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The motivic Adams spectral sequence

DANIEL DUGGER

DANIEL C ISAKSEN

We present some data on the cohomology of the motivic Steenrod algebra over an
algebraically closed field of characteristic 0 . Our results are based on computer
calculations and a motivic version of the May spectral sequence. We discuss features
of the associated Adams spectral sequence and use these tools to give new proofs
of some results in classical algebraic topology. We also consider a motivic Adams–
Novikov spectral sequence. The investigations reveal the existence of some stable
motivic homotopy classes that have no classical analogue.

55T15, 14F42

1 Introduction

In modern algebraic geometry one studies varieties defined over arbitrary fields, whereas
classically this was done over only the real or complex numbers. The subject of motivic
homotopy theory is an attempt to generalize algebraic topology in the same way; rather
than study standard topological spaces, one studies a category of “spaces” defined over
a fixed ground field. The subject was put on firm foundations by the paper [21] of
Morel and Voevodsky, and it encompasses several areas of study like étale cohomology
and algebraic K–theory of smooth schemes.

One of the things that came out of [21] was the realization that almost any object studied
in classical algebraic topology could be given a motivic analog. In particular, one could
define the motivic stable homotopy groups of spheres. The present paper begins an
investigation of the Adams spectral sequence, based on mod 2 motivic cohomology,
that abuts to these groups. Our results not only contribute to the study of motivic
phenomena, but we find that they can be used to prove theorems about the classical
stable homotopy groups as well.

In the motivic stable homotopy category (over a given field) there is a bigraded family
of spheres Sp;q . It follows that one has a bigraded family of stable homotopy groups
�p;q.X / for any motivic spectrum X , and consequently all generalized homology and
cohomology theories are bigraded. For the sphere spectrum S , we will abbreviate
�p;q.S/ to just �p;q .
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968 Daniel Dugger and Daniel C Isaksen

The object Sn;0 is like an ordinary sphere, and smashing with it models the n–fold
suspension in the triangulated structure. The object S1;1 is the suspension spectrum of
the scheme A1�0, and represents a “geometric” circle. The other spheres are obtained
by smashing together copies of S1;1 and S1;0 , and taking formal desuspensions.
One should take from this that the groups �p;0 are most like the classical stable
homotopy groups, whereas the groups �p;q for q> 0 somehow contain more geometric
information. We will see this idea again in Remark 4.3.

The current knowledge about the groups �p;q is due to work of Morel. It follows from
results in [20] that �p;q D 0 for p < q . In [19] it is shown that the groups �n;n can
be completely described in terms of generators and relations using the Milnor–Witt
K–theory of the ground field. This theorem of Morel is in some sense a motivic analog
of the classical computation of the stable 0–stem.

Let F be a field of characteristic zero, and let M2 denote the bigraded motivic
cohomology ring of Spec F , with Z=2–coefficients. Let A be the mod 2 motivic
Steenrod algebra over F . All of these notions will be reviewed in Section 2 below.
The motivic Adams spectral sequence is a trigraded spectral sequence with

E
s;t;u
2
D Exts;.tCs;u/

A
.M2;M2/;

and dr W Es;t;u
r !E

sCr;t�1;u
r . Here s is the homological degree of the Ext group (the

Adams filtration), and .t C s;u/ is the internal bigrading coming from the bigrading
on A and M2 , so t C s is the topological dimension and u is the motivic weight.
The spectral sequence was first studied in the paper [18] of Morel. It converges to
something related to the stable motivic homotopy group �t;u ; see Corollary 6.15 for a
precise statement.

The motivic Steenrod algebra A is very similar to the classical mod 2 Steenrod algebra,
but the action of A on M2 is nontrivial in general. This extra feature seriously
complicates the computation of the Ext groups in the Adams E2 –term. If the ground
field F contains a square root of �1, however, the action of A on M2 is trivial and
the Ext groups are much more accessible. This is the situation that we study in the
present paper. In fact, for added convenience we almost entirely restrict to the case of
algebraically closed fields.

One goal of this paper is to present some computer calculations of the E2 –term of the
motivic Adams spectral sequence. We have carried out the computations far enough to
discover several exotic elements that have no classical analogues.

By the usual “Lefschetz principle”, the Adams spectral sequence over any algebraically
closed field of characteristic zero takes the same form as over the complex numbers.
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One might as well restrict to this case. But over the complex numbers, there is a map
from the (trigraded) motivic Adams spectral sequence to the (bigraded) classical one.
Comparing the two spectral sequences allows information to pass in both directions.
On the one hand, we can deduce motivic differentials from knowledge of the classical
differentials. We can also turn this around, though, and use the algebra of the motivic
E2 –term to prove results about classical differentials, and about extension problems
as well. This is described further in Section 8.7. We stress that these methods are
purely algebraic; as soon as one knows the motivic spectral sequence exists, and can
do the related algebraic calculations, some results about the classical Adams spectral
sequence come out almost for free.

It is useful to keep in mind the analogy of mixed Hodge theory and its influence on
topological gadgets like the Leray–Serre spectral sequence. Once it is known that
the Leray–Serre differentials preserve the Hodge weight, these differentials become
easier to analyze—there are fewer places where they can be nontrivial. A similar
thing happens with the Adams spectral sequence and the motivic weight. The three-
dimensional nature of the motivic Adams spectral sequence allows the nontrivial groups
to be more spread out, and also allows the algebra of Massey products to work out in
slightly different ways than the classical story. As a result, certain purely topological
phenomena become easier to analyze. So far this technique has only yielded results of
casual interest, but a more thorough study in higher dimensions might be fruitful.

Throughout the article, we are considering only the situation where the ground field
is algebraically closed and has characteristic 0. The latter assumption is absolutely
necessary at the moment, as the motivic Steenrod algebra is unknown over fields of
positive characteristic. The assumption that the ground field is algebraically closed is
less crucial. It is very easy to extend from the algebraically closed case to the case
where the ground field contains a square root of �1; see Remark 4.4. When considering
fields which do not contain such a square root, however, the difficulty of the calculations
increases dramatically. The article [8] of Hill illustrates the complications that occur,
even in the comparatively simple case of computations over A.1/ with base field R.

1.1 Remark In this paper we only deal with the motivic Adams spectral sequence
based on mod 2 motivic cohomology. Most aspects of our discussion also work at
odd primes, but the motivic Steenrod algebra in that case is exactly isomorphic to
the classical Steenrod algebra—the only difference being the existence of the extra
grading by weights. The E2 –term of the odd primary motivic Adams spectral sequence
therefore takes the same form as it does classically.
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1.2 Organization of the paper

In the first two sections we introduce the relevant background and set up the cohomo-
logical Adams spectral sequence. (It is probably better to work with the homological
Adams spectral sequence, but working cohomologically allows us to postpone some
motivic issues to later in the paper.) Then we discuss basic properties of the motivic
Ext groups and give the computation of the Adams E2 –term for t � 34. Next we show
how to derive this computation by hand with the motivic May spectral sequence.

In Section 6 we turn to convergence issues, and prove that our Adams spectral sequence
converges to the homotopy groups of the H –nilpotent completion S^

H
of the sphere

spectrum, where H is the motivic mod 2 Eilenberg–Mac Lane spectrum. This entails
dealing with the homological Adams spectral sequence and related material. Section 7
discusses the motivic Adams–Novikov spectral sequence, first studied by Hu, Kriz and
Ormsby [12].

Finally, in Section 8 we give an analysis of differentials in the motivic Adams spectral
sequence up through the 34–stem. Mostly this is straightforward, but a couple of
delicate points are handled by a comparison with the motivic Adams–Novikov spectral
sequence. We conclude the paper by using this motivic technology to prove two
theorems in classical topology, Propositions 8.8 and 8.9.

It is worth noting that Sections 6 and 7 are mostly technical, and can safely be skipped
on a first reading.

The appendices contain charts of the motivic Adams spectral sequence, the motivic
Adams–Novikov spectral sequence, and the E4 –term of the motivic May spectral
sequence. These charts are best viewed in color, which can be found in the online
version.

1.3 Notation and terminology

The following notation is used in the paper:

(1) M2 is the mod 2 motivic cohomology of a point (ie, the ground field).

(2) A is the mod 2 motivic Steenrod algebra.

(3) H�;�.�/ is mod 2 motivic cohomology.

(4) H is the mod 2 motivic Eilenberg–Mac Lane spectrum.

(5) �s;t is the group of stable motivic homotopy classes of maps S s;t ! S0;0 .

(6) Acl is the classical mod 2 Steenrod algebra.
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(7) H�.�/ is classical mod 2 cohomology.
(8) Hcl is the classical mod 2 Eilenberg–Mac Lane spectrum.

We are working implicitly with appropriate model categories of spectra and of motivic
spectra. The categories of symmetric spectra (see Hovey, Shipley and Smith [10]) and
of motivic symmetric spectra (see Jardine [13]) will work fine.

Several times in the paper we use without comment the fact that the spheres are compact
objects of the motivic stable homotopy category. That is, if

W
˛ E˛ is a wedge of

motivic spectra, then
L
˛ ŒS

p;q;E˛ �! ŒSp;q;
W
˛ E˛ � is an isomorphism. In fact this

is true not just for spheres, but for all suspension spectra of smooth schemes; this is
proven by the authors [7, Section 9] and also by Morel [20, Corollary 4.2.7].

Acknowledgments This work was begun while the two authors were visitors at Stan-
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the invitation to be there. The first author would also like to acknowledge a very helpful
visit to Harvard University during the summer of 2008. This visit was sponsored by
Mike Hopkins and supported by the DARPA FAthm grant FA9550-07-1-0555. The first
author was supported by NSF grant DMS-0604354. The second author was supported
by NSF grant DMS-0803997.

We are also grateful to Mark Behrens, Robert Bruner, Mike Hill and Michael Mandell
for many useful conversations.

2 Background

In this section we review the basic facts about motivic cohomology and motivic Steenrod
operations.

2.1 The cohomology of a point

Let F be a field of characteristic 0. We write M2 for the bigraded cohomology ring
H�;�.Spec F IZ=2/. A theorem of Voevodsky [31] describes M2 explicitly in terms of
the Milnor K–theory of F . Unfortunately this result doesn’t have a simple reference,
and instead is a combination of Theorem 6.1, Corollary 6.9(2), Corollary 6.10 and
Theorem 7.8 of [31]. Unless otherwise stated, we will always assume in this paper
that F is algebraically closed. For such fields the description of M2 has a particularly
simple form:

2.2 Theorem (Voevodsky) The bigraded ring M2 is the polynomial ring F2Œ� � on
one generator � of bidegree .0; 1/.

In a bidegree .p; q/, we shall refer to p as the topological degree and q as the weight.
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2.3 The motivic Steenrod algebra

We write A for the ring of stable cohomology operations on mod 2 motivic cohomology.
Voevodsky has computed this ring explicitly for fields of characteristic zero: see [32,
Section 11] and [30, Theorem 4.47]. In general, the ring is generated over M2 by the
Steenrod operations Sqi . Note that Sq2k lies in bidegree .2k; k/, whereas Sq2k�1

lies in bidegree .2k � 1; k � 1/. These operations satisfy a complicated version of the
Adem relations. Again, the description simplifies quite a bit when the ground field is
algebraically closed:

2.4 Theorem (Voevodsky) The motivic Steenrod algebra A is the M2 –algebra
generated by elements Sq2k and Sq2k�1 for all k � 1, of bidegrees .2k; k/ and
.2k � 1; k � 1/ respectively, and satisfying the following relations for a< 2b :

Sqa Sqb D
X

c

�
b� 1� c

a� 2c

�
� ? SqaCb�c Sqc :

Note the coefficients � ? in the Adem relation above. Here the “?” denotes an ex-
ponent which is either 0 or 1. We could explicitly write the exponent, but only at
the expense of making the formula appear more unwieldy. The exponent is easily
determined in practice, because it is precisely what is needed in order to make the
formula homogeneous in the bidegree.

For example, consider the formula Sq2 Sq2 D � ? Sq3 Sq1 . Since Sq2 has bidegree
.2; 1/, the left side has total bidegree .4; 2/. On the other hand, Sq1 has bidegree
.1; 0/ and Sq3 has bidegree .3; 1/, so we require one � on the right side in order to
make the formula homogeneous. In other words, we have the motivic Adem relation
Sq2 Sq2 D � Sq3 Sq1 . It turns out this is representative of what happens in all the
motivic Adem relations: the � appears precisely when a and b are even and c is odd.

The Steenrod operations act on the motivic cohomology H�;�.X / of any smooth
scheme X . In particular, they act on the cohomology of Spec F . In our case, where F

is algebraically closed, M2 is concentrated entirely in topological degree 0. It follows
that the Steenrod operations (other than the identity) act trivially on M2 for dimension
reasons.

Just as in the classical situation, the admissible monomials form a basis for A as an
M2 –module [26; 22].
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2.5 The Milnor basis

A theorem of Voevodsky gives an explicit description of the dual of A [32]. As an alge-
bra A� can be described as the subalgebra M2Œ�i ; �

�1�2
i �i�1 of M2Œ�

�1; �1; �2; : : :�.
Here � has (homological) bidegree .0;�1/ and �i has bidegree .2i � 1; 2i�1� 1/.

The elements ��1�2
i are indecomposable in A, but their names are a useful way of

encoding the relation .�i/2 D � � .��1�2
i /. In the notation of [32], �i corresponds to �i

and ��1�2
i corresponds to �iC1 . Under the canonical map A�!Acl� to the classical

dual Steenrod algebra—see Section 2.6 below—the element �i maps to �i and ��1�2
i

maps to �2
i .

The comultiplication on A� is identical to the comultiplication on the classical Steen-
rod algebra [17], except that appropriate powers of � must be inserted to make the
formulas homogeneous in the bidegree. Namely, the coproduct on �k takes the formP

i �
?�2i

k�i
˝ �i .

There is an evident basis for A� as an M2 –module consisting of monomials � ?�
r1

1
�

r2

2
� � �.

Here ? is the smallest power of � that gives an expression lying in A� , namely
�Pib ri

2
c. Just as in the classical situation, this basis for A� yields a dual basis for A

(as an M2 –module) called the Milnor basis. The Milnor basis consists of elements of
the form PR , where RD .r1; r2; : : :/ ranges over all finite sequences of nonnegative
integers. Here PR is dual to � ?�

r1

1
�

r2

2
: : :. The bidegree of PR is easily calculated,

and equals �X
ri.2

i � 1/;
Xjri.2

i � 1/

2

k�
:

Products PRPS can be computed with matrices and multinomial coefficients just as
in [17], except that some terms require a power of � as a coefficient. Similarly to the
motivic Adem relations, these coefficients are easy to calculate; they are exactly what
are needed in order to make the formulas homogeneous in the bidegree. However,
unlike the Adem relations, it is sometimes necessary to use exponents greater than one.
(The first occurrence of �2 in these formulas occurs in topological dimension 26.)

We make use of the Milnor basis in Section 5 when we discuss the motivic May spectral
sequence. Also, some of our computer calculations use this basis.

2.6 Comparison with the classical Steenrod algebra

There is a topological realization functor from motivic spaces over C to ordinary
spaces, as described in [21; 6]. Realization extends in a straightforward manner to
a functor from motivic spectra over C to ordinary spectra. This functor is uniquely
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determined (up to homotopy) by the fact that it preserves homotopy colimits and weak
equivalences, and sends the motivic suspension spectrum of a smooth scheme X to
the ordinary suspension spectrum of its topological space of complex-valued points
X.C/. We generalize this notation, so that if E is any motivic spectrum then E.C/
denotes its topological realization.

Let H be the mod 2 motivic Eilenberg–Mac Lane spectrum, ie, the motivic spectrum
that represents mod 2 motivic cohomology. It follows from [30, Lemma 4.42] that H.C/
is the classical mod 2 Eilenberg–Mac Lane spectrum Hcl . So topological realization
induces natural transformations H p;q.X /!H p.X.C// denoted ˛ 7! ˛.C/. In the
following, we will implicitly consider H�.X.C// to be a bigraded object concentrated
in weight 0.

2.7 Definition For any motivic spectrum X , let

�X W H�;�.X /˝M2
M2Œ�

�1�!H�.X.C//˝F2
M2Œ�

�1�

be the M2Œ�
�1�–linear map that takes a class ˛ of weight w in H�;�.X / to �w˛.C/.

In order for �X to be well-defined, we must observe that �.C/ equals 1 in the singular
cohomology of a point. This follows by splitting the topological realization map into
two pieces

H p;q.Spec C/!H
p
et .Spec CI�˝q

2
/!H

p
sing.Spec C/

where the group in the middle is étale cohomology. For p � q the first map is an
isomorphism by [31], and the second map is an isomorphism for any q by [2, XI
Théorème 4.4]. In particular, this holds when p D 0 and q D 1. Since the group in
question is Z=2, it must be that � maps to 1.

2.8 Lemma The map �X is an isomorphism of bigraded M2Œ�
�1�–modules if X is

the motivic sphere spectrum or if X is the motivic Eilenberg–Mac Lane spectrum.

In the following proof, we write Acl for the classical topological mod 2 Steenrod
algebra.

Proof This follows directly from the description of the motivic cohomology of a point
and of the motivic Steenrod algebra.

For the sphere spectrum, �X is just the map

M2˝M2
M2Œ�

�1�! F2˝F2
M2Œ�

�1�;

which is obviously an isomorphism.
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For the motivic Eilenberg–Mac Lane spectrum, note that H�;�.X / is the motivic
Steenrod algebra, and H�.X.C// is the classical topological Steenrod algebra. The
map �X takes Sq2k to �k Sq2k , and takes Sq2kC1 to �k Sq2kC1 . But we have that
A˝M2

M2Œ�
�1� is free as an M2Œ�

�1�–module on the admissible monomials. Also,
Acl ˝F2

M2Œ�
�1� is free as an M2Œ�

�1�–module on the admissible monomials. It
follows that �X is an isomorphism.

2.9 Corollary The map

A˝M2
M2Œ�

�1�!Acl˝F2
M2Œ�

�1�

that takes Sq2k to �k Sq2k and takes Sq2kC1 to �k Sq2kC1 is an isomorphism of
bigraded rings.

Proof This follows immediately from Lemma 2.8.

Before giving the final lemmas of this section we need a brief discussion of a finite
type condition. For the remainder of this subsection we work over a general field F

(not necessarily algebraically closed).

2.10 Definition Given an element x of bidegree .p; q/ in a bigraded group, the Chow
weight C.x/ of x is the integer 2q�p .

The terminology is motivated by the fact that 2q�p is a natural index in the higher
Chow group perspective on motivic cohomology [4]. It is known that the mod 2

motivic cohomology groups H p;q.X / of any smooth scheme are concentrated in
nonnegative Chow weight and also in the range p � 0 (see [16, Theorem 19.3] and
[31, Theorem 7.8]).

2.11 Definition Let fn˛ D .p˛; q˛/g˛2S be a set of bidegrees. This set is motivically
finite type if for any ˛ in S , there are only finitely many ˇ in S such that p˛ � pˇ
and 2q˛ �p˛ � 2qˇ �pˇ .

For example, this condition is satisfied if:

(i) The p˛ ’s are bounded below.

(ii) For each ˛ , there are only finitely many ˇ ’s for which pˇ D p˛ and qˇ � q˛ .

2.12 Definition Let X be a motivic spectrum. A wedge of suspensions
W
˛2S †

n˛ X

is motivically finite type if the index set of bidegrees is motivically finite type. Like-
wise, a free graded module over M2 is motivically finite type if it is of the formL
˛2S †

n˛ M2 for a motivically finite type index set of bidegrees.
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2.13 Lemma For any smooth scheme X and any motivically finite type index set of
bidegrees fn˛g˛2S , the canonical mapM

˛

†n˛ H�;�.X /!
Y
˛

†n˛ H�;�.X /

is an isomorphism. Here †n˛ denotes the algebraic shifting of bigraded modules.

Proof The motivically finite type condition guarantees that in each bidegree, only
finitely many terms of the product are nonzero.

2.14 Lemma Let X belong to the smallest triangulated category of motivic spectra
that contains the spheres and motivically finite type wedges of suspensions of the mod 2
motivic Eilenberg–Mac Lane spectrum H . Then �X is an isomorphism.

Proof Let C be the full subcategory of the motivic stable homotopy category consisting
of all motivic spectra Y such that �Y is an isomorphism. It is clear that C is closed
under suspensions and cofiber sequences, and by Lemma 2.8 C contains the sphere
spectrum and H . It only remains to show that C contains all motivically finite type
wedges of H .

Let W DW˛ †
n˛ H be a motivically finite type wedge of suspensions of H . Then

H�;�.W /DQ˛ †
n˛ H�;�.H /, and by Lemma 2.13 this equals

L
˛ †

n˛ H�;�.H / as
modules over M2 . We may then distribute the direct sum over the tensors that appear
in the definition of �W , and conclude that �W is an isomorphism based on the fact
that �H is.

3 The motivic Adams spectral sequence

Starting with the motivic sphere spectrum S0;0 , we inductively construct an Adams
resolution

K2 K1 K0

� � � // X2
//

OO

X1
//

OO

X0

OO

S0;0

where each Ki is a motivically finite type wedge of suspensions of H , Xi !Ki is
surjective on mod 2 motivic cohomology, and XiC1 is the homotopy fiber of Xi!Ki .
Applying ��;u gives us an exact couple—one for each u—and therefore a Z–graded
family of spectral sequences indexed by u. The usual arguments show that the E2 –term
is Exts;.tCs;u/

A
.M2;M2/ and that the spectral sequence abuts to something related to

the stable motivic homotopy group �t;u .
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3.1 Remark In Section 6 we will prove that the spectral sequence converges to the
homotopy groups of the H –nilpotent completion of the sphere spectrum S , denoted
S^

H
. We will also discuss the H –homology version of this tower, in which each Ki

is replaced by Xi ^H . Both of these discussions involve some technicalities that we
wish to avoid for the moment.

3.2 Comparison with the classical Adams spectral sequence

Applying the topological realization functor to our Adams resolution, we obtain a tower

K2.C/ K1.C/ K0.C/

� � � // X2.C/ //

OO

X1.C/ //

OO

X0.C/

OO

S

of homotopy fiber sequences of ordinary spectra. It is not a priori clear that this is a
classical Adams resolution, however. This requires an argument.

3.3 Proposition Let f W Xi!Ki be one of the maps in the motivic Adams resolution.
The map f .C/W X.C/!K.C/ is surjective on mod 2 singular cohomology.

Proof We know that the map H�;�.Ki/!H�;�.Xi/ is surjective, so the map

H�;�.Ki/˝M2
M2Œ�

�1�!H�;�.Xi/˝M2
M2Œ�

�1�

is also surjective. It follows that

H�.Ki.C//˝F2
M2Œ�

�1�!H�.Xi.C//˝F2
M2Œ�

�1�

is surjective, since �Ki
and �Xi

are isomorphisms by Lemma 2.14. Restriction to
weight zero shows that the map H�.Ki.C//!H�.Xi.C// is surjective.

Topological realization gives natural maps �p;q.Z/ ! �p.Z.C// for any motivic
spectrum Z , so that we get a map from the homotopy exact couple of .X;K/ to
that of .X.C/;K.C//. In this way we obtain a map of spectral sequences from the
motivic Adams spectral sequence for the motivic sphere spectrum to the classical
Adams spectral sequence for the classical sphere spectrum.

3.4 Comparison of Ext groups

Our next task is to compare Ext groups over the motivic Steenrod algebra A to Ext
groups over the classical Steenrod algebra Acl .
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Note that Ext0;�
A
.M2;M2/D Hom�A.M2;M2/D F2Œz�� where z� is the dual of � and

has bidegree .0;�1/. We will abuse notation and often just write � instead of z� , but
we will consistently write �M2 for F2Œz��.
For fixed s and t , Exts;.tCs;�/

A
.M2;M2/ is an �M2 –module; it therefore decomposes

as a sum of free modules and modules of the form �M2=�
k . The following result shows

that the free part coincides with Ext over the classical Steenrod algebra.

3.5 Proposition There is an isomorphism of rings

ExtA.M2;M2/˝�M2

�M2Œ�
�1�Š ExtAcl.F2;F2/˝F2

F2Œ�; �
�1�:

Proof Throughout the proof, we use that M2!M2Œ�
�1� and F2! F2Œ�; �

�1� are
flat, so that the associated tensor product functors are exact.

There is a natural isomorphism

HomAcl.F2;�/˝F2
F2Œ�; �

�1�!HomAcl˝F2
F2Œ�;��1�.F2Œ�; �

�1�; .�/˝F2
F2Œ�; �

�1�/;

so the induced map on derived functors is also an isomorphism. In particular, we obtain
an isomorphism

ExtAcl.F2;F2/˝F2
F2Œ�; �

�1�! ExtAcl˝F2
F2Œ�;��1�.F2Œ�; �

�1�;F2Œ�; �
�1�/:

Recall from Corollary 2.9 that AŒ��1� is isomorphic to Acl˝F2
F2Œ�; �

�1�, so it remains
to show that there is an isomorphism

ExtA.M2;M2/˝�M2

�M2Œ�
�1�! ExtAŒ��1�.M2Œ�

�1�;M2Œ�
�1�/:

As in the previous paragraph, this follows from the natural isomorphism

HomA.M2;�/˝�M2

�M2Œ�
�1�! HomAŒ��1�.M2Œ�

�1�; .�/˝M2
M2Œ�

�1�/:

4 Computation of ExtA.M2; M2/

In this section we are concerned with computing the groups Exts;.tCs;u/
A

.M2;M2/,
which we abbreviate to Exts;.tCs;u/ . Here s is the homological degree, and .t C s;u/

is the internal bidegree. Recall that t C s corresponds to the usual topological grading
in the classical Steenrod algebra, and u is the motivic weight.

A chart showing the motivic Ext groups is given in Appendix A. There are several
things about the chart we must explain, however. First, the reader should view these
pictures as a projection of a three-dimensional grid, where the u axis comes out of the
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page. Although our diagrams suppress this third direction, it is always important to
keep track of the weights. Our two-dimensional charts are drawn using the classical
conventions, so that t is on the horizontal axis and s is on the vertical axis. We refer
to t as the stem and s as the Adams filtration. Note that column t of the chart contains
groups related to �t;� .

Recall from Section 3.4 that Ext0;.�;�/ is the algebra �M2 , ie, a polynomial algebra over
F2 with one generator � in bidegree .0;�1/. The Yoneda product makes Ext�;.�;�/
into a graded module over Ext0;.�;�/ . Therefore, Ext�;.�;�/ decomposes into a direct
sum of copies of �M2 and �M2=�

k . It turns out that in the range t � 34, copies of�M2=�
k occur only for k D 1.

We highly recommend that the reader view our charts in color. In our chart, each black
circle represents a copy of �M2 . The small numbers in the chart indicate the weights of
the generators of some of these copies (the weights of the rest of the generators are
implied by the multiplicative structure).

Each red circle represents a copy of �M2=� . Note that this submodule is concentrated
in a single weight, which is either given or implied. By Proposition 3.5, if we delete
the red circles from our chart, the black circles correspond precisely to the classical
Ext chart [24, Appendix 3].

The results in this section were obtained by computer calculations. The software
computed a resolution for M2 over A, and from this information extracted Ext groups
and product information in the usual way. In the range t � 34, the computations
have been checked by two independent software packages, and have been further
corroborated by work with the May spectral sequence described in Section 5.

The software computed a minimal free resolution over the graded ring A. In the
classical case one computes Ext by applying HomA.�;F2/, which makes all the
differentials vanish. In the motivic case we are applying HomA.�;M2/, which leaves
powers of � inside the differentials. The software then computed the cohomology of
the resulting complex, regarded as a complex of modules over M2 .

4.1 Product structure

Multiplication by h0 is represented by vertical black lines (and some blue lines, to
be described below). The black arrow in the 0–stem indicates an infinite tower of
elements of the form hk

0
.

Multiplication by h1 is represented by diagonal black or red lines. The diagonal red
arrows indicate an infinite sequence of copies of �M2=� which are connected by h1
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multiplications. In other words, the red arrows represent a family of elements of the
form hk

1
x such that �hk

1
x equals zero. In particular, note that h1 is not nilpotent,

although �h4
1

is zero. This is the first example of nonclassical phenomena in the motivic
Ext groups.

Multiplication by h2 is represented by green lines of slope 1=3 (and some magenta
lines described below).

Inspection of the 3–stem leads us to the next nonclassical phenomenon. The element
h3

1
has weight 3, while the element h2

0
h2 has weight 2. Classically these elements are

equal, but this cannot happen here. Instead we have the relation

h2
0h2 D �h3

1:

Both sides of this equation have weight 2.

The blue vertical lines indicate a multiplication by h0 whose value is � times a generator.
Similarly, a magenta line of slope 1=3 indicates a multiplication by h2 whose value is
� times a generator. There are many occurrences of this phenomenon. One example is
the relation

h2
0Ph2 D �h2

1Ph1;

which is implied by Massey products and the relation h2
0
h2 D �h3

1
. We will discuss

this later. Other interesting examples include

h0f0 D �h1e0; h2
0j D �h1Pe0; h2

0k D �h1d2
0 ; h5

0r D �c0Pd0:

Note the element labelled Œ�g� in the 20–stem with weight 11. We emphasize that
this element is indecomposable, ie, it is not divisible by � (and the brackets are
there to help us remember this). The choice of name makes other formulas work out
more consistently, as we shall see later (see also Remark 5.6). Similarly, note the
indecomposable elements Œh2g� and Œh3g�. We have �Œh2g�D h2Œ�g� and similarly
for Œh3g�, although in the latter case both �Œh3g� and h3Œ�g� are zero.

We also observe that c0d0 and c0e0 are nonzero, even though their classical versions
are zero. However, they are killed by � , which is consistent with Proposition 3.5 (see
also Remark 5.8).

Finally, note that h5
0
r equals �c0Pd0 . The element c0Pd0 supports multiplications

by h1 , even though �c0Pd0 cannot since it is divisible by h0 .

4.2 Remark A look at the Ext chart in Appendix A shows a connection between the
new h1 –towers (in red) and the spots where there is a shifted h0 (in blue)—that is,
where multiplying h0 by a generator gives � times another generator. This makes a
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certain amount of sense: classically, h4
1

is zero because h3
1

is a multiple of h0 , and
similarly for h3

1
Ph1 , h4

1
d0 , h2

1
e0 , etc. In the motivic world h3

1
is not a multiple of

h0 , and so there is no reason for h4
1

to vanish. This connection breaks down, though,
in the case of h4

1
h4 . Even though h3

1
h4 is not a multiple of h0 in the motivic world,

h4
1
h4 still vanishes. The reason for this is tied to the class Œ�g� in Ext4;.24;11/ , and the

fact that it lives in weight 11 instead of weight 12—ie, that our generator is Œ�g� and
not g . This can be explained rigorously in terms of the May spectral sequence; see
Remark 5.6.

4.3 Remark In the range 0 � t � 34, the weight 0 piece of the motivic E2 –term
coincides exactly with the classical Adams E2 –term. That is, all the � –torsion has
disappeared by the time one reaches weight 0. This is a reflection of the principle,
mentioned in the introduction, that the stable homotopy groups �n;0 are most like the
classical stable homotopy groups.

4.4 Remark Suppose now that the ground field F is not algebraically closed. In this
case the ring M2 (the motivic cohomology of a point) is more complicated, but still
known. The work in [31] shows that Mp;q

2
is nonzero only in the range 0 � p � q ,

that Mp;p
2
ŠKM

p .F /=2 (the mod 2 Milnor K–theory of F ), that M0;1
2
D Z=2:h�i,

and that the multiplication by � i maps Mp;p
2
!Mp;pCi

2
are isomorphisms for all p

and all i � 0. The ring M2 is generated by M1;1
2

and � .

It is not hard to show from this that if F contains a square root of �1 then the action
of the Steenrod operations on M2 is trivial. If we let A denote the motivic Steenrod
algebra over F and xA the motivic Steenrod algebra over the algebraic closure, then
AŠM2˝F2Œ��

xA. It follows by a change-of-rings argument that

ExtA.M2;M2/Š Ext xA.F2Œ� �;F2Œ� �/˝F2Œ��M2:

For this, we need that M2 is flat over F2Œ� �; this follows from the results in [31].

This makes for a nice picture of the Adams E2 –term—it looks the same as in
Appendix A, but now every copy of M2 consists of groups which not only extend
down into the page (via multiplication by elements of M0;1

2
) but also down and to the

left (via multiplication by elements of M1;1
2

). This opens up the possibility for new
differentials which take a generator to some product of a generator with an element of
Mp;q

2
. We do not know if any of these exotic differentials actually exist.

4.5 Massey products

Motivic Ext groups support Massey products since they are the homology of a dif-
ferential graded algebra. Moreover, motivic Massey products are compatible with
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classical Massey products since the classical and motivic differential graded algebras
are compatible.

In this section, all Massey products have zero indeterminacy unless explicitly stated
otherwise.

The symbol P is used for the usual periodicity operator hh3; h
4
0
;�i, defined on any

class that is killed by h4
0

. Note that P increases weights by 4.

We can now understand the relation h2
0
Ph2 D �h2

1
Ph1 . Starting with hh3; h

4
0
; h2ih2

0
,

we shuffle to obtain hh3; h
4
0
; h2

0
h2i, which equals hh3; h

4
0
; �h3

1
i. By shuffling again,

this simplifies to hh3; h
4
0
; h1i�h2

1
, which is �h2

1
Ph1 .

The comparison between the motivic Ext groups and the classical Ext groups is
compatible with Massey products. This fact can be used to compute motivic Massey
products based on known classical computations. For example, consider the Massey
product hh2

2
; h0; h1i. Classically, this Massey product equals c0 . Therefore, the motivic

Massey product must be nonzero. The Massey product also has weight 5. An inspection
of the chart shows that there is just one possible value for this Massey product, which
we have labelled c0 .

The method of the previous paragraph allows us to compute the following motivic
Massey products, based on known classical formulas:

c0 D hh1; h0; h
2
2i

d0 D hh0; h
2
2; h

2
2; h0i

e0 D hh1; h2; c0; h2i
f0 D hh2; h3; h

2
0h3i with indeterminacy f0; �h3

1h4g
Œ�g�D hh2; h1; h0; h0h2

3i
k D hh2

0h3; h3; d0i
r D hh2

0h3; h3; h
2
0h3; h3i:

These formulas appear in [28], which gives citations to original sources.

Something slightly different occurs with the Massey product hh0; h1; h
2
0
; h2

3
i. The

weight here is 9. Classically, this Massey product equals e0 , but the weight of motivic e0

is 10. Therefore, we deduce the motivic formula

�e0 D hh0; h1; h
2
0; h

2
3i:

Another difference occurs with the Massey products hh0; c0; d0i and hh0; c0; e0i,
which are classically equal to i and j . Motivically, these Massey products are not
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defined because c0d0 and c0e0 are nonzero. However, �c0d0 and �c0e0 are zero, so
the Massey products hh0; c0; �d0i and hh0; c0; �e0i are defined. By comparison to the
classical situation again, we deduce the motivic formulas

i D hh0; c0; �d0i; j D hh0; c0; �e0i:
We also have the similar formula kDhh0; c0; Œ�g�i, but this is slightly different because
Œ�g� is not decomposable.

Note that Pg is not defined, since g does not exist. However, P .Œ�g�/ equals �d2
0

.
We might abuse notation and write ŒPg� as another name for d2

0
.

Consider the element Œh2g� in the 23–stem. Recall that this element is indecomposable,
but �Œh2g�D h2Œ�g�. Computer calculations tell us that

Œh2g�D hh1; h
3
1h4; h2i:

Note that the indeterminacy is zero, since Œh2g� is not divisible by h2 . On the other
hand, the classical Massey product hh1; h

3
1
h4; h2i has indeterminacy f0; h2gg.

Similarly, we have the formula

Œh2g�D hh2; h
4
1; h4i;

with zero indeterminacy again. Here hh2; 0; h4i is the corresponding classical Massey
product, with indeterminacy f0; h2gg.
Computer calculations have verified that the indecomposable Œh3g� equals hh3; h

4
1
; h4i

and hh1; h
3
1
h4; h3i. These formulas have no classical analogues, since h3g equals

zero classically.

5 The motivic May spectral sequence

In this section we explain how one can compute the groups Exts;.tCs;u/
A

.M2;M2/

without the aid of a computer. These groups can be produced by a variation on the
classical May spectral sequence [14].

We continue to assume that the ground field F is algebraically closed, so that M2 D
F2Œ� �. Let I be the two-sided ideal of the motivic Steenrod algebra generated by the
Sqi ’s; equivalently, I is the kernel of the augmentation map A!M2 .

Let GrI .A/ denote the associated graded algebra A=I ˚ I=I2˚ I2=I3˚ � � � . Note
that this is a trigraded algebra, with two gradings coming from A and one from the
I –adic valuation. We refer to the I –adic valuation of an element as its May filtration.
When indexing elements, we will always write the May filtration first.
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The motivic May spectral sequence has the form

E2 D Exts;.a;b;c/GrI .A/
.M2;M2/) Exts;.b;c/

A
.M2;M2/:

As usual, it can be obtained by filtering the cobar complex by powers of I .

Let Icl be the ideal of the classical Steenrod algebra Acl that is generated by the Sqi ’s.
We will show that GrI .A/ is easily described in terms of GrIcl.Acl/. The E2 –terms of
the motivic and classical May spectral sequence are very similar, but the differentials
are different.

We recall some notation and ideas from [14]. Given a sequence R D .r1; r2; : : :/,
let ri D

P
k aik � 2k be the 2-adic expansion of ri . Define v.R/ to be the integerP

i;k iaik .

The relations in the motivic Steenrod algebra with respect to the Milnor basis are of
the form

PRPS D
X
X

�u.X /b.X /PT .X /;

where X ranges over certain matrices as described in Theorem 4b of [17]; u.X / is a
nonnegative integer determined by the weights of PR , PS , and PT .X / ; and b.X / is
a multinomial coefficient depending on X .

Recall the Chow weight from Definition 2.10. For any Milnor basis element PR ,
observe that the Chow weight C.PR/ is equal to the negative of the number of odd
integers occurring in R; this follows immediately from the formula for bidegrees given
in Section 2.5. Note that u.X / is equal to C.PR/CC.PS /�C.PT .X //.

5.1 Lemma Let PRPS DPX �u.X /b.X /PT .X / be a relation in the motivic Steen-
rod algebra with respect to the Milnor basis. If b.X /D 1 and v.T .X //D v.R/Cv.S/,
then u.X / equals zero.

Proof Let RD .r1; : : :/ and SD .s1; : : :/. Let riD
P

k aik � 2k and sj D
P

k bjk � 2k

be the 2–adic expansions of ri and sj . Then C.PR/ is equal to �Pi ai0 , and C.PS /

is equal to �Pj bj0 .

Let X D .xij /, and let xij D
P

k eijk � 2k be the 2–adic expansion of xij . Assume
that b.X / D 1 and that v.T .X // equals v.R/C v.S/. By Lemma 2.3 of [14], it
follows that ai0 D ei00 and bj0 D

P
i eij0 (for j � 1). Thus, C.PR/C C.PS /

equals �Pi;j�0 eij0 , which equals the negative of the number of odd integers in the
matrix X .

Recall that T .X /D .t1; : : :/ is determined by tnD
P

iCjDn xij . Since b.X /D 1, the
definition of b.X / (see Theorem 4b of [17]) implies that at most one value of xij is
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odd in each sum
P

iCjDn xij . Therefore, the number of odd integers in X equals the
number of odd integers in T .X /. In other words, C.PT .X //D C.PR/CC.PS /. It
follows that u.X /D 0.

5.2 Proposition (a) The trigraded algebras GrI .A/ and GrIcl.Acl/˝F2
F2Œ� � are

isomorphic.

(b) The quadruply-graded rings ExtGrI .A/.M2;M2/ and ExtGr.Acl/.F2;F2/ ˝F2

F2Œ� � are isomorphic.

Proof Part (a) follows from Lemma 5.1, as in [14]. It turns out that v.R/ equals
the May filtration of PR . The main point is that when we consider the Milnor basis
relations modulo higher May filtration, no coefficients of � appear.

Part (b) follows formally from part (a), using that F2! F2Œ� � is flat.

We are interested in the quadruply-graded ring ExtGrI .A/.M2;M2/. Our convention
is to grade an element x in the form .m; s; f; w/, where m is the May filtration, s is
the stem (ie, the topological degree minus the homological degree), f is the Adams
filtration (ie, the homological degree), and w is the weight.

The classical ring ExtGr.Acl/.F2;F2/ is studied in great detail in [14; 27], including
complete information through the 164–stem. It can be computed as the cohomology
of the differential graded algebra F2Œhij j i > 0; j � 0�, with differential given by
d.hij /D

P
0<k<i hkj hi�k;kCj . The element hij is dual to the Milnor basis element

PR , where R consists of all zeros except for 2j at the i –th place.

By Proposition 5.2, the motivic ring ExtGrI .A/.M2;M2/ is the cohomology of the
differential graded algebra F2Œ�; hi;j j i > 0; j � 0� where:

(1) � has degree .0; 0; 0;�1/.

(2) hi0 has degree .i; 2i � 2; 1; 2i�1� 1/.

(3) hij has degree .i; 2j .2i � 1/� 1; 1; 2j�1.2i � 1// if j > 0.

As in the classical case, these degrees follow from the description of hij as the dual of
a specific Milnor basis element. The differential is given by the same formula as the
classical one (which happens to be homogeneous with respect to the weight), together
with d.�/D 0.

Tables 1 and 2 list the generators and relations for ExtGrI .A/.M2;M2/ in stems less
than 36. By Proposition 5.2 this information can be directly lifted from the classical
computation, which is described in [27, Theorem 1.2].
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generator degree description in terms of hij

� .0; 0; 0;�1/

h0 .1; 0; 1; 0/ h10

h1 .1; 1; 1; 1/ h11

h2 .1; 3; 1; 2/ h12

h3 .1; 7; 1; 4/ h13

h4 .1; 15; 1; 8/ h14

h5 .1; 31; 1; 16/ h15

b20 .4; 4; 2; 2/ h2
20

b21 .4; 10; 2; 6/ h2
21

b22 .4; 22; 2; 12/ h2
22

b30 .6; 12; 2; 6/ h2
30

b31 .6; 26; 2; 14/ h2
31

b40 .8; 28; 2; 14/ h2
40

h0.1/ .4; 7; 2; 4/ h20h21C h11h30

h1.1/ .4; 16; 2; 9/ h21h22C h12h31

h2.1/ .4; 34; 2; 18/ h22h23C h13h32

Table 1: Generators for ExtGrI .A/.M2;M2/

h0h1 D 0 h2h0.1/D h0b21 b20b22 D h2
0
b31C h2

3
b30

h1h2 D 0 h3h0.1/D 0 b20h1.1/D h1h3b30

h2h3 D 0 h0h1.1/D 0 b22h0.1/D h0h2b31

h3h4 D 0 h3h1.1/D h1b22 h0.1/
2 D b20b21C h2

1
b30

h2b20 D h0h0.1/ h4h1.1/D 0 h1.1/
2 D b21b22C h2

2
b31

h3b21 D h1h1.1/ h1h2.1/D 0 h0.1/h1.1/D 0

Table 2: Relations for ExtGrI .A/.M2;M2/

If we were to draw a chart of the motivic May E2 –term, analogous to our chart of the
Adams E2 –term in Appendix A, it would be entirely in black and look the same as the
classical May E2 ; each generator would have an associated weight according to the
formulas in Table 1. We have chosen not to give this chart because it is the same as the
classical chart and is complicated.
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The d2 differentials in the spectral sequence are easy to analyze. They must be
compatible with the d2 differentials in the classical May spectral sequence, and they
must preserve the weight. The first time this is interesting is for b20 . Classically one
has d2.b20/D h3

1
C h2

0
h2 . Motivically, b20 and h2

0
h2 both have weight 2 whereas h3

1

has weight 3. So the motivic formula must be d2.b20/D �h3
1
C h2

0
h2 . Note that hi

0
b20

kills h2Ci
0

h2 , just as in the classical case, but that hi
1
b20 kills �h3Ci

1
rather than h3Ci

1
.

Table 3 lists the d2 differentials on all of our generators with stem less than 36, modified
from [27, Theorem 2.4].

x d2.x/ x d2.x/

h0 0 b22 h3
3
C h2

2
h4

h1 0 b30 �h1b21C h3b20

h2 0 b31 h2b22C h4b21

h3 0 b40 �h1b31C h4b30

h4 0 h0.1/ h0h2
2

h5 0 h1.1/ h1h2
3

b20 �h3
1
C h2

0
h2 h2.1/ h2h2

4

b21 h3
2
C h2

1
h3

Table 3: d2 differentials in the motivic May spectral sequence

Using Table 3 and the Leibniz rule (together with the relations listed in Table 2), it is a
routine but tedious process to calculate the E3 –term. As in the classical case, dr is
identically zero for odd r for dimension reasons. Therefore, the E4 –term is equal to
the E3 –term. The first 20 stems are depicted in Appendix C below. Note that all the
differentials in the May spectral sequence have slope �1.

5.3 E4–term of the motivic May spectral sequence

We now analyze the E4 –term of the motivic May spectral sequence. As for the
d2 –differentials, the d4 –differentials must be compatible with the differentials in the
classical May spectral sequence. As shown in [27], we have:

(1) d4.b
2
20
/D h4

0
h3 .

(2) d4.h2b30/D h2
0
h2

3
.

At this point, something new occurs. Classically, d4.b
2
21
/ is zero for dimension

reasons: d2.h1h4b20/D h4
1
h4 and so there is nothing in E4 which b2

21
could hit. But
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motivically we have d2.h1h4b20/D �h4
1
h4 , and so h4

1
h4 survives to E4 . Thus it is

possible that d4.b
2
21
/D h4

1
h4 . Unfortunately, comparison to the classical May spectral

sequence cannot distinguish between the two possible values of d4.b
2
21
/, since the

classical comparison does not see the � –torsion.

It turns out that d4.b
2
21
/ does equal h4

1
h4 . Before we can prove this, we must introduce

a new tool.

Because GrI .A/ is a co-commutative Hopf algebra, ExtGr.A/.M2;M2/ has algebraic
Steenrod operations on it [15]. These operations satisfy the following properties:

(1) Sqn.xy/DPiCjDn Sqi.x/Sqj .y/ (Cartan formula).

(2) Sqn.x/D x2 if the homological degree of x is n.

(3) Sqn.x/D 0 if the homological degree of x is greater than n.

In the E2 –term of the classical May spectral sequence, one has Sq0.hi/ D hiC1 ,
Sq0.bij /D bi;jC1 , and Sq0.hi.j //D hiC1.j /. Recall that Sq0 preserves the homo-
logical degree, but doubles the internal degree.

Motivically, Sq0 still preserves the homological degree but doubles the topological
degree and the weight. By comparison to the classical situation, we immediately obtain
the following calculations.

5.4 Proposition In ExtGrI .A/.M2;M2/, the following formulas hold:

(a) Sq0.h0/D � h1 .

(b) Sq0.hi/D hiC1 for i � 1.

(c) Sq0.bi0/D �2 bi1 .

(d) Sq0.bij /D bi;jC1 for j � 1.

(e) Sq0.h0.S//D �h1.S/ for all S .

(f) Sq0.hi.S//D hiC1.S/ for all S and all i � 1.

We will use these facts to continue our analysis of differentials.

5.5 Proposition d4.b
2
21
/D h4

1
h4 .
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Proof We argue that h4
1
h4 must be zero in ExtA.M2;M2/; the only way it can die is

for b2
21

to hit it, and this must happen at d4 because the May filtrations of b2
21

and
h4

1
h4 are 8 and 5, respectively.

To see that h4
1
h4 is zero in Ext over A, note first that h3

2
C h2

1
h3 is zero because b21

kills it. Now compute that Sq2.h3
2
C h2

1
h3/D h4

1
h4 using the facts listed above, and

therefore this class must vanish.

5.6 Remark We explain our notation Œ�g� for the element in Ext4;.24;11/
A

.M2;M2/

(see Appendix A). The name g in some sense rightfully belongs to b2
21

. Classically
this class survives the May spectral sequence, but motivically it does not. Motivically,
only �b2

21
survives, and this gives the generator Œ�g� of Ext4;.24;11/ .

Even though b2
21

does not survive the May spectral sequence, certain multiples of it
do survive. For instance, both h2b2

21
and h3b2

21
survive. These yield the elements of

ExtA.M2;M2/ that we called Œh2g� and Œh3g�.

Analyzing the May filtration now shows that there are no further differentials until E8 ,
where we have d8.b

4
20
/D h8

0
h4 , just as happens classically. Then E8 DE1 through

the 20–stem, and we have computed Ext over the motivic Steenrod algebra through
the 20–stem, in exact agreement with the computer calculations.

We leave it to the interested reader to continue this analysis into higher stems.

5.7 Remark In ExtA.M2;M2/ one has �h4
1
D 0; therefore �h4

1
hn is zero for all n.

Classically, h4
1
hn is actually zero for all n, and we have seen that motivically this is

also true when n� 4. It is not true that h4
1
hn D 0 for n� 5, however.

We do know that h2n�2

1
hn D 0 for n � 4. To see this, take h4

1
h4 D 0 and apply Sq4

to it to derive h8
1
h5 D 0; then apply Sq8 , Sq16 , and so on, to inductively derive the

relations for all n. In terms of our Ext–chart, what this means is that for n � 5 the
element hn admits a ladder of multiplication-by-h1 ’s which turns red at the fourth
rung (�h4

1
hn D 0), and which stops completely at the 2n�2 –nd rung. It is not clear

whether the ladder stops before this, but we speculate that it does not.

5.8 Remark One can consider h1 –stable groups associated to the motivic May
spectral sequence. Namely, consider the colimit of the sequence

Exts;.a;b;c/GrI .A/
! ExtsC1;.aC1;bC2;cC1/

GrI .A/
! ExtsC2;.aC2;bC4;cC2/

GrI .A/
! � � �

where the maps are multiplication by h1 . One obtains a trigraded spectral sequence
which converges to information about which elements of ExtA support infinitely many
multiplications by h1 .
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Calculations with the h1 –stable groups are much simpler than calculations with the
full motivic May spectral sequence. For example, one can show easily that:

(1) If x supports infinitely many multiplications by h1 , then so does Px .

(2) c0d0 and c0e0 both support infinitely many multiplications by h1 . In particular,
they are nonzero.

One consequence of the first observation is that hi
1
Pkh1 is nonzero for all i and k .

Using that .Pkh1/
n D hn�1

1
Pknh1 , it follows that Pkh1 is not a nilpotent element in

the motivic Ext groups.

5.9 Future directions

We close this portion of the paper with some unresolved problems.

5.10 Problem Compute the ring Ext.M2;M2/Œh
�1
1
�.

Some elements, like c0 , survive in this localization. Other elements, like h4 , are
killed. Some elements, like h4c0 , are killed by different powers of h1 motivically and
classically. See Remark 5.8 for one possible approach to this problem.

5.11 Problem For each i , determine the smallest k such that hk
1
hi D 0.

For h2 , h3 and h4 , the motivic and classical answers are the same. Computer calcu-
lations show that h8

1
h5 D 0 but h7

1
h5 is nonzero. This is different than the classical

situation, where h4
1
h5 is zero but h3

1
h5 is nonzero. For more about this, see Remark

5.7.

5.12 Problem Find copies of M2=�
k for k > 1 in Ext.M2;M2/.

Further computer calculations show that a copy of M2=�
2 appears in the 40–stem.

Computer calculations have also spotted a copy of M2=�
3 .

6 Convergence issues

The evident vanishing line in the motivic Adams spectral sequence shows that it is
certainly converging to something; but we would like to give this “something” an
appropriate homological name. In this section we will prove that the spectral sequence
converges to the homotopy groups of the H –nilpotent completion of the motivic sphere
spectrum S . This is almost by definition, but not quite—one must be careful of details.
It is worth noting that some interesting convergence statements for the motivic Adams
spectral sequence can also be found in [12].
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6.1 Background

Below we will set up the homological Adams spectral sequence in the usual way, using
the geometric cobar resolution. But in order for this to work we need to know H�;�.H /

and, more generally, H�;�.H ^H ^ � � � ^H /. The former is essentially calculated by
Voevodsky in [32; 30], but does not appear explicitly. For the latter, there is no general
Künneth theorem for motivic homology and cohomology. So in both cases we must
work a little to derive the necessary results.

First recall that since H is a ring spectrum, there is a canonical map �X W H��.X /!
HomM2

.H��.X /;M2/ for any motivic spectrum X . Given a homology element
Sp;q!H ^X and a cohomology element X ! S s;t ^H , one forms the composite

Sp;q!H ^X !H ^S s;t ^H ! S s;t ^H ^H ! S s;t ^H

to get an element of �p�s;q�t .H /. This pairing is M2 –linear in the cohomology class,
and so induces the desired map.

6.2 Proposition The map �H W H��.H / ! HomM2
.H��.H /;M2/ is an isomor-

phism.

Since A D H��.H / this identifies H��.H / with the dual Steenrod algebra A� as
computed by Voevodsky in [32].

To prove the above proposition we work in the category of H –modules. By [25,
Theorem 1], the homotopy category of HZ–modules is equivalent to Voevodsky’s
triangulated category of motives. A similar result holds for H –modules, where one
works with motives having coefficients in F2 . A Tate motive, under this equivalence,
is an H –module equivalent to a wedge of modules of the form †p;qH . A split proper
Tate motive of weight � n, in the sense of [30, Definition 3.61], is a Tate motive
equivalent to a wedge of modules of the form †p;qH where p � 2q and q � n. The
result [30, Theorem 4.27] states that the spectra H ^†1K.Z=2.n/; 2n/ are split
proper Tate motives of weight � n. From this we deduce the following:

6.3 Lemma As a left H –module, H ^H is equivalent to a motivically finite type
wedge of copies of H (with one summand for every admissible monomial in the
motivic Steenrod algebra). In particular, ���.H ^H / is free as an M2 –module.

Proof As a motivic spectrum, H is a directed homotopy colimit of desuspensions of
the spectra †1K.Z=2.n/; 2n/. Precisely,

H ' hocolim
n

†�2n;�n†1K.Z=2.n/; 2n/;
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where the maps in this hocolim come from the structure maps in the spectrum H . It
follows that H ^H is equivalent to

.6:4/ hocolim
n

�
†�2n;�nH ^†1K.Z=2.n/; 2n/

�
;

where the homotopy colimit is taken in the category of left H –modules. Since each
H ^ †1K.Z=2.n/; 2n/ is a split proper Tate motive of weight � n, its †�2n;�n

desuspension is a split proper Tate motive of weight � 0. By [30, Corollary 3.72], the
homotopy colimit of (6.4) is therefore also a split proper Tate motive of weight � 0.

To complete the proof we consider the chain of isomorphisms

A�� D ŒH; †��H �D ŒH ^H; †��H �H Š
�_
˛

†n˛ H; †��H
�

H

D
Y
˛

†n˛ H��:

Here Œ�;��H denotes maps in the homotopy category of left H –modules. The fact
that A is free on the admissible monomials tells us what the n˛ ’s must be (and that
the above product is also a sum).

Proof of Proposition 6.2 If M is an H –module, there is a canonical map

�H ;M W ��;�.M /
Š�! Œ†��H;M �H ! HomM2

.Œ†��M;H �H ;M2/:

The definition of the second map in the composite is completely analogous to the
definition of �X above. Moreover, when M has the form H ^X , the map �H ;M is
naturally isomorphic to �X . So our goal is to show that �H ;H^H is an isomorphism.

It is clear that �H ;M is an isomorphism when M DH , or more generally when M is
a motivically finite type wedge of suspensions of H . So by Lemma 6.3 this applies for
M DH ^H .

Our next goal is the following Künneth isomorphism:

6.5 Proposition For any motivic spectrum A which admits a right H –module
structure, the natural Künneth map H��.A/ ˝M2

H��.H / ! H��.A ^ H / is an
isomorphism. In particular, the maps H��.H /˝.s/!H��.H^.s// are isomorphisms
for every s (where the tensors are over M2 ).

This result is automatic if one believes that H is cellular in the sense of [7], using
the standard Künneth isomorphism for cellular objects. The cellularity of H has been
claimed by Hopkins and Morel, but their proof has never appeared. The cellularity
is also claimed, with an outline of a proof, in [12]. Here we will avoid this issue by
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instead proving the proposition in a way that only uses the cellularity of H ^H as an
H –module.

Consider the homotopy category of H –modules. Define the H –cellular spectra to be
the smallest full subcategory which contains H , is closed under arbitrary wedges, and
has the property that when A! B! C is a cofiber sequence and two of the three
terms are in the subcategory, so is the third. By Lemma 6.3, H ^H is H –cellular as
a left H –module.

Proof of Proposition 6.5 If A is any right H –module, then A^H 'A^H .H ^H /.
Since H^H is a wedge of suspension of H ’s (as an H –module), A^H is therefore a
wedge of suspensions of A’s. It’s easy to now show that H��.A^H /ŠH��.A/˝M2

H��.H /.

Let hSiH be the smallest full subcategory of the motivic stable homotopy category
that satisfies the following properties:

(i) hSiH contains S .

(ii) If A! B ! C is a cofiber sequence and two of the terms belong to hSiH ,
then so does the third.

(iii) hSiH is closed under arbitrary wedges.

(iv) If A 2 hSiH then A^H is also in hSiH .

The smallest full subcategory of the motivic stable homotopy category that satisfies
(i)–(iii) is denoted hSi, and equals the category of cellular spectra of [7].

6.6 Lemma For every A 2 hSiH , the canonical maps H��.A/˝M2
H��.H^.s//!

H��.A^H^.s// are isomorphisms for every s .

Proof Let D be the full subcategory of the motivic stable homotopy category consist-
ing of all objects A for which the maps in the statement of the lemma are isomorphisms,
for all s . It is evident that D satisfies properties (i)–(iii). The second statement of
Proposition 6.5 implies that D satisfies (iv) as well, so D contains hSiH .

6.7 The homological Adams spectral sequence

In this section we set up homological Adams spectral sequences in the motivic world,
and discuss their convergence properties. Let E be a motivic homotopy ring spectrum
(a ring object in the homotopy category of motivic spectra). Let xE be the homotopy
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fiber of S !E . As in [5], for any spectrum X there is a standard tower of homotopy
fiber sequences having

Xs D xE^.s/ ^X; Ws DE ^Xs DE ^ xE^.s/ ^X:

The fiber sequence XsC1!Xs!Ws is induced by smashing xE! S!E with Xs .
This tower satisfies conditions (a)–(c) in [24, Definition 2.2.1] for being an E�–Adams
resolution. Below we will show that it also satisfies condition (d).

Let Cs�1 be the homotopy cofiber of Xs!X0 . Then there are induced maps Cs!
Cs�1 , and the cofiber of this map is †1;0Ws . One gets a tower under X of the form

†W3 †W2 †W1

X // � � � // C2
//

OO

C1

OO

// C0:

OO

The homotopy limit of the Ci ’s is called the E–nilpotent completion of X , and denoted
X^

E
(see [5, Section 5]). Note that for formal reasons the homotopy spectral sequences

of the fCsg tower and the fXsg tower may be identified.

Now suppose that E is associative and unital on-the-nose—that is, E is a motivic
symmetric ring spectrum. Then for any spectrum X one may consider the cosimplicial
spectrum:

.6:8/ E ^X
//// E ^E ^X

////// E ^E ^E ^X
//////// � � �

Here the coface maps are all induced by the unit S ! E , and the codegeneracies
(not drawn) all come from multiplication E ^E! E . The homotopy limit of this
cosimplicial spectrum is another model for X^

E
. To see this, note that the usual Tot

tower is an E–nilpotent resolution of X in the sense of Bousfield [5, Definition 5.6],
and so the holim of this Tot tower is homotopy equivalent to X^

E
by [5, Proposition

5.8]. (Note: The proof of [5, Proposition 5.8] goes through almost verbatim in the
motivic category except for one step, in [5, 5.11], where a map is proven to be a
weak equivalence by showing that it induces isomorphisms on stable homotopy groups.
Motivically one must look at homotopy classes of maps from all smooth schemes, not
just spheres; but otherwise the argument is the same.)

Now, it is a general fact in any model category that a homotopy limit of a cosimplicial
object is weakly equivalent to the homotopy limit of the corresponding diagram in
which one forgets the codegeneracies. This is because the subcategory of � consisting
of the monomorphisms is homotopy initial inside of �. But if X is itself a ring
spectrum, then the cosimplicial object E� ^X (regarded without codegeneracies) is a
diagram of ring spectra. We may then take its homotopy limit in the model category of
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motivic ring spectra, and we get something whose underlying spectrum is equivalent to
what we got by just taking the holim in motivic spectra. This is a long way of saying
that if X and E are both ring spectra then via this holim we may build a model for
X^

E
which is itself a ring spectrum. This will be used below in the case of S^

H
.

6.9 Remark If E is a ring spectrum and X is a module over E , then the cosimplicial
object of (6.8) admits a contracting homotopy. This shows that the canonical map
X ! X^

E
is an equivalence in this case. We will make use of this fact in Section 7

below.

Now we will specialize and take E DH . Let X be any motivic spectrum, and write
fXs;Wsg for the canonical Adams tower just constructed. Note that if X 2 hSiH then
by a simple induction we have that all the objects Xs and Ws belong to hSiH as well.

6.10 Proposition For any motivic spectrum X 2 hSiH , ExtH��H .M2;H��.X // is
naturally isomorphic to the E2 –term of the homotopy spectral sequence for the tower
fXs;Wsg (where this means Ext in the category of H��H –comodules).

Proof The object Ws is equal to H ^ xH^.s/ ^X . It follows from Proposition 6.5
and an easy induction on s that

��.Ws/Š ŒH��. xH /�˝.s/˝M2
H��.X /

H��.Ws/ŠH��H ˝M2
ŒH��. xH /�˝.s/˝M2

H��.X /:and

The usual arguments show that

0!H��.X /!H��.W0/!H��.W1/!H��.W2/! � � �
may be identified with the cobar resolution for H��.X /, and that the complex

0! ���.W0/! ���.W1/! � � �
may be identified with the complex obtained by applying HomH��H .H��;�/ to the
cobar resolution.

6.11 Remark The convergence of the homological Adams spectral sequence works
in the standard way, as described in [5, Section 6]. That is, if lim1

r E
s;t;u
r .X /D 0 for

each s; t;u then the two natural maps

��;�.X^H /! lim
s
��;�.Cs/

Fs��;�.X^H /=FsC1��;�.X^H /!Es;�;�1 .X /and

are isomorphisms. Here Fs denotes the filtration on ��;�.X^H / coming from the
tower fCtg.
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6.12 Comparison of towers

To complete our discussion we will verify that the cohomological Adams spectral
sequence for the sphere spectrum, as constructed in Section 3, also converges to the
homotopy groups of S^

H
.

Write fX 0s;W 0s g for the “naive” Adams tower constructed as in Section 3. That is,
X 0

0
D X , each W 0s is a wedge of Eilenberg–Mac Lane spectra, and X 0s ! W 0s is

surjective on H –cohomology. Our goal is to identify the homotopy spectral sequences
of fX 0sg and fXsg, under suitable assumptions on X . The latter is the same as for
fCsg, and hence (conditionally) converges to the homotopy groups of X^

H
.

6.13 Lemma Suppose that in the tower fX 0s;W 0s g, all the spectra W 0s are motivically
finite type wedges of H . Suppose also that H��.X / is free over M2 and the natural
map H��.X /! HomM2

.H��.X /;M2/ is an isomorphism. Then the complex

0!H��.X /!H��.W 00/!H��.W 01/!H��.W 02/! � � �
is a resolution of H��.X / by relative injective comodules (see Ravenel [24, A1.2.10]
for terminology). Moreover, the E2 –term of the homotopy spectral sequence for
fX 0s;W 0s g is naturally isomorphic to ExtH��H .M2;M2/.

Proof Start with the complex:

0 H��.X / H��.W 00/ H��.W 01/ � � �
Because of the way the tower fX 0s;W 0s g was constructed, this is a resolution. The
assumption that each W 0s is a motivically finite type wedge of Eilenberg–Mac Lane
spectra shows that it is a resolution by free H��H modules. In particular, it is a
resolution by free M2 –modules. Since H��.X / is itself free as an M2 –module, the
resolution is split (as a complex of M2 –modules).

Now apply the functor HomM2
.�;M2/. The resulting complex is still exact, and there

is a map of complexes:

0 // H��.X / //

��

H��.W 00/ //

��

H��.W 01/ //

��

� � �

0 // Hom.H��.X /;M2/ // Hom.H��.W 0
0
/;M2/ // Hom.H��.W 0

1
/;M2/ // � � �

Each vertical map is an isomorphism, by our assumptions on X and the W 0i ’s. Hence
the top complex is a resolution which is split over M2 . Each H��.W 0i / is a direct
product of copies of H��H , and so is certainly a relative injective.
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The final claim of the lemma results from the natural maps

���.W 0s /! HomH��H .H��;H��.W 0s //;

which are isomorphisms given our assumptions about the spectra W 0s .

Our final task is to compare the fXs;Wsg tower to the fX 0s;W 0s g tower. Note that each
W 0s is naturally an H –module (being a wedge of suspensions of H ’s). Using this,
one can inductively construct a map of towers fXs;Wsg ! fX 0s;W 0s g by the standard
method. Start with the identity map X0!X 0

0
, and consider the diagram

W0 X0 ^H // X 0
0
^H // W 0

0
^H

��
X0

OO

// X 0
0

OO

// W 0
0
:

OO

One obtains a map W0 ! W 0
0

by following around the diagram. There is then an
induced map X1!X 0

1
, and one continues inductively.

6.14 Proposition Assume that X is in hSiH , that H��.X / is free over M2 , that
all the spectra W 0s are motivically finite type wedges of H , and that the natural
map H��.X /! HomM2

.H��.X /;M2/ is an isomorphism. Then the map of towers
fXs;Wsg ! fX 0s;W 0s g induces a map of spectral sequences which is an isomorphism
from the E2 –terms onward.

Proof This is almost immediate from the previous results. The map of towers induces
a map of complexes

0 // H��.X / //

��

H��.W0/ //

��

H��.W1/ //

��

� � �

0 // H��.X / // H��.W 00/ // H��.W 01/ // � � �

which is the identity on H��.X /. By our previous results, these complexes are resolu-
tions of H��.X / by relative injectives over H��H . Hence upon applying the functor
HomH��H .H��;�/, the map of resolutions induces an isomorphism on cohomology
groups. These cohomology groups are naturally isomorphic to the E2 –terms of the
spectral sequences for the two respective towers, so we are done.

6.15 Corollary The cohomological motivic Adams spectral sequence for the sphere
spectrum S strongly converges to the bigraded homotopy groups of S^

H
.
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Proof Let X D S . By the above results, our naively-constructed Adams spectral
sequence for S is the same (from E2 on) as the homotopy spectral sequence for the
tower fCsg. The homotopy limit of this tower is S^

H
, and the convergence properties

are as described in Remark 6.11. The evident vanishing line of the motivic Adams
spectral sequence—which can be proven in exactly the same way as for the classical
case [1]—guarantees strong convergence.

Applying topological realization to the tower fCsg for the motivic sphere spectrum
yields the corresponding tower for the classical sphere spectrum. It follows that there
is a map from the topological realization of S^

H
to the spectrum .Scl/

^
Hcl

. This can
even be constructed as a map of ring spectra. We get an induced ring map

 W ��;�.S^H /! ��.S^Hcl
/D ��.S/^2

from ��;�.S^H / to the classical 2–completed stable homotopy groups of spheres.

6.16 Remark Although this is jumping ahead, we can now summarize some of
our conclusions from Section 8 as follows. Through the 34–stem, the elements hn

1
,

hn
1
Pkh1 (n � 4), hn

1
Pkc0 (n � 2), and h2

1
h4c0 all survive the spectral sequence to

determine “exotic” motivic homotopy classes in ���.S^H /, in the sense that they vanish
under the map  . These claims exactly match what was discovered in [12] using the
Adams–Novikov spectral sequence. The reader may wonder why we are not making
the same assertion about the classes c0d0 and Œh3g�. It turns out that the latter does
not survive the spectral sequence, and for c0d0 there is a hidden � –extension which
shows that this class is not truly exotic. This will all be explained in Section 8; see
especially Lemma 8.5.

7 The motivic Adams–Novikov spectral sequence

The motivic version of the Adams–Novikov spectral sequence was considered in [12].
We wish to use it here to deduce some differentials in the motivic Adams spectral
sequence, which will in turn lead to an application to classical algebraic topology. Our
approach for setting up the Adams–Novikov spectral sequence is somewhat different
from that of [12], and does not depend on any of the results from that paper.

7.1 Background

Recall that MGL denotes the motivic cobordism spectrum. This is constructed as a
motivic symmetric ring spectrum in [23, Section 2.1].
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By the same methods as in classical topology one can write down the Quillen idempotent
and use it to split off BPL from MGL. This is remarked briefly in [11, Section 2]
and carried out in detail in [29]. One constructs the Quillen idempotent eW MGL.2/!
MGL.2/ and then the motivic spectrum BPL is defined to be the homotopy colimit of
the sequence:

MGL.2/
e�!MGL.2/

e�! � � �
One knows from the motivic Thom isomorphism that H��.MGL/ŠM2Œb1; b2; : : :�

where bi has bidegree .2i; i/, exactly as in classical topology. It follows readily
that H��.BPL/ŠM2Œv1; v2; : : :� where vi has bidegree .2.2i � 1/; 2i � 1/. By the
same arguments as in classical topology (or by using topological realization), it is
easily shown that the map H��.BPL/!H��.H / is an injection whose image is the
subcoalgebra P� DM2Œ�

�1�2
1
; ��1�2

2
; : : :� of A�� (see Section 2.5 for notation).

In some sense our discussion below would be most natural if there exists a model
for BPL which is a symmetric ring spectrum, and where there is a map of symmetric
ring spectra BPL!H . This is not known, however, and it is stronger than what we
actually need. It turns out that all we really need are pairings BPL^BPL! BPL and
BPL^H !H which are unital on the nose, and that is easily arranged for reasons we
now explain.

First, one observes that the Quillen idempotent eW MGL.2/ ! MGL.2/ is a map of
homotopy ring spectra (not a map of symmetric ring spectra). It is then easy to see
that there is a map �W BPL^ BPL! BPL making BPL a homotopy ring spectrum
(not a symmetric ring spectrum) and such that MGL.2/! BPL is a map of homotopy
ring spectra. Choose a model for BPL which is fibrant as a symmetric spectrum,
and for which the unit (up to homotopy) of � is a cofibration S ! BPL. The map
.S ^BPL/_ .BPL^S/! BPL^BPL is then a cofibration, and so has the homotopy
lifting property. The triangle

.S ^BPL/_ .BPL^S/ //

��

BPL

BPL^BPL
�

66

commutes up to homotopy, and therefore we may choose another multiplication
�0W BPL^BPL! BPL , homotopic to �, so that the triangle commutes on the nose.

Analogously, start with the Thom class BPL!H (induced from the Thom class on
MGL) and consider the composite map BPL^H ! H ^H ! H . This pairing is
unital up to homotopy, and therefore by the same arguments as above we can choose a
homotopic pairing which is unital on the nose.
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As a final prelude for the work in the next section, suppose E is a motivic spectrum with
a pairing E^E!E that is unital on the nose (but where no associativity assumptions
are made). Then for any motivic spectrum X one may form the cosimplicial object
without codegeneracies:

.7:2/ E ^X
//// E ^E ^X

////// E ^E ^E ^X
//////// � � �

The homotopy limit of this diagram may be modelled by a Tot–like object, defined to be
the mapping space from the standard cosimplicial simplex (without codegeneracies) �� .
By looking at the usual skeletal filtration of �� one defines Toti objects as usual, and
obtains a tower of fibrations whose limit is Tot. The homotopy fiber of Toti! Toti�1

is �i.E^.i/ ^X /.

The same arguments as usual (meaning in the true cosimplicial case, where there are
codegeneracies) show that this Tot–tower is an E–nilpotent resolution of X in the
sense of Bousfield [5, Definition 5.6], and therefore our Tot object is a model for the
E–nilpotent completion of X .

Finally, assume that there is a pairing E^X!X which is unital on the nose (but where
again there is no associativity condition). This map then gives a “contracting homotopy”
in the cosimplicial object without codegeneracies (7.2). The usual arguments show
that X splits off every piece of the Tot–tower, and its complementary summand in
each Toti becomes null homotopic in Toti�1 . One shows that consequently the map
X ! Tot.E� ^X / is a weak equivalence. In other words, the same thing that works
for cosimplicial objects in the case of pairings which are associative on the nose (see
Remark 6.9) also works for cosimplicial objects without codegeneracies.

7.3 Construction of the spectral sequence

For any spectrum X , construct a bicosimplicial spectrum—without codegeneracies—of
the form

.7:4/ Œn�; Œk� 7! BPL^.nC1/ ^X ^H^.kC1/:

We will continue to say “bicosimplicial object” below, even though this is an abuse of
terminology since there are no codegeneracies. The homotopy limit of this bicosimpli-
cial spectrum is a kind of “bicompletion”, which we will denote by X^fBPL;H g . We will
only concern ourselves with X D S .

We can compute the homotopy limit of our bicosimplicial object by first taking homotopy
limits in one direction—with respect to n, say—and then taking the homotopy limit
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of the resulting cosimplicial object in the other direction (k in this case). Taking
homotopy limits with respect to n, one obtains the following cosimplicial spectrum:

.7:5/ HB̂PL
//// .H ^H /B̂PL

////// .H^.3//B̂PL
//////// � � �

But H is a BPL–module up to homotopy, and therefore so is H^.k/ for each k . It fol-
lows from the observations in the previous section that the maps H^.k/! .H^.k//B̂PL
are all equivalences. Therefore the homotopy limit of (7.5) is equivalent to S^

H
. So we

have shown that S^fBPL;H g ' S^
H

.

Now, we can also compute the homotopy limit of our bicosimplicial object by first
taking homotopy limits in the k direction, and then in the n direction. Taking homotopy
limits with respect to k , one obtains the following cosimplicial spectrum:

.7:6/ BPL^H
//// .BPL^BPL/^

H
////// .BPL^.3//^

H

//////// � � �

For each k , we may run the homological Adams spectral sequence for computing the
homotopy groups of .BPL^.k//^

H
. Since BPL is cellular, Proposition 6.10 says that the

E2 –term of this spectral sequence has the expected description in terms of Ext. Then
by the same arguments as in classical topology, the spectral sequence for computing
���..BPL^.k//^

H
/ is concentrated in even degrees, and therefore collapses. For k D 1

this allows us to conclude that

���.BPL^H /Š Z.2/Œ�; v1; v2; : : :�;

and if we call the above ring V then for all k � 1 we get

���..BPL^.k//^H /Š V Œ t1; t2; : : :�˝V � � � ˝V V Œ t1; t2; : : :� (k � 1 factors).

where each ti has bidegree .2.2i � 1/; 2i � 1/. In other words, everything is exactly as
in classical topology except for the extra generator � and the new grading by weight.

Now we run the homotopy spectral sequence for the homotopy limit of (7.6), which
from now on we will refer to as the motivic Adams–Novikov spectral sequence. We find
that the E2 –term is precisely ExtBP�BP .BP�;BP�/ tensored over Z.2/ with Z.2/Œ� �,
with the generators assigned appropriate weights. Unlike the motivic Adams E2 –term,
the assignment of the weights in this case follows a very simple pattern. Namely,
generators in classical Exts;tCs yield motivic generators in Exts;.tCs;.tCs/=2/ .

A chart showing the Adams–Novikov E2 –term is given in Appendix B. Recall that
this is really a two-dimensional picture of a three-dimensional spectral sequence. We
have not written any of the weights in the chart, because these are all deduced by the
simple formula given in the last paragraph. In terms of the usual naming conventions,
˛i has weight i , ˇ2 has weight 5, �3=2 has weight 13, etc.
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The differentials in the motivic Adams–Novikov spectral sequence can be deduced by
using the comparison map (over the complex numbers) to the classical one. For instance,
classically we have d3.˛3/ D ˛4

1
. Motivically this doesn’t make sense, because ˛3

lies in weight 3 whereas ˛4
1

lies in weight 4. But it allows us to deduce the motivic
differential d3.˛3/D �˛4

1
. In fact, this reasoning shows

d3.˛4k�1/D �h3
1˛4k�3 and d3.˛4kC2/D �h3

1˛4k .k � 1/:

These differentials are depicted in our chart, although except for the first of them they
are not given their true length (to make the chart easier to read).

It is easy to continue this analysis and deduce all the motivic differentials in the given
range (there are only three others). This is done in [12]. The resulting E1 term is
shown in Appendix B.

8 Differentials and applications to classical topology

Having obtained information about the E2 –term of the motivic Adams spectral se-
quence in Section 4, we proceed to analyze the differentials of the spectral sequence.

8.1 Lemma Table 4 gives values for the d2 –differential of the motivic Adams spectral
sequence.

x d2.x/ x d2.x/

h4 h0h2
3

Œh3g� h3
1
h4c0

e0 h2
1
d0 k h0d2

0

f0 h2
0
e0 h5 h0h2

4

i h0Pd0 l h0d0e0

Pe0 h2
1
Pd0 P2e0 h2

1
P2d0

j h0Pe0 Pj h0P2e0

Table 4: d2 differentials in the motivic Adams spectral sequence

Proof Most of the values follow immediately by comparison to the classical Adams
spectral sequence. The only exception is the computation of d2.Œh3g�/. We will
determine d2.Œh3g�/ by a comparison of the information given by the motivic Adams–
Novikov spectral sequence to that given by the motivic Adams spectral sequence. Recall
that these are converging to the same groups, since S^fBPL;H g ' S^

H
.
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Consider the 26–stem, but only in weights � 16. This allows us to ignore classes that
are divisible by large powers of h1 , such as h26

1
and h18

1
c0 . In this weight range, the

Adams–Novikov E3 term consists of two copies of M2 with generators in weight 14
and 16, together with one copy of M2=� in weight 15.

On the other hand, the Adams E3 term contains at least two copies of M2 , generated
by h2Œh2g� (weight 16) and h1P3h1 (weight 14), and one copy of M2=� generated
by h2

1
P2c0 in weight 15. By comparison to the previous paragraph, the Adams E3

term cannot contain a copy of M2=� generated by h3
1
h4c0 in weight 16. The only

possibility is that d2.Œh3g�/D h3
1
h4c0 .

If a generator of the E2 –term is not listed in Table 4, then d2 sends that generator to
zero. By the Leibniz Rule, the entire d2 differential is easily calculated from the table.
For example, the multiplicative structure implies that we have three infinite families of
differentials of the form

d2.h
k
1e0/D hkC2

1
d0

d2.h
k
1c0e0/D hkC2

1
c0d0

d2.h
k
1d0e0/D hkC2

1
d2

0 :

The last of these is particularly interesting because �h2
1
d2

0
is zero. This means that

�d0e0 is an indecomposable on the E3 –page of the spectral sequence.

We now proceed to the d3 differential.

8.2 Lemma Table 5 gives values for the d3 –differential of the motivic Adams spectral
sequence.

x d2.x/

h0h4 h0d0

r �h1d2
0

h3
0
h5 h0r

h2h5 �h1d1

�d0e0 c0Pd0

Table 5: d3 differentials in the motivic Adams spectral sequence
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Proof All of these computations follow immediately by comparison to the classical
Adams spectral sequence.

Note that �2d0e0C h7
0
h5 survives to the E4 page since h5

0
r D �c0Pd0 .

There remains one possibility for an exotic d3 differential, which we now eliminate.

8.3 Lemma d3.h4c0/D 0.

Proof We need to prove that d3.h1h4c0/ does not equal c0d0 . The class h1h4c0 is a
product of two permanent cycles h1h4 and c0 , so it is a permanent cycle. In particular,
d3.h1h4c0/ equals zero, not h1c0d0 . It follows that h4c0 is also a permanent cycle.

8.4 Lemma d4.�
2d0e0C h7

0
h5/D P2d0 .

Proof Compare to the classical Adams spectral sequence.

Weight considerations allow for the possibility of higher differentials, but we can
eliminate these for various algebraic reasons.

For example, d6.c1/ might equal h2
1
Pc0 . However, h4

1
Pc0 survives the spectral

sequence because it cannot be hit by anything. Then h2
1
Pc0 cannot be hit by c1

because the latter is annihilated by h2
1

whereas the former is not.

Also d5.h2e0/ might equal h3
1
Pc0 . Note that h2e0 does not equal h0Œ�g� since they

live in different weights, so we may not argue that this d5 vanishes using h0 –linearity
as in the classical case. However, as in the previous paragraph, h2e0 is annihilated
by h1 , while h3

1
Pc0 is not.

A similar analysis confirms that d9.Œh2g�/ does not equal h5
1
P2h1 .

We now conclude that c0d0 and h1c0d0 are permanent cycles. The class h2
1
h4c0 also

survives to E1 , as do the classes h1Œh3g� and h2
1
Œh3g�. These are “exotic” permanent

cycles, in the sense that one does not see them in the classical Adams spectral sequence.
In order to understand what this means about motivic stable homotopy groups, we need
to analyze some hidden multiplicative � –extensions.

8.5 Lemma In the motivic stable homotopy groups of S^
H

, there are hidden extensions

� � c0d0 D Pd0

� � h1Œh3g�D d2
0 :
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Proof As in the proof of Lemma 8.1, the proof relies on a comparison of the motivic
Adams spectral sequence with the motivic Adams–Novikov spectral sequence.

In the 22–stem, restrict attention to weights � 13. In the Adams E1 term, there are
two copies of M2 , generated by h2c1 (weight 13) and Pd0 (weight 12), and one copy
of M2=� generated by c0d0 (weight 13). In the Adams–Novikov E1 term, there are
just two copies of M2 , both generated in weight 13. The existence of the first hidden
extension is the only way to make these data compatible.

The second hidden extension can be established in exactly the same way by considering
the 28–stem in weights � 17.

8.6 Proposition The element h2
1
Œh3g� survives the spectral sequence to determine an

element in �29;18.S
^
H
/ which is killed by �2 but not killed by �:

Proof By Lemma 8.5, there is a hidden extension � � h2
1
Œh3g�D h1d2

0
. Note also that

� � h1d2
0
D 0 (because it is hit by r via a d3 ).

8.7 A new tool for classical differentials

The comparison between the motivic Adams spectral sequence and the classical Adams
spectral sequence provides a new tool for studying classical differentials. The point is
that the weight gives a simple method for determining that certain classical differentials
must vanish.

We illustrate this with a basic example of h1h4 in the 16–stem. Motivically, this
element has weight 9. Considering elements of weight 9 in the 15–stem, we see that
the only possible motivic differential is d3.h1h4/ D h1d0 . It follows that the only
possible classical differential on h1h4 is d3.h1h4/D h1d0 .

The same argument yields the following, as well as many other results similar to it:

8.8 Proposition In the classical Adams spectral sequence there are no differentials of
the form

dr .h1hj /D hn
0hj ;

for any j and r .

The above result is already known, of course (in fact it is known that h1hj is a permanent
cycle, which is stronger). Still, the simplicity of our motivic proof is appealing.

The most famous question about the vanishing of differentials in the classical Adams
spectral sequence is the Kervaire problem, which asks whether all differentials vanish
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on the classes h2
i . See Hopkins, Hill and Ravenel [9] for a recent breakthrough on this

problem. One might hope that our weight arguments say something nontrivial about
this problem, but unfortunately this doesn’t seem to be the case. For example, consider
the element h2

4
in the 30–stem. This element has weight 16. But the elements k , h0k ,

and h2
0
k in the 29–stem all have weight 16, so we learn nothing by considering the

weights. Although it is not shown on our chart, it turns out that something similar
happens with h2

5
in the 62–stem, where h2

5
has weight 32 and so do almost all of the

generators in the 61–stem.

To close this section we use our motivic techniques to prove another result which is
purely about classical algebraic topology. Recall that in the classical stable homotopy
groups of spheres, there are unique classes in the 2-components of �8.S/ and �14.S/

which are detected in the Adams spectral sequence by c0 and d0 , respectively. These
elements of the stable homotopy groups go under the names � and � . The product
c0d0 vanishes in the E2 –term of the classical Adams spectral sequence, but this does
not tell us that �� vanishes—it just says that �� lives in higher Adams filtration. We
can use the algebra of the motivic spectral sequences to show that �� is in fact nonzero:

8.9 Proposition In the classical stable homotopy groups of spheres, the product ��
is nonzero and is detected by Pd0 in the Adams spectral sequence.

Proof There are unique elements �M and �M in �8;5.S
^
H
/ and �14;8.S

^
H
/ which

are detected by c0 and d0 in the motivic Adams spectral sequence. It must be that
 .�M /D � and  .�M /D � , where

 W �p;q.S
^
H /! �p.S/

^
2

is our map from the end of Section 6.12 (because  .�M / is detected by c0 in the
classical Adams spectral sequence, etc.)

The product �M �M is detected by c0d0 , which is nonzero in the motivic Adams
spectral sequence. We discovered in Lemma 8.5 that there is a hidden � –extension in
�22;�.S^H /, telling us that � � .�M �M / gives the generator in �22;12.S

^
H
/. But this

generator is detected by Pd0 , and so the same remains true upon applying  . That is,
 .� � �M �M / is nonzero and detected by Pd0 . Recall that  is a map of ring spectra,
and  .�/D 1. So  .� � �M �M /D �� , and we are done.

Again, Proposition 8.9 is a known result in algebraic topology. It is implicit, for instance,
in the homotopy groups of tmf as given in [3, Proposition 7.2(5)] (this was explained
to us by Mark Behrens). Still, our motivic proof is very simple, only depending on the
algebraic computation of the motivic Adams and Adams–Novikov E2 –terms and a
comparison of differentials.
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Appendix A The motivic Adams spectral sequence
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Appendix B The motivic Adams–Novikov spectral sequence

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

01234

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

02468

E
6
D

E
1

F
2
Œ�
�

Z
=

n
Œ�
�

F
2
Œ�
�=
.�
/

F
2
Œ�
�=
.�

2
/

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

01234

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

32
34

02468

E
2
D

E
3

˛
1

˛
2

˛
3

ˇ
2

=
2

˛
4

ˇ
2

˛
5

˛
6

˛
7

ˇ
3

˛
8

˛
9

˛
1

0
˛

1
1

˛
1

2

�
3

=
2

˛
1

3

ˇ
5

˛
1

4

P
ˇ

2

˛
1

5

ˇ
6

=
2

˛
1

6

x
3

2

˛
1

7

Geometry & Topology, Volume 14 (2010)



1012 Daniel Dugger and Daniel C Isaksen

Appendix C The E4–term of the motivic May spectral se-
quence
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