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Kleinian groups of small Hausdorff dimension
are classical Schottky groups. I

YONG Hou

It has been conjectured that the Hausdorff dimensions of nonclassical Schottky groups
are strictly bounded from below. In this first part of our work on this conjecture, we
prove that there exists a universal positive number A > 0 such that any 2—generated
nonelementary Kleinian group with limit set of Hausdorff dimension < A is a classical
Schottky group.

57M50, 57MO05; 53C21, 53C20, 37A15

1 Introduction and Main Theorem

Let H? be hyperbolic 3—space. A subgroup I' of PSL(2,C) = Iso(H?) is called a
Kleinian group if it is discrete. Let x € H3. The orbit of x under the action of T is
denoted by I'x. The limit set A of T is defined as Ar = I'x N dH?3. By definition,
Ag is the smallest closed I'—invariant subset of dH?3. The group T is said to be
elementary if Ag contains at most two points, otherwise I' is said to be nonelementary.
Note that elementary Kleinian groups are completely classified. Henceforth when we
say “Kleinian group I'” we will assume that I" is nonelementary. The group I is
of the second kind if A # OH?3, otherwise it is said to be of the first kind. The set
Qr = dH? — Ar is the region of discontinuity, and I" acts properly discontinuously
on Qr.

Let {Aq, A’l, cos Ag, A;{} be a collection of disjoint closed Jordan curves in the Rie-
mann sphere C and let D;, D; be the topological disks bounded by A;, A} respectively.
Suppose we have {)/,-}’1‘ C PSL(2,C) such that y;(A;) = A} and y;(D;) N D} =
Then the group I' generated by {y1, ..., Yk} is a free Kleinian group of rank k, and
I' is called a marked Schottky group with marking {y1,..., ¥%}. A finitely generated
Kleinian group I" is called a Schottky group if it is a marked Schottky group for some
marking. If there exists a generating set {1, ..., Yk} such thatall A;, A} can be taken
as circles then it is called a marked classical Schottky group with classical marking
{¥i,.... vk}, and {y1, ..., yx} are called classical generators. A Schottky group T is
called classical Schottky group if there exists a classical marking for I".
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For a Schottky group I', the manifold H3/T" is homeomorphic to the interior of a
handlebody of genus k. We denote by Jj the set of all rank k& Schottky groups, and let
Jk,o be the set of all rank k classical Schottky groups. One simple way to topologize
Ik is to identify it with the space of moduli of a Riemann surface of genus k.

It is known that not all Schottky groups are classical Schottky groups. In fact, the
space of classical Schottky groups is not even dense in the space of Schottky groups by
Marden [5]; also see Doyle [3].

In [3], Peter Doyle proved that there exists a universal upper bound on the Hausdorff
dimension of the limit sets of finitely generated classical Schottky groups. It was
originally Phillips and Sarnak in [7] who proved that there exists a universal upper
bound on the Hausdorff dimension of the limit sets of classical Schottky groups of
dimension greater than 3.

Let ®r denote the Hausdorff dimension of Ar. The main result is the following.

Theorem 1.1 There exists a universal A > 0 such that any 2—generated nonelementary
Kleinian group T" with D1 < A is a classical Schottky group.

Note that our result can be viewed as the converse of the result by Doyle [3] and
Phillips and Sarnak [7]. The proofs of their theorems rely on the crucial fact that
Ao/ T)=Dr(n—Dr), for D1 > 1, where Ao(H"*!/T') is the bottom spectrum
of the Laplacian of the hyperbolic manifold H”*!/I". But this identity obviously is
useless in our situation.

We prove Theorem 1.1 by using a result from our paper [4] and selections of generators.
The proof is divided into three main steps.

To lead up to the proof, we first do some preliminary estimates on the locations of the
fixed points of a given set of generators of a Schottky group. These estimates give us a
sufficient control on how the fixed points of a set of generators change in terms of the
Hausdorff dimension of the limit set of the group. The main ingredient of the proofs of
these estimates relies on [4, Theorem 1.1], rewritten in the trace form.

Next we obtain a set of sufficient conditions for any given sequence of Schottky groups
to contain a subsequence of classical Schottky groups in the unit ball in hyperbolic
space. These conditions are stated in the upper-half space hyperbolic model. The idea
is that if the radius of isometric circles of a sequence of generators decreases sufficiently
faster than the reduction of the gaps between any of the fixed points of the sequence of
generators, then this sequence of generators will eventually become classical generators.
We do this first by transforming the generators with the condition that the generator
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with the shortest translation length is transformed into vertical position passing through
the origin with fixed points at north and south poles. And then these generators are
projected into upper-half space.

In the first step of the proof, we consider Schottky subspaces of the Schottky space that
consist of Schottky groups I' for which there exists a generating set St for I' with the
set of fixed points of St on the boundary sphere on the unit 3—ball hyperbolic space
that are mutually bounded away from each other by a positive constant.

In this step we prove that Theorem 1.1 holds for these Schottky subspaces. This is
proved via contradiction. Suppose I';, is a sequence of nonclassical Schottky groups in
the subspace with the Hausdorff dimension of Ar, decreasing to 0.

The idea is that we first transform these generators of the generating sets ST, into the
standard form with the generator of ST, of shortest translation length put in vertical
position. If no generator of St, is of bounded translation length when ©r, — 0
then it’s easy to see this will lead to a contradiction. On the other hand, it’s a simple
corollary of [4] that there can exists at most one generator of bounded translation
length per ST, when ©r, — 0. If such a generator does exists, then we first make
a careful change of generators which will be constructed based on estimates that its
fixed-point set will be “minimally excluded” from isometric spheres of the generator of
bounded translation length. Working with these generating sets we will show that with
appropriate additional transformations and changes, the generators with translation
length that is not bounded will always grow sufficiently fast to lead to disjoint isometric
spheres which are also disjoint from the rest of the isometric spheres of the other
generators.

One of the crucial tools in estimating this growth is the strong form of the inequality
of [4]. We will show that when one of the generators is of bounded translation length
then it will force the needed growth for the rest of the generators. With appropriate
choice of generators this will lead to a classical Schottky group.

In the second step, we prove that on the nonclassical Schottky space there exist universal
lower bounds for ®r + Zr; see Section 2 for notation and definitions. Essentially this
means that we cannot simultaneously have arbitrarily small Hausdorff dimension and
minimal gaps of the fixed-point set on the space of nonclassical Schottky groups. This
is proved using generator selection and the results of step one.

In the last step, we prove that when ®r is taken sufficiently small then I" can be
taken as Schottky group. This is based on basic topological arguments and some
well known results on Kleinian groups. We prove (by an easy standard topological
argument) that any finitely generated Kleinian group with limit set of sufficiently small
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Hausdorff dimension is a Schottky group, but Dick Canary pointed out that it’s simpler
in the 2—generated case based on the result of Peter Shalen which assures that any
2—generated Kleinian group is either free or cofinite volume.

The paper is organized as follows: In Section 2, we define and list global notation
which will be used throughout the paper. In Section 3, a strong form of Theorem 1.1
of [4] will be stated for two generators, which we shall use for selecting generators; see
Corollary 3.2. In Section 4, for a given sequence of Schottky groups I';, with bounds on
Zr, (see Section 2), we prove inequalities that will enable us to control fixed points of
a given sequence of generators of I';, in relation to the Hausdorff dimensions O, of
T',,. These will be used in the selection process. In Section 5, sufficient conditions for a
given pair of generators to be classical generators are established which we will use in
our generator selection process. In Section 6, we will use tools developed in previous
sections to form a generator selection process and prove that Schottky groups with small
Dr, and bounds on Zr, are classical Schottky groups. In Section 7, we will prove
the theorem that will remove the bound condition on Zr,, . Section 8 completes the
proof of our main theorem by reducing finitely generated Kleinian groups with small
Hausdorff dimensions to Schottky groups via a standard known topological argument.

This paper is dedicated to Ying Zhou.
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2 Notation

Let ' C PSL(2, C) denote a Schottky group generated by (o, 8) with « having fixed
points 0, co. Assume that y € I' is a loxodromic element having fixed points # oo.
Write y in matrix form

with det(y) = 1. We will set the following notation and definitions throughout the rest
of the paper.

Notation 1 e Denote the critical exponent of I' by Dr and the Hausdorff dimen-
sion of Ar by Dr.
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* R, denotes the radius of isometric circles of y.

e ny=-d/c,{ =ajc.

» We will define two different ways to denote the two fixed points of y: {z}, ;, zyu}
denotes the two fixed points of y in C with |z, ;| < |zy,| and {zy,—,zy +}
denotes the two fixed points with z, 4+ given by quadratic formula with subscripts
+ corresponding to ++/tr?(y) —4. Note that we always take the principle
branch for the square roots of complex numbers.

e L, is the axis of y.

e T, is the translation length of y.

o Set Zg:=min{|zg_ —zg |, |[1/z5_—1/zp 4}

* Zp=min{Zp, |zp 1| |zp | |zp 17" |z 17"}

e For € > 0, we say that Z1 > ¢, if there exists a generating set {«, 8) of I" such

that Z(a,ﬂ) > €.

e Given any two sequences of real numbers {py, ¢, }, the notation p, < ¢, means
there exists o > 0 such that 0~ < liminf p, /g, <limsup p,/q, <o.

Notation 2 Let {y,} C PSL(2, C) be a sequence of loxodromic transformations. Let
{pn} be a sequence of complex numbers, and {g,} a sequence of positive real numbers.
We write

|2yt — Pn| < 4n

if there exists N such that for every n > N we have at least one of the following holds:

@) |zyu,+ — Pnl <4n.

(i) |zy,,— — Pnl <qn-

3 Free group actions

Given a finitely generated nonelementary Kleinian group I, the critical exponent
of I' is the unique positive number Dr such that the Poincaré series of I given by
> yere? dist(¥,¥%) is divergent if s < Dr and convergent if s > Dr. If the Poincaré
series diverges at s = Dr then I is said to be divergent. Bishop—Jones showed that
Dy < Dr for all analytically finite nonelementary Kleinian groups I'. In fact, if T" is
topologically tame (H?/ " homeomorphic to the interior of a compact manifold-with-
boundary) then Dr = ©r. Hence it follows Agol’s [1] proof of tameness conjecture
that Dr = ®r for all finitely generated nonelementary Kleinian groups. The critical
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exponent is a geometrically rigid object in the sense that a decrease in Dr corresponds
to a decrease in geometric complexity.

Next we state the following theorem from [4], which provides the relation between the

group action and the critical exponent.

Theorem 3.1 (Hou [4]) Let I' be a free nonelementary Kleinian group of rank k
with free generating set S, and x € H? then

A

Z 1 1
yes 1 + exp(Dr dist(x, yx)) — 2

In particular we have at least k — 1 distinct elements {y;; }1<j<k—1 of S that sat-
isfies dist(x, y;; X) = log(3)/Dr, and at least one element y;; with dist(x, y;; x) =
log(2k — 1)/ Dr.

The following is a useful corollary of Theorem 3.1, stated here for the case of I" is a
free group of rank 2.

Corollary 3.2 Let S = {y1, y»} be a generating set for a free nonelementary Kleinian
group I'. Let x € H3. Then

1 eDr dist(x,y1x) +3
. > b
dist(x, yox) = Dr log DG

Corollary 3.3 Let S = {y1, y»} be a generating set for a free nonelementary Kleinian
group I'. Let x € H3. Let m be any integer. Then at least one of the elements ' of
S ={y"y2. y{"“yz} satisfies dist(x, y’'x) >log3/Dr.

4 Trace, fixed points and Hausdorff dimension

In this section we study the relationships of fixed points of generating sets of a given
sequence of Schottky groups I';, and the Hausdorff dimensions of Ar, .

What we like to do is to find a relationship between the distribution of the fixed points
of one of the generators in terms of the translation length growth of the other generator
and the Hausdorff dimension of its limit set. By having this type of relationship we
will be able to construct a new set of generators from the given generating set with
prescribed distribution of its fixed points. The new set of generators will be a crucial
ingredient in the proof of our theorem.
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Let {I',;} be a sequence of rank 2 Schottky groups with D,, — 0 generated by o, B, €
PSL(2, C) in the upper space model H? with

An O
an=(0” x;l)’ Phon > 1.

__[Aan by
Set Bn = (Cn dn) .

We assume throughout this section that there exists M > 0 such that 7y, < M for
all n. Set Dy, = Dr,,. Let tr = trace.

First we will state Corollary 3.2 in the trace form.

Proposition 4.1 Suppose there exists A > 0 such that Zg, > A. There exists p > 0
depending on A such that

1/(2Dy,
220 3}
|)\n|2Dn_1

|tr(Bn)| > p (

for large n.

Proof Let T}, be the translation length of B, and R, = dist(Lq,,Lg,). Let x, be a
point on axis of &, which is the nearest point of Ly, to Lg,. By triangle inequality,
T, > dist(xy, Bnxn) —2Ry. And for sufficiently large T}, we have for some positive
constant ¢ > 0, [tr?(B,)| > ceT. Now for large n, from Corollary 3.2,

1/Dy,
|)\'n|2Dn + 3 -2 dist(ﬁan ’L"ﬂn)
Pal 243000, )-
|An |2Dn -1

|?(Bn)| > ¢ (

Now Zg, > A implies that dist(Lq,,, Lg,) < M for some M > 0. Hence the result
follows. O

Remark 4.1.A  Note that without assuming bounds on Zg, we can state above Propo-
sition 4.1 as

1/Dy,
|tr2(,3 )| > ¢ |)\n|2Dn +3 (e—ZdiSt(Ean ,Eﬁn))
! [hn[2Pn — 1 ‘

If dist(Lq,,, Lq, p,) < € then there exists § > 0 such that

1/(2Dy,
hal2Pe 3\
|}hn|2D”_1

ltr(Bn)| > p (

for large n.
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The next lemma and its corollaries are estimates of convergence rates of fixed points of
the generators of I, in terms of the Hausdorff dimension of A.

Lemma 4.2 Suppose there exists A >0, M >0 such that Z o, g,y > A and Ty, < M
for all n. Let ky, [,, be any integers such that T, apkns Ty, in < M . Then there exists a
constant p > 0 such that

P

+ | Zgfen — N,k DRI A
ﬂn“n T o, ,Bnan |tr(13n)||)\£1n knl

Z

i I\nﬂnaln + é‘a{nﬂna

for large n.

Remark 4.3 Lemma 4.2 is an estimate of how fast the fixed points converges, it’s
not important to our applications in this paper which fixed point converges to 7, and
which converges to §, for a given y € PSL(2,C).

Given a complex number z = re’? we write V22 =z if —r <20 <7, and vz2=—z if
260 > or 20 < —m. Then a more precise statement of Lemma 4.2 which dichotomizes
the above inequality for large » would be:

(1) Y rz(annﬂna )—tr(annﬂna

z

ol
< s —
|t(Bn) | AL n

Z k 1 - k 1
ay” Bnay' ,— nann Buou

(ii) —yt rz(‘xnnﬁna )—tr(annﬁna )

Z K 1 - k 1
anm Bnatd' ,— g-0¢nm Bnad

k, 1 - k 1
a," Bnay ,+ é‘G‘nn Bnou

< ’ Ik
|tr(Br) A" "
Corollary 4.4 Suppose there exists A > 0, M > 0 such that Z,, g,) > A and

Ta, <M forall n. Let ky, [, be any integers such that Ty, kns Ty, 1n < M . Then for
any § > 0 there exists € > 0 such that if D, < € then,

z knﬂna ,+ 77Oln ﬂnan

<8(Aa|*=1).

Zakng,aln + Ean"ﬁnaf{’ Zokn Bualn 7~ Mo Baln

The same dichotomy decomposition of the inequality holds as given in Remark 4.3.

Proof Let us assume that \/trz(an"ﬂna ') = tr(an”,Bnoz '). Also Zy, 8,) = A by

Proposition 4.1 as D, — 0 we have |tr(8,)| — oco. In addition, by Z (4, ,) = A, we
have |z g, —z_ g,/ > A, and also |z g, |1, |Z_,ﬂn|_1 > A gives |z g, —z_g,| <
|z4.8,| + 12— g,| <2/A. There exists ¢y, ¢ >0 with ¢y <|z4 g, —z_ g,| <cz. By

|z4.8, — 2.8, = |V tr2(Bn) —4/(2cn)|, such we have ¢; <|/tr?(B,) —4/(2cn)| <cs.
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This implies [tr(8,)| < |cn|, and since tr(8;) = a, +dy, there exists ¢3, ¢4 > 0 such that
¢3 < |(an +dn)/cn| < c4. Since |tr(B,)| — oo, implies Rg, — 0,and Zy, g,) = A

gives us that there exists cs, cg > 0 such that c5 < |an/cn|, |dn/cn| < cg, for large n.

Therefore the fixed points z4 g, of B, must — {a,/cuy,—dn/cy}. There exists
¢,c’, N > 0 such that that

An . 2k,
Z — — A
{”,Bnan ,+ Cn n

(a2 — ) 4 2 ek o) 4 auade
- Zanl" —hn Cn)»én_kn ‘
\/tl‘z(annﬂna )—4— \/‘[rz(an”ﬂna
- 2cnkl” ~kn

|\/tr2(a,lf”,3 almy—4— \/trz(a,lf”ﬁ almy|.

W" ""nt (Bn))

If |tr(oz,lf” ,Bnaf,”)| < k, for some x > 0, and all # then this is at most

ck’

I =Rn | ew(B)|

for some k' > 0.

Otherwise it is at most

\/trz(ozn”,B almy — 4|
AR |t (Ba)|

1

— 1.
\/ — 4/ 2 (o Bl

Using the Binomial series
(1—-4/ tr2(oz,]f"/3,,01,11”))_1/2 =1+ 2tr_2(a,]f"ﬂna,l,”) + €n,

with €, — 0 at order |tr™* (a,’f" ,B,,ocf,")| gives ¢ > 0 such that

co

Tk ] for large n.
Ik 1R | tr(B ) |t (k™ Bt
Hence in either case we have for some ¢’ > 0 that
/
c
forn > N.

= In—k
[An "t (Bn)l
This gives (i) of the Lemma.
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Now Ty kn» Ty, 1n < M implies |Af,”_k”| < M' for M’ > 0. Hence,

an ok "
—_— n| <
b | T Bl

n>N,c">0.
n

By 4cosh(7g,) = |tr?(Bn)| + |tr*(Bx) — 4|, we have

eon < | (Ba)|(1 42/t (Ba) )

Since |tr(B,)| — oo, there exists a > 0 such that eT8» < altr(8,)|? for sufficiently
large n.

Note that if |tr(a,]f" ,Bnocf,”)l — oo then we also have the stronger inequality

u "
Zon g ol +__”k’2;kn < T T n> N, >0.
n Pnlpn , Cp |tr(18n)||tr(ann,8nann)|

Here we can take ¢ > co/ |)\£,"_k"| as given in the above binomial inequality.
. T i !
And there exists b > 0 such that e @n" Bnoi’ < b|tr(oz,’f” ,Bnafl”)|2. We therefore need
. _ -T /2
min {pe Tonl2 pe " e e } <8(IAn|*—1), for large n, and some p > 0.

By |An|? = eTen | we require

$
maxiTp, Lo g oy} = 2108 (erp%l) |

Hence it follows there exists p’ > 0 such that if D, < p’ then at least one of
Tg,. T kn Bl satisfies the above inequality. Therefore we have
n n“*n

|Zﬂn,+ —an/cnl < 8(|)\n|2 -1)

for D, < p. The proof for the other part is same.

—\ 2 (@r" Buast) = tr(kn Bualn)

replaced by z _«,, 1, _ and vice versa. O
a," Bra

n o>

The case

18 similar with z I
ann ﬂn 0fnn ,+

Remark 4.5 Based on the proof above, we note that the condition Zy, g,y > A in
Lemma 4.2 can be replaced with conditions |tr(8,)| — oo and |tr(B,)] < |cal.
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Corollary 4.6 Suppose there exists A > 0, M > 0 such that Z,, g,y > A and
Tw, <M forall n. Let ky, I, to be any mtegers such that Ty, kn, Ty, 1n < M . Then
there exist constants 8, p > 0 such that if |tr(an ﬂnan )| = o0 then

,o
[tr(ory” Bucts®) | [tr(B)|

for all D,, < §. The same dichotomy decomposition of the inequality holds as given in
Remark 4.3.

Zal ol £~ Sl Bt | T Pk ot T Nk Bl | <

Proof Let us assume that 4/ tr? (an" ,Bna )= tr(a,," ﬂnozn”) Using the inequality in

the proof of Corollary 4.4 and taking o’ > ¢/ |)\n” k”| with ¢ given in the proof of
Corollary 4.4, we have

‘\/trz(a,lf"ﬁna )— 4| 1
|tr(Bn) \/1 4/ w2 (an” Buat)

By using the binomial series as in the proof of Corollary 4.4 and taking ¢” > 0 as

4n 3 2ky
z knﬁnot + — a)\.

—1].

o’ >ao0'/ |kf,” e | where o is the constant given in the proof of Corollary 4.4 we have

OJI

~ Jtr(o” Bt 1tr(Bu)|

An )\Zk,,

Z ok -—
Olnn.BnOfn ,+ Cn

The proof for the other part is same.

—\ a2 (@ Buont) = tr(kn Bualn)

replaced by z «u , 1, _ and vice versa. O
ay” Bnay' ,—

The case

is similar with z x I
" Broy ,+

Lemma 4.7 Suppose there exists A >0, M >0 suchthat Z,, g,y > A and Ty, < M
for all n. Let ky, I, to be any integers such that Tankn , Tanln < M . Then there exists
constants o1, 0, > 0 such that

/
01|tr(cx,,”ﬂnoc n)l U2|tr(an ﬂna )|
Z|Zaknﬂ aln +_Z(anﬂ aln _|Z )
|tr(Bn) n Pnlns n Pnln’s |tr(Bn)|

for all n sufficiently large.

Proof Note that we have

a d

n 2k, _ (_ _nk;zzn) ‘ _
Cn Cn
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As in the proof of Lemma 4.2, Z 4, g,y > A implies ¢ < /tr2(B,) —4/(2¢cp) < ¢’ for
some ¢, ¢’ >0 and |tr(B,)| — oo implies [tr(B,)| < ¢n (e K¢y < |tr(Br)| < K¢y for
some K, k’ > 0). Since |An~%1| < M’ we have

k I
K|tr(ety” Buoty')|

k /
<l . (e Buay')|
M"tr(ﬂn)| aiz{nﬂna;lf naﬁz{nﬂnallf

|tr(Bn)|

By Lemma 4.2 the result follows. O

Although next Lemma is not used in the rest of the paper but we include it here to
demonstrate relations between fixed points and Hausdorff dimensions.

Lemma 4.8 Suppose there exists A >0, M > 0 such that Z,, g,) > A and M -1 <
Ta, <M forall n. Let ky, [, be any integers such that Ty, kns Ty, 1n < M . Then for
at least one i € {0, 1}, and any integers k,,, [}, with |(k, —k,)| + |(ln —1)| =i, we
have

K
Z . ;o —Z g / z
Gfll;nﬂnaizns‘i‘ aﬁnﬂnallf’_) Dn|tr(13n)|’

for all n sufficiently large.

Proof Since Ty, > M ™! we have A, /& 1. If |tr(a,lf”,3na,l,”)| < M then

K n—1N k m|—0
| é‘Ofnn Bnoy nann Buot ’

otherwise we have
7z kn /n) > A

(ot o Broy
for some A > 0 which implies by Proposition 4.1, |tr(a,]f” ,Bna,l,”)| — 00. Hence we
have |k,2,§a§n Boaln ~Nokn g oln | A 0. Since

Tofrt gyt = Maf oty 2 Cal 1ol = Ml g ol
by Lemma 4.2 we get

Z kn+1 1 —Z K 1 I > K.
| O‘nn+ Bnoyt ,+ an(n—i_ ﬂnann,_|

Then by Lemma 4.7, |tr(an”+1,3na£,")| > '|tr(By)|. Since |tr(By)| > log3/D, we
have |tr(an”+1ﬂn(x,l{‘)| > k’'log3/D,. Similarly we also have |tr(a,]f”ﬂno¢,l,”+l)| >
k" log 3/ D, . The result follows from Lemma 4.7.

We note that the condition Ty, > M ~! is of convenience only not necessary, the lemma
still holds without this condition. O
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Finally in this section we make the following observation based the proof of Lemma 4.2.
Note that if we don’t care about the precise upper bound of fixed points of a,]f" ﬂnaf,”
t0 & knp ins7 kna in»then we can relax the conditions in Lemma 4.2 and state as
foll an" Bnoy an" Bnoy

ollows:

Remark 4.2.B Suppose that |zg, | —zg, _| <c and |cnkf1”_k”| — 00. Then

Z k I Z Kk I} — Kk l k Ing-
{ o, Bnayt,+° annﬂno‘nn,_} {gannﬂnann’ nannﬂnann}

5 Sufficient conditions

In this section we will state and prove a set of conditions for a given sequence of
Schottky groups with decreasing Hausdorff dimensions that will be sufficient for the
sequence to contain a subsequence of classical Schottky groups.

Let (B, distg) be the unit ball model of hyperbolic 3—space. Let w: B — H? be the
stereographic hyperbolic isometry.

Given a loxodromic element «, of PSL(2,C) acting on the unit ball B model of
hyperbolic 3—space, denote by Sg,» and Sy-1 , the isometric spheres of Euclidean
radius r of a. We set A, (q) as the multiplier of 74 () in the upper space model H3.
For R > 0, set Cg as the circle in C about origin of radius R.

Proposition 5.1 Let o be a loxodromic element of PSL(2,C) acting on B, with
axis passing through the origin and fixed points on north and south poles. Then
7(Sq,r NOB), 7(Sy-1, NIB) maps to Cyy, Cy

k(o) ? k(o) *

Proof Let T, be the translation length of «. The Euclidean radius r is given by
r~1 =sinh(7/2). In terms of A, (4).

_ 2@
|}\‘JT*((¥)|2 -1

Set e = (0,0, 1) as the north pole of dB. Let dy,8,—1 > 0 denote the radius of
7 (Se,r N3B) and 7(S,—1 , N IB) respectively. Then for x € Sy, N IB, &y is given
by

4r2 4
82 = M where x—e’= ————
(I4+72)|x—el* Ar.(a)|®+1

which implies Sa = |Ar,(@)l-
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Similarly for x € S,—1 , N 3B we have
4r? Hhrs o2
§2_, = % where |x —e|? = L(g)l
¢ (I+72)|x—e| |)“n*(a)| +1
L 1
which gives Oy—1 = .
Mn*(oz)l

This completes the proof. O

Lemma 5.2 Let {o,, B,) be generators for Schottky groups Ty, in the upper-half space
model H? with |tr(8,)| — oo and

An O
an=(0" A;l)’ An| > 1.

Suppose one of the following set of conditions holds:
e There exists A > 1 such that for large n, we have |A,| < A and
Anl ™" < 128,01 = 128l < [Ans
1 1
lim inf{ , } =0
n (2l = AaDIEBa)l (12p,.01 = [An =D tr(Bn)

e There exists k > 0 and for large n, we have |A,| > k and

-1
K < |ZBnJ| < |Zﬂn,u| <K,

lim inf

1 1
" {(|Zﬂn,u| —Oltr(Bu)l” (2,11 —K“)Itr(ﬂn)l} =0

Then there exists a subsequence such that for i large, 7~ (ap,, Bn; )7 are classical
generators for I'y; in the unit ball model B .

Proof Let us suppose there exists a subsequence (o, , By;) that satisfies the first set
of conditions. First assume that for large i, [z, , —zg, ,|>6>0.
- I

Let r;, p; denote the Euclidean radii of the isometric spheres of JT_IOlnl. 7, w7} Bn; 7
respectively. Note that 4 cosh(7,,—1 Bn; 2) = |tr? (w1 By, )|, which implies there exists
¢’ > 0 such that r

e i > | (T By ).
Since ,oi_1 = coshdist(o, L,-1p, ) sinh(%Tﬂqﬂn'n) [2, page 175], we have ,oi_1 >
sinh(%T 71 B, =) so for large i there exists ¢ > 0 such that

1/2)T__
1o DT
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Hence there exists §; > 0 such that p; <8 |tr(Bp,;)|™! for large i. Since for z,w € C,

2
—1 o
Y = e
and 77 ) — a7 w)| = |77 @) [V w) |2z = w).

This implies for large i, and x; € Cjz, | and y; € Cllni B

pi _ 281xi +eflyi +el
7= txi ==yl T e (Ba)lIxi — yil
Since |An, | < A, there exists §, > 0 such that |x; +e||y; + €| <2, and
Pi 26102 _
|w=txi — 7~ yl| |tr(/3,,l)||x, il

Similarly there exists §3 > 0 such that for w; € ClZBn~ ;) and z; € Gy -1
’ 14

lim

5 Pi 28163
1m = =
i | lw; _”_12i| |tr(,3n,)||wz — zj|

Hence it follows that for large 7, and Proposition 5.1, the isometric spheres S, —14,
S S S

-1y —1p3—1
T lo‘ni JT,ri’ T lﬂni T, Pi

i nﬂri ?

1 are disjoint.

71 B o000
Remark 5.3 Note that if we don’t assume that [A,;| < A then we don’t have bounds
on |x; + e||y; + e|. However, since |x; + e||y; +e| < (|Zﬂn ul DAy | +1) for
Xi € Clzg, 1> Vi € C,y ) and |x; + efly; +ef = (1zg, 1] + D(|An; [~ "+ 1) for
xi € (| 24, 1| Vi € C‘ Do 11+ Hence we can state the COIldlthIl as follows:

—1
An|™" <lzg,.1

= |Zﬂn,u < |Anl,

teine d el + DAAal + 1) (2p,01 + DRI+ D | _
(12l = Pa DI BT (12, 11 = Poal~Dlr(Bo)

Next let us assume that |z,3n 2By, 1| = 0. Under this assumption we can do a
much stronger estimate of the lower bounds of cosh dist(J, L’,gn ), distance between
the point j on the vertical j—axis and the axis of B,, in the H?3. Note however that a
weaker lower bounds is sufficient in our case.

Recall that given any two points /1 = (z1,6;),h, = (z2,6,) € H? the hyperbolic
distance is given by

|21 — 2212 + |61 — 65

coshdist(fy, hy) = 0.0
102

+ 1.
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Since |Z/3nl_ u— zlgni,1| —0and 1/A < |ZBni 1= |ZBn,- | <A we can estimate the quan-
tity cosh dist(;, Eﬂni) by using the above formula for (zq, 0;) € ﬁtxn,- and (z3,0,) €
[’ﬂni . Since for large i we have |z; —z;| > |Z’3ni’[|,

161 — 621 = 112p, 11 = 30128, e = 28, aDIs - 26162 = |28, ullZg, =2, .11-

Hence for large i we have

1280yt >+ (28,01 = 328, 0 — 28, 1) .

coshdist(j,Lg,. ) >
! |Zﬁni9u |Zﬂni SU _Zﬂni:l

. _1 .
Since |A| < |Z,3ni,1| < |Zﬂnl_ ul <A and |Z,3ni’u —Zﬂni,1| — 0, we have for large i
there exists o > 0 such that

coshdist(j, Lg,.) > S —
F 2By 4 = 2B

Alsoby A™! < |Zﬂn,~,l| < |Z/3n,-,u| < A and |Ay, | < |A], there exists 0’ > 0 such that
|JT_1(Zﬂnl_,u)/HJT_l(Zﬂni,[)/l > o’. Since
—1 —1 —1 —1
E R T M I L C7 N U | ol G MO M 7 MR MV B
—1 —1
wehave |77 zg, ,—7zg, ulZ 0/|Zﬂni = 2B il

The equality pi_l = coshdist(o, L,-18, ) sinh(%T x—18,.7) and the above estimates
imply that for i large, there exists 64 > 0 such that

|tr(/3ni)|_1-

Hence there exists §5 > 0 such that for x; € C|an W Vi €C, s
i i

—1 —1
pi =84l 2, =T 2, 0

—1 —1
/Ol 85 |7T Z,Bni U -7 Zﬂni :l| _

lim <lim =0.
i | lx;— 1y i |tr(Bu;)|1xi — yil
Similarly there exists §¢ > 0 such that for w; € Cjz, | and z; € C)y, -1,
1’ 1
. Selm™1z -7 1z
lim lOl . 6 ﬂnl’ U ﬂni :l _ 0
i |7 wy =z T |tr(Bn; )| |wi — zi '

From these estimates and Proposition 5.1 we have for sufficiently large i, S;-14, 7.,

Sn—loe;ilmri are disjoint from Sﬂ—1ﬂ.ninjpi, Sn_‘,.B,lemp,- . Since |tr(Bp; )| — oo implies
71 B 701 and S, Bilmp AT disjoint when i is large, we have the first part of the
lemma.

The second part of the lemma can be proved in the same way. O
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Remark 5.4 Note that in the course of the proof we see that if |A,| — 1 then we can
weaken the first set of conditions in the above lemma to

-1
Anl ™ <12g, 1l = 128l < |2nl,

|Zﬂn»l _Z,Bnyu| |Zﬂnal _Zﬂn,u|

liminf , =0,
e {<|z,3n,u| — DB (25, 41— |An|—1>|tr(ﬁn>|}

6 Schottky subspaces J (1)

This section is devoted to proving Theorem 6.1 by utilizing results established in the
previous sections.

For 7 > 0, define Ji () :={I" € Jx|Zr > 7}. Recall that J; denotes set of all Schottky
groups of rank k.

Theorem 6.1 Let 3, be the set of all 2—generated Schottky groups. For each T > 0
there exists a v > 0 such that {I" € J,(7)|Dr < v} C Jk0-

Proof We prove by contradiction. Assume there exists a sequence {[',} C J2(7)
of nonclassical Schottky groups with D, — 0. By passing to subsequence, we may
assume Dy — 0 monotonically. Set I'y = (an. Bn) With Z4, g,y > . We arrange
the generators so that |tr(a,)| < [tr(Br)|. There are two possibilities: (I) There exists a
subsequence such that |tr(ay; )| — oo, and (II) |tr(e,)| < M, for some M > 0.

Case (I) is trivial. Since both |tr(ay; )|, [tr(Br;)| — 00 as n — oo, it follows from
Z(a,Bn) > T, there must exists N such that (a,B,) becomes classical Schottky
groups for n > N . A contradiction.

Now we consider Case (IT). We work in upper space model H?. Conjugate (e, B)
by a Mobius transformation into

An O
anz(o" x;l)’ hon| > 1.

Denote Bn = (an bn) .

cn dp

Since |tr(a,)| < M implies |A,| < M’ for some M’ > 0, it follows from Proposition
4.1 and D, — 0, we have |tr(8,)| — oco. In addition, by conjugation with Mobius
transformations, we can assume S, have ng, = 1. By replacing B, with B, L if
necessary, we can assume [{g | <|ng,|.
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Since Z (4, g,) > T, there exists Ay, Ay, Az, Ay >0 suchthat Ay <|zg, ;| <|zg, 4| <
Ay, and Az <|zg, 1 —2g, ul < A4. It follows from Lemma 4.2, Ay <|[{g,| <[ng,| <
Ay, and Az <limy, [§g, —ng,| < As.

For each n, choose integers k;, such that
2k 2
1 <18g, Ay " | < [Agl.
We consider the generating set (o, a,’i" Bn).

By passing to subsequence if necessary, there are three cases that need to be considered
(to simplify the notation, we denote subsequences by the same index notation):

(A) [, An "= 1.
(B) 125,22 = Anl?| = 0.
(C) Cases (A) and (B) do not occur.

6.1 Case (C)

We use the same notation index for subsequences. Since cases (A) and (B) do not occur,
for large n there exists 1 < |[A] < |A,|, 0 < 1 such that |§nkﬁk"| — o|A|%. Let ¥, be
the Mobius transformation that fixes {0, co} defined by ¥ (x) = x/(/c|A]), x € C.
Thlen |n1/fa’,§”,3n1/f*1| — 1/(\/o|\]) and |§¢a5nﬂn¢,1| — /o |A|. By Lemma 4.2, for
n large,

’

max {

P
2y Byt F Tyl Byt | |y gyt Syl Byt } = Bl

Hence there exists o', p”, p””" > 0 such that

1 el
|x/5|)»|——0|)»|'—

R T b Vo | (Bl

1 1 1 Z
and - '>p’/|ﬁ|x|——|x|‘— L
“yakr Byt 4+ Fyakngy—t — Vo |tr(Bn)

This implies that there exist A > 0 such that
2y oln -1 > A
Hence applying Proposition 4.1 to the generators (Yo, y !, WOe,If" By~ implies

e (Yan” Bayy ™) = oco.
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Set k = /(0 +1)/2|A|. Then for sufficiently large n we have k < |Ay|, k7! <

|Z1/foe£§”/3n1/f—1,l| < |Zl/faif”ﬂnw—1,u| < k. And obviously,
. 1
lim % =0
"= |y agn g ) ME O Ba YD
. 1
lim

=0
" ({Zwak”ﬂnw—lﬂ_K_l)’tr(wo‘gnﬂ”w_ln

n

Therefore, (Yo, ™!, WOe,If” Bny~1) satisfies the second set of conditions of Lemma
5.2, and so by Lemma 5.2, these will be classical generators for large 7, a contradiction.

6.2 Case (A)

By passing to a subsequence if necessary, we have two possibilities:
(A1) |An|? =1 is monotonically decreasing to 0.

(Ay) There exists A > 1 such that |A,| > |A| for large n.

6.2.1 (A;) Here we either have

(i) timsup, [[Zn s | hnl?||{qiny —1]7" <00, 0

(if) timiny |18 g | = 2nl?[|Cquny — 1] — o0,

If aff” Bn satisfies (ii), we conjugate a,’,‘" Brn with Mobius transformation ¥, defined by

X

Vn(x) = .
Ca’llm Bn
Consider (Y,oX" Baal ¥, )71 and take /, = —1. By factoring out {?, ;2 in (ii),

On Pn

lim inf ¢, %]~ )|1 —[8qng |7 Iknlz‘ ‘Z;’,;nﬂnkﬁ —hy| o0

— OQ.

LI —1 2 -1 2 2

timinf |1 = |g, 221|622 —2
: —1 2 _ —

Since { iy g An = Ngn g ot A0 Ly pfon g gt yty—t =1y, 0fn g, gty We have

—)\2 !

n

.. 2
lln}zlnf“l |77a,’§"ﬁna;‘|| — 00,

k _
nann Bnan !
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giving
-1

lim sup —1 < 00.

n

1 el a1 | — M"'z‘ ‘g(wna,’:"ﬂna;wf;l)—l

The generator (W,,oe,’f” Bnot, lwn_ 1)~1 satisfies (i). Hence replacing the generators
if necessary we can always assume the generators satisfy (i). And without lost of
generality we will assume that (o, oe,lf” Bn) satisfies (i).

Consider (1).
In this case, we have either
() timsup, |16, | = Aal?[[E m s — 7' >8>0, 0r
(i2) timsup, |18, 1= Aal?[ S0, = 1] =0.
Consider (i1).

Lemma 6.2 There exists ¢ > 0 such that

. c
dlSt(Ean s £Ot,l¢m ﬂn) < IOg (Man_l) ’

Proof We first show that
1

— 0.
|tr(Bu)|(|An]? — 1)

From Proposition 4.1 we have

1/(2Dy,
| . ( 227 — 1 )” )
imp

BN —1) = ™\ (7a2D% + 3) (P — 120

and for large 1, we have |A,|*P» —1 < |A,|> — 1 which implies that for some p’ > 0,
, 1
lim 3
e (Bn)|(|An]* — 1)

It follows from Lemma 4.2 and 7, By = 1 that

<limp/(|An|? = 1)(172P0)/@Dw) — g,

Gytng, = 1| = P10 = [z, =zt | = [, — 1] + 2B
Since 1 < |§ak,,ﬂ | < |An|?, we have

z —Zz

" Bn.— aﬁ”ﬂn,+)> ZaZ"ﬂn_l)_ 4
Anl? =1 T a1 uBa)l(Aal? = 1)
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By the condition (i1 ) we have

R
|)\n|2_1 |)\.n|2_|§a£l€nﬂn|+|§a;l/ltnﬂn|—1 M+1’

for some M > 0.

Hence for large n there exists x > 0 such that

Za;lfnﬂn,_ _Zallqcnﬂn,‘F 1 _ /0/ > K
|Anl? =1 M +1  |tr(B)|(|An]* = 1)

For the upper bounds we have

e, a4 < 2l 2" (B)]
Note that dist(Le,, £ knp ) = inf{dist(hy, h)|hy € La,, 1> € Lykng }. Set hj =
(zj,6;), j = 1,2. Then for an upper bound we can take

1
(z1.61) = (0’ et g1+ 3 2k —Zaf;"ﬂn,ﬂ)’

1 1
(22,62) = (E(Z(xrlf" B T Zalr /3,1,1)’ 21 i ™ Zaln 1)
By Lemma 4.2, 1 —o1|tr(Bu)| ™! <12 knpg <12 kng | <|An|? +02|tr(By)|~! and
Rk oy Bu,l oy Bu,u
above estimates for |Zaﬁ” Bt " Zakn g, we have

coshdist(Ly,, , La{f" ﬁn)

1 2 2
alzgkn g, 0t 2, 17tz

< +1
12 s e ot (i g, ol 317080 3, 00— Zatn g, 1)
|Anl? 4+ 0" [r(B)| ™" + k(IAn? = 1) + 1 "
(AnE— 1) el
This last inequality implies the Lemma. |

Lemma 6.3 .

lim —— =0
" (e Bl (1An]> = 1)

Proof It follows from Proposition 4.1 and Lemma 6.2 that there exists p > 0 such that

1/(2Dy)
(a2 4+ 3) (2 = 1)
Anl?P =1 |

}uwﬁmnzp(
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hence we have

2D, 1/(2Dy)
lim —— : <lim p’ D [An] 21 D .
|tr(en” Br) [(|An|* — 1) ([An]2Pn + 3)(|An]* = 1)*Pn

Since [A,|*P7 —1 < |Ay|?> —1 for large n we have

1
lim —— <lim p"(|s|* = )1 =4D,)/2D,) =0. D
|tr(atp” Br)|(|An]? — 1)

For large n by condition (i1), we have §(|A,|>—1) < |An|?> — IEak,,ﬂ |. Then by Lemma
4.2,

X
}Zaﬁnﬂn,u| o |§0t;l1mﬂn ” = |Z(¥;’1‘"ﬂn»u N é‘a’llmﬂnl < |tr(ﬂn)|

for some x > 0 we have

X
|tr(Bu)|”

2 2 X 2_1)—
hnl? = gt = Ponl? = g, | = 1> 8C0hnl” = 1)
Set €, = (8(JAn|?> — 1) — x/|tr(Bx)|). Define Mobius transformations by

Yn(x) = (1 + 6—”)k;loc).

2|Zal,1(nﬂn’u|

_ €n —1
Then il = g, g1l = Pl = (1 32 ) al g,

Also by Lemma 4.2 and 1), By = 1 we have

/

X
“Z()l;/;nﬂnal} _1‘ = m
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This gives

—1
|Z‘pna;§nﬁn‘pn_lsl| B |)Ln|

={14+—— )|z in A7t =A™
O )

_ Enlzo/fn ll
= |Anl 1(|Zai,‘"ﬂn,l| 1+ 2|n—/3"|)
Zar]\;nﬂnsu

€nlz kng /
- |)\n|—1( a," Bl X )

1 (|tr(,3n)|6n|za”1<nﬂn,l| —X/)

>
Pl e B\ 21z gpony |

> 1 (Sltr(ﬁn)l(lkn|2_1)|Z(x,lf"ﬂn,l|_X|Za£f"ﬂn,l| _X/)
enl e (B 2zging

By Lemma 6.3 and the above inequality we have

|Z‘/fnolfl1mﬂn1/fn_lal
|tr(“’]’cnﬂ”)|(’ana’,f"ﬁnw;l,l} - p‘”'_l) %0

|tr(a,’f"ﬂn)|(|kn| N ‘Zl/fnarlinﬂn‘/fn_],” ) —
Hence,
|)\n|_1 < |Zr/fnoc,11‘"ﬂn1/f;71,l} =< |Zl/fna§"/3nlﬁ;71,u < |Anl,
. 1 1
lim =0

kn ’ — k”
T U2y, gn gyl = DI @R Bl (20 g = [l ™D ler(e” o)

The generators (Yuanyr, !, w,,oz,]f" Butr, ') satisfy the conditions of Lemma 5.2 for
large n.

Consider (i5).
There exists |,0akn—1ﬂ | = 1 such that Zak,,—lﬂ Pakn=1p, =Tykn—1p = 1. If

lim sup Ipakn—1/3 —1]>0,
n n n
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then (with the same index notation for subsequence there exists a subsequence) such
that

i inf Cofn—tp, = Mafr=ip, | > 0

This implies by Lemma 4.2,

liminf |z x,—1 —Z kn—1 > 0.
n I an" " Bu,t oe,f” ,Bna_|

Hence by Proposition 4.1, there exists p > 0 such that for large n,

1/(2Dy,
2P 4 3) /P
|}¥n|2D”_1 .

ltr(akn=18,)| = p (

In particular, we have |tr(oz,]f"_1 Br)| — oo. Note
lo 14 |—1
lim —2n" Pn
n |An]?—1

This can be seen as follows: since |A,|> — |§aknﬂ | < |An|?> =1 we have either
n n

Anl? — . Mnl? =1 sen
al Vg, | TP g,

1
p‘nlz_l B |)\n|2_1

Assume that the latter inequality holds. This is equivalent to (i) and we follow the
same idea used in (i1). Set Mobius transformations ¥, (x) = k;l (1 —€,) ' x, with
en = €(|An|> = 1)/(2|An)?). Then,

(Anl =18y, oion gyt | = |2n| = At —én)_lé“a;fnﬂnl
= Al ™' (1 =) (PAn > (1 = €0) — 1 en g, 1)-

Since |A,|* — |§af‘{"ﬂn| > €(|An|?> = 1) we have

) ~ e(|An]?*—1
> Tl 7N = ) 1(e<|kn|2—1>—|“'2€"):%'

Since €, — 0, it follows from last inequality that for large n we have

|)\n | - |§Wnarl§n Bn¥ri

|Anl =18, ykng -1l
n Yo" Bn¥rn ! > E/ >0.
[Anl* =1
And Myan gyt = A (1 —en)™! we have
[ v
Yo" Bn¥n n — € > 6// > 0.
|)\|2_1 2|)Mn|3(1_€n)
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Since |tr(oz,lf” Bn)(|An|> = 1)| = oo, it follows that for large ,

[An| ™! 1l < 2al,

< |771/fn0l;11mﬂn¢n_l| = |§T/fnall1€n3n"/fn_
. 1 1
m
kn 1y n
| @R By, gt gt | = PAn =) T @R BIE, pong 1= 1)

Hence by Lemma 4.2, (Y,anr, !, wna,]f" Butr, ') satisfies Lemma 5.2.
If the former holds then
AP (U= 18t g 22D = Pon2(1 = (g1 )
= |)‘n|2(|§a;\l’n*1ﬂnpakn*1ﬂn |- |§0£,1f"7]ﬂn )
= [hnl?[8nt 5, (Patn-1, | = 1)

The last equation implies that

o =14 | —1
lim —22" P,
no A1

and |tr(oc,,”_1,8,,)(|)\,,|2 —1)| = oo. It follows that for large n,
al ™ < gt 5, | < D, | < Pl

. 1 1
lim =0

n |tr(an"_1'3n)|(|r]akn_1/3n| —|Anl) ’ |tr(a”n_lﬁn)|(|§a§"_lﬁn| —|An™H

Hence by Lemma 4.2, (o, oe,]f"_lﬂ,,) satisfies Lemma 5.2.

Consider the case where p x,-1, — 1.
Op Bn

Let ¥, be the Mobius transformations given by

1 Zykn—tg X —=Z kn—lg _Z kn—lg
wn(x):A_ n ﬁnﬂ n ﬁn; n ﬂns , xe(c‘

X —Z kp—1
n a," Bu,—

1

where A, =

2
Z kp—1 Z kp—1 —Zz _
ap" Bu,—"ay" Bu,+ a,’;” I'Bn’_

Let ¢, be the Mobius transformations defined by

Gn(x) =1

1
X
k _ .
Yno" Bnvn !
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Then ¢ ® | is given by

Ynan" Burir ‘i

k,
1 —2 kn— oy" Brn(z kn— —Z kn—
é— p — arlfn l.Bn:_ n 'Bn( afz\n lﬂna_) Olff" I,Bna"‘
GnVnan" BuVri it 1— Zakn—l
n

kn
Bn.+ On ,Bn(Zal;'n—lﬂn,_i_) _Zaflfn_lﬂn,_

To see this we do a simple computation. Set

oy = ¢n¢nasn_lﬁn n_l n_l and B, = ‘Pn‘ﬁna;];"ﬁn‘ﬂn_l n_l-

Werite the matrix
= &n Bn
,Bn =" =

Cn dp

Note that by our choice of ¢, we have ng, = 1,s0 ¢, = —c?n and {Bn = &n/—Jn. By
straightforward matrix multiplications we have

~ 2 k k
dpn= —2% _ Ay —Z kp—1 Anh
n afln lﬂn,— n “n " By, n
+ Z kn—1 Z kn—1 (Z kn—1 )\._knCn + )\._kn dn),
Qp Bn,—"ay Bu,+ oy Bn,—"1 n
k k
~Zkn—1, " anZ kn—1, Ay bn)
= : 1 ; +Z kn—1 Z kn—1
2 fn—1 A e, Ak d, oy Bus="an" " Bt

~ o n.—
dp = L

(Zgn—tg _hu " cn + Ay " dn) !

Zarlfnilﬂny_(an 'Bn(zarlfnillsns_) Zaﬁnilﬁns'i‘)

(Cgn=tg _ha"cn + Ay " dn) !

— kn kn
dn - Zaén_lﬂna_zasn_lﬂna‘i‘)\‘n an + Zagn_lﬂna_)\n bn
2 k, —k
—Z% Z kn— Aep A d
a;lfn lﬂn,—( o' I,Bn,"‘ n “n%n n)’
kn ki’l
za{f"ilﬂn,—()“n a’lza§n713;1,++kn bn) _
—kn —kn z kn—1
An Mep+A,, M dy (7] Bn,—

V4 —
~ Otzn lﬁn,"r

—ky, —ky, _
(Zcxﬁ,‘"_lﬂ,,,—i-)‘” Cn+An "dp) !

S
I

kn _
Zall’fn_lﬂn7_(an ﬂn(zailfn_lﬁna—i_) Zaﬁn_lﬂn7_)

—ky, —k;, _
(Zallgn—lﬂm_i_}\‘n Cn + )"n dn) !
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Now by 1, = 1 we have

—kn —kn _
Z“ﬁn_lﬂna‘i‘)\‘n Cn +)\n dn _ 1 Zaizcn_lﬂna‘i‘

—k, —k T 1= ’
’_)\.n nCn +)\n ndn 1 Za,lfnflﬁn,—

atr=p,
Since ¢ 5, = dn/—dy, the formula for ¢ B, follows from the equations for &, and d,.
Let A, denote the multiplier of &,.
First, we need to get a estimate of the growth of |tr(B,,)| in terms of |tr(fB,)|. Note
that [tr(Bn)| = ltr(eis” B)].
Remark 6.A There exists o, 0’ > 0 such that

o'|tr(Bn)| > [te(Bn)| > oltr(Bu)|(|An|> —1)  for n large.

In fact we only need the lower bound for |tr(,3n)| .

Proof We have
a2 =1 Ggrng |=12al* gy | =1
|€a,’:”ﬂn_l| |§0!£f"ﬂn_1| |§a’/1‘n5n_1|

— 4

and by condition (i) we have

€yton g, | = Inl?

% 9
|§a£f"ﬂn o ll
|€ak”ﬂn - 1|
thus — 1 >e>0, for large n.
Anl> =1

Recall 7 xn By = 1, and by Lemma 4.7, more precisely by the second equation in the
proof of Lemma 4.7 and |tr(8,)| =< |cal,

k
tr(ay,”
B P 1ty ~ Mgy > 0'enl? = 1), for large .

|tr(Bn)|

The upper bound is trivial. a

Lemma 6.4 Assume that there exists a subsequence such that
185, —1I
m-———-——=
I A 12 =1

Then (&p; , ,5n ;) are classical Schottky generators for large j .
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Proof We will show that (&, , ,gn ;) satisfies the conditions of Lemma 5.2 with Remark
5.4.

Since by Remark 6.A, o'|tr(Bn)| > |tr(,8~n)| > o|tr(By)|(|An|?> — 1). In particular
[tr(Br)| — oo, we have

L 7 S BV M
lim =lim|l——| =
i g, 1 I t(Bay)

Since |tr(/§n ;)| — oo the isometric circles of ﬁn ; are disjoint for large j. Now
3 and 7n;

are centers of these isometric circles and so by disjointness, the radius of these isometric
circles must be less than

%5, ~ "5,
—~L— forlarge ;.

2
In addition, each isometric circle contains one of the fixed points

Za or zZjz .
ﬂn]- ,l ﬂn] sU

By our convention z B 1> ZF, u A€ contained within the isometric circles with centers
nios n;j

¢ 3,13 respectively. Note'that ng, = 1. Hence for large j we have
i Pnj nj

I

|Zan=l_§an| |Zansu_ 1

b < .
4, 1 K, —1 2

From these bounds we have

hm |Zan 5l _Zan au| _ llm ‘é‘an o 1‘
J (|Zﬁn]~,u| — An; DIteBr)| 7 ‘(|Z,§nj LD +H0- hn; D [tr(Bn; )|
1
<lim — =0.
- J |)¥nj|_1 1 Y
( anJ—_l’ —§)|tr(,3n,~)|
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Similarly we have

|Z/§njsl _Zgnj s”|

li — =
T z2 =l Dl
ﬂnj,l nj nj

= lim %, !
72, = 18, D+ (85, 1= D+ (1= Ay 1) [iBy)]
. 1

=i RN e

Hence by Remark 5.4, (ay;, ,g,, ;) are classical Schottky generators for sufficiently
large ;. O

Lemma 6.5 Assume that there exists M > 0 such that
¢z —1]
<P
|An|>—1
Then there exists N', o > 0 such that

|)~\n|20n 1> O_|tr(lgn)|2Dn/(2Dn—l) forn>N.

Proof Use matrix representations we can write

2 Zln n
ﬁ”=<5n cin)'

Note that n; = 1. So ¢, = —c?n and we have

Y Zln Bn
W—L@@)

By |¢ Bnl <1 and our assumption on M, we have

S

M(|X§|—1)<\;En—1|<M/.

By |tr(/§n)| — oo and as in the proof of Lemma 6.4 we have

Zz  —Zz VItr(Ba) |2 —4
hmw—ﬂ"’_ — lim % =
n e, =1 nl (B
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Since |ZI§” + 73, | = |c§n|_1| tr2 ,3,, — 4] it follows that for some 0,0’ > 0 and
large n,

olte(Bn)| < |dul < o' |tr(Bw)|(Ihn]® — )7L
1

Let e be the Euler number. If there exists a subsequence such that lim; |{ B |=e"",
then 1 —e™! < |an_ + 2, | <1+e7! for large n. Otherwise we let n, > 0 be
integers defined as ' l

From this definition we have limy, |A,|™" = lim, (1 + m,; )™ = ¢. Then there exists
N, 8 > 0 such that for n > N we have

S, = Namn 5, | = 185, Anl™ + 1]
<é8(e+1),
[8am g, = Mg, | = 185, Anl™ 1]
> §(e—1).
Hence it follows from Lemma 4.2 that there exists ¥ > 0 such that
K_l < |Z&1T”Bna+ —Z&Znngn’_| < K.

Therefore by setting m, = 0 for the subsequence with lim; |¢ By | = e~ !, we can

always assume that for large n,

—1
K < |Z~ 2 —Z~ 2 <K.
| azmﬂn;"‘ 0651""/3;1,—|

|\ tr2(@" ) — 4|

Since |Zomnz | —Zomng = —
&' Bt &y " By~ |dn)\nmn|
B ~ 5 o \tr 2
we have o |tr(Bn)| < |tr(@)" Bn)| < M
(1An2 = 1)
Since K< |zom

~ —z. ~
&y " Byt a;’;nnﬂnv_|<’c’

we have ~diSt(£&n,E&mn3 ) < 6 for some § > 0. By Remark 4.1.A applied to
(G, @™ Brn) we have

~ 1/(2Dy,
2P+ 3 /(2Dy)
(w22 =1

|tr (@ B)| > p (
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and as an upper bound for |tr(c)," Bn)l we have

~ B T 12D, 1/(2Dy) e
|tl’(,3n)|>pam_1(|)\,n|2_1)(M—H) S /( |Anl”—1

|5;n|2Dn -1 |5\.n|2D” . 1)1/(2Dn)

'y 1-1/(2Dy
>,0//(|}\'}’l|2Dn_l) /( )

The last inequality implies that

hnl? = 1> [ 227 =1 > p"ur(B) PP/ 2=, O

Proposition 6.6 Assume (iy). Suppose that there exists a M > 0 such that

Then (o, a*n—18,) are classical generators for large n.

To prove Proposition 6.6 when lim sup,, |tr(oz§”_1,3n)| < 0o we use disjoint nonisomet-

ric circles for o' B, based on the following.

Proposition 6.7 Given any loxodromic transformation y with fixed points # 0, co
and multiplier AJZ,, there exists disjoint circles S, r, S, of center o radius r and
center o' radius r’ respectively such that

2[Ay|

y (interior(S,,,)) Ninterior(Sy ;1) =@ and 1 +71" =|zy,4 — 2, | hy2—1
12—

Note that since |A, | > 1, so by this equality for r +r' we have an upper bound

Ayl +1

r+r <|zy——zy 4|
[Ayl=1

Proof We conjugate y into Mobius transformation y’ with fixed points {0, co}.
Consider circles SO,I)»V -1, S0,/ - The Mobius transformation ¢ (x) = (x—1)/(x+1)
maps the fixed points of y” which are {0, oo} to fixed points {—1, 1} respectively. In
addition it maps Sg |y, |1, So,[r,,| O Sz;,r Szi”f respectively. Here we can use basic
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formulas to determine zy, 2], ry, 7] (see page 91 of [6]). Explicitly by [6] we have

Ay 721 Ry T 1

}"1:‘

—Ay| 721 AT+
_ 2yl
Ayl2 =1
O el SN
Py P+ Ryl +1
2y
yl2 =1
4[Ay|
This gives A= —2
giv 1 1 |)\‘y|2—1

The distance between the centers is

Ay T2 =1 —A 2 -1

B P
—[Ay[ 2+ —Ay 241

B

lz1 — 2] =‘

The equality (JA,|? + 1) —2|A,| = (JAy| — 1)? > 0 implies Szwwszi,r{ are disjoint.
By conjugating ¢y’¢ ! with
Y) = x4 LEE

Zy’_l_ - Zy’_

we map the fixed points {—1, 1} to

22)’3_ 22%4‘
Zy4+ —Zy,— Zy 4+ —Zy,+

Because (x) is a translation (ie Euclidean isometry), the circles are mapped to
Sz5.r25 SZ/Z’,/ with same radius and preserves the disjointness. Finally conjugating

Yoyd~ 1y by O(x) = (zy1 — zy._)/2 maps

2zy,— 2zy 4
Zy 4+ T Zy,— Zy A+ T Iyt

to {zy,—, zy,+}, and maps circles to Sz, 5, Szg,rg- Note that

Ayl
Ayl?—1

V3’V§ = |zy,+ — zy,-|
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and preserves the disjointness. Note that y = 0y ¢y’¢p~ 11671, Hence the sum of
the radius of the resulting disjointed circles is

/ 2{Ay |
r3+ry=lzy——2zy |W a

Proof of Proposition 6.6 First assume that lim sup,, |tr(ozk” ! Bn)| < oo.Let Sy, s,
Soy,,r;, be the disjoint circles for (xn /3,, given by Proposition 6.7. We will show that

Fn 41,

hmm—O.
Note that
1' —rn—i—r’ 11m|z =1 —Z kn—1 | — 2/An|
m Al =17 Pt BT (B2 = D (A2 = 1)
<lim|z_x,—1 —Z jn— | 2¢
ment B e (K2 = D)(hnl? = 1)

where the second inequality holds since |tr(oz,]f”_1 Bn)| < C for some C > 0.

Since lim sup,, |tr(ak" =1 B,)| < oo and lim sup,, |An|¥»~1 < 00, we have by Lemma
4.7,
| <
Z kn 1 —Z An 1 .
Purt = Jue(B)l

By Proposition 4.1,

2D D,
2D Dy [Anl"7m 43 4p7n

tr n> n > .

| (18”)| p |)\.n|2Dn—1 |)\‘n|2_1

The last inequality follows from |A,|?P" —1 < |A,|? — 1 for large 7.

By our assumption that

&z —1]
M< ~I3n
|)\n|2—1
and Lemma 6.5 we have
. T +r
i |)\nT<hm(4pD") "M |te(B) | tr(B) |22 |t (B | 2P/ (1=2 D)

<1lim(4pPn) 12 Pn/=2D0) p /|1 (B,,) | (P (6=4 D)=/ (1=2Dn) —
n

where the second inequality holds since |tr(;§n)| < oltr(Bn)|.
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Now the circles S, contains one of z wln1pg, o Zakn=1p, + and So/ ;. contains

the other fixed point, and since 1,1 B, = =1 and g, kn—1p | — 1, it follows from
n n n

Lemma 4.2, we must have Sy, r,, Sy ,; contained in the region between 1/|A,| and

|An| for large n. Hence we have classical generators for large 7.

nsrn

Now if there is a subsequence such that |tr(oz,, ,Bn,)| — 00, then (ay;, o k"i_lani>
satisfies conditions of Lemma 5.2. O

6.2.2 (A;) To prove (Ay) we can follow the steps given in the proof of (A;), and do
the appropriate modifications. Some of the estimates will be simpler because |A,| > A
and so estimates involving (|A,|*> —1)~! will hold trivially. However to avoid too
much reproduction of the previous proof of (A; ), we give here a alternative short cut
proof of (Ap) instead.

Proof of (A,) Suppose that there is a subsequence (use same index for subsequence)
such that |tr(a5” Bn)| — oco. Then by our assumption of (Az), | kn 8 | - 1 and
|An| > A > 1 we have for large n,

A< gt g, 1= Egpn g, | < 2
1 1

=0.
(s Bl (1M1, | = A1) [tr(ex” B (I¢ oln g, | —An)

n

By Lemma 4.2, {(«, oz,]f” Bn) satisfies the second set of conditions of Lemma 5.2, hence
classical.

Otherwise we have |tr(an” Bn)| < C forsome C > 0. Since [{, kg | —1 and Nykn g, =
1, by Lemma 4.2 we have |z knﬂn,:tl — 1. Now by Remark 4. 1.A and |tr(a,,",3,,)| <C
we must have dist(Ly,, £ ol ,Bn) — 00. This implies that |z kg, 4 Zeln ﬂn,—l — 0.
More precisely we have:

Lemma 6.8 Suppose |Zaknﬂ + T Zgkng | = 0 and |Zaknﬁ 4| = 1. Then there
exists § > 0 such that

)
diSt(EOtn s Eaknﬂ ) < log ( ) .
! " |Zaé€nﬂn’+ _Zallfnﬂﬂr_l
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Proof By using hyperbolic distance formula, and since |z x, —Z kn | =0
an" Bn,+ an’ Bn,—
and |Zaﬁn Bn,:lzl — 1, we have for large #,
coshdist(Ly,, ﬁa,/i” Bn)

2,1 2
|Zaf§"ﬂn,u| + Z(|Za,’§"5,,,u - Zaff"ﬂn,lD

+1
1 1
2Uzeng, 11+ 3170 g, 0~ ot g, DUZafin , 00 = Zatn g, 0D
< p for some p > 0. o

Z kK —Z_K
| an" Bu,u an(nﬂn,l

Let So,r,, Sy, be the circles given by Proposition 6.7.
Proposition 6.9 If |tr(a,],‘" Bn)| < C for some C >0, then we must have (r,+r,) — 0.

Proof First note that we have showed |tr(oz,]f” Bn)| < C implies

|Z“5"ﬂn:+ _Zailfnﬁ”,_| —0 and |Z(¥§”Ign,i| — L.

X —Z kn
X _Zallqcnﬂn,_

Let kakn 8 be the multiplier of wna,lf” BV, . We have

1/Dy

)\, 2Dn _|_3 _ .
|)k |2 > | a’linﬁn| (6 ZdISt(E‘I’”anwn_l’ﬁlllnaﬁn ﬁnllln_l)).
Oy |)"aknﬂ |2Dn — 1
n n

by Remark 4.1.A applied to ¥, (s, a,’,‘"ﬂn)wn_l - Since {zy, o, y—1 45 A — ’_} =
{1, Z o kn Bn,-i-/Zafﬁ"ﬁn,—} we have

|ZWnanW;1ai| - 1’

Z ok

_ an” Bn,+
}ZWnan¢;1’+ _ZWn‘on;?la_‘ =1 Z K —0
annﬂ}’h_
By Lemma 6.8 we have for large n,
dist(L L ) <1 5
1S Ol n_l s kn —1 0og .
Ynen¥ v bt |Z"ﬁnan1/fnil,+ _ZWnanWVTlv_l
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This implies that for large #,
Ag, | > 671 Far 2y et 4 — Zynanyit |
|)\‘a111‘nﬂn|2Dn_1 n®n¥n > n®nV¥n

—1 2D, 1/(2Dp) |Zw,1an¢;1’+ _Zlﬁnanl/fn_ls_|
(IAgtnp, 17" +3) ( gy P—1
an” Bn

—1 2D, 1/@Dy) (i +71y)
(Mak"ﬂn' +3) 2C7z_k ,Z |
ann ns—

The last inequality follows from Proposition 6.7 and |A n | < C’. The second
inequality in the above calculations follows since |)» kng | < C' and for large n we
have

2D, 1/(2Dn) 2D, 2
(gt g, I = 1) = A ggong, 177" =1 = TAgpmg, I =1
Since |Aq,| < M for some M,

2C/M8|Zalrfnﬁn,—| 20'MS§'

Fn 41, < < —
" (g F0r+3) /P " 4D

Now we can continue and finish the proof for |tr(a,]f” Br)| < C. By Proposition 6.9
and |A,| > A > 1 (this is the condition of (A;)) we have

/
'n+ 1y

——— — 0.
|Anl? =1

Since the circles S,,,,, contains one of z wkn g, — Zakn B, + and S, ,/ contains the
other fixed point, and Nykn g, = =1 and |§ kn By | — 1 (condition of (Ay)), it follows
from Lemma 4.2, we must have S, r,,, Sor . contained in the region between 1/[A]|
and |A,| for large n. Hence we have classical generators for large n. This completes
the proof for (Ay). O

6.3 Case (B)

Set Mobius transformations
wn(x) — é-n—l)\Z—anx

and consider the generators V¥, (o, %=1 B, )V, . Then

_ 1422k,
Catn gyt =1 A0 N g = Gy A
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Since 1 < an,z,k” <22 and |§n)\,%k”| —|A2]| — 0 (the condition of (B)) we have
[Gnd (1 =g a5y — 0.

Since |A,| < M forsome M >0, we have
(Wnanwn_l,Wn,B;larll_kn Wn_1> we have

|n1ﬁnak”_lﬂn1/f_l | = 1. Hence by considering

Cyprtas gt > 1 and by =1
We have reduced (B) to (A).

Hence we have completed our proof of Theorem 6.1. a

7 T with small Dy is either classical or there exists a univer-
sal lower bound on Z

This section is devoted to proving Theorem 7.1 which will enable us to remove the
constraint on Zr, that was placed in the previous section.

Theorem 7.1 There exists ¢ > 0 such that if I, is a sequence of Schottky groups
with D, — 0, Then for sufficiently large n, either there exists a subsequence I'y; that
are classical Schottky groups, or there exists a subsequence I',; with generating set
(atn; . Bn;) such that Zian; Bu) > €

Proof We prove by contradiction. Suppose there exists [, a sequence of Schottky
groups such that for every generating set (. B,) of I'y we have Z,, g,y — 0.

For each n, by replacing (a, B,) with (o, ap”By) for sufficiently large m,, if
necessary, we can always assume that every I, is generated by generators with
|tr(tn)| =< |tr(Bp)| and [tr(Bn)| > log 3/ Dp.

We take the upper space model H?. By conjugating with Mobius transformations, we
can assume that a, have fixed points 0, oo with multiplier A,, and B, with zg , = 1.
Recall that, as before we denote the two fixed points of B, by zg, ;.zg, ., With
128,11 < |zg,,u|- When we write B, in matrix form, we assume that |a,| < |dy|,
otherwise we replace 8, with g, 1.

By assumption, we have two cases: either (A) zg, ; — 1 or (B) zg, ; — 0. First we
consider Case (A).

7.1 Case (A)

There are two possibilities, (A;) liminf, |[A,| =1 or (Ay) there exists A > 1 such that
[An| > A.

Geometry € Topology, Volume 14 (2010)



510 Yong Hou

7.1.1 (Ay) Since |tr(B,)| — oo and zg, ; — zg, , = 1 and |A,| > A > 1, we have
1/A <|zg, 1| <|zg,.ul <A forlarge n. Hence (ay, By) satisfies Lemma 5.2 for large 7.

7.1.2 (A;) Taking a subsequence if necessary, we may assume that |A,| is strictly
decreasing to 1. For large enough n, we choose a sequence of positive integers ni,
depends on n such that 1 +1/(m, +1) < |Ay| <14+ 1/my. Letus set {, = an/cn,
Nn = —dn/cy. Since |tr(By)| — oo and |/tr?(B,) —4/(2¢cn)| = |z, + —28,,~| = 0

implies |tr(8,)| < ¢n, it follows from Lemma 4.2 and Remark 4.5 that

)1| e
|tr(ﬂn = T

for large n. Also by Lemma 4.2 and Remark 4.5, and the assumption that zg, ; —
zg,u = 1, we have both {,,n, — 1. Hence

2mn| <

|Z mnﬂ 4+ é_n

2
g g, £ — Ay "+ |zgmn g, +— 1] — 0.

Since by our choice of m,, we have |A,21m”| — e2. It follows that |Za:lnn B, 4| = e?

and |z mng -| — 1. Therefore, there exists ¢ > 0 such that Z, ,mng > ¢ for
sufficiently large n.

7.2 Case (B)

Here we have either (B; ) liminfy, |A,| < A for some A > 1, or (By) liminfy |A,| — co.
We also assume that |{,| < |n,| as before.

7.2.1 (B;) We will show that there exists integers k, such that Z (anckn gy > € for

some ¢ > 0.

Take subsequence if necessary, we may assume that |A,| < A for large n. Choose

positive integers k, to be the smallest such that ¢? < |§nkﬁk"|. Since |Ay| < A,

we must have some o > 0 such that e? < |§nk,2,k"| < 0. We claim that there exists

0 <e <e? and n > N, such that e? —e < |z _x, |, |z kn | <o+ €. To see this,
an" Bn,t an” Bn.—

we use Remark 4.2.B.

To prove the claim, note that since |zg, — —zg, +| <1+ € for some € > 0 and large 7,
and also |tr(B8,)| — oo, we have |c,| — co. By Remark 4.2.B we have |zg, ,—nu| — 0,
hence n, — 1.

First we show that |z kng o = Zaknp,, _| % oo. Assume otherwise. Let p, be
the center of the (:1rcle havmg Zykng, 4+ and Zykng, _ S antipodal points. Since
|§a,’§"ﬁn + na,’;“ﬂn| <o+1+¢€ for some €' > 0 and large 7, and

Z k Z
Ol,l;”ﬂn,-i-—i_ aknﬂn;_
9
2

Pn =
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and

Zafn gyt Zan . = Cofin g, T o,
we have |p, —0'| <k forsome k >0 and 0’ =0 +1 +6 Note that since |p, —0'| <
lon|+|0'| < (0 +1+€")/24+0+1+€ we can take k = 3 S(o+14€). ThlSlmphesthat

dist(Ly,,. £ kB, ) < 6 for some § > 0. By Remark 4.1. A we have |tr(oz,,”,3,,)| — 00,
and

_ lr(@” B

ko’
lenhn "

|§0‘rlz€n Bn narlgn Bn

we get |tr(a§”,3n)| = |cnk,7k" |. But this implies that |ZO!1\»,,}8 4~ Zaknp, _| < C for
n ns >
some C > 0, hence a contradiction.

Note that if |z x, Bt — Zakn ﬂn,—| — 0 then

| 1
|Zak,,ﬂn,i|—>—|§akn'3 gk g |=—|§'aknﬁ +1].

Since 1(e — 1) < 2|§ kng +1| < a for large n, this implies that (e —-1) <
|Zghn g, 4| < a for large n.

Finally if ¢ < |Z fen Zokn B, —| < ¢’ for some ¢,c¢’ >0, then by Remark 4.1.A

Bnst
we have |tr(oe,, ﬂ,,)| — oo which implies |c,A, ”| — 00. Hence by Remark 4.2.B we
have {Zakn B2 Zakn Bu—) = {é‘ak,, B Nokn ﬂn} which implies the claim.

With the claim true, there are two possibilities: (B ) lim inf |z kng 4 -z ok, _|—0,
! "

or (BY) liminfy |z g+ " Zakn g, _|>0. For (B ), we have Z(an, IJ"ﬂn) > ¢, for

some ¢ > 0 and large n.

Suppose (B’1 ) holds. By passing to subsequence if necessary, we take
|Za£f’1ﬂnﬁ+ _Zaﬁl{nﬂnﬁ_| % O.
If |A,| — 1 then we choose positive integers m1, as defined in Case (A;). Then

2 2kn+2m 4
< n n
e é'n)\.n <e and K1 < |Za’11cn+mnﬂn’ Za;l;n-i_mnlgn, | < K3

for some 0 < kq,k,. By Remark 4.1.A we have |tr(a,,”+m”,3n)| — 00. Hence by
Remark 4.2.B we have

{Za;;n-i‘mn Byt Za,’:” +mn ﬂn,_} - {é‘a,l;n +mn Bu’ naﬁn-l‘mn Bn }

This implies that €2 < |Z_xp+mn | <e* and |z _kntmn | — 1. Hence there exists
Op Bn, £ ®p Bn,F

¢ > 0 such that Z(an’aﬁn—kmnﬂn) > ¢ for large n.
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If |Ay| > ¢ > 0 then we take m, = 1. Then
81 < |Zall’l€n+lﬂﬂ’+ _Za),;n+lﬂn’_| < 82

for some 0 < §;,8,. And it follows from Remark 4.1.A and Remark 4.2.B we have
that Z(a akntig > ¢ for large n.

7.2.2 (B,) By taking a subsequence of «;,, we may assume that |A,| is strictly
increasing. Choose a sequence of largest integers k, > 0 such that |§n)»,21 "< 1.
If lim sup |§nk,2,k"| = 1 but limsup |§nkik” — 1] # 0, then there is a subsequence
(o), Ol,]fj’?j Bn;) of {an, oz,lf” Bnr) such that liminf; Z(anj ,af;‘f Bu;) > 0.

If lim sup Enk%k” =1, then let (o, , oz,’flfli Bn;) be the subsequence of (ay, a,]f” Br) with
lim; Gy, A2Kne = 1.

If lim sup |tr(ak”z Bn;)| = oo, then by passing to a subsequence if necessary, for large 7,
knz Bn; will have disjoint isometric circles. Note [tr(B,;)| — oo, 2By = =1 and
Zﬂni’[ —0, s0 |Zﬂni’+ Z/gnl_’_| <l+e¢, for ¢, —0 (ie |Zﬁn + 2By, —l<c,forc>0),

we have |c,,;| — 0co. By Remark 4.2.B, lim, min{|n,; — ZB,, —I, |Tln, Zﬂni’+|} — 0.
Since Zakn By — 1= Nakni B, and |tr(a i ;)| — 00 we have
|tl'(0lk”1 Bl k.,
ol oy — M By | = e 50 and [ ™ e | > 0.
|An; " Cnil

|k Ba) - LR

—k
2, " en |

Also |Za,’;;1t Bu;t — Zalti By —

Hence by Remark 4.2.B, there exists a « > 0 such that for large i we have

k! < |Zotk”z Bn; ,l| = |Za,’;”z Bn; ,u|

And since |Ap,| — oo, we are able to choose Mobius transformations v; such that
Wi <0‘n,w0¢;lf§’iﬁn,~>wi_l satisfies Lemma 5.2.

If lim sup |tI'(O{k”i Bn;)| < oo, then let ¢; be Mobius transformations such that the maps
oicy, k" i Bn; P; ~1 have fixed points 0, oo, and the fixed point Z pran, b u Of oy is 1. Tt
follows that e e 1. Since [tr(¢;oun; ¢; ¢ | — oo, hence we have reduced this
case to Case (A), Whlch we already con51dered

If lim sup |§‘n)\,%,k”| < 1, then we have two possibilities: (B,) lim inf|§n)\%k”+2| =1,

or (BY) liminf [¢,A 2% 2] > 1.
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Consider Case gB ). Let (ap;, oy ,B,,,) be a subsequence of (cxn,an Bn) such that
hm, [Sn; An | — 1 If sup; |tr(a n; +1:3n,)| < 0o, then we conjugate oy, , o zﬂn,
to ,3, ¢106n, ; =¢; ozk"z +1,3,,, ~1 with &; have fixed points 0, co and ,3, have

2w = = 1. Since sup, |A | < o0, it follows that, if =N e 1 then (&,,B ), falls under
Case (A), and if z; N e 0 then (&;, ,3,) falls under Case (B1). Otherwise there exists
6>Osuchthate<|z l|<1 ehenceZ( B)>cf0rsomec>0

. -+1 .. .
On the other hand, if sup; |tr(an?’ Bn;)| = oo, then for large i since the radius of
isometric circles is

z ol -z il

Byl

Bn;su
iﬁ k"l+lﬂ - n
" |tr(05n,~l ﬂn,-)l

and the distance between the centers of these isometric circles is

kn.+1
jir(en” " Bay)|

|€ kn g Tkt | =
Bnl "t i .Bn, Cn)\tr;-kni -1
Juzeli g, —a
and by |z kn,+1ﬂ W kn,+1ﬂ | R —
bl nj
n; n;» 2Cn,-)\n,~ i
we have
K —+1 kn:+1
i Z vt -1, witlp, Z‘tr(an, ,3n,)| Sl !
im Ty o = > §|tr(an,’  Bny)l
n;
g, \/t 20hi " B, — 4
for some § > 0. Hence
k +1 / 1 > 2% k +1
Colni g, ~Mglmi 1 ittty

kn; +1 ... . . .
for large i . This implies oy, * Br; have disjointed isometric circles for large i. By
Lemma 4.2 and 2By u = 1 we have By — 1. And since

7’ k" +1ﬂl’l, = r]ﬂnz

we have that

n k,,l+1 — 1.

Bn;
Note that if

1‘>0 and ’é‘ knl-i-l -1,

inf é' "”z +1

i Bu; Bn;
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kn;+1
then by |tr(cty,’  Bn;)| = 0o we have

1— an+1 ) 41 an+1 —0
! ﬂn, ﬂn, ! ﬂn, U ’
1nf‘z kn +1 —z kn +1 > 0.
ﬂni s ﬂnl s
Hence for large i there exits € > 0 such that
1—e<‘z kn-i-l S‘Z kn+1 <1+e,
ﬂ"lt s ﬂl’ll s

therefore we must have
inf Z( I\n —+1 ) > 0

i On;0n; ,Bn

It follows we can assume that

k +1 — 1.
; YT B
Then we have
/ 41 kn; +1 — 0.
Clni g, T Tglmi g
tr(o,, )
Hence % -0
-
Cnhn;
Since |tr((x,,l ,Bn )| — oo,
kn.+1
I- Vi -4
Z kp;+1 —Z kp;+1 .
n:ll .Bnl s n:ll ,Bnl P 2cni )L;'kni -1
13

Therefore the distance between the centers of these isometric circles decreases to 0
and the radius

R kn; +1 — 0.
anl ﬂni
. . 2 . . . . k”i +1
Since inf; [Ay,|* > ¢ > 1, we have for large 7 that the isometric circles of a,; ' By,

are disjoint and lies between ¢~ ! and c. In particular,

1

c < |Z knl-i-l <c,

=1z kn;+1

ﬂn, | ‘ nl ﬁn,au
kn;

and (ay; . oznl ,8,,,) satisfies Lemma 5.2.

Now con51der Case (BY). Flrst we define a new sequence of (&, ﬂn) as follows: Con-
sider (oen,ozn”,Bn) It |tr(oe,,",3,,)| > |tr(evy)|, then set &, = oe,,,,Bn = fB;. Otherwise,
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let ¢, be the Mobius map so that ¢na,]f” Bntd,, ! have fixed points 0, co, and Onn®, !
have z,  4—1,=1.Seta, ;= ¢,,a,]f"/3n¢n_l,,3,,’1 = ¢pnan, ' . We define integer
kn,1 with respect to (o1, B,,1) the same way as we defined k, before.

Now if |tr(a::’1’1ﬁ,,,1)| > |tr(ay,1)| then we set ,3~n = Bu,1 and @, = a1 . Otherwise,
we repeat this construction to get a sequence (@nm,Bn,m). By construction for a
each n, either there exists a m such that [tr(cym" Bu,m)| > |tr(otn,m)| or we have
|tr(a,’fj“’"’ﬂn,m)| < |tr(ap,m)| for all m. Assume the latter holds, since oy pm41 =
¢n,m‘xn:1rhm/3n,m¢n_,rln we have [tr(ap,m+1)| < [tr(an,m)| for all m. If limy, [tr(cn,m)| =
0 then take m, to be the first integer m with |tr(cpn,,)| < 1/n. If limy, |tr(os,m)| > 0
then take m, to be the first integer m with |tr(cy ,41)| > L(tr(ozn,m)| —1/n. If the
former holds, we set m,, to be the first integer m with |tr(a, 5" Bum)| = [tr(cn,m)].
Hence there exists a mj, such that either |tr(c, m," Bnm,)| > |tr(otn,m,)| —1/n, or
[tr(cn,m,)| < 1/n. We define &, = on.m, . Bn = Bn.m,, -

Now consider (&, ,3,,) If liminf, |tr(&,)| < oo, we choose a subsequence with
[tr(¢tn, )| < ¢ for all large i and some ¢ > 0. Let p; be a sequence of least positive
integers such that |tr(d’ Bn;)| > 1/ Dy, . We conjugate an /?n,. by ¥; that fixes 0, oo
and 2@l B v = 1. Set &; = Vi vl Bi = vian B W By construction,
if zg, 1 — 0 then (a;, B;) satisfies (By), and if zz, ; — 1 then (@;, B;) satisfies (A).
Otherwise there exists € > 0 such that € <|zg, ;| < 1—€ which implies that Z @B > €
for some ¢ > 0. Hence in either case, we are done.

On the other hand, suppose liminf, |tr(¢,)| = co. Since |tr(,l§n)| > |tr(@y)| then it’s
sufficient to assume that (o, ﬁn) satisfies Case (BY)), otherwise we are done. We

deﬁne kn - kn’mn .

Set v, = &,’f”ﬁn, fin = @y. Since |tr(B,)| > |tr(@,)| and |Zﬁn’_—an’+| <1+ 6, with
8y — 0 (this follows from 5 ou= 1, 251 0), it follows from Lemma 4.2 Witp Re-
mark 4.5 and |tr(a,’f:’,;;’:l" Bnmy)| > |tr(ctn,m, )| — 1/n which implies limy, |tr(v,)|/|An| >
€ for € > 0, we have |n,, — 1| <~8|)~\,,|_2, for some § > 0. Since ny,,p,, = nan;z and
Ninvy = Nv, » We have v san _)‘;2| = |77vn)‘;2 _)‘;2| <8|An,|~* and Mnvy — 1 =
1M, — 1| < 8|An,| 2, for large n

‘We have two cases to consider:

e A
I e T

(D li =
" |An| 2
S S
A "= 1552
) lim |)~» = ‘— <o for some subsequence #;.
; _
n;
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Proof assuming (2) Since |, Xﬁf‘”w > |An; |72 and (2) holds, and gy, = A2, Ly,
we have for large i,
I <[8uvi | < (o +1).
Since we also have
1= 812521 < vy | < 14681357

and |an| — 00 it follows that there exists & > 1 such that 1 —x=1 < |nv; s [Euiv; | <
1 + « for large i . By Lemma 4.2 with Remark 4.5 and |tr(v;)| > €|Ay; | for large i we
have for some pp, pp > 0 that

-1 71 7=
L=k = p1ldn |7 <|zggop 1l 2wl < 14K+ p2]Ap [

: l —1 /
Hence there exists k" > 1 such that €% < |z, 1| < |zp;v;ul <k’

If |tr(u;vi)| — oo, then {u;, uiv;) satisfies the second set of conditions of Lemma
5.2, hence is classical.

If lim sup |tr(14; v;)| < oo, then define Mobius transformations v; such that v p; vy !
have fixed points 0, ooandzd”“/L 1, =11z, wiv 1l—>00r21/”“/, 1y~ 1
then v; (i, Wi v,)wl_ satisfies (A) or (B7). Otherwise we have for some € > 0 such
that € < |z, ,.4—17] <1—€, which implies that lefi(m,mvi)llf,-_l > ¢ for some ¢ > 0.

This completes our proof of (B/z’) with (2). O

Proof assuming (1) By (1), there exists 0 < p, — oo with p, < |X,,| such that
|§~nkﬁk"| —|An|™2 > pu|An|72. Let x, be Mobius transformations defined by x,(x) =
(An/ /Pr)x. We will show that x,{un, vn)x, " satisfies Remark 5.3 of Lemma 5.2.

Since |1y, — 1| < 8/|An|? we have

il o8 Ml 8
Vo Bl o il Vo

By the condition of (B,) we have |§n)~\,%k”| < 1. This gives,
JPn 1 A
[Pn + = <1yt < [ .
[Anl |An|/Pn N Pn

By Lemma 4.2 with Remark 4.5, |z,, + — {y,| < oltr(vy)| 72 and |zy, £ — 1y, | <
o|tr(vy)|~2 for some o > 0. Since |tr(v,)| > €|Ay| for large n we have

o
Sy g g Y Y P Ay
XnVnXn »E XnVnXn €|)\,n|\/p_n’ XnVnXn »F XnVnXn €|)\’n| On
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H | Ml 8 o
ence z —1 = = ,
HorPn o8 NP |An|/Pn €|Anl/Pn
A/ Pn . ) . o
|Anl |)‘n|\/;0n El)‘n|«/,0n

|ZXnVanT1 sl |

We have |A,|”! < |2 ot d) =125yt ] < [An| for large n.

By above estimates for fixed points of x,vux, ', and |tr(v,)| > €|An| we have

(2l + DRl £ |nl*/ /P + kol /P + hn| + 8

IRl = 120,50 €PRnlP (1 =1/ 00 =8/ (o> /) = 0/ (el An]> /)
R o Vi B VA R A e
€V/on(1 =1/ pw =8/ (|2 /) =0/ (el An[> /)

and by p, < |An| we have some §” > 1 such that

6//
= e /=1 =8/ WenlJ ) — 0/ (elhonl? /)

— 0.

For the other part of the conditions of Remark 5.3 we have:

If |anan;1,l| < M then,

(125,12 F DAAl ™+ 1)
e [ N An|~1)
(M 4+ 1)(|Aa| 71+ 1)

) €lhn|(/Pn/1An] =8/ (An] /Pn) — 0/ (€lhn| /Pr) = 1/1An])
M/ /

< <— — 0.
6(«//0n_8/\//0n_0/(6\//0n)_1) €/ Pn
Otherwise we have |anvn Kl ;| — oo and
(2wt g F DU+ 1) g7
XnVn X 1 " < — 0 for some §" > 0.

|tr(v”)|(|zxnvn)(;1,l|_|)“"|_1) 6|)\n|
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Hence xn(fn, vn)x, " satisfies
|)Ln|_1 < |ZXnVan71’l| = |ZXnVnX;71,
lim { (|anvnxl71,u| + 1)(|)\l’l| + 1) (|anynxr71,]| + 1)(|)\‘l’l|_1 + 1)}
1 = s =
el Wl =17, 1D 1002,y 11— ™)

the conditions of Remark 5.3. O

ul < 1Aal,

Hence we have completed proof Theorem 7.1. O

8 Proof of Main Theorem

Theorem 8.1 There exists € > 0 such that every 2—generated Schottky group I" with
Dr < € is a classical Schottky group.

Proof This follows from Theorem 6.1 and Theorem 7.1. O

Proof of Theorem 1.1 Let I’ be a nonelementary finitely generated Kleinian group.
Selberg’s lemma implies I/ contains a torsion-free subgroup I'” of finite index, in
particular O/ = Dpr.

Note that if T is geometrically infinite with Qp~ # & then Dpr» = 2, this implies
D = 2 for geometrically infinite groups. So we can assume '’ is geometrically
finite when ®Dpr» < 2.

If T” contains parabolic of rank /p» then Dy~ > I~ /2. Hence, for sufficiently small
Hausdorff dimension Dr~, we can assume ' is convex-cocompact of second kind.

It follows from Ahlfors’ finiteness theorem, that Qp~ /T consists of finite number of
compact Riemann surfaces. Let S be a component of Qp~ /T . If S is incompressible
then 771(S) is a surface subgroup of I'”. Since 1 = Dy, (sy < Drv, if Drrjl, we
may assume S is compressible. So we can decompose I'”” along the compression
disk. After repeating the decomposition process finitely many times we are left with
topological balls, ie H3/TI'” is a handle body. This implies I'” is a finitely generated
free purely loxodromic Kleinian group of second kind, ie I'” is a Schottky group.

By assuming the limit set have sufficiently small Hausdorff dimension we have reduced
the general case to the case of Schottky groups. Now it follows from Marden’s
rigidity theorem, all Schottky groups of the same rank are quasiconformally equivalent.
Therefore we have from Theorem 8.1, there exists A > 0 such that all nonelementary
finitely generated Kleinian T'" with D < A contains a classical Schottky group of
finite index. It follows that we have a strict lower bound on the Hausdorff dimension
of all nonclassical Schottky group. O
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