � for every component Q of S n li .
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Proof For every Q, its lift zQ is an open convex region bounded by some leaves of zli .
Therefore, H2 n zQ consists of closed half planes bounded by these leaves. We can
assume that zQ is �1.Q/–invariant. Let k be the number of the boundary components
of Q. The �1.Q/–action permutes the complementary half planes, and this action on
the half planes has exactly k orbits. Let H1;H2; : : : ;Hk be the representatives of the
orbits. Since l consists of n disjoint simple loops on S , k � 2n.

Let H be a component of H2 n zQ. Note that @H is transversal to �M . Then a leaf l of
I. �M ; zQ/ intersects H if and only if l intersects @H . Therefore, I.I. �M ; zQ/;H /D

I. �M ; @H /. By the covering map from H2 to .S; �/, @H covers some li;j . Recall-
ing that zli;j is a lift of li;j to H2 , I. �M ; @H / Š I. �M ; zli;j /. Since I. �M ; zQ/ and
I.I. �M ; zQ/;H / coincide on H ,

kI. �M ; zQ/jH k D kI.I. �M ; zQ/;H /jH k � kI.I. �M ; zQ/;H /k D kI. �M ; zli;j /k:

Since zQ is convex, for every geodesic segment s in H2 , zQ\ s is either empty or a
geodesic segment. In addition, s\ .H2 nQ/ consists of at most 2 geodesic segments,
each of which is contained in a component of H2 nQ (see Figure 12). Therefore, by

P1 P2

P3

zQ

s

Figure 12

the definition of the norm,

kI. �M ; zQ/k � kI. �M ; zQ/j zQkC 2 maxfkI. �M ; zQ/jHj
k j j D 1; : : : ;mg

� kI. �M ; zQ/j zQkC 2 maxfkI. �M ; zli;j /k j j D 1; : : : ;mg:

By Lemma 7.3, for every � > 0, there exists i0 2 N such that, if i > i0 , then
kI. �M ; zQ/j zQk< � for every component Q of S n li . By Proposition 4.2, for every j ,
kI. �M ; zli;j /k! 0 as i!1. Therefore, for every � > 0, if i is sufficiently large, then
(3) is bounded from above by � for every Q.
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Proof of Theorem 7.1 Recall that m is the number of the periodic leaves of L.
For each k 2 f1; 2; : : : ;mg, let Ak D �

�1.pk/ � .S;C /, which is a flat cylinder of
height w.pk/, and let AD

Fm
kD1 Ak . Since S nA is homeomorphic to S np by � ,

��1.li;j / is a simple closed loop on .S;C / for each sufficiently large i 2N and for
each j 2 f1; 2; : : : ;mg. Let l 0i;j D �

�1.li;j / and l 0i D
F

j l 0i;j . Then � restricts to a
homeomorphism from S n .At l 0i/ to S n .p t li/. In particular, the components of
S n .At l 0i/ and S n .p t li/ correspond bijectively. Note that, since ph ’s and li;j ’s
are not pairwise homotopic (when i is fixed), each component of S n .At l 0i/ and
S n .p t li/ is (the interior of) a compact surface with boundary of negative Euler
characteristic.

Let S 0i D S n .At l 0i/. First, we shall show that, when i is large, every component R0

of S 0i is admissible. Let RD �.R0/, which is a component of .S; �/ n .li tp/. Let
zR and zR0 be the corresponding lifts of R and R0 to the universal covers, . zS ; zC / and
.H2; zL/, respectively, so that z�. zR0/D zR. Choose ı > 0 that satisfies Theorem 5.1. Let
IR D I. �M ; zR/. Then, since R\p D∅, IR D I. zL; zR/. Note that R is contained in
a component of S n li . Therefore, by Proposition 7.4, kIRk< ı for every component
R0 of S 0i , provided that i is sufficiently large. Hence, by Corollary 5.4, the projective
structure C.IR/ on VD2 is admissible. Since IRD I. zL; zR/ and zR is a convex subset of
H2 bounded by geodesics, by Lemma 3.9, C.IR/ embeds into C. zL/. Each boundary
leaf of R does not transversally intersect a leaf of L with positive weight and R is not
a geodesic. Therefore, by Corollary 3.10, R. zC ; zR0/DR.C.IR/; �

�1
IR
. zR//� C.IR/,

where �IR
is the collapsing map for C.IR/. Since C.IR/ is admissible, R. zC ; zR0/ is

also admissible.

Through its action, �1.R/ Š �1.R
0/ is regarded as a Schottky group in PSL.2;R/.

Let ˇIR
W H2!H3 be the bending map induced by IR . Then, by Theorem 5.1, ˇIR

is
an injective quasiisometric embedding, and it extends to an equivariant embedding of
@H2 to yC . In particular, this extension takes the limit set of �1.R/ to the limit set
of �.�1.R// homeomorphically and ��1.R/–equivariantly. Therefore, �j�1.R/ is an
isomorphism onto a Schottky group in PSL.2;C/. Hence, the restriction of C to R0

is admissible.

We have given a desired decomposition of .S;C /, except that the flat cylinders Ak

are not integral. In what follows, instead of cutting out the whole Ak from S , we cut
out a maximal integral flat cylinder contained in Ak . Taking the union of the maximal
integral flat cylinders and l 0i , we shall show that the complementary regions of the
union are admissible, which completes the decomposition.
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For x 2R�0 , let Œx�Dmaxfn 2 Z�0 j 2�n� xg. Besides, let

ak D
w.pk/� 2�Œw.pk/�

2

for each k . Then 0� ak <� . (Remark: One might wonder why we only have ak <� ,
instead of having ak < �=2 as in Assumption (iv) of Theorem 5.2. The following
example illustrates a “hidden” �=2–annulus, which fills in this difference. Assume
that � is a Schottky group in PSL.2;R/. Let H be the convex hull, in H2 , of the
limit set of � . Then H=� is a projective structure on a surface with boundary. Then
the projective structure H2=� can be obtained by the attachment of a �=2–annulus to
each boundary component of H=� .)

For each k 2 f1; 2; : : : ;mg, we cut each Ak along two admissible loops into three
flat cylinders of heights ak , 2�Œw.pk/�, ak in this order. The middle cylinder A0

k

is integral and the others are not. (See A1 in Figure 13.) If w.ak/ < 2� , then A0
k

degenerates to an admissible loop in the middle of Ak (see A2 in Figure 13).

Let A0 D
Fm

kD1 A0
k

and S 00i D S n .l 0i tA0/. Each nonintegral flat cylinder obtained
above shares exactly one boundary component with a component of S 0i D S n .l 0i tA/.
Therefore, each component R0 of S 0i is contained in a component P 0 of S 00i . If a
boundary circle l of R0 maps to a periodic leaf pk via � , then l bounds a flat cylinder
of height ak in P 0 . If l maps to an approximating loop li;j by � , then l is a boundary
component of P 0 . Thus, each component P 0 of S 00i is the union of a component
R0 of S 0i and the nonintegral flat cylinders sharing a boundary component with R0 .
In particular, R0 is a deformation retract of P 0 . Letting B1;B2; : : : ;Br be these
nonintegral flat cylinders, set

P 0 DR0[ .B1[ : : :[Br /

(the shaded region in Figure 13). Then pb1
WD �.B1/, pb2

WD �.B2/; : : : ;pbr
WD �.Br /

are periodic leaves of L.

We have �.R0/D �.P 0/DWR. Let zR0 � zP 0 be lifts of R0 and P 0 to zS , respectively.
Then z�. zR0/ D z�. zP 0/ DW zR, which is a lift of R to H2 . Let �@ be the geodesic
lamination on H2 consisting of the boundary geodesics of zR that are lifts of periodic
leaves of L. Let � Dmaxfak ��=2; 0 j k D 1; 2; : : : ;mg; then 0� � < �=2. Assign
the weight � to each leaf of �@ , and obtain a measured lamination L@ on H2 . Recall
that IRD I. zL; zR/D I. �M ; zR/. Since there are no leaves of L intersecting both zR and
jL@j, and L@ consists of isolated leaves of zL, therefore, jL@j and jIRj are disjoint.
Then let LP D IR tL@ . Each leaf l of L@ is a boundary geodesic of zR, and each
leaf of IR intersects zR but does not intersect leaves of L@ . Therefore, each l is an
outermost leaf of LP .
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a2 a2 a1
Œw.p0

1
/� a1

A1

A0
1

A2A0
2

.S;C / l1
i

H2

L@

zR

Figure 13: In the left picture, the region P 0 is shaded. In the right picture,
the bold lines are the leaves of LP .

We now apply Theorem 5.2 with LDLP and L0 DL@ . We just have checked that
L@ � @L (Hypothesis (i) of Theorem 5.2). Every leaf of L@ has the weight � < �=2
(Hypothesis (iv)). Since p1; : : : ;pm are disjoint simple loops on S and L@ consists
of lifts of these loops, there exists D > 0 such that every pair of distinct leaves of L@
has a distance greater than D (Hypothesis (iii)). Apply Theorem 5.2 to this D , and
obtain ı;S;T > 0. Apply Proposition 7.4 with � D ı , and obtain i0 2N . Let Q be
the component of S n li containing R. Then I. zL; zR/D I. �M ; zR/� I. �M ; zQ/, where
zQ is a lift of Q to H2 (that contains zR). Therefore, by the Proposition 7.4, if i > i0 ,

then kIRk � kI. �M ; zQ/k < ı (Hypothesis (ii)). By Theorem 5.2, if i is sufficiently
large, ˇLP

is an injective .S;T /–quasiisometric embedding for every component P

of S 00i .

By Corollary 5.4, the projective structure C.LP / on VD2 is admissible. Let �IR
and �LP

be the collapsing maps associated with C.IR/ and C.LP /, respectively. Since IR D

I.LP ; zR/D I.L; zR/, by Corollary 3.10, we have R. zC ; zR0/DR.C.IR/; �
�1
IR
. zR//D

R.C.LP /; �
�1
LP
. zR//. Therefore, R. zC ; zR0/ is admissible.

For h 2 f1; 2; : : : ; rg, let zph be a lift of pbh
to H2 that bounds zR. Let H be the

component of H2n zR bounded by zph . Then, since zR is open, H is a closed half plane.
Note that H is uniquely determined by the choice of h and the choice of the lift of pbh

.
Observe that jLP j\HD zph . Then R.C.LP /; �

�1
LP
.Hn zph// is a crescent of angle �=2,

and R.C.LP /; �
�1
LP
. zph// is a crescent of angle � . Therefore, R.C.LP /; �

�1
LP
.H // is

a crescent of angle �=2C � , and it is a component of C.LP / nR.C.LP /; �
�1
LP
. zR//.

Each component of R. zC ; zP 0/ nR. zC ; zR0/ is a lift zBh of some Bh to zS . There is a
lift zp0

h
of ph separating zBh and zR0 in . zS ; zC / (Figure 14). The height of zBh is ah �

�=2C� . By the argument above, when R. zC ; zR0/DR.C.LP /; �
�1
LP
. zR// is embedded

in C.LP /, zp0h bounds a component of C.LP / nR. zC ; zR0/, which is a crescent of
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angle �=2C� . Therefore, this embedding extends to the embedding of zBh[R. zC ; zR0/
to C.LP / (see Figure 14). Different components of R. zC ; zP 0/ nR. zC ; zR/ correspond
to different zBh . Therefore, the embedding extends disjointly to all components of
R. zC ; zP 0/ nR. zC ; zR/ and we obtain an embedding of R. zC ; zP 0/ into C.LP /. By
the construction, the embedding of R. zC ; zR/ is �1.R

0/–equivariant. Since R. zC ; zP 0/
embeds in C.LP /, and C.LP / has an injective developing map, therefore R.C;P 0/
has an injective developing map.

yC

zR0

zp0
h

ah

zBh

�

Figure 14: R. zC ; zR0/D zR0 and zBh in C.LP /

Since R0 is a deformation retract of P 0 , �1.R
0/ is equal to �1.P

0/ as subgroups
of �1.S/. In particular, �j�1.P 0/ D �j�1.R0/ . We have already seen that �1.R

0/ is
isomorphic to a purely loxodromic subgroup of PSL.2;C/ via � . Therefore, so is
��1.P 0/ . Hence, the restriction of C to P 0 is admissible.
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