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Density of isoperimetric spectra

NOEL BRADY

MAX FORESTER

We show that the set of k –dimensional isoperimetric exponents of finitely presented
groups is dense in the interval Œ1;1/ for k > 2 . Hence there is no higher-dimensional
analogue of Gromov’s gap .1; 2/ in the isoperimetric spectrum.
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We dedicate this paper to the memory of John Stallings (1935–2008).

1 Introduction

Dehn functions of groups have been the subject of intense activity over the past two
decades. The Dehn function ı.x/ of a group G is a quasi-isometry invariant which
describes the best possible isoperimetric inequality that holds in any geometric model
for the group. Specifically, for a given x , ı.x/ is the smallest number A such that
every null-homotopic loop of length at most x bounds a disk of area A or less. One
defines length and area combinatorially, based on a presentation 2–complex for G ,
and the resulting Dehn function is well defined up to coarse Lipschitz equivalence. If
G is the fundamental group of a closed Riemannian manifold M , then ordinary length
and area in M may be used instead, and one obtains an equivalent function. (This
seemingly modest but nontrivial result is sometimes called the Filling Theorem; see
Bridson [6] or Burillo and Taback [9] for a proof.)

Due in large part to the work of Birget, Rips and Sapir [24] we now have a fairly
complete understanding of which functions are Dehn functions of finitely presented
groups. In the case of power functions, one defines the isoperimetric spectrum to be
the following (countable) subset of the line:

IPD f˛ 2 Œ1;1/ j f .x/D x˛ is equivalent to a Dehn function g:

We know from Brady and Bridson [4] that the isoperimetric spectrum has closure
f1g [ Œ2;1/ and, from Brady, Bridson, Forester and Shankar [5], that it contains
all rational numbers in Œ2;1/. Moreover, in the range .4;1/, it contains (almost
exactly) those numbers having computational complexity below a certain threshold [24].
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The gap .1; 2/ reflects Gromov’s theorem to the effect that every finitely presented
group with subquadratic Dehn function is hyperbolic, and hence has linear Dehn
function. Several proofs of this result are known: see Gromov [16], Ol 0 shanskiı̆ [20],
Papasoglu [21] and Bowditch [3].

By analogy with ordinary Dehn functions, one defines the k –dimensional Dehn function
ı.k/.x/, describing the optimal k –dimensional isoperimetric inequality that holds in G .
Given x , ı.k/.x/ is the smallest V such that every k –dimensional sphere of volume at
most x bounds a .kC1/–dimensional ball of volume V or less. One uses combinatorial
notions of volume, based on a chosen k –connected model for G . Again, up to coarse
Lipschitz equivalence, ı.k/.x/ is preserved by quasi-isometries, by Alonso, Wang and
Pride [2], and in particular does not depend on the choice of model for G .

Precise details regarding the definition of ı.k/.x/ are given in Section 2. Nevertheless,
it is worth emphasizing here that we are filling spheres with balls, which is quite
different from filling spheres with chains, or cycles with chains (the latter of which
leads to the homological Dehn function). It turns out that we do indeed need to make
use of other variants (namely, the strong Dehn function – see Section 2), but for us the
primary object of most immediate geometric interest is the Dehn function as described
above.

In this paper we are concerned with the following question: what is the possible
isoperimetric behavior of groups, in various dimensions? For each positive integer k

one defines the k –dimensional isoperimetric spectrum:

IP.k/ D f˛ 2 Œ1;1/ j f .x/D x˛ is equivalent to a k –dimensional Dehn function g:

Until recently, relatively little was known about IP.k/ , especially when k > 3. A few
results concerning IP.2/ were known. Alonso, Bogley, Burton, Pride and Wang [1;
27; 26] have shown that IP.2/ contains infinitely many points in the interval Œ3=2; 2/,
and they located various lower and upper bounds throughout Œ2;1/. Also Brady and
Bridson [4] and Bridson [7] have shown that IP.2/\ Œ3=2; 2/ is dense in Œ3=2; 2/ and
that 2; 3 2 IP.2/ .

The recent paper of Brady, Bridson, Forester and Shankar [5] established that IP.k/ is
dense in Œ1C 1

k
;1/ and contains all rational numbers in this range. The endpoint 1C 1

k

corresponds to the isoperimetric inequality represented by spheres in Euclidean space.
The main purpose of the present paper is to address the sub-Euclidean range .1; 1C 1

k
/

and establish the existence of isoperimetric exponents throughout this interval, for
k > 2.
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To state our results we need some notation. If A is a nonsingular n� n integer matrix,
let GA denote the ascending HNN extension of Zn with monodromy A. Our first
result is the following.

Theorem 1.1 Let A be a 2�2 integer matrix with eigenvalues �;� such that �>1>�

and ��> 1. Then the 2–dimensional Dehn function of GA is equivalent to x2Clog�.�/ .

In Section 7 we show that the exponents arising in the theorem are dense in the interval
.1; 2/. Thus, roughly half of these groups have sub-Euclidean filling volume for
2–spheres, occupying densely the desired range of possible behavior.

Given an n� n matrix A, the suspension †A of A is the .nC 1/� .nC 1/ matrix
obtained by direct sum with the 1� 1 identity matrix. Since G†A ŠGA �Z, results
from [5] imply the following (see Section 6 for details).

Theorem 1.2 Let GA be as in Theorem 1.1. Then the .i C 2/–dimensional Dehn
function of G†i A is equivalent to xs where s D

�
.i C 1/˛ � i

�
=
�
i˛� .i � 1/

�
and

˛ D 2C log�.�/.

Given that the numbers ˛ are dense in the interval .1; 2/, it follows that the exponents s

are dense in .1; .iC2/=.iC1//. Together with Corollary E of [5], we have the following
result, illustrated in Figure 1.

Corollary 1.3 IP.k/ is dense in Œ1;1/ for k > 2.
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Figure 1: Isoperimetric exponents of G†i A . The blue intervals indicate
isoperimetric exponents for the groups constructed in [5].
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Methods

The methods used here to establish isoperimetric inequalities for GA are quite different
from those used in [5]. In the latter work, a slicing argument was used to estimate
volume based on information coming from one-dimensional Dehn functions. This
approach is rather less promising in the sub-Euclidean realm, since there are no one-
dimensional Dehn functions there to reduce to. (Reducing to larger Dehn functions
does not seem feasible, at least by similar methods.)

Instead we must find and measure least-volume fillings of 2–spheres in GA directly,
using properties of the particular geometry of this group. We work with a piecewise
Riemannian cell complex with a metric locally modeled on a solvable Lie group R2 Ì R.
This metric is particularly simple from the point of view of the given coordinates, and
these preferred coordinates make possible various volume and area calculations that
are central to our arguments.

The preferred coordinates just mentioned do not behave well combinatorially, however.
Coordinate lines pass through cells in an aperiodic manner, and this cannot be remedied
by simply changing the cell structure. If one attempts to measure volume combina-
torially, counting cells by passing between cells and their neighbors in an organized
fashion (as with “t –corridor” arguments, for example), one loses the advantage of the
preferred coordinates conferred by the special geometry of these groups. To count cells,
therefore, we use integration and divide by the volume of a cell.

The combinatorial structure is still relevant, however. The piecewise Riemannian
model is not a manifold, and its branching behavior is a prominent feature of the
geometry of GA . In order to make clean transitions between the combinatorial and
Riemannian viewpoints, we use the transversality technology of Buoncristiano, Rourke
and Sanderson [8]. This provides the appropriate notion of van Kampen diagrams
for higher-dimensional spheres and fillings. Transversality also helps in dealing with
singular maps, which otherwise present technical difficulties.

One other technical matter deserves mention: in order to apply results of [5] to deduce
Theorem 1.2, we are obliged to find bounds for the strong Dehn function, which encodes
uniform isoperimetric inequalities for fillings of surfaces by arbitrary 3–manifolds. See
Section 2 for definitions and results concerning the strong Dehn function.

Remark/Conjecture 1.4 The groups GA in Theorem 1.1 were classified up to quasi-
isometry by Farb and Mosher [14]. At the time, none of the usual quasi-isometry
invariants could distinguish these groups, but the two-dimensional Dehn function
apparently does so quite well. We conjecture that it is a complete invariant for this class
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of groups. What is missing is the knowledge that the real number log�.�/ determines
the diagonal matrix �

� 0

0 �

�
up to a rational power. One needs to take into account the specific assumptions on the
integer matrix A (eg having a contracting eigenspace), to rule out examples such as�

4 0

0 2

�
and

�
9 0

0 3

�
Acknowledgments Brady’s work was funded in part by NSF grant DMS-0505707,
and Forester’s by NSF grant DMS-0605137.

2 Preliminaries

In this section we discuss in detail some of the key notions needed to carry out the
proofs of the theorems. First we give a brief account of the transversality theory of
Buoncristiano, Rourke and Sanderson. Then we discuss volume, Dehn functions of
various types, and some basic results concerning these.

Handles and transverse maps

Using transversality, a map from a manifold to a cell complex can be put into a nice form,
called a transverse map. Transverse maps induce generalized handle decompositions
of manifolds, which will play the role of van Kampen diagrams in higher dimensions.
Whereas admissible maps were used for this purpose in [5], transverse maps have
additional structure, incorporating combinatorial information dependent on the way
cells meet locally in the target complex.

An index i handle (or generalized handle) of dimension n is a product †i �Dn�i ,
where †i is a compact, connected i –dimensional manifold with boundary, and Dn�i

is a closed disk. Let M be a closed n–manifold. A generalized handle decomposition
of M is a filtration ∅ DM .�1/ �M .0/ � � � � �M .n/ DM by codimension-zero
submanifolds, such that for each i , M .i/ is obtained from M .i�1/ by attaching finitely
many index i handles, as follows. To attach a single handle H D†i �Dn�i , choose
an embedding hW @†i �Dn�i! @M .i�1/ and form the manifold M .i�1/[h H . Note
that handle attachment is always along @†i �Dn�i , and never along †i � @Dn�i .
To attach several handles, we require that the attaching maps have disjoint images in
@M .i�1/ , so that the order of attachment does not matter. Note that both M .i�1/ and
the individual handles H are embedded in M .i/ .
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If every †i is a disk then this is the usual notion of handle decomposition arising
in classical Morse theory. Some new things can occur by varying †i , however. For
instance, we allow †i to be closed, in which case the attaching map is empty and
M .i�1/ [h H is the disjoint union M .i�1/ tH . Such a handle is called a floating
handle. For example, M .0/ is formed from M .�1/ D ∅ by attaching (floating) 0–
handles D0�Dn , and M .0/ is simply several copies of Dn . (The lowest-index handles
will always be floating ones.) Another phenomenon is that handles may be embedded
in M in topologically interesting ways, as in the following example.

Example 2.1 Given a closed orientable 3–manifold M , we may construct a gener-
alized handle decomposition as follows. Let K �M be a knot or link in M . Let
M .1/ be a regular neighborhood of K and declare each component to be a (floating)
1–handle. Let † be a Seifert surface for K , and let f†j g be the components of
†\ .M � int.M .1///. The 2–handles will be regular neighborhoods of the surfaces
†j in M �int.M .1//. Lastly, the 3–handles will be the components of M �int.M .2//.
This decomposition has no 0–handles, and its 1–handles are (obviously) knotted.

Now suppose M is an n–manifold with boundary. A generalized handle decomposition
of M is a pair of filtrations ∅DM .�1/�M .0/� � � � �M .n/DM and ∅DN .�1/�

N .0/ � � � � �N .n�1/ D @M by codimension-zero submanifolds, such that

(1) the filtration ∅DN .�1/ �N .0/ � � � � �N .n�1/ D @M is a generalized handle
decomposition of @M ,

(2) for each i , M .i/ is obtained from M .i�1/[N .i�1/ by attaching finitely many
index i handles, and

(3) each index i � 1 handle of @M is a connected component of the intersection
of @M with an index i handle of M . In particular, N .i�1/ D @M \M .i/ for
all i .

In (2) each handle H D†i �Dn�i is attached via an embedding hW .@†i �Dn�i/!

.@M .i�1/ [N .i�1//. As before, we require the images of the attaching maps of the
index i handles to be disjoint. It follows that the individual i –handles are embedded
in M , and are disjoint from each other.

Let f W M !X be a map from a compact n–manifold to a CW complex. We say that
f is transverse to the cell structure of X if M has a generalized handle decomposition
such that the restriction of f to each handle is given by projection onto the second
factor, followed by the characteristic map of a cell of X . Thus, index i handles map
to .n� i/–dimensional cells. In particular, M maps into the n–skeleton of X . In a
transverse map there may be floating handles of any index, and it may not be possible
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to modify f to eliminate these. By the same token, one must always allow for the
possibility of knotted handles.

One virtue of transverse maps is that they can easily be proved to exist. However, to
accomplish this, we must assume additional structure on the target complex X . We
say that X is a transverse CW complex if the attaching map of every cell is transverse
to the cell structure of the skeleton to which it is attached. The main existence result is
the following:

Transversality Theorem (Buoncristiano–Rourke–Sanderson) Let M be a compact
smooth manifold and f W M ! X a continuous map into a transverse CW complex.
Suppose f j@M is transverse. Then f is homotopic rel @M to a transverse map
gW M !X .

The theorem includes the case where M is closed: all maps of closed manifolds can
be made transverse by a homotopy.

This theorem is proved by Buoncristiano, Rourke and Sanderson [8] for PL manifolds,
and the proof in the smooth case is entirely analogous. The proof is a step by step
application of smooth transversality, applied to preimages of open cells (considered
as smooth manifolds themselves), starting with the top dimensional cells and working
down. The first stage of the argument, in which the 0–handles are constructed, is
explained fully in the proof of Lemma 2.3 of [5]. This is precisely the construction of
admissible maps (defined below).

Remark 2.2 In order to apply the theorem one needs transverse CW complexes.
Any CW complex can be made transverse by successively homotoping the attaching
maps of its cells (by the Transversality Theorem and induction on dimension); this
procedure preserves homotopy type. Moreover, in this paper, the complex X that we
use can be made transverse in a more direct and controlled way, preserving both its
homeomorphism type and its partition into open cells; see Section 3 and Figure 3.

Admissible maps and combinatorial volume

Recall from [5] the definition of an admissible map: it is a map f W M n!X .n/ �X

such that the preimage of every open n–cell is a disjoint union of open n–dimensional
balls in M , each mapped by f homeomorphically onto the n–cell. The combinatorial
volume of an admissible map, denoted Voln.f /, is the number of open balls mapping
to n–cells.

It is clear that transverse maps are admissible: the interiors of 0–handles are open
balls, and the rest of M maps into X .n�1/ . Conversely, if one applies the proof
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of the transversality theorem to an admissible map to make it transverse, then the
preimages of the n–cells will not change (except possibly by being shrunk slightly),
and combinatorial volume is preserved. For this reason, given an admissible map, the
closures of the open balls mapping to n–cells will be called 0–handles.

Note that in an admissible map, 0–handles may intersect each other in their boundaries.
For example, if M has a cell structure, then the identity map is admissible, with
0–handles equal to the closures of the top-dimensional cells.

In [5, Lemma 2.3] it is shown that every map from a smooth or PL manifold is homotopic
to an admissible map. This is a special case of the Transversality Theorem, though it is
not required that the target CW complex be transverse. The existence of admissible
maps can also be proved without relying on a smooth or PL structure; see Epstein [11,
Theorem 4.3].

Volume reduction

In this paper, generalized handle decompositions (and transverse maps) will serve as
higher-dimensional analogues of van Kampen diagrams. Indeed, in dimension 2, trans-
verse maps already provide an alternative to the combinatorial approach to diagrams,
and they have several advantages. This is the viewpoint taken in Rourke [23] and
Stallings [25], for example. With van Kampen diagrams one often considers reduced
diagrams, where no folded cell pairs occur. The same type of cancellation process also
works for admissible and transverse maps. One such process is given as follows.

Let f W M n ! X be an admissible map, and let H0;H1 � M be 0–handles, and
˛ � M � .int.H0/ [ int.H1// a 1–dimensional submanifold homeomorphic to an
interval, with endpoints in H0 and H1 (we also allow the degenerate case in which ˛
is a point in H0\H1 ). Suppose that f maps ˛ to a point and maps H0 and H1 to the
same n–cell, with opposite orientations (relative to a neighborhood of H0[˛[H1 ,
which is always orientable). A typical example occurs when f is transverse and ˛ is a
fiber of a 1–handle joining H0 and H1 .

Since H0 and H1 are 0–handles, there are homeomorphisms hi W Hi !Dn such that
f jHi

Dˆ ı hi for some characteristic map ˆW Dn!X . Now delete interiors of Hi

from M to obtain M 0 with new boundary spheres Si . Next delete the interior of
a regular neighborhood I �Dn�1 of ˛ in M 0 (parametrized so that f jf0g�Dn�1 D

f jf1g�Dn�1 ). The new boundary becomes a union of two disks Di and an annulus
A D I � Sn�2 . Now collapse A to Sn�2 and identify D0 with D1 via h�1

0
ı h1 ,

to form M 00 . This new space maps to X by f , and there is a homeomorphism
gW M !M 00 . Now f ıg is an admissible map M !X with two fewer 0–handles.
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Note that the other 0–handles are unchanged. If desired, this new map can then be
made transverse, with the same 0–handles, and with its (lowered) volume unchanged.

Remark 2.3 There is, in fact, a more general procedure for cancelling H0 and H1 that
does not require ˛ to map to a point. This procedure is due to Hopf [19] and a detailed
treatment was given by Epstein [11]. If X is 2–dimensional then the more general
procedure is not particularly useful: new 0–handle pairs can be created when cancelling
H0 and H1 , and volume may fail to decrease. In higher dimensions, however, no new
0–handle pairs are created and the volume will always decrease by 2.

Riemannian volume

If N is a smooth manifold, M an oriented Riemannian manifold of the same dimension,
and f W N ! M a smooth map, then the volume of f can be defined. Following
Gromov [17, Remarks 2.7 and 2.8 1

2
], let �M be the volume form on M and choose

any Riemannian metric on N . We define

RVol.f /D
Z

N

f �.j�M j/:

The integral is independent of the choice of metric on N , by the change of variables
formula. Note that we are using jvolj .f /, not vol.f /, in the notation of [17]. (The
latter allows cancellation of volume, which is not appropriate in our setting.) In fact,
we need not assume that M is oriented, since j�M j is still defined. If dim N D 2 then
RVol is also denoted RArea.

If f is an immersion then this definition amounts to giving N the pullback metric and
taking the volume of N . More generally, if f fails to be an immersion at some x 2N ,
then f �.j�M j/ is zero at x , and does not contribute to volume. Hence, RVol.f / is
the volume of the pullback metric on U � N , the set on which f is an immersion.
Note that U is open, and hence is a Riemannian manifold. Generically, U has full
measure in N when dim N 6 dim M ; see eg Gromov [15, 1.3.1].

From this perspective, we can now define RVol.f / when dim N 6D dim M . We
define RVol.f / to be the volume of U � N , the set on which f is an immersion,
with the pullback metric. Note that RVol.f / measures n–dimensional volume, where
nD dim N .

Lastly, we wish to extend the definition of volume to allow a piecewise Riemannian
CW complex in place of M . The complex zX that interests us is a 3–complex with
branching locus a 2–manifold, homeomorphic to the product of R2 with a simplicial
tree. In a neighborhood of any singular point one sees a union of half-spaces joined
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along their boundaries, naturally grouped into two collections, with a well defined
common tangent space at the singular point. The situation is similar to that of a train
track, or a branched surface from lamination theory (eg Calegari [10, Section 6.3]).
There is a smooth structure, and zX comes equipped with an immersion qW zX!M onto
a Riemannian manifold M . (This immersion is not locally injective, but is injective on
tangent spaces.) The Riemannian metric on zX is the pullback under q of the metric
on M . The volume RVol.f / can now be defined directly (as above) using this metric
on zX , or equivalently by defining RVol.f /D RVol.q ıf /.

Remarks 2.4 (1) If dim N > dim M (or dim N > dim zX ) then RVol.f / is zero,
since f is an immersion nowhere. Similarly, if f factors through a manifold of smaller
dimension, then the volume is zero.

(2) Any transverse map f W N ! zX is piecewise smooth, and is a submersion on
each handle. It will be an immersion only on the 0–handles. This latter statement also
holds for admissible maps, since the complement of the 0–handles is mapped into a
lower-dimensional skeleton.

Remark 2.5 We will be interested in finding least-volume maps extending a given
boundary map. If the set of volumes of n–cells of a piecewise Riemannian CW complex
is finite, then least-volume transverse maps of n–manifolds exist in any homotopy
class. This is because the Riemannian volume of a transverse map is a positive linear
combination of numbers in this set, and hence the set of such volumes is discrete, and
well-ordered.

Dehn functions

Here we recall the definition of the n–dimensional Dehn function of a group from [5].
Note that these definitions all use combinatorial volume. Given a group G of type
FnC1 , fix an aspherical CW complex X with fundamental group G and finite .nC1/–
skeleton (the existence of such an X is the meaning of “type FnC1 ”). Let zX be the
universal cover of X . If f W Sn! zX is an admissible map, define the filling volume
of f to be the minimal volume of an admissible extension of f to BnC1 :

FVol.f /DminfVolnC1.g/ j gW BnC1
! zX ; gj@BnC1 D f g:

Note that extensions exist since �n. zX / is trivial, and any extension can be made
admissible, by [5, Lemma 2.3]. We define the n–dimensional Dehn function of X to
be

ı.n/.x/D supfFVol.f / j f W Sn
! zX ; Voln.f /6 x g:

Again, the maps f are assumed to be admissible.
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Alonso, Wang and Pride [2] showed that ı.n/.x/ is finite for each x 2N , and that, up
to coarse Lipschitz equivalence, ı.n/.x/ depends only on G . Thus the Dehn function
will sometimes be denoted ı.n/

G
.x/. (Recall that functions f;gW RC!RC are coarse

Lipschitz equivalent if f 4 g and g 4 f , where f 4 g means that there is a positive
constant C such that f .x/ 6 C g.Cx/CCx for all x > 0.) If we wish to specify
ı.n/.x/ exactly, we may denote it as ı.n/

X
.x/.

Taking nD 1 yields the usual Dehn function ı.x/ of a group G .

The strong Dehn function

The notion of n–dimensional Dehn function was modified in [5] to allow fillings by
compact manifolds other than the ball BnC1 . In this way, every compact manifold
pair .M; @M / gave rise to a Dehn function ıM .x/. Several of the main results proved
in [5] had hypotheses and conclusions involving the functions ıM .x/ “for all n–
manifolds M .” An equivalent way of formulating these results is by means of the
strong Dehn function, defined as follows.

Given a compact .nC 1/–manifold M and an admissible map f W @M ! zX , define

FVolM .f /DminfVolnC1.g/ j gW M ! zX admissible; gj@M D f g

�.n/.x/D supfFVolM .f / j .M; @M / is a compact .nC 1/–manifold;and

f W @M ! zX admissible; Voln.f /6 x g:

We call �.n/.x/ the strong n–dimensional Dehn function of X . Note that the mani-
folds M appearing in the definition are not assumed to be connected. The statement
�.n/.x/6 y means that for every compact manifold .M; @M / and every admissible
map f W @M ! zX of volume at most x , there is an admissible extension to M of
volume at most y . In particular, the bound y is uniform for all topological types of
fillings (hence the word “strong”). Note that this is very different from homological
Dehn functions, where only a single filling by an .nC 1/–chain is needed, of some
topological type.

The strong Dehn function has two principal features. The first is that it behaves well
with respect to splittings and mapping torus constructions (as does the homological
Dehn function). The next two theorems below are examples of this phenomenon. The
second is that it (clearly) satisfies

(1) ı.n/.x/6�.n/.x/

and hence it may be used to establish upper bounds for ı.n/.x/. To this end, the
following two theorems are proved in [5] (Theorems 7.2 and 8.1).

Geometry & Topology, Volume 14 (2010)



446 Noel Brady and Max Forester

Theorem 2.6 (Stability for upper bounds) Let X be a finite aspherical CW complex
of dimension at most nC 1. Let f W X !X be a �1 –injective map and let Y be the
mapping torus of X using f . Then �.nC1/

Y
.x/6�

.n/
X
.x/.

Thus, any upper bound for �.n/
X
.x/ remains an upper bound for �.nC1/

Y
.x/. A similar

result holds more generally (with the same proof) if Y is the total space of a graph of
spaces whose vertex and edge spaces satisfy the hypotheses of X . Then the conclusion
is that �.nC1/

Y
.x/6 C �

.n/
X
.x/ for some C > 0.

The next result provides a better bound in a special case.

Theorem 2.7 (Products with S1 ) Let X be a finite aspherical CW complex of
dimension at most n C 1. If �.n/

X
.x/ 6 Cxs for some C > 0 and s > 1 then

�
.nC1/

X�S1.x/6 C 1=sx2�1=s .

It turns out that for n > 3 and for nD 1, there is no significant difference between the
strong and ordinary Dehn functions. The precise relation between them is stated in the
next theorem, which was essentially proved already in Remark 2.5(4) and Lemma 7.4
of [5].

However, we do indeed need to work specifically with the strong Dehn function in
dimension 2, since we wish to apply Theorem 2.7 above. This case forms the base of
the induction argument we use to show that IP.n/ is dense for all n > 2.

A function f W N!N is superadditive if f .a/C f .b/6 f .aC b/ for all a; b 2N .
The superadditive closure of f is the smallest superadditive g such that f .x/6 g.x/

for all x . An explicit recursive definition of g is given by

g.0/D f .0/; g.x/Dmax
˚
fg.i/Cg.x� i/ j i D 1; : : : ;x� 1g[ fg.0/Cf .x/g

	
:

It is easy to verify that �.n/.x/ is always superadditive, by considering fillings by
nonconnected manifolds.

Theorem 2.8 (Brady–Bridson–Forester–Shankar) �
.n/
X
.x/ is the superadditive clo-

sure of ı.n/
X
.x/ for n > 3 and for nD 1.

It is not known whether there exist groups G for which ı.n/
G
.x/ is not superadditive

(up to coarse Lipschitz equivalence). Indeed, when nD 1, Sapir has conjectured that
this does not occur [18]. So in all known examples, �.n/ and ı.n/ agree (for n > 3 or
nD 1).

In contrast, Young [28] has shown that the statement of the theorem is false when
n D 2. Specifically, he shows that for a certain group G , the strong Dehn function
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�
.2/
G
.x/ is not bounded by a recursive function, whereas ı.2/

G
.x/ always satisfies such

a bound, by Papasoglu [22]. The superadditive closure will inherit this property, since
it is computable from ı

.2/
G
.x/.

Proof Let s.x/ be the superadditive closure of ı.n/.x/.

If nD 1 then the proof of Lemma 7.4 of [5] shows directly that for any compact 2–
manifold M , one has ıM .x/6 ıD2t���tD2

.x/, where the number of disks equals the
number of boundary components of M . For each admissible f W S1 t � � � tS1!X

with length x D
P

i xi we have FVolD
2t���tD2

.f / 6
P

i ı
.1/.xi/ 6 s.x/, and so

ıM .x/ 6 s.x/. Therefore �.1/.x/ 6 s.x/. Since �.1/.x/ is superadditive and
ı.1/.x/6�.1/.x/, it follows that �.1/.x/D s.x/.

If n > 3 then the argument given in Remark 2.5(4) of [5] applies. Let fNig be the
components of @M and suppose that gi W Ni!X are admissible maps of volume xi ,
with union gW @M!X of volume xD

P
i xi . By the argument given in [5], for each i

there is an admissible homotopy of .nC1/–dimensional volume at most ı.n/.xi/ to an
admissible map g0i W Ni !X with image inside X .n�1/ . The union of these maps can
be filled by a map M !X .n/ , since X .n�1/ is contractible inside X .n/ . This filling
has zero .nC 1/–dimensional volume, and hence FVolM .g/ 6

P
i ı
.n/.xi/ 6 s.x/.

Since M and g were arbitrary, we have �.n/.x/6 s.x/, and hence �.n/.x/D s.x/.

Remark 2.9 (Lower bounds) As noted earlier, the strong Dehn function can be used
to bound ı.n/.x/ from above. For a lower bound one needs explicit information about
FVol.f / for admissible maps f W Sn! zX . That is, one needs to identify least-volume
extensions gW BnC1! zX . Suppose dim zX D nC 1 and HnC1. zX IZ/ D 0. Then a
simple homological argument, sketched in Remarks 2.2 and 2.6 of [5], shows that g is
least-volume if g is injective on the interiors of 0–handles (ie no two 0–handles map
to the same cell of zX ). For convenience we provide the full argument here.

Let CnC1. zX / be the cellular chain group for zX . Given an oriented manifold M nC1

and a transverse map f W M nC1 ! zX , there is a chain Œf � 2 CnC1. zX / defined as
follows. For each .nC 1/–cell e˛ , let �˛ be the corresponding generator of CnC1. zX /

and define d˛.f / to be the local degree of f at e˛ (ie the number of 0–handles of f
mapping to e˛ , counted with respect to orientations). We define Œf �D

P
˛ d˛.f /�˛ .

Note that the boundary of Œf � in Cn. zX / is simply Œf j@M �. (Here the transversality
structure is used: 0–handles in @M are joined to 0–handles in M by 1–handles,
compatibly with boundaries of characteristic maps of cells in zX .)

Now suppose that gW BnC1 ! zX is injective on 0–handles, and hW BnC1 ! zX is
another transverse map with hjSn D gjSn . These maps together define a transverse
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map g � hW SnC1 ! zX by considering SnC1 as a union of two balls, with the
orientation on one of the balls reversed. We have Œg � h� D Œg�� Œh� in CnC1. zX /,
and so @Œg � h� D @Œg�� @Œh� D 0, and Œg � h� is a cycle. Since HnC1. zX / D 0 and
CnC2. zX / D 0, this cycle must be zero in CnC1. zX /. That is, g � h has zero local
degree at every .nC 1/–cell. Hence d˛.g/D d˛.h/ for all ˛ .

The injectivity assumption on g implies that VolnC1.g/D
P
˛ jd˛.g/j. Then we have

VolnC1.h/>
X
˛

jd˛.h/j D
X
˛

jd˛.g/j D VolnC1.g/;

and hence g is least-volume.

3 The groups GA and their model spaces

The model manifold M

Let M be the manifold R3 with the metric ds2D ��2zdx2C��2zdy2Cdz2 , where
� > 1, � < 1, and �� > 1. This is the left-invariant metric for the solvable Lie group
R2 Ì R, with z 2R acting on R2 by the matrix�

�z 0

0 �z

�
:

The geometry of M has much in common with that of SOL (the case ��D 1), but
with some important differences.

The group GA and its model space X

Let A 2 M2.Z/ be a hyperbolic matrix with eigenvalues � > 1 and � < 1 and
determinant d D �� > 1. Let B 2 GL2.R/ diagonalize A, so that

BAB�1
D

�
� 0

0 �

�
:

Call this diagonal matrix D . Then D preserves the lattice � �R2 , defined to be the
image of Z�Z under B .

Let GA be the ascending HNN extension of Z�Z with monodromy A. That is,

GA D hZ�Z; t j tvt�1
DAv for all v 2 Z�Z i:

The matrix B defines an isomorphism from GA to the (nondiscrete) subgroup of
R2 Ì R generated by � and 1 2R (corresponding to the stable letter t 2GA ).
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The groups GA are the main examples that interest us in this paper; our chief task
will be determining their 2–dimensional Dehn functions ı.2/.x/. For this we need to
construct a geometric model for GA . Note that R2 Ì R cannot serve as a model since
the subgroup GA is not discrete. (Indeed, this Lie group is not quasi-isometric to any
finitely generated group, by Eskin, Fisher and Whyte [12].)

Topologically, our model is formed from T 2 � I by gluing T 2 � 0 to T 2 � 1 by the
d –fold covering map TAW T

2! T 2 induced by A. To put a piecewise Riemannian
metric on this space, we use the geometry of M as follows. The construction is
analogous to building the standard presentation 2–complex of a Baumslag–Solitar
group from a “horobrick” in the hyperbolic plane, as in Farb and Mosher [13].

Let Q � R2 be the parallelogram spanned by the generators of � . Then Q� Œ0; 1�

is a fundamental domain for the action of � on R2 � Œ0; 1�� R2 Ì R, with quotient
homeomorphic to T 2 � Œ0; 1�. The isometry R2 � 0! R2 � 1 given by .x;y; 0/ 7!
.�x; �y; 1/ is � –equivariant and induces a local isometry R2=��0!R2=��1. This
local isometry agrees precisely with the map TAW T

2! T 2 under the identification of
R2=� with T 2 induced by B . Thus, identifying opposite sides of Q� Œ0; 1� to obtain
a copy of T 2 � Œ0; 1�, the gluing T 2 � 0! T 2 � 1 is locally isometric, and the model
for GA is a piecewise Riemannian space. Call it X , and its universal cover zX .

Figure 2 below shows Q and the locally isometric gluing map for the example

AD

�
4 1

2 1

�
:

The diagonal matrix stretches horizontally and compresses vertically.

Q� 0 Q� 1

�
�
0

0
�

�

Figure 2: The region Q and the gluing map given by the diagonalized form
of AD

�
4
1

2
1

�
. Also shown is a cell structure (discussed below) for which

this map is combinatorial.

3.1 The cover zX is tiled by isometric copies of Q � Œ0; 1�, with tiles meeting iso-
metrically along faces. A generic point in the top face Q� 1 of a tile meets d tiles
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in their bottom faces; side faces are joined in pairs. Topologically, zX is a branched
space homeomorphic to R2 � T , where T is the Bass–Serre tree corresponding to
the splitting of GA as an ascending HNN extension. The GA –tree T has a fixed end
� and there is an equivariant map h0W T !R, sending � to �1 and all other ends
to 1, such that the induced GA –action on R is by integer translations. The preimage
of Z under this map is the set of vertices of T .

There is a locally isometric surjection qW zX !M which, viewed via the homeomor-
phisms zX ŠR2 �T and M ŠR2 �R, is given by the identity on R2 and the map
h0W T !R described above. The metric on zX may be viewed as the pullback metric
of M under this map. In particular, for any compact manifold W and any piecewise
smooth map f W W ! zX , we have RVol.f /D RVol.q ıf /.

If L � T is a line mapping homeomorphically to R under h0 , then the subspace
R2 �L� zX is isometric to M . This situation is completely analogous to that of the
solvable Baumslag–Solitar groups, whose standard geometric models contain copies of
the hyperbolic plane (cf Farb and Mosher [13]).

The map h0W T !R also defines a height function hW zX !R by composing with the
projection zX ŠR2 �T ! T .

Cell structure

The basic cell structure on X is the usual mapping torus cell structure, induced by the
standard cell decomposition for the torus, but we will need to modify the attaching
maps to make it a transverse CW complex.

First, consider Q� Œ0; 1� combinatorially as a cube and give it the product cell structure
(with eight 0–cells, twelve 1–cells, six 2–cells, and one 3–cell). The side-pairings are
compatible with this structure, so we have a cell structure on T 2�Œ0; 1�. Now subdivide
the top and bottom faces T 2�f0; 1g into finitely many cells so that TAW T

2�0!T 2�1

maps open cells homeomorphically to open cells (ie TA becomes a combinatorial
map). Note that T 2 � 0 will have d times as many 2–cells as T 2 � 1, since TA is a
d –fold covering. The pattern of subdivision is obtained by taking intersections of cells
of T 2 � 1 with cells of TA.T

2 � 0/. See Figure 2 for the example

AD

�
4 1

2 1

�
:

Since TA takes cells to cells, we now have a cell structure on X .

Next we make the cell structure transverse. In this case, the transversality procedure
does not change the homeomorphism type of X , or even its partition into open cells.
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Thus, the piecewise Riemannian metric will still exist, exactly as described, with either
cell structure.

Every map S0!X .0/ is transverse, so the 1–skeleton X .1/ is already a transverse
CW complex. For the 2–skeleton, note that for each attaching map S1!X .1/ in the
original cell structure, there is a realization of S1 as a graph such that the map is a graph
morphism. To make this map transverse, expand each vertex into a closed interval (a
1–handle) to form a slightly larger circle. Let the new attaching map first collapse these
intervals back into vertices, and then map to X .1/ by the original attaching map. We
have simply introduced some “slack” at the vertices. The 2–skeleton and its partition
into open cells has not changed.

For the attaching map S2!X .2/ of the 3–cell, note again that S2 has a cell structure
for which this map is combinatorial (this is a property of our particular complex X ).
Expand every 0–cell into a small disk (a 2–handle) and then expand every 1–cell into
a rectangle (a 1–handle), to obtain a new copy of S2 . The new transverse attaching
map will collapse these new handles to 0– and 1–cells and then map to X .2/ as before.
See Figure 3. Again, the topology of X is unchanged. (This amounts to a claim that
performing the collapses described above in the boundary of a ball results again in a
ball.)

�! �!

Figure 3: Transverse 3–cell attachment. The rightmost map is the original
attaching map; the composition is the new (transverse) one.

The universal cover zX is given the induced cell structure. Note that the closures of the
3–cells are exactly the copies of Q� Œ0; 1� tiling zX mentioned earlier. Also note that
every 2–cell is either horizontal or vertical: in the product R2�T , it either projects to
a point in T or to a line segment in R2 . In the latter case, the projection of the 2–cell
in T is exactly an edge.

4 The upper bound

We proceed now to establish an upper bound for the strong Dehn function �.2/.x/ of
the group GA .
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Let W be a compact 3–manifold with boundary and f W @W ! zX an admissible map,
which we may make transverse without changing its combinatorial area (by a homotopy
inside zX .2/ , of zero volume). Now let gW W ! zX be a transverse extension of f of
smallest Riemannian volume (cf Remark 2.5).

We need to measure the combinatorial volume of g and bound it in terms of the area
of f . Note that every 0–handle of W has the same Riemannian volume, equal to the
volume V of the single 3–cell in X . Thus, to count the 0–handles, we will instead
measure the Riemannian volume of g by integration and divide by V . It turns out
that the geometry of zX is well-suited to this kind of measurement. We will also work
with the Riemannian area of f , but again the relation to combinatorial area causes no
difficulty.

The embedded case

First we discuss a special case in order to clarify the geometric ideas, before incorpo-
rating transverse maps into the argument. We will assume that W is a subcomplex
of zX , with g the inclusion map.

Since W is a manifold, every 2–cell of W is either in @W or is adjacent to two 3–cells
of W . Let F �W (the fold set) be the smallest subcomplex whose 2–cells are the
horizontal 2–cells � such that � 6� @W and both adjacent 3–cells are above � with
respect to the height function hW zX !R. (The fold set may be empty, of course.)

Proposition 4.1 RVol.W /6 .Area.@W /C 2 Area.F //= ln.��/.

Proof In M , integrating the volume element .��/�z dxdydz along a vertical ray
from z D 0 to z D1 yields 1=.ln.��// times dxdy , the horizontal area element at
the initial point of the ray. Also, at any point of @W , the surface area element is greater
than or equal to the horizontal area element.

Consider a flow on zX ŠR2 �T which is towards the end � in the T factor and the
identity in R2 . This flow is semiconjugate (by q ) to a flow in M which is directly
downward. Under this flow, every point p of W leaves W , either through @W or
through F . Let ��.p/ be the first point of @W or F that p meets under this flow. This
defines a map ��W W ! .@W [F /, not necessarily continuous. Then W decomposes
into two parts, W@ D �

�1
� .@W / and WF D �

�1
� .F /.

For any p 2 @W , the fiber ��1
� .p/ is a segment extending upward from p , and

integrating along these fibers, we find that RVol.W@/ 6 Area.@W /= ln.��/. For
RVol.WF /, the fiber of any point in F consists of two segments extending vertically,
so RVol.WF /6 2 Area.F /= ln.��/.

It now suffices to bound Area.F / from above in terms of Area.@W /.
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4.2 We need to make some definitions. Let L D log�.Area.@W //. We have the
following properties.

�L
D Area.@W /(2)

�L
D Area.@W /log�.�/(3)

.��/L D Area.@W /1Clog�.�/(4)

Equation (2) holds by definition, (4) follows from (2) and (3), and (3) is an instance of
the identity alogb.c/ D clogb.a/ .

Let v1; : : : ; vk 2 V .T / be the vertices in the image of W under the projection
�T W

zX ! T . We define several items associated to these vertices:

� hi D h0.vi/, the height of vi

� Fi D �
�1
T
.vi/\F , the fold set at vi

� Ti D fx 2 T j vi 2 Œx; �/ g, the subtree above vi

and the following subsets of @W :

� Si D @W \�
�1
T
.Ti/, the surface above vi

� Ai D Si \ h�1..hi ; hi C 1//, the low slice of Si

� Bi D Si \ h�1..hi CL; hi CLC 1//, the high slice of Si .

Note that @Si has height hi , so Ai lies between heights 0 and 1 above @Si , and Bi

lies between heights L and LC 1 above @Si .

Lemma 4.3 Ai \Aj D Bi \Bj D∅ for i 6D j .

Proof Consider the case of Ai and Aj first. If hi 6D hj then h.Ai/\ h.Aj / D ∅
since vertices have integer heights and the sets h.Ai/ have the form .hi ; hi C 1/. If
hi D hj then vi 62 Tj and vj 62 Ti , which implies that Ti \Tj D∅, and hence Ai and
Aj are disjoint. The case of Bi and Bj is similar.

Recall that for each p 2 F , the fiber ��1
� .p/ is a pair of segments extending upward

from p (it is an open subtree of p0 �T �R2 �T , with no branching, since W is a
manifold). Define a (noncontinuous) map �CW F ! @W by choosing �C.p/ to be
one of the two upper endpoints of the fiber ��1

� .p/ for each p 2 F . Note that �C is
injective (since �� ı�C D idF ), and �C.Fi/� Si . The choices of endpoints can be
made so that �C is measurable.
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We now express each fold set Fi as a union of two parts, the low and high parts, as
follows:

.Fi/low D fp 2 Fi j h.�C.p//6 hi CLC 1g

.Fi/high D fp 2 Fi j h.�C.p//> hi CLC 1g:

Also define Flow D
S

i.Fi/low and Fhigh D
S

i.Fi/high . Clearly, F D Flow[Fhigh .

Proposition 4.4 Area.Flow/6 .��/Area.@W /2Clog�.�/ .

Proof We compare the areas of Flow and its image under �C , which is a subset
of @W . Since �C projects points of Flow upward a distance of at most L C 1,
the horizontal area element at p 2 Flow is at most .��/LC1 times the horizontal
area element at �C.p/. Recall also that this latter area element is no larger than
the surface area element of @W at �C.p/. Since �C is injective, we now have
Area.Flow/6 .��/LC1 Area.�C.Flow//. The proposition follows, by Equation (4) and
the fact that Area.�C.Flow//6 Area.@W /.

4.5 We need to introduce some further terminology. Recall that the map qW zX!M is
the identity on the R2 factors of zX and M . Thus the R2 factor of zX has coordinates
x;y coming from M . Let �x , �y W

zX DR2 �T !R2 be the projection maps onto
the x– and y –axes: �x.x;y; t/D .x; 0/ and �y.x;y; t/D .0;y/.

Given t 2 T and a subset S � R2 � t , let x̀.S/ be the length of �x.S/ � h0.t/

considered as a subset of M . This subset is contained in a line parallel to the x–axis,
and its length in M will depend on the height of t . Similarly, let ỳ.S/ be the length
of �y.S/� h0.t/. Since the metric on R2 � t is Euclidean, we have

(5) Area.S/6 x̀.S/ ỳ.S/:

Now consider two additional projection maps in M : the map …x W M !M given
by .x;y; z/ 7! .x; 0; z/, and …y W M ! M given by .x;y; z/ 7! .0;y; z/. If we
consider the image coordinate planes in their induced metrics, both of these maps are
area-decreasing for surfaces in M .

We wish to estimate the area of .Fi/high using Equation (5). For this, we will relate
x̀..Fi/high/ and ỳ..Fi/high/ to the areas of Ai and Bi . Consider two more families

of sets in M DR2 �R :

Qi D �x..Fi/high/� .hi ; hi C 1/

Ri D �y..Fi/high/� .hi CL; hi CLC 1/:

These sets are contained in the xz– and yz–coordinate planes respectively, and their
areas may be measured in the induced (hyperbolic) metrics.
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Lemma 4.6 For each i we have

(1) x̀..Fi/high/6 �Area.Qi/

(2) ỳ..Fi/high/6 �L Area.Ri/.

Proof For (1), the induced metric on the xz–coordinate plane is given by ds2 D

��2zdx2Cdz2 , with area element ��zdx dz . Let Di �R be the projection fx 2R j
.x; 0/ 2 �x..Fi/high/g. We have

Area.Qi/D

Z
Di

Z hiC1

hi

��z dz dx >
Z

Di

Z hiC1

hi

��hi�1 dz dx

D ��1

Z
Di

��hi dx D ��1
x̀..Fi/high/:

The inequality holds since � > 1, and the last equality holds since Fi has height hi .

Part (2) is similar. The yz–plane has metric given by ds2 D ��2zdy2C dz2 with
area element ��zdy dz . Let Ei �R be the projection fy 2R j .0;y/ 2 �y..Fi/high/g.
Then

Area.Ri/D

Z
Ei

Z hiCLC1

hiCL

��z dz dy >
Z

Ei

Z hiCLC1

hiCL

��hi�L dz dy

D ��L

Z
Ei

��hi dy D ��L
ỳ..Fi/high/:

This time, the inequality holds because � < 1.

Proposition 4.7 Area.Fhigh/6 �Area.@W /2Clog�.�/ .

Proof We will show that

(6) Area..Fi/high/6 ��L Area.Ai/Area.Bi/

for all i . Then, summing over i and applying Lemma 4.3, we obtain

Area.Fhigh/6 ��L Area.@W /2

which implies the proposition by Equation (3).

To establish Equation (6) it suffices to show that Area.Qi/6 Area.Ai/ and Area.Ri/6
Area.Bi/ and to apply Equation (5) and Lemma 4.6.

First we claim that …y.q.Bi// contains Ri . Choose any p 2 .Fi/high and h 2

.hi CL; hi CLC 1/. Write p as .p0; t0/ 2 R2 � T and �C.p/ as .p0; t1/. The
segment p0� Œt0; t1� is part of the fiber ��1

� .p/, and is contained in W . Since p is in
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the high part of Fi , the height of t1 is at least hiCLC1, and there is a unique t 2 Œt0; t1�

of height h. Now we have .p0; t/2W . The line through .p0; t/ parallel to the x–axis
must exit W , at some point b 2 Bi . Now …y.q.b//D .�y.b/; h/D .�y.p/; h/, and
we have shown that Ri �…y.q.Bi//.

By a similar argument, …x.q.Ai// contains Qi (reverse the roles of x and y and
choose h 2 .hi ; hi C 1/). Now recall that …x and …y are area-decreasing and q is
locally isometric. It follows that Area.Bi/> Area.Ri/ and Area.Ai/> Area.Qi/, as
needed.

Finally, putting together Propositions 4.1, 4.4 and 4.7, and consolidating constants
(with the assumption that Area.@W /> 1), we obtain

(7) RVol.W /6
�

2�.�C 1/C 1

ln.��/

�
Area.@W /2Clog�.�/

which has the form of the desired upper bound for �.2/.x/.

The general case

Now we return to the situation given at the beginning of this section, where gW W ! zX

is a least-volume transverse extension of f W @W ! zX .2/ . The proof will follow the
same general outline as in the embedded case, and we will work with analogues of the
various items Fi , Ai , Bi , Qi , Ri , etc. The proof itself does not depend formally on
the embedded case, though we will use several of the intermediate results obtained
thus far.

4.8 We need to introduce some terminology related to the generalized handle decom-
position of W . Recall that a 2–cell of zX is either horizontal or vertical, accordingly
as it maps to a vertex or an edge of the tree T .

A 1–handle is horizontal if it maps to a horizontal 2–cell of zX and is not a floating
1–handle (ie it is homeomorphic to I �D2 , and not to S1 �D2 ). A 1–handle is
vertical if it maps to a vertical 2–cell of zX and is not a floating 1–handle. Thus, every
1–handle is either horizontal, vertical or is a floating handle.

Remark 4.9 Every nonfloating 1–handle either joins a 0–handle to a 0–handle, a
0–handle to @W , or @W to @W . In the first case, since the map g is least-volume,
the two 0–handles map to distinct 3–cells of zX . For otherwise, the two neighboring
0–handles can be cancelled by the procedure described in Section 2, reducing the
volume of g . No 1–handle joins a 0–handle to itself, since zX has the property that no
2–cell appears more than once as a “face” of any single 3–cell; the closure of a 3–cell
in zX is an embedded ball with interior equal to the open 3–cell.
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4.10 We will need to make use of some vector fields on W , obtained by pulling back
the coordinate vector fields on M via the map q ı gW W !M . These vector fields
will be denoted @=@x , @=@y , and @=@z , and they are defined on the interiors of the
0–handles. In particular, every 0–handle has an “upward” direction given by @=@z .

We say that a horizontal 1–handle H is minimal if @=@z is directed away from H

in both neighboring 0–handles. Such a 1–handle is a local minimum for the height
function (the z–coordinate) on the tree T .

Since T branches only in the upward direction, and since horizontal 1–handles are
joined to 0–handles mapping to distinct 3–cells in zX , there are no “maximal” 1–
handles H (where @=@z is directed toward H on both ends). Hence if a horizontal
handle H D I �D2 is not minimal, then @=@z on the neighboring 0–handles can be
extended to a nonvanishing vector field on H , tangent to the I factor. Thus we will
always regard @=@z as being defined (and nonzero) on the union of the 0–handles and
the nonminimal horizontal 1–handles.

Let Fz be the partial foliation on W whose leaves are the orbits of the flow along
@=@z . Some leaves of Fz may terminate or originate in a 2– or 3–handle of W . These
are the leaves whose images in zX meet a 0– or 1–cell. In terms of transverse area,
the set of such leaves has measure zero, and we will discard them from Fz . Note that
the remaining leaves of Fz still meet the 0–handles in a set of full measure. Let Uz

denote the union of the leaves of Fz .

Every vertical 2–cell of zX is a face of exactly two 3–cells, and also is not tangent to
the vector fields @=@x or @=@y . (The sides of Q are not parallel to the x– or y –axes
because the matrix A is hyperbolic.) These facts, together with Remark 4.9, imply
that for any vertical 1–handle H D I �D2 , the vector field @=@x on the neighboring
0–handles extends to a nonvanishing vector field on H , tangent to the I factor. By
adjusting lengths, we can arrange that this field is independent of the z–coordinate
(this is already true in the 0–handles). The vector field @=@y is defined similarly. We
also define partial foliations Fx and Fy on the union of the 0–handles and vertical
1–handles, analogously to Fz . Note that these two foliations coincide in the vertical
1–handles, even though they are transverse elsewhere. Again, we will discard all
leaves terminating or originating in a 2– or 3–handle of W . Let Ux and Uy denote,
respectively, the unions of the leaves of Fx and of Fy .

4.11 Every leaf of Fz is homeomorphic to R and is oriented by the vector field @=@z .
It terminates in a well-defined point of @W , and originates either at a point in @W or
at a point in the boundary of a minimal 1–handle. Similarly, every leaf of Fx and Fy

both originates and terminates on @W . For p 2U˛ let �˛.p/ denote the terminal point
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of the leaf of F̨ containing p (for ˛ D x;y; z ). This defines maps �˛W U˛ ! @W .
Also let o˛.p/ be the origination point of the leaf of F̨ containing p .

Definition 4.12 We wish to define the fold sets in W , which will be embedded surfaces
with boundary (minus a measure zero set). Let e1; : : : ; ek be the closed edges of T

which meet the image of �T ı g . Given ei and a point pi in the interior of ei , the
preimage .�T ıg/�1.pi/ is a properly embedded surface †i �W , by transversality,
and the preimage of the interior of ei is an open regular neighborhood of †i . The
intersection of †i with the handle decomposition of W is a handle decomposition
of †i , and the map is transverse with respect to this structure. The closure of the
preimage of the interior of ei is a union of handles of W , and is a codimension-zero
submanifold of W , homeomorphic to †i � I , with the product handle structure. That
is, each 0–, 1– or 2–handle of †i � I is the product of a 0–, 1– or 2–handle of †i

with I . The product structure †i � I is chosen so that fibers p� I map by q ıg into
vertical lines in M (in particular, I corresponds to the z–coordinate in the 0–handles).

Let vi be the lower endpoint of ei (with respect to the height function), and orient the
I factor of †i � I so that †i � 0 maps to vi . The handles of W comprising †i � I

are all 0–, 1– and 2–handles. Various 1–, 2– and 3–handles (those mapping to vi by
�T ıg ) may be attached in part to †i � 0. Let Ei be the intersection of †i � 0 with
the union of all minimal 1–handles. It is a codimension-zero submanifold of †i � 0,
equal to a union of attaching regions of minimal 1–handles. Every minimal 1–handle
is attached to two surfaces Ei ;Ej for some i 6D j , since the adjacent 0–handles are
distinct and map to distinct edges of T . Lastly, define Fi to be Ei \Uz . Note that Fi

has full measure in Ei .

Having defined Fi and vi , note that various vertices vi may now coincide (unlike
the embedded case). Define the heights hi exactly as before: hi D h0.vi/. Define
LD log�.RArea.f //, and note that equations analogous to (2)–(4) hold.

�L
D RArea.f /(8)

�L
D RArea.f /log�.�/(9)

.��/L D RArea.f /1Clog�.�/(10)

We redefine the subtrees Ti to be smaller than those from Section 4.2, by splitting
along the edges above the vertex. That is, we now define

Ti D fx 2 T j int.ei/\ Œx; �/ 6D∅g:

This is an open subtree of T , not containing vi . Define Si , Ai , and Bi as follows:
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� Si D @W \ closure..g ı�T /
�1.Ti//

� Ai D Si \ .g ı h/�1..hi ; hi C 1//

� Bi D Si \ .g ı h/�1..hi CL; hi CLC 1//.

Note that Si is a subsurface of @W and @Si D @W \ .†i � 0/. The next lemma has
essentially the same proof as Lemma 4.3.

Lemma 4.13 Ai \Aj D Bi \Bj D∅ for i 6D j .

Now let F D
S

i Fi , and define �CW F ! @W to be the restriction �zjF . That is, �C
flows F “upward” along @=@z to @W . Note that �C is indeed defined on F , and is
injective. Define the low and high parts of F as before:

.Fi/low D fp 2 Fi j h.g.�C.p///6 hi CLC 1g

.Fi/high D fp 2 Fi j h.g.�C.p///> hi CLC 1g:

Also define Flow D
S

i.Fi/low and Fhigh D
S

i.Fi/high .

Lemma 4.14 RVol.g/6
�

RArea.f /CRArea.gjF /
�
= ln.��/.

Proof We have RVol.g/D RVol.gjUz
/ since Uz has full measure in the 0–handles

of W . Note that every leaf of Fz starts on F or on @W , and ends in @W . Thus we
may decompose Uz as U F

z [U @
z where

U F
z D fp 2 Uz j oz.p/ 2 F g;

U @
z D fp 2 Uz j oz.p/ 2 @W g:

Now RVol.gjUz
/D RVol.gjU F

z
/CRVol.gjU @z /. By pulling back the metric from zX

and integrating along leaves of Fz , we have

RVol.gjU F
z
/6 1

ln.��/
RArea.gjF /

and RVol.gjU @z /6 1

ln.��/
RArea.gj@W /D

1

ln.��/
RArea.f /:

Remark 4.15 In the current situation, there is no ambiguity or choice involved in
the definition of �C . The difference with the embedded case is that each minimal
1–handle has two attaching regions contributing to F , and there is a unique way to
flow upward from each side. In effect, the fold set has been doubled, and this also
accounts for the missing factor of 2 in Lemma 4.14 (compared with Proposition 4.1).
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Our main task now is to bound RArea.gjF / in terms of RArea.f /. The next result is
entirely analogous to Proposition 4.4, and has the same proof. The only difference is
that here the area elements are pulled back from zX .

Proposition 4.16 RArea.gjFlow/6 .��/RArea.f /2Clog�.�/ .

Next we need an analogue of Equation (5). In order to define the lengths `x and `y for
the sets .Fi/high , we need to extend the vector fields @=@x and @=@y to the surfaces
†i � 0. Recall that †i � I has a product handle structure, and these vector fields are
defined in the interiors of the 0–handles and 1–handles (all of which are vertical). Note
that @=@x , in the interior of †i � I , is zero in the I factor and constant (as t 2 I is
varied) in the †i factor. Thus @=@x extends continuously to †i � 0 as a nonvanishing
field, defined on the interiors of the 0– and 1–handles of †i � 0. Any leaf of Fx

meeting †i � 0 remains entirely within †i � 0, since @=@x is tangent to this surface
(indeed, every †i � t has this property). The vector field @=@y extends to †i � 0 in
the same way. Lastly, we discard leaves of Fx and Fy meeting 2–handles of †i � 0,
so that every leaf in †i � 0 begins and ends in @Si . These remaining leaves have full
measure in the 0–handles of †i � 0.

We now define `x..Fi/high/ to be the transverse measure of the set of leaves of Fy

meeting .Fi/high . That is, we project .Fi/high\Uy to @Si using �y , and then measure
this set by integrating the pullback of the length element ��zdx from M . Similarly,
`y..Fi/high/ is defined using the length element ��zdy .

Proposition 4.17 RArea.gj.Fi /high/6 `x..Fi/high/ `y..Fi/high/ for each i .

Proof First observe that the intersection of a leaf of Fx and a leaf of Fy is either one
point (in a 0–handle of †i�0), a closed interval (in a 1–handle of †i�0), or is empty.
To see this, map both leaves to M and project onto the x–axis. Each Fy leaf maps to
a single point, whereas each Fx leaf maps monotonically, with point preimages equal
to sets of the form described above.

It follows that the map

�y � �x W .†i � 0/\Ux \Uy! @Si � @Si

is injective when restricted to the 0–handles of †i � 0.

Next define the map gi W †i�0!R2 to be q ıgW †i�0!M followed by projection
onto the first two coordinates of M DR3 . Thus, q.g.p//D .gi.p/; hi/ 2M for all
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p 2†i � 0. Let �x; �y W R2!R be projections onto the first and second coordinates
respectively. It is easily verified that gi agrees with the following composition of maps:

.†i � 0/\Ux \Uy

�y��x

����! @Si � @Si

gi�gi
����!R2

�R2
�x��y

�����!R�R:

(Write q.g.p// as .xp;yp; hi/; both maps send p to .xp;yp/.)

Recall that †i�0 maps into R2�hi �M , and so the surface area element being pulled
back in the computation of RArea.gj.Fi /high/ is the horizontal area element of M . This
element is just the product of the length elements ��zdx and ��zdy .

In the integrals below, .Fi/high is understood to be restricted to the 0–handles of †i�0

(where area is supported). We have

RArea.gj.Fi /high/D

Z
.Fi /high

.q ıg/�.��zdx ��zdy/

D

Z
.Fi /high\Ux\Uy

.�x ��y ıgi �gi ı �y � �x/
�.��zdx ��zdy/

which, by injectivity of �y � �x , is at mostZ
�y..Fi /high\Ux\Uy/��x..Fi /high\Ux\Uy/

.�x ��y ıgi �gi/
�.��zdx ��zdy/:

The latter is equal toZ
�y..Fi /high\Ux\Uy/

.�x ıgi/
�.��zdx/

Z
�x..Fi /high\Ux\Uy/

.�y ıgi/
�.��zdy/;

which is just `x..Fi/high/ `y..Fi/high/.

In Section 4.5 we defined the projection maps …x;…y W M !M , sending .x;y; z/
to the points .x; 0; z/ and .0;y; z/ respectively. We also had projections �x; �y W

zX D

R2�T !R2 , mapping .x;y; t/ to .x; 0/ and .0;y/ respectively. Define the sets Qi ,
Ri �M DR2 �R as follows:

Qi D �x.g..Fi/high//� .hi ; hi C 1/

Ri D �y.g..Fi/high//� .hi CL; hi CLC 1/:

The claims of Lemma 4.6 remain true exactly as stated, and are proved in the same
way. Thus:

Lemma 4.18 For each i we have

(1) x̀..Fi/high/6 �Area.Qi/

(2) ỳ..Fi/high/6 �L Area.Ri/.
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Next we adapt Proposition 4.7 to the current situation.

Proposition 4.19 RArea.gjFhigh/6 �RArea.f /2Clog�.�/ .

Proof As in the proof of Proposition 4.7, it suffices to show that Area.Qi/ 6
RArea.f jAi

/ and Area.Ri/6 RArea.f jBi
/ for each i : since

RArea.gj.Fi /high/6 ��L Area.Ai/Area.Bi/

by Proposition 4.17 and Lemma 4.18, we then have

RArea.gj.Fi /high/6 ��L RArea.f jAi
/RArea.f jBi

/

for all i . Summing over i , using Lemma 4.13, we obtain the desired inequality, by
Equation (9).

We claim that …y.q.f .Bi/// contains a subset of Ri of full measure. Given a point
in Ri , it is determined by points p 2 .Fi/high and h 2 .hi CL; hi CLC 1/. Let
p0 2W be a point on the leaf of Fz through p of height h; such a point exists since
p has height hi and �C.p/ has height hi CLC 1 or greater. Write q.g.p0// as
.xp0 ;yp0 ; h/ in the coordinates of M , and note that q.g.p// D .xp0 ;yp0 ; hi/. Thus
�y.g.p//D .0;yp0/.

If p0 2 Ux then �x.p
0/ is defined and is in Bi , and

…y.q.f .�x.p
0////D .0;yp0 ; h/D .�y.g.p//; h/:

Therefore this point of Ri is indeed in the image of Bi under …y ı q ı f . Thus we
want to verify that p0 2 Ux for almost all choices of .�y.g.p//; h/ 2Ri .

Let R0i be the set of pairs .�y.g.p//; h/2Ri such that h is not an integer. Let K� zX

be the intersection of g.W / with the 1–skeleton of zX . It is a finite graph, and its
image …y.q.K// has measure zero in the yz–plane in M . Note also that all 2– and
3–handles of W map by g into K .

The point p0 must be in the interior of a 0–handle or a horizontal 1–handle of W , since
p0 2Uz . In the latter case, p0 maps to a horizontal 2–cell of zX , and so h is an integer.
In the former case, @=@x is defined at p0 . If p0 62 Ux then the (discarded) leaf of Fx

through p0 meets a 2– or 3–handle. Then …y.q.g.p
0/// is contained in the measure

zero set …y.q.K//. But …y.q.g.p
0/// is the original point .�y.g.p//; h/ 2Ri . The

argument above therefore shows that …y.q.f .Bi/// contains R0i�…y.q.K//, a subset
of Ri of full measure.

Thus Area…y.q.f .Bi/// > Area.Ri/. Since …y is area-decreasing and q locally
isometric, we conclude that RArea.f jBi

/ > Area.Ri/. Similarly, RArea.f jAi
/ >

Area.Qi/.
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The bound

We can now determine an upper bound for �.2/.x/. Assembling Lemma 4.14 and
Propositions 4.16, 4.19 and consolidating constants, we find that

(11) RVol.g/6
�

1C�.�C 1/

ln.��/

�
RArea.f /2Clog�.�/:

Recall that all 3–cells of zX have the same volume V (so Vol3.g/D .1=V /RVol.g/).
Let C be the largest Riemannian area of a 2–cell of zX (or equivalently, of X ). Then
RArea.f /6 C Vol2.f /, and by Equation (11) we have

Vol3.g/6
�

1C�.�C 1/

V ln.��/

�
.C Vol2.f //2Clog�.�/:

Therefore FVolW .f / 6 D.Vol2.f //2Clog�.�/ for a constant D depending only on
the original matrix A (which determined �, �, and the geometry of zX ). Since the
3–manifold W was arbitrary, we have now established that �.2/.x/6 Dx2Clog�.�/ ,
and therefore ı.2/.x/4�.2/.x/4 x2Clog�.�/ .

5 The lower bound

To establish a lower bound for ı.2/.x/ we want a sequence of embedded balls Bn �
zX

whose volume growth is as large as possible, relative to the growth of boundary area.
The optimal shape is a ball made from two half-balls, each contained in a copy of M

inside zX , joined along their bottom faces. The half-balls in M will need to have large
volume compared to “upper” boundary area.

For the half-balls, we begin by defining optimally proportioned regions Rn � M ,
which are easy to measure in the Riemannian metric. Then we approximate these
regions combinatorially by subcomplexes Sn .

Extremal Riemannian regions

In the coordinates of M , define

Rn D Œ0; �
n�� Œ0; .��/n�� Œ0; n�:

The volume of Rn is easily computed by integration. Each horizontal slice Œ0; �n��

Œ0; .��/n�� z has area �n.��/n.��/�z , and integrating in the z–coordinate yields

(12) RVol.Rn/D
1

ln.��/
.�n.��/n��n/:
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Recall that ��D det.A/> 2. If n > 1 then 1
2
.��/n > 1, whence .��/n�1 > 1

2
.��/n .

Together with Equation (12) this implies

RVol.Rn/> 1

2 ln.��/
�n.��/n

D
1

2 ln.��/
.�n/2Clog�.�/(13)

for n > 1.

Next we consider the areas of the various faces of Rn . The top face has area �n (taking
z D n, above). Next, the segment Œ0; �n��y � z has length �n��z . Integrating with
respect to z , we find that the faces Œ0; �n�� 0� Œ0; n� and Œ0; �n�� .��/n � Œ0; n� each
have area .1= ln.�//.�n� 1/. By a similar computation, the other two vertical faces
each have area .1= ln.�//�n.�n � 1/ D .1= ln.��1//�n.1��n/. Since � < 1, this
quantity is less than .1= ln.��1//�n . Now let @CRn denote the union of the five faces
(omitting the bottom face) of Rn . We have shown that

(14) RArea.@CRn/6
�
1C .2= ln�/� .2= ln�/

�
�n:

Extremal combinatorial regions

Recall that D is the matrix

BAB�1
D

�
� 0

0 �

�
;

and � is the lattice B.Z�Z/, preserved by D . Fix any standard copy of M inside zX ,
corresponding to a line L � T . Then M is a subcomplex of zX , and we need to
understand its cell structure. Note that M is a union of subcomplexes R2 � Œi � 1; i �

for i 2Z. Consider the subcomplex R2� Œ0; 1�. Possibly after a horizontal translation,
the closed 3–cells are the sets 
 .Q/� Œ0; 1�, for 
 in � (recall that Q is a fundamental
domain for � acting on R2 ). Figure 2 shows the top and bottom faces of one of these
3–cells, in the case of no translation.

To be more specific, let � 0 be the lattice D�1.�/, and note that � 0 contains � as a
subgroup of index d . Then the 3–cells of R2 � Œ0; 1� are the sets 
 .Q/� Œ0; 1� where

 ranges over a single coset of � in � 0 .

Continuing upward, the closed 3–cells of R2 � Œi � 1; i � are the sets 
 .Di�1.Q//�

Œi � 1; i �, where 
 ranges over a coset of Di�1.�/ in � 0 . The choice of coset depends
on the path in T followed by L from height 0 to height i . (There are d i such paths,
and cosets.) Thus, the various copies of M inside zX have differing cell structures (with
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respect to the standard coordinates), though at each height they agree up to horizontal
translation.

For i D 1; 2; : : : let ƒi � R2 be the union of the sides of 
 .Di�1.Q// for 
 in the
appropriate coset of Di�1.�/ in � 0 . Then ƒi � i is a subcomplex of M , and in fact,
so is ƒi � Œi � 1; i �. This latter subcomplex is the smallest subcomplex containing the
vertical 1– and 2–cells of R2 � Œi � 1; i �.

Definition 5.1 Let w be the diameter of Q (in R2 , with the Euclidean metric). There
is a constant k such that every horizontal or vertical line segment of length w intersects
ƒ1 in at most k points. We will call k the backtracking constant for zX .

Lemma 5.2 Let W � R2 be a region of the form Œa; aCw��R or R� Œa; aCw�.
Let � W W ! R be projection onto the R factor. Then W \ƒ1 contains a properly
embedded line `, and the restricted map � W `!R is at most k –to–1.

Proof The components of R2�ƒ1 are isometric copies of the interior of Q. For the
first statement, note that an open set of diameter w cannot disconnect W , so W \ƒ1

is connected and contains a line joining the two ends of W . The second statement is
clear, since the fibers of � are horizontal or vertical segments of length w .

Applying the map Di�1 (and possibly a translation) to Lemma 5.2 yields the following
result. Note that D preserves the horizontal and vertical foliations of R2 by lines. In
particular, Di�1 takes fibers of � to fibers.

Lemma 5.3 Let W � R2 be a region of the form Œa; a C �i�1w� � R or R �
Œa; aC�i�1w�. Let � W W ! R be projection onto the R factor. Then W \ ƒi

contains a properly embedded line `, and the restricted map � W ` ! R is at most
k –to–1.

Now we can proceed to define subcomplexes approximating the regions Rn . Given an
integer n, we will define “slabs” Si;n � R2 � Œi � 1; i � for i between 1 and n. The
union

S
i Si;n will contain Rn , and will have comparable volume and surface area

(the latter of which is controlled by the backtracking constant k ). The slabs will not fit
together perfectly: there will be under- and over-hanging portions, but the additional
surface area arising in this way is not excessive.
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Fix n 2 ZC . For i between 1 and n, consider the four strips

W 1
i DR� Œ��i�1w; 0�

W 2
i D Œ�

n; �n
C�i�1w��R

W 3
i DR� Œ.��/n; .��/nC�i�1w�

W 4
i D Œ��

i�1w; 0��R

which surround the rectangle Œ0; �n�� Œ0; .��/n�. By Lemma 5.3, each of these strips
contains a properly embedded line in ƒi , projecting to the x– or y–axis in a k –
to-one fashion, at most. Choose segments `j

i �W
j

i in these lines which meet each
other only in their endpoints, forming an embedded quadrilateral in ƒi enclosing
Œ0; �n�� Œ0; .��/n�. Let Di be the closed region bounded by this quadrilateral, and
define the slab Si;n to be the subcomplex Di � Œi � 1; i ��M . Let Sn D

Sn
iD1 Si;n .

Let Wi;n be the rectangle delimited by the outermost sides of the strips W 1
i , W 2

i , W 3
i ,

W 4
i and note that Wi;n contains Di . The maximum width of these rectangles is �nC

2�n�1wD �n.1C2w=�/, and the maximum height is .��/nC2w 6 .��/n.1C2w/.
Let � be the larger of log�.1C 2w=�/ and log��.1C 2w/. Then the rectangle with
lower-left corner at .��n�1w;�w/, of width �nC� and height .��/nC� , contains
Wi;n for all i . Let R0nC� be RnC� , translated by ��n�1w in the x–direction and by
�w in the y –direction. Then we have

Rn � Sn �R0nC� :

Let @CSn denote the largest subcomplex of the boundary of Sn which does not meet the
interior of the base of Rn (that is, .0; �n/� .0; .��/n/� 0). Note that @CSn has three
parts: the top, Dn ; the vertical part, made of the sets `j

i � Œi �1; i �; and the horizontal
part, contained in the union of the annuli

�
Wi;n � i

�
�
�
.0; �n/� .0; .��/n/� i

�
, for

i D 0; : : : ; n � 1. This last part contains the horizontal 2–cells of height i in the
symmetric difference .Di � i/4 .Di�1 � i/, where the slabs fail to join perfectly.

Lemma 5.4 There is a constant C such that the Riemannian area of the top and
vertical parts of @CSn is at most C RArea.@CR0nC�/.

Proof Translating Dn upward by � , it becomes a subset of the top face of R0nC� .
Therefore its area is at most .��/� times the area of the top face of R0nC� . Next
consider the coordinate projections of `j

i � Œi � 1; i � onto the sides of R0nC� . These
maps are at most k –to-one, by the construction of `j

i . Moreover, the Jacobians of
these maps are bounded below by some J > 0, independent of n. To see this, consider
for example the coordinate projection onto the xz–plane (the case of odd j ). On each
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closed vertical 2–cell the Jacobian achieves a positive minimum, and there are finitely
many such cells modulo isometries of M . These isometries preserve the xz–plane
field, and hence also the Jacobian of this projection. The case of the yz–projection
is similar. Now the Riemannian area of

Sn
iD1 `

j
i � Œi � 1; i � is at most k=J times the

area of one of the four sides of R0nC� (one side for each j ). The result follows with
C Dmaxf.��/� ; k=J g.

Lemma 5.5 There is a constant D such that the Riemannian area of the horizontal
part of @CSn is at most D�n .

Proof Let Ai;n be the annular region
�
Wi;n � i

�
�
�
.0; �n/� .0; .��/n/� i

�
. Then

RArea.Ai;n/D .�
n�i
C 2w=�/.�n�n�i

C 2w=�/��n�i�n�n�i

D 2w�n�1�n�i
C 2w�n�i��1

C 4w2.��/�1

6 2w.�n�1
C�n�i��1/C 4w2:

Hence the area of the horizontal part is at most

n�1X
iD0

RArea.Ai;n/6 2w
�
�n�1

C�.�n
� 1/=�.�� 1/

�
C 4w2n

6 2w
�
��1
C�=�.�� 1/

�
�n
C 4w2n:

Lastly, 4w2n is less than .4w2= ln�/�n , thus establishing the result.

The bound

Recall that zX contains isometric copies of M , corresponding to lines in T . Choose
two such lines L0 , L1 which coincide at negative heights and diverge at height 0.
Let M0 , M1 be the corresponding copies of M in zX . Let S i

n be the subcomplex Sn

of Mi constructed earlier (recall that the construction depended on the cell structure
of Mi , which varies with i ). Let Bn �

zX be the subcomplex S0
n [S1

n . It contains
the two copies of Rn in M0 and M1 (which meet along their bottom faces), and its
boundary is contained in @CS0

n [ @
CS1

n .

Let a be the minimum Riemannian area of a 2–cell of zX . Combining Equation (14)
with Lemmas 5.4 and 5.5, we have

(15) Vol2.@Bn/6 .2=a/
�
C��

�
1C .2= ln�/� .2= ln�/

�
CD

�
�n:
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By Equation (13) we have

Vol3.Bn/> 1

V ln.��/

�
�n
�2Clog�.�/:

Thus there is a constant E such that Vol3.Bn/ > E.Vol2.@Bn//
2Clog�.�/ for all n.

By Remark 2.9, since Sn is embedded in zX , we have ı.2/.xn/> E.xn/
2Clog�.�/ for

xn D Vol2.@Bn/. Lastly, it remains to show that the sequence .xn/ is not too sparse.
Recall that the top Dn of @CSn contains the top face of Rn , and the latter has area �n .
Thus Vol2.@Bn/> K�n for some constant K . Together with Equation (15) this implies
that the ratios xn=xn�1 are bounded. According to Remark 2.1 of [5], this property
suffices to conclude that ı.2/.x/< x2Clog�.�/ .

6 Proof of Theorem 1.2

Section 4 and Section 5 established the proof of Theorem 1.1. Next we consider the
groups G†i AŠGA�Zi and their .iC2/–dimensional Dehn functions. The following
definition is taken from [5].

Definition 6.1 Let G be a group of type FkC1 and geometric dimension at most
k C 1. The k –dimensional Dehn function ı.k/

G
.x/ has embedded representatives if

there is a finite aspherical .k C 1/–complex X , a sequence of embedded .k C 1/–
dimensional balls Bi �

zX , and a function F.x/ ' ı
.k/
G
.x/, such that the sequence

given by .ni/ D .Volk.@Bi// tends to infinity and is exponentially bounded, and
VolkC1.Bi/> F.ni/ for each i .

The Dehn functions ı.2/.x/ for the groups GA have embedded representatives, as
constructed in Section 5. We also have the following result from [5].

Proposition 6.2 Let G be a group of type FkC1 and geometric dimension at most
kC1. Suppose the k –dimensional Dehn function ı.k/.x/ of G is equivalent to xs and
has embedded representatives. Then G �Z has .kC 1/–dimensional Dehn function
ı.kC1/.x/< x2�1=s , with embedded representatives.

The proof of Theorem 1.2 now proceeds exactly as in Theorem D of [5]. Let ˛ D
2C log�.�/ and s.i/ D

�
.i C 1/˛ � i

�
=
�
i˛� .i � 1/

�
. We verify by induction on i

the following statements for G†i A .

(1) �.iC2/.x/6 Cxs.i/ for some constant C > 0.

(2) ı.iC2/.x/< xs.i/ .

(3) ı.iC2/.x/ has embedded representatives.
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The first two statements together yield the desired conclusion ı.iC2/.x/' xs.i/ .

If i D 0 then (1) and (2) are the respective conclusions of Section 4 and Section 5,
and (3) holds as remarked above. For i > 0 note first that s.i/D 2� 1=s.i � 1/. Then
statement (1) holds by Theorem 2.7 and property (1) of G†i�1A . Proposition 6.2
implies (2) and (3) by properties (1)–(3) of G†i�1A .

7 Density of exponents

In this section, A is a 2�2 matrix with integer entries. Denote the trace and determinant
of A by t and d respectively. Note that the characteristic polynomial of A is given
by p.x/ D x2 � tx C d , and the eigenvalues are � D .t C

p
t2� 4d/=2 and � D

.t �
p

t2� 4d/=2. The next lemma shows that under certain conditions, the leading
eigenvalue can be roughly approximated by the trace.

Lemma 7.1 If t > 4 and t > d > 0 then �;� 2R and t � 4 6 � 6 t .

Proof First, t > 4 and t > d imply that t2 > 4d , and therefore �;� 2 R. Next, �
is the average of t and

p
t2� 4d , and so

p
t2� 4d 6 �6 t . It remains to show that

t � 4 6
p

t2� 4d . Note that
p

t2� 4t is the geometric mean of t � 4 and t , and so it
lies between t �4 and t . Since t > d , we now have t �4 6

p
t2� 4t 6

p
t2� 4d , as

needed.

Lemma 7.2 The function f .x;y/D logx.y/ maps the set

S D f .t; d/ 2N �N j 2 6 d 6 t � 4 g

onto a dense subset of .0; 1/.

Proof Given " > 0, fix an integer t > e2=" . We will show that the points .t; 2/, .t; 3/,
. . . , .t; t � 4/ map to an "–dense subset of .0; 1/.

Fixing x D t , the function f .t; � / maps Œ1; t � homeomorphically onto Œ0; 1�, and maps
Œ2; t � onto an interval containing Œ"; 1�, by the choice of t . Since fy D 1=.y ln.x//, we
have jfy.t;y/j6 1=.2 ln.t// < "=4 for all y > 2, again by the choice of t . Therefore

jf .t; d/�f .t; d C 1/j< "=4

for all integers d > 2. Thus the image of the set f.t; 2/, .t; 3/; : : : ; .t; t/g is "=4–dense
in (and includes the endpoints of) an interval containing Œ"; 1�. Omitting the last four
points, the remaining set is "–dense in .0; 1/.
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Now we can prove the main result of this section.

Proposition 7.3 (Density) Given ˛ 2 .1; 2/ and " > 0, there is a matrix A 2

M2.Z/ with determinant d > 2 and eigenvalues �, � with � > 1 > � such that
j.2C log�.�//�˛j< ".

Proof Given integers t and d , the matrix

A.t; d/D

�
t �d

1 0

�
2M2.Z/

has trace t and determinant d (and eigenvalues �;�). Note also that ��D d implies
that 2C log�.�/D 1C log�.d/. Thus we need to choose t and d so that log�.d/ is
within " of ˛� 1.

First, choose a number T such that

(16)
4

.t � 4/ ln.t � 4/
6 "=2

for all t > T .

Next, apply Lemma 7.2 to obtain t and d such that jlogt .d/� .˛� 1/j < "=2 and
2 6 d 6 t � 4. We may assume in addition that t > T , since only finitely many points
of S violate this condition, and omitting these from S does not affect the conclusion
of the lemma. By Lemma 7.1 we have

(17) 2 6 d 6 t � 4 6 �6 t:

Note that f .x;y/ D logx.y/ has partial derivative fx D � ln.y/=.x ln.x/ ln.x//.
Along the segment f.x;y/ j t � 4 6 x 6 t; y D dg we have

jfxj6
ln.d/

.t � 4/ ln.t � 4/ ln.t � 4/
6 1

.t � 4/ ln.t � 4/
:

This implies (with Equation (16)) that

jlogt�4.d/� logt .d/j6
4

.t � 4/ ln.t � 4/
6 "=2:

Now, since � is between t � 4 and t , we have

jlog�.d/� logt .d/j6 "=2;

and hence log�.d/ is within " of ˛� 1.

Lastly, the inequality � < 1 reduces to d < t � 1, which holds by Equation (17). The
inequality � > 1 is clear since t > 2.
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