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Quasisymmetric nonparametrization
and spaces associated with the Whitehead continuum

JUHA HEINONEN

JANG-MEI WU

The decomposition space R3=Wh associated with the Whitehead continuum Wh
is not a manifold, but the product .R3=Wh/�Rm is homeomorphic to R3Cm for
any m � 1 (known since the 1960’s). We study the quasisymmetric structure on
.R3=Wh/ �Rm and show that the space .R3=Wh/ �Rm may be equipped with a
metric resembling R3Cm geometrically and measure theoretically—it is linearly
locally contractible and Ahlfors .3Cm/–regular—nevertheless the resulting space
does not admit a quasisymmetric parametrization by R3Cm .

30C65; 57N16, 57N45

In memory of Juha Heinonen, an extraordinary mathematician and friend, who passed
away after the mathematical work in this paper was completed. – J-M W

1 Introduction

To understand the underlying structure of a metric space, one seeks a parametrization
of a special type. The classical Riemann mapping theorem is an example. The problem
of characterizing metric n–spheres that are bi-Lipschitz equivalent to the standard
sphere Sn , or quasisymmetrically equivalent to Sn , has received considerable attention
in recent years. Despite a large number of results (for example by Bonk and Kleiner [6],
David and Semmes [10], Heinonen and Koskela [18], Laakso [22] and Semmes [29;
31; 32]), the question is still far from being understood.

There exist finite 5–dimensional polyhedra that are homeomorphic to the standard
sphere S5 but not bi-Lipschitz equivalent to S5 —an observation of Siebenmann and
Sullivan [34] based on deep work of Cannon [7] and Edwards [12; 11], which asserts
that the double suspension †2H 3 of a 3–dimensional homology sphere H 3 with a
nontrivial fundamental group is homeomorphic to the standard sphere S5 . The double
suspension †2H 3 can be considered as the join S1�H 3 , where H 3 is triangulated and
†2H 3 is equipped with a natural barycenter metric. The complement of the suspension
circle S1 in †2H 3 is not simply connected; therefore every homeomorphism f

Published: 19 February 2010 DOI: 10.2140/gt.2010.14.773



774 Juha Heinonen and Jang-Mei Wu

from †2H 3 onto S5 must map S1 onto a curve f .S1/ whose complement in S5 is
not simply connected. Consequently f .S1/ has positive 3–dimensional Hausdorff
measure. Hence f can not be Hölder continuous of order greater than 1=3 and is not
bi-Lipschitz. It was then asked by Siebenmann and Sullivan [34] whether there exists
a quasisymmetric homeomorphism between †2H 3 and S5 , a question which seems
inaccessible at the moment.

We study a problem in a similar spirit and, in some sense, of one dimension lower.
Let Wh denote a Whitehead continuum in R3 (see Whitehead [39]) and R3=Wh be
the decomposition space associated with Wh obtained by collapsing Wh to a point q

while leaving all other points unchanged. The resulting space R3=Wh endowed with
the quotient topology is not a manifold at q , therefore is not homeomorphic to R3 ;
however the product space .R3=Wh/�R1 is homeomorphic to R4 (see Bing [4; 5]).
The complement of fqg �R1 in .R3=Wh/�R1 is not simply connected at fqg �R1 .
Therefore any homeomorphism f from .R3=Wh/�R1 onto R4 maps fqg�R1 to an
infinite arc, which is wild in R4 and necessarily has positive 2–dimensional Hausdorff
measure. Hence f can not be Hölder continuous of order greater than 1=2.

Semmes [31, page 206] constructed a manifold �M modeled on R3=Wh and showed
that �M can be realized as a linearly locally contractible (resembling R3 geometrically)
and Ahlfors 3–regular (resembling R3 measure theoretically) subset of R4 ; on the
other hand �M is not quasisymmetrically equivalent to R3 . Heinonen and Semmes [20]
asked the following question: When .R3=Wh/�Rm is equipped with a linearly locally
contractible and Ahlfors .3Cm/–regular metric, does .R3=Wh/�Rm then admit a
quasisymmetric parametrization by R3Cm for some m� 1? We answer this question
in the negative using essentially a product of the Semmes metric with the Euclidean
metric.

1.1 Theorem For any m�1, the metric space .R3=Wh/�Rm , though homeomorphic
to R3Cm , can be equipped with a metric that is linearly locally contractible and
Ahlfors .3Cm/–regular so that the resulting space does not admit a quasisymmetric
parametrization by R3Cm .

The deeper reason for the nonexistence of the quasisymmetric parametrization in
Theorem 1.1 is the fact that the meridians of the solid tori used in construction of
the Whitehead continuum Wh are trivial in homology of the complement of Wh, but
nontrivial in homotopy.

We now proceed to give the formal definitions.
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A homeomorphism f W X ! Y between two metric spaces is said to be bi-Lipschitz if
there is a constant C � 1 so that

C�1
jx�yj � jf .x/�f .y/j � C jx�yj

for all x;y in X . A homeomorphism f W X ! Y between two metric spaces is said
to be quasisymmetric if there is a homeomorphism �W Œ0;1/! Œ0;1/ so that

jx� aj � t jx� bj implies jf .x/�f .a/j � �.t/jf .x/�f .b/j

for all triples of points x; a; b in X and for all t > 0 (see Tukia and Väisälä [35]).
Quasisymmetric maps distort relative distance by a finite amount and distort distance
roughly the same in all directions. They are, in some sense, appropriate generalizations
of conformal mappings for metric spaces.

A metric space is said to be linearly locally contractible if there is a constant C � 1

so that each metric ball of radius 0 < r < C�1 in the space can be contracted to a
point inside the ball of same center with radius C r . Linear local contractibility is a
geometric condition; it is necessarily satisfied if a metric space is quasisymmetrically
equivalent to Rn .

A metric space X is said to be Ahlfors Q–regular if there is a Borel measure � such
that

.1:2/ C�1rQ
� �.Br /� C rQ

for some constants Q > 0 and C � 1, and for all closed balls Br of radius 0 <

r � diam X . In this case, X has Hausdorff dimension Q and (1.2) holds when � is
replaced with the Hausdorff Q–measure of X (possibly with a different constant C ).
When Q is an integer, the space X resembles RQ measure theoretically but may be
totally disconnected. A metric space may be quasisymmetrically equivalent to SQ but
not Q–regular; the von Koch snowflake curve is an example.

A theorem of Semmes [30] states that if a linearly locally contractible topological
Q–manifold is Ahlfors Q–regular, then it satisfies a .1; 1/–Poincaré inequality, hence
it has nice analytical properties.

Tukia and Väisälä [35] have shown that a metric doubling space .X; d/ homeomorphic
to S1 is quasisymmetrically equivalent to S1 if and only if X satisfies the Ahlfors
2–point condition [35].

Bonk and Kleiner [6] have given a necessary and sufficient condition for a doubling
metric space to be quasisymmetrically equivalent to S2 . With this they proved the fol-
lowing theorem: A linearly locally contractible metric 2–sphere is quasisymmetrically
equivalent to S2 if it is Ahlfors 2–regular.

Geometry & Topology, Volume 14 (2010)



776 Juha Heinonen and Jang-Mei Wu

Semmes [31] showed that the theorem of Bonk and Kleiner fails in dimension 3 for a
geometrical realization of the decomposition space associated with the Bing double
in R3 , and for the manifold �M mentioned earlier. Theorem 1.1 shows that these natural
conditions for quasisymmetric parametrization are also insufficient in dimension 4 and
higher.
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2 Whitehead continuum

In 1935, J H C Whitehead [39] discovered a contractible noncompact 3–manifold
in S3 that is not homeomorphic to R3 . The complement of this manifold is now
called a Whitehead continuum. Topological properties and pictures accompanying the
construction of a Whitehead continuum can be found in Daverman [9], Kirby [21] and
Semmes [33].

Given a set E in fx1 D 0;x2 � 0g � R3 , with a slight abuse of notation, denote by
S1 �E the solid of revolution f.x1;x2;x3/ W .0; .x

2
1
C x2

2
/1=2;x3/ 2 Eg in R3 . Let

B2
0

(resp. @B2
0

) denote the closed disk (resp. the circle) in fx1 D 0g � R3 having
center .0; 1; 0/ and radius 1

2
.

A simple closed curve ˛ on S1 � @B2
0

is a meridian (resp. a longitude) of the torus
S1 �B2

0
if there exists a homeomorphism from @B2

0
(resp. S1 � f.0; 1

2
; 0/g) onto ˛

which is homotopic in S1 � @B2
0

to the identity map on @B2
0

(resp. S1 � f.0; 1
2
; 0/g).

Let T0 be a smooth compact solid torus embedded in R3 , identified with S1 �B2
0

for convenience. Let T1 be a second compact solid torus smoothly embedded in the
interior of T0 and positioned in such a way that T1 and any meridian of T0 form
a Whitehead link (see Kirby [21] and Rourke and Sanderson [27]). Note that T1 is
contractible in T0 , but the contraction of T1 can not take place without crossing itself.
In fact, T1 is knotted in T0 but is not knotted in R3 . Let � be a diffeomorphism
defined in a neighborhood of T0 that maps T0 onto T1 . Define inductively for k � 2,

Tk D �.Tk�1/:
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The intersection

WhD
1\

kD0

Tk

is a Whitehead continuum. The continuum Wh is one-dimensional and is contractible
inside each Tk ; k � 0. Identify S3 with R3 [ f1g in topology. The Whitehead
manifold S3nWh is simply connected and in fact contractible [21].

The Whitehead link is symmetric. For k � 1, there is a homeomorphism of S3 that
interchanges a meridian of Tk with a core of TkC1 (such as �.kC1/.S1�f.0; 1; 0/g/).
However the homeomorphism reversing the link can not be confined to T0 (see
Kirby [21, page 83]). Therefore there are loops, namely the meridians of Tk , lying
arbitrarily close to the Whitehead continuum Wh that can not be contracted in S3nWh
to a point while staying near Wh. In other words the Whitehead manifold S3nWh is
not simply connected at Wh, so S3nWh is not homeomorphic to R3 .

The decomposition space R3=Wh is defined by collapsing Wh to a single point, called q ,
while keeping all other points unchanged, then endowed with the quotient topology.
The resulting space is not a manifold at the quotient point q by the previous discussion,
hence it is not homeomorphic to R3 .

Taking the product with Rm .m� 1/ however destroys all nonmanifold points; as a
consequence .R3=Wh/�Rm is homeomorphic to R3Cm (by Andrews and Rubin [3],
also credited to Arnold Shapiro by Bing [4; 5]). See Daverman [9] and Kirby [21] for
more discussions about products of decompositions with a line.

Let � W R3!R3=Wh be the quotient map defined by �.Wh/D q and �.x/D x if x …

Wh; for simplicity denote by
zE D �.E/

the image of a set E under � . Let

LD fqg �Rm:

A curve 
 on @ zTk is called a meridian (resp. a longitude) of zTk if ��1
 is a merid-
ian (resp. a longitude) of Tk . The noncontractibility of the meridians of Tk in the
Whitehead manifold near Wh implies the following.

2.1 Proposition Meridians of zTk are not contractible in zT0nfqg, and meridians of
zTk � fzg are not contractible in . zT0 �Rm/nL, for any m� 1, k � 1 and z 2 Rm .

On the other hand, a meridian of zTk bounds a surface (a disk with a handle) in zTknfqg.
The difference of the roles of a meridian in homotopy and in homology is important in
our proof.
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3 The metric

We define a metric on the decomposition space R3=Wh by adapting that of Semmes in
[31]. The metric to be defined has a self-similarity property and sizes of zTk decrease
geometrically towards the point q . Semmes embedded R3=Wh in R4 which is more
visual; we consider .R3=Wh/nfqg as an abstract manifold on which the metric can be
explicitly described.

Fix a number c0 2 .0;
1

20
/. Let P0 D .0; 1; 0/; and A D fx 2 f0g �R2 W

1
2
� 2c0 <

jx � P0j �
1
2
� c0g, A0 D fx 2 f0g � R2 W

1
2
� 2c0 < jx � P0j <

1
2
C 2c0g and

A00 D fx 2 f0g�R2 W
1
2
� 3c0 < jx�P0j<

1
2
C 3c0g be three annuli in f0g�R2 . Let

U0 D S1
�A; V0 D S1

�A0 and W0 D S1
�A00

be the solids obtained by revolving A;A0 and A00 about the x3 –axis. Note that V0

and W0 are neighborhoods of @T0 and that U0 � T0\V0 � V0 �W0 . Recall that �
is a diffeomorphism defined in a neighborhood of T0 that maps T0 onto T1 . Assume
that c0 has been chosen small enough so that W0 is contained in the neighborhood
of T0 on which � is defined and that �.T0[W0/� T0nW0 , thus T1 is contained in
T0nW0 . Define inductively for k � 1,

.3:1/ Uk D �.Uk�1/; Vk D �.Vk�1/ and Wk D �.Wk�1/

and define for k � 0, closed regions between Vk and VkC1

‚k D Tkn.TkC1[Vk [VkC1/;

tk D Tkn.VknUk/:and solid tori

TkC1 � tk � Tk :Note that

Fix a parameter a2 .0; 1/. Define a metric da on the Whitehead continuum R3nWh as
follows. Initially, define a matrix .�ij /D Id on .R3nT0/

S
W0 and define for k � 1,

.�ij /D a2k.D�.�k//T D�.�k/ in Wk

where �.�k/ is the k –th iterate of ��1 . Later, adjust .�ij / in
S1

kD0.WknVk/ and
extend .�ij / to R3nWh so as to achieve the smoothness, the positive definiteness
of .�ij / and the self-similarity (3.3) below, and to preserve the previously defined
values on .R3nT0/[

S1
kD0 Vk . This can be accomplished by first extending .�ij /

continuously to ‚0n.W0[W1/ with the aid of partition of unity, next smoothing .�ij /

in ‚0 by convolution with a kernel that varies with the Euclidean distance dist.x; @‚0/,
and finally redefining .�ij / in

S1
kD1‚k so that for each k � 1;

.�ij /D a2k.D�.�k//T .�ij .�
.�k///D�.�k/ in ‚k :
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The metric da on R3nWh associated with the matrix .�ij / is defined by

da.x;y/D infflength 
 W 
 continuously differentiable curve joining x and yg;

where

.3:2/ length 
 D
Z



rX
�ij dxidxj :

The metric thus defined is self-similar with respect to Wh in the following sense:

.3:3/ da.x;y/D ak
� da.�

.�k/x; �.�k/y/ for all x 2 Tk0 and y 2 Tk00

and for all k 0; k 00 � k � � � 0 for some � depending only on � and c0 .

The metric on the decomposition space R3=Wh, again called da , is the pushforward
metric induced by the homeomorphism � W R3nWh! .R3=Wh/nfqg followed by the
continuous extension to the point q .

Denote by de be the Euclidean metric on Rm for any m� 1. Let ıa be the metric on
the product space .R3=Wh/�Rm defined by

.3:4/ ıa..x;x
0/; .y;y0//D da.x;y/C de.x

0;y0/

for all .x;x0/; .y;y0/ 2 .R3=Wh/�Rm and any m� 1.

Here, as well as in the future, we use c; c1; c2; : : : ;C;C1;C2; : : : ;C
0;C 00; : : : to denote

positive constants depending at most on m; �; c0 and a, in particular, independent
of k . We use r . s; r & s; r ' s to mean that the ratio r

s
is bounded above, or bounded

below, or bounded above and below by this type of constants. Values of c and C need
not be the same at each occurrence.

Note then

diamda
. zTk/' ak ;.3:5/

distda
.ztk ; @ zTk/D distda

. zUk ; @ zTk/D c0ak ;.3:6/

distda
.q; @ zTk/' distda

.@ zTk ; @ zTkC1/' distda
. zVk ; zVkC1/' ak :.3:7/

We now give a concrete reformulation of Theorem 1.1.

3.8 Theorem The metric space ..R3=Wh/�Rm; ıa/ is linearly locally contractible
and Ahlfors .3Cm/–regular. However there is no quasisymmetric homeomorphism
between ..R3=Wh/�Rm; ıa/ and R3Cm , when a> 2�.3Cm/=2m and m� 1.
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The restriction on a in the theorem is a consequence of the modulus estimates. It is
unclear whether the theorem remains true for the whole range of a 2 .0; 1/.

The linear local contractibility and the Ahlfors regularity in Theorem 3.8 follow from
(3.3)–(3.7) and a lifting-twisting-shrinking procedure used in proving the topological
equivalence between .R3=Wh/�Rm and R3Cm . By (3.3), (3.5), (3.6) and (3.7), there
exists a large constant C > 1 such that for each ball Bda

.x; r/ in .R3=Wh; da/, one
of the following holds:

(i) x D q .

(ii) x 2 zTkn
zTkC1 for some k � �1 and q 2 Bda

.x;C r/; in this case Bda
.x; r/�

Bda
.q;C 0r/� Bda

.x;C 00r/� Bda
.q;C 000r/.

(iii) x 2 zTkn
zTkC1 for some k � �1 and q … Bda

.x;C r/; in this case Bda
.x; r/�

zTk�1n
zTkC2 and there is an open set U homeomorphic to a Euclidean ball so

that
Bda

.x; r/� U � Bda
.x;C r/:

Here, with a slight abuse of notation, zT�1 denotes R3=Wh. By (3.4), there exists
C > 1 so that

Bıa
..q; .0; 0; : : : ; 0//;C�1ak/� zTk � Œ�ak ; ak �m � Bıa

..q; .0; 0; : : : ; 0//;Cak/:

We first check that zT1�Œ�1; 1�m is contractible inside zT0�Œ�4; 4�m . It is known that the
quotient map ��idW R3Cm! .R3=Wh/�Rm can be uniformly approximated by home-
omorphisms (see Daverman [9, pages 81–84]). Choose gW R3Cm! .R3=Wh/�Rm ,
a homeomorphism satisfying

distıa
.g.x; z/; .� � id/.x; z// < c0=30 on R3Cm:

Then g�1. zT1 � Œ�1; 1�m/, a subset of .T1 [ V1/ � Œ�2; 2�m , is contractible inside
t0� Œ�3; 3�m . Hence zT1� Œ�1; 1�m is contractible in g.t0� Œ�3; 3�m/� zT0� Œ�4; 4�m .
The linear local contractibility of ..R3=Wh/ � Rm; ıa/ can be seen by scaling and
examining the projection of a given ball Bıa

.x; r/ into R3=Wh for the three alternative
cases.

Define a measure � on R3 DWh[ .R3nWh/ as follows: �.Wh/D 0, �j.R3nT1/ is
the Lebesgue measure, and

�.E/D a3k�.�.�k/.E//

if E � TknTkC1 and k � 1. The measure on the decomposition space .R3=Wh; da/,
again called �, is defined to be the pushforward of the measure � on R3 induced by
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the quotient map � W R3! R3=Wh. Note from (3.3) that

�. zTkn
zTkC1/' a3k for k � 0;

and that �.Bda
.q; r// ' r3 ; and note from (3.3) and the smoothness of .�ij / that

�.Bda
.x; r//' r3 if Bda

.x; r/� zTk�1n
zTkC2 and k � 0. The Ahlfors 3–regularity

of .R3=Wh; da; �/ follows by checking the three alternative cases. The product space
..R3=Wh/�Rm; ıa; �� dx/ is Ahlfors .3Cm/–regular equipped with the product
of � with the Lebesgue measure dx in Rm .

4 Modulus of surface families

Let f be a homeomorphism from ..R3=Wh/ � Rm; ıa/ onto R3Cm . What is the
obstruction for quasisymmetry? We give a heuristic explanation for mD 1. Proposition
2.1 implies that BnL is not simply connected for any small ball B in .R3=Wh/�R1

that intersects L. Hence f .B/nf .L/ is not simply connected and f .L/ is wild in
R4 . A theorem of Martio, Rickman and Väisälä (Theorem 9.1 in the Appendix) then
implies that the 2–dimensional Hausdorff measure

H2.f .B/\f .L// > 0;

for any ball B in .R3=Wh/�R1 that intersects L. One would then expect that f
maps all line segments of the form fzg� .t; t C s/ in .R3=Wh/�R1 near fqg�R1 to
curves of much greater length. A comparison of moduli of suitable curve families in the
domain and their images would prevent f from being quasisymmetric. Nevertheless
we are unable to provide quantitative estimates for the lengths of f .fzg � .t; t C s//;
so we shall work with the modulus of surface families instead.

The modulus of curve families has been an important tool in geometric function theory
since the 1920’s, first used by Grötzsch and Teichmüller and later extensively studied
by Beurling and Ahlfors [1]. Extending the concept of modulus from curve families to
l –dimensional surface families in Rn was due to Fuglede [15]. We need the notion of
modulus for surface families in the setting of metric spaces. We shall not aim for full
generality though.

Let .X; d/ be a linearly locally contractible topological n–manifold that is also Ahlfors
n–regular. Let 1� l � n� 1, p a real number � 1 and S be a family of topological
l –manifolds in X . A nonnegative Borel function �W X ! Œ0;1� is called admissible
for S if Z

�

�.x/dHl
d .x/� 1

Geometry & Topology, Volume 14 (2010)
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for every � 2 S that has positive Hausdorff l –measure Hl
d
.�/ and is locally finite

with respect to Hl
d

. The p–modulus of S is defined by

ModpS D inf
Z

X

�p.x/dHn
d .x/;

where the infimum is taken over all admissible �W X ! Œ0;1�. Here and later, we
denote by Hi

d
the i –th dimensional Hausdorff measure with respect to the metric d .

We omit the subscript d if the metric is the Euclidean one.

The most important modulus from the point of view of (quasi)conformal geometry is
the n= l –modulus Modn= l . It is conformally invariant and hence called the conformal
modulus. The conformal modulus of curve families is quasi-invariant under quasisym-
metric maps. This was proved by Gehring [16] for the Euclidean n–spaces and by
Heinonen and Koskela [19] for very general metric spaces.

We consider a sequence of .1Cm/–dimensional surface families Sk in .R3=Wh/�Rm

defined as follows. First we select the curve family

C D fS1
� fxg W x 2Ag

in T0 � R3 , where A is the planar annulus defined in Section 3. Let

Ck D f��
.k/.S1

� fxg/ W x 2Ag for k � 0;

be the associated curve families in the decomposition space R3=Wh, then define the
surface families

Sk D f
 � Œ0; 1�
m
W 
 2 Ckg for k � 0;

in .R3=Wh/�Rm by taking products.

We prove a one-sided inequality for the conformal moduli, which is adequate for our
purpose. Constants depending on f as well as m; �; c0 and a, shall be denoted by
C.f /.

4.1 Proposition Let f be a quasisymmetric homeomorphism from .R3=Wh/�Rm

onto R3Cm . Then there exists a constant C.f / > 0 such that

.4:2/ Mod.3Cm/=.1Cm/Sk � C.f /Mod.3Cm/=.1Cm/f .Sk/ for all k � 0:

Proof Since the matrix .�ij / is smooth in R3nWh, the quasisymmetric map f is in
W

1;r
loc ...R

3=Wh/�Rm/nL/ for some r > 3Cm; this can be seen by following the
proof of the theorem of Gehring [17] on the higher integrability of the derivatives of
quasiconformal maps in Euclidean spaces. Hence f is differentiable H3Cm

ıa
–almost

everywhere in .R3=Wh/�Rm . Set, for x 2A;

�x D ��
.k/.S1

� fxg/� Œ0; 1�m:
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In Euclidean spaces, quasiconformal mappings are absolutely continuous on almost all
lines. Adapting the standard proof of this fact [36, Theorem 31.2], we may conclude
that for H2 –almost every x 2A, f j�x maps sets of H1Cm

ıa
–measure zero to sets of

H1Cm –measure zero. We may then conclude that for any nonnegative Borel function
� on R3Cm and for H2 –almost every x 2A;

.4:3/
Z
�x

� .f .x// jDf .x/j1Cm dH1Cm
ıa

.x/�

Z
f .�x/

� .y/ dH1Cm .y/ ;

by adapting the standard argument for quasiconformal maps [36, Theorem 5.3]. Qua-
sisymmetry implies thatZ

.R3=Wh/�Rm

�
�.f .x//jDf .x/j1Cm

�.3Cm/=.1Cm/
dH3Cm

ıa
.x/

� C.f /

Z
.R3=Wh/�Rm

�.f .x//.3Cm/=.1Cm/
j det Df .x/jdH3Cm

ıa
.x/

� C .f /

Z
R3Cm

�.y/.3Cm/=.1Cm/dH3Cm.y/:

From the fact that the union of these surfaces has H3Cm
ıa

–measure zero, it follows that
the exceptional surfaces for which (4.3) fails have vanishing conformal modulus. Then
(4.2) can be obtained by following the standard argument for modulus of curve families
(see Theorem 32.3 in [36] or Theorem II.2.4 in [26]).

We need the following estimates.

4.4 Proposition Let f be a homeomorphism from .R3=Wh/�Rm onto R3Cm .
Then for each k � 0 and each � 2 Sk ; the .1Cm/–dimensional Hausdorff measures
in ..R3=Wh/�Rm; ıa/ and R3Cm satisfy

(1) H1Cm
ıa

.�/' ak ,

(2) H1Cm.f .�//� C.f /2k

for some positive constant C.f /.

4.5 Proposition Let f be a homeomorphism from .R3=Wh/�Rm onto R3Cm .
Then for each k � 0, the conformal moduli of surface families satisfy

(1) Mod.3Cm/=.1Cm/Sk ' .a
k/2m=.1Cm/ ,

(2) Mod.3Cm/=.1Cm/f .Sk/� C.f /.2�k/.3Cm/=.1Cm/

for some positive constant C.f /.
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5 Proof of Theorem 1.1

Theorem 1.1 follows from Theorem 3.8. The last sentence of Theorem 3.8, the only
statement yet to be proved, follows from Proposition 4.1 and Proposition 4.5. The
proof of Proposition 4.5 is given first assuming the validity of Proposition 4.4. The
proof of Proposition 4.4 is given next assuming the validity of an estimate (5.1) on the
intersection numbers. The proof of (5.1) shall occupy the remaining sections.

Proof of Proposition 4.5 Assume the validity of Proposition 4.4. Fix k � 0 and
let � be a nonnegative Borel function on .R3=Wh/�Rm admissible for the surface
family Sk , thus Z

�

�dH1Cm
ıa
� 1

for every � 2 Sk . ThereforeZ
zUk�Œ0;1�m

�dH3Cm
ıa

'

Z
S1�A

�Z
Œ0;1�m

�
�
��.k/.s;x/; z

�
dHm.z/

�
a3kdH3.s;x/

'

Z
A

�Z
��.k/.S1�fxg/

�Z
Œ0;1�m

�.�; z/dHm.z/

�
dH1

da
.�/

�
a2kdH2.x/

'

Z
A

 Z
��.k/.S1�fxg/�Œ0;1�m

� .�; z/ dH1Cm
ıa

.�; z/

!
a2kdH2 .x/& a2k :

On the other hand,Z
zUk�Œ0;1�m

�dH3Cm
ıa

�

�Z
zUk�Œ0;1�m

�.3Cm/=.1Cm/dH3Cm
ıa

�.1Cm/=.3Cm/ �
H3Cm
ıa

. zUk � Œ0; 1�
m/
�2=.3Cm/

� C

�Z
zUk�Œ0;1�m

�.3Cm/=.1Cm/dH3Cm
ıa

�.1Cm/=.3Cm/

a6k=.3Cm/:

This implies Z
zUk�Œ0;1�m

�.3Cm/=.1Cm/dH3Cm
ıa

& .ak/2m=.1Cm/:

Now set �0Da�k in zUk�Œ0; 1�
m and D 0 outside zUk�Œ0; 1�

m . Note from Proposition
4.4(1) that C�0 is admissible for the surface family Sk for some constant C > 0
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depending at most on m; �; c0 and a, and in particular independent of k . It is easy to
check thatZ

.R3=Wh/�Rm

�
.3Cm/=.1Cm/
0

dH3Cm
ıa
' .a�k/.3Cm/=.1Cm/.ak/3 ' .ak/2m=.1Cm/:

Mod.3Cm/=.1Cm/Sk ' .a
k/2m=.1Cm/:Therefore

To show part (2), set �1D2�k in f . zUk� Œ0; 1�
m/ and �1D0 in R3Cmnf . zUk� Œ0; 1�

m/.
Note from Proposition 4.4 (2) that C.f /�1 is admissible for f .Sk/ for some C.f />0.
ThenZ

R3Cm

�
.3Cm/=.1Cm/
1

dH3Cm
� C.f /H3Cm

�
f . zT0 � Œ0; 1�

m/
�
.2�k/.3Cm/=.1Cm/:

Mod.3Cm/=.1Cm/f .Sk/� C.f /.2�k/.3Cm/=.1Cm/:Hence

This completes the proof.

Proof of Proposition 4.4 Part (1) follows immediately from the definition of the
metric ıa .

To prove part (2), we first construct a bi-Lipschitz homeomorphism � of R3Cm with
some specific properties, we then slice surfaces in the collection

S1
kDk0

.�ıf .Sk// by a
certain stack of standard 2–simplices fDj g in R3Cm with the parameter j ranging over
an .1Cm/–dimensional cube J in R3Cm orthogonal to the simplices fDj g. Finally
we estimate the number N.k; �; j / of points in the intersection Dj \ .�ıf .�// from
below by

.5:1/ N.k; �; j /� C.f /2k for all k > k0; � 2 Sk and j 2 J;

for some positive integer k0 and some positive constant C.f / depending on f .

Assume that ((5.1)) is valid for the moment. Given k > k0 and a surface � in Sk , let
� be the projection map from .

S
j2J Dj /\ .� ıf .�// to J defined by

�.x/D j if x 2Dj \ .� ıf .�//:

So � is 1–Lipschitz. It follows from (5.1) and a coarse estimate (see Federer [13,
Theorem 2.10.25]) that

H1Cm.� ıf .�//�

Z
J

N.k; �; j /dH1Cm.j /� C.f /H1Cm.J /2k :

Since � is bi-Lipschitz, part (2) has been proved assuming (5.1).
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To complete the proof of Theorem 1.1, it remains to establish (5.1). In Section 6 we
define � and locate the stack of two-simplices used for slicing, and in Section 8 we
prove the lower estimate (5.1).

6 A stack of two-simplices

Denote by Bd .x; r/ the closed ball having center x and radius r in the metric space
.X; d/. We omit the subscript when the metric is Euclidean.

Let 0 be the origin of Rm and Q be the point .q; 0/ in .R3=Wh/�Rm . Recall from
(3.5), (3.6) and (3.7) that q 2 zTk �

zTk [
zVk � Bda

.q;Cak/� R3=Wh and that

Q 2 . zTk [
zVk/� Œ�ak ; ak �m � Bıa

.Q;C1ak/;

for some constants C; C1 > 1. Set

�k D diamf .Bıa
.Q;C1ak//I

choose and fix an integer k0 � 2 so that

.6:1/ B.f .Q/; 3�k0
/� f . zT1 �Rm/:

The 2–simplices shall be chosen to lie in B.f .Q/; 3�k0
/.

Set ˛ D ��.k0/.@B2
0/� f0g;

a meridian of zTk0
� f0g, where B2

0
is the planar disk in R3 defined in the beginning

of Section 2. Let

.6:2/ AD

�
x 2 R3=Wh W distıa

..x; 0/; ˛/ <
c0ak0

30

�
�

�
�

c0ak0

30
;
c0ak0

30

�m

be a tubular neighborhood of ˛ not intersecting ztk0
�Rm , where c0 is the constant

chosen in Section 3.

Let c1Ddist.f .˛/; f .@A//=10. It follows from a PL–approximation theorem of Moise
(Theorem 9.2 in the Appendix) that there exists an embedding � W ˛ ,! R3Cm such
that l � �.˛/ is a piecewise linear topological 1–sphere in f .A/, and

d.f .x/; �.x// < c1 for all x 2 ˛:

The embedding � used for defining l shall play no role in the future. We observe that
l and f .˛/ are homotopic in f .A/ and that

.6:3/
l � f .A/� f .. zTk0

[ zVk0
/� Œ�ak0 ; ak0 �m/

� f .Bıa
.Q;C1ak0//� B.f .Q/; �k0

/:
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Here, as well as in the future, two curves ˇ and ˇ0 are said to be homotopic in X (or
ˇ is homotopic to ˇ0 in X ) if the continuous maps defining the curves are homotopic
in the target space X .

Since 3Cm � 4, the PL 1–sphere l is unknotted in R3Cm and there is a global
bi-Lipschitz homeomorphism � of R3Cm that maps l to the boundary of a standard
2–simplex D0 contained in B.Y; 2 diam l/, �.l/D @D0 , while fixes all points outside
B.Y; 2 diam l/ for some point Y 2 l . (See Theorem 9.4 in the Appendix.) Note from
(6.3) that

.6:4/ �D id in R3Cm
nB.f .Q/; 3�k0

/:

Choose and fix a .1Cm/–dimensional cube J in R3Cm which is orthogonal to the 2–
simplex D0 and is small enough such that all translates j C@D0 (j 2 J ) are contained
in � ı f .A/ and are homotopic to � ı f .˛/ in � ı f .A/. The translated standard
2–simplices Dj � jCD0; j 2J enclosed by jC@D0 shall be used for slicing surfaces
in the collection

S1
kDk0

.� ıf .Sk//.

Since @Dj D j C @D0 � � ı f .A/ � �.B.f .Q/; �k0
// � B.f .Q/; 3�k0

/, it follows
that

Dj � B.f .Q/; 3�k0
/:

From (6.1) and (6.4), it follows that

f �1��1.Dj /� zT1 �Rm; for all j 2 J:

Since f �1��1.@Dj / and ˛ are homotopic in A, ˛ is a meridian of zTk0
� f0g and

A\LD∅, the curve f �1��1.@Dj / is not contractible in . zT0�Rm/nL by Proposition
2.1. Therefore

f �1��1.Dj /\L¤∅; for all j 2 J:

6.5 Remark For simplicity and with a slight abuse of notation, we continue to use
the notation f for the composition map �ıf . Under this convention, for every j 2 J ,

.6:6/ @Dj � f .A/I

f �1.@Dj / and ˛ are homotopic in A; and

.6:7/ f �1.Dj /\L¤∅; Dj \f .L/¤∅ and f �1.Dj /� zT1 � Œ�C2;C2�
m

for some C2 > 1.
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7 Interior-essential components

The tori Tk .k � 0/ used in the Whitehead construction can be arranged topologically
so that the meridian @B2

0
on @T0 bounds a 2–cell in T0 which intersects every Tk

.k � 1/ in 2k mutually disjoint 2–cells enclosed by meridians of Tk . The lower
estimate (5.1) is suggested by this idealized setting followed by a homological argument
of Freedman and Skora [14]. In this section, we prove a version of their Lemma 2.5
for mappings instead of embeddings.

We adopt some statements from [9, pages 73–74] in locating the essential part of a
continuous image of a 2–cell inside an n–manifold. Let M be an n–manifold with
boundary and ! a 2–manifold with boundary. A map ˆW .!; @/! .M; @/, meaning
ˆ.!/�M and ˆ.@!/� @M , is said to be interior-inessential if there exists a map
ˆ0W !! @M satisfying ˆ0j@! Dˆj@! ; it is said to be interior-essential if no such
ˆ0 exists. In case ! is a closed 2–cell, ˆ is interior-essential if and only if ˆ.@!/ is
homotopically nontrivial in @M , but trivial in M .

Suppose that ! is a compact, connected 2–manifold in a 2–cell D . Denote by D! the
unique 2–cell in D containing ! with @D! � @! . A map ˆW .!; @/! .M; @/ is said
to be virtually interior-essential if ˆ extends to an interior-essential ˆ00W D! !M

satisfying ˆ00.D!n!/� @M .

In case M is a solid torus T D S1�B2 , an interior-essential map ˆW .!; @/! .T; @/

necessarily maps one of the boundary components of ! to a homotopically nontrivial
loop on @T . A map ˆW .!; @/! .T; @/ is virtually interior-essential if and only if
ˆ maps the outermost component of @! to a nonzero multiple of a meridian on @T
while mapping all other components of @! to trivial loops there. In other words ˆ, in
fact the extension ˆ00jD! , represents a nonzero multiple of a generator of the relative
homology group H2.T; @IZ/� Z. Since a meridian and a core of a torus are linked,
ˆ.!/ must intersect every core of the torus T .

Here and later, a closed curve on @T is said to be a multiple of a meridian if it is
homotopic, in @T , to n times a meridian of T for some integer n. A boundary
component of a compact 2–manifold ! in a 2–cell D is said to be outermost if it is
not contained in the 2–cell in D enclosed by any other component of @! .

Recall that the relative homology group

H2.S1
�B2; @IZ/� Z

is generated by the equivalence class Œg� with gW .�; @�/! .S1 �B2; @.S1 �B2//

being continuous and of degree ˙1 on @�, where � is a standard 2–simplex.

The following observation on meridians and longitudes is needed.
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7.1 Lemma Let Tk .k � 0/ be the solid tori in the Whitehead construction. Then the
meridians of Tk are not contractible in S3n Int.Tk/ hence not in T0n Int.Tk/, and the
longitudes of Tk are not contractible in T0n Int.Tk/.

Proof The noncontractibility of the meridians follows from the fact that a merid-
ian (resp. a longitude) of the torus T is a longitude (resp. a meridian) of the torus
S3n Int.T /.

Since a core of Tk and a core of S3n Int.Tk�1/ form a Whitehead link for k � 1, there
is a homeomorphism h of S3 interchanging these two cores [21, page 83]. In fact, h

can be chosen to map Tk and S3n Int.Tk�1/ onto S3n Int.Tk�1/ and Tk respectively,
thus to map Tk�1 onto S3n Int.Tk/. This implies that S3n Int.Tk�1/ is embedded in
S3n Int.Tk/ in same way that Tk is embedded in Tk�1 for all k � 1. From this and
the fact mentioned in the last paragraph, the statement on the noncontractibility of the
longitudes follows.

We now prove an analogue of Lemma 2.5 in Freedman and Skora [14] for mappings; it
was proved there for embeddings and for the Bing double.

7.2 Lemma Let T0 and T1 be the first two tori in the Whitehead construction, ! be a
compact, connected 2–manifold in a 2–cell D , and ˆW .!; @/! .T0; @/ be a virtually
interior-essential map. Suppose that ˆ.!/ meets @T0 [ @T1 transversally. Then
ˆ�1.T1/ contains at least two components !1 , !2 on which the maps ˆj!i W !i !

T1 .i D 1; 2/ are virtually interior-essential.

Proof Assume that ˆ has been extended to the 2–cell D! , which maps @D! to a
nonzero multiple of a meridian of T0 and maps D!n! into @T0 .

We first check that Œˆjˆ�1.T1/; @�D 0 in H2.T1; @IZ/, an analogue of an assertion
of Freedman and Skora about the Bing double [14, page 82]. Choose a smooth
embedding gW .�; @�;�n@�/ ,! .T0; @T0;T0n@T0/ in such a way that g.�/ meets
@T1 transversally, g�1.T1/ consists of exactly two 2–cells �i .i D 1; 2/, Œg; @�
generates H2.T0; @IZ/, and gj�1 and gj�2 represent generators of H2.T1; @IZ/ of
opposite signs. Hence

Œgj�1; @�C Œgj�2; @�D 0 in H2.T1; @IZ/:

Identify the 2–cells D! ; �1 and �2 with the standard 2–simplex � with proper
orientations. Since

Œˆ; @�D˙nŒg; @� in H2.T0; @IZ/;

ˆ� n �gC � D @�;.7:3/
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for some 3–chain � in T0 and some 2–chain � in @T0 . After subdivision, all
chains in (7.3) are sums of singular simplices in T1 or T0n Int.T1/. Since the
group H2.T0;T0n Int.T1/IZ/ is isomorphic to H2.T1; @IZ/ by excision, Œˆ� D
Œˆjˆ�1.T1/; @�, Œg�D Œgj�1; @�C Œgj�2; @�D 0, Œ@��D Œ@� 0�D 0 for a 3–chain � 0 in
T1 , and Œ� �D 0 in H2.T1; @IZ/. Therefore Œˆjˆ�1.T1/; @�D 0 in H2.T1; @IZ/.

By transversality and the Schönflies Theorem, ˆ�1.T1/ is a compact 2–manifold
in D! and ˆ�1.@T1/ is a 1–manifold with no boundary. Moreover ˆ�1.T1/ is
nonempty and contains some component on which ˆ is interior-essential. Otherwise,
ˆjˆ�1.T1/ could be redefined in the interior-inessential components to have images in
@T1 ; consequently, ˆ.D!/� T0n Int.T1/. This would imply that ˆ.@D!/, a nonzero
multiple of a meridian of T0 , is contractible in T0n Int.T1/.

Among the components of ˆ�1.T1/ on which ˆ is interior-essential, (call the entire
collection of such components �), choose an innermost component !1 ; ie, D!1

contains no element in �nf!1g. We claim that ˆj!1 is virtually interior-essential.
To verify the claim, note that the boundary of !1 consists of a special outermost
component @D!1 and possibly some other components ˇ ’s whose interior contains no
component of ˆ�1.T1/ on which ˆ is interior-essential. Modify ˆ on the interior-
inessential components inside ˇ , so that it maps the 2–cell Dˇ in D! enclosed by ˇ
into T0n Int.T1/. This implies that ˆ.ˇ/ is contractible in T0n Int.T1/. Neither the
meridians of T1 nor the longitudes of T1 are contractible in T0nInt.T1/ by Lemma 7.1;
ˆ.ˇ/ must be homotopically trivial in @T1 . Assume as we may that ˆ.Dˇ/ � @T1 .
Since ˆj!1 is interior-essential, ˆ.@D!1/ must be nontrivial in @T1 . Since ˆ.@D!1/

.�ˆ.D!1/� T0/ is contractible in T0 , it has to be a nonzero multiple, say n1 , of a
meridian of T1 . This proves the claim.

Assume as we may that !1 DD!1 . Therefore ˆj!1 represents a nonzero multiple of
a generator of the relative homology group H2.T1; @IZ/: Since Œˆjˆ�1.T1/; @�D 0

in H2.T1; @IZ/, �nf!1g is nonempty. Suppose that !2.¤ !1/ is another innermost
component of �, then ˆj!2W !2! T1 must also be virtually interior-essential.

Suppose !1 is the only innermost component of �. We shall prove Œˆjˆ�1.T1/; @�¤0.
This leads to a contradiction, thus the validity of the lemma.

The assumption implies that the minimal 2–cells D!0 in D! containing !0 .!0 2�/
are nested and contain !1 in their intersection. In other words, the elements of �,
!1; !2; : : : ; !N , can be ordered so that !1 DD!1 �D!2 � � � � �D!N �D! .

We shall alter ˆ in such a way, while not changing the homology class Œˆjˆ�1.T1/; @�

in H2.T1; @IZ/, that ˆ�1.T1/ has only one interior-essential component, namely
D!N . Since ˆ.@D!/ is noncontractible in T0nInt.T1/, ˆ.@D!N / must be homotopi-
cally nontrivial in @T1 . It follows then Œˆjˆ�1.T1/; @�D ŒˆjD!N ; @�¤ 0.
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The boundary of !2 consists an outermost component @D!2 and a special component b

that encloses a 2–cell Db in D! which contains !1 in its interior, and possibly some
other components ˇ ’s whose interiors contain no elements of �. Since Dˇ does not
contain any element of �, ˆ.ˇ/ is trivial in @T1 . After altering ˆ in the interior of
each Dˇ , we may assume that

S
ˇ ˆ.Dˇ/�@T1 and that ˆ maps the annular region in

D! bounded by b and @D!2 into T1 . The 2–cell Db consists of D!1 and an annular
region A in D! bounded by @D!1 and b . The annulus A contains no elements of �
due to the ordering. Modifications can be made on the interior-inessential components
in A, so that ˆjA maps A into T0n Int.T1/. The annulus A provides a homotopy
between ˆjb and ˆj@D!1 in T0n Int.T1/. By homotopy invariance, both ˆ.b/ and
ˆ.@D!1/ are n1 times a meridian of T1 . So ˆ can again be altered in Anˆ�1.T1/

such that ˆ.A/� @T1 . After these changes, D!2 becomes a component of ˆ�1.T1/

while the homological relation Œˆj!1; @�C Œˆj!2; @�D ŒˆjD!2 ; @� remains.

Continuing inductively if N > 2, ˆ can be altered so that D!N becomes the only
interior-essential component of ˆ�1.T1/.

As noted earlier Œˆjˆ�1.T1/; @�D ŒˆjD!N ; @�¤ 0, which gives the desired contradic-
tion. This completes the proof of the lemma.

8 A lower estimate on the intersection numbers

In this section, we apply Lemma 7.2 to obtain the estimate (5.1).

8.1 PL–approximation

Fix a parameter j 2 J ; write D for the simplex Dj used for slicing, and

F D f �1
jD:

Let …W .R3=Wh/�Rm! R3=Wh be the projection map

….x; z/D x:

The goal of this subsection is to construct a single-valued version of ��1…F jDW D!

R3 whose image intersects the boundaries of the tori transversally.

For the purpose of applying a PL–approximation (Theorem 9.5 in the Appendix),
the manifold .R3=Wh/�Rm is equipped with a PL–structure and a metric, induced
from R3Cm by a fixed homeomorphism (unrelated to f ) hW .R3=Wh/�Rm!R3Cm ,
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which is ��1� id outside zTKC1�Rm and is diffeomorphic off L. Fix a large integer
K > k0 and let

.8:2/ � D c0aKC2=30:

From Theorem 9.5 it follows that for any �0 > 0; F jD can be �0–approximated by a
locally flat PL embedding LW D ,! .R3=Wh/�Rm . When �0 is sufficiently small, the
approximation satisfies

.8:3/ dıa
.F.x/;L.x// < �; for all x 2Dnf . zTKC1 �Rm/;

with respect to the original metric. Adjusting L to one in general position with respect to
the boundaries of the tori, we may assume that L.D/ and .@ztk0

[
SK

kDk0
@ zTkC1/�Rm

meet transversally and their intersection is an 1–manifold having no boundary. Adjust-
ing L again, we may further assume that the projection … embeds each simplex in
L.D/n. zTKC1 �Rm/, that …L.D/ and @ztk0

[
SK

kDk0
@ zTkC1 meet transversally and

that .…L/�1.@ztk0
[
SK

kDk0
@ zTkC1/ is a 1–manifold in D having no boundary. See

Rourke and Sanderson [27, Chapter 5], Rushing [28, page 33] and Theorem 9.6 in the
Appendix.

Note from (6.2), (6.6), (8.2) and (8.3) that L.@D/ is homotopic to the meridian ˛ of
zTk0
� f0g in zVk0

�Rm . By Proposition 2.1,

.8:4/ L.@D/D @L.D/ is not contractible in . zT0 �Rm/nLI

and by (6.7), (8.2) and (8.3),

.8:5/ q 2…L.D/;L.D/\L¤∅ and L.D/� . zT1[
zV1/� Œ�C2�1;C2C1�m:

The function ��1…L is not single-valued on the set L�1.L/\D ; we modify ��1…L

near L�1.L/ as follows. Let ƒ1; ƒ2; : : : ; ƒN be the 2–cells in D enclosed by the
outermost components of L�1.@. zTK �Rm//. Then the 2–cells ƒ1; ƒ2; : : : ; ƒN are
mutually disjoint,

L�1.L/�
N[
1

ƒn; and L

�
Dn

N[
1

ƒn

�
\ . zTK �Rm/D∅:

Note however L.
SN

1 ƒn/ need not be contained in zTK �Rm . Since the homeomor-
phism hW .R3=Wh/�Rm! R3Cm providing the PL–structure on .R3=Wh/�Rm is
��1 � id outside zTKC1 �Rm , the function ˆW D! R3 defined by

ˆD

(
��1…L in Dn

SN
1 ƒn;

…0hL in
SN

1 ƒn;
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is continuous on D . Here …0W R3 �Rm! R3 is the projection with …0.x; z/D x:

From the discussion leading to (8.4) and (8.5), it follows that

ˆ.@D/D ��1…L.@D/� Vk0
and ˆ.D/� T1[V1 � T0;

ˆ.@D/ is not contractible in T0nWh;

ˆ.D/\ tk0
¤∅ and ˆ.D/\Tk ¤∅ for all k � k0C 1:.8:6/

Define also a single-valued version of ��1…F :

‰ D

(
��1…F in Dn

SN
1 ƒn;

…0hF in
SN

1 ƒn:

The �–closeness (8.3) of F and L implies that ‰j.Dn
SN

1 ƒn/ and ˆj.Dn
SN

1 ƒn/

are �–close with respect to the metric da on R3nWh.

8.7 Intersection

We now apply Lemma 7.2 to torus pairs .tk0
;Tk0C1/, .Tk0C1;Tk0C2/,. . . ,.TK�1;TK /.

Notice that given any such pair, there is a homeomorphism of S3 that maps the first
torus in the pair onto T0 and the second one onto T1 .

To begin, let !k0
be an innermost component of ˆ�1.tk0

/ on which ˆ is interior-
essential. By (8.6), !k0

must exist and is nonempty. Following the argument in Lemma
7.2 for the statement that ˆj!1 is virtually interior-essential, we may conclude that
ˆW .!k0

; @/! .tk0
; @/ is virtually interior-essential; here the fact that neither a meridian

of tk0
nor a longitude of tk0

is contractible in T0nInt.tk0
/ is needed.

Applying Lemma 7.2 to the torus pair .tk0
;Tk0C1/, we conclude ˆ�1.Tk0C1/ contains

at least two components !1
k0C1

and !2
k0C1

on which the maps ˆj!i
k0C1
W !i

k0C1
!

Tk0C1 (i D 1; 2) are virtually interior-essential. Apply Lemma 7.2 again to each
!i

k0C1
.iD1; 2/ to obtain at least four components !i

k0C2
(1� i �4) of ˆ�1.Tk0C2/

on which the maps ˆj!i
k0C2
W !i

k0C2
! Tk0C2 (1 � i � 4) are virtually interior-

essential. Continuing inductively, we get for each k , k0C 1 � k � K � 1, at least
2k�k0 components !i

k
(1� i � 2k�k0 ) of ˆ�1.Tk/ on which ˆ is virtually interior-

essential. In fact, the proof of Lemma 7.2 also shows that for a fixed k , the minimal
2–cells D!i

k
in D containing !i

k
.1� i � 2k�k0/ are mutually disjoint, and that each

ˆ.@D!i
k
/ is a nonzero multiple of a meridian of Tk .

Fix an !i
k

with k0 C 1 � k � K � 1 and 1 � i � 2k�k0 . For any 
 in the curve
family Ck defined in Section 4, ��1
 (a core of Tk ) and ˆ.@D!i

k
/ are linked. So

��1
 intersects ˆ.D!i
k
/, in fact intersects ˆ.!i

k
/.
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For each 
 2 Ck , the core ��1
 intersects ‰.!i
k
/ also. This can be seen as follows.

Since ��1
 � Uk � tk and ˆ.@D!i
k
/D ��1…L.@D!i

k
/� @Tk , we have

30� D c0aKC2
� distda

.tk ; @Tk/� distda
.��1
;ˆ.@D!i

k
//:

From the �–closeness of ‰ and ˆ, it follows that ‰.!i
k
/ is contained in Vk [ Tk ,

a neighborhood of Tk , and that ‰j@!i
k

and ˆj@!i
k

are homotopic in VknUk , a
neighborhood of @Tk outside tk . So ��1
 and ‰.@D!i

k
/ are also linked. Therefore

��1
 intersects ‰.D!i
k
/, in fact intersects ‰.!i

k
/.

The intersection of ��1
 and ‰.!i
k
/ necessarily takes place at points in Uk , which

is outside the torus TK . Therefore ‰ D ��1…F at the points of intersection. So

 intersects …F.!i

k
/ for each 
 2 Ck . Consequently, � intersects F.!i

k
/ for each

� 2 Sk .

This together with Remark 6.5 shows that for each k , k0C 1� k �K� 1;

N.k; �; j /� 2k�k0 for all � 2 Sk and j 2 J:

Since K can be arbitrarily large, estimate (5.1) follows. This completes the proof of
Theorem 1.1.

9 Appendix

We state some topological facts needed in our proof.

The first theorem is about the size of the complement of a non–simply connected set
proved by Martio, Rickman and Väisälä [23].

9.1 Theorem Suppose that G is a simply connected domain in Rn .n � 3/ and A

is a closed subset of G . If GnA is not simply connected, then A must have positive
.n�2/–dimensional Hausdorff measure.

Next is a theorem about PL–approximation of embeddings of one-dimensional com-
plexes due to Moise [25, page 46].

9.2 Theorem Let K1 be a 1–dimensional complex, f W jK1j ,! R2 an embedding,
and  > 0 a continuous function on jK1j. Then there exists a piecewise linear
embedding � W jK1j ,! R2 such that

(1) j�.x/�f .x/j<  .x/ for all x 2 jK1j ( –approximation of f ),

(2) �.v/D f .v/ for all vertices v of K1 .
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9.3 Remark The theorem remains true if the target space is Rn for any n� 2. The
proof is essentially unchanged.

The following theorem on unknotting spheres is due to Zeeman [40]; the second
sentence in the statement below can be deduced from the proof of Theorem 5.6 in
Rourke and Sanderson [27] and the propositions mentioned therein.

9.4 Theorem Any piecewise linear topological 1–sphere l � Sn is unknotted in Sn

when n� 4. More precisely, there is a global PL–homeomorphism L of Sn with the
following properties:

(1) L maps l onto the boundary of a standard 2–simplex, in B.Y; 2 diam l/ for
some point Y 2 l .

(2) L� id in SnnB.Y; 2 diam l/.

The following PL–approximation of topological embeddings of k –cells into a mani-
fold M n is due to Ancel and Cannon [2] when codimension is 1, due to Miller [24]
and Černavskiı̆ [8] when codimension is 3 or higher and due to Venema [37; 38] when
codimension is 2. We need it for k D 2 and n� 4.

9.5 Theorem Let hW Ik !M n be a topological embedding of the closed k –cell Ik

into a piecewise linear n–manifold M n and n�k�1. Then for every � >0 there exists
a locally flat piecewise linear embedding LW Ik !M n such that d.h.x/;L.x//� �

for each x 2 Ik .

The following theorem on transversality is well-known (see for example Daverman [9,
page 69]). When the maps are piecewise linear the proof is simpler.

9.6 Theorem Suppose M n is an n–manifold, † is an .n� 1/–manifold embedded
in M as a closed and bicollared subset, F W B2!M is a continuous map, U is an
open subset of M containing †, and � > 0. Then there exists a map LW B2 !M

satisfying

(1) Lj.B2�F�1U /D F j.B2�F�1U /,

(2) d.L;F / < � ,

(3) L�1† is a 1–manifold in B2 with @.L�1†/D @B2\L�1†,

(4) for any point x 2L�1†;L.B2/ pierces † at L.x/, ie, for each neighborhood
W of x in B2 , L.W / touches both sides of the bicollar on † near L.x/.

We say L.B2/ and † meet transversally if the map LW B2!M satisfies (3) and (4).

Geometry & Topology, Volume 14 (2010)



796 Juha Heinonen and Jang-Mei Wu

References
[1] L Ahlfors, A Beurling, Conformal invariants and function-theoretic null-sets, Acta

Math. 83 (1950) 101–129 MR0036841

[2] F D Ancel, J W Cannon, The locally flat approximation of cell-like embedding rela-
tions, Ann. of Math. .2/ 109 (1979) 61–86 MR519353

[3] J J Andrews, L Rubin, Some spaces whose product with E1 is E4 , Bull. Amer. Math.
Soc. 71 (1965) 675–677 MR0176454

[4] R H Bing, The cartesian product of a certain nonmanifold and a line is E4 , Ann. of
Math. .2/ 70 (1959) 399–412 MR0107228

[5] R H Bing, A set is a 3 cell if its cartesian product with an arc is a 4 cell, Proc. Amer.
Math. Soc. 12 (1961) 13–19 MR0123303

[6] M Bonk, B Kleiner, Quasisymmetric parametrizations of two-dimensional metric
spheres, Invent. Math. 150 (2002) 127–183 MR1930885

[7] J W Cannon, The recognition problem: what is a topological manifold?, Bull. Amer.
Math. Soc. 84 (1978) 832–866 MR0494113

[8] A V Černavskiı̆, Piece-wise linear approximation of embeddings of manifolds in codi-
mensions greater than two. A supplement to the article “Piece-wise linear approxima-
tion of embeddings of cells and spheres in codimensions greater than two”, Mat. Sb.
.N.S./ 82 (124) (1970) 499–500 MR0275438

[9] R J Daverman, Decompositions of manifolds, Pure and Applied Math. 124, Academic
Press, Orlando, FL (1986) MR872468

[10] G David, S Semmes, Quantitative rectifiability and Lipschitz mappings, Trans. Amer.
Math. Soc. 337 (1993) 855–889 MR1132876

[11] R D Edwards, Suspensions of homology spheres arXiv:math/0610573

[12] R D Edwards, The topology of manifolds and cell-like maps, from: “Proceedings of
the International Congress of Mathematicians (Helsinki, 1978)”, Acad. Sci. Fennica,
Helsinki (1980) 111–127 MR562601

[13] H Federer, Geometric measure theory, Grund. der math. Wissenschaften 153, Springer,
New York (1969) MR0257325

[14] M H Freedman, R Skora, Strange actions of groups on spheres, J. Differential Geom.
25 (1987) 75–98 MR873456

[15] B Fuglede, Extremal length and functional completion, Acta Math. 98 (1957) 171–219
MR0097720

[16] F W Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc.
103 (1962) 353–393 MR0139735

[17] F W Gehring, The Lp –integrability of the partial derivatives of a quasiconformal
mapping, Acta Math. 130 (1973) 265–277 MR0402038

Geometry & Topology, Volume 14 (2010)



Quasisymmetric nonparametrization and the Whitehead continuum 797

[18] J Heinonen, P Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995)
61–79 MR1323982

[19] J Heinonen, P Koskela, Quasiconformal maps in metric spaces with controlled geom-
etry, Acta Math. 181 (1998) 1–61 MR1654771

[20] J Heinonen, S Semmes, Thirty-three yes or no questions about mappings, measures,
and metrics, Conform. Geom. Dyn. 1 (1997) 1–12 MR1452413

[21] R C Kirby, The topology of 4–manifolds, Lecture Notes in Math. 1374, Springer,
Berlin (1989) MR1001966

[22] T J Laakso, Plane with A1–weighted metric not bi-Lipschitz embeddable to RN ,
Bull. London Math. Soc. 34 (2002) 667–676 MR1924353
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[36] J Väisälä, Lectures on n–dimensional quasiconformal mappings, Lecture Notes in
Math. 229, Springer, Berlin (1971) MR0454009

[37] G A Venema, Approximating disks in 4–space, Michigan Math. J. 25 (1978) 19–27
MR497879

[38] G A Venema, Approximating codimension two embeddings of cells, Pacific J. Math.
126 (1987) 165–195 MR868611

[39] J H C Whitehead, A certain open manifold whose group is unity, Quart. J. Math.
Oxford .2/ 6 (1935) 268–279

[40] E C Zeeman, Unknotting spheres, Ann. of Math. .2/ 72 (1960) 350–361 MR0117738

Department of Mathematics, University of Michigan
530 Church Street, Ann Arbor, MI 48109-1043, USA

Department of Mathematics, University of Illinois
1409 West Green Street, Urbana, IL 61822, USA

wu@math.uiuc.edu

Proposed: Colin Rourke Received: 5 March 2008
Seconded: Tobias Colding, David Gabai Revised: 28 October 2009

Geometry & Topology, Volume 14 (2010)


