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A finitely generated, locally indicable group with no faithful
action by C 1 diffeomorphisms of the interval

ANDRÉS NAVAS

According to Thurston’s stability theorem, every group of C 1 diffeomorphisms of the
closed interval is locally indicable (that is, every finitely generated subgroup factors
through Z). We show that, even for finitely generated groups, the converse of this
statement is not true. More precisely, we show that the group F2 Ë Z2 , although
locally indicable, does not embed into Diff1

C.�0; 1Œ/ . (Here F2 is any free subgroup
of SL.2;Z/ , and its action on Z2 is the linear one.) Moreover, we show that for
every non-solvable subgroup G of SL.2;Z/ , the group G Ë Z2 does not embed into
Diff1

C.S
1/ .

20B27, 37C85, 37E05

1 Introduction

Without any doubt, one of the most striking results about groups of diffeomorphisms is
Thurston’s stability theorem [22]. In the 1–dimensional context, this theorem establishes
that Diff1

C.Œ0; 1Œ/ is locally indicable, that is, each of its finitely generated subgroups
factors through Z. In the language of the theory of orderable groups, this is equivalent
to saying that Diff1

C.Œ0; 1Œ/ is C –orderable (see for example [20]). This is essentially
the only known algebraic obstruction for embedding an abstract left-orderable group
into Diff1

C.Œ0; 1Œ/. (Recall that every countable, left-orderable group embeds into
HomeoC.Œ0; 1�/: see Ghys [12].)

A good discussion on dynamical obstructions for C 1 smoothability of continuous
actions on the interval appears in D Calegari’s nice work [6]. Most of them con-
cern resilient orbits. Indeed, as was cleverly noticed by C Bonatti, S Crovisier, and
A Wilkinson, for groups of C 1 diffeomorphisms of the interval, there cannot be a
central element without interior fixed points in the presence of resilient orbits [18,
Proposition 4.2.25]. In the opposite direction, topologically transversal resilient orbits
must appear when the topological entropy of the action is positive (see Hurder [13]) or
when some sub-pseudogroup acts without invariant probability measure (see Deroin,
Kleptsyn and Navas [10]). A new obstruction which does not involve resilient orbits is
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also given by Calegari [6]. Nevertheless, these four conditions do not seem to complete
the list of all possible dynamical obstructions. For instance, none of them seems to
apply to groups of piecewise affine homeomorphisms, though it is very likely that, ‘in
general’, the corresponding actions are non C 1 smoothable.

Giving a pure algebraic equivalent condition for the existence of a group embedding
into Diff1

C.Œ0; 1Œ/ also seems very hard (see Farb and Franks [11] and Navas [19] for
two interesting particular cases). In this work, we show that local indicability, although
necessary, is not a sufficient condition, even for finitely generated groups. For this, we
deal with a concrete example, namely the group F2 Ë Z2 (which is easily seen to be
locally indicable), where F2 is any free subgroup of SL.2;Z/ whose action on Z2 is
the linear one.

Theorem A The (locally indicable) group F2 Ë Z2 does not embed into Diff1
C.�0; 1Œ/.

The interest in considering the group F2 Ë Z2 comes from at least two sources. The
first concerns the theory of orderable groups. Indeed, although C –orderable, this group
admits no ordering with the stronger property of right-recurrence. This is cleverly
noticed (and proved) in [15], where D Witte-Morris shows that every finitely generated
left-orderable amenable group admits a right-recurrent ordering, and hence every left-
orderable amenable group is locally indicable. The second source of interest relies
on Kazhdan’s property (T). Indeed, from [17, Théorème A] it follows that, if the pair
.G;H / has the relative property (T) and H is non-trivial and normal in G (as is
the case of .F2 Ë Z2;Z2/ when F2 has finite index in SL.2;Z/), then G does not
embed into the group of C 1C˛ diffeomorphisms of the (closed) interval provided that
˛ > 1=2. It is perhaps possible to use the Lp extensions of the (relative) property
(T) in Bader et al. [1] to conclude, by a similar method, that F2 Ë Z2 does not embed
into Diff1C˛

C .Œ0; 1�/ for any ˛ > 0. However, it does not seem plausible to deal with
the C 1 case (even for the closed interval) using this kind of arguments. (Algebraic
obstructions for passing from C 1 to C 1C˛ embeddings exist: see for example [19].)

Our proof of Theorem A is strongly influenced by an argument due to J Cantwell
and L Conlon (namely the proof of the second half of [7, Theorem 2.1]). It relies on
considerations about ‘growth’ of orbits (perhaps the right invariant to be considered
should be the topological entropy associated to all possible actions on the interval).
With slight modifications, these techniques also apply to the case of the circle. To
motivate the theorem below, notice that SL.2;Z/ËZ2 embeds into HomeoC.S1/ (see
Section 2).

Theorem B For any non-solvable subgroup G of SL.2;Z/, the group G Ë Z2 does
not embed into Diff1

C.S
1/.
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This result provides a first obstruction for group embeddings into Diff1
C.S

1/ for sub-
groups of HomeoC.S1/ which does not rely on Thurston’s stability theorem. This
solves a question raised by J Franks in a different manner from those of Calegari [4]
and Parwani [21].

Unfortunately, our approach does not seem to be appropriate to deal with many other
interesting groups which do act faithfully on the interval, as for example surface
groups or general limit groups in the spirit of Breuillard et al. [3] (these groups are
bi-orderable, which is stronger than being locally indicable), or the braid groups B3 and
B4 (these groups are locally indicable, see Dehornoy et al. [9, pages 287–289]). Another
interesting question is the possibility of extending Theorem A to the group of germs
of diffeomorphisms, where Thurston’s theorem still applies (compare [19, Remark
2.13]). Finally, the investigation of similar phenomena related to the higher dimensional
versions of Thurston’s theorem also seems promising. Actually, in this context, even the
corresponding topological prior versions are widely open (and interesting). For example,
it is unknown whether every finitely generated group which is locally GLC.2;R/ (that
is, each of its finitely generated subgroups admits a non-trivial homomorphism into
GLC.2;R/) can be realized as a group of germs of homeomorphisms of the plane
fixing the origin. A naturally related problem is the realization of finitely generated,
locally SL.2;R/ groups as groups of germs of area-preserving homeomorphisms of
R2 .

2 Existence of actions by homeomorphisms

As is well-known (see Calegari [5] or Navas [18]) there exist faithful group actions
of SL.2;Z/Ë Z2 by (orientation preserving) circle homeomorphisms. Indeed, let us
consider the canonical action of SL.2;R/ by real-analytic circle diffeomorphisms,
and let p2S1 be a point whose stabilizer under the action of the subgroup SL.2;Z/
is trivial. Replace each point f .p/ of the orbit of p by an interval If (where f 2
SL.2;Z/) in such a way that the total sum of these intervals is finite. Doing this, we
obtain a topological circle S1

p provided with a faithful SL.2;Z/–action (we use affine
transformations for extending the maps in SL.2;Z/ to the intervals If ).

Let IDIid be the interval corresponding to the point p , and let f't W t 2 Rg be a
non-trivial topological flow on I . Choose any real numbers t1; t2 which are linearly
independent over the rationals, and let h1 D '

t1 and h2 D '
t2 . Extend h1; h2 to S1

p

by letting

h1.x/D f
�1
�
ha

1hc
2.f .x//

�
; h2.x/D f

�1
�
hb

1hd
2 .f .x//

�
;
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where x 2 If �1 and

(1) f D

�
a b

c d

�
2 SL.2;R/:

For x in the complement of the union of the If ’s, we simply set h1.x/D h2.x/D x .
The reader will easily check that the group generated by hh1; h2i � Z2 and the copy
of SL.2;Z/ acting on S1

p is isomorphic to SL.2;Z/Ë Z2 .

If F2 is a free subgroup of SL.2;Z/, then F2 Ë Z2 is locally indicable. Thus it
acts faithfully by homeomorphisms of the interval [20]. Although no such action
arises as the restriction of the action constructed above, a faithful action may be
constructed by following a similar procedure. For this, fix two (orientation preserving)
homeomorphisms f1; f2 of Œ0; 1� generating a free group admitting a free orbit. There
are many ways to obtain these homeomorphisms. We may take for example a left-
ordering on F2 , and next consider its dynamical realization (see the comment after [20,
Example 2.6]). Another way is to use the fact that the group generated by x 7! xC 1

and x 7! x3 is free (see Cohen and Glass [8]). Denoting by p2�0; 1Œ a point whose
stabilizer under the corresponding F2 –action is trivial, and then proceeding as above,
we obtain the desired faithful action of F2 Ë Z2 on the interval.

Let us point out that, although the actions constructed above are only by homeomor-
phisms, they are topologically conjugate to actions by Lipschitz homeomorphisms (see
Deroin et al. [10, Théorème D]).

3 Preparation arguments: topological rigidity

Consider a faithful action of F2 Ë Z2 by homeomorphisms of the interval Œ0; 1�. Let I

be an open (non-empty) irreducible component for the action of Z2 , that is, a minimal
open interval which is invariant by Z2 . Since Z2 is normal in F2 Ë Z2 , for every
f 2 F2 the interval f .I/ is also an open irreducible component for the action of Z2 .

According to [18, Section 2.2.5], the group Z2 preserves a Radon measure � on I .
Associated to this measure, there is a non-trivial translation number homomorphism
��W Z2! R defined by ��.g/D �.Œx;g.x/Œ/ for any x 2 I . One has ��.g/ > 0 if
and only if g.x/>x for all x2I . Moreover, if �0 is another invariant Radon measure,
then �� and ��0 coincide up to multiplication by a positive real number. We identify
h1 � .1; 0/ and h2 � .0; 1/, and let r D ��..1; 0// and s D ��..0; 1//.

Claim 1 If .r; s/ is not an eigenvector of f T , where f 2F2 , then the interval f .I/
is disjoint from I .

Geometry & Topology, Volume 14 (2010)
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Proof Denoting by f .1; 0/ the image of .1; 0/ under the linear action of f , we have

��.f .1; 0//D ��.f h1f
�1/D �f �.�/.1; 0/:

Similarly, ��.f .0; 1// D �f �.�/.0; 1/. If f fixes I , then f �.�/ is another Radon
measure on I invariant by Z2 . By the discussion above, there exists � > 0 so that
�f �.�/ D ��� . This yields

�r D ���..1; 0//D �f �.�/..1; 0//D ��.f .1; 0//D ��..a; c//D ar C cs:

Similarly, �sDbrCds . This shows that .r; s/ is an eigenvector of f T with eigenvalue
�.

Claim 2 There exists a free subgroup hf0; f1i � F2 such that, for every element
f 2 hf0; f1i:

(i) .r; s/ is not an eigenvector of f T ,

(ii) .r; s/ is not orthogonal to an eigenvector of f �1 ,

(iii) neither .1; 0/ nor .0; 1/ are eigenvectors of f .

Proof Since (the projection in PSL.2;R/ of) F2 is non-elementary, a well-known
property of Möbius groups yields the existence of infinitely many two-by-two disjoint
pairs of points un; vn in PR1 that are fixed by some hyperbolic element gn 2 F2 (see
for instance Beardon [2, Theorem 5.1.3]). For n big enough, these pairs avoid Œ1 W 0�,
Œ0 W 1�, and the points corresponding to the directions that are orthogonal to that of .r; s/.
A ping-pong argument then shows that, for m; n; k sufficiently large, the subgroup
FDhgk

m;g
k
n i of F2 is free and all of its non-trivial elements f satisfy (ii) and (iii).

In order to ensure (i), one proceeds similarly but starting with F instead of F2 , and
considering the (projective) transpose action.

Let us consider the generator f0 given by Claim 2. By Claim 1, f0.I/ is disjoint from
I . Thus, changing f0 by its inverse if necessary, we may suppose that f0.I/ is to the
left of I . Moreover, changing f0 by f k

0
for k>0 sufficiently large, we may suppose

that the expanding eigenvalue � of f �1
0

is greater than 2. For certain vectors .˛; ˇ/
and .˛�; ˇ�/ in the expanding direction of f �1

0
we have

lim
n!1

�
f �n

0 .1; 0/��n.˛; ˇ/
�
D 0; lim

n!1

�
f �n

0 .0; 1/��n.˛�; ˇ�/
�
D 0:

In what follows we will only deal with f �n
0
.1; 0/, but the same arguments work with

f �n
0
.0; 1/ instead. Notice that, since .r; s/ is not orthogonal to any eigenvector of

f �1
0

, the value of ˛r Cˇs is nonzero.
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Claim 3 The value of
ˇ̌
��.f

�n
0

h1f
n

0
/� �n.˛r Cˇs/

ˇ̌
converges to zero as n tends

to infinite.

Proof Write .1; 0/ D .˛; ˇ/C .
; ı/, where .
; ı/ is in the expanding direction of
f0 . Letting x� > 1 be the expanding eigenvalue of f0 , for each n> 0 we have

f �n
0 .1; 0/D �n.˛; ˇ/Cx��n.
; ı/D

�
Œ�n˛�; Œ�nˇ�

�
C
�
f�n˛gCx��n
; f�nˇgCx��nı

�
;

where Œ�� (resp. f�g) denotes the integer (resp. fractional) part. Notice that both numbers

n D f�

n˛gCx��n
 and ın D f�nˇgCx��nı are integers. Hence

f �n
0 h1f

n
0 D h

˛n

1
h
ˇn

2
h

n

1
h
ın

2
;

where ˛nD Œ�
n˛� and ˇnD Œ�

nˇ�. Therefore, ��.f �n
0

h1f
n

0
/D r.˛nC
n/C s.ˇnC

ın/; which yieldsˇ̌
��.f

�n
0 h1f

n
0 /��

n.˛r Cˇs/
�ˇ̌
� x��n

�
j
 r jC jısj

�
;

thus showing the claim.

Assume throughout that t D˛rCˇs is positive (the case where it is negative is similar).
Replacing h1 and h2 , respectively, by hk

1
and hk

2
for k > 0 very large, we can ensure

that t > 0 is sufficiently large so that we have:

� �t > 1,

� there exists an open interval J � I with 0< �.J / < t ,

� for all i 2N one has

(2) i � t

�
�i
�
�i � 1

�� 1

�
:

Moreover, replacing f0 by f k
0

for k > 0 large enough, we may suppose that, for all
n 2N ,

(3)
ˇ̌
��.f

�n
0 h1f

n
0 /��

nt
ˇ̌
� 1:

Let a (resp. b ) be the fixed point of f0 to the left (resp. to the right) of I . Since
f0 normalizes Z2 , these points are also fixed by Z2 . In Section 4.1, we will show
that the dynamics of the subgroup H of F2 Ë Z2 generated by f0 and h1 is not
C 1 –smoothable on Œ0; 1Œ by showing that, actually, it is not C 1 –smoothable on Œa; bŒ.
The case of the open interval �0; 1Œ needs a supplementary argument and will be treated
in Section 4.2.
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4 Cantwell–Conlon’s argument: smooth rigidity

4.1 The case of the half-closed interval

In the statement of Cantwell–Conlon’s theorem, there is an additional hypothesis
of tangency to the identity at the endpoints. Nevertheless, such a hypothesis is not
necessary, as the argument below shows.

Claim 4 If the action of F2 Ë Z2 is by C 1 diffeomorphisms of Œ0; 1Œ, then the restric-
tion of H to Œa; bŒ is topologically conjugate to a group of C 1 diffeomorphisms which
are tangent to the identity at a.

Proof This follows as a direct application of the Müller–Tsuboi’s conjugacy trick: it
suffices to conjugate by a C1 diffeomorphism of Œa; bŒ whose germ at a is that of
x 7! e�1=x2

at the origin (see Müller [16] and Tsuboi [23] for the details).

In what follows, we will consider the dynamics of f0 and h1 after the preceding
conjugacy, so they are tangent to the identity at a.

Remark Since h1 has a sequence of fixed points converging to a, its derivative at this
point must equal 1 even for the original action; nevertheless, this was not necessarily
the case for the original diffeomorphism f0 .

Claim 5 For each k > 0, the intervals of the form

.f �k
0 h1f

k
0 /
"k � � � .f �2

0 h1f
2

0 /
"2.f �1

0 h1f0/
"1.J /;

where "i 2 f0; 1g, are two-by-two disjoint.

Proof Let

W D .f �k
0 h1f

k
0 /
"k � � � .f �2

0 h1f
2

0 /.f
�1

0 h1f0/
"1 ;

W 0 D .f �k
0 h1f

k
0 /
"0

k � � � .f �2
0 h1f

2
0 /
"0

2.f �1
0 h1f0/

"0
1

be such that W ¤W 0 , where all "i ; "
0
i belong to f0; 1g. Let i be the largest index for

which "i ¤ "
0
i , say "i D 1 and "0i D 0, and let

W� D .f
�i

0 h1f
i

0 /.f
�.i�1/

0
h1f

i�1
0 /"i�1 � � � .f �1

0 h1f0/
"1 ;

W 0� D .f
�.i�1/

0
h1f

i�1
0 /"

0
i�1 � � � .f �1

0 h1f0/
"0

1 :

Notice that each of the maps .f �j
0

h1f
j

0
/"j either fixes all the points in I (when

"j D 0) or moves all of them to the right (when "j D 1). In particular, W� moves the
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left endpoint u of JD�u; vŒ to a point u� which coincides with or is to the right of
f �i

0
h1f

i
0
.u/. By (3), this implies that

(4) �.Œu;u�Œ/� �.Œu; f
�i

0 h1f
i

0 .u/Œ/D ��.f
�i

0 h1f
i

0 /� �
i t � 1:

On the other hand, W 0� moves v to a point v0� which coincides with or is to the left of

.f
�.i�1/

0
h1f

i�1
0 / � � � .f �1

0 h1f0/.v/:

Since �.J / < t and

�
�
Œv; .f

�.i�1/
0

h1f
i�1

0 / � � � .f �1
0 h1f0/.v/Œ

�
D ��

�
.f
�.i�1/

0
h1f

i�1
0 / � � � .f �1

0 h1f0/
�

D

i�1X
jD1

��.f
�j

0
h1f

j
0
/

�

i�1X
jD1

�
�j t C 1

�
D

�
�i � 1

�� 1
� 1

�
t C .i � 1/;

inequalities (2) and (4) show that v0� is to the left of u� . This implies that W�.J / and
W 0�.J / do not intersect, and hence W .J /\W 0.J /D∅.

To conclude the proof of the fact that the action of F2ËZ2 is not by C 1 diffeomorphisms
of Œ0; 1Œ, fix N 2N so that, for all x 2 Œa; bŒ to the left of f N

0
.I/,

f 00.x/�
3
p

3=4; h01.x/�
3
p

3=4:

Fix also a positive lower bound A< 1 for the derivative of f0 and h1 to the left of I .
By opening brackets in the next expression, one easily checks that the length of each
interval of the form

.f �k
0 h1f

k
0 /
"k � � � .f �2

0 h1f
2

0 /
"2.f �1

0 h1f0/
"1.J /

is at least
A3N

�
3
p

3=4
�3.k�N /

jJ j:

Since there are 2k of these intervals this yields, for some constant C > 0,

jŒa; b�j � C
�

3
2

�k
jJ j:

However, this is clearly impossible for a large k , thus completing the proof.

We close this Section by noticing that similar arguments to those above apply to actions
by C 1 diffeomorphisms of the interval �0; 1� instead of Œ0; 1Œ.
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4.2 The case of the open interval

To prove Theorem A in the general case of the open interval, we would like to apply
the arguments of the preceding Section. For this, we need to ensure that either a or b

actually belongs to �0; 1Œ. Indeed, if not, we are not allowed to use the procedure of
Claim 4.

Thus, we need to find a hyperbolic element f 2 F2 such that:

(i) .r; s/ is not an eigenvector of f T .

(ii) .r; s/ is not orthogonal to any eigenvector of f �1 ,

(iii) neither .1; 0/ nor .0; 1/ are eigenvectors of f ,

(iv) f has fixed points inside �0; 1Œ.

For this, notice that Claim 2 provides us with a free subgroup F on two generators
whose non-trivial elements are hyperbolic and satisfy properties (i), (ii), and (iii) above.
Now F must contain non-trivial elements having fixed points in �0; 1Œ; if not, the action
of F on �0; 1Œ would be free, which is in contradiction with Hölder’s theorem (see
Ghys [12] or Navas [18]). Therefore, any element f 2 F having fixed points in �0; 1Œ
satisfies (i), (ii), (iii), and (iv), and this concludes the proof of Theorem A.

4.3 The case of the circle

Let G be a non-solvable subgroup of SL.2;Z/. To show Theorem B, we would again
like to apply similar arguments to those of Section 4.1. However, there are certain
technical issues that need a careful treatment.

First of all, notice that, a priori, an irreducible component I for the action of Z2 is
not necessarily an interval: it could coincide with the whole circle. We claim, however,
that this cannot happen. Indeed, let .r 0; s0/ be the point in T2 whose coordinates
are the rotation numbers of .1; 0/ and .0; 1/, respectively. Recall that the rotation
number function is invariant under conjugacy. Moreover, its restriction to Z2 is a
group homomorphism into T2 (see for example Ghys [12, Section 6.6] or Navas [18,
Section 2.2.2]). Since G normalizes Z2 , for all f D

�
a b
c d

�
2G we have (modulo Z)

r 0 D �.1; 0/D �.f .1; 0//D �.a; c/D ar 0C cs0

and
s0 D br 0C ds0:

This means that .r 0; s0/ is a fixed point for the action of f T on T2 . But since G is
non-solvable, this cannot hold for every f 2G , thus showing that I does not coincide
with S1 .
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Now let � be a Z2 –invariant Radon measure on I . Let ��W Z2! R be the corre-
sponding translation number homomorphism, and let r D ��..1; 0// and sD ��..0; 1//.
Analogously to the case of Section 4.2, we need to find a hyperbolic element f 2G

so that the following conditions are fulfilled:

(i) .r; s/ is not an eigenvector of f T ,

(ii) .r; s/ is not orthogonal to any eigenvector of f �1 ,

(iii) neither .1; 0/ nor .0; 1/ are eigenvectors of f ,

(iv) f has fixed points on the circle.

To obtain the desired element, we need to consider two cases separately.

If G does not preserve any probability measure on S1 , then Margulis’ alternative [14]
and its proof provide us with a free subgroup F (in two generators) of G all of whose
elements have fixed points. Claim 2 applied to F then yields the desired element.

If G preserves a probability measure on S1 , then the rotation number function �W G!
T1 is a group homomorphism (see Ghys [12] or Navas [18]). Therefore, the rotation
number of all the elements in ŒG;G� is zero, and hence these elements must have fixed
points. Since G is non-solvable, ŒG;G� contains free subgroups, which still allows
applying Claim 2.
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