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Non-negative Legendrian isotopy in ST �M

VLADIMIR CHERNOV

STEFAN NEMIROVSKI

It is shown that if the universal cover of a manifold M is an open manifold, then two
different fibres of the spherical cotangent bundle ST �M cannot be connected by a
non-negative Legendrian isotopy. This result is applied to the study of causality in
globally hyperbolic spacetimes. It is also used to strengthen a result of Eliashberg,
Kim and Polterovich on the existence of a partial order on eCont0.ST �M / .

53D35; 53C50, 83C99

1 Introduction

Let M be a connected not necessarily orientable manifold of dimension m� 2 and let
�M W ST �M !M be its spherical cotangent bundle. It is well-known that ST �M

carries a canonical co-oriented contact structure. An isotopy fLtgt2Œ0;1� of Legendrian
submanifolds in a co-oriented contact manifold is called non-negative if it can be
parameterised in such a way that the tangent vectors of the trajectories of individual
points lie in the non-negative tangent half-spaces defined by the contact structure, see
Definition 2.1.

Theorem 1.1 Assume that the universal cover of M is an open manifold. Then there
does not exist a non-negative Legendrian isotopy connecting two different (nonoriented)
fibres of ST �M .

In the special case when M can be covered by an open subset of Rm , this statement
was proved by Colin, Ferrand and Pushkar [8]. Independently, a slightly stronger
result was obtained by the present authors in the course of the proof of the so-called
Legendrian Low Conjecture from Lorentz geometry [6]. Theorem 1.1 allows us to
extend the results of [6] to a wider class of Lorentz manifolds, see Section 10.

A closely related notion of non-negative contact isotopy plays a key role in the order-
ability problem for contactomorphism groups, see the work of Eliashberg, Kim and
Polterovich [11; 10] and Bhupal [4]. Theorem 1.1 can be applied to settle a question
left open in [10], see Section 9.
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It is easy to see that the assertion of Theorem 1.1 is false if M carries a Riemannian
metric turning it into a Y x

`
–manifold, that is, such that all unit speed geodesics starting

from a point x 2M return to x in time `> 0, see Example 8.3. In particular, it is false
if M is a metric quotient of the standard sphere. Hence, the hypothesis of Theorem 1.1
cannot be weakened for surfaces (this is obvious) and 3–manifolds (this follows from
Perelman’s work on the Poincaré conjecture [19; 20; 21]). On the other hand, it seems
very likely that there exist simply connected compact manifolds of higher dimension
which obey the conclusion of Theorem 1.1.

The proof of Theorem 1.1 is based on Viterbo’s invariants of generating functions [22].
However, it is different from the arguments in [8] and [6] already for M D Rm . In
particular, no use is made of the identification ST �Rm Š J 1.Sm�1/.

All manifolds, maps etc. are assumed to be smooth unless the opposite is explicitly
stated, and the word smooth means C1 .

Acknowledgments The authors are grateful to Petya Pushkar’ and the referee for
useful comments. The second author was supported by grants from the Deutsche
Forschungsgemeinschaft, Russian Foundation for Basic Research, Russian Science
Support Foundation, and the programme “Leading Scientific Schools of Russia.”

2 Non-negative Legendrian isotopies

Let .Y; ker˛/ be a contact manifold with a co-oriented contact structure defined by a
contact form ˛ .

Definition 2.1 A Legendrian isotopy fLtgt2Œ0;1� in .Y; ker˛/ is called non-negative
if it has a parameterisation F W L0 � Œ0; 1�! Y such that .F�˛/

�
@
@t

�
� 0. If the latter

inequality is strict, the isotopy is called positive.

Clearly, this definition does not depend on the choice of the parameterisation F of
the Legendrian isotopy and on the choice of the contact form defining the co-oriented
contact structure. It is also obvious that (co-orientation preserving) contactomorphisms
preserve the property of being non-negative or positive.

Lemma 2.2 Let fLtgt2Œ0;1� be a non-negative Legendrian isotopy of compact sub-
manifolds such that L0\L1D¿. Then there exists a (C1–close) positive Legendrian
isotopy with the same ends.
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Non-negative Legendrian isotopy in ST �M 613

Proof Let L0t D  �t .Lt /, where  t is the Reeb flow on .Y; ˛/ and � > 0. The
isotopy fL0tg is positive. If � is small enough, then L0

1
is Legendrian isotopic to L1 in

Y nL0 . By the Legendrian isotopy extension theorem (see Geiges [13, Theorem 2.6.2])
there exists a contactomorphism � supported in Y nL0 such that �.L0

1
/DL1 . The

image L00t WD �.L0t / of the positive isotopy fL0tg is a positive Legendrian isotopy
connecting L0 and L1 .

An advantage of positive isotopies is that positivity is an open condition and hence one
can make a positive Legendrian isotopy generic by a small perturbation.

Definition 2.3 An isotopy fLtgt2Œ0;1� is in general position with respect to a subman-
ifold ƒ� Y of codimension dimR L0 if it has a parameterisation F W L0� Œ0; 1�! Y

such that

(a) F�1.ƒ/ is a 1–dimensional submanifold in L0 � Œ0; 1�;

(b) the projection F�1.ƒ/! Œ0; 1� has isolated critical points;

(c) F�1.ƒ/ is transverse to L0 � f0g and L0 � f1g.

Note that a point .x; �/ 2 F�1.ƒ/ which is not critical for the projection F�1.ƒ/!

Œ0; 1� lies on the graph of a section of this projection over a non-trivial closed interval
Œt 0; t 00� 3 � . In other words, there exists a curve  W Œt 0; t 00�! L0 such that  .�/D x

and F. .t/; t/ 2ƒ for all t 2 Œt 0; t 00�.

3 Exact pre-Lagrangian submanifolds

Suppose that ƒ is an m–dimensional submanifold of a .2m� 1/–dimensional contact
manifold .Y; ker˛/ such that

(3.1) df D eh˛jƒ

for some functions f; hW ƒ!R. Then ƒ is said to be exact pre-Lagrangian and f is
called a contact potential on ƒ. (The terminology will be explained in Section 4.)

The following lemma shows that the contact potential is non-decreasing along any
curve traced on ƒ by a non-negative Legendrian isotopy.

Lemma 3.1 Let Lt D �t .L0/, t 2 Œ0; 1�, be a non-negative Legendrian isotopy.
Suppose that  W Œ0; 1�!L0 is a curve such that �t . .t//2ƒ, where ƒ is an exact pre-
Lagrangian submanifold with contact potential f . Then the function t 7! f .�t . .t///

is non-decreasing.
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Proof This follows from the definitions and the chain rule. Indeed,

d

dt
f .�t . .t///D df

�d�t

dt
. .t//C d�t . .t//

d

dt
.t/
�

D eh

�
˛
�d�t

dt
. .t//

�
C˛

�
d�t . .t//

d

dt
.t/
��
:

The first summand in square brackets is non-negative by the definition of non-negative
Legendrian isotopy and the second one is zero because the isotopy is Legendrian and
d
dt

is tangent to L0 . Hence, the derivative of our function is non-negative.

4 Symplectisation

Let .Y; ker˛/ be a contact manifold. Its symplectisation Y symp is the (exact) symplectic
manifold .Y �R; d.es˛//.

Example 4.1 Let Y � T �M be the unit sphere bundle with respect to a Riemannian
metric on M . Then ˛ WD �canjY is a contact form defining the canonical contact
structure on Y Š ST �M . The map

Y symp
3 .�; s/ 7�! es� 2 T �M

is a symplectomorphism onto the complement of the zero section of T �M such that
the pull-back of the canonical 1–form �can is precisely es˛ .

A contactomorphism �W Y ! Y lifts to a symplectomorphism z�W Y symp ! Y symp

defined by the formula
z�.x; s/ WD .�.x/; s� �.x//;

where �W Y !R is the function such that ��˛ D e�˛ . It follows from this definition
that if f�tgt2Œ0;1� is a contact isotopy of Y , then fz�tgt2Œ0;1� is a Hamiltonian isotopy
of Y symp , see Eliashberg and Polterovich [11, Section 1.2].

An exact pre-Lagrangian submanifold ƒ with a contact potential f such that df D

eh˛jƒ lifts to an exact Lagrangian submanifold

zƒD f.x; h.x// 2 Y symp
j x 2ƒg � Y symp:

Indeed, the function zf W zƒ! R, zf .x; h.x// D f .x/, is a primitive for the 1–form
es˛j zƒ . Note that for any contactomorphism �W Y ! Y , the image �.ƒ/ with the
contact potential f ı��1 is exact pre-Lagrangian and A�.ƒ/D z�.zƒ/.
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Non-negative Legendrian isotopy in ST �M 615

5 Generating functions

Let M be a manifold, which may be open or have boundary. Consider the product
M �RN for some N � 0 and let � W M �RN !M be the projection onto M . For
a function SW M �RN !R, consider the set of its fibre critical points

FCrit.S/ WD fz 2M �RN
j dS.z/jRN D 0g:

Note that there is a natural fibrewise map

dMSW FCrit.S/! T �M

which associates to a point z 2 FCrit.S/ the linear form v 7! dS.z/.bv/ on T�.z/M ,
where bv 2 Tz.M �RN / is any tangent vector such that d�.bv/D v 2 T�.z/M .

A function SW M �RN !R is called a generating function for a Lagrangian subman-
ifold L� T �M if it satisfies the following two conditions:

(GF1) its set of fibre critical points is cut out transversely;

(GF2) the map dMSW FCrit.S/! T �M is a diffeomorphism onto L.

Note that S ı .dMS/�1W L ! R is a primitive for �canjL . Hence, a Lagrangian
submanifold of T �M admitting a generating function is exact.

A generating function SW M �RN !R is called quadratic at infinity if furthermore

(GF3) S.y; �/D �.y; �/CQ.�/, where Q is a non-degenerate quadratic form on RN

and the projection � W supp � !M is a proper map.

Note that a Lagrangian submanifold L � T �M admitting a quadratic at infinity
generating function is properly embedded, that is, the projection L!M is a proper
map.

Proposition 5.1 Let fLtgt2Œ0;1� be a compactly supported isotopy of properly embed-
ded Lagrangian submanifolds in T �M . Suppose that

(a) L0 admits a quadratic at infinity generating function;

(b) there exists a family of functions ft W Lt !R such that dft D �canjLt
.

Then there exists a family St W M�RN!R of quadratic at infinity generating functions
for Lt such that St ı .dMSt /

�1 D ft for all t 2 Œ0; 1�.
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Proof This minor extension of the Laudenbach–Sikorav theorem [15] follows im-
mediately from the generalisation of Chekanov’s theorem [5] to properly embedded
Legendrian submanifolds in 1–jet bundles of not necessarily compact manifolds, see
Eliashberg and Gromov [9, Sec. 4] and Ferrand [12]. Indeed, consider the Legendrian
isotopy

yLt WD f.x; ft .x// 2 J 1.M / j x 2Ltg

in the 1–jet bundle of M . By the generalised Chekanov theorem, there exists a family
St W M �RN ! R of quadratic at infinity generating functions for yLt . This means
that

FCrit.St / 3 z 7! .dMSt .z/;St .z// 2 J 1.M /

is a diffeomorphism onto yLt for every t 2 Œ0; 1�, which proves the proposition.

6 Critical values of quadratic at infinity functions

Let S W RN !R be a function quadratic at infinity in the sense that

S.z/D �.z/CQ.z/;

where � has compact support and Q is a non-degenerate quadratic form on RN . (We
will eventually take S to be the restriction of a quadratic at infinity generating function
SW M �RN !R to the fibre fxg�RN over a point x 2M .) Following Viterbo [22,
Section 2], let us define an invariant c�.S/ 2R of such a function.

Consider the sublevel sets

Sc
WD fz 2RN

j S.z/� cg

and denote by S�1 the set Sc for a sufficiently negative c� 0. Pick a Q–negative
linear subspace V � RN of maximal possible dimension � . The relative homology
class ŒV � 2 H�.RN ;S�1/ does not depend on the choice of V . Set

c�.S/ WD inffc 2R j ŒV � 2 {�H�.Sc ;S�1/g;

where {�W H�.Sc ;S�1/!H�.RN ;S�1/ is the homomorphism of relative homology
groups induced by the inclusion {W Sc!RN .

By Morse theory, c�.S/ is a critical value of S . In particular, if S has a single critical
point z0 2RN , then c�.S/D S.z0/.

We will need the following version of Viterbo’s monotonicity lemma [22, Lemma 4.7].
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Lemma 6.1 Let fStgt2Œ0;1� be a family of quadratic at infinity functions on RN and
let

C WD f.z; �/ 2RN
� Œ0; 1� j dS� .z/D 0g D

[
�2Œ0;1�

Crit.S� /� f�g:

Suppose that for any .z; �/ from a dense subset C 0�C there exists a non-trivial closed
interval Œt 0; t 00� 3 � and a smooth curve  W Œt 0; t 00�!RN such that

(a)  .�/D zI

(b)  .t/ 2 Crit.St / for all t 2 Œt 0; t 00�I

(c) the function t 7! St . .t// is non-decreasing on Œt 0; t 00�.

Then t 7! c�.St / is a non-decreasing (continuous) function on Œ0; 1�.

Proof According to [22, Lemma 4.7], the claim will follow if we show that @S�

@t
.z/�0

for all .z; �/ 2 C . If .z; �/ 2 C 0 , we have

0�
d

dt
St . .t//

ˇ̌̌̌
tD�

D
@S�

@t
.z/C dS� .z/

d

dt
.�/D

@S�

@t
.z/;

where  is a curve satisfying conditions (a)–(c) for � and z . Since C 0 is dense in C ,
this inequality is valid for all .z; �/ 2 C .

In the proof of Theorem 1.1 in Section 8, the set C will parameterise the intersection
of a positive Legendrian isotopy with an exact pre-Lagrangian submanifold. The subset
C 0 will correspond to the generic part of that intersection, where Lemma 3.1 may be
applied.

7 The Importance of Being Open

Let M be an open manifold. We identify ST �M with the unit sphere bundle in T �M

for some Riemannian metric on M and view the complement to the zero section of
T �M as the symplectisation of ST �M , see Example 4.1. Let �M W T

�M ! M

denote the bundle projection.

Lemma 7.1 There exists a function ˆW M !R without critical points.

Proof This is well-known, see Godbillon [14, Lemma 1.15].

Definition 7.2 Let ƒˆ WD
�

dˆ.x/

kdˆ.x/k
j x 2M

�
� ST �M:
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It is clear from the definition of the canonical 1–form that ƒˆ is an exact pre-
Lagrangian submanifold of ST �M and the function

fˆ.�/Dˆ.�M .�//

is a contact potential on ƒˆ . The associated Lagrangian lift

zƒˆ D fdˆ.x/ j x 2M g � T �M

is just the graph of the differential of ˆ. It has an obvious generating function

SˆW M �R0
!R; Sˆ.x � fptg/ WDˆ.x/:

8 Proof of Theorem 1.1

Let M be a manifold (universally) covered by an open manifold. Suppose that there
exists a non-negative Legendrian isotopy fLtgt2Œ0;1� connecting two different fibres of
ST �M . Since such an isotopy lifts to the spherical cotangent bundle of the covering
manifold, we may assume that M is itself an open manifold. By Lemma 2.2, we may
also assume that the Legendrian isotopy is positive.

Let ƒˆ be the exact pre-Lagrangian submanifold with contact potential fˆ Dˆı�M

defined in Section 7. Applying a global contactomorphism induced by a suitable
diffeomorphism of M , we can arrange that L0D ST �x0

M and L1D ST �x1
M , where

the points x0;x1 2M are such that ˆ.x0/ > ˆ.x1/. Furthermore, we can put the
isotopy in general position with respect to ƒˆ in the sense of Definition 2.3, leaving
L0 and L1 fixed (because they are already transversal to ƒˆ ).

Let f�tgt2Œ0;1� be a compactly supported contact isotopy of ST �M such that Lt D

�t .L0/ for all t 2 Œ0; 1�. (Such an isotopy exists by the Legendrian isotopy extension
theorem, see Geiges [13, Theorem 2.6.2].) Consider the Hamiltonian isotopy of exact
Lagrangian submanifolds .z�t /

�1.zƒˆ/ � T �M and the functions zfˆ ı z�t on these
manifolds, see Section 4. By Proposition 5.1, there exists a family of quadratic at
infinity generating functions

St W M �RN
!R

for .z�t /
�1.zƒˆ/� T �M such that

(8.1) St ı .dMSt /
�1
D zfˆ ı z�t :

Let
St WD St .x0; �/W R

N
!R

be the restrictions of St to the fibre fx0g �RN .
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By the definition of a generating function, z 2 fx0g�RN is a critical point of St if and
only if dMSt .z/ is an intersection point of z��1

t .zƒˆ/ with the fibre T �x0
M or, in other

words, if and only if dMSt .z/
kdMSt .z/k

is an intersection point of ��1
t .ƒˆ/ with ST �x0

M .
Hence, the map

Crit.St / 3 z 7�! �t

�
dMSt .z/

kdMSt .z/k

�
2Lt \ƒˆ

establishes a bijective correspondence between the set of critical points of St and the
intersection Lt \ƒˆ . Furthermore, it follows from formula (8.1) that the value of St

at a point z 2 Crit St is equal to the value of fˆ at the corresponding point in ƒˆ .

In particular, S0 and S1 each have a single critical point corresponding to the intersec-
tion of ƒˆ with L0DST �x0

M and L1DST �x1
M , respectively. Since fˆDˆı�M ,

we see that
c�.S0/Dˆ.x0/ and c�.S1/Dˆ.x1/:

Hence,

(8.2) c�.S0/ > c�.S1/

by our choice of the points x0 and x1 .

On the other hand, it follows from Lemma 3.1 and the discussion after Definition
2.3 that the family of functions fStgt2Œ0;1� satisfies the hypotheses of Lemma 6.1.
Thus, c�.St / is a non-decreasing function of t and therefore c�.S0/� c�.S1/, which
contradicts (8.2).

This contradiction shows that a non-negative Legendrian isotopy cannot connect two
different fibres of ST �M .

Corollary 8.1 If the universal cover of M is an open manifold, then there does not
exist a positive Legendrian loop in the Legendrian isotopy class of the fibre of ST �M .

Proof Suppose that fLtgt2Œ0;1� is a positive Legendrian isotopy such that L0DL1D

ST �x M . If f�tgt2Œ0;1� is a contact isotopy such that �0 D id, �1.ST �x M /D ST �y M

for some y ¤ x , and d�t

dt
is sufficiently small, then the isotopy f�t .Lt /gt2Œ0;1� is

positive and connects two different fibres of ST �M , contradicting Theorem 1.1.

Remark 8.2 With a little more work, it can be shown that if the universal cover of M

is non-compact, then any non-negative Legendrian loop in the Legendrian isotopy class
of the fibre of ST �M is constant, cf [6, Corollary 6.2]. Although we will not really
need this result, we sketch the proof for completeness. In view of Theorem 1.1, we
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may assume that M is itself non-compact. Suppose that fLtgt2Œ0;1� is a non-constant
non-negative Legendrian isotopy such that L0 DL1 D ST �x0

M . Since the isotopy is
non-constant, we can pick a � 2 .0; 1/ in such a way that L� differs from L0 but is still
close to it. Then there exists a function ˆW M !R without critical points such that ƒˆ
intersects L� at a single point � 2 ST �M and ˆ.�M .�//¤ˆ.x0/. Using the Reeb
flow as in the proof of Lemma 2.2, we can approximate fLtg by a positive Legendrian
isotopy fL0tg with L0

0
DL0 and put fL0tg in general position with respect to ƒˆ . If

we now define the functions St W fx0g�RN !R corresponding to the isotopy fL0tg as
in the proof of Theorem 1.1, then Lemmas 3.1 and 6.1 apply to show that the function
t 7! c�.St / is non-decreasing. On the other hand, c�.S� /�ˆ.�M .�// does not lie
between c�.S0/Dˆ.x0/ and c�.S1/�ˆ.x0/, a contradiction.

Example 8.3 Suppose that there exists a Riemannian metric g on M such that .M;g/

is a Y x
`

–manifold for some x 2M and ` > 0, that is, such that all unit speed g–
geodesics starting from x return to x in time `, see Besse [3, Definition 7.7(c)]. Then
moving the fibre ST �x M along the (co-)geodesic flow on ST �M defines a positive
Legendrian loop based at ST �x M . Thus, Corollary 8.1 and Theorem 1.1 do not hold
for such a manifold M .

Note that if dim M D 2 or 3, then either the universal cover of M is open or M

admits a Riemannian metric turning it into a Y x
`

–manifold. For dim M D 2, this
statement follows immediately from the classification of surfaces. For dim M D 3, the
Poincaré conjecture proved by Perelman [19; 20; 21] implies that the universal cover
of M is either non-compact or diffeomorphic to S3 . In the latter case, the elliptisation
conjecture also proved by Perelman guarantees that M is diffeomorphic to a quotient
of the standard round S3 by the action of a finite group of isometries and the quotient
metric turns M into a Y x

`
–manifold. Thus, Theorem 1.1 fails for every surface or

3–manifold such that its universal cover is not open.

The weak form of the Bott–Samelson theorem proved by Bérard-Bergery, see [2] and [3,
Theorem 7.37], says that if .M;g/ is a Y x

`
–manifold, then the universal cover of M

is compact and the rational cohomology ring H�.M;Q/ is generated by one element.
In view of the preceding discussion, it seems natural to ask whether the latter property
is also shared by all manifolds M such that there exists a positive Legendrian loop in
the Legendrian isotopy class of the fibre of ST �M .

Remark 8.4 Let pW Z ! N be a Legendrian fibration of a co-oriented contact
manifold. Suppose that there exists a contact covering ST �M !Z such that M is
open and the pre-image of any fibre of p is a union of fibres of ST �M . (Note that
p does not have to be locally trivial and its fibres do not have to be spheres.) Then
Theorem 1.1 and Corollary 8.1 hold for the fibres of p .
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9 Orderability of ST �M

Let .Y; ker˛/ be a connected contact manifold. Consider the identity component
Cont0.Y / of the group of compactly supported contactomorphisms of .Y; ker˛/ and
let eCont0.Y / denote the universal cover of this group corresponding to the base point
idY 2 Cont0.Y /. For f;g 2 eCont0.Y /, write f � g if the element gf �1 can be
represented by a path �t 2 Cont0.Y / such that the contact Hamiltonian H WD ˛

�d�t

dt

�
is non-negative. Following Eliashberg and Polterovich [11], we say that the contact
manifold .Y; ker˛/ is orderable if the relation � defines a genuine partial order on
eCont0.Y /.

Eliashberg, Kim and Polterovich [10, Theorem 1.18] used contact homology to prove
that ST �M is orderable for a closed manifold M such that its fundamental group
�1.M / is either finite or has infinitely many conjugacy classes. It is an open problem
whether an infinite finitely presented group can have finitely many conjugacy classes,
see Baumslag, Myasnikov and Shpilrain [1, Problem (FP19)]. The following result
shows that the orderability of ST �M does not depend on the solution of that problem.

Corollary 9.1 ST �M is orderable for any closed manifold M .

Proof By [11, Criterion 1.2.C], a closed contact manifold .Y; ker˛/ is orderable if and
only if there does not exist a contractible loop of contactomorphisms �t 2 Cont0.Y /,
t 2 Œ0; 1�, such that �0 D �1 D idY and the corresponding contact Hamiltonian is
everywhere positive. It is clear that applying a contact isotopy of idY generated by
a positive contact Hamiltonian to any Legendrian submanifold L � Y , we obtain a
positive Legendrian isotopy of L. Thus, if Y is not orderable, then every Legendrian
isotopy class contains a positive (contractible) Legendrian loop.

Suppose that ST �M is not orderable. By [10, Theorem 1.18], the fundamental group
of M is infinite and hence the universal cover of M is open. In that case, however, the
Legendrian isotopy class of the fibre of ST �M does not contain positive Legendrian
loops by Corollary 8.1, a contradiction.

Example 9.2 The proof of Corollary 9.1 shows that if �1.M / is infinite, then there
are no positive loops in Cont0.ST �M /, contractible or not. On the other hand, the
(co-)geodesic flow of the standard round metric on the m–sphere Sm defines a non-
contractible positive loop in Cont0.ST �Sm/, cf Example 8.3.

Corollary 9.3 Let pW ST �M!Z be a contact covering of a closed contact manifold
Z . Then Z is orderable.
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Proof Suppose that Z is not orderable and argue by contradiction. By [11, Criterion
1.2.C], there exists a contractible loop of contactomorphisms of Z based at idZ and
generated by a positive contact Hamiltonian. Since this loop is contractible, it lifts to
a loop of contactomorphisms of ST �M with the same properties. If M is closed,
we conclude that ST �M is not orderable by [11, Criterion 1.2.C], which contradicts
Corollary 9.1. If M is open, then the argument from the proof of that corollary
shows that there exists a positive Legendrian loop based at a fibre of ST �M , which
contradicts Corollary 8.1.

Remark 9.4 Let L be a connected component of the space of Legendrian submanifolds
of a contact manifold .Y; ker˛/. Note that L is a homogeneous space of Cont0.Y /
and its universal cover eL is a homogeneous space of eCont0.Y /. It was pointed out
in [11, Section 1.9] that the relation � admits a natural extension to L and eL . Namely,
write L1 � L2 for L1;L2 2 L if there exists a non-negative Legendrian isotopy
connecting L1 to L2 . Similarly, write zL1 �

zL2 for zL1; zL2 2
zL if there exists a path

in zL connecting zL1 to zL2 such that its projection to L is a non-negative Legendrian
isotopy.

From this point of view, Remark 8.2 says that � is a genuine partial order on the
component L containing the fibre of ST �M if the universal cover of M is non-
compact. Furthermore, [6, Corollary 5.5] shows that � is a genuine partial order on
the component L containing the zero section of the 1–jet bundle J 1.N / of a compact
manifold N . On the other hand, � is not a genuine partial order on the component
containing the fibre of ST �M for a Y x

`
–manifold M because there is a positive

Legendrian loop in that component. Similarly, the example of a positive Legendrian
loop in J 1.S1/ Š ST �R2 given in [8, Section 5.1] shows that � is not a genuine
partial order on the corresponding component of the space of Legendrian knots.

As in the case of contactomorphisms, the behaviour of � seems to ‘improve’ on eL .
For instance, one might hope that it is a genuine partial order on the universal cover of
the component containing the fibre of ST �M for any manifold M .

10 Legendrian Low Conjecture

Here we give a very brief exposition of the relevant material from Lorentz geometry.
Further details and references may be found in [6].

Let .X;g/ be a connected Lorentz manifold of signature .
m‚ …„ ƒ

C; : : : ;C;�/, m � 2. A
non-zero vector v 2 TxX is called timelike, non-spacelike, null, or spacelike if g.v; v/

is respectively negative, non-positive, zero, or positive. A submanifold in X is called
spacelike if the restriction of g to it is a Riemannian metric.
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Assume that X is time-oriented, that is, equipped with a continuous choice of the
future and past hemicones C

"
x and C

#
x in the non-spacelike cone in each TxX . A

piecewise smooth curve  D  .t/ in X is said to be future directed if P .t/ 2 C
"

.t/

and past directed if P .t/ 2 C
#

.t/
for all t .

Definition 10.1 Two points x;y 2 X are called causally related if they can be
connected by a future or past directed curve.

Assume further that there is a smooth spacelike hypersurface M �X such that every
endless future directed curve in X meets M exactly once. Then .X;g/ is called a
globally hyperbolic spacetime with a Cauchy surface M �X . The simplest examples
are direct products .X;g/D .M �R; xg˚�dt2/, where xg is a complete Riemannian
metric on M . In this case, a time orientation is just an orientation on the R–factor
and each slice M � ftg is a Cauchy surface in .X;g/.

Let N be the set of all future directed non-parameterised null geodesics in .X;g/ or,
in other words, the set of all light rays of our spacetime. N has a canonical structure of
a contact manifold, see Low [17, Section 2] or Natário and Tod [18, pages 252–253].
There is a contactomorphism

�M W N
'
�! ST �M

that associates to a null geodesic  2N the equivalence class of the (non-zero) linear
form v 7! g. P ; v/ on T\M M , where P is a future pointing tangent vector to 
at  \M .

The set Sx of all null geodesics passing through a point x 2 X is a Legendrian
sphere in N called the sky of that point. Note that two skies intersect if and only if the
corresponding points lie on the same null geodesic. Note also that �M .Sx/D ST �x M

for any x 2M .

Since X is connected, the skies of any two points are Legendrian isotopic in N.
However, Legendrian links formed by unions of disjoint skies may be quite different.

A basic observation is that all Legendrian links Sx tSy corresponding to causally
unrelated points x;y 2X belong to the same Legendrian isotopy class, see [7, The-
orem 8] or [6, Lemma 4.3]. Let us denote this isotopy class of Legendrian links
by U (as in unrelated and unlinked). A natural way to represent U is to pick the
points x and y on the Cauchy surface M so that �M identifies Sx t Sy with
ST �x M tST �y M � ST �M .

Two skies Sx;Sy �N are said to be Legendrian linked if either Sx \Sy ¤ ¿ or
the Legendrian link Sx tSy does not belong to U . We have just seen that if Sx and
Sy are Legendrian linked, then the points x and y are causally related.
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Definition 10.2 The Legendrian Low Conjecture holds for a globally hyperbolic
spacetime if two points in it are causally related if and only if their skies are Legendrian
linked.

Remark 10.3 The general problem of describing causal relations in terms of linking
in the space of null geodesics originates from the work of Robert Low that was
apparently inspired by a question raised by Penrose, see, for example, Low [16;
17]. The Legendrian Low Conjecture was explicitly stated by Natário and Tod [18,
Conjecture 6.4] in the case when the Cauchy surface M is diffeomorphic to an open
subset of R3 .

It was shown in our paper [6] that the Legendrian Low Conjecture holds for any globally
hyperbolic spacetime such that its Cauchy surface has a cover diffeomorphic to an open
subset of Rm , m� 2. Using Theorem 1.1 instead of [6, Corollary 6.2], we can now
extend our result to a wider class of spacetimes.

Theorem 10.4 The Legendrian Low Conjecture holds for any globally hyperbolic
spacetime such that the universal cover of its Cauchy surface is not compact.

Proof Let x;y 2 X be two points such that their skies are disjoint and there exists
a future directed curve connecting x to y . By [6, Proposition 4.2], there exists a
non-negative Legendrian isotopy connecting Sy to Sx . Suppose that the Legendrian
link Sx tSy belongs to U . Then the link �M .Sx tSy/ � ST �M is Legendrian
isotopic to a link formed by a pair of fibres of ST �M . Since Legendrian isotopic
links are ambiently contactomorphic, we obtain a non-negative Legendrian isotopy
connecting two different fibres of ST �M , which contradicts Theorem 1.1. Thus, Sx

and Sy are Legendrian linked.

Combining this theorem with Perelman’s proof of the Poincaré conjecture, we see that
the Legendrian Low Conjecture holds for any .3C1/–dimensional globally hyperbolic
spacetime such that the universal cover of its Cauchy surface is not diffeomorphic
to S3 . (This result was obtained in [6] by a more involved argument using the full
strength of the geometrisation conjecture.) On the other hand, if the Cauchy surface is a
quotient of S3 , then the Legendrian Low Conjecture may fail because of the following
general construction, cf [7, Example 3].

Example 10.5 If .M; xg/ is a Riemannian Y x
`

–manifold (see Example 8.3), then the
Legendrian Low Conjecture is false for the globally hyperbolic spacetime .M �R;
xg˚�dt2/. Indeed, null geodesics in this spacetime have the form  .s/D .x .s/; s/,
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where x is a xg–geodesic on M and s is the natural parameter on x . In particular,
�M�f0g.S.x;`//DST �x M by the definition of a Y x

`
–manifold. Thus, the skies S.x0;0/

and S.x;`/ are not Legendrian linked if x0 ¤ x 2M . However, the points .x0; 0/ and
.x; `/ in M �R are causally related if x0 is sufficiently close to x in M .

Remark 10.6 One can use Remark 8.2 and the proof of [6, Theorem C] to show that
if the universal cover of the Cauchy surface of a globally hyperbolic spacetime X is
non-compact, then the Legendrian links Sx tSy and Sy tSx are different for any
pair of causally related points x;y 2X with disjoint skies.
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